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INTRODUCTION 

This report  is the final report  from the Convair division of the General Dynamics 
Corporation on National Aeronautics and Space Administration Contract No. 
NAS8-18008 entitled "A Computational Algorithm for Obtaining Minimax Solutions 
to Saturn Control Problems". 

During the study period, which began in June 1966 and continued through 
May 1967 the principal investigator conducted a detailed study of the problem of 
computing solutions fo r  a certain class of Minimax type optimal control problems. 
Optimal control problems of the type considered, sometimes referred to as 
Chebyshev Minimax control problems, ar ise  naturally in a variety of realistic 
optimization problems and have been a subject of increasing theoretical interest 
in recent years .  In a previous study ["Study of Optimal and Adaptive Control 
Theory", NASA Contractor Report No. CR-715, University of Alabama Research 
Institute, April 19671 a mathematical theory for  a certain class of Chebyshev 
Minimax control problems w a s  developed and the possibility of using that theory 
as a basis fo r  designing an  automatic machine solution technique w a s  suggested. 
In Chapter 2 of the present study, that suggestion is explored in more detail and 
a concrete algorithm is developed. In addition, a hybrid-analog computer 
realization of the algorithm is proposed and an  application of the algorithm, to a 
certain load-minimizing control problem fo r  the Saturn launch vehicle, is described. 
The problem of incorporating explicit state variable inequality constraints in the 
solution of Chebyshev Minimax control problems is also discussed and several 
alternative methods of solution are proposed. 

The present study also included a n  investigation of a certain problem whicn 
arises in connection with practical applications of the so-called Linear Optimal 
Regulator" control theory -- a theory which has been used to obtain approximate 
solutions to the Saturn "load-minimizing" control problem mentioned above. In 
par t icular ,  the problem of accommodating constant but unmeasurable (external) 
system disturbance inputs in the solution of the linear optimal regulator problem 
was  considered. A mathematical theory for this c lass  of problems w a s  developed 
and the resul ts ,  including several  worked examples, are presented in Chapter 3. 

In the study of optimal control problems associated with linear dynamical 
systems it is often found convenient (for both theoretical and practical reasons) to 
linearly t ransform the original state variable equations describing the physical 
system into a special canonical form known as the "phase-variablell form. 
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. The algebraic theoretic properties of the transformation matrix K, required for this 
change of coordinates, were discussed previously in the NASA Contractor Report 
No. CR-715 mentioned above. In Chapter 4 of the present report  an effective 
numerical algorithm for computing the phase-variable transformation matrix K, 
and i ts  inverse K'I , is presented. 

This study was performed by the Convair division for ,  and under the 
direction of,  the Aero-Astrodynamics Laboratory at the George C. Marshall  
Space Flight Center, Huntsville, Alabama. The principal investigator is 
especially grateful to Mr. Clyde Baker, Mr. Judson hvingood,  Mr.  James  Blair 
and Mr.  Jerome Redus, of the Aero-Astrodynamics Laboratory, for  their valuable 
suggestions and many stimulating and informative discussions during this study. 
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A COMPUTATIONAL ALGORITHM FOR A CLASS 
OF CHEBYSHEV MINIMAX CONTROL PROBLEMS 

2 . 1  PROBLEMS OF OPTIMAL CONTROL 

The branch of technology known as optimal control of dynamical systems is concerned 
with the general problem of synthesizing a forcing function u(t) which will cause a 
given dynamical system S to respond "besttt with respect to some, a priori specified, 
criterion of performance. The llgoodnesslf or lfqualityf' of the obtained response is 
generally measured mathematically by means of a performance index J - a functional 
computed along the response state trajectory of the dynamical system. 

In many practical cases, the criterion of performance which is most meaningful 
f rom the physical point of view can be expressed mathematically as a time integral 
along the state trajectory of the system. For  example, in the case of minimum-time 
problems the physically meaningful performance criterion is precisely expressed by 
the functional 

T 
J = r  1 d t  

where t denotes time measured along the state trajectory of S .  Likewise, in the 
case of minimum energy, minimum fuel, and other "minimum resource consumptiontT 
type problems the physically meaningful performance criterion can be effectively 
expressed as a time integral of the rate of resource consumption. Optimal control 
problems in which the performance index is expressible as a time integral along the 
state trajectory have enjoyed notable popularity among both practical and theoretical 
control engineers. This is due, in part ,  to  the fact that for such cases the problem 
can be studied within the framework of the powerful and relatively well-developed 
branch of mathematics known as the calculus of variations. The influence of the 
calculus oi  variations is also evident in the more recent theoretical contributions to 
optimal control by mathematicians such as Pontryagin, Bellman, and others. The 
"modern" mathematical techniques developed by them workers have generally been 
tailored lor the same class  of performance index iunctionals previously studied i n  
the classical calculus of variations (eg. Iunctionals which am,  o r  can be reduced to, 
an integral along the state trajectory). 
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2.2 CHEBYSHEV MINIMAX OPTIMAL CONTROL PROBLEMS 

Although the integral class of performance indexes has found numerous applications 
in practical optimization problems there are many realistic situations in which the 
physically meaningful performance criterion cannot be expressed mathematically as 
an integral along the state trajectory. For  example, in certain high-speed atmos- 
pheric re-entry problems associated with space vehicles , the physical performance 
criterion might be stated as "keep the maximum vehicle surface temperature as 
small as possible" - an lloptimumtt condition which may be an  essential factor in  
preventing the burning of the vehicle. This particular maximum temperature 
criterion cannot be expressed mathematically by an  ordinary integral-type functional 
as used in the calculus of variations. Other practical examples can be found in the 
class of control problems associated with minimizing, say, maximum stress, 
maximum velocity, maximum force, and so on. 

Optimal control problems in which the objective is to "minimize the maximum 
value" of a certain controlled variable are known as Chebyshev Minimax optimization 
problems L11 and have been the subject of increasing interest during recent years. 
In [13  , a particular class of Chebyshev Minimax problems was studied and a relatively 
effective general method of solution was proposed. The resul ts  obtained in [ l l  included 
a brief mention of the possibility of devising a computational algorithm lor numerically 
solving Chebyshev Minimax optimal control problems by completely automatic machine 
solution techniques. In the present study the possibility of such an automatic machine 
solution technique is explored in more detail and one concrete algorithm is proposed. 
In addition, a detailed hybrid analog computer program is developed for implementing 
the proposed algorithm. Before presenting the computational algorithm, the theory 
developed in 1111 will be summarized. 

2 . 3  A MATHEMATICAL THEORY FOR A CLASS OF CHEBYSHEV MINIMAX 
OPTIMAL CONTROL PROBLEMS 

The particular Chebyshev Minimax optimal control problem studied in [ 11 can be 
stated as follows: In the class of piecewise continuous functions, find a control u(t) 
which minimizes the functional 

subject to the restrictions 



3(x(T)) = 0 

In (2), x = (XI ,  . . . , Xn) is an n-vector: the system state vector, and C(x) 
is the performance index: a real, single valued, scalar function of x defined 
throughout a set D of the n-dimensional euclidean - state space E n .  In (3) ,  F is a 
vector function continuous in u and continuously differentiable with respect to 
x E D. Equation (5) defines the terminal manifold, YCD, an m-dimensional 
(m<n) hypersurface of admissible terminal states x(T). The terminal time T is 
specified implicitly, by (5) as the f i rs t  time t 2 t o  which satisfies g( x(t)) = 0. 

I 

A piecewise continuous real valued function u(t) with values belonging to 
the compact, convex, set U is called an admissible control. An admissible 
control u = u"(t) which yields an absolute minimum of the functional (2), subject 
to the restrictions (3)-(6), is called optimal. An optimal control of the form u"(t) 

uo(x(t)) is an optimal control - law. An integral curve of (3) corresponding to an 
optimal control, is an optimal trajectory. The set D C E "  is taken as the set of 
all states x which a r e  controllable to T. That is, for each initial statc x o  D 
there  exists at least one admissible control u(t) such that the corresponding 
solution of (3) satisfies (4) and (5). It is assumed that D is non-void and uo(x) 
exists for all XFD. It is further assumed that C(x) and J(x) a r e  once continuously 
differentiable. 

The solution procedure proposed in [l] is based on the following fundamental 
fact. A Chebyshev Minimax optimal trajectory which starts at an arbitrary initial 
state xo6D has one or the other of the following properties: (i) the corrcsponding 
maximum value of C(x(t)), to 5t ST,  is greater than C(xo) o r  (ii) the correspond- 
ing maximum value of C(x(t)), ti, S t S T ,  exactly equals the value of C(xo). Thus,  
i f  V(x) , x = x o  , denotes the ordinary Car&heodory value function 

V(x) = Jcu"; XI , x = xo 

then the above mentioned fact can be expressed as the weak inequality 

It is assumed hereafter that V(x) is continuous at  each state x in the interior 
of D. 
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The result  (8) suggests that the set D c  E" can be partitioned into two subsets 
CRo 3 CR, 3 defined as follows 

In 111 it was shown that the subsets CR,] , {R,] can be identifiedl by the 
following procedure. Le t  &OC D (I& 23) be the largest set of states XCD with 
the property that: For  each XOCD there exists an  admissible control u = ct, (t;xo) 
t o  5 t ST ,  such that 

(i) dC(x(t),O(t;xo))/dt<O, t o s t <  T ,  and 

(ii) J(x(T)) = 0 for some T >to along the 
corresponding solution of (3).  

Evidently, the set RA is connected. Moreover, under the previously stated 
assumptions concerning existence of an optimal control law and continuity of 
V (x), the set RL is closed, relative to D. 

From ( 8 ) ,  it is clear that when u = @(t;xo), J[ul realizes its greatest lower 
bound at each xocR&. It follows that 

and u = @(t;xo) is an  optimal control for the set &. It is remarked that the 
control @(t;x,) is not unique, in general. Moreover the set - 7 might be empty. 

Consider next an arbitrary initial state xo (D - &o) and let dcnote the 
boundary of the set Rk . In accordance with the procedure described in [11 , an 
auxiliary, Mayer-type, variational problem (hereafter called Problem &I) is defined 
as follows: 

Problem M 

Find an  admissible control u(t) which minimizes 

'In the identification procedure described here, and in [11 , it is convenient to classiiy 
certain states x, where V(x) = C(x), as belonging to the set CR,) . Thus the partition- 
ing described in the sequel does allow an equality sign on the right side of (10) , i n  
certain special cases. 
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N 

J [u;%] = C (x(t,) 
I 

subject to the restrictions 

k = F(x,u(t)) 

X(t0)  = X O C  (D -Po)  

X(t1) E , tl - unrestricted 

u(t) €U to st 5tl 

Let u(t) = y (t;xo) be an optimal control for Problem M and let a denote the 
family of all trajectories x(t), x €(D - &o), generated by the solutions of 
jC = F(x ,y( t ;xo) ) ,  xOc  (D - &). Further,  let &.C (D - Rb) be the se t  of states 
x with the (natural) property2 that along each trajectory x(t) E (with x c n',) 
the value of C(x(t)) does not exceed the terminal value C (  x(t1)). It is readily 
verified (see [l] ) that the sub-arcs of the trajectories x(t) € which belong to 
Rk a r e  optimal for the original C-minimax problem. In particular, i f  xo  E Ii', , 
the C-minimax optimal control uo(t) (which takes xo to 3) can be chosen a s  

where x3'(tl), tl = tl(xo), is the state X E  aRb at which the solution of Problem M 
terminates. At  each state xo C pm the functional (2) is given by 

and therefore the value function for that set can be expressed as 

V(x) = C(X*(t l (X)))  v x = x o € P m  xi* € aR; (19) 

By this means, the value function V(x) and a C-minimax optimal control 
can be determined for  an arbitrary initial state xo E RhU R: . Moreover, since 
the value function is known on the boundary of the se t  R i u R i  that boundary can 
be viewed as a rrnewlr terminal manifold, say 7: and the identification process outlined 

21t should be s t rcssed that this property is one which occurs naturally along 
the family $2 --it must not be interpreted as a state variable constraint 
imposed upon the solutions of the original problem M. 
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above can be repeated for the states X E  (D- RAUR;). In this way, sets RZ and RZ, 
analogous to RA and R:,can be constructed using f i n  place of the original terminal manifold 5'. 
Continuing in this way, the set D can be completely partitioned into the two 
families of sets {RLI = {e , R 2 ,  . . . , I  and CR: = {Ri  , R i  , . . . 3 .  
ing of D into the sets {&] , {RkI is completed, the optimal control for the original 
problem (1) - (5) is known. Suppose, for example, that the initial state xo belongs to 
a set R i  c {R',] , k 2  2.  The optimal control, during the time interval, to 5 t 5 tk , when 
x(t) cR;, can be cnosen as any admissible control for which C(x(t) 5 C(x0) and 
x(tk)E'3RA for some Rd c {R: 3 . The existence of at least  one such control follows from 
the definition of the Ro type sets. Upon entering the neighboring set Rd , the continua- 
tion of tne optimal control is determined by solving the appropriate, Mayer typc, 
variational problem (12) - (16) where the "terminal manifold" is taken as the boundaries 
of the immediately adjoining sets of the Ro type. In this way, the state x(t) progresses 
alternately and optimally through the sets of the Ro and R, type and eventually reaches 
the original terminal manifold 3. 

When the partition- 

2 .4  GENERATION OF CHEBYSHEV MINLMAX OPTIMAL TRAJECTORIES BY 
THE BACKWARD-TIME FLOODING TECHNIQUE 

The set & is characterized by the fact that, at each state x E eo , there exists at 
least  one admissible control 4 E U such that 

Thus,  in backward-time" 7 = T-t, { 7 2 0) ,one can always find, at each xc I<; , at 
least one control such that 

Evidently, any state x r D  which can be reached from x(T = 0) rJ  by an 
admissible backward-time trajectory x( 7 ) satisfying (21) identically must belong 
to the set  Rh . Moreover, from the definition of RA it is concluded that each state 
x € R i  must be "reachable" along at least one such backward-time trajectory x( 7 ). 

Thus, the set Rk is the largest  set of states x which can be reached, from 
x( 7 = 0) C 9 , along solution trajectories x( 7 )  of the system 
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where the control;( 7 )  is subject to the special constraint 

;( 7) € @(X) Y 7 ' 0 ,  X&O 

and the state dependent set G c U  is defined by 

N 

U(X) = {u€Ul ( 'JC(X),F(X,U))C 0 I (24) 

From this reachable set point of view, the total boundary aRk of go is composed 
in genera1,of subsets characterized by one or the other of the following three 
conditions : 

(i) Some subsets of a R i  may be built up from manifolds of trajectories 
of (22) which are generated by boundary controls3x( 7 )  c: d c ( x ) .  

(ii) Some subsets of a@o may coincide with the boundary of the 
controllable set D in which case trajectories x( 7) of (22) - (24) 
approach dRA only as T-.tco . 

(iii) Some subsets of a&o may consist of states x,  reached along 
trajectories of (22), from which the set  E(x) first becomes empty. 

It is clear that ago is traversed by C-minimax optimal trajectories only in the 
case of condition (iii). 

On the boundary of ko , the value function is given by 

Therefore,  in the course of solving the conventional Mayer-type Problem M 
in  the set R', , it can be shown that the values of the corresponding Lagrange- 
Pontryagin multipliers (pl(t), . . . ,p,(t)) = p(t), at t = tl , are given by (see 111 

N 

It should be noted that U(x) is a closed, but not necessarily convex, set. 3 
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Suppose that xi' c is a state, reached along a C-minimax optimal trajectory 
x( 7 )  of (22) - (24), from which the set z(x) first becomes empty Leg. condition 
(iii) above] . The continuation of the C-minimax optimal trajectory x( 7 )  across  
an', into the region R', is determined by solving Problem M,  in backward-time, 
starting at the state x3'€ For this purpose it is necessary to solve the set 
of 2n Euler-Pntryagin canonical equations 

where y(x ,p)  is determined by the Maximum Principle 

y(x, p) = a rg  max ( p, ~ ( x ,  u)) 
U€ u 

and where the first integral 

is satisfied identically in 7. Equations (26) and the known value of xg effectively 
determine the backward-time initial conditions for (27) so that, in principlc, thc 
continuation of the C-minimax optimal trajectory x( 7) , through the set I<: , 
can be affected.4 According to the definition of the set Rlrn , the continuation of 
a C-minimax optimal trajectory x( 7 ) through €& must be stopped the first time a 
state x is reached where any further continuation will result in the value of 
C (x( 7 ) )  exceeding its initial value C (x*)=C(x(t 1)) . Each state x deterinincd in this manner 
is a boundary point for the set Ri . The further backward-time continuation of the 
C-minimax optimal trajectory x( 7 )  from x€Rk into the set Rg is carried out by 
the same technique used above for the set & . In this way, the trajectory x( 7 )  
can be continued through the sets , RZ , Rg , R: , . . . and so on. 

This  procedure for  generating C-minimax optimal trajectories has been 

4The presence of singular 
difiiculties in integrating 
more detail in c21. 

solutions (to Problem M) can lead to certain technical 
(27) through the sct R', . This subject is discussed in 
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successfully used in a variety of more conventional optimization problems where 
it is commonly known as "backward-time flooding from the terminal  manifold^^ . 
The method is numerical in nature and is therefore primarily useful in obtaining 
specific "open-loopl' optimal controls uo = uO(t;xo). However, in some cases, for 
example where the optimal control is of the bang-bang type, the method can be 
used to monitor the switching function and thereby numerically identify points on 
the optimal switching surfaces in the state space. In this way, important informa- 
tion about the optimal control law uo= uo(x) can be obtained. 

This procedure is particularly attractive for C-minimax optimal control 
problems because ,as shown above,it provides a systematic method5 for numcrically 
identifying points on the boundaries of the sets R& , Rg , . . . and R: , RZ , . . . . 
Moreover, the C-minimax optimal control in  the sets  R: , RZ , . . . is quite often 
of the bang-bang type and therefore points on the optimal switching surfaces in 
{Rd] can be identified. 

A mechanization of the C-minimax backward-time flooding procedure 
described above requires four essential elements 

A device for setting initial conditions and integrating the system 
differential equations and canonical equations in backward-time. 

A device for generating allowable control functions. 

A device for systematically selecting initial conditions xo c 7 so 
that ?(and E") is flooded with a sufficiently dense covering of 
optimal trajectories. 

A means for monitoring and recording certain properties of the 
solutions x( 7) , p( 7 )  , and re-setting the integration devicc. 

A general block diagram for the mechanization of such a backward-time flooding 
procedure is described in the next section. 

2 .5  AN ALGORITHM FOR THE MACHINE SOLUTION O F  A CLASS OF 
CHEBYSHEV MINIMAX OPTIMAL CONTROL PROBLEMS 

In the previous section, a procedure was described for generating points on the 
boundaries of the sets {Rb] and CRi] by systematic backward-time integration of 
the system and canonical equations. In the present section, a general block 
diagram for mechanizing this algorithm is proposed. This block diagram can be 
physically realized by either analog, digital , or hybrid (analog-digital) computing 
equipment. One possible hybrid realization wil l  be described in the next section. 

5 
Cases in which T -- may require spccial treatment (see [ l l  ). 

11 



The general sequence of operations required for the backward-time 
generation of a family of C-minimax optimal trajectories from 3 can be 
summarized as follows: 

Algorithm 

1. 

2. 

3 .  

4. 

5 .  

6. 

7. 

8. 

9. 

10. 

Select an arbitrary initial state xo € 3 and set xo as initial condition 
on the system (22). The value of x € 3 might be chosen, for  
example, by some deterministic o r  random selection scheme. 0 

Generate the set t ( x ) ,  defined by (24) , and continuously select  values 
G f rom ?(x) [eg. :€ c(x)] in some random-like manner. 

Begin integration of the system equations (22) (starting at xo  €7) 
using the values of z ( T )  €t(x(T))obtained in step (2). 

Continue the integration in s tep  (3) until a state x3' (7 ) is reached 
where set "v(x( 7 ) )  first becomes empty. When x3'( 7 )  is reached, 
the boundary of go has been penetrated by an infinitesimal amount. 
At that event, place the integrating system for (22) in the hold mode 
and record and/or store the following data: value of xi', value of C(xi'). 

Compute initial conditions (x(tl), p( t j )  for the canonical equations (27) 
by using (26) with x(tl) = x" . Note that W(x) is a known function of x. 

Generate the function y = y(x,p) according to the rule (28). 

Start  integration of the canonical equations (27) using initial conditions 
from step (5) and the function y(x(  T ) , p (  7)) from step (6) .  Record 
x( 7) and y(x( T ) , p (  7)) as desired. 

Monitor the value of C (  x( 7 ) )  along solutions of the canonical equations 
(27) and continuously compare C(x( 7 ) )  with the stored valuc of C(xi'). 
Note that the sign of dC (x( 7 )) /dT should become negative when 
integration of the canonical equations, into the set It', , first begins. 
The sign may o r  may not change thereafter. 

Continue integration of the canonical equations until a state x( 7) Z- z 
is reached where C(x (7 ) )  first exceeds C(x"). When 2 is reached, 
the boundary of &m has been penetrated by an infinitesimal amount. 
At that event, place the integrating system for (27) in the hold mode 
and record and/or store the value of E. 

Set E as initial condition on the system equations (22) and begin 
integration of (22) using z( 7) values generated by step (2). Note that 
the set e ( x )  will not be empty at x = Z. 

12 



11. Repeat steps (4) - (10) of the algorithm to determine points 
x3$, x ~ ~ ~ .  . . and 9 , E3, . . . , on the boundaries of Rg , Ro . . . and 
R: , R, . . . respectively. 

3 

3 

12. When the one continuous trajectory x( 7 )  , generated by this procedure, 
has been continued sufficiently far away from 7 , interrupt the 
integration in progress and return to step (1) to begin generation of 
a second trajectory x( 7 ) .  Repeat this procedure until a suf€icicntly 
dense set of trajectories x( 7) has been obtained. 

The information generated by this algorithm consists of: (i) a finite collection of 
points x on the boundaries of the sets RA , Rg , . . . and R i  , R: , . . . , (ii) a family 
of C-minimax optimal trajectories, and the corresponding open loop control 
y ( x ( T ) , p ( T ) ) ,  T 2  0 , for the s e t s R k ,  RZ , ... . 

A general block diagram fo r  the mechanization of this algorithm is shown 
in Figure 1. It should be noted that with the aid of a control gate G, the integration 
device F performs the integration for both equation (22) and the first of equation 
(27). The integrating devices F and P shown in Figure 1 can be realized by 
electronic analog computer integrating elements o r ,  alternatively, by a digital 
computer numerical integration program. The device labeled l fU(x)  computerTf 
accepts the vector function x( 7 )  as an input and continuously generates a time 
varying rtsetll output consisting of all values of the real variablc u which satisfy (24). 

,-d 

The generated set c( x( 7 )) is continuously monitored by the E-detector which 
places the F integrator in a momentary hold mode, operates the control gate G, 
and subsequently starts both F and P integrators, when c ( x (  7 ) )  first becomes 
empty. The I1T( 7 ) random selector" continuously selects,  in some random-like 
manner, a sequence of values from the generated set "vx( 7 ) ) .  

The control gate G selects the input u to the integrator F to bc either 
u( 7 )  = r( 7) o r  u( 7 )  = y (  x( T),p(  7 ) )  according to the gate command signals 
received from the E-detector and cornparitor K. The scalar function y (x( T), p( 7 ) )  
is generated by performing purely algebraic operations on the 2n scalar quantities 
( x ~ ( T ) ,  . . . , x , ( T ) ; ~ ~ ( T ) ,  . . . , pn( 7))aS prescribed by equation (2s). 

At each successive point x*c a& , i = 1, 2 ,  . . . , where the set fi( x( 7 ) )  
first becomes empty, the corresponding value of C(x") is computed and stored 
by the sample-hold computer S. This  stored (constant) value is then continuously 
compared (in comparitor K) with the time-varying value of C(x( 7 ) )  , x( 7 )  € 1%; , 
as (27) is integrated through the adjoining set R', . 

The maximum interval of time allowed for the prolongation of a backward- 
time trajectory x( 7 )  can be controlled either directly (by clocks etc.) o r  indirectly 
(by limiting, say,  the maximum value of the norm 1 )  x( 7 )  ( 1  ). In either case, when 
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Figure 1. General Block Diagram of the Proposed Algorithm. 
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the limit has been reached, the integration process is interrupted and the 
computation procedure is returned to step #1 of the algorithm. 

A hybrid analog computer realization of this algorithm is described and 
illustrated in the next section. 

2 . 6  A HYBRID ANALOG COMPUTER REALIZATION OF THE ALGORITHM 

1 The general algorithm described in Section 5 consists essentially of alternating 
integration between two systems of ordinary differential equations with the output 
of one system providing the initial condition data for the other system. Computa- 
tions of this type are particularly suited for mechanization on a nybrid electronic 
analog computer. In this section a detailed circuit diagram is given lor one such 
hybrid analog computer mechanization. 

A hybrid electronic analog computer is characterized by the ability to 
logically control the operation mode of its electronic integrators and other 
standard analog components. By this means, a hybrid computer circuit can be 
so designed to automatically start and stop the analog computation, u p d a t e  and 
re-set integrator initial conditions, place the analog computation in llholdT1 mode, 
perform circuit switching operations , sample and s tore  selected signal values , 
etc. according to logic signals generated within the computer circuit itself. 
Leg. in closed-loop (bootstrap) fashion] . 

Thus the automatically controlled integrating devices F and P shown in 
Figure 1 can be physically realized by standard programming of integrating and 
summing amplifiers on a hybrid analog computer. The functions C(x), y (x ,p)  and 
p(t1) can likewise be realized by standard analog "algebraic function generation" 
schemes using ordinary diode function generators, comparitors, resolvers ,  etc. 
The sampling and storage of successive values of C(x") is accomplished by means 
of a logically activated analog "track and hold'' (T/H) device--a packaged component 
which is standard equipment on most hybrid computer systems. This component 
consists essentially of a single high gain integrator with a logically controlled 
"hold relay" as shown in Figure 2. In operation, the output of the T/H unit 

T L*-4 I I i  K 
I 
I 
I 

I >> 10 

Figure 2. Essential Elements of a n  Analog "Track and Hold'? Device 
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essentially equals the input as long as the logic command signal corresponds to 
"track" (hold relay closed). 

When the logic command signal changes to "hold" , the hold relay of the high 
gain integrator opens and the instantaneous value of the output, at that particular 
moment, is lffrozen" (held constant)--even though the input continues to vary 
with time. 

The continuoub comparison of C(x( T))and C(x39 i s  accomplished by a standard 
hybrid analog "logic cornparitor" device which accepts the signals C (x( T ) ) and C(x") 
a s  inputs and generates a binary logic output signal according as C( x( 7 ) )  'C(x") o r  
C(x (  7 ) ) >  C(x9.  This logic output signal, in turn, serves  as a command signal to 
logically control the P integrator circuit, the control gate G, and the central 
recorder R .  

The control gate G can be physically realized by means of a standard hybrid 
analog component known as a logically con:xolled "latching relay" . This device is 
essentially a switch (either mechanical or solid state) which transmits one or  the 
otner of the two input signals ';;<t), o r  y (x( 7 )  , p (  7)) according to the two logic 
commands received from the E-detector and the comparitor K. Tne position of the 
switch is "latchedf1 after each transition so that the logic command which initiated 
the transition, say from the E-detector , cannot re-activate the switch until thc logic 
command from the comparitor K has effected a transition--and vice versa .  

The non-standard computing operations in the proposed hybrid analog 
mechanization consist of (i) the hu(x) set  computer, (ii) the E-detector, (iii) the 
u( T)€C(x( T ) )  control selector and (iv) the initial condition x(to) € 3 gencrator for the 
F-integ-rator . Components whieh realize these operations require special design 
considerations. One concrete method for constructing these components is described, 
in  detail , below. 

n-vector x as an input and continuously generate, as an output, the instantaneous 
set of all values of the real variable u which simultaneously satisfy the two 
r e s tr ic t i ons 

I- 

The device which computes the set c(x) must accept the continuously varying 

U € U  (3 1) 

where V C( . ), and F( . , . ) are known vector functions and U is a known, N compact, 
convcx s u l J s e t  of the real line. The device which computes ;( T ) €  U(x( 7 ) )  must,  i n  
turn,  continuously select values from the continuously varying set G( x( 7 ) )  in some 
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random-like manner. In order to realize these two operations, the following scheme 
was developed. 

Let U (7) be an externally generated, continuous scanning signal which ranges 
over all values in the set C7 (7) c U in some random-like (and semi-periodic) manner. 
For example, suppose 

In this case U( 7) might be chosen6 as, say, 

U( 7) = sat [7'/(7) + A sin W 7 1 

where 7)( 7) is white noise and A is an appropriately chosen constant. 
typical plot of (33) is shown in Figure 3 .  

A 

Figure 3 .  Typical Plot of Equation (33). 

6 
The function sat (y) is defined as: 

y: if1d 
sgn y: i f  l y l >  1 

sat (y) = 

(33) 

The function A sin Ut in (33) can be replaced by any other appropriate periodic 
function such as a triangular wave, a saw tooth wave, etc. 

7 
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Now, let  the scanning signal U( 7 )  and the n-vector x( 7) be the inputs to an ordinary 
algebraic function generator which computes 

It is clear that each value 0 = U(7 ; x( 7 ) )  which makes (34) non-positive is an 
admissible value for  u( 7 ) .  On the other hand, any value of 0 which makes (34) 
positive is not an admissible value of u( 7 ) .  Thus, as long as the continuously 
varying input pair (U( 7 )  ,x( 7 ) )  generate a non-positive value for the function (34) 
the semi-random scanning signal U( 7 )  can be used as the desired control 
O (  7 )  = u( 7). Whenever (34) becomes positive, at some state x( T ) ,  the process 
which generates the continuous signal 0 ( 7 )  must somehow "skip overf'  the set of 
values of (3 which makes (34) positive and ttjuniptf to some other set of (3 which 
does make (34) non-positive. In practice, this process can be closely approximated 
by massive augmentation of the (nominal) a( 7) scanning frequency whenever (34) 
becomes positive. For example, if (3( 7 )  is generated by (33),  then one could 
effectively "skip over" the values of (5 which makes (34) positive by simply increasing 
the value of W by a large factor (say, 1000) whenever (34) becomes positive. In this 
way, the scanning signal U( 7 )  effectively jumps (actually experiences a very large,  
but finite, derivative) whenever (34) becomes positive. If the relative magnitudes 
of the constant A and the nominal ttamplitudetl N of r]( 7 )  are chosen appropriately8 
this process will always resul t  in (3( 7 )  tfjumpingtt9 to some new value which does 
make (34) non-positive--provided that the set E( x( 7 ) )  has not become exhausted 
(empty). If %( x( T )) has become empty, the scanning signal U ( 7 )  will experience 
a continuous, very high frequency, oscillation across  the set U. The continued 
presence of this high frequency oscillation can be effectively used to detect the 
condition that c(x) is empty--the E-detection operation. For  instance, if an 
elapsed-time counter is activatedlO each time the function (34) becomes positive, 
the condition that: l'elapsed-timetl > "one period of the high frequency scan ratel' 
will occur if and only if G(x(7) )  is empty. 
can be generated which will activate the control gate G and the F-integrator mode 
control whenever the set c( x( 7 ) )  becomes empty. 

By this means, E-detector logic signals 

8The selection of appropriate values for A and N is discussed in the sequel. 

'If the set E( x( 7 ) )  is not empty, (and for appropriate choices of A and N) this 
jump will require not more than one period of the 'high frequency scan rate, in 
general. 

"It is assumed that the counter is automatically reset to zero whenever (34) 
becomes non-positive. 
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The scheme described above generates a random-like signal (T( 7) which can 
be used as the desired control ?( 7) a s  long as (34) is non-positive. Moreover , 
whenever (T( T 3 t )  causes (34) to become positive, the scheme rapidly changes (T( 7) 
to some other admissible value 0 (7 "+ 6 T ) which makes (34) again non-positive. 
During the short  transition (jump) time 6 T the value of u( 7'), 7 " 5  7's 74k + 6 7 , 
should be chosen to satisfy (30). To accomplish this end, the integrator F can be 
put in momentary rrhold'r mode during the short interval 67 o r ,  alternatively, the 
value of T( 7') can simply be held constant at the value '3( 7") during the interval 6 7. 
This latter alternative, which will be used in the sequel, satisfies (30) only in an 
approximate sense, the goodness of the approximation depending on the rate  oi  
change of the left side of (30) at the time 7 = 7". This ratc can be effectively 
controlled by the overall time-scaling of the analog computation. 

I 

Noise 
Generator Rate 

i 

The procedure N outlined above forms a practical basis for the efficient 
realization of the U(x) computer, the E-detector, and the u( 7 )  E%(x( 7)) control 
selector. One method for the physical implementation of these devices is 
described below. 

The generation of the scanning signal O( 7) , on a hybrid analog computer, can 
be conveniently accomplished by implementing an analog, frequency modulated, 
triangular wave free-running multivibrator circuit with white noise added to the 
input. The multi-vibrator output signal, in  this case,  has the form of a pure 
triangular (periodic) function superposed with an integrated white noise signal. 
A simple analog arrangement which realizes this multi-vibrator is  shown in 
Figure 4. 

1 I-A ] 

Figure 4. Analog Realization of a Free-Running Multi-Vibrator Circuit. 

In Figure 4, the white noise q( 7 )  is assumed to have a rtamplitudc" N which 
satisfies the inequality 
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A N <  - 
2 (3 5 )  

where + A is the binary output of the hysteresis relay element located in the 
feedback path of the integrator. By this means, the sign of the derivative 
d a (  T)/dTis always opposite" to the sign of the output of the relay. The "trigger- 
levelsI7 cz and 6 of the hysteresis relay are chosen to coincide with the upper and 
lower bounds, respectively, of the compact, convex set U. In this way, the output 
ff ( 7 )  of the integrator is constrained to always satisfy the inequality 

Moreover, since the sign of 6( 7 )  is always opposite the sign of the relay output 
A), the function ff ( 7 )  will continually oscillate, between the values cz and 6 ,  

in a semi-periodic and random-like manner. The nominal llfrequencyfl of this 
oscillation is controlled by the effective gain of the relay output signal through 
the integrator. Fo r  the circuit shown in Figure 4 this gain has been set at unity 
(nominal = rate switch open). The closing of the rate switch shown in Figure 4 
permits the effective integrator gain of the relay output signal to be increased 
by a factor of 1000 when an appropriate "switch close11 logic command signal is 
received. In this way, the derivative 6 ( T )  is increased to a comparitively large 
value and the function ff ( 7 )  begins to oscillate at a high lTfrequencyll. This high 
frequency mode is continued until the rate switch is re-opened by an appropriate 
logic command signal. 

The output a( 7) of the integrator in Figure 4 is fed into the input of an analog 
"track and hold" device which is logically controlled by the sign of expression (34). 
This  T/H device transmits (tracks) a( 7) as long as expression (34) is non-positive 
and holds a( 7)  E (5 (T*) when (34) becomes positive. 

The sign of expression (34) is determined by ordinary analog function 
generation of (VC(x) , F(x, ff) ) , where x is obtained from the output of integrator 
F. The output of this function generator is used to generate logic command signals 
for the rate switch and the T/H device shown in Figure 4. In particular, when 
(VC(x), F(x, 0)) 5 0 the rate switch is open and the T/H device is in  the "tracking" 
mode. When (VC(x), F(x, a)) > 0 the rate  switch is closed and the T/H device is 
put into the llholdTt mode. 

llIt is recalled that an ordinary analog integrator has a "built-in1I sign change 
associated with the integration process. 
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The E-detector determines when c(x) is empty by counting the elapsed- 
time while the U( 7) rate switch is closed. The condition that the rate switch 
has remained closed for more than one "period" of the high frequency scanning 
signal implies that (i) U( 7) has effectively ranged over all values b SO( T)%! and 
(ii) no values of O have been found which will make (W(x), F(x, 0)) 0. In this 
event, the set c(x) has become empty and x( 7) €aR', . The E-detector can be 
realized by logically controlling the hold and reset relays of a single (constant) 
input analog integrator whose output drives a logic cornparitor. A circuit which 
realizes this operation is shown in Figure 5 .  

Logic 

Logic 

Command 
--f -- 

Command 

Figure 5. Analog Realization of the E-Detector 

The negative constant -E in Figure 5 represents a constant negative voltage which 
is permanently connected to the integrator input. When the O( 7) ra te  switch is 
open, the logic controlled reset relay r is closed and the logic controlled hold 
relay h is open. Thus, the integrator output voltage in Figure 5 is constantly maintained at 
a zero level. When the a( 7) rate switch closes, the relay r is opened and the 
hold relay h is closed thereby causing the integrator output to increase linearly 
with time 7 at the rate Ek where k is the gain of the integrator. The comparitor 
level v is chosen as: v = Ek A where h represents the established "period" of 
one high frequency a( 7) oscillation. If the O (  7 )  rate switch again re-opens before 
the integrator output exceeds the comparitor level v the comparitor does not 
generate a logic command signal and the integrator relays r and n are returned to 
their original positions. If the integrator output does exceed the comparitor level 
v the comparitor generates a logic command signal which: (i) places integrator F 
in a momentary hold, (ii) shifts the control gate G to the u = y (x,p) position, 
(iii) activates the S/H device for C(x*) and  (iv) starts integrators F and P. In 
addition, the same logic signal can be used to command the recording of various 
problem variables via the central recorder R .  
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i. 

The synthesis of a random varying initial condition vector xo(7)  J,  for the 
F-integrator, can be accomplished by means of a suitably designed analog implicit 
function generator. For  this purpose, the following (apparently original) scheme 
was developed. Let (( 7) be a uniformly bounded, random, differentiable, n-vector 
function generated from some external source, and let z( 7) be an n-vector function 
obtained by solving the system of first order integral equations 

where k >  0 is a real, scalar  constant, and 

It follows from (377, (38) that the vector A( 7) satisfies the differential equation 

Thus,  the scalar function g(A) obeys the first order,  ordinary differential 
equation 

d7 

which can be written as 

It has previously been assumed, [ s e e  Section 3 1 , that Vy(x) exists for all 
x €  D. Now, assume further that the vector VJ(x) is non-null in some full 
dimensional, non-void, neighborhood of the manifoldg(x) = 0. 
''dynamic equilibrium solutions" of the forced first order equation (41), 
corresponding to dy(A ( 7 ) )  = o, are defined by 

In this case the 

d7 
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I equilibrium 

in  a neighborhood of % A )  = 0. The numerator of (42) is always bounded by virtue 
of the previously stated assumptions. Thus, for initial conditions g( X (0)) 
sufficiently small, the dynamic equilibrium condition y(A (7)) E 0 is obtained 
exactly for  (Vy( T ) ) ,  i (7)) E 0 or  6 (7) f 0 and can otherwise be approximated 
arbitrari ly close by choosing the positive scalar k sufficiently large. The 
corresponding randomly varying values of the n-vector X ( 7 ) , obtained in this way, 
can be considered as random initial states X ( 7) = xo ( 7) which satisfy (or closely 
approximate) the constraint xo (7) € 7. 

A block diagram of this random initial condition generation scheme is shown 
in Figure 6. 

Figure 6. Initial Condition x g  €3 Generation Scheme 

A composite hybrid analog circuit for the complete algorithm, using the 
individual components described above, is illustrated in Figure 7. 
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2.7 APPLICATION OF THE C-MINIMAX ALGOliITHM TO A LOAD MINIMIZING 
CONTROL PROBLEM FOR A FIFTH-ORDER MODEL OF THE SATURN 
VEHICLE 

The general algorithm descirbed above can be used to study a variety of C-minimax 
optimization problems. In this section, the basic equations are derived for one 
particular application of the algorithm--the study of a certain llload minimizing' 
control system for the NASA Saturn Launch Vehicle. The dynarnical model chosen 
for the present study is the standard fourth-order Saturn model augmented with one 
additional degree of freedom to permit the accommodation of certain physical 
constraints; namely, the gimble angle constraint, finite gimble angle vlslewingff ra te  
constraint and the fact that the load to be minimized (the maximum bending moment) 
is an explicit function of the gimble angle. 

The state equations (3) for the standard (linearized) fourth-order Saturn 
model can be written as 

0 

f2 

0 

f4 

where the state variables ( x ~ ,  xz , x,, x q )  are defined as 

XI = attitude angle e r ror  (0) 

xz = attitude angle error  ra te  ( $ )  

xj = lateral drift of c.g. (2) 

= rate of lateral drift of c.g. (i) 

and the coefficients all , f i  , bi a r e  given ( in  usual NASA symbols) as 

(43) 

(44) 

bq = M& 
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The scalar control b(t) is the engine gimble angle, which is subject to the explicit 
inequality constraint I &t)l P,,, , and the disturbance w(t) is a representation of the 
external wind force (usual NASA symbol a"). In practice, the gimble angle rate 
d@/dt is also bounded so that p cannot be changed instantaneously. In order to 
accommodate these constraints on the gimble angle and the gimble slewing rate the 
following additional first order dynamical equation is introduced 

In (45), the constant ko>O is a measure of the time-constant of the gimble position- 
ing mechanism and u(t) represents the actual (low power level) command signal 
(usually electrical) which activates the gimble positioning mechanism. It is 
assumed that admissible values of u are constrained by the inequality 1 u(t)\ 
and the function u(t) can experience simple jump discontinuities. Defining the 
new state variable x5 = (-3 , the expression (45) can be written as 

pmax 

which can be appended to the original set of equations (43). In this way, the 
gimble angle constraint, I p (  
an  explicit inequality constraint into the optimization problem--provided , of 
course,  that the initial condition restriction I x,(to) I Lpmax is satisfied. 

, is always naturally satisfied without introducing 

The structural  bending moment M y  induced on the vehicle by the engine 
thrust  and the aerodynamic (wind) loads , can be (approximately) represeiitcd by 
the expression 12 

M(x,w(t)) = (c,x)+ M h  w(t) (47) 

where c = (cl, . . . , c5) is a constant 5-vector with components defined by (usual 
NASA symbols) 

l2 (x, y)  denotes the scalar product of the vectors x and y ,  
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The design of a practical and reliable gimble angle control system is a 
rather involved and complicated problem, in general, owing to the presence of a 
variety of (often conflicting) performance criteria and physical and economic 
constraints. For this reason, only a very simplified version of this problem will 
be considered here.  

One performance criterion which has been of particular concern to NASA 
control engineers is the maximum bending moment criterion. In this case, the 
primary factor of concern is that the maximum bending moment induced in the 
vehicle structure, during the interval of control, should be as small as possible-- 
consistant with the other flight requirements. For example, the problem may be 
stated as follows. Let the state x = ( X I ,  . . . , xs) have the initial value x(to) = xo  
(xo might be zero) and suppose that the external wind disturbance w(t) is a known 
function of time. Suppose, further, that the state x(t) must satisfy the "terminal 
conditiont113 g( x(t)) = 0 at some future time t = T. Then among the set of all 
gimble angle positioning functions fi  = &t) t o  g t  ST which satisfy the given physical 
constraints and boundary conditions findl'the (a) function 6 = P"(t) which 
minimizes the maximum (absolute) value of the bending moment M(  x(t), w(t)) , to  t CT. 

This non-autonomous problem (t appears explicitly in F(. , - )  and T is fixed) 
can be studied within the framework of the autonomous C-minimax theory developed 
in  [ 1 1 by defining15 still another additional state variable 

X6 = t  (49) 

where 

xg(t0) = t o  , 

and appending the additional differential equation 

X6 = 1 

I3Recall that the components xl, a, Q, x?; of the state vector represent attitude 
and lateral  drift "errorsll (and their rates) with rcspect to the desired nominal 
flight path. These e r r o r s  must be brought within certain tolerance limits as 
t-+T , in general. 

14Alternatively, one could seek the function u(t) delined in equation (45). 

(51) 
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to the set (43). By this device, the given, explicit, time function w(t) is made to 
. appear as a function of the state variable x6 and the constraint t = T is cast  into 
the form of a state variable terminal condition x,(T) = T where T is no longer 
explicitly I f f  ixed" . 

An alternative, and sli htly simpler,  version of the above problem is obtained 
by assuming that the interval56 of control [ th,Tl begins after the disturbance w(t) 
has subsided but before the e r r o r s  and er ror  rates xl(t), xz(t), a(t) ,  &(t) have been 
brought to zero. This is equivalent to the special case where w(t) E 0 and the initial 
conditions xi (to), i = 1, . . . , 4 ,  a r e  not all zero. A further simplification results 
if the original terminal time T is assumed to be not explicitly fixed. Under these 
two assumptions there is no need to augment the state space with the additional 
coordinate x6. 

The alternative (simplified) problem described above is particularly suited 
for illustrating practical application of the C-minimax algorithm developed herein. 
The basic equations for  studying this problem, via the algorithm, will now be 
derived. 

The simplified problem described above can be precisely stated as follows: 

Statement of a Simplified Saturn Minimax Bending Moment Problem 

17 Find a scalar control u(t) which minimizes the functional 

subject to the restrictions 

;r = x x  + u(t)T (53)  

x@o) = x o  ; lx,(to)l %ax (54) 
4 

1 
C x?(T) - r2 = 0 (T - not restricted,  r > 0) (55) 

16That is, the particular sub-interval during which the problem of minimum 
bending moment control is considered. Of course, the vehicle is actually 
"controlledll at all times of powered flight. 

17The expression for I MI is replaced by Ma to permit continuous differentiation of 
the performance index. [See footnote #5 of [ 11 1 . 
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where 

c 

0 1 0  

a, 0 0 

0 0 0  

0 0 

0 0 0  - 

N 

A =  

0 

a, 

1 

a44 

0 

the constants k, aa, %I, h, CI,  . . . , c5 are given by (44), (48) and 

where fa, f4, ko  are given by (44) and (45). 

The terminal manifold g(x) has been chosen here as the 4-dimensional 
surface of the hypercylinder / l Q l l =  r , [x A = (XI, . . . , &)I, in the 5-dimensional 

state space. l8 It is assumed, therefore, that the initial state xo  lies outsidc of 
this hypercylinder and T is defined, implicitly, a s  the first time t 2 t o  which satisfies 
4 2  2 Cxi(t)  = r  . 
1 

Before discussing the programming of a numerical hybrid analog algorithm 
for  this particular fifth-order problem it is instructive to consider some oi  thc 
general analytical and geometric properties of the sought solution. For this 
purpose, the order n of the system will be left as an indeterminate. 

The set Rh2yfor  this problem is the largest set of states x with the following 
control u(t) , to ' a t  . -T7 property. For each state xOc RA there exists an 

I8The longitudinal axis 01 this hyprcylindcr coincidcs with the x5 axis o f  thc. state spncc:. 

"Here, admissible means that u(t) is piecewise continuous with valucs belonging to 
the compact, convex set U = cu: I u (  spaax 3 .  
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such that the corresponding solution of (S),  which starts at x 0 €Rk , satisfies the 
weak inequality ( ‘denotes transpose). 

d/dt[* (c,x(t) >21 = (x(t), cc%x(t)) + u(t) (x(t), cc’a 5 0, to 5 t ST (59) 

identically, and the boundary condition 

for some T2 t o .  Thus, the set R& is a connected subset of the associated set @ 
defined as 

The admissible control value u which minimizes d(c ,  x(t))  2/dt is readily 
computed to be 

N 

a r g  min I: (x, cc‘Xx) + u (x, cc’3 I = -sgn ( c ,  f >  CB.,, sgn (c, x> I 
I U /  ‘Smax 

provided that 

and 

< c , 3  f 0 

(c, x(t) ) f o for some positive interval of time. 

(63)  

(64) 

Thus,  if  (63)  and (64) are satisfied, the set 63RA can be described in the alterna- 
tive, and more explicit, form 
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If (c , f )  = 0, the first time derivative of (c,x(t));? is not an explicit function20 
of the control u(t). In this case, 0 is defined by 

It follows that, for this particular case, the boundary a @  of 0 (recall that a @  
contains some subsets of ?@, in general) consists of the two (generally distinct) 
(n-1)-dimensional hyperplanes HI, HZ defined by 

If (c,  x(t) ) 0 is satisfied for some positive interval of t ime, by some 
appropriate choice of admissible control u(t) (not necessarily u(t) E 0), then x(t) 
is forcibly restricted to the hyperplane H1 and (59) is satisfied in the wcak sense. 
This  condition is usually realizable, in some proper, convex, subset L c H l  b 
choosing u(t) to be a linear function of x(t) of the form u(t) = ( p  ,x(t) ) where2' p 
is a constant n-vector. Further discussions of this topic are given in [I. 3 1 and 
c 4 1 . If the identity (c,  x(t) ) f 0 is satisfied for the special choice of zero control, 
u(t) 5 0,  then x(t) lies in some k-dimensional A-invariant subspace (k 511) of the 
n-dimensional state space. For  example, x(t) may lie along a one-dimensionat 
real column eigenvector of A ,  a real two-dimensional eigenplane of A ,  etc. I€ 
(c ,  x(t) ) = 0 is satisfied for every x HI (with u(t) = 0) then H1 is an  invariant 
hyperplane23#L of Ti and the N set  L mentioned above equals H I .  Moreovcr, when H I  
is an invariant hyperplane of A,  i t  can be shown, c5 1 , that 

2 1  

N 

N N 

'Some other,  higher order ,  derivatives will be explicit functions of u, in gcncral. 

21The required boundary condition (60) might not be satisfied, however. 

22 
Portions of the boundary of the set LCHl are  defined by[ ()I ,x>l = @,=$see 3 1). 

23A general discussion of this subject is given in L5 1 ; see also L2 1 . 
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for some real eigenvalue X of A. It follows that in this special case HI = Ha , 
provided24 that X # 0. 

A t  each state x € ~ o  the value of the C-minimax optimal control uo = K(x) 
is chosen 25 from the non-void state dependent set c(x) defined by 

It is remarked that in the case of the special condition ( c , g  = 0 (eg. &Hl) 
described above, the control set c (x )  is non-void only in the closed set of states 
9 defined by (66). Moreover, within the set 0, the control set 5 
special case) coincides with the original control set U = c(x) = tu 
From (11) the value function V(x), in R k ,  is given by 

The auxilary Problem M ,  for this particular example, can be stated as 
follows: Find an admissible control u(t) which minimizes the functional 

subject to the differential equation constraint (53) and the restrictions 

24Note that A -  0 implies (c,X) = 0 which implies HZ - E”(II1 Ha) whcrc E ”  is 
thc sys tem state spacc. In this cnsc, if E11 -iff1 , thcn cvcry hyperp1:tne 
parallel  t o 8 1  , i s  also an illvariant hypcrplane €or thc solutions of < - x x ,  L 5 1 . 
It should be s t ressed that, in general, not cvcry value u€G(x) is optimal lor a 
given state x F Rk . 

25 - 
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according to the Euler-Pontryagin necessary conditions for this Problem M, the 
optimal control u" = ~ ( x , p )  is given by 

y(x,p)=arg max (P,XX + ufn) (76) 
lul *Pm*x 

where the two n-vectors x(t) , p(t) obey the differential (canonical) equations 

4 = x x  + y(x,p)T 

-1 b = - A p  

and satisfy the two-point boundary conditions 

where V i s  a rea l ,  scalar constant. It follows that the optimal control for Problem 
M is of the so-called "bang-bang' type 

provided that the sinffular condition 

does - not occur for some positive interval of time along a non-trival solution of 
(78). If the singular condition (82) does occur for some positive interval of time then 
(81) fails to give any information about the optimal control. In this case,  special 
(singular solution) techniques must be used to study the problem E2 1 . It is easily 
verified that the identical vanishing of (p(t) ,T),( p(t) f O),implies that the sequence of 
vectors 
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f ,  Af, A f ,  . . . , 

a r e  - not linearly independent. This  latter condition is recognized as the well- 
known necessary and sufficient condition that (53) be “not completely controllableff 
in the sense of Kalman [ 6  1. Thus, if (53) is assumed to be completely controllable 
then singular solutions to Problem M will not occur and the optimal control for 
Problem M will always be a bang-bang type function well defined26 by (81). 

The canonical equations (77) - (78), with y(x,p)  given by (81), are a set 
of 2n piecewise linear (constant coefficient) ordinary differential equations which 
(in principal) can be analytically solved by straight forward application of the 
fundamental matrix technique63 ,#TI. By this means , the bang-bang switching 
surface [the set of points [XI where (p, f )  experiences (isolated) zeros] can be 
identified in the subset D - Rk of the system state space. Moreover, along the 
(optimal) solutions of the canonical equations (77) , (78) , thc lirst integi-a1 

is naturally satisfied and can be used to obtain additional information about the 
solution to Problem M. In particular, this result provides an additional 
relationship between ( p(t 0) , x(t 0) ) and (p(t1) , x(t1)) . 

The set Rk is determined as the largest  subset of D - I& with the property 
that along each optimal trajectory of Problem M (in Ri) the value of 
(c ,x( t ) j2 ,  toLt<t l ,  never exceeds the value (c,x(tl))”, x(tl)€ an:. In the sct 
Rk , the function V(x) can be written as 

V(x) = * (C,X(tl) >2 

wnere  x(tl) is a function of the initial condition xo(to)€R; . 

‘%t is interesting to note that the set of C-minimax canonical equations (77), ( 7 8 ) ,  with  
y (x ,p)  given by (81), a r e  precisely the same form as thc sct ol canonical cquations 
for  the time-optimal [ 7 ] control problem for , (53) - (56), in the set D - R:. The 
only essential diiference between these two sets of canonical equations is the 
required boundary conditions for p(t1). The relationship between the bang-bang 
switching surfaces  for the C-minimax problem and the time-optimal problem (in the 
set D - Rk) is an interesting area for further research. 



The Mayer-type Problem M described above can be cast ,  alternatively, 
as an equivalent Lagrange (integral-type) optimization problem by defining the 
additional state variable 

In this way, the functional (72) can be written as the time-integral of a "quadratic 
s tate-linear control" function 

where x = (xl, . . . , xn+l), Q is a n  (n+l)x(n+l) constant matrix given by 

and g is the constant (n+l)-vector 

The additional scalar state variable equation for Xn+ 1 is 

kn+l = (x,Qx) + u(t) (x, 9) 

which can 'ne appended to the original set (53). It is noted that (90) is - not linear 
i n  x.  Another alternative format for Problem M is obtained by recalling that 
I (  I , c , x ) !  and (c,x)" have their minimum at the same x. Thus, one could delinc 
the additional state variable x " + ~  in (86) alternatively as 

and the functional (72) could be replaced by the variationally equivalent time 
integral of a 1 7  (piecewise) linear state-linear control" function 
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where 

$ = 6) , h =  (-?-) , r = ( c , g  

and xnfl obeys the state variable equation 

It is observed that, unlike (go), equation (94) is a piecewise linear ordinary 
differential equation. The study of Lagrange variational problems, with piecc- 
wise linear discontinuous integrands of the form (92), represents another 
interesting area for further research. 

The construction of a C-minimax hybrid analog algorithm for the particular 
fifth-order Saturn minimax bending moment problem described above is accomplish - 
ed by straightforward application of the procedure outlined in Section 6.  For this 
purpose, the F and P integrator devices a r e  realized by standard (linear) analog 
programming of summing and integrating amplifiers where 

F(x,u( 7)) = x x  + u( 7 ) F  

It is noted that the right side of (96) is goJ an explicit function of the state x 
o r  the control function y (p, x) . 

The G(x) set computer is realized by means of the special circuit shown 
in Figure 7 where the function (VC(x), F(x, a)) has the form 

( ~ C ( X ) ,  F(x, 0)) = (x, CC'XX) + (J (x, C C ' ~  (97) 

Expression (97) can be generated directly by standard analog non-linear function 
generation schemes. However, such a scheme will require a large amount of 
analog multiplication. Alternatively, thc right side of expression (97) can bc 
re-written in the form 
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s o  that the detection of the inequality 

(VC (x) , F (x, u ) )> 0 

is equivalent to the detection of the condition 

sgn ( c , x > =  sgn C<TiC,X)+ a ( c , 3 1  

which can be accomplished, without the aid of analog multiplication, by the 
simple logic scheme shown in Figure 8. 

Logic --- 

(99) 

Figure 8. Logic Scheme for Detecting the Inequality (99). 

It is remarked that the scheme shown in Figure 8 can be used even when (c,i”, - 0 
in  which case E(x) = U (and therefore U(x) is non-empty) if  and only if  (100) is not 
satisfied. In this  case the separate E-detector circuit shown in  Figure 7 can be 
eliminated. Otherwise, the E-detector and the g( 7 ) E  z( x( 7)) control selector 
for this problem can be realized by implementation of the circuits shown in Figure 
7 .  
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The x o  F yini t ia l  condition circuit for th i s  problem can be realized in the 
manner illustrated in Figure 6. For this purpose, it is necessary to generate the 
scalar expression 

and the 5-vector 

and form the (scalar .vector) product 

I A1 I 

where k is a ftlargeft, positive, scalar constant. The vector variable X (7 )  is 
obtained by subtracting the (vector) integration of (103) f rom the 5-vector 
(externally generated) random variable 6 (7) = ((I( T ) ,  . . . , 5, ( 7 ) )  where ';, ( 7 )  

satisfies the inequality constraint 

In this way, a 5-channel analog feedback circuit is obtained which generates the 
five outputs (XI( T), A.z ( T ) ,  . . . , A, (7)). As explained in Section 6, these five 
variables can be used as "initial values" for the five state variables 
( x l ( T ) ,  . . . , x5(T))E3i f  i (7 )  is sufficiently small and/or k is sufficiently large,  
An analog circuit constructed in this manner is shown in Figure 9. 
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Figure 9. Analog Circuit for Generating Random Initial Conditions xo( T)cY. 

On the boundary of the {R,] regions the "initial condition1' p(tl) for the 
P-integrator is generated by forming the appropriate linear function of x(tl) as 
prescribed in equation (80). Likewise, the control function y(x, p) for Problem 
M,  prescribed by (81), can be generated by driving an analog "ideal relay" 
(output = - + PmaJ with the scalar input (p( T),g--provided that singular solutions 
do not exist. 

The computation of the performance index C(x( 7)) = (c,x( T ) ) ' ,  as 
required by the algorithm, can be performed by straightforward continuous analog 
squaring of the linear expression (c x( T )  ) . Alternatively, one can compute, 
instead of C(x( T ) ) ,  the expression 8(x (  7)) = I (c,x( T ) ) /  since the two functions 
C( . ) and (!?( * )  have their maxima and minima in  common. This latter procedure 
has the advantage that it 
and storage of C(x3')[or 

not require an analog squaring device. The sampling 
is accomplished by a standard analog sample-hold 

(S/H) device as shown in Figure 7. 

The remaining components required by the hybrid-analog algorithm have no 
special configuration for this particular fifth-order example and can be effectively 
instrumented in the manner illustrated in the general circuit of Figure 7. A 
complete circuit of the hybrid-analog algorithm, for this particular example, is 
illustrated in Figure 10. 
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2 . 8  ACCOMMODATION OF EXPLICIT INEQUALITY CONSTRAINTS ON 
SYSTEM STATE VARIABLES 

The principal tasks outlined in the contract for this study included an investigation of 
means for  incorporating explicit state variable inequality constraints in the solution 
of Chebyshev Minimax control problems. This subject was studied from both the 
exact and approximate point of view and several alternative methods of solution were 
developed. 

The explicit state variable inequality constraints considered in this study can 
he represented by the expressions 

i = l ,  ..., m 
t o l t s T  (105) 

where the gi(x), i = 1, . . . , m,  are continuous scalar valued functions of the state 
x. Thus, the particular class of C-minimax control problems with constrained 
state variables considered here can be stated as follows, Find a piecewise 
continuous control u(t) which minimizes the functional (2) subject to the usual 
restrictions (3) - (6) - and the inequalities (105). 

State variable constraints of the type (105) arise naturally in a variety of 
optimization problems and the accommodation of such constraints, in conventional 
Bolza-type optimal control problems, has been a subject of considerable interest 
in recent years.  From those studies, several alternative methods of solution have 
been proposed. These proposed methods can be classified into two main categories: 
(i) exact methods and (ii) approximate methods. The proposed exact methods a r e  
obtained by either suitable modification of the conventional theory for thc Bolza 
problem (eg. modification of the "multiplier rule!?) 8 1 , or  by the introduction of 
certain nonlinear functional transformations [ 9 1 which effectively transform the 
closed set of states, defined by (105), into an equivalent open set which can then be 
studied by the conventional theory. 

The proposed approximate methods of solution c 101 - 121 are based on 
various forms  of the "penalty function" technique introduced by Courant L 131 . 
This technique attempts to indirectly discourage violations of the inequalities (1 05) 
by imposing severe performance penalities (degradation in system performance) 
whenever those inequalities are not satisfied. By this means, if the penalties are 
chosen sufficiently strong, the resulting optimal trajectories will tend to avoid 
violations of the constraints. 

The methods described above for accommodating state variable iiicqual ity 
constraints in conventional (Rolza-type) optimization problcms can be adapted to 
t he  c lass  C-minimax optimization problems considcrcd in thc present study. 
In this section scvcral such methods arc discussed in dctail . 
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2 . 8 . 1  EXACT METHODS - The most natural "exact methodtt for accommodating 
~ inequality constraints of the form (105) appears to be the method which defines and 

identifies the sets CRo3 and CR,] on the particular subset hCDCE" where % is the 
largest  s e t  of states XED with the following property. For  each initial state 
xo&there  exists at least  one admissible control u(t) such that the corresponding 
solution of (3) satisfies (4), (5) and (105). Thus the s e t e i s  the largest  set of states 
x ED which remain controllable to 3 in the presence of the constraints (105). The 
se t  Rh , in this case,  is defined to be the largest se t  of states x 6 which can be 
controlled to the terminal manifold y ( b y  an admissible control) along a trajectory 
which satisfies (105) and 

t o * t s T  

It is remarked that such trajectories may contain one or more subarcs which lie 
on the constraint surfaces defined by the equalities in (105). Moreover some sub- 
sets of the boundary aRk may also lie on one or  more of these constraint surfaces. 
With Rk ED identified, the auxiliary Problem 
follows. Find an admissible control u(t), togtstl ,  which minimizes the functional 
(12) subject to the restrictions 

is defined on the set  D - R& as 

x = F(x,u(t)) 

A 
x(t0) = xo<(D - Ri) 

X(t1) E aG ; tl - unrestricted 

and the state variable inequality constraints 

i = l ,  ..., m 
gt(x(t)) 0 t o  5 t 5 tl (110) 

The se t  R i  is then identified as the largest  set of initial states xoE@ - R1) with 

defined above , the inequality 
the property that along the corresponding solution trajectory of Problem a , 

is satisfied identically. The auxiliary Problem a is recognized as a conventional 
Mayer-type optimization problem with bounded state variables. The exact 
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analytical solution to this problem can be obtained, in principle, by straight- 
forward application of the modified "multiplier rulet' for the Pontryagin Maximum 
Principle as described in Chapter VI  of 8 1 (see also [141 and [15] ) 

The se ts  RE , R: , in$ are identified, as before, by repeating the process 
described above using the boundary of &UR; as the new terminal manifold. Continu- 
ing in the manner, the set 6 can be completely partitioned into the two families of 
se t s  {Rd , {R,) and the 'texact" C-minimax optimal control can be determined for 
each initial state X O ~ .  

The computational algorithm for identifying the set RA , as developed in 
this report ,  can be easily modified to accommodate thc constraints (105). For 
this purpose it is only necessary to re-define the state dependent set  (24) asZ7 

It is remarked that agtate xCD,which satisfies gi(x) = 0 for some i = 1,.  . . , m 
cannot belong to RACD unless the corresponding set  u(x) ,  defined by (1 l a ) ,  is 
non-void. On the other hand, the computational algorithm for identifying the set  
R i  - will require certain, non-minor modifications in order to accommodate the 
constraints (105) owing to the more complex "modified multiplier rule'' which 
must be instrumented for Problem f?. 

An alternative ?texactt' method for solving C-minimax problems with state 
variable constraints of the form (105) consists of introducing the m additional 
state variables X n + l ,  xn+2 , . . . , Xn+m and appending the additional state equations 

where k, is a real, positive constant,to the original se t  (3).  This  augmented state 
problem is then solved by regular C-minimax techniques, ignoring the explicit 
constraints (105), where the boundary conditions for the "states" X n - t l  , . . . , Xntern 

are specified to be 

271f /gi(x) is not continuous, the second inequality in lhc last of (1 12) should bo 
rcplaccd by the condition that uc U docs n&''poinlt' lhc local velocity vector 
l?(x, u) into the region in  which gi(x)iO. 
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It is clear from (113) that the conditions (114) can be satisfied if  and only if  the 
constraints (105) are Satisfied identically. This  alternative method can be 
effectively applied through the computational algorithm developed in Sections 5 
and 6 of the present report. It should be noted, however, that in this case not 
every backward time trajectory generated by the algorithm is optimal, in 
general, owing to the presence of the special boundary conditions (1 14). 

2 . 8 . 2  
seem to be the most natural "approximate" method €or solving C-minimax cwntrol 
problems with state variable constraints of the form (105). For  this purpose, thci 
original performance C(x) in (2) is augmented with an additional (additive) set of 
scalar t e rms  bi(x), i = 1, . . . , m which have a zero (or approximately zero) value 
whenever the corresponding constraints (105) a r e  satisfied and which have a 
relatively large positive value whenever the corresponding constraints are violated. 
Thus, in the ideal case the modified C-minimax performance index 

PENALTY FUNCTION METHODS - The so-called penalty function methods 

C(x) = C(X) + 5 bi(x) (1 15) 
1 

is effectively equal to the original performance index C(x) as long as the constraints 
(105) are not violated. When a violation does occur, the modified erformance 
index is dominated by the te rm fs bi(x) so that, effectively, c ( x )  = E bi(x). 

1 1 

In practice it is desirable to choose the functions bi(x) such that, in the 
neighborhood of the constraint surfaces gi(x) = 0, the value of bi(x) gradually 
increases (from m 0)  as gi(x)-O (gi(x) < 0) and rapidly increases as gi(x) 
exceeds the value of zero. Appropriate choices for the "rate of increase" of 
the t e rms  bi(x) depend upon the amount of penetration of the constraint surfaces 
which can be tolerated and, in general, must be determined by experimcntal (trial 
and e r ro r )  techniques. 

The re  are many admissible functions bi(x) which can be used for this 
purpose. For example one can choose the bi(x) as the two-parameter exprcssion 

U 1 = l ,  2, ..., 
i l l ,  ..., m (116) 

where € 1  is a ''small" positive constant. This positive valucd function, which is 
l e s s  that c i n  value for  gi(x) < (E - 1) , will limit pcnctriition 01 thc constraint 
surface gi(x) = 0 to be - less than ~1 , provided that C(x) is bounded. 
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An alternative choice for bi(x), which has the desirable feature of being 
identically zero in the region gl(x)< 0, outside of a small neighborhood of the 
surface gi(x) = 0, is given by the three-parameter expression 

where ki and € 1  are, respectively, t r larget t  and "small" positive constants. The 
non-negative function (117) is identically zero in value for gi(x) y' - c i ,  has the 
positive value 2ki when g;(x) = 0, and has the form 2kt (gi(x) + E ~ ) ~ ~  whcn 
gi(x)L 0. Thus, by ap,propriate choice of the parameters (ki, € 1 ,  u t ) ,  the 
properties of the function (117) can approximate, arbitrari ly close,  the idcal 
characterist ics described above. 

2 . 8 . 3  
accommodating the state variable constraints (105) consists of re-defining 
the original admissible control set U in such a way that, whenever gi(x) = 0 
€or one o r  more i = 1, . . . , m,  the original set U is reduced (weakened) to 
include only those UEU which do not cause penetration of the constraint surface(s) 
gl(x) = 0. For  this purpose, one can define the new admissible set U3'ns l'ollows: 

WEAKENING CONTROL SET METHODS - Another method for 

U if gi(x) < 0,V i = 1, . . . , m I u,(x) if gi(x) # O  ,Y i = 1, . . . , m 
U+"X) I 

where 

With U"(x) defined by (118) - (119), the explicit constraints (105) can bc disregard- 
ed and the C-minimax problem can be solved by ordinary means. 28 This method of 
solution is complicated by the presence of the, possibility discontinuous, state 
dependent control set U*(x) which must be incorporated in the solution of the Mayer 
Problem M .  A mathematical theory for a relatively general class of Mayer 

'%t should be noted from (119) that a C-minimax optimal control for an initial 
state xo  ED, where gl(xo) = 0 (for some i = 1, . . . , m), will not cxist if the set 
U,(xo) is empty. 
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* variational problems with state dependent control sets is described in c161 . 
In practical applications, it would probably be advantageous (if not essential) to 
replace the set Ui' (x) with an approximating set vie (x) which possesses certain 
continuity, differentiability, and/or convexity properties, This may be 
necessary, for example, to insure the existence [I71 of a piecewise continuous 
optimal control--since (unlike U), the set U" (x) will not be convex, in general. 
The problem of choosing mathematically appropriate and physically realistic 
approximating se t s  e*(x) is an interesting area for further research. 
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OPTIMAL CONTROL OF THE DISTURBED LINEAR REGULATOR 

An optimal control problem for a linear regulator with constant, external disturbance 
is formulated. It is shown that, for a suitably selected quadratic-type performance 
index, the optimal control is not an explicit function of the external disturbance. 
Moreover, the optimal control can be synthesized as a time-invariant linear function 
of the state plus the first time-integral of a certain other time-invariant linear 
function of the state. 

3.1 THE OPTIMAL REGULATOR PROBLEM 

The optimal regulator problem for linear dynamical systems can be roughly stated 
as follows. In the class of piecewise continuous functions, find a vector control u(t) 
which minimizes the functional 1 

subject to the restrictions 

X = A X  + Fu(t) ( ' = d/dt) (2) 

x(T) = 0 (4) 

u( t )cU,  0 t T (5) 

where x is an n-vector, the system state vector; u is an r-vector; Q and R are, 
respectively, nxn and rxr non-negative definite symmetric matrices;  A and F 
are nxn and nxr matrices,  respectively; and U is a convex subset of the 
r -dimensional euclidean space. 

( X, y ) denotes the inner product of x and y. 
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From the point of view of design rational, the te rm ( x ,  Qx ) in (1) is 
chosen to penalize deviations of the regulated state x(t) from the desired equilibrium 
condition x(t) - 0 whereas the te rm (u ,  Ru ) discourages the use of excessively 
large control effort. One version of this problem, the special case U = E', was 
rigorously solved in the well-known 1960 paper by Kalman c 1 1 .  Since that time a 
variety of other special cases  of the optimal regulator problem (1) - (5) have been 
studied by other investigators [2 1 - [12 1 . 

The optimal regulator problem (1) - (5) has enjoyed notable popularity among 
practical control engineers primarily because, when U = E', the statc variable feed- 
back solution [ie., the control law uo (x(t), t ) 1 turns out to be a linear function of 
the state of the form 

u0 (x(t) , t ) = K(t) x(t) (6) 

where K(t) is an rxn matrix which can be effectively computed. Moreover, the 
reported results of practical experience seem to suggest that, if the matrices Q 
and R are chosen properly, the resulting lloptimallt system does possess many of 
tne same qualitative and quantitative features that are considered ''good1' by more 
conventional (classical) control system design procedures [I3 1 - [17] . 

On the other hand, the ordinary optimal regulator problem, as posed above, 
suffers one shortcoming which makes it inapplicable in a number of practical 
applications--it can only accommodate "initial-condition" (or equivalently, impulsc- 
type) disturbances. In particular, if the linear plant (2) is actually subjcct to both 
initial condition and finite input disturbances, the optimal control law for the 
problem (1) - (5) cannot attain and maintain the equilibrium condition x(t) - 0, in 
general. For  example, suppose the plant equations (2) actually have the form 

X = AX + Fu(t) + Bw(t) (7) 

where B is an  nxp matrix and w(t) is a p-dimensional disturbance vector. Supposc 
further that the disturbance w(t) eventually becomes, or  approaches, a steady state 
*(constant) vector, say w(t) c # 0 , Then, in the presence of such a disturbance. 
it is clear from (7) that the linear control law (6) [ computed by ignoring input 
disturbances 1 cannot satisfy the condition x(t) - 0 for positive intervals of time, 
in general. That i s ,  with the control law ( 6 ) ,  it is only possible to "hit" the point 
x 
cnt i rc ly  unacceptal,le in those regulator applications whcrc the state x(t) innst Iw 
constantly maintaincd closc to zero even in t h c  prescncc of a pieccwiscb constanl 
disturbance w(t). 

0 at one or  more isolated moments ol time [I8 1 . This Ixhavior m a y  bc 
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It is of some interest, therefore, to consider the possibility of re-formulating 
the optimal regulator problem (1) - (5) i n  such a way that, as t-T, thc resulting 
optimal feedback control always brings the state x(t) and the velocity $t), to zero 
(equilibrium) in the presence of any finite, constant disturbance w(t) c. Several 
schemes have previously been proposed for accomplishing this goal. One scheme , 
which in principle is applicable even for non-constant disturbances, is based on the 
assum tion that the disturbance function w(t) is completely known a priori  c19 1 , 
E20 1 .' In such a case, a time-varying "biasff control vector can be computed in 
advance and added to the linear control law (6) to effectively cancel out steady state 
c r r o r s  due to input disturbances. This scheme is usually impractical because thc 
future behavior of the disturbance w(t) is ordinarily not known a priori. 

Another scheme which has been proposed consists of treating w(t) as a non- 
deterministic input disturbance , with a known probability distribution, and using 
the theory of optimal stochastic control c211. This  method is also impractical 
because reliable a priori  information about disturbance probability distributions 
is usually not available. 

The practical facts of the matter are that in most regulator applications: 
(i) the future behavior of input disturbances is ordinarily completely unknown a 
priori  and (ii) the instantaneous properties of input disturbances [ eg. , magnitude, 
direction, rate of change, etc. 1 are usually not directly accessible for measurement, 
Thus, a realistic scheme for optimal control of regulators with disturbances should 
yield a feedback control policy which requires neither instantaneous nor future 
information about the disturbance. This is not asking for too much. Consider, for  
example, the problem of driving an automobile on a highway when the wind is blowing 
from the side in a hard and gusty manner. In the presence of such disturbances a 
good driver can manipulate the steering wheel in such a way as to keep his autoinobile 
moving steadily and in close proximity to the desired direction without ever knowing 
the instantaneous o r  future values of the wind magnitude and direction. IC human 
controllers can learn to perform with that degree of effectiveness under such conditicns 
of uncertainty (with virtually no quantitative knowledge of the system's dynamical 
equations of motion) , it seems plausible that the powerful analytical techniques of 
optimal control theory, (using relatively accurate equations of motion) , should be 
capable of yielding mathematically optimal and physically realizable control policies 
which perform at least as well. 

In this paper, a particular c lass  of optimal regulator problems for linear 
dynamical systems with constant input disturbance is formulated and it is shown 
that, for the proposed performance index, the optimal control is explicitly in- 
dependent of the disturbance. It is further shown that the optimal control can bc? 
expressed as the sum of a linear function of thc state and the first time integral of 
a ccrtain other linear function of the state. Two examples are worked i n  detail 
to illustrate application of the proposed method. 

21n I 2 0  1 , thc disturbance w(t) is assumed to hc added to the systcm outl)ut rather 
than applied to the input. 
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3 . 2  THE SPECIFIC PROBLEM 

In the present work,only the case of time-invariant linear dynamical systems with 
scalar control and scalar disturbance is considered. However , the techniques used 
can also be applied, in principle, to  time-varying deterministic systems and systems 
with vector control and disturbance. I 

The problem is to find, in the class of continuous functions, a scalar control 
u(t) which minimizes the functional 

T 
J CUI = 8 [ (x(t), Qx( t ) )  + r 2 b 2 ( t ) ]  dt ( 8 )  

0 

subject to the restrictions 

(9) x = Ax + u(t) f + w(t) b ( ' = d/dt) 

lim x(t) = l im K(t) = 0 , T-unrestricted 
t-T t-T 

w(t) c = scalar constant, t 2 0 ,  I c I < a (13) 

where x is an n-vector, Q is an nxn non-negative definite constant matrix, r is a 
positive scalar  constant, A is an nxn constant matrix and f and b are constant non- 
zero n-vectors. 

F r o m  the design criteria point of view, the performance index (8) differs 
from the ordinary quadratic functional (1) in that large values of control a r e  dis- 
couraged indirectly by penalizing the rate of change of control rather than the 
control itself. In addition, the initial state x(0) of the system (just before application 
of the disturbance) is allowed to be zero (the desired operating condition). This 
provision seems to reflect more accurately the actual jituation in  practical 
applications. The initial condition ~0 on the control u(t) is assumed to be specified 

3 

It is recalled that in the usual formulation of the optimal regulator problem (1) - 
(5), the interval of control c 0, T 1 is assumed to start after the disturbance has 
subsided but before the perturbed state x(t) has returned to the desired operating 
point. 

3 
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(chosen) a priori. One rational for choosing this initial value is discussed in a 
later section. 

c -  

0 
0 

0 
1 . . -  

It is clear from (9) that the equilibrium condition (11) can be satisfied only 
if there exists an admissible control u = u(c) such that 

- 
0 
0 

0 
a1 - 

for every admissible value of c. Thus, for  c # 0, it is necessary to assume that 
the vectors f and b are collinear. That is 

b = Q f  (15) 

for some non-zero scalar constant CY. 

It is further necessary to assume (see c11 , [ 20 1 ) that the pair (A, f )  is 
completely controllable. That is, the vectors 

f (16) 
An-1 f ,  Af, A'f, . . . , 

a r e  linearly independent. Under these two assumptions, it can be shown, E3 1 , 
that there is no loss of generality in assuming that the triple (A, f ,  b) has tho 
canonical (phase-variable) form 

4 

1 
0 

0 
a2 

0 . . .  
1 . . .  

0 . . .  
a3 . . .  

Tne identification of generally applicable necessary and sufficient conditions 

4That i s ,  if the pair (A ,  f )  is completely controllable, it i s  a lways possiblc to find 
n nonsingular linear translormation x = Ky such that K-' AK = A 0  and I<-' I -- lo . 
Some algorithms €or constructing the matrix K are described in c3 1, L221, [23]  
A numerical program for implementing onc ol' those algoi-ithms is dcscribcd i n  
Chnptcr 4 ol'this rcport .  
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5 for  the existence of optimal controls is still an unsolved problem--even for the 
ordinary regulator problem (1) - (5). W e  will, therefore, elude this question 
by simply assuming that, for each pair ( X O ,  c )  an  optimal control exists and is 
unique. 

3 . 3  FORM OF THE SOLUTION 

Using the scalar constants defined by (13), (15), an  auxiliary state variable is 
introduced as 

x(t) = u(t) + CCY 

x(0) = u o  + c a  

n+l 

n+l 

and the additional differential equation 

is appended to (9). Incorporating (13), (18), and (20) into (9) and setting 
x = (XI  , . . . x n , x n+l) it is found that ?(t) obeys the equation 
." 

N 
N x = AZ + v(t) T + 6L (2 1) 

where 

5The problem of existence of optimal controls, for a very general class ol problems 
has been studied by Markus and Lee [24 1 and by Bridgland c 25 1 . Sufficicnt 
conditions for  the existence of solutions to the optimal regulator problem (1)  - (5) 
nave been given in [I], [26] , c271, and cZ81. 

60ne necessary condition for the existence of a solution to  the problcm (1) - (5) is 
t h a t  the non-negxtivc definite quadratic form ( x ,  Qx ) does not vanish idrnlically 
along :L periodic solution of 2 Ax.  This  vanishing condition, lor the. spcwi:il CXISC 

(2 qyT, (y n-vcctor), is discussed in I:29J (sex also I (i I ). 
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The original problem (8) - (13) can now be stated in the following alternative 
- form: Find a piecewise continuous scalar  function v(t) which minimizes 

T 
J [v 1 = h [ ( ?(t) , GZ(t) ) + r2 ?(t)] dt (23) 0 

subject to the restrictions 

N 

jY = xz + v(t) f (24) 
N 

x(0) = (xg , uo + c a) ' ( ' denotes transpose) (2 5) 

N 

x(T) = 0 T -unre str icted (26) 

N N  

where A ,  f are given by (22) and e is an (n+l) x (n+l) non-negative definite matrix 
obtained by adding an additional row and column of zero elements to the matrix 
Q in (8) 

The alternative problem (23) - (26) is recognized a s  the scalar control 
case of the ordinary undisturbed, unbounded control , optimal regulator problem 
(1) - (5). The solution to this latter problem is given, in the control law form 
vo ( y )  , by the well-known [: 201 expression 

where 

7 and M is the unique, constant ,(n+l) x (n+l) positive definite, 
satisfying 

(29) 

symmetric matrix 

N 

A ' M  +MX -r-2 ME'M + G  = o 13 0) 

7The matrix M is positiqe definite if (?(t) ,G%(t)) does not vanish identically on a 
non-trivial solution of x = XZ. I: See footnote 61 . 
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From (18), (20), the optimal control u"(t) for the disturbed regulator problem 
(8) - (13) is found to  be 

o r  

However, from (24) 

and 

j = 2 ,  3 ,  . . . ,  n (33) 

n 

1 
x n + l = x n - C a t x i  

so that (32) can be expressed solely in te rms  of the state variables xl(t), . . .xn(t) 
as follows 

t 
uo(t) = ;@ixi ( t )    PO^ x l ( 7 )  dT ; uo(0) = U O  

0 I. 

where the scalar coefficients B o ,  81,  . , . , f in  are independent of c and are 
defined by 

B i = Y i+i - Y n + l  a i+i i = O , l ,  2 ,..., n-1 

(34) 

and the initial condition on the integral term in (34) is chosen to satisfy 
UO(0) = u o .  

Thus,  the optimal control for the system (9), with performance index ( 8 ) ,  
resul ts  in a constant coefficient (n+l) - order, linear dynamical system 
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which is globably asymptotically stable with respect to the equilibrium state 
x = 0 for every constant I c /  < 
(11) is satisfied only as t-". 

. It should be noted that the terminal condition 

It is recalled [see (17) and footnote 4 1 that for mathematical convenience 
the state vector x in (9) was assumed to be in (or have previously been linearly 
transformed to) phase-variable form: = xi+l , i=l . . . , n-1. For this reason, 
each phase-variable coordinate X I ,  . . . , x, appearing on the right of (34) actually 
represents a linear combination of the original (physical) state variables for the 
problem, in general. Therefore, in t e rms  of more general (non phase-variable) 
state variables y1. .  . , yn the optimal control (34) can be expressed as the sum of: 
(i) a l inear,  constant coefficient, combination of the state variables and (ii) the 
first time integral of a certain other l inear,  constant coefficient, combination8 
of the state variables. 

, 

0- 1 
UO(0) = u, (3 7) 

Pi  , V i  =constant i = 1,. . . , n 

3.4 DISCUSSION OF RESULTS 

It was assumed in (12) that the initial value uo(0) = u o  was specified (fixed) a 
priori .  In this case the control (34) is optimal, with respect to the functional (8), 
for every pair  (xo , c). Although it is the designer's privilege to arbitrari ly 
choose the value uo , there is one rather natural procedure for selecting this 

n 

1 
This  special linear combination of state variables Z; 77 1 yi  , corresponding to the 

particular coordinate x1 in the canonical phase-variable coordinate system, plays 
an  important role in many optimal control problems. If H is the matrix whose 
columns are f ,  Af, . . . , An-l f [the so-called controllability matrix 1 then, it 
can be shown L231 that, in general 

8 

where hn is the nth row of H-l. 
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parameter 

to be not accessible for measurement, this choice fo r  uo  is not physically realizable. 
On the other hand, suppose that, for t < 0, the disturbance w(t) is constant, say 
w(t) E co  # c. In this case, if one agrees to choose uo  as the particular value which 
maintains equilibrium x(t) E 0, for all t < 0, the control (34) always naturally approaches 
(asymptotically) this desired "initial value?' [uo = -co Q 1 because 

If one attempts to solve for the theoretically optimum choice of uo  
it is found 9 that uo depends explicitly on (XO , c). However, since w(t) is assumed 

along every solution of the optimally controlled system (9) for arbitrary initial values 
of u"(t). Thus, in practical applications where the interval of control is actually 
finite (and the disturbance is more nearly "piecewise constantt1) one can effectively 
disregard the explicit "setting" of uo and simply let uo(t), t < 0, seek its natural 
equilibrium value (39). 

The linear control law (6) has often been described as the modern optimal 
control version of the classical "proportional feedback" control principle [ZO] . In 
a like manner, the linear functional optimal control (34) can be viewed as a modern 
version of the classical "proportional plus integralft feedback control principle. This 
latter principle, sometimes called the "follow-up" control principle, is an old and 
well-known technique for reducing or eliminating "offset-errorsTi in regulator-type 
controllers. 

3 . 5  EXTENSION OF RESULTS 

The technique described above can be extended to  a more general class of input 
disturbances. In particular , if  the disturbance w(t) is an mth degree polynominal in 
t, m 2 0, and if the performance index (8) has the form 

J CUI Q s' L(x(t), Qx(t) ) + r2 (d*l u(t) / dtdl 1 dt ; m 2 0 
0 

'The value of uo  which minimizes (8), for fixed (XO , c) is given by 

where 
N 

x%+l= arg min (Zo , M Z O  ) , xo = (xo , xn+l )  
X n+l 

and M is the positive definite, symmetric, solution of (3 0). 
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then, following the method of solution outlined above, the optimal control uo(t) is 
obtained as the sum of (i) a linear combination of the state variables xi(t), i = 1 , . . . , n, 
and (ii) the (m+l)th.time integral of a certain other linear combination of the state 
variables. Moreover, for fixed uo(0), this latter control is invariantly optimal in the 
sense that it is simultaneously optimal for  all polynomical input disturbances w(t) of 
degree 0 2 m. 

3 . 6  EXAMPLES 

Example 1 - A First Order System 
As a special case of (8) - (13), let 

and 

with 

x, = u(t) +a w(t) , w(t) t c 

Xl(0) = xo 

xl(q = o T -unrestricted 

u(0) = uo 

Preceeding a s  in (18), define the auxiliary state variable 

m(t) = u(t) + Q c 

x2(0) = uo + 01 c 

and set 

kz = i(t) = v(t) 

Equations (41), (42) can now be written as 

(43) 

(44) 

x, = x2 

i2 = v(t) 
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The unique, positive definite, symmetric solution M of (3 0) , with 

I is readily found to be 

where ( - )k, k > 0, denotes the positive kth root of ( - ). The expression for vo(x) 
is then given by 

o r  

Finally, the optimal control uo(t) is obtained from (34) as 

where 

The optimally controlled plant (42) is therefore given by 

t 
k1 = y1 J xl(7) d 7 +  7'2x1 + tYw(t) + uo , W(t) f c 

0 

which is asymptotically stable,with respect to xl = 0,for all finite c.  
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The control (54) is optimal for every fixed value of uo . A practical scheme 
for choosing uo  was described above [see eg. (39 ) l .  For comparison purposes the 
theoretically optimum choice for uo with (xg ,  c fixed, is found to be [see footnote 
# 91 

1 
u o = -  q”(2q-h xo- CQ! 

which is not physically realizable. 

It is interesting to compare the optimal control (54) of the present example 
with the solution obtained for the following conventional undisturbed linear regulator 
problem. Minimize 

T 
Jcul = h [qx,” (t) + @ u2(t)l dt  

0 
q’0 ,  P >  0 

subject to 

X l  = u(t) + 01 w(t) w(t) = 0 

Xl(0) = xo 

xl(T) = 0 , T-unrestricted 

The optimal control law for this problem i s  well-known [BOland is given by 

1 
U0(X) = -p-1 (qp x, 

Example 2 - A Second Order Example 
As another special case of (8) - (13), let 

T 
J tu] = 9 [x,”(t) + d(t) + h2 (t)] dt 

0 

(57) 

(59) 
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and 

x, = x2 

& = u(t) + w(t) , w(t) = c 

x(0) = xo 

x(T) = 0 , T-unrestricted 

u(0) = uo 

h o c e e d i n g  as in the previous example, the auxiliary state variable x3(t) is 
defined as 

%(t) = u(t) + c 

x3(0) = uo + c 

so that, setting v(t) = G(t), (61) - (63) can be written as the equivalent third order 
system 

;r3 = v(t) 

F rom (28) - (35) the optimal control is found to be 
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where the yi, i = 1, 2 3, are given (approximately) by 

71 = -1.00 

y2 = -2 .31 

y3 = -2.15 

For comparison purposesy the optimal control law for the conventional 
undisturbed linear regulator problem with 

T 
J [u] = J 

0 
CX,”(t) + d(t) + U2(t) I dt 

and 

Xl = x2 

L! = u(t) + w(t) y w(t) f 0 

is found to be [SI 

The responses of the two optimally controlled systems (62) (63),  (71) 
and (74) - (76), for a value of w(t) E 10, are shown in Figure 1. It is observed 
that the two control functions uo(t) given by (71) and (76) are quite similiar 
although the latter, of course,  does not satisfy the specified boundary condition 
x(T) = 0 . 

(73) 

(74) 

(75) 
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System (62), (63), (71) 

Figure 1. Comparison of Responses for the System (62), (63), 
(71) and the System (741, (75), (76). 
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A NUMERICAL ALGORITHM FOR COMPUTING THE LINEAR 
TRANSFORMATION x = Ky WHICH TRANSFORMS AN 

ARBJTRARY, COMPLETELY CONTROLLABLE, LINEAR 
DYNAMICAL SYSTEM k = AX + u(t)f INTO THE CANONICAL 

(PHASE-VARIABLE) FORM $ = AOY + u(t)fo 

-9 

0 
0 

0 
1 - 

Thc algorithm described below generates a nonsingular matrix K (and its inverse 
K-1) with the following property: Given any completely controllable1 pair (A, f )  
whcre A is a real nxn matrix and f is a real n-vector , the associated pair (A 
defined by 

I o )  

A0 = K-' AK 

f o  = K-lf 

has  the canonical (phase-variable) form 

A , -  

0 1 0 ... 0 
0 0 1 ... 0 

0 1 
a1 a2 Q3 C L I  

; fo  = 

This  algorithm, which is based on a result  originally described in [111 
also [Z] - [SI ) ¶  accepts as inputs the elements of the pair (A, f )  and generates, 
as outputs, the elements of: K, K'l , A 0  , f o  . 

(see 

'A pair (A, f)  is said to be completely controllable [and the nonsingular matrix 
K exists] if  and only if the sequence of vectors f ,  Af, P?f,  A3f, . . . An"f, are 
linearly independent. 
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This routine calls for one matrix inversion operation (4.2, Step 2) which 
must be carried out by means of an external "matrix inversion sub-routinetf. 
All other operations are straight forward multiplications of scalars  and matr ices .  

4.1 INPUT DATA 

a .  Then n2 elements aiJ (i, j = 1, 2, . . . , n) of the nxn matrix A are input and 
stored. 

b .  The n elements f t ( i  = 1, 2,  . . . , n) of the n-dimensional vector f are input 
and stored. 

4 . 2  ALGORITHM FOR GENERATING K AND K-' 

Step 1. Compute and s tore  the n2 elements hiJ (i, j = 1, 2, . . . , n) of the 
controllability matrix €1 by using the recursive relation: 

hi1 = f i  i = l ,  2 ,  ..., n 

n i =  1, 2, ..., n 
hi, = c alsh,, 3-1 j = 2 ,  3 ,  ..., n 

8== 1 

Also, compute and store the n elements bi(i = 1, 2 ,  . . . ,n )  where: 

Step 2.  Compute and store the n2 elements of H-l (the inverse of H) . 
Let the elements of H-' be denoted by hiJ (i, j = 1, 2 ,  . . . , n) 

(NOTE : This matrix inversion operation requires an externally 
supplied "matrix inversion sub-routine" ) 

Step 3 .  If H-' does not exist, stop computation and print: THE PAIR (A, f)  
IS NOT COMPLETELY CONTROLLABLE. Otherwise, go on to step 4. 
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Step 4. Compute and store the n scalars  (numbers) CYI (i = 1, 2, . . . , n) where 

n -  
i = l ,  2, ..., n 

(NOTE : The elements hij  and b, a re  called from storage. ) 

Step 5. Compute and store the n2 elements ki,(i,  j = 1, 2, . . . , n) of K by the 
following (backward) recursive rule: 

I First com put e 

kin = f1 , i = l ,  2, . . . ,  n 

then compute (for descending values of j )  

II i = l ,  2 ,  . . . ,  n 
k i j  = -aj+l fl + C ai, ks,j+l j = (n-1), (n-2), . . . , 2, 1 

s= 1 

(NOTE: The elements a 1 and aij are called storage .) 

Step 6.  Compute and store the n elements 6 i (i = 1, 2 , . . . , n) by the 
following (backward) recursive rule: 

Fir st compute 

p -  n - an 

then compute (for descending values of i) 

n 
p i = ~ ! i  + c an+i+l-s B s  9 i = (n-l), (n-2), . . . , 3 ,  2. 

t + l  

Step 7 .  Compute and s tore  the elements mi j  (i, j = 1, 2 ,  . . . , n) of the matrix M 
by the following rule: 

0 if (i+j)  n 

miJ  = t1 if (i+j) = n+l 

& + Z - L - ~  if (i+j) 2 n+2 

(NOTE : The elements 4 a re  called from storage. ) 



f =  [“1 

Step 8. Compute and store the n” elements of the nxn matrix K‘l where K-l  
i s  computed by forming the following matrix product: 

(NOTE: The elements of M and H-’ are called from storage.)  

Step 9. Compute and store the n2 elements of the nxn matrix Aowhere A 0  
is computed by forming the following triple matrix product: 

(NOTE: The elements of K-l , A, and K a r e  called from storage.) 

Step 10. Compute and store the n elements of the n-vector f o  where 

fo = K-’f 

(NOTE : The elements of K-’ and f a r e  called from storage. ) 

Step 11. PRINT OUT THE FOLLOWING MATRICES (AND VECTORS) FROM 
THE STORED DATA: 
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K =  

K-’ = 

f o  = 

4 1  4 2  . . . 

ka k e  . . . 

Ell El2 . . . 

E, E&? ... 

ALSO, PRINT OUT THE ELEMENTS: 
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CONCLUSIONS 

The algorithm described in Chapter 2 for  computing C-minimax optimal controls 
should prove useful in obtaining numerical-type descpiptions for the boundaries 
of the RA and R, sets, i = 1, 2 ,  . . . , . Moreover, in those cases where the 
optimal control in CR,] is of the bang-bang type, (a situation very likely to occur 
when the state variable equations a r e  linear i n  the control u, C2, Ch. 21, the a1gorithm 
will permit the numerical determination of points on the bang-bang switching 
surface. The question of how to effectively use numerical data, obtained from 
algorithms such as presented here, in the practical synthesis of higher order 
feedback control systems is a common, and still unresolved, problem in the 
application of optimal control theory. This  important subject should be given 
further study in the future with particular emphasis on (i) the "fittingl of higher- 
dimensional "surfaces" to sets of numerical data and (ii) the possibility of 
reducing the dimensionality of the state space by selectively ignoring certain state 
variables. This latter topic is closely associated with the more general problem 
of choosing the most appropriate set of state variables to  describe a dynamical 
system. 

i 

The algorithm will also have practical application in determining the 
relative effectiveness of various sub-optimal C-minimax controls which may be 
proposed. For this purpose, the exact C-minimax control can be computed, 
via the algorithm, in backward time, starting at a selected "terminal state'! 
x(T)cg. The backward time optimal trajectory generated by this means is then 
stopped at some selected time 7' and x( 7 I )  is noted. Then, x( 7 I )  is used as the 
forward-time initial condition for the same system with the proposed sub-optimal 
control , and the corresponding forward time sub-optimal trajectory is determined. 
Comparison of the maximum value of C(x) along each trajectory will then reveal 
the degree of sub-optimality of the proposed non-optimal control. 

The  theory developed in Chapter 3 for linear regulators with constant 
disturbance inputs provides one solution for the problem of eliminating steady- 
state "offsetl! e r r o r  in regulator control systems. Although the theory is developed 
for strictly constant disturbance inputs it would be interesting to study, experimen- 
tally, the performance characteristics of such a system with various non-constant 
disturbances. In addition, an investigation of the relative effectivencss of such 
systems , when used as sub-optimal C-minimax controllers , would provide uscful 
information . 
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