MSC INTERNAL NOTE NO. 72-FM-39

February 10, 1972

SPACECRAFT OPERATIONAL TRAJECTORY FOR

APOLLO 16 (MISSION J-2) LAUNCHED APRIL 16, 1972
VOLUME II - TRAJECTORY PARAMETERS

> Mission Integration Branch and Flight Performance Branch MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER hoUston, TEXAS

PROJECT APOLLO

SPACECRAFT OPERATIONAL TRAJECTORY FOR APOLLO 16 (MISSION J-2) LAUNCHED APRIL 16, 1972 VOLUME II - TRAJECTORY PARAMETERS

By Mission Integration Branch and Flight Performance Branch

February 10, 1972
MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

This operational trajectory document contains the operational trajectory data for an April 16, 1972, launch. It supersedes the Apollo 16 documents MSC IN 71-FM-388, MSC IN 71-FM-401, and MSC IN 72-FM-14. The document comprises two volumes. Volume I contains a verbal and graphical description of the mission, and volume II contains the trajectory printout.

At this time no revision to this trajectory document is planned. Any mission changes that occur subsequent to publication will be published as changes notifications.

CONTENTS

Section Page
1.0 SUMMARY AND INTRODUCTION 5
2.0 SYMBOL DEFINITIONS AND COORDINATE SYSTEM DESCRIPTION 23
3.0 MISSION GUIDELINES AND CONSTRAINTS 49
4.0 MISSION SUMMARY 51
5.0 INPUT DATA 917
6.0 RADAR AND SHADOW DATA 929
7.0 REFERENCES 1190

TABLES
Table Page
I-I SEQUENCE OF MAJOR EVENTS
C. W. Pace, E. D. Murrah/FM13 9
I-II LAUNCH WINDOW SUMMARY
D. R. Lostak/FM2 19
4-I EARTH PARKING ORBIT
D. R. Lostak/F'M2 53
4-II TRANSLUNAR COAST
D. R. Lostak/FM2 614-III LUNAR ORBIT INSERTION TO PDID. R. Lostak/F'M2
(a) LOI burn 143
(b) Coast to DOI 157
(c) DOI 168
(d) Coast to undocking and separation 174
(e) Separation 209
(f) Coast to circularization 213
(g) Circularization burn 248
(h) Coast to PDI 254
4-IV CSM PARAMETERS FROM PDI TO LM LANDING
B. G. Taylor/FM4
(a) Inertial selenocentric Cartesian (position and velocity) and polar coordinates 275
(b) Rotational selenographic polar coordinates (position and velocity) and selenocentric osculating elements 280
(c) CSM line-of-sight parameters relative to landing site 2854-V LM PARAMETERS FROM PDI TO LM LANDINGB. G. Taylor/FM4
(a) Initialization parameters 293
(b) Inertial selenocentric Cartesian (position and velocity) and polar coordinates 294
(c) Inertial selenocentric ideal IMU coordinates (PGNS navigated position and velocity) 299
(d) Inertial selenocentric Cartesian coordinates (AGS navigated position and velocity) 304
(e) Rotational selenographic parameters 309
(f) LM line-of-sight parameters relative to landing site 314
(g) Selenocentric osculating elements 319
(h) Performance and weight parameters - PDI to touchdown 324
(i) Descent propellant summary - PDI to touchdown 329
(j) Landing radar parameters - PDI to touchdown 334
(k) Powered landing guidance displays - PDI to touchdown 339
(1) Powered landing guidance parameters - PDI to touchdown 344
(m) PGNS navigated parameters - PDI to touchdown 349
(n) Horizon and FDAI angles 354
(o) Three-body relationship - LM referenced 359
(p) Aspect angles 364
(q) Vehicle attitude and rates 369
4-VI LM-CSM RELATIVE PARAMETERS FROM PDI TO LM LANDING B. G. Taylor/FM4 377
4-VII CSM PARAMETERS FROM LM LANDING TO LM ASCENT
D. R. Lostak/FM2
(a) Coast to LOPC-1 385
(b) LOPC-1 burn 490
(c) Coast to second pass over LLS 495
4-VIII CSM PARAMETERS DURING LM ASCENT PHASE
W. C. Lamey/FM4
(a) Inertial selenocentric Cartesian (position and velocity) and polar coordinates 537
(b) Rotational selenographic polar coordinates (position and velocity vectors) and selenocentric osculating elements 540
(c) CSM line-of-sight parameters relative to landing site 543
4-IX LM PARAMETERS DURING ASCENT PHASE
W. C. Lamey/FM4
(a) Initialization parameters 549
(b) Inertial selenocentric Cartesian (position and velocity) and polar coordinates 550
(c) Inertial selenocentric ideal IMU coordinates (PGNS navigated position and velocity) 553
(d) Inertial selenocentric Cartesian coordinates
(AGS navigated position and velocity 556
(e) Rotational selenographic parameters 559
(f) LM line-of-sight parameters relative to landing site 562
(g) Selenocentric osculating elements 565
(h) Performance and weight parameters 568
(i) Ascent propellant summary 571
(j) PGNS ascent guidance parameters - local vertical coordinate systems 574
(k) PGNS ascent guidance parameters - guidance (position) and LM-body axis ($V_{\text {go }}$ vector)
coordinate systems 577
(1) Horizon and FDAI angles 580
(m) Three-body relationship - LM referenced 583
(n) Aspect angles 586
(o) Vehicle attitude and rates 589
4-X LM-CSM RELATIVE PARAMETERS DURING ASCENT PHASE
W. C. Lamey / FM4 595
4-XI CSM PARAMETERS DURING LM-ACTIVE RENDEZVOUS
R. H. Moore/FM2
(a) Inertial selenocentric parameters - Cartesian coordinates 603
(b) Inertial selenographic parameters - Cartesian coordinates 605
(c) Selenographic polar coordinates 607
(d) Orbital elements 609
4-XII LM PARAMETERS DURING LM-ACTIVE RENDEZVOUSR. H. Moore/FM2
(a) Inertial selenocentric parameters - Cartesian coordinates 613
(b) Inertial selenographic parameters - Cartesian coordinates 615
(c) Selenographic polar coordinates 617
(d) Orbital elements 619
(e) Relative parameters 621
(f) Attitudes 624
(g) Performance parameters 626
Table Page
4-XIII POSTRENDEZVOUS TO TEI
D. R. Lostak/FM2
(a) CSM/LM coast to separation burn 631
(b) CSM separation burn and coast to LOPC-2 644
(c) LOPC-2 burn and coast to shaping burn 682
(d) Shaping burn and coast to subsatellite jettison 733
(e) Subsatellite jettison and coast to TEI 740
(f) LM jettison 789
(g) LM coast to deorbit 791
(h) LM deorbit burn 799
(i) LM coast to impact 801
4-XIV TEI BURN
D. R. Lostak/FM2 805
4-XV TRANSEARTH COAST TO ENTRY
D. R. Lostak/FM2 819
4-XVI ENTRY
D. W. Heath/FM4
(a) Position vector 889
(b) Velocity vector 893
(c) Position and velocity vector - earth centered inertial coordinate system 897
(d) IMU gimbal angles 901
(e) Aerodynamic attitudes and load factors 905
(f) Heating parameters 909
(g) Aerodynamic and guidance parameters 913
5-I LUNAR LANDING SITE POSITION
B. G. Taylor/FM4 919
5-II SPACECRAFT WEIGHT SUMMARY
D. R. Lostak/FM2; W. C. Lamey/FM4
(a) CSM and LM 923
(b) LM ascent weight summary 924
5-III ENGINE PERFORMANCE SUMMARYD. R. Lostak/FM2; B. G. Taylor, W. C. Lamey/FM4
(a) Service module propulsion performance summary 927
(b) Lunar module performance tabular inputs 928
6-I MISSION RADAR TIME LINE
E. M. Jiongo/FM2
(a) STDN station characteristics 931
(b) Definitions of radar table headings 932
(c) CSM acquisition and termination - 0° minimum elevation 933
(d) LM acquisition and termination during descent - 0° minimum elevation 965
(e) LM acquisition and termination during ascent - 0° minimum elevation 966
(f) LM acquisition and termination during rendezvous - 0° minimum elevation 967
(g) CSM acquisition and termination - 3° minimum elevation 977
(h) LM acquisition and termination during descent - 3° minimum elevation 1008
(i) LM acquisition and termination during ascent - 3° minimum elevation 1009
(j) LM acquisition and termination during rendezvous - 3° minimum elevation 1010
6-II MISSION SHADOW TIME LINEE. M. Jiongo/FM2
(a) CSM 1023
(b) LM descent 1055
(c) LM rendezvous 1056
A-I SATELLITE TRAJECTORY AND TRACKING DATAD. R. Lostak, E. M. Jiongo/FM2
(a) Trajectory data 1061
(b) Radar tracking data 1135
A-II TRANSEARTH TRAJECTORY IN THE EVENT OF NO LOID. R. Lostak/FM21149

CSM PARAMETERS FROM PDI TO
LM LANDING

LM PARAMETERS FROM PDI TO
LM LANDING

LM/CSM RELATIVE PARAMETERS FROM PDI TO LM LANDING

CSM PARAMETERS FROM LM LANDING TO LM ASCENT

CSM PARAMETERS DURING LM ASCENT PHASE

LM PARAMETERS DURING LM ASCENT PHASE

5

SPACECRAFT OPERATIONAL TRAJECTORY

FOR APOLLO 16 (MISSION J-2)
LAUNCHED APRIL 16, 1972
VOLUME II - TRAJECTORY PARAMETERS
By Mission Integration Branch and Flight Performance Branch

1.0 SUMMARY AND INTRODUCTION

1.1 Summary

In volumes I and II of the Spacecraft Operational Trajectory, a detailed description of the mission profile for Apollo 16 is presented. The nominal launch date of April 16, 1972, was used for this trajectory simulation.

Translunar injection places the spacecraft on a translunar trajectory with a $71.4-n$. mi. perilune altitude. This trajectory exceeds the requirements that the spacecraft be earth-returnable within RCS capability up to TLI +5 hours, and/or be returnable within DPS capability at perilune + 2 hours in the event of no LOI burn. An evasive maneuver is performed by the S-IVB prior to the LOX dump as was done on Apollo 15. This maneuver will place the discarded S-IVB on a lunar impact trajectory.

The lunar orbit time line from LOI to LM landing has been decreased by one orbit from that of Apollo 15 because one orbit between CSM/LM separation and LM landing was deleted. The lunar surface stay time has been increased to 37 revolutions or 73 hours. After LM jettison, there is a LM ascent stage deorbit maneuver which results in a lunar impact as was done on Apollo 15. There is a plane change after LM jettison and there is a l-day lunar orbit science period. TEI occurs at the end of revolution 75 .

For the nominal mission, the launch time is $11^{\mathrm{h}} 54^{\mathrm{m}}$ c.s.t., and the flight azimuth is $\sim 72.0^{\circ}$. Translunar injection occurs during the second revolution over the Pacific Ocean.

The mission duration is approximately 12 days, 3 hours. The translunar flight time is $71^{h} 50^{m}$. The time spent in lunar orbit is approximately $147^{\mathrm{h}} 46^{\mathrm{m}}$, and the transearth flight time is $67^{\mathrm{h}} 59^{\mathrm{m}}$.

1. 2 Introduction

Many aspects of mission operations require a foreknowledge of the spacecraft trajectory - both its shape and its schedule of events. This document is the best and most complete prelaunch estimate of that trajectory. The trajectory event schedule presented will be followed as near as possible during the actual flight. This information will provide input data for preflight simulations and will be the basis for the preliminary ground station tracking schedule. Many other facets of the mission operations, however, also require these data.

This trajectory reflects all known constraints, guidelines, and mission requirements as documented in reference 1 , and is based on the spacecraft characteristics defined by the Spacecraft Operational Data Book (ref. 2). The launch portion of the trajectory, which is generated by the Marshall Space Flight Center, is omitted from this document.

TABLE 1-I.- SEQUENCE OF MAJOR EVENTS

Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, }, \\ \text { g.e.t. } \end{gathered}$	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { c.s.t. } \end{gathered}$	Data summary	
Launch	00:00:00	$\begin{gathered} \text { April 16, } 1972 \\ 11: 54: 00.0 \end{gathered}$	Flight azimuth, deg Launch complex	$\begin{array}{r} 72.0 \\ 39 \mathrm{~A} \end{array}$
EFO insertion	00:11:57.2	12:05:57.2	```Geodetic latitude, deg Longitude, deg Geodetic altitude, n. mi. Velocity, fps```	$\begin{array}{r} 32.7 \\ -52.1 \\ 93.3 \\ 25603.7 \end{array}$
$\begin{aligned} & \text { Translunar injection }{ }^{\text {a }} \\ & \text { Burn initiation } \end{aligned}$	02:33:15.1	14:27:15.1	Geodetic latitude, deg Longitude, deg Velocity, fps Apogee altitude, n. mi. Geodetic altitude, n. mi.	$\begin{array}{r} -24.8 \\ 137.3 \\ 25630.7 \\ 95.8 \\ 88.9 \end{array}$
Burn termination (guidance cutoff signal)	02:38:50.0	14:32:50.0	Geodetic latitude, deg Longitude, deg Burn duration, sec Plane change, deg Apogee altitude, n. mi. Geodetic altitude, n. mi.	$\begin{array}{r} -12.5 \\ 161.7 \\ 334.9 \\ 0.0 \\ 266387.7 \\ 154.6 \end{array}$
$\begin{aligned} & \text { Post-TLI events }{ }^{\text {a }} \\ & \text { CSM/S-IVB separation } \end{aligned}$	03:03:50.0	14:57:50.0		
Docking	03:13:50.0	15:07:50.0		
CSM/LM ejection	03:58:50.0	15:52:50.0		
Evasive maneuver ${ }^{\text {a }}$ (performed by S-IVB)	04:21:50.0	16:15:50.0	$\Delta \mathrm{V}$, fps	9.8
Translunar coast, midcourse correction maneuvers MCC-1	TLI + 9 hr	23:32:50.0	Geodetic altitude, n. mi.	≈ 56500
MCC-2	TLI +28 hr	$\begin{gathered} \text { April } 17,1972 \\ 18: 32: 50.0 \end{gathered}$	Geodetic altitude, n. mi.	≈ 119000
MCC-3	LOI - 22 hr	$\begin{gathered} \text { April } 18,1972 \\ 16: 22: 38.6 \end{gathered}$	Geodetic altitude, n. mi.	≈ 166500
- MCC-4	LOI - 5 hr	$\begin{gathered} \text { April } 19,1972 \\ 9: 22: 38.6 \end{gathered}$	Altitude above mean lunar radius, n . mi.	≈ 12200

$\mathrm{a}_{\text {This }}$ information is approximate and is presented for information only. The official source is the MSFC LV operational trajectory (ref. 2).

TABLE l-I.- SEQUENCE OF MAJOR EVENTS - Continued

TABLE l-I.- SEQUENCE OF MAJOR EVENTS - Continued

- Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec } \\ \text { g.e.t. } \end{gathered}$	$\begin{aligned} & \text { Time, } \\ & \text { hr:min:sec, } \\ & \text { c.s.t. } \end{aligned}$	Data summary	
DOI	78:35:54.4	$\frac{\text { April 19, } 1972}{18: 29: 54.4}$		
Burn termination			Altitude above LLS radius, n. mi.	58.6
			Selenographic latitude, deg	8.8
			Selenographic longitude, deg	-142.2
			Selenographic inclination, deg	9.0
			Burn duration, sec	24.1
			Inertial burn arc, deg	1.2
			Plane change, deg	0.0
			$\Delta \mathrm{V}$, fps	206.0
			Velocity, fps	5280.2
			SPS propellant used, lb	1566.2
			Orbital period, hr :min:sec	01:54:25.2
			Perilune altitude above LLS radius, n. mi.	10.9
			Apolune altitude above LLS radius, n . mi.	58.6
			Revolution number	2
CSM/LM undock and SEP	96:13:30.8	$\begin{gathered} \text { April } 20,1972 \\ \text { 12:07:30.8 } \end{gathered}$	Selenographic latitude, deg	2.2
			Selenographic longitude, deg	121.0
			Revolution number.	12
Circularization (CSM)Burn initiation				
	97:41:44.5	13:35:44.5.	Mass, lb	39.318 .1
			Selenographic latitude, deg	9.0
			Selenographic longitude, deg	-159.8
			Selenographic inclination, deg	9.0
			Altitude above LLS, n. mi.	59.8
			Perilune altitude above LLS, n. mi.	9.3
			Velocity, fps	5274.0
			Revolution number	12
Burn termination	97:41:50.4	13:35:50.4	$\Delta \mathrm{V}$, fos	99.6
			Burn duration, sec	5.9
			Altitude above LIS, n. mi.	59.8
			Perilune altitude above LLS, n. mi.	51.8
			Apolune altitude above LIS, n . mi.	68.2
			Velocity, fps	5343.8
			SPS propellant consumed, ib	384.7
			Burn arc, deg	0.3
			Orbital period, hr:min:sec	01:58:54.4
			Revolution number	12

TABLE 1-I.- SEQUENCE OF MAJOR EVENTS - Continued

Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { g.e.t. } \end{gathered}$	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { c.s.t. } \end{gathered}$	Data summary	
PDI (DPS ignition time)	98:34:40.9	$\frac{\text { April } 20,1972}{14: 28: 40.9}$	Altitude above LLS, ft Velocity, fps Revolution number	$\begin{array}{r} 52707.3 \\ 5571.1 \\ 13 \end{array}$
High gate (P63 to P64)	98:44:00.9	14:38:00.9	Altitude above LLS, ft Velocity, fps	$\begin{array}{r} 7900.3 \\ 355.0 \end{array}$
Low gate	98:45:22.9	14:39:22.9	Altitude above LLS, ft Velocity, fps	$\begin{array}{r} 605.5 \\ 79.6 \end{array}$
Vertical descent (P64 to P65)	98:46:02.9	14:40:02.9	Altitude above LLS, ft Velocity, fps	$\begin{array}{r} 213.7 \\ 10.3 \end{array}$
LM landing	98:46:42.4	14:40:42.4	$\Delta \mathrm{V}$, fps Burn duration, sec DPS propellant consumed, lb Revolution number Selenographic latitude, deg Selenographic longitude, deg	$\begin{array}{r} 6696.3 \\ 721.5 \\ 18100.3 \\ 13 \\ -9.0 \\ 15.5 \end{array}$
CSM first pass over LLS	98:43:06.7	14:37:06.7	Revolution number	13
First CSM plane change Burn initiation	152:28:48.1	$\begin{gathered} \text { April } 22,1972 \\ 20: 22: 48.1 \end{gathered}$	Mass, 1 lb	38752.8
			Selenographic latitude, deg	-4.9
			Selenographic longitude, deg	-67.8
			Altitude above LIS, n. mi.	57.4
			Perilune altitude above LIS, n. mi.	57.3
			Apolune altitude above LLS, n. mi.	62.2
			Revolution number	40
			Velocity, fos	5355.6
Burn termination	152:28:57.2	20:22:57.2	SPS propellant consumed, lb	602.3
			$\Delta \mathrm{V}$, fps	158.7
			Burn duration, sec	9.1
			Selenographic latitude, deg	-4.9
			Selenographic longitude, deg	-68.3
			Altitude above LLS, n. mi.	57.4
			Perilune altitude above LLS, n. mi.	57.3
			Apolune altitude above LLS, n. mi.	62.0
			Plane change, deg	1.7
			Selenographic inclination, deg	10.5
			Velocity, fps	5355.4
			Revolution number	40

TABLE 1-I.- SEQUENCE OF MAJOR EVENTS - Continued

- Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
CSM second pass over LLS	171:46:10.3	$\begin{gathered} \text { April } 23,1972 \\ 15: 40: 10.3 \end{gathered}$	Revolution number	50
Ascent				
LM lift-off	171:45:08.6	15:39:08.6	Mass, lb	10892.2
			Selenographic latitude, deg	-9.0
			Selenographic longitude, deg	15.5
			Revolution number	50
LM insertion	171:52:22.9	15:46:22.9	Mass, 1 lb	5923.9
			$\Delta \mathrm{V}$, fps	6047.9
			Burn duration, sec	434.3
			Latitude, deg	-9.8
			Longitude, deg	5.3
			Altitude above LLS, ft	59889.1
			Perilune altitude above LLS, ft	54783.9
			Apolune altitude above LIS, ft	276088.1
Rendezvous				
TPI (APS ignition)	172:39:22.9	16:33:22.9	Burn duration, sec	2.5
Preceded by a l0-sec RCS ullage				
			Propellant used, Ib	30.0
$\Delta \mathrm{V}=$			Resultant h_{a} / h_{p}, n. mi.	$61.9 / 44.0$
			Range at cutoff, n. mi.	32.0
			Range rate at cutoff, fps	-132.5
			Propulsion system	APS
			Revolution number	50
Braking	173:20:16.4	17:14:16.4	Burn duration, sec	30.2
			$\Delta \mathrm{V}$, fps	33.4
			Propellant used, lb	21.6
			Range at final braking, n. mi.	0.02
			Range rate at final braking, fps	-0.23
			h_{a} / h_{p} at final braking, n. mi.	59.8/59.3
			Propulsion system	IM RCS
			Revolution number	51
Docking	173:40:00.0	17:34:00.0		

TABLE l-I.- SEQUENCE OF MAJOR EVENTS - Continued

- Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { g.e.t. } \end{gathered}$	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { c.s.t. } \end{gathered}$	Data summary	
LM jettison	177:31:15.0	$\begin{aligned} & \text { April } 23,1972 \\ & 21: 25: 15.0 \end{aligned}$	Selenographic latitude, deg Selenographic longitude, deg Revolution number	-4.5 46.7 53
CSM/LM separation				
Burn termination	177:36:28.2	21:30:28.2	Mass, lb	38514.8
			$\Delta V, \mathrm{fps}$ Burn duration, sec	2.0 13.2
			Selenographic latitude, deg	-6.9
			Selenographic longitude, deg	30.9
			Altitude above LLS radius, n. mi.	59.6
			Perilune altitude above LIS radius, n. mi.	59.5
			Apolune altitude above LLS radius, n. mi.	61.7
			Plane change, deg	0.0
			Selenographic inclination, deg	10.4
			Velocity, fps	5346.0
			Revolution number	53
LM deorbit	179:16:29.2	23:10:29.2	Mass, lb	5253.9
			$\Delta \mathrm{V}$, fps	229.6
			Burn duration, sec	95.5
			Selenographic latitude, deg	2.7
			Selenographic longitude, deg	86.2
LM impact	179:39:28.6	23:33:28.6	Mass, lb	5122.2
			Selenographic latitude, deg	-9.5
			Selenographic longitude, deg	15.0
			Velocity, fps	5550.1
			CSM revolution number	54
Second CSM plane change Burn initiation	193:13:46.2	$\begin{gathered} \text { April } 24,1972 \\ 13: 07: 46.2 \end{gathered}$		
			Selenographic latitude, deg	38433.2 0.1
			Selenographic longitude, deg	65.0
			Altitude above LLS, n. mi.	58.0
			Perilune altitude above LIS, n. mi.	57.9
			Apolune altitude above LLS, n. mi.	62.9
			Velocity, fps	5354.5
			Revolution number	61

TABLE 1-I.- SEQUENCE OF MAJOR EVENTS - Continued

- Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { g.e.t. } \end{gathered}$	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { c.s.t. } \end{gathered}$	Data summary	
$\frac{\text { Second CSM plane change }}{\text { Burn termination }}$	193:14:02.0	$\begin{aligned} & \text { April } 24,1972 \\ & 13: 08: 02.0 \end{aligned}$		
			SPS propellant consumed, lb	1056.8
			$\Delta \mathrm{V}$, fps	282.5
			Burn duration, sec	15.8
			Selenographic latitude, deg	0.0
			Selenographic longitude, deg	64.2
			Altitude above LIS, n. mi.	58.0
			Perilune altitude above LIS, n. mi.	57.9
			Apolune altitude above LLS, n. mi.	62.9
			Plane change, deg	3.0
			Selenographic inclination, deg	13.4
			Velocity, fps	5354.5
			Revolution number	61
Shaping burn Burn initiation	216:49:11.7	$\begin{gathered} \text { April } 25,1972 \\ 12: 43: 11.7 \end{gathered}$		
			Mass, lb	37305.3
			Altitude above LLS radius, n . mi.	55.8
			Selenographic latitude, deg	7.8
			Selenographic longitude, deg	87.6
			Perilune altitude above LLS, n. mi.	55.7
			Apolune altitude above LLS, n. mi.	65.2
			Selenographic inclination, deg	13.4
			Velocity, fps	5366.4
			Revolution number	73
Burn termination	216:49:13.9	12:43:13.9	Selenographic latitude, deg	7.7
			Selenographic longitude, deg	87.5
			Perilune altitude above LLS, n. mi.	55.0
			Apolune altitude above LLS, n. mi.	85.0
			Burn duration, sec	2.2
			Inertial burn arc, deg	0.1
			Plane change, deg	0.0
			$\Delta \mathrm{V}$, fps	38.0
			SPS propellant used, lb	139.6
			Velocity, fps	5391.6
Subsatellite jettison	218:02:08.3	13:56:08.3	Altitude above LLS radius, n . mi.	78.5
			Selenographic latitude, deg	0.0
			Selenographic longitude, deg	-128.0
			Velocity, fps	5272.0
			Perilune altitude above LLS, n. mi.	55.4
			Apolune altitude above LLS, n. mi.	85.0
			Revolution number	73

TABLE l-I.- SEQUENCE OF MAJOR EVENTS - Concluded

Event	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { g.e.t. } \end{gathered}$	$\begin{gathered} \text { Time, } \\ \text { hr:min:sec, } \\ \text { c.s.t. } \end{gathered}$	Data summary	
Transearth injection Burn initiation	222:20:32.8	April 25, 1972$18: 14: 32.8$		
			Mass, lb	37025.0
			Altitude above LLS radius, n. mi.	65.7
			Selenographic latitude, deg	10.3
			Selenographic longitude, deg	179.7
			Perilune altitude above LIS, n. mi.	54.7
			Selenographic inclination, deg	13.4
			Velocity, fps	5339.3
			Revolution number	76
Burn termination	222:23:03.3	18:17:03.3	Altitude above LIS radius, n. mi.	67.3
			Selenographic latitude, deg	11.9
			Selenographic longitude, deg	170.0
			Perilune altitude above LLS, n. mi.	64.7
			Selenographic inclination, deg	15.5
			Burn duration, sec	150.5
			Inertial burn arc, deg	9.7
			Plane change, deg	3.3
			$\Delta \mathrm{V}$, fps	3212.2
			SPS propellant used, lb	10059.7
			Velocity, fps	8521.2
Transearth coast midcourse correction maneuvers		April 26, 1972		
	TEI + 17 hr	11:17:03.3	Geodetic altitude, n. mi.	≈ 181000
MCC-5		$\begin{gathered} \text { April } 27,1972 \\ 16: 16: 45.4 \end{gathered}$	Geodetic altitude, n. mi.	≈ 106500
MCC-6	EI - 22 hr	$\begin{gathered} \text { April 28, } 1972 \\ 11: 16: 45.4 \end{gathered}$	Geodetic altitude, n. mi.	≈ 25500
CM/SM sep	EI - 15 min	14:01:45.4	Geodetic altitude, n. mi.	1971.0
Entry interface	290:22:45.4	14:16:45.4	Transearth coast time, hr	68
			Inertial velocity, fps	36175.8
			Geodetic altitude, n. mi. (ft)	65.8 (399 681.0)
			Inertial flight-path angle, deg	-6.5
			Geodetic latitude, deg .	-13.0
			Longitude, deg	-167.2
			Equatorial inclination (ascending), deg	61.8
CM landing	290:36:03	14:30:03.0	Geodetic latitude, deg	5.0
			Longitude, deg	-158.7

19

TABLE I-II.- LAUNCH WINDOW SUMMARY

Launch date April 16, 1972
Site Descartes
Flight azimuth, deg 72 to 100
Launch time, hr:min, c.s.t. 11:54 to 15:43
Translunar flight time, hr:min 71:50 to 66:43
Lunar orbit inclination, deg 9.0
Approach azimuth at landing, deg -90.0
Sun elevation at landing, deg 11.9
Goldstone landing coverage, hr:min 12:20
Lunar surface stay time, hr 73.0
Total lunar orbit stay time 147:46, 75 revs
Transearth flight time, hr 68
Total mission time, hr 290:36 to 286:47

23

2.0 SYMBOL DEFINITIONS AND

COORDINATE SYSTEM DESCRIPTION

EARTH-CENTERED INERTIAL COORDINATE SYSTEM

The primary reference coordinate system in which all trajectory computations are made is a mean-of-epoch system. In this system the epoch is the beginning of a Besselian year nearest to the mission base time. The beginning of the Besselian (fictitious) solar year is when the right ascension of the fictitious mean sun, affected by aberration and measured from the mean equinox, is $18^{h} 40^{m}$. This instant always occurs near the beginning of the calendar year and is denoted by the notation. 0 after the year; i.e., the beginning of the Besselian solar year 1960 is January $1^{\text {d }} \cdot 345 \mathrm{E} \cdot \mathrm{T} .=1960.0$. The crossover time for changing the reference epoch is 180 calendar days into the year (4320 hr from $0,0^{h}$ January 1). This change of epoch time corresponds to 24^{h} (midnight) June 29 in a common year and $24^{\text {h }}$ June 28 in a leap year.

After the reference epoch has been defined, the inertial geocentric coordinate system is described by the X -axis coincident with the intersection of the mean equatorial plane and the mean ecliptic plane of epoch. The intersection of these planes is known as the mean-of-epoch line of equinoxes. The $X-Y$ plane is the mean equatorial plane of epoch and the Z-axis is coincident with the earth's mean axis of rotation.

PRINT FORMAT

The print block headings denote the coordinate system reference or other type of vehicle information which is printed immediately below it.

The following symbol definitions are referenced to the line they are printed on under the particular print block heading. When it is desired to obtain the definition of a particular print symbol, attention should be focused on the print block heading since print blocks which have no pertinence to current vehicle activities are deleted; i.e., the THRUST block is not printed if the vehicle is not thrusting. The lines of the heading print, which appear at the top of the trajectory print, define the vehicle to which the trajectory events are related, reference body, and appropriate time references. The coordinate system definition relative to a given print block is footnoted on the page that the print block heading occurs.

21

Heading Print

Symbol

CSM/MOON REF.

MEAN-OF-EPOCH (YEAR)
(DATE)
_HRS_MINS_SECS G.M.T.
T__HRS FROM LAUNNCH
__HRS__MINS_SECS G.E.T.

RAGR

PHASE ELAPSED TIME SECS

RESTART COORDINATES (ER AND ER/HR)

RXYZ

RDXYZ

GD(N) THRUST***

ENGINE IGNITION (or CUTOFF)

Definition

vehicle identification/reference body (earth or moon)
year to which epoch is referenced
calendar date of trajectory print
Greenwich mean time of day
time in total hours from launch
time from launch in hours, minutes, and seconds (ground elapsed time)
right ascension of the Greenwich meridian, deg
the elapsed time in seconds from the beginning of a trajectory phase
inertial position coordinates with respect to the reference body (earth or moon) in double precision, e.r.
inertial velocity coordinates with respect to the reference body in double precision, e.r./hr
guidance identification (N) used during a thrusting phase GD4; indicates external ΔV guidance
thrust subtitle indicating the initiation or termination of a thrust

25

THETA

BETA.

PROP, PRPNT

TM
VELG

TACC
BARC

DELV

MASS
MSFL
SPI
VEXH
VRX, VRY, VRZ

VDX, VDY, VDZ
angle between the thrust acceleration vector and the local horizontal plane, deg
azimuth of the thrust acceleration vector with respect to the projection of the velocity vector into the local horizontal plane, deg
total propellant consumed during phase, lb
thrust magnitude, lbf
velocity to be gained to achieve the magnitude of the required velocity, fps
thrust acceleration, ft/sec ${ }^{2}$
range angle or burn arc, deg
velocity gained during thrust period, fps
instantaneous mass of the vehicle, lb mass flow rate of propellant, lbm/sec specific impulse, sec
exhaust velocity, fps
inertial components of the velocity required, fps
inertial components of the velocity to be gained (VELG), fips

Symbol

THRUST - Continued
TGO
FC
GMLP
GMLY
PLCHG

TDELV

DELRN

WOXID

WFUEL

WODOT

WFPOT

TB
MR

Definition

time to go to thrust cutoff, sec commanded thrust, lbf engine gimbal angle about Y-axis, deg engine gimbal angle about Z-axis, deg total orbital plane change since thrust initiation, deg
total velocity increment applied since the beginning of the case, fps
change in vehicle's radial distance measured along the line of intersection between the burn initiation and burnout orbit planes; the line of intersection nearest the burnout position is used
instantaneous oxidizer propellant for the main engine, lb
instantaneous fuel propellant for the main engine, lb
oxidizer propellant flow rate of the main engine, lb/sec
fuel propellant flow rate of the main engine, lb/sec
total main engine burn time, sec
mixture ratio of the main engine, oxidizer/fuel
Symbol
Definition
THRUST - Concluded

PC

TMRCS
MDRCS

RCSPA

RCSPB

RCSPC

RCSPD

MENGP

PALV

VDLVX
VDLVY
VDLVZ
chamber stagnation pressure at the nozzle inlet, lbf/in.
thrust magnitude of the RCS jet, lbf
propellant flow rate of the RCS jet, lb/sec
instantaneous RCS propellant of quad A, lb
instantaneous RCS propellant of quad B, lb
instantaneous RCS propellant of quad C, lb
instantaneous RCS propellant of quad D, lb
instantaneous total propellant of the main engine, lb ; it is a negative number only if IMASS was used to specify the vehicle mass
angle between the thrust acceleration vector and the local vertical, deg
total local horizontal velocity components applied since beginning of the burn, fps

Symbol	Definition
SELENOCENTRIC ${ }^{\text {a }}$	
XL, YL, ZL	coordinates of vehicle position, n . mi.
DXL, DYL, DZL	coordinates of vehicle velocity, fps
RL, DECL, RAL	```radius, declination, right ascension, n. mi., deg```
VL, PTHL, A.ZL	```velocity, flight-path angle, azimuth, fps, deg```
DRB	declination of the reference body with respect to the vehicle, deg
RARB	right ascension of the reference body with respect to the vehicle, deg
DNRB	declination of the nonreference body with respect to the vehicle, deg.
RAINRB	right ascension of the nonreference body with respect to the vehicle, deg
DSV	declination of the sun with respect to the vehicle, deg
RASV	right ascension of the sun with respect to the vehicle, deg

The axes of the selenocentric coordinate system are directed parallel to those of the inertial geocentric system.

Symbol	Definition
GEOCENTRIC ${ }^{\text {a }}$	
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	inertial components of vehicle position, n. mi.
DX, DY, DZ	inertial components of vehicle velocity, fps
R	radius magnitude, n . mi.
DEC	declination, angle between radius vector and the equatorial plane, positive northward, deg
RA	right ascension, angle between the vehicle meridian and vernal equinox (X-axis), deg
V	velocity magnitude, fps
PTH	flight-path angle measured positive up from the local horizontal plane, deg
AZ	azimuth, the angle between the projections of the vehicle meridian and the velocity vector in the local horizontal plane, measured from the north toward east, deg

[^0]
30

	Symbol
GEOGRAPHIC ${ }^{\text {D }}$	
XG, YG, ZG	components of vehicle position, n. mi.
DXG, DYG, DZG	components of vehicle velocity, fps
ALT	geodetic altitude, n. mi.
LAT	geodetic latitude, deg
LON	geographic longitude, deg
VE	rotational velocity, fps
PTE	rotational flight-path angle, deg
AZE	altitude of vehicle with respect to azimuth, deg
HVIP	the launch pad, n. mi.

[^1]
31

Symbol	Definition
SELENOGRAPHIC ${ }^{\text {a }}$	
XS, YS, ZS	components of vehicle position, n. mi.
DXS, DYS, DZS	components of vehicle velocity, fps
ALIS	altitude, n. mi.
LATS	latitude, deg
LONS	longitude, deg
VRS	velocity vector magnitude, fps
PTR	flight-path angle, deg
A.ZR	azimuth, deg
LTS	selenographic latitude of the sun, deg
LNS	selenographic longitude of the sun, deg
LTE	selenographic latitude of the earth, deg
LNE	selenographic longitude of the earth, deg.

[^2]
Symbol

SELENOGRAPHIC - Concluded
DSMP

RSMP

LIN

LAN

LAP

DR
VT
SOLSV

TRALT

RPALT

APALT

Definition
declination of the sun with respect to the earth-moon plane, deg
right ascension of sun with respect to the earth-moon coordinate system, deg
selenographic inclination of the flight plane of the vehicle, deg
selenographic longitude of the ascending node, deg
selenographic argument of periapsis, deg
radial components of velocity, fps
tangential component of velocity, fps
sun elevation angle at sub-vehicle point, deg
vehicle altitude above lunar landing site radius, n. mi.
perigee altitude above radius of LLS, n. mi.
apogee altitude above radius of LLS, n. mi.

Symbol
Description

EARTH-MOON PLANE ${ }^{\text {a }}$	
XMP, YMP, ZMP	position of vehicle with respect to current reference body, n. mi.
DXMP, DYMP, DZMP	velocity of vehicle with respect to current reference body, fps
RMP, DEMP, RAMP	radius, declination, and right ascension with respect to current reference body, n. mi. and deg
VMP, PTMP, AZMP	velocity, flight-path angle, and azimuth, fps and deg
XME, YME, ZME	position coordinates of vehicle with respect to the earth, n. mi.
DXME, DYME, DZME	velocity coordinates of vehicle with respect to the earth, fps
DIA ${ }^{\text {b }}$	declination of incoming asymptote, deg
LIA ${ }^{\text {b }}$	right ascension of incoming asymptote, deg

[^3]Symbol
EARTH-MOON PLANE - Concluded DOA ${ }^{\text {a }}$

LOA ${ }^{\text {a }}$
$D R P^{a}$

LRP ${ }^{\text {a }}$

PLANETARY COORDINATES ${ }^{\text {b }}$
$\mathrm{XM}, \mathrm{YM}, \mathrm{ZM}$

DXM, DYM, DZM

RM, DEM, RAM

LOM, VM, ARGM

XSUN, YSUN, ZSUN

RAS, LOS, DES

Definition

```
declination of outgoing asymptote, deg
right ascension of outgoing asymptote,
    deg
declination of the periapsis vector,
    deg
right ascension of the periapsis vector,
    deg
```

inertial geocentric position coordinates
of the moon, n. mi.
inertial geocentric velocity of the
moon, fps
radius, declination, and right ascen-
sion of the moon, deg and n. mi.
longitude, velocity, and argument of
the moon, deg and fps
position of the sun in inertial geo-
centric Cartesian coordinates, n. mi.
right ascention, longitude, and declina-
tion of the sun, deg

[^4]
37

Symbol	Definition
GEOCENTRIC (or SELENOCENTRIC) VECTORS	
WX, WY, WZ	inertial components of unit angular momentum vector, n.d.
PX, PY, PZ	inertial components of unit periapsis vector, n.d.
QX, QY, QZ	inertial components of the unit vector in orbit plane normal to the periapsis vector direction, n.d.
SXO, SYO, SZO	components of the unit vector of the outgoing asymptote, n.d. (set to zero if trajectory is not hyperbolic)
BODY ATIITUDES AND FORCES	
RRAT, PRAT, YRAT	vehicle attitude roll, pitch, and yaw rates, deg/sec
IGA, MGA, OGA	vehicle IMU inner, middle, and outer gimbal angles, deg
XTX ${ }^{\text {a }}$	inertial coordinates of a unit vector
XTY	along the vehicle X-axis, n.d.
XTZ	
YTX ${ }^{\text {a }}$	inertial coordinate of a unit vector
YTY	along the vehicle Y-axis, n.d.
$Y T Z$	
ZTX ${ }^{\text {a }}$	inertial coordinates of a unit vector
ZTY	along the vehicle Z -axis, $\mathrm{n} . \mathrm{d}$.
ZTZ	

$a_{\text {The }}$ second, third, and fourth lines should be read in column format instead of across.
Symbol Description

BODY ATTITUDES AND FORCES - Continued

ALLVV ${ }^{\text {a }}$
BTLV
GMLV

ALLII ${ }^{\text {a }}$
BTLI
GMLI

```
Euler angles of vehicle orientation
    with respect to its attitude at
    phase initiation, taken in the order
    of pitch, yaw, and roll (Y, Z, X
    rotation), deg
pitch, yaw, and roll (Euler angles)
    of the vehicle with respect to the
    local horizontal coordinate systemb,
    d.eg
pitch, yaw, and roll of the vehicle
    with respect to the launch inertial
    coordinate system, deg
```

[^5]Symbol

Definition

GEOCENTRIC (or SELENOCENTRIC) UNIT VECTORS
WX, WY, WZ

PX, PY, PZ
$Q X, Q Y, Q Z$

SXO, SYO, SZO

BODY ATTITUDES AND FORCES
RRAT, PRAT, YRAT

IGA, MGA, OGA
XIX^{2}
XTY
XIZ
YTX ${ }^{\text {a }}$
YTY
YTZ
$Z T X{ }^{\text {a }}$
ZTY
ZTZ
inertial components of unit angular momentum vector, n.d.
inertial components of unit periapsis vector, n.d.
inertial components of the unit vector in orbit plane normal to the periapsis vector direction, n.d.
components of the unit vector of the outgoing asymptote, n.d. (set to zero if trajectory is not hyperbolic)
vehicle attitude roll, pitch, and yaw rates, deg/sec
vehicle IMU inner, middle, and outer gimbal angles, deg
inertial coordinates of a unit vector along the vehicle X-axis, n.d.
inertial coordinate of a unit vector along the vehicle Y-axis, n.d.
inertial coordinates of a unit vector along the vehicle Z-axis, n.d.

[^6]
38

Symbol Description
BODY ATTITUDES AND FORCES - Continued

ALO	
BTO	Euler angles of vehicle orientation
GMO	with respect to its attitude at
	phase initiation, taken in the order
	of pitch, yaw, and roll (Y, Z, X
rotation), deg	

[^7]
35

Symbol

GEOCENTRIC OSCULATING ELEMENTS

SMA
ECC
INC

RAN

APF
RP
VH

RNMP

APMP

INMP

APO
TFP

TA
EA
MA
semimajor axis, n. mi.
eccentricity, n.d.
inclination of vehicle flight plane to the earth equatorial plane, deg
right ascension of the ascending node, deg
argument of perigee, deg
radius at perigee, n. mi.
hyperbolic excess velocity for hyperbola or present escape velocity deficit for ellipse, fps
right ascension of ascending node in earth-moon plane coordinates, deg
argument of periapsis vector in earthmoon plane coordinates, deg
inclination of vehicle flight plane to the earth-moon plane, deg
apogee radius, n. mi.
time (G.E.T.) at which periapsis passage occurs, hr
true anomaly, deg
eccentric anomaly, deg
mean anomaly, deg
Symbol Definition
GEOCENTRIC OSCULATING ELEMENTS - Concluded

SLR
PER
MTA

SELENOCENTRIC OSCULATING ELEMENTS
SMAS
ECCS
INCS

RANS
APFS
RPS
VHS
RNMPS
APMPS
INMPS
APOS
TFPS
TAS
EAS
MAS
SLRS
PERS
MTAS
all symbols and their units are the same as the geocentric osculating elements except that the reference is selenocentric

Symbol

Definition
BODY ATTITUDES AND FORCES - Concluded

ALS, BITS ${ }^{\text {a }}$

ALE, BTE

ALM, BTM

ALEI, BTEI

SOLSV
> vehicle look angles α and β to the sun, deg
> vehicle look angles α and β to the earth, deg
> vehicle look angles α and β to the moon, deg
> look angles α and β to the earth in the IMU coordinate system, deg
> sun elevation angle at sub-vehicle point, deg

[^8]

Symbol
TOPOCENTRIC SIGHTING ANGLES
ALLH

BTLH

ALDLH
BTDLH
ALSC

BTSC

ALDSC
BTDSC
ALIMU

Definition
angle between the X -axis and the other vehicle line of sight in the local horizontal coordinate system, deg
angle between the projection of the other vehicle line of sight into the Y-Z plane and the negative Zaxis in the local horizontal coordinate system. The angle measured positively from the negative Z-axis toward the positive Y-axis, deg
time derivative of ALLH, deg/sec
time derivative of BTLH, deg/sec
angle between the X-axis and the other vehicle line of sight in the vehicle attitude coordinate system, deg
angle between the projection of the other vehicle line of sight into the Y-Z plane and the negative Z-axis in the vehicle attitude coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg
time derivative of ALSC, deg/sec
time derivative of BTSC, deg/sec
angle between the X -axis and the other vehicle line of sight in the IMU coordinate system, deg

41

Symbol
Definition
TOPOCENTRIC SIGHTING ANGLES - Concluded

BTIMU

ADIMU
BDIMU
ALWDI

ALWD2

ALELH

BTELH

AEDLH
BEDLH

PHI
angle between the projection of the other vehicle line of sight into the $Y-Z$ plane and the negative $Z-$ axis in the IMU coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg
time derivative of ALIMU, deg/sec
time derivative of BTIMU, deg/sec
angle between the center of window 1 and the other vehicle line of sight, deg
angle between the center of window 2 and the other vehicle line of sight, deg
angle between the X-axis and the earth line of sight in the local horizontal coordinate system, deg
angle between the projection of the earth line of sight into the $Y-Z$ plane and the negative Z-axis in the local horizontal coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg
time derivative of ALELH, deg/sec
time derivative of BTELH, deg/sec
central angle between the two vehicles, deg

43

Symbol | Definition |
| :--- |
| RENDEZVOUS PARAMETERS - Concluded |
| angle between the LM rendezvous radar |
| shaft axis and the X-body axis of |
| the LM. The angle is measured posi- |
| tively when the shaft rotates toward |
| the -Z-body axis of the LM, deg |

LM rendezvous radar azimuth angle. A

positive azimuth angle occurs when
the radar line of sight is rotated
toward the positive Y-axis, deg

4

Symbol
LANDING SITE COORDINATES
angle between the line of sight to the landing site and the X -axis of the vehicle, deg
angle between the projection of the line of sight to the landing site into the $Y-Z$ plane and the negative Z-axis of the vehicle, measured positively from the negative Z-axis toward the positive Y-axis, deg
angle between the center line of window 1 and the line of sight to the landing site, deg
angle between the center line of window 2 and the line of sight to the landing site, deg
latitude of the landing site, deg
longitude of the landing site, deg
range from vehicle to landing site, n. mi.
elevation angle of vehicle measured from a plane tangent to the target body at the landing site, deg
azimuth of the vehicle with respect to the landing site, deg
range rate, deg

45

Symbol
LANDING SITE COORDINATES

RLSX

RLSY
RLSZ
VLSX
VLSY
VLSZ
SOLLS

TRALT

ALTST

TANG

SPRANG

Definition
selenocentric position vector of the landing site, n. mi.
selenocentric velocity vector of the landing site, fps
sunlight incidence angle on landing site (elevation of sun measured from geocentric or selenocentric horizontal at the landing site; negative value indicates sunlight not incident), deg
altitude above the landing site, n. mi.
altitude of landing site above the mean radius of the moon, n. mi.
thrust attitude of vehicle 2 with reference to line of sight, deg
surface range, n. mi.

3.0 MISSION/GUIDELINES AND CONSTRAINTS

The design of the mission and the monthly and daily launch windows were based on the following guidelines and constraints.
a. The primary lunar landing site is the Descartes region. There is no backup site.
b. Daylight launch is highly desirable.
c. The launch windows and profiles will be designed to achieve favorable lunar lighting at the lunar landing sites. For the primary launch date, the sun elevation is 11.9°.
d. The flight azimuth range following launch is limited to 72° to 100°.
e. The mission will be designed for a translunar injection over the Pacific Ocean.
f. Two TLI opportunities will be targeted: the first on the second revolution and the second on the third revolution.
g. The translunar trajectory must be restricted such that the spacecraft is earth-returnable within RCS capability up to TLI + 5 hours, and, in the event that LOI is not performed, the spacecraft must be returnable within DPS capability at perilune +2 hours.
h. The S-IVB will perform an evasive maneuver prior to the LOX dump. The LOX dump will be targeted to achieve an S-IVB lunar impact.
i. The LOI maneuver will result in a 58 - by $170-\mathrm{n}$. mi. elliptical orbit. DOI will be performed with the SPS after two revs in the 58-by l70-n. mi. orbit established by LOI. The targeting will be biased to place the spacecraft in an approximately $52500-f 00 t$ by $60-n$. mi. orbit at the time of PDI on rev 13.
j. The lunar surface stay time will be approximately 73 hours. The CSM lunar orbit orientation will be restricted to permit an any-orbit LM lift-off.
k. A CSM plane change will be made on rev 40 approximately 10 revolutions prior to LM ascent to place the landing site in the orbital plane at the planned time of lift-off on rev 50.

50

1. The LM ascent stage will be deorbited for lunar impact. A second CSM plane change of 3° will be made on rev 61 to increase lunar surface coverage for photography. A shaping burn will be performed by the CSM on rev 73 to achieve proper orbital lifetime for the subsatellite jettisoned on rev 73.
m. The lunar orbit will be designed within the SPS capability to return to earth from an orbit, including the cryogenic tank failure situation.
n. The TEI maneuver will be targeted to return as soon as possible to the prime recovery area within the available ΔV capability.
o. The earth relative entry range will be $1190 \mathrm{n} . \mathrm{mi}$.

919

TABLE 5-I.- LUNAR LANDING SITE POSITION
Launch date April 16, 1972
Lunar site name Descartes
Latitude, deg -9.00028
Longitude, deg 15.51639
Altitude, ${ }^{\mathrm{a}}$ n. mi. -0.1405
${ }^{a}$ All altitudes shown are referenced to meanlunar radius of 938.4935 n . mi.

[^0]: $a_{\text {The }}$ geocentric coordinate system is the basic earth-centered inertial program coordinate system defined above.

[^1]: $a_{\text {The }}$ geographic or earth-fixed coordinate system is defined such that the Z-axis is directed along the earth's rotational axis, positive north, the X-axis passes through the Greenwich meridian and lies in the equatorial plane, and the Y-axis completes the standard right-handed system. The velocity components are referenced to a rotating earth, and the geodetic latitude and altitude are computed separately as a function of declination. The equatorial plane is the same as described for the geocentric inertial coordinate system.

[^2]: $a_{\text {The selenographic equatorial plane is perpendicular to the lunar }}$ axis of rotation. The X-axis of the system lies in the equatorial plane and is directed through the moon's prime meridian. The Z-axis is directed perpendicular to the equatorial plane along the lunar axis of rotation. The Y-axis completes the standard right-handed coordinate system. Altitude is the distance above the mean spherical moon. Longitude is positive eastward from the X-axis of the rotational selenographic reference frame. Latitude is the angle between the position vector and the lunar equator. The system is fixed in the moon and rotates with it.

[^3]: ${ }^{a_{T}}$ The earth-moon plane coordinate system is defined by the instantaneous radius and velocity vectors of the moon at the particular time in question. The X-axis lies along the earth-moon line, positive toward the earth from the moon. The Z-axis is normal to the earth-moon plane, parallel to the moon's angular momentum vector, positive in a northerly direction. The Y-axis completes the standard right-handed system. The right ascension is the angle measured in the earth-moon plane from the earthmoon line (X-axis) to the projection of the radius vector in the earthmoon plane. The declination is the angle between the radius vector and the earth-moon plane. This coordinate system is redefined at the beginning of each computational cycle and is centered in the current reference body.
 $\mathrm{b}_{\text {This }}$ line is printed only when trajectory is hyperbolic.

[^4]: $a_{\text {This }}$ line is printed only when trajectory is hyperbolic.
 $\mathrm{b}_{\text {The }}$ planetary coordinates are always referenced to the earth.

[^5]: $\mathrm{a}_{\text {The }}$ second, third, and fourth lines should be read in column format instead of across.
 $\mathrm{b}_{\text {The local }}$ horizontal (or local vertical) coordinate system is formed by the X -axis directed along the projection of the velocity vector in the local horizontal plane, the Z-axis is directed down along the negative radius vector and the Y-axis completes the right-handed system.

[^6]: arthe second, third, and fourth lines should be read in column format instead of across.

[^7]: ${ }^{a}$ The second, third, and fourth lines should be read in column format instead of across.
 $\mathrm{b}_{\text {The local horizontal (or local vertical) coordinate system is formed }}$ by the X -axis directed along the projection of the velocity vector in the local horizontal plane, the Z-axis is directed down along the negative radius vector and the Y-axis completes the right-handed system.

[^8]: a Vehicle look angles or aspect angles of a line of sight or vehicle referenced vector are defined as illustrated:
 $\alpha \quad$ the angle between the vehicle X-axis and the vector, deg
 β the angle ketween the -Z-axis and the projection of the vector in the $Y-Z$ plane, measured positive toward $+Y$, deg

