AP LLO

GUIDANCE, NAVIGATION AND CONTROL

Approved: $\frac{\text { W. A. DiLE }}{\text { G. SILVER, DIRECTOR, SYSTEM TEST }}$
APOLLO GUIDANCE AND NAVIGATION PROGRAM
Approved: Sil cenpe by R1/ B. (I4wate: $\mid 111 / 70$ S. L. COPPS, COLOSSUS PRDJECT MANAGER APOLLO GUIDANCE AND NAVIGATION PROGRAM
 APOLLO GUIDANCE AND NAVIGATION PROGRAM

GUID ANCE SYSTEM OPERATIONS PLAN
FOR MANNED CM EARTH ORBITAL AND LUNAR MISSIONS USING
PROGRAM COLOSSUS 2E

SECTION 1 PRELAUNCH
 (Rev. 2)

MTI CHARLES STARK DRAPER CAMBRIDGE, MASSACHUSETTS, 02139 LABORATORY

ACKNOWLEDGEMENT

This report was preparedunder DSR Project $55-23870$, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS $9-4065$ with the Inctrumentation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.

SECTION 1 PRELAUNCH

Signatures appearing on this page designate approval of this dooument by NASA/MSC.

Table of Contents
 Page

1.1 Introduction 1-1
1.2 CMC Self Test 1-3
1.2.1 Options Available in SELF-CHECK 1-3
1.2.2 Procedure to Start SELF-CHECK 1-3
1.2.3 SHOW-BANKSUM Operating Procedures 1-3
1.2.4 Control of SELF-CHECK Options (Figure 1.2.4-1) 1-4
1.2.5 Explanation of SHOW - BANKSUM (Figure 1.2.5-1) 1-7
1.2.6 ERASCHK (Figure 1.2.6-1) 1-7
1.2.7 Check of Rope Memory (Figure 1.2.7-1) 1-13
1.3 Prelaunch Alignment Program Computations 1-15
1.3.1 Initialization Data 1-15
1.3.2 Coarse Alignment (P01) 1-15
1.3.3 Vertical Erection Computation (P02). 1-20
1.3.4 Gyrocompassing Computations (P02). 1-20
1.3 .5 Azimuth Change Computations (P02) 1-20
1.3.6 Optical Verification of Alignment (1303) 1-20
1.4 Prelaunch Alignment Functional Description 1-23
1.5 Performance Test Computations. 1-25
1.5.1 Gyro Drift Measurement 1-25
1.5.2 Accelerometer Error Measurement 1-29
1.5.3 Gyro Torquing Scale Factor Measurement 1-29
1.6 Functional Description of Performance Tests. 1-37
1.6.1 Gyro Drift and Accelerometer Error Test Description 1-37
1.6.2 IRIG Scale Factor Test Description 1-37
1.7 Performance Test Data Analysis 1-47
1.7.1 IRIG Scale Factor Data 1-47
1.7.2 Gyro Drift Data 1-47
1.7.3 Accelerometer Scale Factor Error and Bias Error Data 1-50

REVISION INDEX COVER SHEET

 GUIDANCE SYSTEM OPERA TION PLANGSOP No. R-577 Title: For Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS 2E
Section No. $1 \quad$ Title: Prelaunch (Revision 2)

This complete new revision updates the previous publication, Revision 1. dated October 1968, and incorporates the approved change, listed below. PCR and PCN changes are indicated by denoting the applicable number at the bottom of the page and by marking the location of the change with a solid black line at the edge of the page. Editorial corrections and document improvements (not covered by PCR/PCN) are denoted by a vertical series of black dots.

PCR
857

DESCRIPTION OF CHANGE
Save 300 Performance Test Words

REVISION INDEX COVER SHEET GUIDANCE SYSTEM OPERATION PLAN

```
GSOP # R-577 Title: For Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS 1 (Rev. 237)
Section \# 1 Title: Prelaunch (Rev. 1)
```

\(\left.$$
\begin{array}{|lll}\hline \text { Date } & \text { Revision } & \text { Description } \\
\hline \text { Oct. } 1968 & \text { FCN } 596\end{array}
$$ \begin{array}{l}Filter gain in gyrocompassing

Fig. 1.3 .4-1, page 1-18\end{array}\right\}\)| Changes per NASA review, pages affected: |
| :--- |
| $1-25,1-26,1-27,1-28,1-29,1-31,1-39$ |
| $1-40,1-43,1-51$. |

Note; PCR131, although reflected in this document, was inadvertently not listed.

1. PRELAUNCH

1.1 Introduction

The Guidance System Operations Plan is published as six separate volumes (sections) as listed below:

Section 1	Pre-Launch
Section 2	Data Links
Section 3	Digital Auto-Pilots
Section 4	Operational Modes
Section 5	Guidance Equations
Section 6	Control Data

The purpose of this section is to present the program requirements and descriptions for the prelaunch calibration and test operations for manned CM Earth Orbital and Lunar Landing Missions using program COLOSSUS.

These routines utilize the uplink capability (described in Section 2) of the CMC to load either variables or instructions for utilization or execution during the running of the tests.

The results of the gyro driit and accelecometer parameter tests are used to determine or confirm the IMU compensation parameters used for the mission. The compensation parameters will be loaded prior to launch and used during the mission to reduce the TMU alignment and specific force measurement errors.

This volume constitutes a control document to govern the test methods and data analysis equations to be used for prelaunch calibration and test.

Revisions to this plan which reflect changes in the above control items require NASA approval.

The version of AGC Block II SELF-CHECK found in the program COLOSSUS has been reduced to include only the erasable memory check, the fixed memory check and the SHOW-BANKSUM job.

1.2.1 Options Available in SELF-CHECK

The different options of SELF-CHECK are controlled by loading the appropriate numbers into the SMODE register. Placing a +0 into the SMODE register forces the computer to go into the backup idle loop where it continuously looks for a new job. Loading SMODE with ± 11 octal or greater causes SMODE to be changed to +0 and puts the computer into the backup idle loop. Loading SMODE with any other number less than $\ddagger 11$ octal starts up one of the active SELF-CHECK options. These option numbers are as follows:

$$
\begin{aligned}
& \pm 4 \text { octal checks erasable memory } \\
& \pm 5 \text { octal checks fixed memory } \\
& \pm 10 \text { octal performs both previous options } \\
& \pm 1, \pm 2, \pm 3, \pm 6, \pm 7 \text { same as } \pm 10 \text { option } \\
& -0 \text { same as } \pm 10 \text { until an error is detected. }
\end{aligned}
$$

The SMODE register is set to +0 by any FRESH START.

1.2.2 Procedure to Start SELF-CHECK

Noun 27 is assigned to the SMODE register, so to activate SELF-CHECK. use the DSKY as follows:

> V21N27E (option number) E

This loads the desired option number into SMODE, and starts that option.

1.2.3 SHOW-BANKSUM Operating Procedures

The SHOW-BANKSUM routine shows the sum of the bank in R1 of the DSKY (equal to plus or minus the bank number), the bank number in R2 of the DSKY, and the "bugger" word in R3 of the DSKY. The operating procedure consists of three steps: it is important to perform the last step to end this particular job.

Procedure to START SHOW-BANKSUM

This routine has its own Verb (91) so it is very east to start, The information for bank: 00 appears in R1, R2, and R3 of the DSKY immediately after starting SHOW-BANKSUM. Verb 05 Noun 01 is used to display this information. Starting SHOW-BANKSUM puts +0 in the SMODE register. This forces SELF-CHECK to go into the backup idle loop.

STARTING PROCEDURE V91E
(The computer must be in program 00 o: a V36E should precede V91E)

Procedure to Display Next Bank
The "proceed" verbis utilized to display the sum of the rest of the banks, Each time the proceed verb is entered from the DSKY, the information for the next higher bank appears in R1, R2, and R3 of the DSKY. If another "proceed verb enter" is performed after the last bank in a particular rope has been observed, the information for bank 00 will be displayed again. Continued proceed verb entries will allow you to observe all the banks a second time.

CONTINUE PROCEDURE V33E or PRO

Procedure to Stop BANK-SHONsL M
The operator must punch in the "terminate ${ }^{\text {th }}$ verb when he is through with SHOW-BANK SUM . This terminates the SHON-B.ANK:UN routine in the FスECUTIVE.

TERMLNATE PROCFDURE V34上

1.2.4 Control of SELF-CHECK options (Figure 1.2.4-1)

The program -tarts at the entry point SELFCHK after which it stores the address of the ERASCHK routine in register SKEEP1. A check for a new job is made and if no job is waiting, proceed to test register SMODE. If the contents of SMODE is +0 , idle by looping through the check for a new job or, if greater than ± 10 octal, change SMODE to -0 and idle. For any other content, of SMODE increment the SCOUNT register and test SMODE again, following with either A, B, or C below.
A. If the contents of SMODE is $\angle 4$ perform ERASCHK, the check of erasable memory diagramed in Figure $1.2 .6-1$, CNTRCHK, the check of all counters and other special erasable registers (Figure 1.2.6-2), and CYCLSHFT, the check of the cycle and shift registers in Figure 1.2.6-3. Then increment SCOUNT-1 register, store theaddress of the ROPECHK routine in register SKEEP1 and check for a new job starting the erasable memory test option

again. Normally the program continues to cycle as above until the content of SMODE is changed by DSKY or until an error is detected.
B. If the contents of SMODE is ± 5 perform ROPECHK, the check of fixed memory in Figure 1,2.7-1. The program then cycles back through the starting point SELFCHK and continues to cycle in a manner similar to that of option $=4$, as described in the preceding paragraph.
C. If the contents of SMODE is $-0, \pm 10$ octal, $\pm 1, \pm 2, \pm 3, \pm 6$, or ± 7 branch to the routine indicated by the address in register SKEEP1. For the first pass this would be the address of ERASCHK. Complete the ERASCHK, CNTRCHK, CYCLSHFT loop. At the start of the second pass, the content of SKEEP1 has been changed to the address of ROPECHK. Therefore, after the second test in the loop of SNODE, the branch (TC SKEEP1) is to ROPECHK. At the end of ROPECHK the program loops through SELFCHK changing SKEEP1 to the address of ERASCHK for the third pass. This alternate cycling of ERASCHK and ROPECHK continuesindefinitely until the content of SMODE is changed by DSKY or an error is detected. In the event that an error is detected, the program stores in register SFAlL, the address of the location following the location in SELF-CHECK that detected the error. Thisaddress is also stored in the register ALMCADR for the ALARM routine. If ERASCHK is running, the program will also restore the contents of the exasable registers under test. The register ERCOUNT (set to -0 by DSKY FRESH START) is incremented and the ALARM routine is called. The ALARM routine turns on the program alarm light and loads into register FAILREG the alarm code for SELF-CHECK (octal 01102). The BBCON of SELE-CHECK is loaded into register ALMCADP - 1 and returns control to the SELF-CHECK program. The contents of SMODE is then tested, followed by $\mathrm{D}_{\mathrm{E}} \mathrm{E}$ or F .
D. If SMODE is - Non-Zero, change the contents to +0 which puts the computer into the backup idle loop.
E.. If SMODE is - Non-Zero, start the optionagain from the beginning (at entry point SELFCHK).
F. If SMODE is -0 , branch on the contents of SFAIL to the location in SELF CHECK immediately following the location where the error was detected and proceed with the option from that point.
G. Alarm Display: A SELF-CHECK error initiates program alarm by calling subroutine ALARM2 with $C(A)=C(Q)=C(A L M C A D R)=C(S F A I L)$ and ERCOUNT incremented by one. The alarm code for self check error is 011028 .
H. In the event that the check for a new job finds one waiting, the job will be executed and at the conclusion will return control to SELF-CHECK. Since SELF-CHECK is runas part of the backup idle loop it cannot run as long as there are any active jobs.

1.2.5 Explanation of SHOW - B4NKSUN (Figure 1.2.5-1)

SHOW-BANKSUM consists of a routine called SHOWSUM. This routine essentially does the same thing that the routine ROPECHK does; that is, add up the sum of separate banks in the rope. After this the similarity ends. ROPECHK makes sure the sum of the bank is plus or minus its own bank number while SHOWSUM displays the sum of the bank in R1 of the DSKY irrespective of what the sum may be. SHOWSUM also displays the bank number and the bugger word in R2 and R3 of the DSKY at the same time. The sum of the bank and bank number in R1 and R2 are shownas the least significant bit instead of bits 11-15 (the actual bank bits in the computer).

Undoubtedly the greatest use of this routine will be in restoring the confidence of personnel in the compater and in verifying that the correct rope modules for a particular mission areactually the ones in the computer package. Following is a short deacription of the SHOWSUM subroutine.

Each bank in the rope is summed separately; from the lowest address to the highest address used in that bank. The contents of a higher address are added to the sum of the previous addresses. If this creates an overflow condition, a +1 is added to the new sum; $a-1$ is added to the new sum if an underflow condition is created. The sum of each bankshould be plus or minus its own bank number. The sum of the bank is displayed in R1 of the DSKY. The bank number (actual bank number used to sum the bank cyoled 5 places left) is displayed in R2 and the bugger word is displayed in R 3 . Entering a proceed verb (33) from the DSKY will display the same information for the next higher bank. Entering a terminate verb (34) from the DiskY will end the SHOWSUM routine.

1.2.6 ERASCHK (Figure 1.2.6-1)

This part of SELF-CHECK makes sure that it is possible to read a "1" and a "0" into and out of each bit position of erasable memory.

Fig. 1.2.5-1 Control of SHOW-BANKSUM

Fig. 1.2,6-1 ERASCHK

The RESTART program tests the contents of ERESTORE (the ERASCHK activity indicator) before proceeding with RESTART. The contents of ERESTORE (set to $\div 0$ by any FRESH START) should be equal to the contents of SKEEP7 (address of the first of the pair of registers under check by ER.ASCHK) or equal to positive zero if no pair of registers are being checked. If the test determines that the contents of ERESTORE is not "a positive number less than 2000 octal and equal to the contents of SKEEP 7 ", the program switches to DOFSTART (programmed FRESH START). The reason for the DOFSTART is that the improper contents of register ERESTORE causes one to doubt the contents of erasable memory. (The exception occurs when ERESTORE itself is being tested.)

If the contents of ERESTORE are positive zero, do not restore erasable, proceed with RESTART. If the contents of ERESTORE are positive, less than 2000 octal, and equal to the contents of SKEEP7, then the original contents of the pair of registers under check are restored to those registers, ERESTORE is set to positive zero and the program proceeds with the RESTART.

The non-special erasable registers are checked for correct addressing and content by placing their own address in two successive registers and making sure there is a difference of -1 when the contents of the lower address register is added to the complement of the higher address register; if it is not, this subroutine branches to the PRERRORS subroutine.

The previous contents of the erasable registers had been preserved and are restored to the two registers by PRERRORS which then performs a TC to the ERRORS subroutine.

If the difference is -1 , the contents of the two registers are complemented and the complement of the lower register added to the contents of the higher register; the result is checked for -1 . If the result is not -1 , TC to PRERRORS as noted above. If the result is -1 , restore the previous contents to the two registers, and proceed to the next iteration. The higher address register of the past iteration becomes the lower address register of the next iteration. The evasable memory banks are checked from zero through seven with common erasable ($60-1373$) being checked after each erasable bank.

CNTRCHK (Figure 1.2.6-2)

The CS instruction is performed on all erasable registers from octal 60 through octal 10. These include all counters and other special erasable registers. It is not feasible to put their own address in these registers and check their contents because of their special use.

Fig. 1.2.6-2 CNTHCIIK

Fig. 1.2.6-3 CYCLSHFT

CYCLSHET (Figure 1.2.6-3)
The octal number 25252 is placed in the two cycle registers, the shift right register, and the EDOP register. The contents of these registers are then twice checked for correct contents.

1.2.7 Check of Rope Memory (Figure 1.2.7-1)

The routine for checking the correct contents of a rope is called ROPECHK. Its purpose is twofold. First, it is a check on the compater. It makes sure all current drivers, sense amplifiers, and associated circuitry used in connection with the fixed memory are operating properly. Secondly, it is a check on the rope itself. It makes sure none of the sense or inhibit lines have become shorted or opened (essentially guarantees content of rope is correct and can be read correctly by the computer).

The sum of each bank should be the same as its bank number in the low order bits of the computer. A special word, which is called a "bugger" word, is added to the normal sum of the bank as the last word to be added. This "bugger" wurd forces the sum of the bank to be plus or minus the Bank Number. As an example, the sum of bank 33 octal may be 00033 or 77744. Two TC SELF wordsindicate the end of the summing process for each bank unless the bank is full. The "bugger" word immediately follows the second TC SELF word. If the bank is full, the "bugger" word is in the last address, and the two TC SELF words are not necessary to indicate the end of the summing process for that bank. Of course, all addresses in a bank up to and including the "bugger" word have to contain words of good parity. Following is a short description of the ROPECHK routine.

Each bank in the rope is summed separately; from the lowest address to the highest address used in that bank. The content of a higher address is added to the sum of the previous addresses. If this creates an overflow condition, a +1 is added to the new sum; a -1 is adjed to the new sum if an underflow condition is created. The sum of each bank should be plus or minus its own bank number. If the sum of the bank is its bank number, the subroutine proceeds on to checking the next bank. If the sum of the bank is not its bank number, SELF-CHECK goes to the error routine. The banks are checked in ascending order.

Fig. 1.2.7-1 Check of Rope Memory

1.3 Prelaunch Alignment Program Computations

The stable member will be aligned at launch with the stable member Z axis vertical, down; the stable member X axis in the direction of the desired launch azimuth in the horizontal plane; the Y axis completes the right-handed triad.

The prelaunch alignment operation is depicted in Figure 1.3-1.

1.3,1 Initialization Data

The initialization data required tor the pre-launch alignment program is the following:

1. Load vehicle azimuth (VAZ), scaled in revolutions, measured clockwise from north to the Z axis of the spacecraft.
2. Load latitude of test pad scaled in revolutions.
3. Loaddesired launch azimuth (AZ), scaled in revolutions measured clockwise from north.
4. Load azimuth of optical targets, scaled in 1/2 revolutions measured clockwise from north to target.
5. Loadelevation of optical targets, scaled in $1 / 4$ revulutions, measured from horizontal plane passing through the SXT focal point.
6. Load performance parameters.

1.3.2 Coarse Alignment (P01)

The computations for coarse aligning the stable member as part of the initialization of the prelaunch alignment are as follows:

1. Compute the desired stable member orientation matrix in a vertical, south and east IMU-centered earth reference coordinate system.

$$
\left|X_{\mathrm{SM}}\right|=\left|\begin{array}{ccc}
0 & -1 / 2(\cos \mathrm{~A} Z) & 1 / 2(\sin \mathrm{AZ}) \\
0 & 1 / 2(\sin \mathrm{AZ}) & 1 / 2(\cos \mathrm{AZ}) \\
-1 / 2 & 0 & 0
\end{array}\right|
$$

2. Zero CDUs and wait 10 seconds.
3. Compute the navigation base orientation matrix ina vertical, south and east IMU-centered earth reference coordinate system.

$$
\left|\mathrm{X}_{\mathrm{NB}}\right|=\left|\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2(\sin \mathrm{VAZ}) & 1 / 2(\cos \mathrm{VAZ}) \\
0 & -1 / 2(\cos \mathrm{VAZ}) & 1 / 2(\sin \mathrm{VAZ})
\end{array}\right|
$$

4. Given the $\left|\mathrm{X}_{S M}\right|$ and $\left|\mathrm{X}_{\mathrm{NB}}\right|$ orientation matrices in the vertical, south and east coordinate system, compute the CDU angles required to bring the stable member into the desired orientation. (Ref. 5.6.3.2.2)

Fig. 1.3-1 PrelaunchAlignment Program Operation

Fig. 1.3.3-1 Vertical Erection Loop for Pre-launch Alignment

Fig. 1,3, 4-1 Azimuth Alignment Loop for Pre-taunch Aligmment

Fig. 1.3.5-1 Azimuth Change Computation
5. Command IMU gimbals to the CDU angles using coarse align mode.

1.3.3 Vertical Erection Computation (PO2)

The vertical erection computations are depicted on Figure 1.3.3-1.

1.3.4 Gyrocompassing Computations (P02)

The gyrocompass computations are depicted on Figure 1.3.4-1.
1.3.5 Azimuth Change Computations (P02)

The azimuth change computations are depicted on Figure 1.3.5-1.

1.3.6 Optical Verification of Alignment (P03)

The computation for calculating the stable member alignment error using optical line-of-sight information should be according to the following steps:

1. Display pre-loaded azimuth and elevation data for Target 1 and Target 2.
2. Convert azimuth and elevation of Target 1 and Target 2 into two $1 / 2$-unit line-of-sight vectors $\overline{\mathrm{L}}_{1}$, and $\overrightarrow{\mathrm{L}}_{2}$ in the launch pad vertical, south and east coordinate system.
3. Compute the Target 1 and Target 2 line-of-sight vectors in the desired stable member coordinate system.

$$
\begin{aligned}
& \left|X_{S M}\right| \times \bar{L}_{1}=\bar{T}_{1} \text { referenced to } X_{S M} \text { desired } \\
& \left|X_{S M}\right| \times \bar{I}_{2}=\bar{T}_{2} \text { referenced to } X_{S M} \text { desired }
\end{aligned}
$$

4. Compute shaft and trunnion angles for Target 1 utilizing \bar{L}_{1} and $\left|X_{N B}\right|$ (Ref.
1.3.2).
5. Drive to the computed shait and trumion angles when optics mode is transferred to CMC control.
6. Wait for "mark" on Target 1.
7. From "mark" data compute $\overline{\mathrm{T}}_{1}$, line-of-sight vector in actual stable member coordinates.
8. Compute shaft and trunnion angle for Target 2 utilizing $\overline{\mathrm{L}}_{2}$ and $\left|X_{N B}\right|$ (calculated in 1.3.1).
9. Drive to the computed shaft and trunnion angles when optics mode is transferred to CMC control.
10. Wait for "mark" on Target 2.
11. From "mark" data compute \bar{T}_{2}^{\prime}, target 2 line-of-sight vector in actual stable member coordinates.
12. Given \bar{T}_{1} and \bar{T}_{2} referenced to desired $\left|X_{S M}\right|$ and \bar{T}_{1}^{\prime} and \bar{T}_{2}^{\prime} referenced to actual $\left|\mathrm{X}_{\mathrm{SM}}\right|$ compute rotations required to co-align $\left|\mathrm{X}_{\mathrm{SM}}\right|$ desired and $\left|X_{\mathrm{SM}}\right|$ actual. (Ref. 5.6 .3 .2 .4 and 5.6.3.2.3)
13. Display the three rotations as gyro torquing angles since gyro torquing sequence is $\mathrm{Y}, \mathrm{Z}, \mathrm{X}$.

1.4 Prelaunch Alignment Functional Description

Prelaunch alignment functional description is in Section 4, under P01, P02, and P03.

1.5 Performance Test Computations

1.5.1 Gyro Drift Computation

The physical basis for gyro drift measurement during prelaunch operations is the detection of the vector rotation of the gravity reaction acceleration. The IMU accelerometers provide the necessary data. The data is corrupted by accelerations due to launch vehicle swaying motion and by quantization in the Pulsed Integrating Pendulous Accelerometer.

The effect of gyrodrift on the vector rotation of gravity is small, therefore an optimum data processing method is required.

The data is processed by a simplified optimum filter which includes in its state vector estimates of the launch vehicle disturbances. The 13 -dimensional state vector is described in Table L.

The simplified filter design recognizes that the gains for the optimum filter may be precomputed, since the measurement times will be the same for all trials and the a priori assumptions for the statistics of the initial state vector will not change.

The filter gainsare precomputed by operating on a digital simulation of the system with a complete linear optimum filter. The gain functions are reconstructed piecewise in the CMC during the operation of the filter process using data loaded into the CMC erasable memory. The operation of the simplified optimum filter is depicted in Figute 1.5.1-1.

Figure 1.5 .1 , is a block diagram representing the following computations:
A. Measurement

The accelerometers are sampled every second. The sampled accelerometer outputs are transformed to the vertical, north and east reference coordinate system.

$$
\begin{array}{ll}
\mathrm{po}_{\mathrm{s}}=\widehat{\mathrm{po}} \\
\mathrm{~s} & -\mathrm{C}_{1} \Delta \mathrm{~V}_{\mathrm{s}}\left(2^{9}\right) \\
\mathrm{po}_{\mathrm{e}}=0.76376833 \\
\Delta \mathrm{po}_{\mathrm{e}}-\mathrm{C}_{1} \Delta \mathrm{~V}_{\mathrm{e}}\left(2^{9}\right) \\
\Delta \mathrm{M}_{1}=4\left(\mathrm{C}_{2} \mathrm{v}_{\mathrm{s}}\right)-\mathrm{po}_{\mathrm{s}} & \mathrm{C}_{2}=-0.52223476 \\
\Delta \mathrm{M}_{2}=4\left(\mathrm{C}_{2} \mathrm{v}_{\mathrm{e}}\right)-\mathrm{po} &
\end{array}
$$

B. Filter gains

The filter gains are pre-determined in the design process of the simplified filter. The gains are updated every second. The following gains are used.

1. K_{1} multiplies the total pulse counts from the accelerometers (po).
2. K_{2} multiplies the estimated leveling angles (γ and β).
3. K_{3} multiplies the estimated azimuth axis angle (α).
4. K_{4} multiplies the estimated vertical gyro drift (dx).
5. K_{5} multiplies the estimated north-south gyro drift (dy).
6. K_{6} Zero.
7. K_{7} wind induced sway velocity gain.
8. K_{8} wind induced sway accelerometer gain.

For the first 30 seconds K_{1} and K_{2} have the form $A e^{-t / \gamma}$
(see figure $1.5 .1-2$).

$$
\begin{aligned}
& K_{1}=0.935 e^{-0.0912 t} \\
& K_{2}=0.262 e^{-0.208 t}
\end{aligned}
$$

The gains are modified at each sample as follows:

$$
\begin{array}{ll}
\mathrm{K}_{1} \mathrm{a}_{1}=\mathrm{K}_{1} \quad\left[\mathrm{~K}_{1}(0)=.93505870\right] \\
\mathrm{K}_{2} a_{2}=\mathrm{K}_{2} \quad\left[\mathrm{~K}_{2}(0)=.26266423\right]
\end{array}
$$

$\mathrm{K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6}$ are zero initially, then modified as follows:

$$
\mathrm{K}_{3}+\mathrm{a}_{3}=\mathrm{K}_{3}
$$

$$
K_{4}+a_{4}=K_{4}
$$

$$
K_{5}+a_{5}=K_{5}
$$

$$
K_{6}+a_{6}=K_{6}
$$

The values of $a_{1}-a_{5}$ are applicable over specified intervals. The values of $a_{1}-a_{5}$ and their applicable intervals are tabulated in Table 2. The value of a_{6} is zero.

$$
\mathrm{K}_{7}=0.17329931
$$

$$
\mathrm{K}_{8}=-0.00835370
$$

C. State vector update

The state vector variables are updated as follows:

$$
\begin{aligned}
& \alpha+\Delta M_{1}\left(K_{3}\right)=\alpha \\
& \beta+\Delta M_{1}\left(K_{2}\right)=\beta \\
& \gamma+\Delta M_{2}\left(\mathrm{~K}_{2}\right)=\gamma \\
& \mathrm{po}_{\mathrm{s}}+\Delta \mathrm{M}_{1}\left(\mathrm{~K}_{1}\right)=\mathrm{po}_{\mathrm{s}} \\
& \mathrm{po} \mathrm{e}_{\mathrm{e}}+\Delta \mathrm{M}_{2}\left(\mathrm{~K}_{1}\right)=\mathrm{po} e \\
& \mathrm{v}_{\mathrm{s}} \quad+\Delta \mathrm{M}_{1}\left(2 \mathrm{~K}_{7}\right)=\mathrm{v}_{\mathrm{s}} \\
& \mathrm{v}_{\mathrm{e}} \quad+\Delta \mathrm{M}_{2}\left(2 \mathrm{~K}_{7}\right)=\mathrm{v}_{\mathrm{e}} \\
& \mathrm{P}_{\mathrm{s}} \quad \mathrm{P}_{\mathrm{e}} \quad\left\{\begin{array}{l}
\text { These parameters are updated during } \\
\text { launch vehicle parameter extrapolation }
\end{array}\right. \\
& \mathrm{a}_{\mathrm{s}}+\Delta \mathrm{M}_{1}\left(2 \mathrm{~K}_{8}\right)=\mathrm{a}_{\mathrm{s}} \\
& a_{e}+\Delta M_{2}\left(2 K_{8}\right)=a_{e} \\
& d_{y}+\Delta M_{2}\left(K_{5}\right)=d_{y} \\
& d_{x}+\Delta M_{1}\left(K_{4}\right)=d_{x}
\end{aligned}
$$

D. Extrapolation of launch vehicle parameters.

The launch vehicle parameters are extrapolated for the next measurement using the following equations:
$\mathrm{p}(\mathrm{tn}+1)=\left[\mathrm{C}_{1} \mathrm{p}(\mathrm{tn})+\mathrm{C}_{2} \mathrm{v}(\mathrm{tn})+\mathrm{C}_{3} \mathrm{a}(\mathrm{tn})\right]-2$
$v(t n+1)=\left[C_{4} p(t n)+C_{5} v(t n)+C_{6} a(t n)\right] 2$
$\mathrm{a}(\mathrm{tn}+1)=\left\{\mathrm{C}_{7} \mathrm{p}(\mathrm{tn})+\mathrm{C}_{8} \mathrm{v}(\mathrm{tn})+\mathrm{C}_{9} \mathrm{a}(\mathrm{tn})\right] ?$
Where the coefficients C of the transition matrix are:
$C_{1}=0.47408845$
$C_{2}=0.23125894$
$C_{3}=0.14561689$
$C_{4}=-0.06360691$
$C_{5}=-0.16806746$
$C_{6}=0.15582939$
$C_{7}=-0.06806784$
$C_{8}=-0.75079894$
$C_{9}=-0.24878704$
E. Calculation of the sines and cosines of alignment angles for extrapolation of platform variables.

This simply involves computation of the sine and cosine of the various angles using the interpretive trigonometric routines in the CMC program.

The following functions are evaluated:

$$
\begin{array}{ll}
\sin \alpha, & \cos \alpha \\
\sin \beta, & \cos \beta \\
\sin \gamma, & \cos \gamma
\end{array}
$$

F. Extrapolation of stable member variables,

The Euler angles for aligning the stable member to the reference coordinates are computed as follows:
$\bar{W}_{s m}=\left|\begin{array}{c}d x \\ d y \\ d z\end{array}\right|+\left|\bar{Y}_{s m}\right| \bar{W}_{e} \quad \bar{W}_{s m}$ is the angular velocity of the
$\left|Y_{S M}\right|=\left|\begin{array}{lll}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right|\left|\begin{array}{lll}\cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right|\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha \cos \alpha\end{array}\right|$
For vertical drift measurement $W_{S M}^{y}=W_{S M 1}+W_{e_{y}}$

$$
\begin{aligned}
& \left|\begin{array}{l}
\dot{\alpha} \\
\dot{\beta} \\
\dot{\beta} \\
\dot{\gamma}
\end{array}\right|=\left|\begin{array}{lll}
\frac{\cos \beta}{\cos \gamma} & 0 & \frac{\sin \beta}{\cos \gamma} \\
\frac{\sin \gamma \cos \beta}{\cos \gamma} & 1 & \frac{\sin \gamma \cos \beta}{\cos \gamma} \\
-\sin \beta & 0 & \cos \beta
\end{array}\right| \bar{W}_{\sin } \\
& \left|\begin{array}{l}
\alpha \\
\dot{\beta} \\
\gamma
\end{array}\right|=\left\{\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array} \left\lvert\,+\left\{\left.\begin{array}{l}
\dot{\alpha} \mid \\
\dot{\beta} \\
\dot{\gamma} \mid
\end{array} \right\rvert\, \Delta T\right.\right.\right.
\end{aligned}
$$

G. Computation of estimates of velocity to be measured.

This computation adds to the previous value of south and east velocity the component of velocity expected due to the rotation with respect to gravity.

$$
\begin{aligned}
& \hat{\mathrm{po}}_{\mathrm{s}}=\hat{\mathrm{po}}_{\mathrm{s}}+\sin \gamma \mathrm{E} \\
& \widehat{\mathrm{po}}_{\mathrm{e}}=\widehat{\mathrm{po}}_{\mathrm{e}}+\sin \beta \cos \gamma \mathrm{g}
\end{aligned}
$$

1.5.2 Accelerometer Error Measurement

The accelerometer scale factor and bias errors are determined by comparing measured output with local gravity reaction acceleration, The accelerometer is aligned with gravity at the start of the measurement using the estimates of leveling error angles generated by the simplified optimum filter $(1,5,1)$. Pulse rate from the vertical accelerometer is measured. (Figure 1.5.2-1). The pulse rate is converted to $\mathrm{cm} / \mathrm{sec}^{2}$ and displayed.

1.5.3 Gyro Torquing Scale Factor Measurement

The computation of the gyro scale factor is performed by comparing the number of gyro pulses required to drivea CDU through 22.5° to the number for the ideal scale factor. The result is then scaled for display in units of parts/million (ppm). The effect of CDU quantization (40 arc sec) is eliminated by starting the gyro pulse count at the receipt of a CDU bit and stopping at the receipt of the last bit. A gyro pulse corresponds to only approximately 0.62 arc sec so this quantization is not important. Figure 1.5.3-1 shows the flow of these computations.

TABLE 1

Prelaunch Calibration State Vector Components

1. Azimuth Alignment Angle (a)
2. South Axis Leveling Angle (β)
3. East Axis Leveling Angle (γ)
4. South PIPA Velocity Increment (po ${ }_{s}$)
5. East PIPA Velocity Increment (po ${ }_{e}$)
6. Launch Vehicle Velocity; North-South (v_{s})
7. Launch Vehicle Velocity; East-West (v_{e})
8. Launch Vehicle Displacement; North-South (p_{s})
9. Launch Vehicle Displacement; East-West (p_{e})
10. Launch Vehicle Acceleration; North-South (a_{s})
11. Launch Vehicle Acceleration; East-West (a_{e})
12. South Gyro Drift (dy)
13. Vertical Gyro Drift (dx)

TIME (seconds)	a_{1} (Time Constant PIPA Counts)	a_{2} (Time Constant Leveling Angles)	a_{3} (Slope Azimuth Angle)	\mathbf{a}_{4} (Slope Vertical Drift)	\mathbf{a}_{5} (Slope North-South Drift)
$0-30$	0.91230833	0.81193187	-0.00035882	-0.00000029	0.00013262
$31-90$	0.99122133	0.98940595	-0.00079010	-0.00000265	0.00043154
$91-100$	0.99971021	0.99852047	0.00042697	-0.00000213	0.00011864
$101-200$	0.99550063	0.98992124	0.00043452	-0.00000401	-0.00021980
$201-450$	0.99673264	0.99365467	0.00003767	-0.00002317	-0.00003305
$451-790$	0.99924362	0.99888274	0.00000064	-0.00004012	-0.00000195
$791-1200$	0.99963845	0.99913162	0.00000090	-0.00002927	-0.00000026
$1201-1700$	0.99934865	0.99868793	0.00000055	0.00001183	-0.00000005
$1701-2100$	0.99947099	0.99894799	0.00000018	0.00000300	-0.00000001
$2101-2700$	0.99957801	0.99916095	0.0000007	0.00000096	0
$2701-3400$	0.99966814	0.99933952	0.00000002	0.00000028	0
$3401-4000$	0.99972716	0.99945654	0.00000001	0.00000010	0
					0

Table 2 Time Constants and Slopes

Fig. 1.5. 1-1 Operation of the Simplified Optimum Filter

Figure 1.5.1-3 Gain Variation with Time.

Figure 1.5.1-3 Gain Versus Time

* K = Ideal Scale Factor $\times 3200$ (Scaling Constant)
* $\mathrm{m}=.24339048$ gyго pulaes $/ 10 \mathrm{~ms}$
$\left|\mathrm{E}_{\mathrm{rc}}\right|=$ gyro torquing erfor vector
$\left|\mathrm{X}_{\mathrm{Sm}}\right|=\underset{\substack{\text { matrix } \\ \text { coorde }}}{ }$
Fig. 1.5.2-1 Accelerometer Error Measurement Computation

Fig. 1.5.3-1 Gyro Torquing Scale Factor Error Computation

1.6.1 Gyro Drift and Accelerometer Error Test Description

The gyro and accelerometer calibration program requires initialization of approximately 400 erasable memory addresses prior to starting the test. The complete determination of the performance parameters requires repeat of the test 13 times. Each repeat test will reorient the platform with respect to the following reference coordinate system:

$$
\begin{aligned}
& X \text { axis }- \text { in the direction of local gravity } \\
& Y \text { axis - south } \\
& Z \text { axis - east }
\end{aligned}
$$

The initialization data include constants for determination of filter gains (1.3.1), desired stable member orientation, spaceoraft latitude and azimuth and test coding.

The initialization data must be pre-loaded for each of the 13 repeat tests. Each test is terminated with a FRESH START (V36) and assumes a FRESH START has been executed prior to its initialization,

The following flow diagram provides a detailed description of the operation. (Fig. 1.6.1-1)

1.6.2 IRTG Scale Factor Test Description

The stable member is positioned separately for each of six portions of the test. The CMC then positions the platform, torques the gyros, and computes the results without further operator action. The following flow diagram describes the CMC and ground/operator actions required. (Figure 1.6.2-1)
\square Adaded $G S O P \# \mathrm{R}-577 \quad \mathrm{PCR} \# 857 \quad$ Rev. 2 Date_1/70

(continued on next page)

$$
1-38
$$

x Revised

Fig. 1.6.1-1 (Continued)

$$
1-40
$$

Revised
\qquad Date \qquad $1 / 70$

TERMINATE TEST WITH
VERB 36 ENTER
Fig. 1.6.1-1 (continued)

CMC

Fig. 1.6.2-1 CMC and Ground/Operator Actions
(continued on the next page)

Ground/ACE

Fig. 1.6.2-1 (continued)

(Continued on next page)

Fig. 1.6.2-1 (continued)

1.7 Performance Test Data Analysis

1.7.1 IRIG Scale Factor Data

The data for each positionare displayed in R1 at the end of the running of each position in units of ppm. The gyrounder test and the direction of torquing is displayed in R3 as follows:

$$
\begin{array}{ll}
+1 & \text { X gyro positive scale factor } \\
-1 & \text { X gyro negative scale factor } \\
+2 & \text { Y gyro positive scale factor } \\
-2 & \text { Y gyro negative scale factor } \\
+3 & \text { Z gyro positive scale factor } \\
-3 & \text { Z gyro negative scale factor }
\end{array}
$$

Plus SF error is displayed witha+sign in Rl. The scale factor is defined as $0.61798096 \mathrm{sec} /$ pulse $(1+$ SFE $)$. The test should be run four times for each gyro in each direction and the results averaged. This is to smooth the effects of occasional 1 pulse irregularities in the CDU pulse rate.

1.7.2 Gyro Drift Data

The model equation used for gyro drift is:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{d}}= & \mathrm{D}_{\mathrm{B}}+\mathrm{D}_{\mathrm{I}}(\mathrm{SF})_{\mathrm{I}}+\mathrm{D}_{\mathrm{S}}(\mathrm{SF})_{\mathrm{S}}+\mathrm{D}_{\mathrm{O}}(\mathrm{SF})_{\mathrm{O}}+\mathrm{D}_{\mathrm{H}}(\mathrm{SF})_{\mathrm{I}}^{2}-\mathrm{D}_{\mathrm{SS}}(\mathrm{SF})_{\mathrm{S}}^{2} \\
& +\mathrm{D}_{\mathrm{OO}}(\mathrm{SF})_{\mathrm{O}}^{2}+\mathrm{D}_{\mathrm{IS}}(\mathrm{SF})_{\mathrm{I}}(\mathrm{SF})_{\mathrm{S}}+\mathrm{D}_{\mathrm{IO}}(\mathrm{SF})_{\mathrm{I}}(\mathrm{SF})_{\mathrm{O}}+\mathrm{D}_{\mathrm{OS}}(\mathrm{SE})_{\mathrm{O}}^{(S F)} \mathrm{S}
\end{aligned}
$$

where subscripts I, S, and O refer to input, spin and output axes respectively,
$W_{\mathrm{d}}=$ gyro drift rate, defined as positive by the drift rate vector pointing along gyro input axis.
$D_{B}=$ bias or non-acceleration sensitive drift rate
$=$ NBD in Apollo nomenclature
$D_{1}=$ drift rate proportional to specific force along input axis
$=$ ADIA in Apollo nomenclature
$D_{S}=$ drift rate proportional to specific force along spin axis
$=$ ADSRA in Apollo nomenclature
$D_{O}=$ drift rate proportional to specific force along output axis
$=$ ADOA in Apollo nomenclature
$D_{\mathrm{II}}=$ drift rate proportional to specific force squared along input axis

$$
\begin{aligned}
D_{O O}= & d r i f t ~ r a t e ~ p r o p o r t i o n a l ~ t o ~ s p e c i f i c ~ f o r c e ~ s q u a r e d ~ a l o n g ~ o u t p u t ~ a x i s ~ \\
D_{S S}= & \text { drift rate proportional to specific force squared along spin axis } \\
D_{\text {IS }}= & d r i f t ~ r a t e ~ p r o p o r t i o n a l ~ t o ~ t h e ~ p r o d u c t ~ o f ~ s p e c i f i c ~ f o r c e ~ a l o n g ~ i n p u t ~ \\
& \text { and spin axes } \\
D_{I O}= & d r i f t ~ r a t e ~ p r o p o r t i o n a l ~ t o ~ t h e ~ p r o d u c t ~ o f ~ s p e c i f i c ~ f o r c e ~ a l o n g ~ i n p u t ~ \\
& \text { and output axes } \\
D_{O S}= & \text { drift rate proportional to the product of specific force along output } \\
& \text { and spin axes }
\end{aligned}
$$

The gyrodrift performancetest produces data on the NBD, ADSFA, ADIA and ADOA terms in the equation. The other terms are expected to contribute very little. The NBD, ADSRA and ADIA terms are the only ones compensated for by the in-flight gyro drift compensation program.

Position	Stable Member Orientation	Drift Equation (DH $=$ Horizontal Drift; DV $=$ Vertical Drift)
1	$\mathrm{X}_{\text {SM }}$ DOWN	$\mathrm{DH}_{1}=\mathrm{NBDY}-\mathrm{ADOAY}$
	$\mathrm{Y}_{\text {SM }}$ SOUTH	
	$\mathrm{z}_{\text {SM }}$ WEST	
2	$\mathrm{X}_{\text {SM }}$ DOWN	$\mathrm{DH}_{2}=\mathrm{NBDZ}-\mathrm{ADO} A \mathrm{Z}$
	$\mathrm{Y}_{\text {SM }}$ WEST	$D V_{2}=-\mathrm{NBDX}+\mathrm{ADIAX}$
	$\mathrm{Z}_{\text {SM }}$ NORTH	
3	$\mathrm{X}_{\text {SM }}$ SOUTH	$\mathrm{DH}_{3}=+\mathrm{NBDX}-\mathrm{ADO} . \mathrm{X}$
	$\mathrm{Y}_{\text {SM }}$ WEST	
	$\mathrm{z}_{\text {SM }}$ DOWN	
4	$\mathrm{X}_{\text {SM }}$ EAST	$\mathrm{DH}_{4}=\mathrm{NBDY}+\mathrm{ADSRAY}$
	$\mathrm{Y}_{\text {SM }}$ SOUTH	$D V_{4}=N B D Z+A D T A Z$
	$\mathrm{Z}_{\text {SM }}$ DOWN	
5	$\mathrm{X}_{\text {SM }}$ WEST	No drift data for this position
	$\mathrm{Y}_{\text {SM }}$ UP	
	$\mathrm{z}_{\text {SM }}$ NORTH	

Position	Stable Member Orientation	Drift Equation
6	$\mathrm{X}_{\text {SM }}$ SOUTH	No drift data for this position
	$\mathrm{Y}_{\text {SM }}$ DOWN	
	Z_{SM} EAST	
7	$\mathrm{X}_{\text {SM }}$ NORTH	$\mathrm{DH}_{7}=-\mathrm{NBDX}+\frac{1}{\sqrt{2}} \operatorname{ADSRAX}-\frac{1}{\sqrt{2}} \mathrm{ADOAX}$
	$\mathrm{Y}_{\text {SM }}$ UP-WEST	
	$Z_{\text {SM }}$ UP-EAST	
8	$\mathrm{X}_{\text {SM }}$ EAST	$\begin{aligned} \mathrm{DH}_{\mathrm{g}}= & \frac{1}{\sqrt{2}}(-\mathrm{NBDZ}-\mathrm{NBDY}) \\ & +1 / 2(\operatorname{ADIAZ}-\operatorname{ADIAY}) \\ & +1 / 2(\text { ADSRAY }+\operatorname{ADSRAZ}) \end{aligned}$
	$\mathrm{Y}_{\text {SM }}$ UP-NORTH	
	$Z_{\text {SM }}$ UP-SOUTH	
9	$\mathrm{X}_{\text {SM }}$ UP-EAST	$\mathrm{DH}_{9}=\frac{1}{\sqrt{2}} \mathrm{ADSRAZ}-\mathrm{NBDZ}-\frac{1}{\sqrt{2}} \mathrm{ADOAZ}$
	$\mathrm{Y}_{\text {SM }}$ UP-WEST	
	$\mathrm{Z}_{\text {SM }}$ SOUTH	
10	$\mathrm{X}_{\text {SM }}$ UP-NORTH	$\begin{aligned} \mathrm{DH}_{10}= & \frac{1}{\sqrt{2}}(\mathrm{NBDY}-\mathrm{NBDX}) \\ & -1 / 2(A D T A Y-A D I A X) \\ & -1 / 2(A D S R A X)+\frac{1}{2} A D O A Y \end{aligned}$
	$\mathrm{Y}_{\text {SM }}$ UP-SOUTH	
	$\mathrm{Z}_{\text {SM }}$ EAST	
11	$\mathrm{X}_{\text {SM }}$ NORTH	$\mathrm{DH}_{11}=-\mathrm{NBDX}-\mathrm{ADONX}$
	$\mathrm{Y}_{\text {SM }}$ WEST	
	$\mathrm{z}_{\text {SM }}$ UP	
12	$\mathrm{X}_{\text {SM }} \mathrm{UP}$	$\mathrm{DH}_{12}=\mathrm{NBDY}+\mathrm{ADOAY}$
	$\mathrm{Y}_{\text {SM }}$ SOUTH	
	$\mathrm{Z}_{\text {SM }}$ EAST	
13	$\mathrm{X}_{\mathrm{SM}} \mathrm{UP}$	$\mathrm{DH}_{13}=\mathrm{NBDZ}+\mathrm{ADOAZ}$
	$\mathrm{Y}_{\text {SM }}$ EAST	
	$\mathrm{Z}_{\text {SM }}$ NORTH	

The equations for compensable drift terms in terms of the horizontal and vertical drift measurements are:

$$
\begin{aligned}
& \text { NBDX }=1 / 2\left(\mathrm{DH}_{3}-\mathrm{DH}_{11}\right) \\
& \mathrm{NBDY}=1 / 2\left(\mathrm{DH}_{1}+\mathrm{DH}_{12}\right) \\
& \mathrm{NBDZ}=1 / 2\left(\mathrm{DH}_{2}+\mathrm{DH}_{13}\right) \\
& \text { ADSRAX }=\sqrt{2}\left|\mathrm{DH}_{7}+1 / 2\left(\mathrm{DH}_{3}-\mathrm{DH}_{11}\right)\right|-\frac{1}{2}\left(\mathrm{DH}_{11}+\mathrm{DH}_{3}\right) \\
& \text { ADSRAY }=\mathrm{DH}_{4}-1 / 2\left(\mathrm{DH}_{1}+\mathrm{DH}_{12}\right) \\
& A D S R A Z=\sqrt{2}\left[\mathrm{DH}_{9}+1 / 2\left(\mathrm{DH}_{2}+\mathrm{DH}_{13}\right)\right]+\frac{1}{2}\left(\mathrm{DH}_{13}-\mathrm{DH}_{2}\right) \\
& \text { ADIAX }=\mathrm{DV}_{2}+1 / 2\left(\mathrm{DH}_{3}-\mathrm{DH}_{11}\right) \\
& A D I A Y=2 \mathrm{DH}_{10}-\frac{1}{\sqrt{2}} \mathrm{DH}_{1}-\frac{1}{\sqrt{2}} \mathrm{DH}_{12} \\
& +\mathrm{DH}_{3}+\mathrm{DV}_{2}-\sqrt{2} \mathrm{DH}_{7}+\frac{1}{2}\left(\mathrm{DH}_{1}-\mathrm{DH}_{12}\right) \\
& A D T A Z=D V_{4}-1 / 2\left(\mathrm{DH}_{2}+\mathrm{DH}_{13}\right) \\
& \mathrm{ADOAX}=-1 / 2\left(\mathrm{DH}_{11}+\mathrm{DH}_{3}\right) \text { (Not compensated) } \\
& \text { ADOAY }=1 / 2\left(\mathrm{DH}_{12}-\mathrm{DH}_{1}\right)(\text { Not compensated }) \\
& A D O A Z=1 / 2\left(\mathrm{DH}_{13}-\mathrm{DH}_{2}\right)(\text { Not compensated })
\end{aligned}
$$

1.7.3 Accelerometer Scale Factor Error and Bias Error Data The complete accelerometer model equation is:

Specific Force Indicated $=A_{B}+A_{I}(S F)_{T}+A_{P}(S F)_{P}+A_{Q}(S F)_{\mathrm{O}}+A_{H}(S F)_{1}^{2}$

$$
+A_{\mathrm{IP}}(\mathrm{SF})_{\mathrm{I}}(\mathrm{SF})_{\mathrm{P}}+\mathrm{A}_{\mathrm{IO}}(\mathrm{SF})_{\mathrm{I}}(\mathrm{SF})_{\mathrm{O}}+\mathrm{A}_{\mathrm{PO}}(\mathrm{SF})_{\mathrm{P}}(\mathrm{SF})_{\mathrm{O}}
$$

where subscripts I, P, and O refer to input, pendulous and output axes respectively.
$\mathrm{A}_{\mathrm{B}} \quad=$ bias coefficient, insensitive to specific forces
$\mathrm{A}_{\mathrm{T}}=$ seale factor of instrument
$A_{p}, A_{O}=$ cross coupling coefficients
$\mathrm{A}_{\text {II }}=$ specific force squared coefficient
A $\quad=$ coefficient for the product of specific force along inpat and pendulous axes
${ }^{\mathrm{A}} \mathrm{IO}=$ coefficient for the product of specific force along input and output axes
${ }^{\text {APO }}=$ coefficient for the product of specific force along pendulous and output axes

The accelerometer test data are used to determine only the bias and scale factor coefficients. The other terms are not separately measured or compensated.

The simplified equation for the accelerometer model is:

Specific Force Indicated = Bias + scale Factor (Specilic Force along input axis)

The specific force used in the test is dee to the gravity reaction acceleration. The comparison of the indicated magnitude of the gravity reaction acceleration and the known local gravity provides the calibration of the accelerometer. The scale factor error and bias are separated by reversing the direction of the specific force along the input axis.

For the X and Z accelerometers the orientation of the input axis parallel to the direction of local gravity is easily accomplished by use of the data from the other two accelerometers. For the Y accelerometer the gimbal configuration does not allow accurate positioning, therefore data from the other two accelerometers is used in the data analysis to coveect for input axis alignment errors.

Position	Stable Nember Orientation	\ocelerometer Error Equation
12	X_{SM} UP	$\mathrm{f}_{\mathrm{ml}}=\mathrm{b}_{\mathrm{X}}-(1-\mathrm{SFE}) \mathrm{g}$
	$\mathrm{X}_{\text {SM }}$ SOUTH	
	$\mathrm{Z}_{\text {SM }}$ EAST	
2	$\mathrm{X}_{\text {SM }}$ DOWN	$g_{m 2}=b_{x}-(1-S F E)(-g)$
	$\mathrm{Y}_{\text {SM }}$ WEST	
	$\mathrm{Z}_{\text {SM }}$ NORTH	
11	$\mathrm{X}_{\text {SM }}$ NORTH	$\mathrm{a}_{\mathrm{m} 3}=\mathrm{b}_{\mathrm{z}}-(1-\mathrm{SFE}) \mathrm{g}$
	$Y_{\text {SM }}$ WEST	
	Z_{SM} UP	

> 4
> $X_{S M}$ EAST
> $g_{m 4}=b_{z}+(1-S F E)(-g)$
> Y_{SM} SOUTH
> Z_{SM} DOWN
> 5
> $\mathrm{X}_{\text {SM }}$ WEST
> $g_{m 5}=b_{y}+(1-S F E) g$
> Y_{SM} UP
> $\mathrm{Z}_{\mathrm{SM}} \mathrm{NORTH}$
> 6
> $\mathrm{X}_{\text {SM }}$ SOUTH $g_{m 6}=b_{y}+(1-\operatorname{SFE})(-g)$
> $\mathrm{Y}_{\text {SM }}$ DOWN
> $Z_{\text {SM }}$ EAST
> $g_{\mathrm{m}}=$ measured gravity reaction acceleration $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$ calculated using ideal scale factor of $5.85 \mathrm{~cm} / \mathrm{sec} / \mathrm{pulse}$
> $\mathrm{g} \quad=$ local gravity reaction acceleration ($\mathrm{cm} / \mathrm{sec}^{2}$)
> $b_{i}=$ bias of i accelerometer $\left(\mathrm{cm} / \sec ^{2}\right)_{i}=x, y, z$
> $\mathrm{SF}_{\mathrm{i}}=$ scale factor of i accelerometer in cm/sec/pulse
> $S F E=$ scale factor error in parts-per-million defined as positive when $\mathrm{SF}_{\mathrm{i}}>$ ideal scale factor

For positions 5 and 6 the misalignment angle θ_{y} between the Y accelerometer and the vertical shall be determined from pulse rate data from the other two accelerometers.

$$
\begin{aligned}
& \theta_{y}=\sqrt{\theta_{x}^{2}+\theta_{z}^{2}} \\
& \theta_{z}=\frac{\left(\Delta V_{x}-\Delta V_{x} B_{x}\right) S F_{x}}{\Delta T \mathrm{~g} \text { local }} \\
& \theta_{\mathrm{z}}=\frac{\left(\Delta V_{z}-\Delta V_{z} B_{z}\right) S F_{z}}{\Delta T g \text { local }}
\end{aligned}
$$

where $\Delta V=$ number of velocity increments accumulated in ΔT

$$
\Delta V_{i} B_{i}=\frac{b_{i} \Delta T}{S F_{i}}
$$

$g_{m 5,6}$ will be modified by the misalignment θ_{y} as follows:

$$
\begin{aligned}
& g_{m 5^{\prime}}=g_{m 5} \sec \theta_{y 5} \\
& g_{m 6^{\prime}}=g_{m 6} \sec \theta_{y 6}
\end{aligned}
$$

$g_{m 5}$, and $g_{m 6}$, are used to determine Y accelerometer scale factor and bias error coefficients.

The equation for calculating scale factor error for the accelerometer is:

$$
\mathrm{SFE}_{\mathrm{i}}=1-\frac{\mathrm{g}_{\mathrm{mj}}-\mathrm{g}_{\mathrm{m}(\mathrm{j}+1)}}{2 \mathrm{glocal}} \times 10^{6} \mathrm{ppm}
$$

The equation for determining bias error for the accelevometer is:

$$
b_{i}=\frac{g_{m j}+g_{m(j+1)}}{2} \mathrm{~cm} / \sec ^{2}
$$

Group 23A

Group 23B

Group 23B

Group 23B

Group 23H

Group 23C

S. MacDougall		IL $7-205$
T. Brand		G. Levine
P. Brennan		E. Muller
P. Chin		C. Pu
J. Higgins	M. Reber	
P. Kachmar	W. Robertson	

$\frac{\text { ILT-221L }}{\text { B. Ireland }}$
S. Jennings
J. Laird
N. Neville
W. Ostanek
R. Whittredge
$\frac{117-228}{17.5 \sin }$
J. Klawsnik
11. Maher
H. Nayar
J. Reed (20)
D. Reinke
J. B. Smith
F. Williams
P. Wolff

117-221L
M. Hamilton
D. Hisiung
E. Hughes
D. Lollar
S. Rosenberg
P. Rye
N. Smith

IL.7-23.4A
$\begin{array}{ll}\text { B. Lynn } & \frac{\text { IL }-23.4 \mathrm{~A}}{\text { G. Deutsch }} \\ \text { G. Gossuth } \\ \text { S. Goldberger } & \text { J. O'Connor }\end{array}$
$\begin{array}{ll}\text { B. Lynn } & \frac{\text { IL }-23.4 \mathrm{~A}}{\text { G. Deutsch }} \\ \text { G. Gossuth } \\ \text { S. Goldberger } & \text { J. O'Connor }\end{array}$
M. Erickson IL11-102
R. Bairnstather A. Penchuk
D. Fraser
G. Kalan
R. Schlundt
D. Keene
R. Stengel
J. Turnbull

Group	23D	$\begin{aligned} & \text { F. McGann } \\ & \text { G. Dimock } \\ & \text { J. Dunbar } \\ & \text { I. Johnson } \\ & \text { R. Kiburz } \\ & \text { R. Metzinger } \\ & \text { E. Olsson } \end{aligned}$	IL7-332 R. Schulte A. Sewall S. Schroeder S. Smith F. Walsh W. Woolsey	12
Group	23D	$\frac{\text { S. Prangley }}{\text { J. Nevins }}$	1L.7-209	1
Group	23P	$\frac{\text { C. Mitaris }}{\text { S. Copps }}$	$\frac{1 L .7-213}{\text { R. Larson }}$	2
Group	23 P	$\frac{\text { A. Rubin }}{\text { D. Hoag }}$	$\frac{1 \mathrm{~L} 7-252}{\text { L. Larson }}$	2
Group	23P	$\frac{\text { E. Johnson }}{\text { R. Ragan }}$	$\frac{11.7-248}{\text { W. Stameris }}$	2
Group	23 S	$\begin{aligned} & \text { P. Amsler } \\ & \text { M. Adams } \\ & \text { P. Felleman } \\ & \text { H. McOuat } \end{aligned}$	IL 7-240 R. Strunce R. Werner R. White	6
Group	23 T	$\begin{aligned} & \text { D. Farrell } \\ & \hline \text { W. Day } \\ & \text { G. F.dmonds } \\ & \text { F. Grace } \\ & \text { K. Kido } \\ & \text { J. Lawrence } \\ & \text { R. Lones } \end{aligned}$	$\frac{\text { IL } 7-1 \pm 0}{\text { V. Megna }}$ J. Reedy N. Sears 3. Silver J. St. Armand	11
Group	23 N	$\begin{aligned} & \frac{\text { G. Grover }}{\text { E. Blanchard }} \\ & \text { L. B. Johnson } \end{aligned}$	$\begin{aligned} & \frac{\text { IL11-202 }}{\text { G. Ogletree }} \\ & \text { T. Parr } \end{aligned}$	4
Group	33	$\begin{aligned} & \frac{\text { J. Hargrove }}{\text { L. Drane }} \\ & \text { K. Glick } \end{aligned}$	$\frac{\frac{1 L .7-111}{\text { P. Mimno }}}{\text { M. Johnson }}$	4
Group	23 P	$\frac{\text { J. Sutherland }}{\text { K. Greene }}$	$\frac{1 L .7-266}{G . S t u b b s}$	2
APOLI	0 Library			2
MIT/IL	Library			2

MIT Instrumentation Laboratory (5)
P. O. Box 21025
Kennedy Space Center, Florida 32815
Attn: Mr. R. O'Donnell
MIT Instrumentation Laboratory(3)
Code EG/MIT Building 16
NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. Thomas Lawton
NASA MSC HW
Building M7-409
Kennedy Space Center, Florida 32815
Attn: Mr. Frank Hughes
Mr. A. Metzger (NASA/RASPG at NHT/IL)(10)
AC Flectronics Division
Gencral Motors Corporation
Milwaukee, Wisconsin
Atti: Mr. J. Stridde Dept. 32-31(13)
Attn: Mr. F. Dasse (2)
Attn: Mr: W. Siarnicki Dept 38-02 (1)
Kollsman Instrument Corporation(1)
575 Underhill Boulevard
Syosset, Long TslandAttn: Mr. F. McCoy
Raytheon CompanyBoston Post Road
Sudbury, Massachusetts 01776
Attn: Mr. R. Zagrodnick
NASA/MSFC National Aeronautics atid Space Moministration George C. Marshall Space Flight CenterHuntsville, MabamaAttri: J. Mack R-ASTR-5
(1)
Attr: V. Buckelew Sot:-ATRO-JEG (1)
A. Deaton $\mathrm{P}-\mathrm{AEPO}-\mathrm{DG}$ (1)

1. Moore R-ASTR-N (1)
H. Hosenthien R-MSTR-F (1)
d. McNair [-MO-R (1)
D. Germany $1-\mathrm{T} / \mathrm{IB}-\mathrm{I}$. (1)
R. Barraza I-V-E (1)
W. Chubb R-45TR/NG (1)
J. McCullough I-VE: 'T (1)
NASA/MSC National Aeronautics and Space Administration Manned Spacecraft Center
Apollo Document Control Group (BM 86) Houston, Texas 77058
Attn. J. Williams, FS5 (letter of transmittal only)

EELLCOMM	Belleomm, Ine. 110017 th Street N.W. Washington, D.C. 20036 Attn: Info, Analysis Section	(6)
LINK	LINK Group, GPSI SIMCOM 1740 A NASA Eoulevard Ilouston, Texas 77058 Attr: Mr, D. Klingbell	(3)
TRW	H. V. Kienherger Blda 82 Room 2045 TRW Systertis GToup Gne Space Park Redonda Beach. Calif 90278	(5)
NASN/GSFC	```National \eronautic< and Space Administration Goddard Space Flight Center Greenbelt, Maryland Attn: Mr. Paul Peshby, Code B1.3```	(2)
(iA	Grummath Serospuce LEMC Cten System- Bethpage, Lone Isiand, New York 11714 Vttm: Mr. J, Matine Attr: Mr. R. Pratt	(2)
$N B R$	North Nmerican Rockwell Ine. Space and Information svitems Jivision $1221+$ Lakewood IBoulevard Downey, Califormia 90241 Atta: Xrolles Data liequirements: Dequ. ($186-340$ Puileme - 3.6 : 99	$(1+112)$
$\begin{aligned} & \text { NASA/RASPO } \\ & \mathrm{NAR} \end{aligned}$	National sefomautie- and space bamini-tration Restdent Mpollo spacuctaft I'rogram Office Nocth Xmerican korkwell, Itic Space and loformation systems I hivizion $1221+1$ akewoon Roulevard Downey. Californta	(1)
NASA/KSC	Sational Xeronautics and Spacs idminietration John 1. Kembedy ipace cented 1. F. Kenaedy space Center. Hlorida 328999 Atn: Technical Document Control Office	(3)
$\begin{aligned} & \mathrm{NASA} / 13 \mathrm{SPG} \\ & \mathrm{GE} \end{aligned}$	```N1SA Daytonat Beach Operatios P. O. Box 2500 Thaytona Beach, Florida 32015 Attm: Mr. \. S. Lyman```	(1)
NASA/HDQ	NaSA Headquarter- 600 Independence Avenue sw Washinston, D. C. 20545 Attn: MAP-2 Attn: Alission Director, Code MA Attn: Robert Mller, Code M MO	(6)

600 Independence Avenue sw

Attn: Mission Director, Cade MA
Attn: Robert Mller, Code M WO

NASN/LEWIS	National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Attn: Library	(2)
NASA/FRC	National Aeronautics and Space Administration Flight Research Center Edwards AFB, California Attn: Research Library	(1)
NASA/LRC	National Neronautics and Space Administration Langley Research Center Langley AFE. Virginia Attn: Mr. A. I. Mattson	(2)
$\mathrm{NAR} / \mathrm{KSC}$	```Kennedy Space Center, Florida 32815 N. S. O. B. North American Mail Station ZK69 Attn: Donild Matteson```	(1)
$\begin{aligned} & \text { NASA/HASI } \\ & \text { GA } \end{aligned}$	National Aeronautict and Space Administration Resident pollo Spaceeraft 尸rogram Officer Girumman Aerospace L.LM Crew systems Bethpage, l.ong Island, New York 1171き	(1)
NASA/WSMH	National Aeronauties and Space idministration Post Office Drawer 3TM Las Cruces, New Mrxico Attn: RH4 Documentation	(2)

