LUMINARY MEMO \# 232

To: Distribution
From: D. Eyles
Date: 16 November 1971
Subject: Low Thrust Landings

This memo describes runs made to see how the landing works when DPS thrust is deficient, and to find out whether downrange redesignations of the landing site, by means of Noun 69, can be used to compensate and make a successful landing possible. The Apollo 16 vehicle (LM 11) was used, but the site, terrain and trajectory were those of Apollo 15. One or two runs should be repeated later with the Apollo 16 terrain to check these results. Runs were as follows:

1. Nominal.
2. 92% thrust.
3. 90% thrust. (Crash!)
4. 85% thrust. (Crash!)
5. 6000 foot downrange N69 at TIG +120 .
6. 90% thrust. 78000 foot downrange N69.
7. 85% thrust. 156000 foot downrange N69.

8 . 80% thrust, 250000 foot downrange N69.
Plots attached to the end are keyed to these run numbers, thrust and altitude-rate against time, and altitude against range being furnished for each simulation. Altitude against range, P64 only, is included for some runs.

Note that at throttle-up the descent engine nominally delivers 9905 pounds thrust, $941 / 3 \%$ of rated thrust. Thus the 92% case, for example, represents a $21 / 3 \%$ low thrust case.

Note that thrust deficiency only counts when the engine is throttled-up. When thrust is within the throttleable region the closed-loop nature of the throttle control routine insures that the desired thrust is obtained.

Note that in the se runs the engine functions with the same efficiency when thrust is low. It gets the same bounce (delta-V) to the ounce (of fuel). The environment's Isp is not changed when thrust is lowered. Intuitively, this seems unrealistic. So without input from the engine people one may suspect that the extreme cases might in real life run out of gas before touching down.

Well, with 92% thrust the LM throttles-down 64 seconds later than nominal, and reached P64 34 seconds earlier, reducing time under throttle control from 120 seconds to 22 seconds. P64 initial conditions were only slightly perturbed, at 500 feet the altitude-rate was okay for astronaut takeover, and the landing was successful.

The 90% thrust case, however, behaves quite differently. Throttledown comes 30 seconds into P64, which began at 13500 feet and $-257 \mathrm{f} / \mathrm{s}$, and 13 seconds later the LM lands with an altitude-rate of around $-500 \mathrm{f} / \mathrm{s}$, which is outside the LM design limits. Note from plot 3a that eventually the divergence between thrust and desired thrust signal that something is wrong. Needless to say the 85% case without a N69 also hits the moon hard.

Downrange redesignation of the landing site early in the burn using N69 offers a means of averting such occurrences when the thrust deficiency is detected. To get an idea of the N69 magnitude required, a 6000 foot N69 was input at TIG +120 and its effect on throttle-down time observed. This run and the nominal and 92% cases are summarized in the following table:

time of throttle down	376573.62	376637.62	376569.62
time of P63 last pass	376693.62	376659.62	376699.62
time under throttle control	120	22	130
thrust at throttle-up	9905	9660	9905
thrust at throttle-down	10009	9780	10008
P64 initial H and H	9652	9652	8783
Hi9 500 feet	-219.2	-227.6	-17.5
Fuel left at 500 feet (pounds)	1894	2107	1831

From this it appeared that to keep time under throttle control constant, the site should be shifted downrange roughly 18000 feet for each percent thrust deficiency. This number was used as a "guideline" for runs 6 through 8, although in runs 7 and 8, it was modified somewhat on the basis of the previous run. Time under throttle control was not held perfectly constant, and pulse-outs occurred in runs 6 and 7 , but at least landings were made with $90 \%, 85 \%$ and 80% thrust which were not crashes. These are summarized in the following table:

N69 (per\% thrust)	0	$\begin{aligned} & 78000 \\ & (18000) \end{aligned}$	$\begin{aligned} & 156000 \\ & (16700) \end{aligned}$	$\begin{aligned} & 250000 \\ & (17400) \end{aligned}$
time of throttle-down	376573.62	376587.62	376627.62	376719.62
time of P63 last pass	376693.62	376721.62	376737.62	376749.62
pulse-out times (durations)	none	$\begin{aligned} & 376661.62 \\ & (12) \end{aligned}$	$\begin{aligned} & 376661.62 \\ & (16) \\ & 376707.62 \end{aligned}$ (6)	none
time under throttle control	120	122	88	30
thrust at throttle up	9905	9450	8925	8400
thrust at throttle down	10009	9557	9042	8541
P64 initial H and \dot{H}	$\begin{aligned} & 9652 \\ & -219.2 \end{aligned}$	$\begin{aligned} & 5867 \\ & -111.2 \end{aligned}$	$\begin{aligned} & 4796 \\ & -76.9 \end{aligned}$	$\begin{aligned} & 4310 \\ & -49.7 \end{aligned}$
\dot{H} at 500 feet	-18.5	-15.9	-15.2	-15.6

Due to an error in the input deck (the separation of the first and second two N69s by 120 seconds) run 8 has extra interest. As can be observed from plot 8A, desired thrust diverges from actual at first, and after the first N69. It takes the second two N69s (of 150000 feet) to make it converge.

The general conclusion of all this is that if thrust is less than 92% of rated thrust you have to do something, and what you should do is shift the site downrange by about 17000 feet for every percent thrust is below nominal.
200 3WBy.

FRAME 002
(
ع00 JWHY

ع00 3 J甘Y

FRAME 003

FRAME 006

200 ЭW甘ยป

FRGME ${ }^{0}$

