LUMINARY Memo \#181

To: Distribution
From: D. Millard
Date: 15 December 1970
Subject: IMU Alignments and LUMINARY 202

Reference: (1) MIT GSOP, LUMINARY 1C, Section 5

Tapes of LUMINARY revision 202 are being sent out to the simulators today. This memo is concerned with supplying details of the new sighting mark procedures (PCR 1044) and mark channel bit protection (PCR 333); both are now snug in revision 202. The following information is included - indexed for your convenience.

SECTION 1	STAR VECTOR DETERMINA TION
SECTION 2	SIGHTING MARK DISPLAYS
SECTION 3	SIGHTING TECHNIQUE SELECTION
SECTION 4	PCR 333 AND BACK UP MARKING CAPABILITY
SECTION 5	DETAIL FLOW DIAGRAMS (R53)
SECTION 6	LM IMU ALIGNMENT CHECKLIST

Briefly PCR 1044 proposes to eliminate the requirement of taking X and Y marks in pairs during inflight alignments and of taking cursor and spiral measurements in pairs during lunar surface alignments. To comply with 1044 it was necessary to devise a new computation scheme for processing mark data during lunar surface alignments. The computation scheme described in section 1 not only fulfills the requirements of PCR 1044 but also provides LUMINARY with a spin off, that being the capability of using the lunar surface sighting technique to accumulate sighting data during inflight alignments. An advantage of this added capability is that inflight IMU alignments can be performed under conditions where LM attitude is constrained as during the docked configuration.

Revision 202 does not provide for selecting the surface sighting technique during a P51; however this could be included with little coding impact. Section 3 describes the sighting option selection in P52.

PCR 333 was initiated to protect mark interrupts in the event that a ROD bit fails on during IMU alignments. Section 4 describes the back up mark capability gained under this PCR.

Level III type digital simulation runs have been made of P52, P57 and of P52 using the surface sighting technique.

SECTION 1
STAR VECTOR DETERMINATION

STAR VECTOR DETERMINATION FOR SURFACE ALIGNMENTS

The following equations describe the computation scheme used to determine the direction vector of a celestial body in platform coordinates from measurement data accumulated by AOT sightings. The data accumulated by the lunar surface sighting mark technique to determine a star direction are a cursor angle (YROT) and the CDU angles corresponding to the YROT mark time and a spiral angle (SROT) and the CDU angles corresponding to the SROT mark time. The cursor and spiral rotation angles are described in section 5.6.3.1.2 of reference 1.

The cursor mark data defines a plane containing both the sighted star and the optical axis of the AOT in platform coordinates. A spiral mark defines a spiral surface which also contains the sighted body. The line of intersection of the cursor plane $\underline{U}_{Y P}$ and the spiral surface represents the direction of the star.

The normal to the cursor plane in body coordinates is computed by

$$
\underline{U}_{\mathrm{YPN}}^{\prime \prime}=-\sin (\mathrm{YROT}) \underline{U}_{\mathrm{XPN}}+\cos (\mathrm{YROT}) \underline{U}_{\mathrm{YPN}}
$$

where $\underline{U}_{\mathrm{XPN}}$ and $\underline{U}_{\mathrm{YPN}}$ are plane vectors describing the AOT X and Y reticle lines in body coordinates given by equations 6.3.4 of reference 1 .

The cursor plane vector with respect to platform coordinates at the cursor mark time is

$$
\underline{\mathrm{U}}_{\mathrm{YP}}=[\mathrm{NBSM}]_{\mathrm{C}} \underline{\mathrm{U}}^{\prime \prime}{ }_{\mathrm{YPN}}
$$

[NBSM] $]_{\text {C }}$ is the transformation matrix from body coordinates to platform coordinates using IMU CDU angles acquired by a cursor mark.

A unit vector $\underline{U}_{S P}$ is defined which sweeps along the spiral as a function of the angle θ as shown in Figure 1. With respect to the triple primed coordinate system $\underline{U}_{S P}$ is expressed by

$$
\begin{aligned}
\underline{U}_{S P}= & (\cos \theta \sin \theta / 12) \underline{U}^{\prime \prime \prime} \mathrm{X}^{-}-(\sin \theta \sin \theta / 12) \underline{U}^{\prime \prime \prime} \mathrm{Y} \\
& +(\cos \theta / 12) \underline{U}^{\prime \prime \prime} \mathrm{Z}^{\prime}
\end{aligned}
$$

The axis vectors $\underline{U}^{\prime \prime \prime} X^{\prime}, \underline{U}^{\prime \prime \prime} Y^{\prime}, \underline{U}^{\prime \prime \prime} Z$ are determined with respect to the body coordinate system using the measured spiral rotation angle (SROT).

$$
\begin{aligned}
& \underline{U}^{\prime \prime \prime} \mathrm{Y}=-\sin (\mathrm{SROT}) \underline{U}_{\mathrm{XPN}}+\cos (\mathrm{SROT}) \underline{U}_{\mathrm{YPN}} \\
& \underline{U}^{\prime \prime \prime} Z=\underline{U}_{\mathrm{OAN}} \\
& \underline{U}^{\prime \prime \prime}{ }_{X}=\operatorname{UNIT}\left(\underline{U}^{\prime \prime \prime} \mathrm{Y}^{\mathrm{X}} \underline{U}^{\prime \prime \prime} Z^{\prime}\right)
\end{aligned}
$$

$\underline{U}_{\text {OAN }}$ is a unit vector describing the optical axis of the AOT in body coordinates given by equation 6.3.1 of reference 1 .

During lunar surface IM U alignments the initial estimate of θ is derived from the measured rotation angles.

$$
\theta=360+\mathrm{SROT}-\mathrm{YROT}
$$

If the surface sighting technique is used during inflight IMU alignments, θ is initially estimated using the sighting star vector stored in the LGC star catalog by transforming it to body coordinates and taking the dot product with the AOT optics axis vector.

$$
\underline{S T A R}_{\mathrm{NB}}=\left[\mathrm{SMNB}_{\mathrm{S}} \mathrm{REFSMMAT}^{\text {STAR }} \mathrm{REF}_{\text {RE }}\right.
$$

$[S M N B]_{S}$ is the transformation matrix from platform to body coordinates using IMU CDU angles acquired by a spiral mark.

$$
\theta=12 \operatorname{ARCCOS}\left(\underline{S_{T A R}^{N B}}\right.
$$

To obtain the line of intersection of the cursor plane and spiral surface a vector• \underline{U}_{S} must be computed which satisfies

$$
\cos \phi=\underline{U}_{\mathrm{YP}} \cdot \underline{U}_{\mathrm{S}}=0
$$

where \mathbb{U}_{S} is the spiral surface vector in platform coordinates.

$$
\underline{\mathrm{U}}_{\mathrm{S}}=[\mathrm{NBSM}]_{\mathrm{S}} \underline{\mathrm{U}}_{\mathrm{SP}}
$$

The iteration loop shown in the computation scheme flow diagram (Figure 2) is used to monitor convergence of $\cos \phi$ where the initial computation of \underline{U}_{S} is based on an initial estimate of θ. Subsequent computations of \underline{U}_{S} use a θ incremented by ± 1 degree. The final solution for ${\underset{S}{S}}$ represents the direction of the star in platform coordinates for a given set of mark data.

FIGURE 1

FIGURE 2

SECTION 2

SIGHTING MARK DISPLAYS

V01 N71 This display appears at the start of the sighting mark

R1 00DSS

PROCEED Depressing PROCEED button
This action is taken when the astronaut wishes to start the MARKing sequence. If SURFFLAG or FLT59FLG is set the lunar surface sighting mark technique is to be used for this alignment and V52N71 will be displayed requesting a cursor mark. The above flags are clear for the normal inflight mark procedure and V54N71 will be displayed requesting the astronaut to perform X and Y MARKS.

TERMINATE VERB 34, ENTER
The astronaut desires to terminate the alignment program.
Verb 37 will be displayed.

V54 N71
R1 00DSS
R2 X MARKS
R3 Y MARKS

This display appears during the inflight sighting mark sequence. R1 contains the AOT position detent (D) and the octal star code (SS) of the celestial body to be marked. V54 requests the astronaut to take X and Y marks. He may make up to 5 X and Y marks in any sequence. The mark counters in registers R2 and R3 maintain a count of the accumulated X and Y marks. If more than 5 marks are made, the IMU CDU's stored by the 5 th mark will be over written by the 6th mark. The mark counter will remain at 5. A pointer was added to the mark counter registers so the astronaut will always be aware of what his last mark was. This was primarily for MARK REJECT purposes because the last mark will be rejected first. This pointer is BIT 13 added to the mark counter register of the mark just performed. An example: if the astronaut had made 2 Y marks and had just performed the 4th X mark, the display would look like:

V54 N71
R1 00DSS
R2 10004
R3 00002
The reject pointer indicates an X mark was made and will be rejected with a MARK REJECT action. If that were the case R2 would be 10003 and further reject action would reduce the R2 counter to 10000 and cause ALARM 115 when there were no more X marks to be rejected. To give the astronaut some control of the reject action, a switch was provided with the ENTER button. Depressing the enter button flips the reject pointer to the opposite mark counter. An example: if the astronaut wanted to reject a Y mark in the above display, he would first depress the enter button to display:

V54 N71
R1 00DSS
R2 00004
R3 10002
The reject action would now cause R3 to be 10001 .

During inflight alignments the position of the reject pointer in no way affects any sequence of marking the astronaut may wish to make. This is not the case during surface alignments. The marking sequence may be finished by one of the following astronaut actions.

PROCEED Depressing the PROCEED button.
This action is taken when sufficient mark data has been accumulated. An average star vector is computed and program control returns to the alignment program. It is not necessary that the same number of X and Y marks be made; however, the number of star vectors computed and averaged will be equal to the mark counter with the least number of marks. ALARM 111 will occur if either mark counter is zero.

RECYCLE

TERMINATE

VERB 32 ENTER
With this action the astronaut may select another star and/or detent code for the mark sequence. V01N71 will be redisplayed.

VERB 34 ENTER
The astronaut desires to terminate the alignment program. Verb 37 will be displayed.

V52 N71/V53 N71 These two mark requests appear during the lunar R1 00DSS surface sighting sequence. V52 is displayed first R2 YROT MARKS requesting the astronaut to perform cursor measureR3 SROT MARKS ments by rotating the AOT reticle pattern until the cursor line is coincident with a star and depressing a mark button. V53 requests the astronaut to perform spiral measurements by rotating the reticle pattern to bring the spiral line on the star and depressing a mark button. Up to 5 marks may be accumulated. Registers R2 and R3 maintain a count of the marks. When the astronaut performs a cursor mark by depressing the MARK button under V52 N71, V21 N79 is displayed requesting the cursor angle load. When the angle is ENTERed, V06 N79 is displayed for data verification and a PROCEED causes the cursor data to be stored and V52 N71 is redisplayed requesting another cursor mark.

In the surface sighting technique the enter button not only controls the reject pointer as during the inflight sighting procedure but is also the method by which the astronaut selects which measurement, cursor or spiral, he intends to perform. After sufficient cursor marks are accumulated under V52 N71 an ENTER is executed which causes V53N71 to be displayed requesting spiral measurements. Depressing the MARK button under V53 N71 causes the spiral load request V22 N79 to be displayed. When the spiral angle is ENTERed V06N79 is displayed for data verification and a PROCEED brings up V53N71 requesting another spiral mark. Mark data will only be accepted when a mark verb is displayed. Depressing the MARK button under any other display will cause ALARM 112. The surface marking sequence may be ended by one of the following actions.

PROCEED Depressing the PROCEED button. This action is taken after sufficient mark data has been accumulated. An average star vector is computed
and program control returns to the alignment program. The computation scheme used to compute the star vectors from data collected by the lunar surface marking technique can reject mark data sets, i.e., CDU's, cursor and spiral, for a given mark. If, during the computation, any data is rejected the display V50N25, R1 = 00016 will appear after all computation is completed. Register R2 will contain the number of data sets rejected. This display is discussed later. If either mark counter is zero ALARM 111 is indicated and V52 N71 will be redisplayed.

VERB 32 ENTER
With this action the astronaut may select another star and/or detent code for the marking sequence. V01 N71 will be displayed.

TERMINATE VERB 34 ENTER
The astronaut wishes to terminate the alignment program. V37 will be displayed.

V50 N25
R1 00016
R2 0000R

RECYCLE VERB 32 ENTER
The astronaut chooses to redo the sighting mark. V01 N71 will be displayed.
This display appears only during the lunar surface marking procedure and then only if mark data is rejected during the computation of star vectors after the marking sequence. Register R2 displays the number (R) of mark data sets rejected. Data for a given sighting mark is rejected if the star is within 2 degrees of the AOT optic axis or if the star lies on the edge of the AOT field-of-view greater than 28.5 degrees from the optic axis. Data is also rejected if more than 16 iterations are required to converge to a solution or if the sign of the iteration step changes more than once The following action is possible.

PROCEED Depressing PROCEED

The astronaut wishes to proceed with the alignment

using the average star vector computed from non
rejected mark data.

TERMINATE

VERB 34 ENTER

The astronaut desires to terminate the alignment program. V37 will be displayed.

SECTION 3

SIGHTING TECHNIQUE SELECTION

SELECTION OF INFLIGHT SIGHTING TECHNIQUE

V50 N25 This display appears at the start of the Fine Align Routine R1 00015 R51, during inflight alignments. It requests the astronaut to perform celestial body acquisition either manually or automatically by using the inflight PICAPAR routine or the Lunar Surface Star Acquisition Routine by selecting one of the following responses.

PROCEED	Depress PROCEED button
The astronaut ẉishes to use the PICAPAR Routine to	
locate two stars with respect to the AOT forward sighting	
position for the present LM attitude. If two stars are	
found the Auto Optics Position Routine will display	
V01 N70 with the number of the first star to be sighted	
in R1. If stars are not found V05 N09 with alarm code	
	00405 in R1 will be displayed. The astronaut may
	maneuver the LM to a different attitude and recycle the
	display, V32E, to V50 N25 and try PICAPAR again or
he may ENTER to V01 N70 and select a star.	

RECYCLE VERB 32 ENTER
The astronaut wishes to use the lunar surface sighting technique to accumulate sighting mark data. FLT59FLG is set and the program branches to the Lunar Surface Star Acquisition Routine and V01 N70 is displayed.

ENTER	Depress ENTER button The astronaut wishes to bypass the PICAPAR Rou
	V01 N70 from the Auto Optics Position Routine wi
displayed.	

The following diagram shows the program flow in R51 and R53 for the inflight and lunar surface sighting techniques.

SECTION 4

PCR 333 AND BACKUP MARKING CAPABILITY

BACK UP MARK CAPABILITY

PCR 333 provides for protecting the X and Y mark inter rupts in the event that a ROD bit fails on in channel 16 during IM U alignments. Since it is also possible for a mark bit failure to equally jeopardize on-board alignment capability, implementation of the PCR was coded to cause ROD input to be utilized as a mark interrupt during non-thrusting periods. To prevent all mark interrupts from looking like a mark reject in the event of reject bit failure, ROD interrupt logic bypasses the interrogation of channel 16 for reject action. A mark reject can always be accomplished by,VERB 32 ENTER under the MARK VERB display which cycles the display to V01N71. This action not only eliminates the offending mark but also all good marks that may have been accumulated for a given star, but it does save from having to reselect the alignment program.

If a ROD bit does fail during an IMU alignment it will probably go unnoticed since the MARK bit gets processed normally. If a mark reject is attempted, however, ALARM 113 will result indicating no channel bit since ROD logic bypasses the reject bit interrogation.

In the event of an X or Y mark bit failure the Lunar Surface Sighting Mark technique is used for the back-up procedure since it is not particular how the mark interrupt occurs; i.e. X MARK or Y MARK. Section 3 describes the sighting technique selection. The cursor and spiral marks are made by activating the ROD Switch. For Lunar surface alignments the back up capability is automatically present. Activating the ROD switch under a display other than a mark request verb will cause ALARM 112 if AVEGFLAG is clear.

Page 5 of section 5 shows the flow logic of PCR 333 in the MARKRUPT Routine.

SECTION 5

DETAIL FLOW DIAGRAMS (R53)

*
SUBSCRIPT 2 - INDICATED STORAGE LOCATION INDEXED BY MKDEX

> IF XYMARK $=0$, BLANK RZ, R3
> IF XYMARK $=1$, BLANK RI,R3

SECTION 6

LM IMU ALIGNMENT CHECKLIST

APOLLO 15

P51 IMU ORIENTATION

CB (11) AC BUS B: AOT LAMP-Close V37E 51E
F 5025 R1 00015 MNVR TO ACQ STARS (To Coarse Align IMU To 0, 0,0-ENTR) 4122 A11 Zeroes PRO

F $0171 \cdot \mathrm{R} 1$ 00CDE (C) DETENT (DE) STAR CODE C 1-L, 2-F, 3-R, 4-RR, 5-CL, 6-LR 7-COAS (+00000, +00000) FWD $(+00000,+09000)$ OVHD
PRO
(FOR. C=7) $\underset{\text { PRO }}{\text { For }} 87 \mathrm{AZ}, \mathrm{EL} \quad\left(.01^{\circ}\right)$
F 5471 MARK X OR Y
R1 00CDE
R2 X MARKS
R3 Y MARKS
1000X in R2/R3 indicates reject enable
(CHANGE REJECT OPTION) ENTER
(REDESIGNATE) V32E to 2
(MARKS COMPLETE) PRO
(For DE=00
F 0688 CELESTIAL BODY VECTOR Load Vector Values PRO)
(After 1 st Star) To 2
(After 2nd Star) To 4

$$
\begin{aligned}
& \text { F } 0605 \text { R1 STAR ANGLE DIFFERENCE } \\
& \text { (RECYCLE) V32E To } 1 \\
& \text { PRO }
\end{aligned}
$$

F 37 CB(11) AC BUS B: AOT LAMP-Open

P52 IMU REALIGN

CM (11) AC BUS B: AOT LAMP-Close V37E 52E


```
F 06 88 CELESTIAL BODY VECTOR
Load Vector Values
PRO)
```

*PROG Lt-On
F 050900404 Defined Star

* Not Available In *
* Any Detent *
(CREW SPECIFY) PRO. to 10
*(LGC CALC N79) V32E To 7
FF8r CURSOR/SPIRAL. 79 CURSOR, SPIRAL, POS CODE
(REDESIGNATE) V32E To 7
PRO To 10)
*PROG Lt - On *
*V05N09E *
* 20105 AOT Mark Sỳstem*
* In Use *
* 31207 No VAC Area *
* For Marks *
* 31211 Illegal *
* Interrupt of *
*" Extended Verb *
*V37E XXE . *

F 5018 REQUEST MNVR TO FDAI RPY ANGLF:S

MODE CONT (PGNS) - AUTO
PRO.
(MAN) MODE CONT (PGNS) - ATT HOLD MNVR
PRO To 8
(BYPASS)ENTR To 10 (If COAS/LPD CALIB, Go to 7)
0618 AUTO MNVR TO FDAI RPY ANGLES
Mon Auto Mnvr To 8
F 0171 R1 00CDE (C) DETENT (DE)STAR CODE PRO
(For $\mathrm{C}=7$
F 0687 AZ , EL
PRO)
(For CURSOR/SPIRAL) GO TO 12
(After first star) To 7
(After second star) To 18

R1 00CDE
R2 CURSOR MARKS
R3 SPIRAL MARKS
1000X IN R2/R3 indisates reject enable
(REDESIGNATE) V32E $\circ 10$.
(CHANGE REJECT OPIIION AND REQUEST SPIRAL MARKS) ENTER To 15
(MARKS COMPLETE) PRO
POSS F 5025 R1 00016
R2 0000X
X $=$ NO. MARK. DATA SETS REJECTED
(TAKE MORE MARKS) ENTER To 10
(BYPASS) PRO
(For DE $=00$
F'06 88 CELESTIAL BODY VECTOR LOAD
VECTOR VAL UES
PRO)
(After first star) To 7
(After second star) To 18
MARK (X OR Y)
F 2179 LOAD CURSOR ANGLE
F06 79 R1 CUṘSOR ANGLE (VERIFY)
PRO To 12
F5371 MARK SPIRAL (5 maximum)
R1 00CDE
R2 CURSOR MARKS
R. 3 SPIRAL MARKS

1000X IN R2/R3 indicates reject enable
(REDESIGNATE) V 32 E To 10
(CHANGE REJECT OPTION AND REQUEST
CURSOR MARKS) ENTER TO 12
(MARKS COMPLETE) PRO POSS FL 5025 R. 00016

R2 0000X

```
                    X = NO. MARK DATA SETS REJECTED
            (TAKE MORE MARKS) ENTER TO 10
            (BYPASS) PRO
            (For DE = 00
            F0688 CELESTIAL BODY VECTOR
                        LOAD VECTOR VALUES
                        PRO)
            (After first star) to 7
            (After second Star) to 18
            MARK (X OR Y)
F 2279 LOAD SPIRAL ANGLE
F 0679 R2 SPIRAL ANGLE (VERIFY) PRO to 15
F 0605 STAR ANGLE DIFFERENCE
(REJECT) V32E To 20
(ACCEPT) PRO
F 0693 GYRO ANGLES X, Y, Z
(TORQUE) MODE CONTROL (PGNS) - ATT HOLD V76E
PRO
(NO TORQUE) V 32 E To 20
(RECHECK) PRO To 6 (EXIT) ENTR
CB (11) AC BUS B: AOT LAMP-OPEN
```

F 5025 R1 00014

V37E57E
*PROG Lt - On
*V05N09E 00210 IMU

* NOT ON \ldots
*CB(11) PGNS: IMU OPR - Close
*

*RSET \& KEY REL, P57E

R1 00001 IMU ALIGN OPT
R2 00001 PREF PRO To 3
3 REFSMMAT PRO To 3
4 LANDING SITE PRO To 2
T ALIGN ($\mathrm{hrs}, \mathrm{min}, .01 \mathrm{sec}$)
(LDG SITE) T ALIGN $=0,0,0$ For Present Time PRO
$\mathrm{X}=0$ Stored Attitude or REPSMMAT
1 REFSMMAT \& Gravity

- 2 Celestial Bodies (2)

3 Gravity \& Celestial Body (1)
R3 00CD0
$\mathrm{C}=0$ No REFSMMAT Defined
1 REFSMMAT Defined
$D=0$ No Stored Attitude
1 Stored Attitude Available
(A/T 1 or 3) ATT MON - PGNS, PRO To 4
(IMU ON \& ALIGNED \& A/T 0) PRO To 18
(IMU ON \& ALIGNED \& A/T 2) PRO To 6 .
(IMU NOT ALIGNED \& A/T 0 or 2) PRO To 17

PROG Lt - On	$$
F 050900701 REFSMMAT OR	$$
* ATTITUDE NOT AVAILABLE	$*$
(CHANGE A/T) V32E To 3	$$
(TERM) V34E, Select New Prog	$$

Monitor of Lunar Gravity Measurement
V16N20E Monitor Coarse Align
R1 +04200
R2 +31800
$R 3+03525$
NO ATT Lt - On Then Off (Twice) *PROG Lt - On
V05N09E 00211 \& 00217
KEY REL

F 0604

F 0170

F 0679

F 0171

F 5271
(+) GRAVITY ERROR ANGLE (RECYCLE) V32E To 4
(TERM) V34E, Select New Prog PRO To 17
R1 00CDE (C) DETENT (DE) STAR CODE (DETENT) 1-L, 2-F, 3-R, 4-RR, 5-CL, 6-LR PRO
(For DE $=00$
F 0688 CELESTIAL BODY VECTOR Load Vector Values PRO)
*PROG Lt - On *F 050900404 Defined Star * * Not Available In * * Any Detent * *(CREW SPECIFY) PRO To 8* *(LGC CALC N79) V32E To 6*
CURSOR, SPIRAL, POSITIÓN CODE
(REDEFINE STAR) V32E To 6
PRO

*PROG Lt - On	*
V05N09E	$$
*	20105 AOT Mark System
*	
*	In Use
*	31207 No VAC Area
*	For Marks
*	31211 Illegal
*	Interrupt of
*	Extended Verb
V37E XXE	$$

R1 00CDE (C) DETENT, (DE) STAR CODE PRO

MARK CURSOR (5 maximum)
R1 00 CDE
R2 CURSOR MARKS
R3 SPIRAL MARKS
1000X IN R2/R3 indicates reject enable (REDESIGNATE) V32E To 8
(CHANGE REJECT OPTION AND REQUEST SPIRAL MARKS) ENTER TO 12

MARK (X OR Y)

F 2179 LOAD CURSOR ANGLE
F 0679 R1 CURSOR ANGLE(VERIFY) PRO.To 9

F $5371 \cdot$ MARK SPIRAL (5 maximum)
R1 00CDE
R2 CURSOR MARKS
R3 SPIRAL MARKS
1000X in R2/R3 indicates reject enable
(REDTSIGNATE) V32E To 8
(CHANGE REJECT OPTION AND REQUEST
CURSOR MARKS) ENTER To 9
(MARKS COMPLETE) PRO
POSS FL 5025 R1 00016
R2 0000X
X = NO. MARK DATA SETS REJECTED
(TAKE MORE MARKS) ENTER To 8
(BYPASS) PRO
(For DE $=00$
F 0688 CELESTIAL BODY VECTOR LOAD VECTOR VAL UES PRO)
(After First Star) To 6 (If option 00003 to 15)
(After Second Star) To 15
MARI (X OR Y)
F 2279 LOAD SPIRAL ANGLE
F06 79 R2 SPIRAL ANGLE (VERIFY)
PRO To 12

