Massachusetts Institute of Technology C.S. Draper Laboratory Cambridge, Massachusetts

LUMINARY Memo #141

То:	Distribution
From:	L. Berman
Date:	10 March 1970
Subject:	Replacement of LOGSUB in Luminary

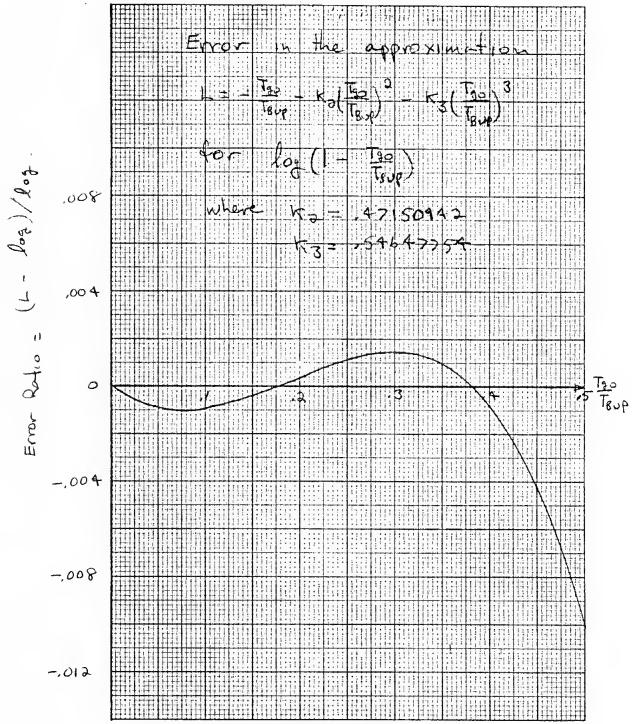
The Ascent Guidance Equations in LUMINARY require the generation of a logarithm, specifically log $(1 - Tgo/T_{Bup})$. To do this, a 7th order polynomial is used, with POLY doing the actual work. The setup for POLY is done in a section called LOGSUB.

It turns out that LOGSUB is not used anywhere else in LUMINARY. Since the accuracy of a 7th order polynomial is not needed in the guidance, it makes sense to replace it with a simpler procedure.

$$\log (1 - T_{go}/T_{Bup}) = -\frac{T_{go}}{T_{Bup}} - \frac{1/2(\frac{T_{go}}{T_{Bup}})^2 - \frac{1}{3}(\frac{T_{go}}{T_{Bup}})^3 - -$$

For the kind of vehicles we are familiar with, Tgo/T_{Bup} is normally not larger than about . 5 (anything significantly larger means you have very little payload). Thus a short series should work adequately. With a little computation I have found

 $L = -\frac{Tgo}{T_{Bup}} - .47150942 \left(\frac{Tgo}{T_{Bup}}\right)^2 - .54647754 \left(\frac{Tgo}{T_{Bup}}\right)^3$


to look reasonable. Its error, $(L - \log)/\log$, is shown on the attached figure. Maximum error for $Tgo/T_{Bup} \leq .5$ is about 1%, and for a LM-type vehicle, the equivalent error in Tgo is reduced to .01 sec by the time Tgo is reduced to 15 sec.

<u>old</u>		new	
DLOAD	DSU	DLOAD	DDV
	TBUP		TGO
	TGO		TBUP

old		nev	7
DDV	CALL	EXIT	
	TBUP	TC	POLY
	LOGSUB	DEC	2
SL	PUSH	2 DEC	0
	5	$2 \mathrm{DEC}$	-1.0
	(8 reg)		
	+	2 DEC	-0.47150942
	LOGSUB (38 reg)	2 DEC	-0.54647754
	= 46 reg	TC	INTPRET
		PUSH	
			16 reg

A saving of 30 registers is seen (also some time saving), all in BANK 30, so that coding changes would be simple.

. . . .

