
MTP-AERO-63-44

May 29, 1963

/1/ ) 5,-_ "/i_\ _

f
AN ITERATIVE GUIDANCE SCHEME FOR ASCENT TO ORBIT _(SUBORBITAL START OF THE THIRD STAGE) _...-"

Isaac E. Smith and Emsley T. Deaton, Jr. __,.j

OTS PRICE

XERD.X

M I CROF I LJ_

"_" .... " ......... _"'[I -

MSFC - Form 523 (Rev, November 1960)



_v _ _ I_



G o21 jQs _

/g'/_.J_. _ MARSHALL SPACE FLIGHT CENTER

• r

MTP-AERO-63-44

_AN ITERATIVE GUIDANCE SCHEME FOR ASCENT TO ORBIT(SUBORBITAL START OF THE THIRD STAGE) J

Isaac E. Smith and Emsley To Deaton, Jr. _ /_.. /'_-_

or;

GUIDANCE THEORY SECTION

DYNAMICS ANALYSIS BRANCH

AEROBALLISTICS DIVISION





__. MARSHALLSPACEFLIGHTCENTER
-J

MTP-AERO-63-44

ITERATIVEGUIDANCESCHEMEFORASCENTTOORBIT
(SUBORBITALSTARTOFTHETHIRDSTAGE)j

By

Isaac E. Smith and Emsley T. Deaton, Jr. ___

f"

ABSTRACT ..
/_ _>

Average gravity magnitude and direction approximations allow a

closed form solution to the equations of motion. The solution yields

a time-to-go before cutoff as well as a steering function, consisting

of a thrust attitude and a thrust attitude turning rate. The principles

of the guidance scheme, which is adaptive for a set of large disturb-

ances, are outlined with a constant gravity. A spherical earth model

extension, which includes staging during the guidance phase, is pre-

sented. Performance data and a comparison of trajectory shaping are

included where the comparison is against the theoretical optimum

classical calculus of variations solution.
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X
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R!

RT

FI, F2
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DEFINITION OF SYMBOLS

Definition

acceleration components in the space fixed x-y system

velocity components in the space fixed x-y system

position coordinates in the space fixed x-y system

velocity components in the injection coordinate system

position coordinates in the injection coordinate system

constant thrust attitude angle reference to the t-axis

required to meet desired velocity end conditions

thrust attitude angle reference to the x-y axis in the

space fixed x-y system

instantaneous time

remaining flight time for stage one and stage two,

respectively

radius of the earth

distance from the center of the earth to the vehicle

distance from the center of the earth to the injection

point

coefficients in the steering function

instantaneous mass of the first and second stage,

respectively

thrust of the first and second stage, respectively

mass flow rate of the first and second stage, respectively

complete burn-up time of first stage
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DEFINITION OF SYMBOLS (Cont'd)

Definition

complete burn-up time of second stage

characteristic velocity, first stage

characteristic velocity, second stage

average gravity magnitude between the instantaneous

point and the cutoff point

total range angle

* directionaverage g

remaining second stage burn time computed from the

characteristic velocity equation

instantaneous velocity deficiency

instantaneous velocity deficiency in the !-direction

instantaneous velocity deficiency in the _ direction

total velocity

correction function for T2

nominal or desired cutoff velocity components in

the _-TI system

desired _ component at cutoff

subscript denoting inertial values

subscript denoting instantaneous values

when second subscript is used, denotes first and

second stage values, respectively

subscript denotes terminal values.
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SUMMARY

An approximate closed form solution of the equations of motion

allows the derivation of a path adaptive guidance scheme for vehicle

flight in a vacuum. The scheme is characterized by a limited number

of presettings and in-flight computation of the guidance parameters.

The generation of some transcendental functions is required; however,

no successive approximation procedures are necessary. The guidance

outputs are time-to-go before cutoff and the steering function which

consists of a thrust attitude and a thrust attitude turning rate, K2.

The turning rate is used for proper attitude control between passes

through the guidance computer. Since the booster phase of the tra-

jectories presented are unguided*, perturbations were allowed to build

up. It was found that the scheme is adaptive for a large set of first

stage disturbances. The adaptive nature of the scheme also allows it

to handle second and third stage performance perturbations with only

a relatively small loss in injection weights when compared to the

calculus of variation trajectories. No control over the ground range

from launch to the injection point was attempted.

SECTION I. INTRODUCTION

The proposed guidance scheme is based on a steering program

derived from a set of simplified differential equations of motion.

The simplification is justified since the implementation of the scheme

is basically null seeking. The steering program itself has the cal-

culus of variations as a background.

*Position and velocity information is not explicitly used for steering.



It is well known from literature [i] that, for a flat earth, the

optimum thrust attitude is given by

a' + b vt
tan (X) Law No id't+

Imposition of orbital conditions without range control gives

tan (X) = a" + b"t. Law No. 2

First order expansion of Law No. i or 2 yields the form

>_ = a + b t. Law No. 3

A comparison survey of spherical earth trajectories [2] using a

calculus of variations procedure and trajectories using Law No. 3

has shown that there is little difference in performance. The guidance

scheme presented in this report uses Law No. 3 as a steering program

which is updated after each guidance cycle from the state variables

that can be made available at that time.

SECTION II. DESCRIPTION

The principles of the scheme can best be demonstrated by assuming

a vacuum flat earth with constant gravity, g, as a model. Later in

the report extensions will be made to a spherical earth.

The differential equations of motion relative to a vacuum flat

earth can be written as

x = a cos X (i)

°.

Y = a sin )i -_g, (2)

where a represents the thrust acceleration and X is the thrust

attitude angle referenced to the x-axis. The symbol, a, is the force

of the thrust divided by the instantaneous mass of the vehicle. Let

ml = instantaneous mass of the vehicle,

= mass flow rate,

F = force of the thrust,



then,

or

where

a = F/m l

V
ex

a _ m

T - t
(3)

(4)

and

Vex = go ISp = F/_. (5)

The following integrals are given for future use:

T

/ in _ T- T_a dt = Vex

0

T

_fa dt 2=-Vex [(T- T)In _-_--_T T_- TJ

0

T

a tdt = V T in -_ - T
ex q7

o

(6)

T

--- T (T - T)
a tdte = Vex _ 2

0

where T is the time-to-go from any arbitrary instant.



Now, to imposevelocity end conditions only, it is well knownthat,
for a flat earth with a constant gravity, a constant thrust direction
is sufficient [I], (Fig. l).

Y

FIGURE1

Let X = _, a constant, then the first integrals of equations (i) and

(2) are

x T = x l + Vex

YT = _ l + Vex
-" sin _I - gT.

(7)

Equations (7) can be solved for X; therefore,

iYT - Yl+ gT]= arc tan

L x T - _l J

(8)



The deficiency in velocity required to achieve the desired velocity

end conditions may be written as

V.i = (XT - xl)e + (YT (9)

The time-to-go, T, may be determined from equation (9) and the

characteristic velocity equation

= In T/AV i Vex

Hence,

_f_Vi/Vex]
T = T I e (io)

Equations (8), (9) and (i0) can be solved for T and _ for the

current state variables il and Yl and the required terminal velocity

components x T and YT" At this time, assume that T is found from

equations (9) and (i0) through successive approximation methods.

Later a method will be introduced that eliminates any need for iter-

ation processes within the scheme. Since the state variables are

continually changing, the determination of T and the computation of

X proceed stepwise using the up-dated values of x1 and Yl as they are

obtained. As ,_Vi and T approach zero near the end of the

powered flight, equation (8) becomes indeterminate; however, it will

be shown later that this difficulty is not serious and can be resolved

without undue complication.

Now to enforce an altitude end condition, the parameters Ki and

K2 are introduced into Law No. 3:

X = X - K i + K2t. (Ii)
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cos X _ cos _ + K ! sin _ - Kst sin

sin X _ sin _ - K 1 cos _+ Kst cos _ .

(12)

Using these trigonometric expressions in equation (2), the following

integrals are found:

(13)

i

YT = Y! - _ gTs + Yl T + Vex r ]%sin _- K I cos _ . - (T - T)

+ V K s cos X --_ + T T - (< - T) in
ex

(14)

Now, equations (8), (9) and (I0) enforce the desired velocity end

conditions. The introduction of the parameters K l and Ks will perturb

the velocity end conditions if K l and K s are not properly selected.

For the orbital injection case, the first order disturbances are reduced

in the velocity component normal to the flight path angle at injection.

The vel_city end condition is preserved by setting the difference of

YT and y_ to zero,
i

YT - YT = - K
cos _ V In + V Ke cos _ _ In -_ - T = 0.

ex ex

(15)



Equation (14), the altitude end condition, and equation (15), the

preserved velocity end condition, can be solved simultaneously for

K l and K 2. The equations have the form

- A_K 1 + B_K 2 = 0 (16)

- A_K ! + B_K e + C2 = 0, (17)

where

A (18)

B z cos in T T (19)

A e'= Vex cos _ LT - (_ - T) In T T
(20)

T2 I

B'e : Vex cos T + % iT - (T - T) In (21)

C' i
e = yl - YT - _ gTe + _ zT + Vex sin

(22)



Therefore,

! I

B!C s

K 1 = (23)
! I I !

A2B z - A!B s

and

A_K l

B 1
(24)

Thus, the relation X = _ - K ! + Ket can be computed stepwise as the

current measurements of the state variables are updated. The specified

presettings are YT' iT and YT" No enforcement of the terminal range is
attempted.

SECTION III. SPHERICAL EARTH WITH GUIDANCE OVER TWO STAGES

The methods employed in the derivation of the guidance equations

for a spherical earth are essentially the same as those used with a flat

earth model. However, the equations of motion must be modified to account

for constantly changing magnitude and direction of the gravity force.

Since the gravity force field is conservative and the guidance scheme

is a null seeking system, the change in gravity magnitude and direction

is approximated. An average gravity magnitude, g*, and an average gravity

direction, _e, between the current point on the trajectory and the final

injection point are updated at the beginning of each pass through the

guidance scheme. Thus,

Rl 2 = x± e + (Ro + Y!) s (25)

x I -

;j! = tan-i _Ro_ y _ (26)

g! = go _'_ (27)



gT go ,_/
(28)

, gi + gT

g = 2 (29)

= 2 ' (30)

where the subscript "I" denotes the instantaneous values and the sub-

script "T" denotes the terminal values. Figure 2 depicts the coordinate

system used.

The _ axis of the guidance equations' coordinate system is vertical

at injection; consequently, the _ axis must pass through the injection

point (Fig. 2). Therefore, the _ - _ (guidance) coordinate system require_

a previous knowledge of _T_ the total range angle. The method employed

for deriving the range angle, _T' will be shown later. The _ -

coordinate system is formed by rotating the space fixed x - y system

through the range angle, _T(Fig. 2). The x - y system is considered

translated to the center of the earth.

Thus,

(i) 9 C)
ksin _T cos _T

and (31)

{) 9
\sin _T cos _T

The "time-to-go", T, is computed during each guidance cycle along

the trajectory as samples of the state variables are taken. The method

of computing T without the use of successive approximations will be

shown later. The instantaneous velocity deficiency is defined as

- - g_ T sin + - + g_ T cos

(32)
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FIGURE 2: FLIGHT GEOMETRY
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The constant thrust attitude, referred to the _ - N coordinate

system, necessary to overcome this velocity deficiency at the time T is

_ *
_T _i + g T cos _>'=

tan -I
k_

_T - ii - g T sin _'_J

= . I. (33)

For two stages of guidance, the thrust attitude angle must be defined as

-i _BT Bi + g (TI + T2) cos _

= tan I. • , * I
_ - _ - g (TI + T2) sin _
_T =i

, (34)

where TI is the time-to-go during the first guidance stage and T2 is the

time-to-go during the second guidance stage. T 1 is the time needed to

deplete the fuel of the first guidance stage at the present mass flow rate.

Equation (34) enforces the desired cutoff velocity conditions with-

out any altitude constraint. To enforce the terminal altitude condition,

it is necessary to introduce the KI and K2 parameters into the steering

program. Since the _ axis passes through the injection point then the

terminal altitude condition is N = NT , likewise, Kl and K2 must be

chosen such that _T - _ = O. As in the flat earth case the steering

program is

7_ : 7_ - Kl + K2 t.
b

It is also required that X_ be continuous across staging; therefore,

during the second stage of guidance,

7{ = X_ - Kl + K2 (Tl + t).
_35)

The equation of motion in the _ direction is

= a sin 7_ - g cos _ . [36)

Using the trigonometric approximations given in equations (12), the

first integral of equation (36) is
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V ~ _ qi-_T = _l - g* (Tl + Ts) cos ,_,',"+ Lsin X_,_._Kl cos v,._LVex! In I 1
,T l - TL/

" ,_ b,-" '...... '- 1
+ V In , : + K.. cos i<a 'V T_ In :'

ex_-_ ", %' - -___/ _ b l ex. <. -

, Tz " / "._2 \lq
+ Vexl _ - Tl - TI / ex 2 ' T2 - ]79 *'-_,

where

(37)

V is the [irst stage of guidance, thrust over _,
ex I

V is the second s[age of guidance, thrust over _{_,
ex2

Tz is the initial mass over 6.1of the first stage of guidance, and

_s is the second stage of guidance mass over 'i of the second stage.

The constant thrust attitude _'_. first integra! of equation (136) is
_6

F

- _* V_T = _l - o (T1 + T2) cos ,_'t" + sin k_i _. ex l

/ T1 "\
In l

T I - TIJ

1_ --- -
+ Vex2 ' xs - T%/ "

(38)

The first order perturbations caused bv the introduction of K\ and K>

must be eliminated; hence, the condition _T qT = 0 yields

- K1 cos _{ [Vex I in Tb / + V In - "T_ '-%-7 - ex I T<, i ÷ K:_ cos 7_

T z In / + V 2 1 in T

+ V T:_,in T. i = 0.
ex_ _:-_ - r ..... '.

-- , , / _]

(39)
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_T

The second integral of equation (36) is

= n_ + %1 (TI + T2) -

I #: (T1 + Te) s cos /_ + _sin X

(.4o)

EquatiOnS (39) and (40) solved for K_ and K _ yield

B_Cr,

KI = _2

(41)

and

A_K1

_ _

K_ - B!

(42)

where

in -- + Vex'
AI = Vex I _i - - -

(43)
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rLBI = V |_z in
ex I T1

TI> " TI] + Vex2 I Tz in ._T_ _:-_T _

T 2 in \T2 -

[44)

A2 = cos X_ {T2 Vex I In ]_ -- T + Vex l [ Tl - (7! - Tl) in <_z T! T_>]

T2 - (_2 - T2) in
+ Vex2 T2 - T

45)

= X_ _i in - "T - TI + T1 VB2 cos T2 Vex 1 L ' T1 exp

2

- (¢9 - T_) in - V -- - ¢1 Tz
- _o T ex I 2

- • _L

- Vex e _-- - T:, T:_ - (T2 - T2) In T_ - T<j

(¢i - T_) In - -
- _z Tz/!j

(46)

1 *
C2 = ql - BT + _l (TI + T2) - _ g (Tz + T2) 2 cos j"

_ T2 in + T1 - (¢i - TI) In -+ sin exl , "[i T Tz - T]

+Vex2 IT2- (¢2- T2)in <T2 _T--2T_>] _
(47)

For explanation purposes, a coast period has not been included. The

coast period does not modify the form of the equations; however, the

coefficients of equations (39) and (40) would have some additional terms.

Whenever staging occurs, T1 is set to zero; thus, no modification

of the steering program equations is required. Since staging has been

previously accounted for, the guidance computation proceeds smoothly.

The problem is finding a proper method of computing _T and T2.
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SECTIONIV. THECOMPUTATIONOF _JTANDT_,

The total range '/T maybe either preset at launch or it may be
computed in flight. The preset _T works very well except for cases
where the actual range angle exceeds the presetting. If the preset is
too small, the trajectory tends to be too steep, causing a loss in per-
formance. Whenthe range angle exceeds the preset '_T, the sign of _'_

reverses since the injection point no longer lies on the q axis. An

instability may set up in the steering program if this condition prevails.

To overcome this difficulty, it is necessary to step I_T forward as the

angle approaches /T" If a preset _T is used, some of the adaptivity of

the scheme is lost for relatively large disturbances.

The more general cases are covered by computing the total range

angle fn flight. The approximations used in this particular method con-

cain small errors during the initial portion of guidance; however, these

errors reduce significantly as the flight progresses. The range angle

is computed as tollows:

The distance that would be covered by a horizontal flight over a

fiat earth during the first stage of guidance is

"_ - T_) in - T_" (48)

Dividing by the terminal radius gives an approximation for the first

stage range angle,

7V \]]
_$_. 1__ -Tl + V i T_ - (_l - TI) In (L n - , (49)' = R T i ' ext i ',,.'-_- T"_/)j i_ "

Using equation (49), the second stage velocity deficiency is computed by

" * .....Ii

= V :.+ V in I I - V T - g T i sin .--_, <50)kiVi exz < _._ - TI//

where Vq, is the preset cutoff velocity• The second stage characteristic

velocit_ equation is

/ \
_IV = V in ( (51)ex2_ * ,' '

• T_ - T/

where T2 is the second stage estimated time-to-go.
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Equations (50) and (51) yield

f

e x _:

?VI + V in f,_ Tl,/ = V T g_< T_ sin i _--=/i

EXP V ex ]

The estimated second stage range angle is computed by

1
/gl:o = -- Vl + V in -_ - g Ti sin T:_

R T _ c / _1

Then the total range angle is

JT : _ + Sil + _xe , (54)

and the average gravity direction is

* i

= _ (_ + _._), (55)

where _i is the instantaneous range angle.

Since _]i has no gravity losses taken into account, _ll will at

first be too large. However, this error quickly diminishes as the burn

time decreases. The error in 7ix causes _xs to be too small. The over-

all effect is to reduce the total error so that the st_ of _7 and _=s

produces a surprisingly good estimate of the total range angle _T" Since

the velocity of the vehicle is continually increasing, the larger portion

of the flight time takes place in the lower half of the total range angle.

For particular missions with long burn times, this approximation tends to

be inaccurate; hence, it is necessary to use a weighted average for _'_

and g*.

The computation of T:=!, without some method of successive approxima-

tions, requires some knowledge of the length of the second stage time-to-

go. Either an initial estimate may be preset or the estimated burn time

from equation (52) may be used. After the first pass through the guidance

package, the newly computed T? is used for the next pass. After the first

stage burnout and separation occur, the cycle time of the guidance package

is subtracted from the old T and this value used for each succeeding pass.
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Let gT2 be the error in T2, the time-to-go, and let T_ be the

estimated time-to-go; then,

Te = T_ + 8T2. (56)

The velocity deficiency equation may be written as

2

{[i " J]AVI = T - _i - g (Tl + Te + 8T2) sin + T - _l

* ]+ g (TI + T_ + _Te) cos _'_ 2 _ ½

Le t

(57)

A{ : {f- [i- g (Tl + T_) sin _',',

* <A_ = _T - ql + g (TI + T_) cos ,

(58)

(59)

and

[ ]_ : g_ A_* "*cos < - _ sin j"

. 2 .. 2 .. 2

(AV) : (A_) + (A_)

(60)

(61)

Then

2

(AVI) = A g (_Ts) sin + A_ + g (_T_?) cos

or

(62)

*)2(AVl) e = (g (gTe) 2 + 2Z (aTe) + (AV*) 2. (63)

The characteristic velocity equation is

= in( +VAV Vex I TZ TI ex2 in

•e - (T_ + 5T_)
(64)
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But

(T_ + aTe)
] = in (T9 _2T_ - in (I

Now

in I ....... +
T2- T_/ T2 - T_ 2 _2 - T_

Hence, equation (64) can be written as

AV = V in + V in - - V
ex I ex_ ex:J

<i - TI/ _ _-_ T!/ • '_:=,

2

2 _2 - Tb"

Assume that T_ is a reasonably good estimate of the second stage burn

time; then the terms 1/2 (-eSTer/<2 - T_) 2 and higher order are small and

may be neglected.

"Let

L in + V
Vexl T ex_

In -- ,

<2 - T

and

V
ex 2

K -

T2- T_

Then, by substituting equations (68) add (69) into equation (67) and

squaring, 8T2 can be solved from equations (63) and (67),

(65)

(66)

(67)

(68)

(69)

* ) = K2 (8T2) e + 2LK (8T2) + L2.(g)e (8T2)2 + 2h (_T 2) + (AV* (70)

Let

a = Ke _ (g*)2 , (71)
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b = _ - LK,

*) 2 L2c = (AV -

(72)

(73)

Then equation (70) can be written as

-a (5T2) 2 + 2b (_T2) + c = O. (74)

Therefore,

b + _b 2 + ac
8T2 ='

a (75)

Since the coefficient b is negative, the positive radical is chosen in

equation _5) to produce the smaller 8T2.

Using T2 = T_ + 8T 2 and equation _5) for 9 , X_ is computed by

_l + g (6T2) cos

'X_ -- tan , .
LA_ - g (6T2) sin

(76)

The indeterminate nature of equation _6), mentioned in the description,

as T2 approaches zero can be handled in two ways._ The generally used

method is to freeze all the guidance parameters, X_, Kz, K2 and T2 as
T2 < e, where c is some arbitrarily small time-to-go. The data pre-

sented at the end of the paper was computed using this method. It has

been found that the constant e is not critical; in fact, an e of up to

20 seconds causes negligible dispersions in the desired terminal condi-
tions.

The second method is to determine the rate of change of the velocity

components and use the limit equation

•" . *

T2 -+0 tan- l ......= . . (77)ZiT2 g sinai

as prescribed by L'Hospital's Rule. It has been found that this method

does not appreciably improve the end conditions over the T2 < c method.

The steering equation now derived is referenced to the horizontal

at injection. It is necessary then to rotate the steering function back

into the space fixed system; hence,
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X : X{ - K1 - _T + K2 (t - to), (78)

where to is the instant in running when k was last computed, and t is

the running time.

SECTION V. IMPLEMENTATION PROCEDURE

The order in which the guidance equations were derived does not

determine the order of computation. Before computing the steerin_ func-

tion the total range and the suceeding burning time of each stage must be

known. Before computing T2, the state variables must be rotated into the

- q system of which one axis passe_ through _he injection point. T2

must now be computed before finding X{. Once X% and T_ are determined,
the coefficients of K1 and K<, can be evaluated. After Kl and Ks are

computed, the steering program must then be referenced to the inertial

coordinate system. A flow diagram will demonstrate the proper computing

sequence. Figure 3 depicts the flow of two-stage guidance equations in

the guidance computer.

Although two stages of guidance are shown, the equations can be

transformed into one stage simply by setting T! = 0 and TI to some

arbitrary constant. If some engine-out capability is desired, then at

the instant of the engine failure, the guidance scheme is reinitialized

by adjusting either T! and Vex or T2 and Vex s depending on which stage
is in operation. This reiniti_lization is a rapid process and has no

noticeable effect on the overall performance. Engine-out capability is

not included in the flow diagram.

The equations needed to compute the guidance constants are

(79)

(25)

where the reference system is considered translated to the center of

the earth.

,,;,_ = tan -i ¢-_P 1

(26)

(27)
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e is a presetting.Where RT

, gl + gT
g = 2

{, I < "_)J}#ill i T 1 - (T ! -TI) in -
= _ ITI + Vexl T I T .

in _.T Tl ),} . _;iz%

* { [ ex!Vl + V vl _"T_) - VT - g Tl sin "2 /j }T:_ = Ts i - EXP ' V
ex_

{I (")'= (%)I"
_12 = _T-- Vl + Vexi in - - Tl sin T2Tl T

(28)

(29)

(49)

(52)

+V
ex2 T*- (_S" TS) in - T_ j

2

= 7 (_Ai + _12)

11 ks in '-"_T cos _T

II.s.Tsin.)
"_lI \sin _T cos _T

!ll
Y_/

AI : IT - Ii - g (TI + T_) sin _'<

-, . . * *

A_ : r_T - _]l + g (Tl + T_) cos

(53)

(54)

(55)

(31)

(58)

(51)
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where _-Tand TITare preset values determined by the desired terminal
path angle.

, !-.. ..= g LA_] cos _'* - At sin

* "" •@)2(AV)2 = (A_")2 + (_

L = Vex z in - + VT z T ex2

V
ex2

K=

T2- T_

a = K 2 - (g*)2

(60)

(61)

(68)

(69)

(71)

b= _- LK (72)

C = (AV)2 . L 2

5Ta =
b+q ba+ac

(73)

(75)

T2 = T_ + 5T 2

cosX _ = tan -i .,_,,
- g (5Ta) sin _/'J

= in --T +VAz Vex z Tz ex 2

(56)

(76)

(43)

B1 = V TI in '-'T - T1 + V TI in \_e"-eE 1 T1 ex2 r

+ _2 in _2 12T-_ - T2]
(44)
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= X_ in - T + V T1 - (T1 - T1) in TiAs cos s VexI T1 exl T1 - T

+Vex2[T2In¢2 2T ]} (45)

B2 = cos X_ Te Vex I Ti i T - Ti + T1 V Ts
ex_

S { L (Ta T_ %1

- (Ts - Ts) In s - T - Vex! _- - T1 T1 - (_i - Tl) in _l- T

- - T_ To - (_c2 - Ta) in (46)Vex2 _ _ T2 - T

• 1 *
Cs : _l - GT + _l (T1 + T2) - _ g (T1 + Ts) a cos _'_

+ sin X_ exl T 2 in TI - T + T1 - (_l - T!) In _$i - T

+ Vex2 ITs - (_s- Te)in _Ts iST_] ) (47)

me _-

BiCs

AsB 1 - AIB s (41)

AIKl

Ks = BI (42)

The equations are listed in the form as they appear during the

derivation. An inspection of this set will reveal that it is possible

to reduce the computation by combinations. However, the purpose of this

report is to demonstrate the principles involved in the guidance scheme

and not to present the scheme in its final form.

SECTION VI° NUMERICAL INVESTIGATION

The Saturn V vehicle, suborbital start of the third stage, was

used as a model to demonstrate the adaptive nature of the guidance

system presented. However, no data or characteristics of the Saturn V
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vehicle itself are presented. The tables are all in terms of Delta

performance and percentages. A realistic comparison was desired; hence,

for each case presented a calculus of variations program was run for com-

parison data. This means that the data is not a comparison to some

nominal standard trajectory, but a comparison to what the calculus of

variations would have done if faced with the same situation. The guid-

ance loop was closed after the Saturn V first stage burnout and coast

period. At this point dispersions were introduced to generate a family

of orbital injection trajectories.

The weakest link in the guidance system is the average gravity

magnitude and direction approximations. For single stages with rela-

tively short burn times and/or relatively steep trajectories, the approxi-

mations are excellent. However, as the _rajectories become flatter with

longer burn times, then the larger total range angles cause the approxi-

mation to begin to breakdown. This is not serious if it is known that

t1_e missile characteristics will produce such a trajectory. It is only

necessary to modify the g* equation (29) and the ''/"equation (55) to a

set of weighted average equations. It is even feasible to consider a time

varying weighted average; however, this is not done in this report.

To demonstrate the weighted average effects, two cases are presented:

* i

Case A, ;:i : _ (JTll + _12) , (55)

* 8 ':,::1 "_ .
Case B, _ = ]--7 (>:Ol_ + , ....) (80)

However, no cases are presented with a weighted average gravity magnitude

g:'_. Each case was run on a typical Saturn V orbital injection trajectory

with seven large perturbations introduced to form the family of trajec-

tories. The results are presented in Table i. All cases were run with

the guidance output freezing at Ta < _ method. For this study, an c of

ten seconds was used. The terminal conditions were so close to the

desired end conditions that it was not considered necessary to look at

any smaller c. The results are presented in Table 2. Since it was

assumed that the vehicle had a perfect autopilot, the errors presented

are strictly scheme errors. A study of the data presented will show

that the scheme controls the terminal conditions very tightly with very

little loss in performance.

Changing to a weighted average gravity direction causes a change

in the trajectory shape. Case A mentioned above is an altitude over-

shoot trajectory with a subsequent performance loss. Although no attempt

was made to strictly optimize the weighted average, Case B is more nearly

an optimum trajectory. Figure 4 presents an altitude versus velocity

plot of Case A, Case B, and the calculus of variations standard case.

Some trajectory shaping could be accomplished merely by varying the

weighted average equations (55) and (29).
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A numerical study was also conducted using an oblate earth model in

the differential equations of motion. The guidance scheme itself still

used spherical earth gravity approximations to determine the steering

coefficients and the time-to-go. This particular study did not use the

weighted average gravity magnitude and direction mentioned earlier in
this section. Since a seventy degree azimuth was used, the oblate earth

altitude is no longer 185.2 km for a hundred nautical mile orbit refer-

enced to Cape Canaveral. The first stage was flown with a time poly-

nomial tilt program with guidance inserted at the ignition of the second

stage. Table 3 shows the results of this study. The data was generated

and prepared by the Boeing Company under contract for the Aeroballistics

Division of the George C. Marshall Space Flight Center.

SECTION VII. CONCLUSIONS

The guidance system outlined in this report is another approach to

the path,adaptive guidance mechanization problem. Once the relatively

few presettings have been determined, the scheme is capable of handling

large booster stage disturbances. The scheme requires some subroutines

like natural logarithm, arc tangent, sine and cosine, square root, etc.

The guidance output is an initial thrust attitude, a rate of turn

of that thrust attitude, and a time left to cutoff. At discrete intervals

of time the state variables sample is updated and a new guidance output is

generated. Since a turning rate is generated, the discontinuities that

normally occur in polynomial steering between steps is minimized. An

indeterminate function in the steering formula occurs if the guidance

parameters are evaluated very near cutoff. This difficulty is eliminated

by either applying L'Hospital's rule of limits or by freezing the steering

constants at some arbitrary time-to-go. The indeterminancy is not serious

as long as it is accounted for, since it does not affect the terminal con-

ditions.

The weakest link in the system is the average gravity direction and

magnitude computation. However, if it is known what type of trajectory

the vehicle is required to fly, then a proper weighting function can be

found that produces an optimum trajectory7
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TABLE1

PERFORMANCELOSSOFTHESCHEMEIN PERCENTOFC.O.V. MASSIN ORBIT

Initial State Variables Performance Loss

xl Xl Yl Yl Percent from OptimumCase
Number

Km m/sec Km m/sec CaseA CaseB

151.28

154.00

151.28

151.28
151.28
151.28

151.28
151.28

2556.6
2556.6

2700.0

2500.0

2556.6
2556.6

2556.6
2556.6

63.974

63.974

63.974

63.974
65.000

62.000

63.974

63.974

930.53
930.53

930.53

930.53
930.53

930.53

I000.00

850.00

O.11%

O.11%

0. 32%

O.07%

0. 11%
0. 11%

0. 14%

O.11%

1

2

3
4

5
6

7
8

.04%

• 04%

• 09%

• 05%

• 04%
.04%

.05%

• 03%



TABLEII

TERMINALCONDITIONSAT CUTOFFOFTHEGUIDANCESCHEME

DESIREDCONDITIONS ALT. = 185.200 kilometers
Velocity = 7794.7 m/sec

Path Angle = 0.0 degrees from the
horizontal

local
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CaseA CaseB

Case
Altitude Velocity Path Angle Altitude Velocity Path Angle

Number
Deg. from Deg. from

Kilometers m/sec Horizontal Kilometers m/sec Horizontal

i

2

3
4

5

6

7
8

185.19995

185.19991

185.19987

185.19997

185.19998

185.19997

185.19992

185.19998

7794.679

7794.680

7794.642
7794.686

7794.680

7794.679

7794.675

7794.695

+.000909

+.000890

+.000327
+.000878

+.000797

+.001130

+.000191
+.000603

185.20000

185.19999

i 185.20001

185.19999

185.19998

185.i9999

185.19999

185.19999

7794.714

7794.713

7794.707

7794.715

7794.713

7794.716

7794.707

7794.709

+.000275

+.000268

+.000165

+.000424

+.000246

+.002540

+.002521

+.000914
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TABLE 3

OBLATE EARTH MODEL PERTURBATION EFFECTS ON

THE GUIDANCE END CONDITIONS

Percent

Deviation

S-IC !sp

S-tC Isp

Alt.

Km

Resulting End Conditions

Velocity Path Angle

M/sec DegreesPer turba t ion

Baseline 0 !87.58 7795.40 89. 987 1425.0
Guidance

S-IC Thrust - 3 187.61 7795.39 89.988 1454.1

S-IC Thrust + 3 187.58 7795.39 89.987 1414.6

S-II Thrust - 3 187,62 7795.38 89.988 1462.4

S-II Thrust + 3 187.55 7795.41 89.985 1390.9

S-IVB Thrust - 3 187.60 7792.90 89. 989 1443.2

S-IVB Thrust + 3 187.57 7797.90 89.982 1408,1

! 187.59 7795.40 89.987 1436.4

Range

N. Miles

+.3
S-IC Wt.

Uncertainty

S-IVB Isp - I 187.58 7795.57 89.986 1424.4
i

S-IVB Isp + I ! 187.58 7795.24 89.987 1425.6

S-IC Wt. ! I

-.3 ! !87.58 7795.40 89.987 1424.2

Uncertainty i

1425.9

S-II Isp

I

89.987
J

+ I i87.57 7795.40 89,986 1413.6

S-II Isp - I 187.59 7795.40 89.987 1434.6

+ 1 187.58 7795.40 89.987 1415.4
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TABLE 3 (Cont'd)

Percent

Deviation

Alt.

Km

Resulting End Conditions

Velocity Path Angle

Perturbation M/Sec Degrees

S-II Wt.
-.3 187.58 7795.40 89.987 1424.2

Uncertainty

S-II Wt.
+.3 187.59 7795.40 89.987 1425.8

Uncertainty

S-IVB Wt. -.3 187.58 7795.40 89.987 1424.9
Uncertainty

S-IVB Wt°
+.3 187.58 7795.40 89.987 1425.1

Uncertainty

Air Density - 3 187.58 7795.40 89.987 1424.4

Air Density + 3 187.58 7795.40 89.987 1424.4

Drag -I0 187.58 7795.41 89.987 1422.2

Drag +i0 187.59 7795.40 89.987 1428.2

Range

N. Miles
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