
General Information Manual

Programmers Primer for FORTRAN

Automatic Coding System

for the IBM 704 Data Processing System

General Information Manual

Programmers Primer for FORTRAN

Automatic Coding System

for the IBM 704 Data Processing System

© 1957 by International Business Machines Corporation

This edition is a reprint of Form No. 32-0306-1 and does not

obsolete it or 32-0306. No changes have been made to 32-0306-1.

TABLE OF CONTENTS

GENERAL INTRODUCTION , . .

SECTION | - PUNCHED CARD INPUT, ARITHMETIC OPERATIONS,
STANDARD FUNCTIONS, PRINTED OUTPUT

Introduction4.2..2.20.228..

Arithmetic Statements ..

READ and PRINT Statements. Loe ee
IF, Unconditional GO TO, and STOP Statements oe ew ee
Additional Examples soe ee ee ee
Check List.0.20202.,

ECTIONI! - DEFINITION OF FUNCT! NS, MANIPULATIONOF SINGLE-
SUBSCRIPTED VARIABLES, MAGNETIC TAPE INPUT AND OUTPUT

Introduction:........0..
Integer Constants and Variabies

DIMENSION Statements .

DO Statements

Function Statements

The Meaning ofa List.20.., soe ee ee
FORMAT Statements oe ee ee tw ew
Magnetic Tape Input and Output soe ee ee we ee .
READ INPUT TAPE and WRITE OUTPUT TAPE Statements .
General Information about the Use of Tapes. .

Additional Examples2..20202.2..
Check List . .

SECTIONIll - MANIPULATION OF TWO- AND THREE-DIMENSIONAL ARRAYS
Introduction4..4..2.2..
Subscripts for Two- and Three--Dimensional Arrays see we ew ew
DO Nests woe ee
Lists for Two- and Three--Dimensional Arrays se ee ee
Assigned GO TO Statements2......2.....,
Computed GO TO Statements.2..... eee ee
FORMATStatements ee es

Scale Factors4.2..
Hollerith Fields .

Multiple-line Format . .
Example Problem and Program . Soe ee et ew ew
Debugging... 2...ee
Storage eere
Master Check List .

Summary of FORTRAN Statementsa

23

26

28
28

30

31
32
35
35

36
37
4]

43
45

45
47
48

49
Q1
SL

51
32

32

53
38
60
61

GENERAL INTRODUCTION

Every type of electronic computer is designed to respond to a

special code, called a ''machine language, "’ which differs for

different types of computers. A program, or set of instructions,

telling a computer what steps to perform to solve a problem must

ultimately be given to the computer in its own language. However,

the FORTRAN System makes it unnecessary for the 704 programmer

to learn the 704 machine language.
The FORTRAN System has been developed to enable the

programmerto state in a relatively simple language, resembling

familiar usage, the steps of a procedure to be carried out by the

704 computer, and to obtain automatically from the 704 an efficient

machine language program for this procedure. The FORTRAN

System has two parts: the FORTRAN language, and the FORTRAN

translator or executive routine.

The FORTRANlanguage consists of 32 types of statements,

which may be grouped into four classifications: arithmetic state-

ments, control statements, input/output statements, and specification

statements. The FORTRAN programmer usesthis language to state
TIAA Tha GDOANRTNANI

2110 DPUINILINSAINthe steps ultimately to be carried out by the 704.

translator is a large set of machine language instructions which

causes the 704 to translate a FORTRAN program into an efficient

(or optimized") machine language program. The 704 does not

respond directly to a FORTRAN program, but to the machine

language program produced by means of the FORTRANtranslator.

The name FORTRAN comes from "FORmula TRANslation" and

was chosen because many of the statements which this system

translates look like algebraic formulas.

The purpose of the FORTRAN Primeris to introduce the reader

to the FORTRAN language, which has been designed as a concise,

convenient means of stating the steps to be carried out by the 704

in the solution of many types of problems, such as frequently occur

in engineering, physics, and other scientific and technical fields.

No prerequisite knowledge of computing technology or techniques

on the part of the reader is assumed.

In order to clarify what the 704 can do and whatit cannot do,

consider, for example, the problem of finding the roots of a

quadratic equation. The 704 cannot be given an equation of the form

3x + 1.7x - 31.92 =0

and be directed to find its roots. The 704 can, however, be directed

to compute the value of

(-1.7 +V (1.7)? - 4(3)(-31.92))/2(3)

which gives one of the roots of the preceding equation. Thatis,

the 704 must be told howto find the answer. It will do the work.

Once the 704 has been told how to solve a problem, it can

take in data from punched cards at a rate exceeding 1000 numbers
per minute, perform arithmetic steps at an approximate rate of

10, 000 per second, and print results at a rate of about 750 per

minute. Thus the 704 can do in minutes calculations which would

require weeks or monthsto do manually.

Virtually any numerical procedure may be expressedin the

FORTRANlanguage. The FORTRANSystem is intended to reduce

substantially the time required to produce an efficient machine

language program for the numerical solution of a problem, and to

relieve the programmerof a considerable amount of manual

"clerical" work, minimizing the possibility of human error by

relegating the mechanics of coding and optimization to the 704.

In this primer, as an aid to efficient study, the FORTRAN

language is approached cumulatively through three stages, SectionI,

Section II, and Section II. The division into three sections is

convenient for the description of successively more complex

problem-solving procedures.

By using only the types of statements presented in Section I,

it is possible to direct the 704 to take individual numbers from a

card reader; combine them according to formulas involving

arithmetic operations and standard functions such as sine, square

root, log, etc.; make tests and follow different directions depending

on the outcome of the tests; and finally print the results.

Section II presents additional types of statements which provide
for the definition and use of functions peculiar to the problem to

be solved; the iterative manipulation of subscripted variables (the

elements of vectors or lists of numbers); the use of magnetic tape

for input and output information; and greater flexibility in the
format of input and output information. When magnetic tape is used

for input and output information, the 704 can read or write more

than 900 numbers per second, a much greater rate than is possible

when the 704 reads cards and prints results directly. Since all

information to be used or processed by the 704, other than magnetic

tape output from a previous computer operation, mustinitially be

recorded on punched cards, and since it is often desirable to

maintain permanent records on punched cards or in printed form,

the use of magnetic tape for input and output requires a meansof

transferring information from cards to tapes, tapes to cards, and

tapes to printed form; this transfer may be effected by means of

Separate peripheral equipment.

Section III adds to these facilities the ability to handle two-

and three-dimensional arrays of numbers, to perform more complex

iterative procedures, and to direct the flow of control within a

program more flexibly.

The three sections of this primer do not include all the
facilities offered by the complete FORTRANlanguage. Full infor-
mation about the FORTRANlanguage is given in the Programmer's
Reference Manual for FORTRAN, Form 32-7026, which can be
obtained from IBM Stationery Stores, Endicott, ‘N, Y., in the
usual manner.

This primer describes the writing of FORTRAN programsfor
the 704; it does not explain the mechanics of tape loading, card
feeding, and other related operations needed to get the 704 working
on a problem, since it has been assumedthat the 704 will be
operated by a computing center. At the computing center, the
FORTRAN program statements are first transcribed onto punched
cards exactly as they have been written, each letter, digit, or
punctuation mark resulting in one or moreholes in a single column
of a card. These cards are then placed in the card reader for the
704. By means of the FORTRANtranslator or executive routine,
the 704 is directed to start reading the FORTRAN statements from
the cards; to translate the FORTRANstatements into machine
language, one FORTRANstatement usually resulting in a sequence
of several machine language instructions; and to record the machine
language instructions as output on punched cards. The new set of
cards contains a machine language program, which can be entered
into the 704 any number of times, each time causing the 704 to
carry out the procedure specified by the original set of FORTRAN
statements.

Before the presentation of FORTRAN statements, a short
description of the 704 itself may be of interest. The 704 consists
of a control unit; an arithmetic and logical unit; a magnetic core
storage unit capable of storing 4, 096, 8,192, or 32, 768 numbers;
magnetic tape units and magnetic drum units for holding information
exceeding the instantaneous storage capacity of the magnetic core
storage unit; a card reader; a card punch; and a printer. The
control unit directs the flow of information between the other units
in accordance with the machine language instructions currently
in the magnetic core storage unit.

Most calculations performed by the 704 are carried out in
"floating point" form. Numbers are represented in the machine
in this form, and the results produced by the arithmetic unit are
usually in this form.

For example: calculation of the product

5 x 0.0037

would be carried out by the 704 in a form analogous to

(.5000 0000 x 10") x (.3700 0000 x 1072) = (.1850 0000 x 1074),

This would be the case even though the numbers were entered as

5.0 and 0.0037 and the result were printed as 0.0185. All floating

point numbers in the 704 are carried to about 8 significant decimal

digits. Numbers outside the range 10738 to 1038 (other than zero)

cannot normally be accommodated.

Since FORTRANlanguage statements haveto be translated by

a machine, the 704, before a problem is ready to be run, FORTRAN

statements must be written in exactly the proper form. The

machine has no ability to understand what was meant; it can only

translate what was written. Therefore, the omission of a single

decimal point or operation symbol will make a FORTRANstatement

incapable of being translated correctly. For this reason, the

rules for writing FORTRAN statements must be carefully followed.

In devising the FORTRANSystem, considerable effort was devoted

to making these rules consistent and having them conform to

familiar usage wherever possible. A number of examples have

been providedto illustrate these rules without having to include

specific statements of them in the text. At the end of each section,

a check list of things not to write is given, which should answer

any remaining questions. Some of the rules in the check lists are

not explicitly stated elsewhere.

SECTION | - PUNCHED CARD INPUT, ARITHMETIC OPERATIONS,
STANDARD FUNCTIONS, PRINTED OUTPUT

Introduction Consider the quadratic equation example previously presented

3x” + 1.7x - 31.92 = 0

The algebraic representation for one of the two roots of the equation
could be written

Vp2root = -B+V BY - 4AC
2A

where A=+3

B = +1.7

C= -31.92

The complete FORTRAN program which describes this calculation

and provides for printing the result may be written in six separate

statements as follows:

Ct < FOR 8

Comment 3 FORTRAN STATEMENT
STATEMENT z
HUMBER $

1 5 & 7 72

A =3.
| B=1.7

= -31.92

| __| ROOT= (-B + SQRTF(B**2, - 4.*A*C)) / (2.*A)

| __| PRINT 1, ROOT
| STOP_

|

The first statement means: “Assign the value 3. to the variable A."
The next two statements have a similar meaning. The fourth

statement means: "Evaluate the expression on the right side and

assign the result to the variable ROOT." The fifth statement prints

the computed value of ROOT (see pages 8 ff.). The last statement

instructs the computer to stop.

Notice the sequential nature of the program. The computer

executes instructions in the same order as the order of the state-

ments. For example, if the fourth statement were to be moved

up and made the first statement, then the computer would evaluate

ROOT before obtaining the desired values of A, B, and C. ROOT

would therefore be evaluated using some arbitrary, unknown values

for these variables.

The above example was written to illustrate the use of variables.

Arithmetic

Statements

However, the same result could be obtained by writing

C<comment

|

5 FORTRAN STATEMENT
FOR

STATEMENT
NUMBER

S|_8 |_7 72

ROOT= (-1.7 + SQRTF (1.7**2. - 4.*3.* (-31.92))) / (2.*3.)
PRINT 1, ROOT

a

|
|
Pp

|
STOP

in which the actual numerical values appear in the statement

describing the evaluation of ROOT.

The program on page 5 illustrates the use of three types of

FORTRANstatements. In all, six types of statements will be

presented in this section:

1. Arithmetic statements (e.g., first four statements in the

| program).
READ statements.

PRINT statements (e.g., fifth statement in the program).

IF statements.

Unconditional GO TO statements.

STOP statements (e.g., last statement in the program).O
u

m
m

G
W

b
o

The first four statements in the above example are called arithmetic

statements. An arithmetic statement looks like a simple statement

of equality. The discussion of arithmetic statements in this section

will be restricted to those in which the left side of the equality is a
simple variable. In Section II, additional facilities will be presented

for handling arithmetic statements in which the left side is a function

of one or more variables. The right side of all arithmetic statements

is an expression which may involve parentheses, operation symbols,

constants, variables, and functions, combined in accordance with

a set of rules much like that of ordinary algebra.

The fourth statement in the example illustrates the use of the

five basic operations in the FORTRAN language. The symbols +

and - are used in the usual way for addition and subtraction. The

symbol * is used for multiplication, and the symbol / is used for

division. The fifth basic operation, exponentiation, is represented

by the symbol **. A**B is used to represent A to the exponent B

(i.e., A®)

If only the types of statements presented in this section are used,

all calculations will be carried out by the 704 in floating point

arithmetic, and the programmer must so instruct the 704 by writing

all constants with a decimal point. All numbers (and only numbers)

are considered constants with the exception of statement numbers.

The FORTRAN arithmetic expression

A**B*C + D**E/F - G

will be interpreted to mean

A®c+DE-G
F

That is, if parentheses are not used to specify the order of
operations, the order is assumedto be:

1. exponentiation

2. multiplication and division

3. addition and subtraction

Parentheses are used in the usual way to specify order. For
example

(A(B +.¢))P

is written in FORTRANas

(A*(B + C)) **D

There are just three exceptions to the ordinary rules of
mathematical notation. These are:

1. In ordinary notation AB means AB or A times B. However,
AB never means A*B in FORTRAN. The multiplication
symbol cannot be omitted.

2. In ordinary usage, expressions like A/B-C and A/B/C
are considered ambiguous. However, such expressions
are allowed in FORTRANandare interpreted as follows:

A/B*C means (A/B)*C

A*B/C means (A*B)/C

A/B/C means (A/B)/C

Thus, for example, A/B/C*D*E/F means ((((A/B)/C)*D)*E)/F
That is, the order of operations is simply taken from left
to right, in the same way that

A+B-C+D-E

means

((A +B)-C)+D)-E

C
3. The expression AB is often considered meaningful .

However, the corresponding expression using FORTRAN
notation, A**B**C, is not allowed in the FORTRAN

language. It should be written as (A**B)**C if (ABC is

meant, or as A** (B**C) if AB) is meant.

Besides the ability to indicate constants (like 3.57 and 2.);

simple variables (like A and ROOT), and operations (like - and *),

it is also possible to use functions. In the example on page 5,

SQRTF(_) indicates the square root of the expression in

parentheses.

Since the numberof possible functions is very large, each 704

computing center will have its own list of available functions, with

information about their use. Functions given in this list must be

referred to exactly as indicated.

Some functions which might appear in a typical list are:

FORTRAN Symbol Function

ABSF(X) _. 4X1 (absolute value of X)

SQRTF(X) Cee ee VX

SINF(X) . a. ee . SiN X

ARCTANF(X) arctan X

EXPF(X) eee
LOGEF(X) .. ss + « log.X

LOGI0F(X) J. eee logyaX

INTF(X) integral part of X

MAXF(X, Y) + +. maximum of X and Y

Notice, as in the last example, that a function may have more

than one argument; as in general mathematical usage, multiple

arguments are separated by commas. Section II will present facilities

for defining functions peculiar to the problem at hand and not

available from the computing center list.

READ and PRINT As stated in the General Introduction, this section presents

Statements FORTRANstatements which can direct the 704 to take numbers

from a card reader and, after carrying out the desired calculations,

print the results. Consider again the example of finding a root of

a quadratic equation.

In many cases it will be desired to find ROOT for a number of

sets of values of A, B, and C. To do this, the 704 would have to be

directed to read a card in which values for A, B, and C have been

punched, compute the value of ROOT, print ROOT (along with A,

B, and C), read another card with different values for A, B, and C,

compute and print the corresponding value of ROOT and so on. In

this case, the FORTRAN program could be written:

FoR 3

=

comment |5
z

FORTRAN STATEMENT
STATEMENT z ,

UMBER 3

1 si.¢ jz

_|_10 READ 1, A, B, C

ROOT= (-B + SQRTF (B**2. - 4.*A*C)) / (2.*A)

PRINT 1, A, B, C, ROOT
GO TO 10

Ch
eee

l

72

The first statement (which has been given the number 10 for
reference purposes) causes the 704 to read the first card from the
deck in the card reader. Three numbers should be on this card,
represented by three sets of punches. The value of the first number
is named A; the value of the second number, B; and the value of

the third number, C.

The 704 then proceeds to compute ROOTasbefore, after
which it prints (on one line across the page) the values namedA,
B, C, and ROOT in that order. Upon reaching the last statement,
the 704 is directed: "Go to the statement numbered 10 and do what
it says." Thus the 704 reads the next card with three new values
for A, B, and C, then computes ROOT, prints the current values

of A, B, and C and the computed value of ROOT, and again returns
to statement 10. This process continues as long as there are cards
in the hopper of the card reader. When the cards are exhausted,
the 704 stops upon its return to statement 10.

FORTRAN provides means for specifying the format of input
and output data in a great variety of ways by the use of FORMAT
Statements. Two very useful formats are presented in this section.
Rules for writing FORMATstatements to specify other formats
are given in Sections II and III, on pages 32-34 and 51-53,
PARANASacer ml<r
respectively.

One or both of the two FORMATstatements which specify
the input/output formats presented in this section will be added
to the completed program by the computing center, provided the
computing center has been requested to do so; these FORMAT
statements are always numbered 1 and 2. To use these twostate-
ments one must know what arrangement of data each specifies.
The input data must be prepared in conformity to the data
arrangements specified by one of the FORMATstatements used;
similarly, the output data will conform to one of these specified
arrangements. If input data on punched cards conforms to FORMAT
statement 1 or 2, the READ statement is given with a 1 or 2
following, respectively; similarly, either PRINT 1 or PRINT 2 is
used to print results.

If FORMAT 1 is used, statement number 1 must be reserved
for it; if FORMAT 2 is used, statement number 2 must be reserved
for it. The statement number reserved for a FORMAT statement
must not be used as the number of any other FORTRAN statement.

READand PRINT statements are similar to each otherin
nature and in appearance. Consider first the READ statementin the
preceding example:

READ 1, A, B, C

The first item after READ is the number of the FORMATstatement
which describes the arrangement of data on the cards to be read. Then

there follows an ordered list of the variable names which are to

be associated with the values to be read in (A, B, and C). Sucha

list can be as long as necessary.

In any case, when a READ statement is executed, a stream of

numbers comes in from the card reader, and each variable name in

the list part of the statement is associated with the value of the

corresponding number, the first number correspondingto the first

variable, the second number to the second variable, etc. The card

reader continues to read in numbers until the last variable in the

list has received a value, unless the cards are exhaustedfirst.

Both FORMATstatements 1 and 2 specify five numbers on a card;

therefore, the stream of numbers which is brought in by giving

either READ 1 or READ 2 consists of five numbers from thefirst

card, five from the second, and so on until the list is exhausted.

In the example, only three variables appear in the list. Thus, the

list is completed before the end of the card is reached, and only

the first three numbers on a card are read. Since each new

execution of a READ begins with a new card, the valuesof A, B,

and C must be placed in the first three of the five fields on each

card. The arrangement of the numbers might appear as:

Field] 2 3 4 5

card 1 3. 1.7 -31.92

card 2 1.5794 -17.3 |40.00023

card 3 -180. - .001 4,20

etc.

As has been mentioned, PRINT statements are very similar to

READ statements. PRINT 1 and PRINT 2 both specify that up to five

numbers are to be printed on each line until all the values associated

with the variables in the list given in the PRINT statement have

been printed. The PRINT statement in the above example

PRINT 1, A, B, C, ROOT

would cause lines like the following to be printed each time the

statement is executed:

+3 .00000 +1. 70000 -31.92000 (value of ROOT)

+1.57940 -17 .30000 +0 .00023 (value of ROOT)

etc.

The difference between the two standard FORMAT statements

is that FORMAT1 calls for fixed point input or output whereas

FORMAT2 calls for floating point input or output.

10

Fixed Point Input:

If fixed point input conforming to FORMATstatement1 is
desired, data must be arranged in five fields. Each line of data is
punched on a single card. Each number mayhave a sign and must
have a decimal point; unsigned numbersare interpreted as positive.
A maximum of ten digits per numberis permitted.
Several examples follow.

Example 1:

Statement:

READ 1, A, B, C, D, E, F

Data Sheet

Case 1 A,B, C, D, E 1.0 + 50001. - .0007 160. -0.0615

F 14.2

Case 2 A,B,C, D,E 4.7 -1763. +.0589 87. ~0.0023

F -3.0

etc.

Example 2:

Statements (appearing together in a program):

READ 1, A, B, C

READ 1, D, E, F, G

Data Sheet (for both READ statements)

Case 1 A,B,C 150579 .1 10000000. 15.1007

D, E, F,G -1005.7

|

-.00000005 +1.0003 14.

Case 2 A,B,C 2704.3 100000. 23 .0823

D, E, F,G -99.5 ~.087654

|

+0.3879 7.
Floating Point Input:

The data sheet for floating point input conforming to FORMAT
Statement 2 must be arranged with five major fields, each field
having a right-hand sub-field wide enough for the exponent (a sign
and two digits). The same examples could be written for floating
point input as shown on the following page.

ll

Example 1:

Statement:

READ 2, A, B, C, D, E, F

Data Sheet

Case 1 A,B,C, D, E 1.0 +00 +50001.. | +00 - .0007 +00 1.6 1402 -6.15 |-02

F 1.42!4o1 | ! | !

Case 2 A,B,C,D,E 4.7 {+00 - 17630. -O1

|

+.0589 {+00 8.7 1 -2.30 703

F -3.00|+00 | ! |

Example 2:

Statements:

READ 2, A, B, C

READ 2, D, E, F, G

Data Sheet

Case 1 A,B,C 1.505791! 405 1. 07 15.1007! 400
|
|

D,E,F,G -1.0057|+03 5.0 | -08 }+1 .0003 |+00 1.41401
|

|

{

Case 2 A,B,C 2.7043 | +03 1. los 23 .0823 +00

D, E, F,G -9.95! 401} -8.7654 |-02] +3.879|-01} 7.

There must always be three characters in the exponent sub-field,

a sign and two digits. As in the case of fixed point input, there is a

limit of ten digits per field; the maximum numberof digits for the

number is therefore eight, two digits being required for the exponent.

Fixed Point Output:

For fixed point output, PRINT 1 causes numbersto be printed

with five decimal places, five numbers per line. PRINT 1 should not

be used if any result will exceed 999, 999. If the input data of the
preceding examples were to be printed as output in the fixed point

form specified by FORMAT statement 1, the FORTRAN statements

and printed sheets would appear as shown on the following page.

12

Example 1:

Statement:

PRINT i, A, B, C, D, E, F

Printed Sheet

+1.00000 +50001.00000 -0.00070 +160.00000 -0.06150

+14. 20000

+4.70000 -1763.00000 +0.05890 +87 .00000 -0 00230

-3 00600

Example 2:

Statements:

PRINT 1, A, B, C

PRINT 1, D, E, F, G

Printed Sheet

+150579 . 10000 (too large to print) +15.10070

- 1005 . 70000 +0 .00000

+2704 .30000 +100000 .00000

-99 . 50000 -0.08765

+1 .00030 +14 .00000

+23 .08230

+0 .38790 +7 .00000

Floating Point Output:

The use of PRINT 2 causes numbersto be printedin floating
point form, up to five numbersto a line. The numbers appear with
the sign and one digit to the left of the decimal point and five digits
to the right of the decimal point, followed immediately by the letter
E and the sign and the two digits of the exponent. The FORTRAN
statements necessary to print the numbers from the preceding
examples in floating point form appear on the following page along
with examples of the printed sheets.

13

Example 1:

Statement:

Printed Sheet

+1.00000E+00 +5.00010E+04 -7.00000E-04 “+1.60000E+02 -6.15000E-02

+1.42000E+01

+4.70000E+00 -1.76300E+03 +5.89000E-02 +8.70000E+01 -2.30000E-03

-3 .00000E+00

PRINT 2, A, B, C, D, E, F

Example 2:

Statements:

Printed Sheet

+1.50579E+05 +1.00000E+07 +41.51007E+01

-1.00570E+03 +5.00000E-08 +1.00030E+00 +1.40000E+01

+2.70430E+03 +1.00000E+05 +2.30823E+01

-9.95000E+01 -8.76540E-02 +3.87900E-01 +7.00000E+00

PRINT 2, A, B, C

PRINT 2, D, E, F, G

IF, Unconditional
GO TO, and STOP
Statements

Besides arithmetic, READ, and PRINT statements, three other

types of statements are included in this section. Two of these have

already appeared in the examples on pages 5 and 8: STOP and the

unconditional GO TO. The latter is called "unconditional" to

distinguish it from two other types of GO TO statements covered

in Section III.

A STOP statement is used, as in the example on page 5, to

tell the computer whenthe end of the calculation has been reached.

It may be omitted in certain cases, such as that encountered in the

example on page 8, where the absence of cards in the card reader

causes an automatic halt.

The unconditional GO TO statement is used to specify at some

point in a program that the next statement to be executed is not the

one following, as it normally would be, but instead, the statement

numbered n. The statement GO TO n transfers controlto statement n,

and execution proceeds from there.

14

As an introduction to a third type of control statement, |

consider the following problem: we

Given values a, b, c, and d punched on a card,

and a set of values for the variable x punched

one per card, evaluate the function defined by

ax” +bx +c ifx<d

f(x) = 0 ifx=d

2 ,
L ax +bx-c ifx>d

for each value of x, and print x and f(x).

The FORTRAN program for this problem could be written as

follows:

FOR z

[P Aomen 3 FORTRAN STATEMENT
STATEMENT zx
NUMBER a

4 3)_6 7 72

|j10 |_| READ 1, A,B,C, D
| u1_ |_| READ 1, xX ee
| 12 || IF (X-D) 13, 15, 17
| 13 |_| _FOFX= A*x*#2, + BYX +¢
| 14

|

| GoTols -
| 15 || FOFX=0.

i 16 GO 70 18
| 47 |__| FOFX= -A*X**2. + B*X - C

[18 || PRINT 1, X, FOFX
| 9 | |GOoTON

|
The values for A, B, C, and D are read from the first card

(statement 10), and the first value of X is read from the next card

(statement 11). Statement 12 is then executed. Statement 12 means:

"If the quantity (X-D) is negative, go to statement 13; if it is zero,
go to statement 15; and if it is positive, go to statement 17." Hence,

if X<D, the value of FOFX is calculated by means of the proper

formula, and the execution of statement 14 transfers control to

statement 18, which is executed next. Similarly, if X = D, control

goes from the IF statement to the proper formula (statement 15),

and then from statement 16 to statement 18. If X>D, the IF state-

ment selects statement 17, after which statement 18 is automatically

taken next. Thus, in all three cases, control eventually reaches

statement 18, the PRINT statement, which prints the values of X

and FOFX. Statement 19 then returns control to the READ statement,

which reads in the next value of X. The whole pattern repeats until

all of the X-cards have been processed. The 704 will automatically

halt when it attempts to execute the READ with no more cards in the

card reader.

15

Additional
Examples

As has been illustrated, the IF statement is a kind of

conditional, three-way GO TO statement. It often happens, as in

the above problem, that the computer must choose one of alternative

paths depending on whether the current value of an’ expression is

negative, positive, or zero. This is done, as in the above program,

by writing

IF (E) ny n» Ns

where (E) is an arithmetic expression, and the numberof the

statement to which control is to be transferred is n, if (E) is

negative; no, if (E) is zero; and n3, if (E) is positive.

It is not necessary to number every FORTRANstatement in

a program. The only statements which must be numberedare those

to which reference is made (as in GO TO or IF statements). Any

numbers between 1 and 32, 000 may be used, provided two different

statements are never given the same number. As has been mentioned

earlier, statement numbers 1 and 2 are reserved for the two

standard FORMAT statements when the data arrangements specified

by these statements are desired.

Example 1: Find the approximate numerical solution of the ordinary

differential equation

dy /dx=xy +1

in the interval 0 <x <1, given that

y = 0 when x= 0

A method which can be used to approximate the solution of this

equation is as follows:

Assumethat a point (Xp Yo) of the solution function is known.

In this example, the point Xp = 0, yg = 0 is known. It is then

known from the differential equation that dy / dx, the rate of

change of y with respect to x, at this point is Xo Vo + 1. Hence,

an increment in x of A x would produce an approximate change

in y of

A y= Ax(xpy¥g +1)

Let A x be the interval between successive x, terms

= yo tA x(xgyg + 1).

16

After the point (X}, y) has been obtained, it can be used to find
(X9, Yo) in a similar way:

yolat x9) = yo(at x} + Ax)= y, + A X(X, y, +1).

In this example, the procedure is continued until the point x = 1 is
reached, the upper bound of the interval for which the solution is
being found. In general, the equation for stepping forward is

Since it depends on the mesh size, A x, the error of approximation
is left as a parameter in the program. Thesolution for various
values of A x can be compared to give an empirical idea of the error.
To print the value of every point obtained would be unnecessary
and costly, since A x must be quite small, so the program has been
arranged to print only at intervals of 0.01. The programfor this
example, with an explanation of someof the Statements, follows.

FOR z

C< Z

STATEMENT
NUMBER e

3|}_6 17
72

connenr

|

§ FORTRAN STATEMENT |z

|

j

READ 1, DELTAX

PRINT 1, DELTAX

XPRINT = 0.01

X= 0.0

Y=0.0

3 Y = ¥ + DELTAX*(X*Y + 1.0)

X= X+ DELTAX

IF (X - XPRINT) 3, 4, 4
4 PRINT 2, X,Y

XPRINT = XPRINT+ 0.01
IF (X - 1.0) 3, 5, 5

-

=
|

_|
|
|

|
|
|
|
|
|

|
| i 5 STOP

The only input to the program is the value of DELTAX punched
in fixed point form on a card. Thefirst statement causes the 704
to read DELTAX from the card. The second statement causes the
704 to print DELTAX to head the answer sheet. The third statement
initializes XPRINT to 0.01; the first value of X which equals or
exceeds XPRINT will be the next value printed. The next two
statements assign the properinitial values to X and Y. Statement3
is the basic equation for finding the next value of Y. Notice that
the previous value of Y is used in the calculation and then is
replaced by the result of the calculation to give the new value of
Y. The next statement calculates the new value of X. This value of
X is then comparedwith the value of XPRINT;if it is less than this
value, control goes back to calculate the next point. As soon as X

17

equals or exceeds XPRINT, the calculation is interrupted to allow

the current values of X and Y to be printed according to statement 4

(in floating point form). The value of XPRINT is increased by

0.01 for the next value to be printed. Then a test is made to

determine whether the value of X has reached 1.0. If X equals or

exceeds 1.0, the problem is finished and the computer stops

(statement 5); if not, control returns to statement 3 to calculate

the next point. (Note: the time required by the computer to

calculate a point is about 0.9 milliseconds. Hence, for the case

A X= 107, i.e., 100,000 points, the calculation time would be
about 1.5 minutes.)

Example 2: Determine the current in an alternating current circuit

consisting of resistance, inductance, and capacitance in series,

given a numberof sets of values of resistance, inductance, and

frequency. The current is to be determined for a numberof equally

spaced values of the capacitance (which lie between specified limits)

for voltages of 1.0, 1.5, 2.0, 2.5, and 3.0 volts.

The equation for determining the current flowing through such

a circuit is

where = current, amperes

voltage, volts
resistance, ohms

inductance, henrys

capacitance, farads

frequency, cycles per second

7 = 3.1416

m
a
r
a
m
™

U

The FORTRAN program could be written as follows:

FoR

C<«
COMMENT FORTRAN STATEMENT

STATEMENT
NUMBER

®
CO
NT
IN
UA
TI
ON

z 7

|_| 10 |__| READ 1, OHM, FREQ, HENRY
lu READ 2, FRDI, FRDFIN

/|12_|_|_PRINT 1, OHM, FREQ, HENRY
|13 VOLT = 1.0

||14 |_| PRINT 1, VOLT
|| 45 _|_|_FARAD= FRD 1

16 AMP = VOLT/SQRTF(OHM**2. + (6.2832*FREQ*HENRY
| x -1,/(6.2832*FREQ*FARAD))**2.),__|*
| 17 |__| PRINT 2, FARAD, AMP
| 18 _|__|__IF (FARAD - FRDFIN) 19, 21, 21
119 FARAD = FARAD + 0.000 000 01
| 20 | GOTO

| 21 IF (VOLT - 3.0) 22, 10, 10 rn

| 2 VOLT = VOLT +0.5
| 23 GO TO 14

18

Check List

Statement 10 causes the values of the resistance, the frequency,

and the inductance to be read, in that order, from the first card.

Statement 11 causes the initial and final values of the capacitance

to be read from the next card. The values of the resistance, frequency,

and inductance are printed (statement 12) in fixed point form. The

initial value of the voltage is introduced and printed (statements 13
and 14). Statement 15 initializes the current value of the capacitance

(denoted by FARAD)to the first value to be used in calculation

(denoted by FRD1). The actual calculation is specified by statement 16.

The result of that calculation, together with the current value of the

capacitance, is printed (statement 17).
The current value of the capacitance is compared with the final

value to determine whetheror notall values have been investigated

(statement 18). If not, the expression (FARAD -FRD1) is negative

and the program proceeds to statement 19, which causes the current

value of the capacitance to be increased by the given increment.

This is followed by a transfer (statement 20) to statement 16 which
causes the calculation to be repeated for the new value of the

capacitance. If the expression in statement 18 is zero or positive,

all values of the capacitance have been investigated and the program

transfers to statement 21.

At this point the value of the voltage is compared with the upper

bound to determine whetheror not ail specified vaiues of the voitage

have been used. If not, the expression in statement 21 (VOLT - 3.0)

is negative and the program proceeds to statement 22, which causes

the value of the voltage to be increased. Following this, a transfer

(statement 23) is made to statement 14, which causes the new value

of the voltage to be printed. The program proceeds to statement 15,

and the entire process of investigating all values of the capacitance

is begun again.

If all values of the voltage have been used (the expression in

statement 21 is zero or positive), the calculations for the current

set of values of resistance, frequency, and inductance are finished.

The program is returned to statement 10 so that the two cards

defining the next case may be read and the program repeated. This

process is repeated until all of the cases have been considered;

i.e., all of the cards have been read.

In the preceding descriptions of six types of instructions no attempt

was made to cover in detail all of the information necessary or

helpful in writing a program using these types. The following list

of items, together with what has already been presented, supplies

this information.

1. The basic characters which may be used in writing a

FORTRANstatement are:

a. A, B, C, ..., Z (26 alphabetic characters)

b. O, 1, 2, ..., 9 (10 numerical characters)

19

20

10.

ll.

c. +(plus), - (minus), * (asterisk), / (slash), ((left

parenthesis),) (right parenthesis), , (comma),

= (equal sign), and . (decimal point).

. Upper and lower case alphabetic characters are not

distinguished on a punched card; e.g., D and are

represented by the same punches.

. The digits 1 and 0 must be carefully distinguished from

the alphabetic characters I and O.

. If calculations involving a constant (i.e., any number

except a statement number)are to be carried out in floating

point arithmetic, as is always the case if only the types of

instructions presented in this section are used, the constant

must be written with a decimal point.

. A variable symbol can consist of six or fewer characters.

It must satisfy the following conditions:

a. The first character must be alphabetic.

b. The first character cannot be I, J, K, L, M, or N,

which are set aside to denote integer variables, as

discussed in Section IT.

c. Any character following the first may be alphabetic

or numerical, but not one of the special characters.

d. The namesof all functions appearing on the computing

center list, as well as these names with the terminal F

removed, must not be used as variable symbols. For

example, if SINF is used as the nameof a function,

neither SINF nor SIN can be used as a variable symbol.
. If a function appearing on the computing center list is used,

the name of the function, as written by the programmer,

must agree exactly with the name as it appears onthelist.

. The argument of a function is enclosed in parentheses;

e.g., SINF (X).
. If a function has more than one argument, the arguments

are separated by commas; e.g., SINF (X, Y, Z).
. The left side of an arithmetic statement must never be a

constant. In the type of arithmetic statement covered in

this section, the left side is always a simple variable;

e.g., A. In Section II, arithmetic statements will be

extended to include function statements, in which the left

side is a function of one or more variables.

Never omit the intended operation symbol between two
quantities; e.g., do not write AB for A*B.

Never write two operation symbols in a row; e.g., do not

write A* -B for A*(-B). There are no exceptions. The
exponentiation symbol ** may seem to be an exception,
but it is regarded as a single symbol.

21

12.

13,

14.

15.

16.

17.

18.

Blank spaces can be used or not used as desired, since

blanks are ignored in the translation. For example

A=0.1

could be written as

A=0.1

and

GO TO 25

could be written as

GOTO25

The prescribed form for the various non-arithmetic

statements must be followed exactly, except for the

arbitrary use of blank spaces. For example, the state-

ments

READ 1A,B

IF A-B, 5, 6,7

are incorrectiy written. They shouid be written

READ 1, A, B

IF (A-B) 5, 6, 7

with the punctuation marks appearing exactly as shown.

The magnitude of every non-zero quantity must lie between

10738 ana 1098, By "quantity" is meant any constant or
any value assumedby a variable or function in the course

of the calculation.
Numbers to be read by means of aREAD 1 statement must

not exceed 10 digits.

Numbers to be read by means of a READ 2 statement

must not exceed 8 digits. The exponent must have two digits

and a sign, making a total maximum often digits to a field.
Numbers to be printed by means of a PRINT 1 statement

should not exceed 999, 999 .99999.
The program statement which is written last should be

a STOP statement or a statement which causes a transfer

to some other statement in the program (a GO TO or an

IF statement).

SECTION II - DEFINITION OF FUNCTIONS, MANIPULATION OF SINGLE-

Introduction

SUBSCRIPTED VARIABLES, MAGNETIC TAPE INPUT AND OUTPUT

The part of the FORTRAN language presented in Section I can be
used to direct the operation of the 704 in the solution of certain
problems. However, it is difficult or impossible to program the
solution of some problems using only the six types of statements
described in Section I. These six types of statements, grouped
into classifications, were:

Arithmetic statements

READ- t stat tsInput-output statemen { PRINT

IF
Control statements Unconditional GO TO

, STOP

In this section arithmetic statements will be extended to include
function statements, and additional types of statements will be
introduced which make it possible to direct the 704 in the solution
of problems more complex than those dealt with in Section I.

If programming were done using only the six types of statements
presented in Section I, laborious programming would be necessary
to carry out relatively simple iterative calculations or logical steps
such as are encountered in the addition of two vectors or the selec-
tion of a certain number from

a

list of numbers. However, it is
possible, using the additional types to be presented in this section,
to employ the subscript notation of mathematics to make the
programming of such problems easier.

A mathematician would denote that c; is the sum of the vectors
(ay, @5, a3) and (b,, bo, b3) by writing

c,= aj +b; i= 1, 2, 3

Notice that the first part of the statement

is a general statement which, in effect, becomes three specific
Statements

cy =a, +b,

Co ay +b,

23

by assigning the values 1, 2, and 3 to i.

By using the FORTRAN language, it is possible to make

general statements like c; = a; + b;, and to make other statements

which assign the desired values to i. When a general statement

is executed it is always executed in one of its specific senses. For

example, if the variable I has the value 3 when the FORTRAN

equivalent of c; = a; + b;

C(I) = A() + BD

is executed, the values denoted by A(3) and B(3) are added and the

sum is assigned as the value of C(3). Thus, to compute the sum

vector

(C(1), C(2), C(3))

it is necessary to execute the general statement 3 times, each time

with I having one of the values 1, 2, 3. Therefore, in addition to

providing for arithmetic statements with subscripted variables, it

is necessary to provide for a method of stating that a given set of

such statements should be executed repetitively for certain values

of the subscript. The FORTRAN statement which provides this

ability is called a DO statement. An example of a DO statement,

followed by an explanation, appears below.

DO 20I1=1, 250

This statement instructs the 704: ''Execute all statements which

immediately follow, up to and including the statement numbered 20,

250 times (the first time for I= 1, the second time for I= 2, and

so on, and the last time for I = 250), and then go on to the statement

following statement 20." Thus, to return to the example of vector

addition, the FORTRAN statements necessary to add A(I) and B(I) are

FOR

5
COMMENT 2

t

FORTRAN STATEMENT

STATEMENT
NUMBER u

l s|_6 |7

 DO 11=1,3
CM = A+8

|
|]

| 2

When the statement numbered 2 is encountered, the values of C(1),

C(2), and C(3) will have been computed and stored.

24

Example: It is required to compute the following quantities

> ../..2 2 JP; = Vsin (A; B.+C;) + cos (A; Bi-C;)

Qi = sin? (A; +C)) + cos” (A,-C;)

fori=1, ..., 100. A possible FORTRAN program for this
calculation follows.

ct FOR z
J

commen z FORTRAN STATEMENT

STATEMENT
NUMBER

*
co
wr
in
ua
ri
o!

 TRIGF(X, Y) = SINF (X+Y)**2+COSF(X-Y)##2

]

|_2

|

| _DIMENSION A(100), B(100), C(100), P(100), Q(100)
| 3 || READS, A,B,C
| 4 |_| Do6r=1,100
| 5 |_| P) = SQRTF(TRIGF(A(D*B®, CCD))
| 6 || Q@= TRIGFIAC, cD)

7 PRINT 8, (AM, BO, CO, PD, Q(D, I= 1,100)
|| 8 |_| FORMAT(5F 10.4)
|} 9 || stop
Lt

|

Statement 1 defines the function TRIGF(X, Y) as equal to the
expression (sin? (X+Y) + cos” (X-Y)). The DIMENSION statement
indicates that the arrays A, B, C, P, and Q each have 100 elements.
A, B, and C in the READ statement will cause all elementsof A,
then all elements of B, and then all elements of C to be read into
the 704 from cards. Notice that the READ Statement refers to a new
type of statement (8), FORMAT.In this example, the FORMAT
statement specifies the external arrangement for both input and
output data. In this FORMAT Statement, 5F10.4 means: ''There
are 5 Fixed point decimal fields per card or line, each field being
10 columns wide with 4decimal places to the right of the decimal
point." Hence, A, B, C, P, and Q will be read or printed in the
form _+XX.XXXX, that is, two blanks, a sign, twodigits, a
decimal point, and four digits, a total of 10 columns. Statement 4
says: "DO the following statements through statement 6 for F1,
F2, ..., F100." Statements 5 and 6 compute P; and Q;. The PRINT
Statement says: "Print the arrays A, B, C, P, and Q for 1, ..., 100as specified by FORMATstatement 8." Statement 9 stops the computer.

The method of subscript notation and the use of the DO, FORMAT,
DIMENSION, and function Statements which have been introduced
here will be further illustrated in the following pages of this section.
In addition, several new statements for input and output and tape
manipulation will be presented.

25

Integer Constants
and Variables

In Section I, only floating point constants (which must have a decimal

point) and floating point variables (which must not begin with I, J,

K, L, M, or N) were considered. However, it should be clear that

floating point numbers are neither desirable nor necessary for use

as subscripts; i.e., Xy 3 is not generally a useful notation, and

X3 9 is redundant and wastes space. Integer constants and integer

variables are more useful for this purpose. The two rules which

follow describe the method of writing such numbers:

1. Integer constants are written without a decimal point.

2. Integer variables must begin with I, J, K, L, M, or N.

When used in FORTRAN statements, a subscripted variable is

written as the name 6f the variable followed by the subscript (an

integer constant or variable) in parentheses; e.g.; A(3) is the

FORTRAN representation of Ag and X(I) is the FORTRAN repre-

sentation of Xj.

Subscripts are not restricted to single quantities. They may

take the general form

K*¥IT+£L

where I represents any integer variable and K and L represent any

unsigned integer constants (L may also be zero, in which case the

form reduces to K*1). Further examples appear below:

Y(M+1) means Ymn+l

EV.P(3*K-5) means Paes

If a floating point variable, for example, A, is used as a

subscripted variable, it represents the collection of variables A(1),

A(2), A(3), ... etc. and may not be used without a subscript,

except in an input/output statement (like READ or PRINT) whenit

is desired to transfer the entire array, or in an arithmetic state-

ment where A will be interpreted as A(1). Thus it is not possible

to use B(J) and B in different statements and expectto have both a

vector, B(J), and a non-subscripted variable, B.

Reference to a subscripted variable whose subscript is an

integer variable, for example, X(N), is always interpreted in a

specific sense determined by the value of N. Therefore, some

statement which assigns a value to N, such as

N=I+J
or

DO 10, N= 1, 20
or

READ 6, N

26

should always be encountered before reaching a statement which

refers to X(N).

Integer quantities are not permitted to appear in floating point

expressions except as subscripts or as exponents. However, an

expression containing integer quantities only (such as I + J) may be

written; such expressions will be evaluated using truncated integer

arithmetic rather than floating point arithmetic. Some examples

of expressions which are and are not permitted appear below.

 Expression Permissible Arithmetic Used

A*B*(C**2) Yes Floating

2*A No (ne decimal point)

=8=

---~----

I+]J Yes Integer

2.°A Yes Floating

A™=(14)) Yes Floating

2" Yes Integer

I+A No

 }7—

ttn

As long as the expression on the right side of an arithmetic

statement is a legitimate one as described above, there are no

further restrictions on arithmetic statements. There are, however,

certain pitfalls which may be encountered if arithmetic statements

are written having an integer expression on one side and a floating

point expression on the other. For example, the formula

I= A+B**]

instructs the 704 to compute the value of A+B) using floating point

arithmetic, truncate the result (i.e., drop any fractional part),

and assign the integer so obtained as the value of I. This meaning

results from the fact that the expression on the right is a floating

point expression whereas the variable on the left is an integer

variable. Conversely, the formula

A = JOB +N/3

instructs the 704 to compute the value of JOB+N/3 using integer

arithmetic, put the resulting integer in floating point form, and

assign this as the value of A. Note that integer arithmetic gives

an integer result even for N/3. Thus, the value of 8/3 would be 2,

the largest integer not exceeding 8/3, whereas the value of 8./3.

in a floating point expression is 2.66666...

27

DIMENSION

Statements

DO Statements

Whenever a subscripted variable appears in a FORTRANprogram,

it is necessary to include a statement which indicates the size of

the array referred to by this variable. This type of statement is a

DIMENSION statement. A DIMENSION statement causes the 704 to

assign the proper number of storage locations to each subscripted

variable. ;

A DIMENSIONstatement consists of the name of each subscripted

variable followed by an integer in parentheses which represents the

greatest number of elements which will ever be included in the array.

The variables are separated by commas, and the whole group of

names is preceded by the word DIMENSION.

If the subscripted variables ALPHA(I), GAMMA(J), and

VECTOR(N) appear in a FORTRANprogram, then a DIMENSION

statement mentioning these variables must also be included.

Assume that the number of elements in ALPHA(I) will never exceed

100, the number in GAMMA(J) will never exceed 25, and the number

in VECTOR(N) will never exceed 12. The DIMENSION statement

must then be written

DIMENSION ALPHA(100), GAMMA(25), VECTOR(12)

DIMENSIONstatements are not actually executed. No instruc-
tions corresponding to this statement will appear in the translated

machine language program. In the FORTRAN program, however,

a DIMENSIONstatement giving the size of each array must precede
the first executable statement mentioning that array. A single
DIMENSIONstatement, including all subscripted variables mentioned

in the program, may be used, or separate statements may be
inserted prior to mentioning each new array.

An example of the use of a DO statementof the unconditional type
appeared in the introduction to this section. The usefulness of such
a statement for carrying out repetitive calculations was mentioned
then. The standard form for an unconditional DO statementis

where N is a statement number

I is an integer variable

m, and m, are integer constants.

The meaning of the DO statementis: "Execute the statements
immediately following this DO statement, up to and including the
statement numbered N, first with I equal to m): then with I equal

28

tom, + 1, etc., and finally with I= Mo and then go to the

statement following statement N."

The set of statements immediately following the DO statement

and extending through statement N is called the range of the DO

statement. In Section III, the use of "nests" of DO statements, with

one or more DO statements in the range of another, will be discussed.

In the use of DO statements discussed in the present chapter, no

DO statement contains another DO statement within its range.

However, the range of a DO statement may contain GO TO or IF

statements, and these may transfer control out of this range.

As a further illustration of the usefulness of the DO statement,

consider a numberB and a setof fifty numbers, A(J). The probiem

is to select the smallest of the values of J for which B= A(J), if

there are one or more such values of J. A program to accomplish

this could be written as follows:

la FOR z
|
I

| COMMENT
|

FORTRAN STATEMENT
STATEMENT z

' NUMBER : ;

; 10

|

| DO 12 J=1,50 a

iu IF (B- A(J)) 12, 20, 12
|(12 |_| CONTINUE

13 | If control reaches Statement 13,

the search has been unsuccessful,

>
Co

RT
IN

UA
TI

O

20 If control reaches Statement20,

ob _ the desired value of J is available for use.

Control passes to statement 20, out of the range of the DO

statement, as soon as J, the index of the DO statement, reaches a

value for which B-A(J) equals zero. Any reference which is now

madeto J will be interpreted for J equal to that specific value.

Whenever B-A(J) is not equal to zero, control goes to the last

statement in the range of the DO. This statement, CONTINUE,

means "no operation." The reason for using it relates to the meaning

of the DO statement. The DO statement causes the index, J in this

example, to be increased by 1 each time the last statementin its

range, statement 12 in this example, is reached, after which control

goes to the first statement in its range. In this example, when

B-A(J) is not zero, it is desired to increase J and begin the range

again. To accomplish this, control must reach the last statement

in the range (which cannot be the IF statement) even though no more

work remains to be done with the current value of J. In this example,

therefore, the last statement in the range of the DO statement must

be CONTINUE, which means "do nothing."

29

Function

Statements

Within the limits of the part of FORTRANintroducedin SectionI,

certain functions, specified by the computing center, were permitted

in writing arithmetic expressions, such as square root, sine, log,

etc. The functions were restricted to those appearingin the list

furnished by the computing center.

It is also possible, however, to write expressions involving

functions peculiar to the problem at hand. Each desired function is

defined by means of a function statement. For example, suppose

it is desired to use the function

G(X) = 1.3 +V 4.1X4X7

several times in a program. The function statement defining G(X)

might be written as follows:

GXXF(X) = 1.3 + SQRTF(4.1*X+X*#*2)

A later arithmetic formula in the program, employing GXXF,
might be

Y = 10.3*GXXF(ALPHA*BETA) + 14.7

In this use of GXXF, before the value of the function is computed,
the quantity ALPHA*BETA will be substituted for X in the expression
defining GXXF.

In general, function statements must obey the following rules:
1, All function statements in a program mustbethe first

executable statements in that program.
2. The function name must have fourtoseven alphabetic or

numerical characters; the first must be alphabetic, and

the last must beF.
3. The nameof the function is followed by parentheses

enclosing the argument or arguments. Multiple arguments
are separated by commas. Each argument mustbe a single
non-subscripted variable.

4, Any argument which is a floating point variable in the
definition of a function should be a floating point quantity
in any subsequent use of the function. A similar rule
applies to integer arguments.

5. The value of a function is a floating point quantity unless
the name of the function begins with X, in which case the

value is an integer quantity.

30

The Meaning of
a List

The following example illustrates some properties of function
statements.

C<
comment

|

3 FORTRAN STATEMENT

FOR

STATEMENT
NUMBER

3 *
co
nt
s

7 72

D
D

f
e FIRSTF(X) = X**2 + A**2

SECONDF(R,S) = SQRTF(FIRSTF(R/(R+S)))

 = FIRSTF(Y*— i
n

P= SECONDF(I.7*DELTA, ALPHA)*PIn
N

N
I

 po

Notice that it is permissible to use a previously defined
function in the definition of subsequent functions. Notice also that
the variable A is involved in the definition of FIRSTF butis not an
argument. A may be used in the same wayas any other variable
in the problem, and its current value is used each time FIRSTF
is evaluated.

Examples of lists have already appeared in READ and PRINT
statements. A list is a set of items separated by commas; when
a list appears in an input or output statement, the order of
reading or writing is the order of the items in the list, with
arrays expanded as described below.

For example, the statement

PRINT 20, A, B, C

has the list A, B, C; the quantities A, B, and C will be printed in
that order. If any of the items A, B, or C have been specified in a
DIMENSIONstatement as arrays, then the values of each element
of the array will be printed. For example, if A and C are simple
variables and B has been specified in a DIMENSION statement as a
subscripted variable having 3 elements, then the quantities which
the 704 would be instructed to print by means of the PRINT statement
above are

A, B(1), B(2), B(3), C

31

FORMAT

Statements

If A and B were large arrays and one wished to specify the reading

or writing of the quantities

A(i), B(1), A(2), (2), ...A(100), B(100)

in that order, the list would consist of the single item

(A(I), BK), 1= 1, 100)

If one wished to specify the first seven elements of the array A

(in ascending subscript order), followed by the first five elements

of the array B (in ascending subscript order), the list would be

(AQ), I= 1, 7), (BOYD, 1= 1, 5)

However, if A and B have dimensions seven and five respectively,

and the arrays are to be transmitted in descending subscript

order, A(7), ..., A(1), B(5), ..., B(1), the list would be

A, B

When, as above, an item ina list specifies part of an array

or a mixture of arrays, the item mustbe enciosed in parentheses

and the variables inside must be separated by commas as shown.

The indexing information (e.g., 1= 1, 100) is written exactly as in

a DO statement.

An input or output statement, such as READ or PRINT, specifies

the variables which are to receive values or are to be printed. It

also refers to the number of a FORMATstatement which specifies

the arrangementofa line of input and/or output data. The FORMAT

statement contains the specifications for each field in the line.

There are three general formsfor a field specification

Iw, Ew.d, Fw.d

where Iw indicates an Integer decimal number having a field width

of w columns; Ew.d indicates a floating decimal point number (E),

having a field width of w columns, and d places to the right of the

decimal point; Fw.d indicates a Fixed decimal point number, having

a field width of w columns, and d places to the right of the decimal

point. For example, the statements

25 FORMAT (E10.4, F8.3, F7.5, E9.2, I3, F4.1)

READ 25, A, B, C, D, I E

32

might be used to instruct the 704 to read the following lines of
input data from cards:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

|
+.8765 | E+06 +345.648 +.56872 -2.34 |E+01| +81 |-1.5

|
- 1223 | E~ 02 +124.785| ~.78963 -6.78 lz409! +15 {49.8

|
|+.1034 ,E+05 -728.654 +.12345 +4.35 |E-07| -28 |-2.3

Note that the field width includes a column each for the sign, decimal

point, and, in the case of floating decimal point numbers, the four

characters of the exponent: the letter E, the sign of the exponent,

and the two digits of the exponent. Floating decimal or fixed decimal

point numbers may have any numberofdigits in the inputfield,

depending on specifications in the FORMAT statement; however,

only eight significant digits will be retained in the calculations. If

the decimal point punched in the card does not agree with the

specifications in the FORMATstatement, the decimal point over-

rides the specification; i.e., calculations will be performed with

the decimal point as placed on the card. If no decimal point is given,

the number is treated as if the decimal point were located according
to the specification. No provision is made for handling decimal

integers larger than 32767. A line of input data may have a maximum
of 72 characters.

Prior to sending the input data sheets to the computing center

for punching, the card columns for each of the fieldsmust be

specified. Columns 1-72 are available for use. For this example,

the columns for field 1 should be specified as columns 1-10 (since
10 columns are specified by the FORMATstatementfor the first
field); field 2, columns 11-18; field 3, columns 19-25; field 4,
columns 26-34; field 5, columns 35-37; and field 6, columns 38-41.

Specifying a field width larger than the number of characters

in the field is particularly valuable for use with output statements.
For example, the statements

PRINT 10, A, B, C, D, I, E

10 FORMAT(E14.4, F11.3, F10.5, E13.3, 16, F7.1)

would cause the 704 to print the example data as follows:

--- 0.8765E 06.__ 345.648___ .56872___-0.234E 02___ 81_._-1.5

..-.70.1223E-02___ 124.785___-.78963___-0.678E 10___ 15_._ 9.8

-.- 0.1034E 05___-728.654___ .12345___ 0.435E-06___-28___-2.3

33

Note the three-column separation between fields (represented by

dashes) provided for by the FORMATstatement (10). In the case of

floating decimal point numbers, the field width includes the zero

preceding the decimai point. Floating decimal point numbers are

printed with the first significant digit immediately to the right of

the decimal point; therefore, these numbers have as many significant

digits as there are decimal places specified. However, no more

than eight significant digits are possible. A maximum of 119 char-

acters may be printed per line.

The FORMAT statement is not executed and may be placed

anywhere in the program. The field specifications are enclosed in
parentheses with commas between the specifications for successive

fields. Successive fields having the same format may be specified

by inserting a coefficient (indicating the numberof identical fields)

before the code letter E, F, or I. Thus

is equivalent to

FORMAT(13, E12.3, E12.3, F8.4)

It may be of interest to consider now the FORMAT statements

which were referred to as 1 and 2 in Section I. FORMAT statement 1,

which referred to fixed decimal point input and output, is written as

1 FORMAT(5F14.5)

The code letter F is preceded by the number 5, which indicates

how many times this specification is to be repeated per line. The

field width of 14 allows for six digits and a sign to the left of the

decimal point (7 spaces), the decimal point (1 space), and five digits

to the right of the decimal point (5 spaces), plus one additional

space for field separation.

FORMATstatement 2, which referred to floating decimal

point input and output, is written as

2 FORMAT(1P5E14.5)

The scale factor (1P) shifts the decimal point so that there is

one significant digit to the left of the decimal point. (See Section III

for scale factors.) The field width of 14 allows for one digit and a

sign to the left of the decimal point, the decimal point, five digits to

the right of the decimal point, the four-character exponentfield,

plus two additional spaces for field separation.

34

Magnetic Tape

Input and Output
Thus far, the only methods that have been mentioned for transferring

decimal data into and out of the magnetic core storage of the 704 are

use of the on-line card reader for input and use of the on-line printer

for output. The operation of these units is controlled by the READ

and PRINT statements introduced in Section 1. However, there is

another method for transferring information into and out of magnetic

core storage, the use of magnetic tapes.

1. READ INPUT TAPE and WRITE OUTPUT TAPE Statements:

Just as a READ statement directs the 704 to read data from

cards, a READ INPUT TAPE statementdirects the 704 to read data

into core storage from magnetic tape. Similarly, just as the use of a

PRINT statement causes on-line printing, a WRITE OUTPUT TAPE

statement causes the output information to be written on magnetic

tape.
Most computer installations have two machines available which

are not connected to the computer. One of these machines can read

information from punched cards and write this information on

magnetic tape. The other machine can read information written

on magnetic tape and print this information. By meansof the card-

to-tape machine, the information contained in a deck of data cards

can be written on magnetic tape, which the 704 can subsequently be

instructed to read by means of a READ INPUT TAPE statement.

The output information written on magnetic tape by a WRITE OUTPUT

TAPE statement can subsequently be printed by using the tape-to-

printer machine.

The advantages of using magnetic tape for input and output lies

in the fact that the computer reads from and writes on magnetic

tape much more rapidly than it reads cards and prints. This means

that a great deal of computer time which would otherwise be required

for card reading and printing can be relegated to the relatively

inexpensive card-to-tape and tape-to-printer equipment.

The 704 computer may have up to ten attached tape units which,

in the FORTRAN language, are referred to by the numbers 1, 2, ...;

10. The general form of the two input-output statements mentioned

above is

READ INPUT TAPE I, N, List

WRITE OUTPUT TAPE I, N, List

where 1 is the numberof the tape unit (an integer between 1 and 10

or an integer variable), N is the number of a FORMATstatement,

and "List" denotes a list of names of quantities to be read or written.

35

2. General Information about the Use of Tapes:
Information is recorded linearly on magnetic tape in blocks

called records, which may be of various lengths. Each record is
separated from the next by a gap of blank tape called the end-of-
record gap.

In order to indicate that the last record of information has been
written on a tape, the statement

END FILE I

where I is the numberof the tape unit, is used. This causes an
end-of-file mark to be written on the specified tape. Later, during
reading, the end-of-file mark is recognized by the tape reading
mechanism as a direction to stop tape readingat that point.

When a WRITE OUTPUT TAPEstatementis executed, the tape
mechanism writes the current values of the quantities in the list as
one record or successive records, with the division into records
determined by the associated FORMATstatement. For example,
assuming that the list refers to five Single quantities, the statement

WRITE OUTPUT TAPE 6, 1, A,B,C,D,E

causes the five numbers which are the current values of A, B, C, D,
and E to be written, in accordance with standard FORMATstatement1,
as a Single record, in the order A, B, C, D, E, on the tape mounted
on tape unit 6. Physically, the tape is moved forward over the
Stationary tape read-write head, which magnetically records the
five numbers and then erases a short segment of tape as the end-
of-record gap. At the end ofthis operation, the tape is in position
for the writing of the next record. No end-of-file mark is written.

Again assumingthat the list refers to five single quantities, the
effect of the statement

READ INPUT TAPE 6, 1, A, B, C, D, E

is to move the tape mounted on tape unit 6 forward over the read-
write head, causing the 704 to start reading the next five numbers
(which must constitute a record conforming to FORMAT1), assigning
the first number asthe value of A, the second as the value of B, etc.
After the five numberscalled for by the list have been stored,
control passes to the next executable Statement, leaving the tape
positioned for the reading of the next record.

The above examples are simple cases, intended to give an idea
of the movementof the tape in response to the program, and of the
way information is transmitted between core storage and tape.

A tape can be read or written only in the forward direction.
However, there are two statements which can be used to move the

36

Additional
Examples

tape backward: REWINDI and BACKSPACEI. REWIND I moves

tape I back to the physical starting point regardless of its current

position. BACKSPACEI movestape I back to the beginning of the

preceding record. If the tape is ina rewound position, a BACKSPACE

statement has no effect.

In order to move a tape forward one record without reading

any information into storage, the statement

READ INPUT TAPEI,, 1

may be used, where n is the number of the FORMAT statement

describing the record to be skipped. Note the omission of the list.

By means of REWIND I, BACKSPACEI, and READ INPUT TAPEI,

n (without a list), a tape can be positioned for reading or writing

at the beginning of any record desired. However, because of the

nature of the tape read-write mechanism, writing a new record on

tape makes it impossible to read any of the old information physically

following this new record on the tape. Since the tape can be positioned

only at the beginning of a record, it is not possible to begin reading

or writing in the middle of a record.

There are two other types of statements for programming tape

operations: READ TAPE and WRITE TAPE statements. For information

about these types, see the Programmer's Reference Manual for

FORTRAN, Form 32-7026.

Several examples which illustrate the use of many of the statements

introduced in this section appear below.

Example 1: It is required to calculate the amount of heat necessary

to raise the temperature of a mixture of ten gases from a given base

temperature, Tv to a series of higher temperatures. These

temperatures are 25 degrees apart and range from T, up toa

maximum of To:

The heat required may be calculated by multiplying the heat

capacity of the gas mixture by the temperature difference. However,

the heat capacity is dependent upon the temperature. The mean

heat capacity over a given range may be estimated by using the

equation

2_ b Cy p2
C =atc(T + To) +3(7 + TT, + T°)
p

where Cy = the mean heat capacity

T =the upper temperature, degrees Kelvin

37

To = the lower temperature, degrees Kelvin

a, b, c = empirical constants, different for each gas

(degrees Kelvin = degrees Centigrade + 273.1)

Input data to the program must therefore include the amount
_ of each gas present, the three empirical constants, (a, b, c) for

each gas, the base temperature (T) in °C), and the maximum

temperature (T., in °C).

A possible FORTRANporgram to carry out this calculation
appears below. It has been written to provide the individual heat
capacities in each range as well as the total heat requirement. The
program incidentally illustrates the fact that statements need not
be numbered sequentially.

FOR

COMMENT

FORTRAN STATEMENT
STATEMENT
NUMBER

|*
CO

NT
IN

UA
TI

ON

FORMAT QF10.1, £15.5}

FORMAT(10F8,3)

FORMAT(5E14.5)

STOP

1 3 7 ————

|_9 |__| DIMENSION X(10), A(10), B(10), C(10), CP(10)
| 10 FORMAT(10F8.3)

|{11 |_| FORMAT (10E11.3)
112 |__| READ INPUT TAPE 4, 10, X, A, TI, 72

|1.13 |_| READ INPUT TAPE 4, 11, B, C
114 | TK =T1+ 273.1
(15 | tkK=TIK
116 | TK=TK+25.0
[.17__| | SUM= 0.0
118 || _IF ((TK - 273.1)-12) 19, 19, 27

(19 || DO 211=1, 10
| 20 CP@ = AQ)+B(D)*(TK+TIK)/2.0+C()*(TK**24TK*TIK+TIK**2)/3.0
! 21 SUM = X()*CP(D+SUM
| 22 HEAT= SUM*(TK-T1K)
| 23 T = IK - 273.1
| 24 WRITE OUTPUT TAPE 5, 31, TI, T, HEAT
| 25 WRITE OUTPUT TAPE 5, 32, X
| 36 WRITE OUTPUT TAPE 5, 34, CP
! 26 GO TO 16

|| 27 IF (T2 - 2500.) 12,28, 28
| |! 28 END FILE 5
|| 29 REWIND 4

| 30 REWIND 5

1 31
|_ 32
| 34
| 33

The DIMENSION statement sets aside storage locations for
the constants and results. Statements 10 and 11 describe the

38

; arrangement of the input data as follows:

X (fractional amount of each gas) = 0.xxx

A = +x.xx

B = +xx.xxxE+ee

C = +x.xxxEtee

Tl, T2= &xxxx.x

Statements 32 and 34 describe the arrangementof the output
data as follows:

X O.xxx

CP O.xxxxxEtee

Tl, T = &xxxx.x

HEAT +0.xxxxxEtee

Statements 12 and 13 cause the data for a case to be transferred

into the 704 from tape unit 4. The calculation of the absolute tem-

perature in degrees Kelvin from the base temperature is carried

out by statement 14. Statement 15 sets the initial value of the

temperature range to TOK. Statement 16 causes the range to be

increased by the specified increment. Statement 17 sets the location

designated as SUM to zero. The upper limit of the range is compared

to the maximum temperature specified for this case. If the maximum

has not been reached, control reaches the DO statement (statement

19). The statements in the range of the DO (statements 20 and 21)
cause the specific heat of each component to be calculated and

weighted according to the fraction of that component in the mixture.

The actual calculation of the heat requirement is described by

statement 22. Statement 23 causes the upper limit of the range to

be expressed in degrees Centigrade. Writing of the results, aiong

with the fractions of each component, on tape unit 5 is accomplished

by statements 24, 25, and 36. A transfer to begin the calculation
for the next range is effected by statement 26.

If the comparison at statement 18 indicates that the maximum

temperature for the given case has been exceeded, control reaches
Statement 27. At this point, the maximum temperature is examined

to determine whether it exceeds 2500°C (which is the indication that

the problem has been completed). If the problem has been completed,

control reaches statement 28, an end-of-file mark is written, the

39

C< =
comment 5 FORTRAN STATEMENT

STATEMENT
NUMBER

|

tapes used in the program are rewound (statements 28, 29, and

30), and the 704 stops. If the problem has not been completed,

control is transferred to statement 12, which causes data for a

new case to be read from the input tape.

Example 2: Given Xj, Yj. Z; fori=1, ..., 10andj=1, ..., 20,

compute:

10 20

pro= (> ai(>. z,)
. . J
i=] j=1

whwnere 2

A= Xj +y¥, if [x,[>[¥,]

A,= Xi, +Y¥;? if x,<]%4|

A.=0 if IX[ely,!
i mil bil

A possible FORTRAN program follows

For

DO 12T=1, 10

SUMA = SUMA+X(D+Y

GO TO 12

PROD = SUMA*SUMZ

PRINT 4, SUMA, SUMZ, PROD

The DIMENSION statement sets aside storage locations for the

input data. Statement 4 specifies the input and output data as fixed

point numbers having 4 decimal places. The READ statement reads

the input data from cards into the 704. Statement 6 sets the quantity

SUMA to zero. Statements 8-12, under control of the DO statement7,

10 20

compute >» A; . Statement 15 computes » 2a under the control

i=1 j=l

of DO statement 14. The following statements compute and print

40

Check List

PROD. Statement 12, CONTINUE, serves as a common reference

point; and since it is the last statement in the range of the DO,

I is increased after its completion, and the next repetition is begun.

41

1.

G
®

b
o

10.

ll.

12.

13.

All subscripted variables must appear in a DIMENSION

statement. This statement must appear in the program

before reference is made to the variables.

Negative subscripts are not permitted.

. Subscripting of subscripts is not permitted.

. Ina floating-point expression, integer variables and

constants can be used only as subscripts and/or exponents.

. Integer constants are written without a decimal point;

integer variables must begin with I, J, K, L, M, orN.

. The namesof all functions defined in the program or

appearing on the computing center list, as well as these

names with the terminal F removed, must not be used

as variable symbols. For example, if SINF is used as the

name of a function, neither SINF nor SIN can be used as

a variable symbol.

. If a subscripted variable has 4 or more charactersin its

name, the last of these must not be an F. For example,

SINF(I) cannot be used as a subscripted variable, regard-
less of whether SINF is used as the name of a function.

. The last statement in the range of a DO must not be a

transfer.

. Decimal integers larger than 32767 are treated modulo
32768.

An end-of-file mark should always be written on output

tapes.

Provision for rewinding tapes should be made in the

program.

No constants may be given in a list for an input/output

statement, only variables.

FORMAT statements for output must be written so that

the first character of the first field is a blank.

(Refer to the end of Section I for additional points.)

SECTION Ill - MANIPULATION OF TWO- AND THREE-DIMENSIONAL ARRAYS

Introduction The following is a list of the 15 types of statements, grouped into

classifications, which have been presented in Sections I andII:

Arithmetic statements

IF

Unconditional GO TO

Control statements STOP

DO

CONTINUE

- READ
PRINT
FORMAT
READ INPUT TAPE
WRITE OUTPUT TAPE
REWIND
BACKSPACE

| END FILE

Input-output statements .

Specification statement DIMENSION

Several of the statements introduced in Section II offered a

convenient method for handling one-dimensional arrays in an

iterative manner. However, no provision was made for handling

two- and three-dimensional arrays. The present section will

describe additional features. In this section, subscripting is extended

to two- and three-dimensional arrays. This provision greatly

facilitates the solving of many engineering and scientific problems

which require matrix manipulations for their solution. Several

new statements will also be introduced.

The following example of matrix multiplication will serve to

illustrate DO nests and multiple subscripts. (A DO nestis a set of

two or more DO statements, the range of one of which includes the

ranges of the others.)

Given the matrix A with dimensions 10 x 15 and the matrix B

with dimensions 15 x 12, compute the elements Cij of the matrix

C= AB. To compute any element Ci select the i row of A and the

j column of B, and sum the products of their corresponding elements.

The general formula for this computation is

15

C..= ’. A., B,:
kij Ke 1 ik kJ

43

The following is a possible FORTRAN program forthis
matrix multiplication.

ute : FORTRAN secon
sAMMeeT |g

| DIMENSION A(I0, 15), B(I5, 12), C(10, 12) -]
| 3 |_| FORMAT (5E14.5)

__| READ 3, A, B
| 4

|

| DO 301-3, 10 Range of 1st DO
[5 _| DO 3J=1, 12 Range of 2nd DO

| 6 || C@,J=0.0
(10

|

| po 2K=1, 15 Range of 3rd DO
20

|

| CUD= COLD) + AC K)*B(K,
| 30 |_| PRINT 50,1 J, C(LJ)
| 50 |_| FORMAT (215, £16.7)
| 60 STOP
|

The DIMENSIONstatement says: "Matrix A is of maximum
size 10x 15, matrix B is of maximum size 15 x 12, and matrix C
is of maximum size 10 x 12."" The READ statementreadsall
elements of the matrix A and then all elements of matrix B into
the 704 from punched cards, the format of which is specified by
statement 3. Since two-dimensional arrays are stored column-wise,
the matrices A and B must be punched column-wise ; i.e. all the
Aj of column 1, followed by all the A; of column 2, etc. (Ary Ao)

Ag, Ag «++» Aig 15)» and similarly for matrix B. Notice that
statements 6 through 30 constitute a program similar to programs
considered in Section II. Whatever values I and J have at the moment,
this program computes and prints C(I,J) along with I and J. State-
ment 5 says that this program is to be repeated 12 times, first
for J= 1, then for J= 2, ..., J= 12. Notice that for each repetition
of statements 6 through 30 statement 20 is executed 15 times, first
for K= 1, then for K= 2, and so on. Thus, when the process called
for by statement 5 is complete, the I row of the product matrix has
been computed and printed. In a similar manner, statement 4 causes
the program from statement 5 to statement 30 to be repeated for the
appropriate values of I, thereby producing all of the rowsof the
product matrix.

This example illustrates the fact that one or more DO statements
may appear in the range of a DO statement. This nesting of DO
statements can result in a single statement being the last statement
in the range of several DO statements. For example, statement 30
is the last one in the range of DO statements 4 and 5. Consequently,
a more general rule is needed to describe the flow of control and
the incrementing of indices following the last statement in the range

44

Subscripts for
Two- and Three-
Dimensional Arrays

DO Nests

of a DO; the following rule holds for DO ranges which have the

same last statement:

Upon the completion of the last statement in the range of a DO,

control passes to the first statement in the range of the nearest

preceding DO which is not yet completed and which has the same

last statement, and the index of that DO is incremented. The

last statement in the range of a DO may not be a control state-

ment (e.g., IF, GO TO, DO, etc.). If all DO ranges containing

this last statement as the end of their range are completed,

control passes to the next statement.

In the preceding example of matrix multiplication, A, B, and C

were two-dimensional arrays. As was noted, each variable had two

subscripts which were separated by commas, andthe set of two

subscripts was enclosed in parentheses.

For example:

A(I, K)

B(K, J)

C(I, J)

Three-dimensional arrays are denoted by the use of three subscripts.

For example:

X(M, N + 10, 5*L)

The same rules presented in Section II regarding the formation of

subscripts apply to the two- and three-dimensional cases.

The DIMENSION statement is similarly extended to two- or

three-dimensional arrays. For example, the statement

DIMENSION W(10, 10, 15), ALPHA(15, 5), V(20, 10)

causes 1500 locations in storage to be set aside for the three-
dimensional array W, 75 locations for the two-dimensional array

ALPHA, and 200 locations for the two-dimensional array V.

There are certain rules which must be observed when using DO

statements within the range of another DO statement:

1. If the range of a DO statement includes another DO

Statement, all statements in the range of this second

statement must also be in the range of the first DO

45

statement. The following diagram illustrates this rule.

Permitted Violation of Rule 1

f Ly
L L

2. No transfer of control by IF or GO TO statements is

permitted into the range of any DO statement from outside

its range, since such transfers would not permit the DO

loop to be properly indexed. The following diagram

illustrates this rule.

Permitted Violation of Rule 2

}

at
) p

All of the DO statements so far presented were written in the

form

DO NI= m my

In these cases, the index, I, started at the specified value, my) and

was increased by one each time the statements in the range of the

DO were executed, until the value of I equaled m,- It is possible,

however, to achieve greater flexibility in the DO statements by

adding a third fixed point number so that the general form is

DO NI= mM), My, M3

In this case the value of the index, I, starts at my (as before), but

it is increased by M3 (which may be different from one) each time,

until the value of I equals or exceeds m,, at which point the DO is

"satisfied."' It is not necessary to include the increment, M3 in

the DO statement unless the incrementis different from one; i.e.,

the statements

DO 20 I= 1, 10

and

DO 20 I= 1, 10, 1

are equivalent.

46

»

Lists for Two- and

Three-Dimensional

Arrays

Every type of calculation is permitted in the range of a DO

with one exception. No calculation which changes the value of the

index or any of the indexing parameters (mj); Mo, m3) of the DO

statement is permitted within the range of that DO statement. The

indexing parameters (m)> Mo, m3) may be either integer constants

or non-subscripted integervariables. |

The extension of the input-output statements to govern the transfer

of two-and three-dimensional arrays to or from magnetic core

storage requires only that the subscripting information given earlier

be used when writing the list. If the list

JOBNO, CASE, RUN, K, (X(I), YC, K), 1= 1, 4),

((Z(L, J), I= 1, 3), W(; 3), J=1, 3)

were used with an input statement, the successive words, as they

were read into the 704, would be interpreted as the following

sequence of variables and placed in the storage locations (previously

assigned by FORTRAN) in that same order:

JOBNO, CASE, RUN, K, X(1), Y(1,K), X(2), Y¥(2,K);

X(3), Y(3, K), X(4), Y(4,K), Z(1, 1), 22,1), Z(3, 1),

W(1, 3), Z(1, 2), Z(2, 2), Z(3, 2), W(2, 3), Z(1, 3), Z(2, 3),

Z(3, 3), W(3, 3)

Note that a variable subscript (K) was used at one point. This

is permissible only if that variable has been previously assigned a

value (in this case, a value would have been read in earlier).

To transfer a complete array, subscripting and index information

is not necessary. Such information is provided, in this case, by the

DIMENSIONstatement. Using the example above, the statements

DIMENSION ALPHA (15, 5)

READ 1, ALPHA

would cause the entire 75 word array

ALPHA(1, 1), ALPHA(2, 1), ALPHA(3, 1), ALPHA(4, 1)...;

ALPHA(15, 1), ALPHA(1, 2), ALPHA(2, 2), ALPHA(3, 2),

ALPHA(4, 2)..., ALPHA(15, 5)

to be transferred into magnetic core storage in the reverse of the

above order.
47

Assigned GO TO

Statements
One modification of the GO TO statement which allows greater

freedom in directing the logical flow of a program is the assigned

GO TO statement. The assigned GO TO statement requires a

companion statement, an ASSIGN statement, which must be

previously executed.

As an example of the use of the assigned GO TO statement,

suppose it is desired to calculate several average values such as

average temperature, pressure, anddensity. If the data is on

cards, the following program might be used:

| STATEMENT =

NUMBER &

6

iC<« =
COMMENT 3

| 2

zFOR | 8

FORTRAN STATEMENT

DIMENSION _X(25)

5 ASSIGN 30 TON

READ 2, X

SUM =0.0

DO 20T=1, 25

SUM = SUM+ XQ)

AVG = SUM/25.0

GOTON, (30, 40, 50)

AVGTEM= AVG

ASSIGN 40 TON

GO TO 10
 AVGPRE = AVG

ASSIGN 50 TO N

GO TO 10

AVGDEN = AVG

PRINT 60, AVGTEM, AVGPRE, AVGDEN

 STOP

FORMAT _(3E14. 5)
In this example, statement 26 transfers control to one of the

three statements referred to in the list, i.e., 30, 40 or 50,

depending upon the value of N at the time of execution, which is

determined by the last preceding ASSIGN statement. The first

execution of statement 26 causes control to be transferred to

Statement 30, since statement 5, the last preceding ASSIGN state-
ment, assigned the value of 30 to N. Statement 31 assigns the value

of 40 to N; hencethe second execution of statement 26 transfers

control to statement 40. The third execution of statement 26

transfers control to statement 50, the value of 50 having been

assigned to N by statement 41.

In general terms, the assigned GO TO statementis written

n_)GO TON, (ny ay --) my

where N is a non-subscripted integer variable appearing in a
previously executed ASSIGN statement, and Ny» Ng» +++» Dy stand

for statement numbers. These statement numbersare, in effect,

48

Computed GO TO
Statements

a list of values which may be assigned to N. Note the comma

which is inserted between the variable and the left parenthesis;

it must always be included.

The statement

ASSIGN 30 TO N

is not equivalent to the arithmetic formula

N = 30

A variable N which currently has a value is either an assigned

variable or an ordinary variable, never both simultaneously. It is

an assigned variable if its current value has been established by

an ASSIGN statement (e.g., ASSIGN 30 TO N); it is an ordinary

variable if its current value has been established by an arithmetic

formula (e.g., N= 30). The current value is the one given by the

last previous ASSIGN statement or arithmetic formula, whichever

was most recently executed. A variable N which is currently an

assigned variable is effective only in assigned GO TO N statements.

An ordinary variable N is effective in all statements involving N

except assigned GO TO N statements.

There is a restriction on the assigned GO TO statement when

it lies in the range of a DO statement, in addition to the general

restrictions on transfers on pages 45 and 46. This restriction

requires that the statements to which the assigned GO TO statement

may transfer mustall lie in one single part of the nest which

includes the range, or must all lie outside the nest. If this condition

cannot be met, it may be possible by suitable programming changes

to use a computed GO TO statement to accomplish the desired

branching, since there is no such restriction on this type of

statement.

Computed GO TO statements are similar to assigned GO TO

statements in that both types establish a many-way fork. They

differ in that an assigned GO TO statement requires a companion

statement (ASSIGN) to pre-set or assign a current value to the

integer variable in the GO TO statement and thereby select the

proper branch. The value of the integer variable in a computed

GO TO statement may be arrived at by computation; no companion

statement (comparable to ASSIGN) is necessary.

Example:

Given: A,, Bi N;, Xi, Y,; fori=1, ..., 10, where, for

each i, N, = 1 or 2, compute

49

I a

/ 2

- [AX2-BY, ¢Z= AjX;* -BY; for N; Il n
N

A possible FORTRANprogram follows.

C<« :
conmeny

|

3
FORTRAN STATEMENT

FoR

STATEMENT
NUMBER

I
CO

NT
IN

UA
TI

ON

DIMENSION _A(10), B(10), N(10), X(10), Y(10), Z(10)
READ 3, (AM, BM, N@, XM, YM, I=1, 10)

FORMAT (2613.5, 13, 2E13.5}
DO 21I1=1, 10
J= NQ@

GO TO (10,20), J
10 ZQ@ = SQRTF(A()*X(D**2+ B(D*Y(D)

1 GO T0 2)
Z) = SQRTF(A(*X(D**2 - B(D*Y(D)

21 PRINT 23, AM, BO, ND, X@, YD, ZO
22 STOP
 23 FORMAT (2E13.5, I3, 3£13.5)

In this program, statement 7 transfers control to statement 10 if
J = 1 or to statement 20 if J = 2. The ten vaiues of N; read into the

program are each either 1 or 2. Since J is set equal to Nj by

statement 6, the correct formula for Z; is selected, depending

on whether the current vaiue of N; is 1 or 2. Statement6 is
necessary since J cannot be a subscripted variable; subscripted
variables are not allowed in computed GO TO statements.

As illustrated in the program for the example, computed GO
TO statements have the form

GO TO (n,, Dor sees na)? I

where the Ny» Dor .--, Dy stand for statement numbers, and I is

a non-subscripted integer variable. Control is transferred to the
first statement in the list (statement ny) if, at the time of execution,

the value of I is one; it is transferred to the second statement in
the list (statement No) if the value of I is two, etc. Any number of

statement numbers may appearin the list. The current value of I
may be arrived at in any manner desired (e.g., in the program
above, by an arithmetic formula modified by DO indexing), and
its value at the time of execution of the computed GO TO statement
determines which branch will be taken by the program. Note the
comma which is inserted between the right parenthesis and the
variable.

50

FORMAT

Statements

In Section II the basic field specifications Iw, Ew.d, and Fw.d

were introduced. In the present section, scale factors, Hollerith .

fields, and multiple-line formats will be discussed.

1. Scale Factors:

The use of scale factors allows greater flexibility in an output

format. The specification

(2E14.4)

might print the following output line (dashes stand for blank spaces):

-0.4321E 04___.0.5674E-06

If the specification were written as

(2P2E14. 4)

the same output data would be printed with six significant digits,

with the decimal point four places from the right. For example, the

same output data as above might print as

-43 ,2147E 02___56.7439E-08

The scale factor 2P causes the floating point number to be

multiplied by 102 and the exponent to be reduced by 2 prior to

printing. Only a positive scale factor may be used with an E-type

specification. However, positive or negative scale factors may

be usedwith an F-type specification. For example, the specification

(-1PF10.3, 7PF12.3)

would print the following data

-4321 .47 .0000005674

as
~432.147__. 22.9.674

The scale factor is assumed to be zero if no other value has been

given. Once a value has been given, however, it will hold for all

subsequent E- and F-conversions within the same FORMATstatement

until a new value is given. If it is desired to specify a scale factor
of zero subsequent to another scale factor within the same FORMAT

statement, OP must be written. For example, the specification

(1PF10.1, F12.9)

51

would print the preceding data as

-43214.7--.000005674

The same data would be printed by the specification

(1PF10.1, OPF12.9)

as

-43214.7-- .000000567

The scale factor has no effect on I-conversion,

2. . Hollerith Fields

_ English text may be printed by specifying a Hollerith field.

Suth fields are designated by the letter H preceded by a number

designating the numberof characters in the text; the field designation

is followed by the desired English characters (including blanks).

In order to print the factors X and Y along with their product, the

FORMAT statement

10 FORMAT (2HX= F8.3, 4H.-Y = F8.3, 5H__XY = F8.3)

could be used to print the output line

X= _.10.723_.Y = --12.561__XY = -134.692

Note that there is no commaafter a Hollerith field specification

(e.g., 4H_-) in the FORMATstatement.

3. Multiple-line Format:

Within the limitations of FORMAT statements as presented in

Section II, in order to print the following lines of output data,

_-67 .8912E-03__106.23_.-73

wan nene 732. _...-82.976_6.25

two FORMAT statements would have been necessary, for example

10 FORMAT (2PE13.4, OPF8.2, 15)

11 FORMAT (19, F12.3, F5. 2)

However, with the introduction of multiple-line formats, only one

FORMATstatement is required to print the above lines

12 FORMAT(2PE13.4, OPF8.2, 15/19, F12.3, F5.2)

52

Example Problem
and Program

The slash (/) separates the formats for the different lines of each

set of lines. Thus, in this example, lines l, 3, 5,... have the

format (2PE13.4, OPF8. 2, 15) and lines 2, 4, 6,... have the format

(19, F12.3, F5.2); successive pairs of lines constitute the sets

described by the FORMAT statement. Each line may have a

maximum of 119 characters.

The following example illustrates the use of many of the types of

instructions presented in the three sections of this primer:

The n points (x,, y;) are given to fit by the least-squares

method an m degree polynomial

y=ay tapxtayx+... +a,x

In order to obtain the coefficients a), 4), ..-+++-- , a_, itis
0’ “1 m

necessary to solve the normal equations

(1) Sp% +$)4, +... +8 am = Vo

(2) S, 49 +S9a, +--. +8

(m +1) S ag + Sina 21 + Son4m = Vm

n

where Sy =2 Vo7 dh Mi
i=1

n n

Ss 2% V7 2b YX
i=l i=l

n n 5
2 a7 — = ~~

55> > Xi Vo », YiXy

i=1 i=1

n

_ m
Vin= 2 Vi%j

~ 2m is

Som ~ 2 i

53

After the S's and V's have been computed, the normal equations
are solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree
polynomial (m = 2).

(1) S.a
929 + 5,2] +822,= Vo

(2) S)a) +S,a, +S3a,=V,

(3) S ag +S, a) +54a5= Vo
2 3

The forward solution is as follows:

1. Divide equation (1) by So:

2. Multiply the equation resulting from step 1 by S, and

subtract from equation (2).
3. Multiply the equation resulting from step 1 by S, and

subtract from equation (3).

The resulting equations are

(4) a + bi54, +b)3a, = by4

(5) b a, +b =b
22 2423°2

(6) P3981 + B33 8) = bag

where byy=S1/Sy yg = 52/8, byg = VO/S,

Poa = S2~Pi2Si+ Pog = $3-by3Sy, bog = Vy - bygS

P32 = 83 ~By 28a B33 = Sq -by3S, bg4= Vp - by4Sy

Steps 1 and 2 are repeated using equations (5) and (6), with boo
and b35 instead of So and S,. The resulting equations are

(7) ay + Co ao = Co4

(8) C334, = C34

where Cy3 = °23/byq Coq = P24/b5,

€33 = bg3 - co3b39

34 = bg4 - Cogb35

54

The backward solution is as follows:

(9) ag= “34/c39 from equation (8)

(10) a, = Ca4 ~ ©9349 from equation (7)

(11) ag = Dig - bia, - bi345 from equation (4)

The following is a possible FORTRAN program for carrying out the

calculations for the case: n= 100, m < 10. So? Si So» Le Som

are stored in SUM (1), SUM (2), SUM (3), ..., SUM(2M +1),

respectively. Vo, Vie Vox vee Vin are stored in V (1), V (2),

V (3), ..., V(M +1), respectively.

FoR

COMMENT FORTRAN STATEMENT
STATEMENT
NUMBER C

O
N
T
I
N
U
A
T
I
O
N

3 Z 72

| DIMENSION _X(100), Y(100), SUM(21), V(11), AMI), B(I1, 12)
| READ 3, M, N
|

| 3 FORMAT (72, 13)
| READ 4, (X@, Y@, I=1, N)
| 4 FORMAT (4E14.7)
| LS = 2*M+1

LB= M+2
| LV= M+]
!

| DO 5J=2, LS
| 5 SUM(J) = 0,0

SUM(1) = N
| DO 6J=1, LV

| 6 VJ) = 0.0
| DO 16I=1, N

| P= 1.0
| VQ) = Vil) + YO
1

| DO 13J=2, LV
| P = X(D*P

SUMJ)= SUM(J) + P
l
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
l
|
|
|
|
|
L

13 V(D= ViJ)+ YQ*P

DO 16 J=LB, LS
P = X(D*P

16 SUM(J) = SUM(J) + P

7 DO 201[=1, LV

DO 2K=1, LV

J=K+I
20 B(K,D = SUM(J-1)

DO 22 K= 1, LV

22 B(K, LB) = V(K)
23 DO 31 L=1, LV

DIVB= B(L,L)

DO 26 J=1,LB

2 B(L, J) = B(L, J)/DIVB

Nh=L+]

IF (11 - LB) 28, 33, 33

28 DO 31I=N, LV

FMULTB = BCL,L)

DO 31 J=L, LB

55 (continued on next page)

(continued from preceding page)

FOR

© omen : FORTRAN STATEMENT
STATEMENT zame | | .

31 B(I, J) = BC, J) - B(L, J)*FMULTB
33 A(LV) = B(LV,LB)

| T=Lv
3 |_| SIGMA=0.0

_| po 37J=L LV
37 SIGMA = SIGMA + B(I-I, J)*AU)

I= 1-1

A(D = BCI, LB) - SIGMA

|
|
|
|
|
i
|
|
|
|
ij

|
|
| 40 IF(-1) 41, 41, 35

4i PRINT 42, (AQ), 1=1, LV)

42 FORMAT (5E15 .6)

43 |_| STOP__

The elements of the SUM and V arrays, except SUM(1), are

set equal to zero. SUM(1) is set equal to N. For each valueofI,

X, and ¥y are selected. The powers of Xy are computed and“7 Abin NS

accumulated in the correct SUM counters. The powers of xX, are

multiplied by Yr and the products are accumulated in the correct

V counters. In order to save machine time when the object program

is being run, the previously computed powerof Xy is used when

computing the next power of X;. Note the use of variables as index

parameters. By the time control has passed to statement 17, the

counters have been set as follows:

N
SUM (1) = N v= & Y

1=1 !

N N
SUM (2)= } Xy V(2)= Y YX

I= 1 I=1

Ny N 9
SUM (3)= 2 X, v(3)= 2 Y%

I=1 I=1

N
ViM+1)= > YX)"

I=1

N 2M
SUM (2M+1)= » x

I=1

56

By the time control has passed to statement 23, the values of

So: Sy ney Som have been placed in the storage locations

corresponding to columns 1 through M + 1, rows | through M + I,

of the Barray, and the values of Vo Vie roo Vin have been stored

in the locations corresponding to column M + 2, rows1 through

M +1, of the Barray. For example, for the illustrative problem

beginning on page 54 (M= 2), columns 1 through 4, rows 1 through

3, of the B array would be set to the following computed values:

This matrix represents equations (1), (2), and (3) on page 54, the

normal equations for M= 2.

The forward solution, which results in equations (4), (7), and

(8) in the illustrative problem, and the backward solution, which

results in equations (9), (10), and (11) in the illustrative problem,

are carried out by statements 23 through 40.

By the time statement 31 has been executed for the last time,

the coefficients of the A; terms in the M + 1 equations which would

be obtained in hand calculations have replaced the contents of the

locations corresponding to columns | through M +1, rows l through

M +1, of the Barray, and the constants on the right-hand side of

the equations have replaced the contents of the locations corresponding

to column M + 2, rows 1 through M + 1, of the Barray. For the

illustrative problem, columns 1 through 4, rows 1 through 3, of

the B array would be set to the following computed values:

1 Dio bs Pg

0] Cog Con

0 0 Cag C34

This matrix represents equations (4), (7), and (8) on page 54.

The backward solution is then carried out. By the time

control has passed to statement 41, which prints the values of the

A; terms, the values of the M +1 A, terms will have been

stored in the M + 1 locations reserved for the A array. For the

57

Debugging

illustrative problem, the A array would contain the following

computed values for Aor ay and Ag; respectively:

Location . Contents

A(3) . c
34/C32

A(2) C954 ~ C93 ao

The resulting values of the A terms are then printed according

to the FORMATspecification in statement 42.

In order to debug a FORTRANprogram, it is recommended that
extra PRINTstatements under the control of a sense switch be used.
The sense switches are located on the 704 console and may be used
to control the program. The following statementis used in con-
junction with the sense switches.

IF (SENSE SWITCHi) n,, n

where i stands for the numberof one of the six sense switches 1, 2,
3, 4, 5, or 6, and n, and n, are statement numbers. If sense switch i

is in UP status, control is transferred to statement number No} if

sense switch i is in DOWNstatus, control is transferred to statement
number nj: The following example illustrates the use of sense switches

as an aid in debugging a program.

Example:

Given: a, b,, and C; fori=1, ..., 10, compute and print

0 10
2FeoZ G,be)

= i=]

w
m

f
y
~ C
c cr - !

fa
de i
™

—

P

—
—

e
E
{
=
— b
p

Assume that the following FORTRANprogram has been written and
compiled (i.e., translated into machine language by the 704 by means
of the FORTRANsystem) andis to be tested:

58

C<

FOR

COMMENT 5 FORTRAN STATEMENT
STATEMENT
NUMBER 3

S|_6 7 72

DIMENSION _A(10), B(10), €(10)

__|__SUML= 0.0
__| _SUM2= 0.0
__| _SUM3 = 0.0

| | READ 1, (AQ, BM, CM, I= 1, 10)

DO_101=1, 10.
SUM 1= SUMI1 + (A(D*C(D)**2
SUM 2= SUM2+ B(D - C(D
SUM 3 = SUM3+ A(D*B(D - Ci)

IF (SENSE SWITCH 1) 10, 5

PRINT 1, SUM 1, SUM 2, SUM 3

_ S
m

i
n

CONTINUE

RESULT = SUM1*SUM2/SUM3

PRINT 1, RESULT

STOP
 F

e
e
s
e
e
e
e

A test case is run using the compiled program. The 704 operator

is instructed to run the test case with sense switch 1 in UP status

(which causes the printing of intermediate results). Assumethe test

case has the following input data

a, = - .23456 by = 12.34111 c= 27 .86523

Then the first line of output is

42.72019 -15.52412 -30.75996

Hand calculations for i= 1, using the original formula for RESULT,

show that

SUM 1= 42.72019

SUM 2 = -15.52412

SUM 3 = -779 .36577

The hand-computed results for SUM 1 and SUM 2 agree with the

output results; however, SUM 3 results do not agree. By looking at

the FORTRAN statement which computes SUM 3, the error is

located. The statement is changed from

SUM 3 = SUM 3 + A(I) * B(I) - C(I)
to

SUM 3 = SUM 3 + A(I) * KD - C(I) * * 2

59

Storage

After the indicated change is made, the FORTRAN program is

again compiled and the test re-run. This time the machine results

agree with the hand-computed results for all three sums. The 704
operator is instructed to run the program with sense switch i in

DOWNstatus. With sense switch 1 DOWN the IF (SENSE SWITCH)

statement transfers control to statement 10; therefore, no inter-

mediate results are printed.

Many problems which are to be solved using the 704 will require
the use of magnetic tapes and/or drums for additional storage. In

order to determine whether additional storage is necessary or not,

do the following:

1. Multiply the number of FORTRANstatements by 10; call
this value A.

2. Add up the numberof locations required by entries in

DIMENSION statements; call this value B. For example,

A(12, 6) requires 72 locations.
3. Use the rules given below to determine the numberof

storage locations needed for input/output routines; call

this value C.

4. The list of available functions provided by the computing

center should give the number of locations required for

each function. Add up the numberof locations required

for all the functions used in the program; call this value D.
5. If(A +B+C +D) is much greater than the number of

locations in the storage unit of the 704 to be used for

running the program, the program will have to be rewritten,

using tapes and drumsfor auxiliary storage of data. If

(A +B +C +D)is nearly equal to the number of locations

in the storage unit, the program should be compiledto find

the precise number of locations required, since (A +B

+C +D) is merely an estimate.
If it is necessary to use magnetic tapes and/or drums for

intermediate storage, consult the Programmer's Reference Manual

for FORTRAN, Form 32-7026, for information regarding the

necessary statements. This manual contains additional control

statements and covers particular situations in which some of the

restrictions presented here may be relaxed. It also includes

information regarding limitations on the size of a FORTRAN

program (e.g., the number of variables, the size of DO nests, the

numberof transfer statements, etc.).

Rules for estimating storage required for input/output routines:

1. For each of the following types of statements which appear

in the program add the corresponding number once. (If, for

60

Master

Check List

61

example, several PRINT statements appear, add in 258

only once.)

PRINT 258

READ 137

READ INPUT TAPE 21

WRITE OUTPUT TAPE 12

PUNCH 90

. Add to the abovetotal:

If there is both decimal input and output, 945

If only decimal output, 484

If only decimal input, 461

. The basic characters which may be used in writing a

FORTRANstatement are

a. A, B, C, ..., Z (26 alphabetic characters)

b. 0, 1, 2, ..., 9 (10 numerical characters)

c. +(plus), - (minus), * (asterisk), / (slash), ((left

parenthesis),) (right parenthesis), , (comma),

= (equal sign), and . (decimal point).

. Upper and lower case alphabetic characters are indistinguish-

able on a punched card; e.g., D and d are represented by

the same punches.

. The digits 1 and 0 mustbe carefully distinguished from the

alphabetic characters I and O.

. A variable symbol can consist of six or less characters.

It must satisfy the following conditions:

a, The first character must be alphabetic.

b. The first character cannot be I, J, K, L, M, or N,

unless the symbol is an integer variable; if the symbol

is an integer variable, the first character mustbe I,

J, K, L, M, or N.

c, Any character following the first may be alphabetic or

numerical, but not one of the special characters.

d. The namesof all functions defined in the program or

appearing on the computing center list, as well as

these names with the terminal F removed, must not be

used as variable symbols. For example, if SINF is

62

10.

ll.

12.

13.

14,

15.

16.

17.

18.

19,

20.

used as the nameof a function, neither SINF nor SIN
can be used as a variable symbol.

e. Ifa subscripted variable has four or more characters
in its name, the last of these must not be an F. For

example, SINF(I) cannot be used as a subscripted

variable, regardless of whether SINF is used as the

name of a function.

. The name used for a function in programming must agree
exactly with the name appearingin the list of functions.

. The argument of a function is enclosed in parentheses;

e.g., SINF (X).o

. Ifa function has more than one argument, the arguments

are separated by commas; e.g., SINF (X, Y, Z).
. The left side of an arithmetic formula must always be a
variable or a function of one or more variables.

. Never omit the operation symbol between two quantities;
é€.g., do not write AB for A*B.
Never have two operation symbols in a row; e.g., do not
write A*-B for A*(-B). The exponentiation symbol ** may
appear to be an exception, but it is regarded as a single
symbol.

Blank spaces can be used or not used as desired, since

blanks are ignored in the translation. |

The prescribed form for the various non-arithmetic
statements must be followed exactly except for the arbitrary
use of blank spaces.

The magnitude of every non-zero quantity must lie between

10738 ang 1028, By "quantity" is meant any constant or any
value assumed by a variable or function in the course of the
calculation.

Numbers to be read by means of a READ 1 statement must
not exceed 10 digits.

Numbers to be read by means of a READ 2 statement must
not exceed 8 digits. The exponent must have two digits
and a sign.

Numbers to be printed by means of a PRINT 1 statement
should not exceed 999, 999 99999,

The physically last statement of a program should be

a STOP statement or a statement (GO TO or IF) which

causes a transfer to some other statement in the

program.

All subscripted variables must appear in a DIMENSION
Statement, which must appear in the program before
reference is madeto the variables.

Negative subscripts are not permitted.
Subscripting of subscripts is not permitted.

Summary of

FORTRANState-
ments

21. Subscripts for two- and three-dimensional arrays should

be separated by commas.

22. Ina floating-point expression, integer variables and

constants can be used only as subscripts and exponents.

23. Integer constants are written without a decimal point.

24. Decimal integers larger than 32767 are treated modulo

32768.
25. If the range of a DO includes another DO, then all state-

ments in the range of this second DO mustalso lie within

the range of the first DO.

26. Transfers into the range of any DO from outside its range

are not permitted.

27. The last statement in the range of a DO mustnot be a

transfer.

28. No calculation which changes the index or indexing

parameters of a DO is permitted within the range of that DO.

29. Assigned GO TO statements have a comma between the

variable and the left parenthesis.

30. Computed GO TO statements have a comma between the

right parenthesis and the variable.

31. An ASSIGN statement must be encountered by the program

prior to encountering an assigned GO TO statement.

32. The ASSIGN statement is not equivalent to an arithmetic

formula.

33. When an assigned GO TOlies in the range of a DO, all

statement numbers to which control may be transferred

must lie in a single part of the DO nest which includes the

range, or be completely outside the nest.
34, An end-of-file should always be written on output tapes.

35. Provision for rewinding tapes should be made in the program

36. No constants may be given in a list in an input/output

statement, only variables.

37. FORMAT statements for output must be so written so that

the first character of the first field is a blank.

The complete FORTRAN language provides for 32 types of state-

ments, which may be grouped as follows:

1. Arithmetic statements

2. Control statements(15 types)

3. Input/output statements(13 types)

4, Specification statements (3 types)

This manual has covered 19 types of statements:

1. Arithmetic statements

2. The following 9 types of control statements:

a. Unconditional GO TO

b. Assigned GO TO

c. Computed GO TO

63

q
r
B
o
+
o

A

e

r
o
m
e
r
o
m
o
o
p

4. Th

ASSIGN
IF

IF (SENSE SWITCH)
STOP
DO

CONTINUE
following 8 types of input/output statements:

FORMAT
READ

READ INPUT TAPE
PRINT
WRITE OUTPUT TAPE
END FILE

REWIND
BACKSPACE

following type of specification statements:

DIMENSION
The types of FORTRANstatements which have not been covered in
this manual are:

1. The

m
o
a
n

o
m
&

2. The

beh
)

b

c.

d

e.

3. The

a.

b.

following 6 types of control statements:
SENSE LIGHT
IF (SENSE LIGHT)

IF ACCUMULATOR OVERFLOW
IF QUOTIENT OVERFLOW
IF DIVIDE CHECK
PAUSE
following 5 types of input/output statements:
PUNCH
READ TAPE

READ DRUM
WRITE TAPE
WRITE DRUM
following 2 types of specification statements:

EQUIVALENCE
FREQUENCY

Having approached the FORTRANlanguage cumulatively through
the three stages presented in the sections of this primer, the reader
should have little difficulty in extending his knowledge of FORTRAN

i i tae ae neecantsd in theto include the entire FORTRANlanguage as presented in the
Programmer’

64

S Reference Manual for FORTRAN, Form 32-7026.

INSIME
International Business Machines Corporation

530 Madison Avenue, New York 22, N-Y.

Printed in U.S.A. F28-6019

