MSC-06016

Volume II

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

080-26 D

NASI

MSC INTERNAL NOTE NO. 72-FM-39

February 10, 1972

SPACECRAFT OPERATIONAL TRAJECTORY FOR APOLLO 16 (MISSION J-2) LAUNCHED APRIL 16, 1972 VOLUME II - TRAJECTORY PARAMETERS

Mission Integration Branch and Flight Performance Branch

MISSION PLANNING AND ANALYSIS DIVISION

ape. 0209240

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

MSC-06016 Volume II

MSC INTERNAL NOTE NO. 72-FM-39

PROJECT APOLLO

SPACECRAFT OPERATIONAL TRAJECTORY FOR APOLLO 16 (MISSION J-2) LAUNCHED APRIL 16, 1972 VOLUME II - TRAJECTORY PARAMETERS

By Mission Integration Branch and Flight Performance Branch

February 10, 1972

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

Approved:

Floyd V. Bennett, Chief Mission Integration Branch

Approved: or

Morris V. Jenkins, Chief Flight Performance Branch

Approved: Floyd V. Bennett

Project Manager

Approved: John P. Mayer, Chief Mission Planning and Analysis Division

FOREWORD

This operational trajectory document contains the operational trajectory data for an April 16, 1972, launch. It supersedes the Apollo 16 documents MSC IN 71-FM-388, MSC IN 71-FM-401, and MSC IN 72-FM-14. The document comprises two volumes. Volume I contains a verbal and graphical description of the mission, and volume II contains the trajectory printout.

At this time no revision to this trajectory document is planned. Any mission changes that occur subsequent to publication will be published as changes notifications.

CONTENTS

Section		a		•				1	Page
1.0	SUMMARY AND INTRODUCTION	• •		•	• •	• •	•	•	5
2.0	SYMBOL DEFINITIONS AND COORDINATE S DESCRIPTION	YSTE •	EM •	0					23
3.0	MISSION GUIDELINES AND CONSTRAINTS	• •	• •	•,*	• •	• •	•	•	49
4.0	MISSION SUMMARY	• •	• •	•	• •	• •	•	•	51
5.0	INPUT DATA	• •	0 0	•	•	0 0	•	•	917
6.0	RADAR AND SHADOW DATA	• •		•	• •	• •	•	•	929
7.0	REFERENCES	• •	•••	• •		• •	•	•	1190

TABLES

Table		Page
l-I	SEQUENCE OF MAJOR EVENTS C. W. Pace, E. D. Murrah/FM13	9
l-II	LAUNCH WINDOW SUMMARY D. R. Lostak/FM2	19
4-I	EARTH PARKING ORBIT D. R. Lostak/FM2	53
4 - II	TRANSLUNAR COAST D. R. Lostak/FM2	61
4-III	LUNAR ORBIT INSERTION TO PDI D. R. Lostak/FM2	
	 (a) LOI burn	143 157 168 174 209 213 248 254
4-IV	CSM PARAMETERS FROM PDI TO LM LANDING B. G. Taylor/FM4	
	 (a) Inertial selenocentric Cartesian (position and velocity) and polar coordinates (b) Rotational selenographic polar coordinates (position and velocity) and selenocentric osculating elements	275 280
	(c) CSM line-of-sight parameters relative to landing site	285
4–V	LM PARAMETERS FROM PDI TO LM LANDING B. G. Taylor/FM4	
	 (a) Initialization parameters (b) Inertial selencentric Cartesian (position and velocity) and polar coordinates 	293 20)1
	(c) Inertial selenocentric ideal IMU coordinates (PGNS navigated position and velocity)	299

(d)

		Page
•	•	304
		309

	(d) Inertial selenocentric Cartesian coordinates
	(e) Rotational selenographic parameters
	landing site
	(g) Selenocentric osculating elements
	touchdown
	(j) Landing radar parameters - PDI to touchdown
	 (k) Fowered landing guidance displays - FD1 to touchdown
	touchdown
	 (o) Three-body relationship - LM referenced 359 (p) Aspect angles
4-VI	LM-CSM RELATIVE PARAMETERS FROM PDI TO LM LANDING B. G. Taylor/FM4
4-VII	CSM PARAMETERS FROM LM LANDING TO LM ASCENT D. R. Lostak/FM2
	(a) Coast to LOPC-1 385 (b) LOPC-1 burn 490 (c) Coast to second pass over LLS 495
4-VIII	CSM PARAMETERS DURING LM ASCENT PHASE W. C. Lamey/FM4
	 (a) Inertial selenocentric Cartesian (position and velocity) and polar coordinates
	(c) CSM line-of-sight parameters relative to
). TY	
4-17	W. C. Lamey/FM4
35	(a) Initialization parameters

	(b) Inertial selenocentric Cartesian (position and	550
	(c) Inertial selenocentric ideal IMU coordinates	550
	(PGNS navigated position and velocity) (d) Inertial selenocentric Cartesian coordinates	553
	(AGS navigated position and velocity)	556
	(e) Rotational selenographic parameters	559
	landing site	562
	(g) Selenocentric osculating elements	565
	(n) Performance and weight parameters	560
	(1) Ascent propellant summary	511
	(J) FGNS ascent guidance parameters - local vertical coordinate systems	574
	(k) PGNS ascent guidance parameters - guidance	
19 ¹⁹¹	(position) and im-body axis (v vector)	
	coordinate systems	577
	(1) Horizon and FDAI angles	580
	(m) Three-body relationship - LM referenced	583
	(n) Aspect angles	586
	(o) Vehicle attitude and rates	589
4-X	LM-CSM RELATIVE PARAMETERS DURING ASCENT PHASE W. C. Lamey/FM4	595
4-XI	CSM PARAMETERS DURING LM-ACTIVE RENDEZVOUS R. H. Moore/FM2	
	(a) Inertial selenocentric parameters - Cartesian coordinates	603
	(b) Inertial selenographic parameters - Cartesian	605
	(a) Colemanner bio polon accordinated	607
	(c) Selenographic polar coordinates	600
		009
4-XII	LM PARAMETERS DURING LM-ACTIVE RENDEZVOUS	
	R. H. Moore/FM2	
	(a) Inertial selenocentric parameters - Cartesian coordinates	613
	(b) Inertial selenographic parameters - Cartesian	615
	(a) Solenographia polar coordinates	617
	(d) Orbital elements	619
	(a) Relative parameters	621
	(f) Attitudes	624
	(g) Performance parameters	626
	101 TOTTOTTOTTO LATANA AND A LA L	COLOR STATE

Page

4-XIII POSTRENDEZVOUS TO TEI D. R. Lostak/FM2 (a)631 CSM/IM coast to separation burn (b) CSM separation burn and coast to LOPC-2 644 (c) 682 LOPC-2 burn and coast to shaping burn (d) Shaping burn and coast to subsatellite 733 (e) Subsatellite jettison and coast to TEI 740 (f)789 (g) 791 (h) 799 (i) LM coast to impact 801 . 4-XIV TEI BURN D. R. Lostak/FM2 . 805 TRANSEARTH COAST TO ENTRY 4-XV D. R. Lostak/FM2 . . . 819 4-XVI ENTRY D. W. Heath/FM4 (a) Position vector 889 (b) 893 (c) Position and velocity vector - earth centered inertial coordinate system 897 (d) 901 (e) Aerodynamic attitudes and load factors . . . 905 (f)909 (g)Aerodynamic and guidance parameters . . . 913 5-I LUNAR LANDING SITE POSITION B. G. Taylor/FM4 . . 919 5-II SPACECRAFT WEIGHT SUMMARY D. R. Lostak/FM2; W. C. Lamey/FM4 (a) 923 CSM and LM 924 (Ъ) LM ascent weight summary 5-III ENGINE PERFORMANCE SUMMARY D. R. Lostak/FM2; B. G. Taylor, W. C. Lamey/FM4 (a)Service module propulsion performance 927 (b) Lunar module performance tabular inputs 928

Page

6-I	MISSION RADAR TIME LINE E. M. Jiongo/FM2
	 (a) STDN station characteristics
	elevation
	(e) LM acquisition and termination during
	ascent - 0° minimum elevation 966 (f) LM acquisition and termination during
	rendezvous - 0° minimum elevation 967 (g) CSM acquisition and termination - 3° minimum
	elevation
	descent - 3° minimum elevation 1008
	(i) LM acquisition and termination during ascent - 3° minimum elevation 1009
	 (j) LM acquisition and termination during rendezvous - 3° minimum elevation 1010
6-II	MISSION SHADOW TIME LINE E. M. Jiongo/FM2
	(a) CSM 1023
	(b) LM descent 1055 (c) LM rendezvous 1056
A-I	SATELLITE TRAJECTORY AND TRACKING DATA D. R. Lostak, E. M. Jiongo/FM2
	(a) Trajectory data 1061 (b) Radar tracking data 1135
A-II	TRANSEARTH TRAJECTORY IN THE EVENT OF NO LOI D. R. Lostak/FM2

1	SUMMARY AND INTRODUCTION
	SEQUENCE OF MAJOR EVENTS
	LAUNCH WINDOW SUMMARY
	SYMBOL DEFINITIONS AND COORDINATE SYSTEM DESCRIPTION
	MISSION GUIDELINES AND CONSTRAINTS
	EARTH PARKING ORBIT
	TRANSLUNAR COAST
	LUNAR ORBIT INSERTION TO PDI
т.	CSM PARAMETERS FROM PDI TO LM LANDING
	LM PARAMETERS FROM PDI TO LM LANDING
	LM/CSM RELATIVE PARAMETERS FROM PDI TO LM LANDING
	CSM PARAMETERS FROM LM LANDING TO LM ASCENT
	CSM PARAMETERS DURING LM ASCENT PHASE
	LM PARAMETERS DURING LM ASCENT PHASE
Y 5	LM/CSM RELATIVE PARAMETERS DURING LM ASCENT PHASE

.

.

.

SPACECRAFT OPERATIONAL TRAJECTORY

FOR APOLLO 16 (MISSION J-2)

LAUNCHED APRIL 16, 1972

VOLUME II - TRAJECTORY PARAMETERS

By Mission Integration Branch and Flight Performance Branch

1.0 SUMMARY AND INTRODUCTION

1.1 Summary

In volumes I and II of the Spacecraft Operational Trajectory, a detailed description of the mission profile for Apollo 16 is presented. The nominal launch date of April 16, 1972, was used for this trajectory simulation.

Translunar injection places the spacecraft on a translunar trajectory with a 71.4-n. mi. perilune altitude. This trajectory exceeds the requirements that the spacecraft be earth-returnable within RCS capability up to TLI + 5 hours, and/or be returnable within DPS capability at perilune + 2 hours in the event of no LOI burn. An evasive maneuver is performed by the S-IVB prior to the LOX dump as was done on Apollo 15. This maneuver will place the discarded S-IVB on a lunar impact trajectory.

The lunar orbit time line from LOI to LM landing has been decreased by one orbit from that of Apollo 15 because one orbit between CSM/LM separation and LM landing was deleted. The lunar surface stay time has been increased to 37 revolutions or 73 hours. After IM jettison, there is a LM ascent stage deorbit maneuver which results in a lunar impact as was done on Apollo 15. There is a plane change after LM jettison and there is a 1-day lunar orbit science period. TEI occurs at the end of revolution 75.

For the nominal mission, the launch time is $11^{h}54^{m}$ c.s.t., and the flight azimuth is $\sim 72.0^{\circ}$. Translunar injection occurs during the second revolution over the Pacific Ocean.

The mission duration is approximately 12 days, 3 hours. The translunar flight time is $71^{h}50^{m}$. The time spent in lunar orbit is approximately $147^{h}46^{m}$, and the transearth flight time is $67^{h}59^{m}$.

1.2 Introduction

Many aspects of mission operations require a foreknowledge of the spacecraft trajectory - both its shape and its schedule of events. This document is the best and most complete prelaunch estimate of that trajectory. The trajectory event schedule presented will be followed as near as possible during the actual flight. This information will provide input data for preflight simulations and will be the basis for the preliminary ground station tracking schedule. Many other facets of the mission operations, however, also require these data.

This trajectory reflects all known constraints, guidelines, and mission requirements as documented in reference 1, and is based on the spacecraft characteristics defined by the Spacecraft Operational Data Book (ref. 2). The launch portion of the trajectory, which is generated by the Marshall Space Flight Center, is omitted from this document.

(1) The construction of the state restriction to be the boundary for the state of the state o

(a) the state mailway of a say, the second place to \$1000 marks at and the state a block as well \$100. The same at \$1000 marks at \$1000 marks at \$1000 marks at \$1000 marks at \$1000 mm and state at \$1000 mm \$1000 mm \$1000 mm.

×

×

TABLE 1-I.- SEQUENCE OF MAJOR EVENTS

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	. Data summary	
Launch	00:00:00	April 16, 1972 11:54:00.0	Flight azimuth, deg Launch complex	72.0 39A
EPO insertion	00:11:57.2	12:05:57.2	Geodetic latitude, deg Longitude, deg Geodetic altitude, n. mi. Velocity fos	32.7 52.1 93.3 25 603.7
Translunar injection ^a				
Burn initiation	02:33:15.1	14:27:15.1	Geodetic latitude, deg Longitude, deg Velocity, fps Apogee altitude, n. mi. Geodetic altitude, n. mi.	-24.8 137.3 25 630.7 95.8 88.9
Burn termination (guidance cutoff signal)	02:38:50.0	14:32:50.0	Geodetic latitude, deg Longitude, deg Burn duration, sec Plane change, deg Apogee altitude, n. mi. Geodetic altitude, n. mi.	-12.5 161.7 334.9 0.0 266 387.7 154.6
CSM/S-IVB separation	03:03:50.0	14:57:50.0		
Docking	03:13:50.0	15:07:50.0		
CSM/LM ejection	03:58:50.0	15:52:50.0		
Evasive maneuver ^a (performed by S-IVB)	04:21:50.0	16:15:50.0	∆V, fps	9.8
Translunar coast, midcourse				
Correction maneuvers MCC-1	TLI + 9 hr	23:32:50.0	Geodetic altitude, n. mi.	≈56 500
MCC-2	TLI + 28 hr	April 17, 1972 18:32:50.0	Geodetic altitude, n. mi.	≈119 000
MCC-3	LOI - 22 hr	April 18, 1972 16:22:38.6	Geodetic altitude, n. mi.	≈166 500
MCC-4	LOI - 5 hr	April 19, 1972 9:22:38.6	Altitude above mean lunar radius, n. mi.	≈12 200

^aThis information is approximate and is presented for information only. The official source is the MSFC LV operational trajectory (ref. 2).

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
SIM door jettison	LOI - 4.5 hr	April 19, 1972 9:52:38.6	Average ΔV imparted to door, fps	13.7
Lunar orbit insertion (LOI) Burn initiation	74:28:38.6	14:22:38.6	Mass, lb Altitude above LLS radius, n. mi.	102 642.7 95.1
			Selenographic latitude, deg Selenographic longitude, deg Perilune altitude above LLS radius, n. mi.	8.1 -166.9 71.4
the state of the s			Selenographic inclination, deg Velocity, fps	8.1 8104.0
- ^с . А		-		
Burn termination	74:34:53.6	14:28:53.6	Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg Selenographic inclination, deg Burn duration, sec Inertial burn arc, deg Plane change, deg ΔV, fps SPS propellant used, lb	77.5 7.1 169.2 9.0 375.0 23.7 2.3 2807.0 24 838.4
*			Velocity, fps Orbital period, hr:min:sec Perilune altitude above LLS radius, n. mi. Apolune altitude above LLS radius, n. mi.	5388.4 02:08:46.4 58.5 170.6
S-IVB predicted lunar impact	74:30:08.0	14:24:08.0	Selenographic latitude, deg Selenographic longitude, deg	-2.3 -31.7
Descent orbit insertion (DOI) Burn initiation	78:35:30.3	18:29:30.3	Mass, lb Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg Perilune altitude above LLS radius, n. mi. Apolune altitude above LLS radius, n. mi.	77 770.4 58.6 8.7 -140.9 58.6 170.4
			Velocity, fps	5486.2

Event	Time, hr:min:sec g.e.t.	Time, hr:min:sec,. c.s.t.	Data summary	
DOI Burn termination	78:35:54.4	April 19, 1972 18:29:54.4	Altitude above LLS radius, n. mi. Selenographic latitude, deg	58.6 8.8
			Selenographic longitude, deg Selenographic inclination, deg Burn duration, sec	-142.2 9.0 24.1
			Inertial burn arc, deg Plane change, deg AV, fps Velocity, fps SPS propellant used, lb	1.2 0.0 206.0 5280.2 1566.2
			Orbital period, hr:min:sec Perilune altitude above LLS radius, n. mi. Apolune altitude above LLS radius, n. mi. Revolution number	01:54:25.2 10.9 58.6 2
CSM/LM undock and SEP	96:13:30.8	12:07:30.8	Selenographic latitude, deg Selenographic longitude, deg Revolution number	2.2 121.0 12
Circularization (CSM) Burn initiation	97:41:44.5	13:35:44.5	Mass, 1b	39 318.1
		•	Selenographic latitude, deg Selenographic longitude, deg Selenographic inclination, deg Altitude above LLS, n. mi. Perilune altitude above LLS, n. mi. Velocity, fps Revolution number	9.0 -159.8 9.0 59.8 9.3 5274.0 12
Burn termination	97:41:50.4	13:35:50.4	ΔV, fps Burn duration, sec Altitude above LLS, n. mi. Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Velocity, fps SPS propellant consumed, lb	99.6 5.9 59.8 51.8 68.2 5343.8 384.7
			Burn arc, deg Orbital period, hr:min:sec Revolution number	0.3 01:58:54.4 12

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
PDI (DPS ignition time)	98:34:40.9	April 20, 1972 14:28:40.9	Altitude above LLS, ft Velocity, fps Revolution number	52 707.3 5571.1 13
High gate (P63 to P64)	98:44:00.9	14:38:00.9	Altitude above LLS, ft Velocity, fps	7900.3 355.0
Low gate	98:45:22.9	14:39:22.9	Altitude above LLS, ft Velocity, fps	605.5 79.6
Vertical descent (P64 to P65)	98:46:02.9	14:40:02.9	Altitude above LLS, ft Velocity, fps	213.7 10.3
IM landing	98:46:42.4	14:40:42.4	AV, fps Burn duration, sec DPS propellant consumed, 1b Revolution number Selenographic latitude, deg Selenographic longitude, deg	6696.3 721.5 18 100.3 13 -9.0 15.5
CSM first pass over LLS	98:43:06.7	14:37:06.7	Revolution number	. 13
First CSM plane change Burn initiation	152:28:48.1	April 22, 1972 20:22:48.1	Mass, 1b Selenographic latitude, deg Selenographic longitude, deg Altitude above LLS, n. mi. Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Revolution number Velocity, fps	38 752.8 -4.9 -67.8 57.4 57.3 62.2 40 5355.6
Burn termination	152:28:57.2	20:22:57.2	SPS propellant consumed, lb AV, fps Burn duration, sec Selenographic latitude, deg Selenographic longitude, deg Altitude above LLS, n. mi. Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Plane change, deg Selenographic inclination, deg Velocity, fps Revolution number	602.3 158.7 9.1 -4.9 -68.3 57.4 57.3 62.0 1.7 10.5 5355.4 40

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
CSM second pass over LLS	171:46:10.3	April 23, 1972 15:40:10.3	Revolution number	50
Ascent IM lift-off	171:45:08.6	15:39:08.6	Mass, lb Selenographic latitude, deg Selenographic longitude, deg Revolution number	10 892.2 -9.0 15.5 50
LM insertion	171:52:22.9	15:46:22.9	Mass, 1b AV, fps Burn duration, sec Latitude, deg Longitude, deg Altitude above LLS, ft Perilune altitude above LLS, ft Apolune altitude above LLS, ft	5923.9 6047.9 434.3 -9.8 5.3 59 889.1 54 783.9 276 088.1
Rendezvous TPI (APS ignition) Preceded by a 10-sec RCS ullage ΔV =	172:39:22.9	16:33:22.9	Burn duration, sec ΔV, fps Propellant used, lb Resultant h _a /h _p , n. mi.	2.5 30.0 61.9/44.0
			Range at cutoff, n. mi. Range rate at cutoff, fps Propulsion system Revolution number	32.0 -132.5 APS 50
Braking	173:20:16.4	17:14:16.4	Burn duration, sec ΔV , fps Propellant used, lb Range at final braking, n. mi. Range rate at final braking, fps h_/h_ at final braking, n. mi. Propulsion system Revolution number	30.2 33.4 21.6 0.02 -0.23 59.8/59.3 LM RCS 51
Docking	173:40:00.0	17:34:00.0		

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
LM jettison	177:31:15.0	April 23, 1972 21:25:15.0	Selenographic latitude, deg Selenographic longitude, deg Revolution number	-4.5 46.7 53
CSM/LM separation Burn initiation	177:36:15.0	21:30:15.0	Revolution number	53
Burn termination	177:36:28.2	21:30:28.2	Mass, 1b38 51 ΔV , fpsBurn duration, secBurn duration, secSelenographic latitude, degSelenographic longitude, degSelenographic longitude, degAltitude above LLS radius, n. mi.Selenographic latitude above LLS radius, n. mi.Perilune altitude above LLS radius, n. mi.Selenographic latitude above LLS radius, n. mi.Plane change, degSelenographic inclination, degVelocity, fps53Revolution numberSelenographic	14.8 2.0 13.2 -6.9 30.9 59.6 59.5 61.7 0.0 10.4 46.0 53
IM deorbit	179:16:29.2	23:10:29.2	Mass, 1b52∆V, fps22Burn duration, sec23Selenographic latitude, deg35Selenographic longitude, deg36	53.9 29.6 95.5 2.7 86.2
IM impact	179:39:28.6	23:33:28.6	Mass, 1b512Selenographic latitude, deg5Selenographic longitude, deg5Velocity, fps55CSM revolution number55	22.2 -9.5 15.0 50.1 54
Second CSM plane change Burn initiation	193:13:46.2	April 24, 1972 13:07:46.2	Mass, 1b 38 4 Selenographic latitude, deg Selenographic longitude, deg Altitude above LLS, n. mi. Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Velocity, fps 53 Revolution number	33.2 0.1 65.0 58.0 57.9 62.9 54.5 61

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
Second CSM plane change Burn termination	193:14:02.0	April 24, 1972 13:08:02.0	SPS propellant consumed, lb AV, fps Burn duration, sec Selenographic latitude, deg Selenographic longitude, deg Altitude above LLS, n. mi.	1056.8 282.5 15.8 0.0 64.2 58.0
			Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Plane change, deg Selenographic inclination, deg Velocity, fps Revolution number	57.9 62.9 3.0 13.4 5354.5 61
Shaping burn Burn initiation	216:49:11.7	April 25, 1972 12:43:11.7	Mass, 1b Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg	37 305.3 55.8 7.8 87.6
			Perilune altitude above LLS, n. ml. Apolune altitude above LLS, n. mi. Selenographic inclination, deg Velocity, fps Revolution number	53.6 5366.4 73
Burn termination	216:49:13.9	12:43:13.9	Selenographic latitude, deg Selenographic longitude, deg Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Burn duration, sec Inertial burn arc, deg Plane change, deg AV, fps SPS propellant used, lb	7.7 87.5 55.0 85.0 2.2 0.1 0.0 38.0 139.6 5301.6
Subsatellite jettison	218:02:08.3	13:56:08.3	Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg Velocity, fps Perilune altitude above LLS, n. mi. Apolune altitude above LLS, n. mi. Revolution number	78.5 0.0 -128.0 5272.0 55.4 85.0 73

. 1

Event	Time, hr:min:sec, g.e.t.	Time, hr:min:sec, c.s.t.	Data summary	
Transearth injection Burn initiation	222:20:32.8	April 25, 1972 18:14:32.8	Mass, lb Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg Perilune altitude above LLS, n. mi. Selenographic inclination, deg Velocity, fps Revolution number	37 025.0 65.7 10.3 179.7 54.7 13.4 5339.3 76
Burn termination	222:23:03.3	18:17:03.3	Altitude above LLS radius, n. mi. Selenographic latitude, deg Selenographic longitude, deg Perilune altitude above LLS, n. mi. Selenographic inclination, deg Burn duration, sec Inertial burn arc, deg Plane change, deg AV, fps SPS propellant used, lb Velocity, fps	67.3 11.9 170.0 64.7 15.5 150.5 9.7 3.3 3212.2 10 059.7 8521.2
Transearth coast midcourse correction maneuvers	x. x	April 26, 1972		
MCC-5	TEI + 17 hr	11:17:03.3	Geodetic altitude, n. mi.	≈181 000
мсс-6	EI - 22 hr	April 27, 1972 16:16:45.4	Geodetic altitude, n. mi.	≈106 500
MCC-7	EI - 3 hr	April 28, 1972 11:16:45.4	Geodetic altitude, n. mi.	≈25 500
CM/SM sep	EI - 15 min	14:01:45.4	Geodetic altitude, n. mi.	1971.0
Entry interface	290:22:45.4	14:16:45.4	Transearth coast time, hr Inertial velocity, fps Geodetic altitude, n. mi. (ft) Inertial flight-path angle, deg Geodetic latitude, deg Longitude, deg Equatorial inclination (ascending), deg	68 36 175.8 65.8 (399 681.0) -6.5 -13.0 -167.2 61.8
CM landing	290:36:03	14:30:03.0	Geodetic latitude, deg Longitude, deg	5.0 -158.7

16

c

TABLE 1-II.- LAUNCH WINDOW SUMMARY

Launch date		• •	•		•	April 16, 1972
Site			•			Descartes
Flight azimuth, deg		••	•			72 to 100
Launch time, hr:min, c.s.t			•			11:54 to 15:43
Translunar flight time, hr:min	• • •	• •	•		•	71:50 to 66:43
Lunar orbit inclination, deg		• •				9.0
Approach azimuth at landing, deg	• • •	• •	•		•	-90.0
Sun elevation at landing, deg		• •	•		•	11.9
Goldstone landing coverage, hr:min		•••	•			12:20
Lunar surface stay time, hr		• •	0		•	73.0
Total lunar orbit stay time		• •	•			147:46, 75 revs
Transearth flight time, hr		• •	0	• •	•	68
Total mission time, hr			•	• •		290:36 to 286:47

21

-- --

.

2.0 SYMBOL DEFINITIONS AND

COORDINATE SYSTEM DESCRIPTION

EARTH-CENTERED INERTIAL COORDINATE SYSTEM

The primary reference coordinate system in which all trajectory computations are made is a mean-of-epoch system. In this system the epoch is the beginning of a Besselian year nearest to the mission base time. The beginning of the Besselian (fictitious) solar year is when the right ascension of the fictitious mean sun, affected by aberration and measured from the mean equinox, is $18^{h}40^{m}$. This instant always occurs near the beginning of the calendar year and is denoted by the notation .0 after the year; i.e., the beginning of the Besselian solar year 1960 is January 1^d. 345 E.T. = 1960.0. The crossover time for changing the reference epoch is 180 calendar days into the year (4320 hr from 0,0^h January 1). This change of epoch time corresponds to 24^{h} (midnight) June 29 in a common year and 24^{h} June 28 in a leap year.

After the reference epoch has been defined, the inertial geocentric coordinate system is described by the X-axis coincident with the intersection of the mean equatorial plane and the mean ecliptic plane of epoch. The intersection of these planes is known as the mean-of-epoch line of equinoxes. The X-Y plane is the mean equatorial plane of epoch and the Z-axis is coincident with the earth's mean axis of rotation.

PRINT FORMAT

The print block headings denote the coordinate system reference or other type of vehicle information which is printed immediately below it.

The following symbol definitions are referenced to the line they are printed on under the particular print block heading. When it is desired to obtain the definition of a particular print symbol, attention should be focused on the print block heading since print blocks which have no pertinence to current vehicle activities are deleted; i.e., the THRUST block is not printed if the vehicle is not thrusting. The lines of the heading print, which appear at the top of the trajectory print, define the vehicle to which the trajectory events are related, reference body, and appropriate time references. The coordinate system definition relative to a given print block is footnoted on the page that the print block heading occurs.

Heading Print

Symbol

CSM/MOON REF.

MEAN-OF-EPOCH (YEAR)

(DATE)

HRS MINS SECS G.M.T.

T HRS FROM LAUNCH

HRS MINS SECS G.E.T.

RAGR

PHASE ELAPSED TIME SECS

RESTART COORDINATES (ER AND ER/HR)

RXYZ

RDXYZ

GD(N) THRUST***

ENGINE IGNITION (or CUTOFF)

vehicle identification/reference body (earth or moon)

Definition

year to which epoch is referenced calendar date of trajectory print Greenwich mean time of day

time in total hours from launch

time from launch in hours, minutes, and seconds (ground elapsed time)

right ascension of the Greenwich meridian, deg

the elapsed time in seconds from the beginning of a trajectory phase

inertial position coordinates with respect to the reference body (earth or moon) in double precision, e.r.

inertial velocity coordinates with respect to the reference body in double precision, e.r./hr

guidance identification (N) used during a thrusting phase GD4; indicates external AV guidance

thrust subtitle indicating the initiation or termination of a thrust

25

THRUST THETA angle between the thrust acceleration vector and the local horizontal plane, deg BETA azimuth of the thrust acceleration vector with respect to the projection of the velocity vector into the local horizontal plane, deg PROP, PRPNT total propellant consumed during phase, 1b TM thrust magnitude, 1bf VELG velocity to be gained to achieve the fps TACC thrust acceleration, ft/sec² BARC range angle or burn arc, deg DELV velocity gained during thrust period, fps MASS instantaneous mass of the vehicle, lb MSFL mass flow rate of propellant, lbm/sec SPI specific impulse, sec VEXH exhaust velocity, fps inertial components of the velocity VRX, VRY, VRZ required, fps inertial components of the velocity VDX, VDY, VDZ

Symbol

magnitude of the required velocity,

Definition

to be gained (VELG), fps

Definition

THRUST - Continued	
TGO	time to go to thrust cutoff, sec
FC	commanded thrust, 1bf
GMLP	engine gimbal angle about Y-axis, deg
GMLY	engine gimbal angle about Z-axis, deg
PLCHG	total orbital plane change since thrust initiation, deg
TDELV	total velocity increment applied since the beginning of the case, fps
DELRN	change in vehicle's radial distance measured along the line of intersec- tion between the burn initiation and burnout orbit planes; the line of intersection nearest the burnout position is used
WOXID	instantaneous oxidizer propellant for the main engine, lb
WFUEL	instantaneous fuel propellant for the main engine, lb
WODOT	oxidizer propellant flow rate of the main engine, lb/sec
WFDOT	fuel propellant flow rate of the main engine, lb/sec
TB	total main engine burn time, sec
MR	mixture ratio of the main engine, oxidizer/fuel

. .

Symbol

Definition

THRUST - Concluded	
PC	chamber stagnation pressure at the nozzle inlet, lbf/in.
TMRCS	thrust magnitude of the RCS jet, 1bf
MDRCS	propellant flow rate of the RCS jet, lb/sec
RCSPA	instantaneous RCS propellant of quad A, lb
RCSPB	instantaneous RCS propellant of quad B, lb
RCSPC	instantaneous RCS propellant of quad C, lb
RCSPD	instantaneous RCS propellant of quad D, lb
MENGP	instantaneous total propellant of the main engine, lb; it is a negative number only if IMASS was used to specify the vehicle mass
PALV	angle between the thrust acceleration vector and the local vertical, deg
VDLVX VDLVY VDLVZ	total local horizontal velocity com- ponents applied since beginning of the burn, fps

Symbol

Symbol	Definition
SELENOCENTRIC	
XL, YL, ZL	coordinates of vehicle position, n. mi.
DXL, DYL, DZL	coordinates of vehicle velocity, fps
RL, DECL, RAL	radius, declination, right ascension, n. mi., deg
VL, PTHL, AZL	velocity, flight-path angle, azimuth, fps, deg
DRB	declination of the reference body with respect to the vehicle, deg
RARB	right ascension of the reference body with respect to the vehicle, deg
DNRB	declination of the nonreference body with respect to the vehicle, deg
RANRB	right ascension of the nonreference body with respect to the vehicle, deg
DSV	declination of the sun with respect to the vehicle, deg
RASV	right ascension of the sun with respect to the vehicle, deg

The axes of the selenocentric coordinate system are directed parallel to those of the inertial geocentric system.

Symbol	Definition
GEOCENTRIC ^a	
Х, Ү, Ζ	inertial components of vehicle position, n. mi.
DX, DY, DZ	inertial components of vehicle velocity, fps
R	radius magnitude, n. mi.
DEC	declination, angle between radius vec- tor and the equatorial plane, positive northward, deg
RA	right ascension, angle between the vehicle meridian and vernal equinox (X-axis), deg
V	velocity magnitude, fps
РТН	flight-path angle measured positive up from the local horizontal plane, deg
AZ	azimuth, the angle between the projec- tions of the vehicle meridian and the velocity vector in the local horizontal plane, measured from the north toward east, deg

^aThe geocentric coordinate system is the basic earth-centered inertial program coordinate system defined above.

Definition

XG, YG, ZG components of vehicle position, n. mi. DXG, DYG, DZG components of vehicle velocity, fps ALT geodetic altitude, n. mi. LAT geodetic latitude, deg LON geographic longitude, deg VE rotational velocity, fps PTE rotational flight-path angle, deg AZE rotational azimuth, deg HVLP altitude of vehicle with respect to the launch pad, n. mi.

^aThe geographic or earth-fixed coordinate system is defined such that the Z-axis is directed along the earth's rotational axis, positive north, the X-axis passes through the Greenwich meridian and lies in the equatorial plane, and the Y-axis completes the standard right-handed system. The velocity components are referenced to a rotating earth, and the geodetic latitude and altitude are computed separately as a function of declination. The equatorial plane is the same as described for the geocentric inertial coordinate system.

GEOGRAPHIC^a

Symbol

Definition

SELENOGRAPHIC	
XS, YS, ZS	components of vehicle position, n. mi.
DXS, DYS, DZS	components of vehicle velocity, fps
ALTS	altitude, n. mi.
LATS	latitude, deg
LONS	longitude, deg
VRS	velocity vector magnitude, fps
PTR	flight-path angle, deg
AZR	azimuth, deg
LTS	selenographic latitude of the sun, deg
LNS	selenographic longitude of the sun, deg
LTE	selenographic latitude of the earth, deg
LNE	selenographic longitude of the earth, deg

^aThe selenographic equatorial plane is perpendicular to the lunar axis of rotation. The X-axis of the system lies in the equatorial plane and is directed through the moon's prime meridian. The Z-axis is directed perpendicular to the equatorial plane along the lunar axis of rotation. The Y-axis completes the standard right-handed coordinate system. Altitude is the distance above the mean spherical moon. Longitude is positive eastward from the X-axis of the rotational selenographic reference frame. Latitude is the angle between the position vector and the lunar equator. The system is fixed in the moon and rotates with it.

Symbol

Symbol Definition SELENOGRAPHIC - Concluded DSMP declination of the sun with respect to the earth-moon plane, deg RSMP right ascension of sun with respect to the earth-moon coordinate system, deg LIN selenographic inclination of the flight plane of the vehicle, deg LAN selenographic longitude of the ascending node, deg LAP selenographic argument of periapsis, deg DR radial components of velocity, fps VT tangential component of velocity, fps SOLSV sun elevation angle at sub-vehicle point, deg TRALT vehicle altitude above lunar landing site radius, n. mi. RPALT perigee altitude above radius of LLS, n. mi. apogee altitude above radius of LLS, APALT n. mi.

. . .

Description

position of vehicle with respect to current reference body, n. mi.

velocity of vehicle with respect to current reference body, fps

radius, declination, and right ascension with respect to current reference body, n. mi. and deg

velocity, flight-path angle, and azimuth, fps and deg

position coordinates of vehicle with respect to the earth, n. mi.

velocity coordinates of vehicle with respect to the earth, fps

declination of incoming asymptote, deg

right ascension of incoming asymptote, deg

^aThe earth-moon plane coordinate system is defined by the instantaneous radius and velocity vectors of the moon at the particular time in question. The X-axis lies along the earth-moon line, positive toward the earth from the moon. The Z-axis is normal to the earth-moon plane, parallel to the moon's angular momentum vector, positive in a northerly direction. The Y-axis completes the standard right-handed system. The right ascension is the angle measured in the earth-moon plane from the earthmoon line (X-axis) to the projection of the radius vector in the earthmoon plane. The declination is the angle between the radius vector and the earth-moon plane. This coordinate system is redefined at the beginning of each computational cycle and is centered in the current reference body.

^bThis line is printed only when trajectory is hyperbolic.

Symbol

33

EARTH-MOON PLANE

XMP, YMP, ZMP

DXMP, DYMP, DZMP

RMP, DEMP, RAMP

VMP, PTMP, AZMP

XME, YME, ZME

DXME, DYME, DZME

DIAD

LIA^b

Definition

EARTH-MOON PLANE - Concluded DOAa declination of outgoing asymptote, deg LOAa right ascension of outgoing asymptote, deg DRPa declination of the periapsis vector, deg LRPa right ascension of the periapsis vector, deg PLANETARY COORDINATES^b XM, YM, ZM inertial geocentric position coordinates of the moon, n. mi. DXM, DYM, DZM inertial geocentric velocity of the moon, fps RM, DEM, RAM radius, declination, and right ascension of the moon, deg and n. mi. LOM, VM, ARGM longitude, velocity, and argument of the moon, deg and fps XSUN, YSUN, ZSUN position of the sun in inertial geocentric Cartesian coordinates, n. mi. RAS, LOS, DES right ascention, longitude, and declination of the sun, deg

^aThis line is printed only when trajectory is hyperbolic. ^bThe planetary coordinates are always referenced to the earth.

Definition

GEOCENTRIC (or SELENOCENTRIC) UNIT VECTORS

WX, WY, WZ

PX, PY, PZ

QX, QY, QZ

SXO, SYO, SZO

BODY ATTITUDES AND FORCES

RRAT, PRAT, YRAT

IGA, MGA, OGA

XTX^a XTY XTZ

YTX^a YTY YTZ ZTX^a ZTY ZTZ inertial components of unit angular momentum vector, n.d.

inertial components of unit periapsis vector, n.d.

inertial components of the unit vector in orbit plane normal to the periapsis vector direction, n.d.

components of the unit vector of the outgoing asymptote, n.d. (set to zero if trajectory is not hyperbolic)

vehicle attitude roll, pitch, and yaw rates, deg/sec

vehicle IMU inner, middle, and outer gimbal angles, deg

inertial coordinates of a unit vector along the vehicle X-axis, n.d.

inertial coordinate of a unit vector along the vehicle Y-axis, n.d.

inertial coordinates of a unit vector along the vehicle Z-axis, n.d.

^aThe second, third, and fourth lines should be read in column format instead of across.

BTLV

GMLV

ALLIa

BTLI

GMLI

Description

BODY	ATTITUDES	AND	FORCES	 Continu	led	
AL(BT() ^{8.})				Euler angles of vehicle	orientation
GMC)				phase initiation, take	n in the order
					rotation), deg	. (I, Z, X
ALI	JVa				pitch, yaw, and roll (Eu	ler angles)

pitch, yaw, and roll (Euler angles) of the vehicle with respect to the local horizontal coordinate system^b, deg

pitch, yaw, and roll of the vehicle with respect to the launch inertial coordinate system, deg

^aThe second, third, and fourth lines should be read in column format instead of across.

^bThe local horizontal (or local vertical) coordinate system is formed by the X-axis directed along the projection of the velocity vector in the local horizontal plane, the Z-axis is directed down along the negative radius vector and the Y-axis completes the right-handed system.

Definition

GEOCENTRIC (or SELENOCENTRIC) UNIT VECTORS

WX, WY, WZ

PX, PY, PZ

QX, QY, QZ

SXO, SYO, SZO

BODY ATTITUDES AND FORCES

RRAT, PRAT, YRAT

IGA, MGA, OGA

XTX^a XTY XTZ

YTX^a YTY YTZ ZTX^a ZTY

ZTZ

inertial components of unit angular momentum vector, n.d.

inertial components of unit periapsis vector, n.d.

inertial components of the unit vector in orbit plane normal to the periapsis vector direction, n.d.

components of the unit vector of the outgoing asymptote, n.d. (set to zero if trajectory is not hyperbolic)

vehicle attitude roll, pitch, and yaw rates, deg/sec

vehicle IMU inner, middle, and outer gimbal angles, deg

inertial coordinates of a unit vector along the vehicle X-axis, n.d.

inertial coordinate of a unit vector along the vehicle Y-axis, n.d.

inertial coordinates of a unit vector along the vehicle Z-axis, n.d.

^aThe second, third, and fourth lines should be read in column format instead of across.

Description

BODY ATTITUDES AND FORCES - Continued

ALO ^{a.} BTO GMO		Euler angles of vehicle orientation with respect to its attitude at phase initiation, taken in the order of pitch, yaw, and roll (Y, Z, X rotation), deg
ALLV ^{&} BTLV GMLV		pitch, yaw, and roll (Euler angles) of the vehicle with respect to the local horizontal coordinate system ^b , deg
ALLI ^a BTLI GMLI		pitch, yaw, and roll of the vehicle with respect to the launch inertial coordinate system, deg

^aThe second, third, and fourth lines should be read in column format instead of across.

^bThe local horizontal (or local vertical) coordinate system is formed by the X-axis directed along the projection of the velocity vector in the local horizontal plane, the Z-axis is directed down along the negative radius vector and the Y-axis completes the right-handed system.

Definition

GEOCENTRIC OSCULATING ELEMENTS SMA semimajor axis, n. mi. ECC eccentricity, n.d. INC inclination of vehicle flight plane to the earth equatorial plane, deg RAN right ascension of the ascending node, deg APF argument of perigee, deg \mathbb{RP} radius at perigee, n. mi. VH hyperbolic excess velocity for hyperbola or present escape velocity deficit for ellipse, fps RNMP right ascension of ascending node in earth-moon plane coordinates, deg argument of periapsis vector in earth-APMP moon plane coordinates, deg inclination of vehicle flight plane to INMP the earth-moon plane, deg APO apogee radius, n. mi. time (G.E.T.) at which periapsis pas-TFP sage occurs, hr ΤA true anomaly, deg EA eccentric anomaly, deg MA mean anomaly, deg

35

Symbol

Definition

GEOCENTRIC OSCULATING ELEMENTS -	Concluded
SLR	semilatus rectum, n. mi.
PER	period, hr
MTA	maximum true anomaly (360° in ellipse, calculated value in hyperbola), deg
SELENOCENTRIC OSCULATING ELEMENTS	3 1
SMAS	32
ECCS	
INCS	
RANS	
APFS	e e e e e e e e e e e e e e e e e e e
RPS	
VHS	
RIMPS	all symbols and their units are the
APMPS	same as the geocentric osculating elements except that the reference
INMPS	is selenocentric
APOS	
TFPS	
TAS	
EAS	
MAS	
SLRS	
PERS	
MTAS	

Definition

BODI ATTITUDES	AND FORCES -	Conclud	led				1 . T .		
ALS, BTS ^a			vehicle the su	look un, de	angles g	Ø	and	β	to
ALE, BTE			vehicle the ea	look arth,	angles deg	Q.	and	β	to
ALM, BTM			vehicle the mo	look oon, d	angles .eg	α	and	β	to
ALEI, BTEI			look ang in the	gles e IMU	α and coording	β ate	to th syste	ne e em,	earth deg
SOLSV			sun elev point	vation , deg	angle a	at s	sub-ve	hic	le

^aVehicle look angles or aspect angles of a line of sight or vehicle referenced vector are defined as illustrated:

α the angle between the vehicle X-axis and the vector, deg

β the angle between the -Z-axis and the projection of the vector in the Y-Z plane, measured positive toward +Y, deg

Definition

TOPOCENTRIC SIGHTING ANGLES ALLH angle between the X-axis and the other vehicle line of sight in the local horizontal coordinate system, deg BTLH angle between the projection of the other vehicle line of sight into the Y-Z plane and the negative Zaxis in the local horizontal coordinate system. The angle measured positively from the negative Z-axis toward the positive Y-axis, deg ALDLH time derivative of ALLH, deg/sec BTDLH time derivative of BTLH, deg/sec ALSC angle between the X-axis and the other vehicle line of sight in the vehicle attitude coordinate system, deg BTSC angle between the projection of the other vehicle line of sight into the Y-Z plane and the negative Z-axis in the vehicle attitude coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg ALDSC time derivative of ALSC, deg/sec BTDSC time derivative of BTSC, deg/sec ALIMU angle between the X-axis and the other vehicle line of sight in the IMU coordinate system, deg

40

Symbol

Definition

TOPOCENTRIC SIGHTING ANGLES - Concluded

41

BTIMU

angle between the projection of the other vehicle line of sight into the Y-Z plane and the negative Zaxis in the IMU coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg

time derivative of ALIMU, deg/sec

time derivative of BTIMU, deg/sec

- angle between the center of window 1 and the other vehicle line of sight, deg
- angle between the center of window 2 and the other vehicle line of sight, deg

angle between the X-axis and the earth line of sight in the local horizontal coordinate system, deg

angle between the projection of the earth line of sight into the Y-Z plane and the negative Z-axis in the local horizontal coordinate system. The angle is measured positively from the negative Z-axis toward the positive Y-axis, deg

time derivative of ALELH, deg/sec

central angle between the two vehicles, deg

BDIMU

ADIMU

ALWD1

ALWD2

ALELH

BTELH

AEDLH BEDLH

PHI

Definition

RENDEZVOUS PARAMETERS	
ACLS	sun-LM-CSM angle, deg
ACLE	LM-earth-CSM angle, deg
ARBD	LM-moon-earth angle, deg
ACLV	moon-LM-CSM angle, deg
АТН	angle between the projection of the LM position vector into the flight plane of the CSM and the position
	is positive when the target vehicle is ahead
DEL	angle between the position vector of the LM and the flight plane of the CSM, deg; the angle is positive when the LM is to the right of the flight plane of the CSM when viewed in the
	direction of motion
RANGE	distance between the LM and the CSM, n. mi.
RRATE	rate of change of range, fps
ALDCK	vehicle pitch for the LM to dock with the CSM, deg
BTDCK	vehicle yaw for the LM dock with the CSM, deg
GMDCK	vehicle roll for the LM to dock with the CSM, deg

Definition

RENDEZVOUS PARAMETERS - Concluded

ERR

ARR

MODE

RCX, RCY, RCZ

RELV

XLR, YLR, ZLR XDLR, YDLR, ZDLR angle between the LM rendezvous radar shaft axis and the X-body axis of the LM. The angle is measured positively when the shaft rotates toward the -Z+body axis of the LM, deg

LM rendezvous radar azimuth angle. A positive azimuth angle occurs when the radar line of sight is rotated toward the positive Y-axis, deg

LM rendezvous radar mode indicator.

- =1 ERR must be between +60 and -70° for tracking
- =2 ERR must be between +40 and +155° for tracking ARR must be between +55 and -55° for tracking

this set of coordinates yields the arc distances required for the LM to rendezvous with the CSM. For positive coordinates, the sequence is as follows: through the arc RCX to bring the LM into the CSM flight plane; vertically through RCY to gain the required altitude; then down range through the arc RCZ to the position vector of the CSM

magnitude of the relative velocity, fps

the rendezvous coordinate system is centered in the inactive vehicle; the Y-axis is along this vehicle's negative angular momentum, and the Z-axis is along the negative of the projection of the active vehicle's position into the inactive flight plane

44

Symbol

LANDING SITE COORDINATES

ALLS

BTLS

ALLSW1

ALLSW2

LATLS

LONLS

RANG

ELV

AZM

DRNL

angle between the line of sight to the landing site and the X-axis of the vehicle, deg

Definition

angle between the projection of the line of sight to the landing site into the Y-Z plane and the negative Z-axis of the vehicle, measured positively from the negative Z-axis toward the positive Y-axis, deg

angle between the center line of window 1 and the line of sight to the landing site, deg

angle between the center line of window 2 and the line of sight to the landing site, deg

latitude of the landing site, deg

longitude of the landing site, deg

range from vehicle to landing site, n. mi.

elevation angle of vehicle measured from a plane tangent to the target body at the landing site, deg

azimuth of the vehicle with respect to the landing site, deg

range rate, deg

....

Symbol

Definition

LANDING	SITE	COORDINATES		
RLSX RLSY RLSZ		ă.		selenocentric position vector of the landing site, n. mi.
VLSX VLSY VLSZ				selenocentric velocity vector of the landing site, fps
SOLLS			. *	sunlight incidence angle on landing site (elevation of sun measured from geocentric or selenocentric horizontal at the landing site; negative value indicates sunlight not incident), deg
TRALT				altitude above the landing site, n. mi.
ALTST				altitude of landing site above the mean radius of the moon, n. mi.
TANG			×	thrust attitude of vehicle 2 with reference to line of sight, deg
SPRANC	ł			surface range, n. mi.

MISSION GUIDELINES AND CONSTRAINTS

47

.

Þ

3.0 MISSION GUIDELINES AND CONSTRAINTS

The design of the mission and the monthly and daily launch windows were based on the following guidelines and constraints.

a. The primary lunar landing site is the Descartes region. There is no backup site.

b. Daylight launch is highly desirable.

c. The launch windows and profiles will be designed to achieve favorable lunar lighting at the lunar landing sites. For the primary launch date, the sun elevation is 11.9° .

d. The flight azimuth range following launch is limited to 72° to 100° .

e. The mission will be designed for a translunar injection over the Pacific Ocean.

f. Two TLI opportunities will be targeted: the first on the second revolution and the second on the third revolution.

g. The translunar trajectory must be restricted such that the spacecraft is earth-returnable within RCS capability up to TLI + 5 hours, and, in the event that LOI is not performed, the spacecraft must be returnable within DPS capability at perilune + 2 hours.

h. The S-IVB will perform an evasive maneuver prior to the LOX dump. The LOX dump will be targeted to achieve an S-IVB lunar impact.

i. The LOI maneuver will result in a 58- by 170-n. mi. elliptical orbit. DOI will be performed with the SPS after two revs in the 58- by 170-n. mi. orbit established by LOI. The targeting will be biased to place the spacecraft in an approximately 52 500-foot by 60-n. mi. orbit at the time of PDI on rev 13.

j. The lunar surface stay time will be approximately 73 hours. The CSM lunar orbit orientation will be restricted to permit an any-orbit LM lift-off.

k. A CSM plane change will be made on rev 40 approximately 10 revolutions prior to LM ascent to place the landing site in the orbital plane at the planned time of lift-off on rev 50.

1. The LM ascent stage will be deorbited for lunar impact. A second CSM plane change of 3° will be made on rev 61 to increase lunar surface coverage for photography. A shaping burn will be performed by the CSM on rev 73 to achieve proper orbital lifetime for the subsatellite jettisoned on rev 73.

m. The lunar orbit will be designed within the SPS capability to return to earth from an orbit, including the cryogenic tank failure situation.

n. The TEI maneuver will be targeted to return as soon as possible to the prime recovery area within the available ΔV capability.

o. The earth relative entry range will be 1190 n. mi.

.

EARTH PARKING ORBIT

TABLE 5-I.- LUNAR LANDING SITE POSITION

Launch date .	• •		•	•	•	•		April 16, 1972
Lunar site nam	ne .	•	•	•	•	•		Descartes
Latitude, deg	• •			•	•	•		-9.00028
Longitude, deg	5 •	•	•	•	•	•		15.51639
Altitude, ^a n.	mi.		•	•	•			-0.1405

^aAll altitudes shown are referenced to mean lunar radius of 938.4935 n. mi.