
Massachusetts Institute of Technology 

Instrumentation Laboratory 
Cambridge, Massachusetts 

AGO Programming Memo #25 

TO: Distribution 

PROM: D. Eyles 

DATE: May 3, 1967 

SUBJECT: New GEOMETRY Routines 

This memorandum introduces to AGC programmer? the routines that 

have replaced SMNB, NBSM, and AXISROT in the GEOMETRY subroutine. 

I. HISTORY 

Since the vector transformation routines SMNB and NBSM (which 

share the subroutine AXISROT) are in some guidance phases called twice 

every guidance period (by the find CDU desired program), an effort to 

reduce their excessive execution time was thought worthwhile. It was 

oelieved that a basic language version could be written that would require 

-ittle, if any,, more memory and would improve execution time by a factor 

of at least two — without, naturally, sacrificing accuracy. AX*SR*T, 

and its ancillaries, was the result. 

II. DESCRIPTION 

AX*SR*T combines the old SMNB, NBSM, and AXISROT. It is a strict . 

subroutine, called using a TC. User signals which transformation he desires 

using the contents of A. +3 indicates the nav base (NB) to stable member 

(SM) transformation. -3 signals SM to NB. Thus the calling sequences are, 

for NBSM: 

CA THREE 
TC AX*SR*T 
- return here - 

and for SMNB: 

CS THREE 
TC AX*SR*T 
- return here - 



Most users, however, will prefer to use one of the several interface 

routines that are provided (see below for details). 

The vector to be transformed arrives, and is returned, in the 6 

locations beginning at VBUF. Mathematically AX*SR*T, like AXISROT, per¬ 

forms the transformation by rotating the vector in turn through the three 

Euler angles relating the two coordinate systems. This was found to be 

easier and quicker than multiplication by a matrix. AX*SR*t expects to 

find the sines and cosines of the angles of rotation — in general CDU 

angles — at SINCDU and COSCDU, in the order Y Z X. A call to CD*TR*GS 

(see below) takes care of this. 

AX*SR*T is no less accurate than the extinct routines. It is 

guaranteed safe (only) for vectors of magnitude less than unity* A look 

at the case in which a vector of greater magnitude happens to lie entirely 

along an axis of the system to which it is to be transformed convinces 

one that this is a restriction which must be accepted. 

CD*TR*GS computes the sines and cosines of the 2's complement angles 

it finds at CDUSPOT and stores the results at SINCDU and COSCDU. For 

CD*TR*GS the angles should appear, each single precision, at CDUSPOT, 

CDUSPOT +2, and CDUSPOT +4; odd locations need not be zeroed. The sines 

and cosines are placed in SINCDU and COSCDU in the same order as the input 

angles. Thus, if CD*TR*GS is being called as preparation for AX*SR*T the 

angles must have been placed at CDUSPOT in the order Y Z X. (Users may 

find the RTB op code READCDUS helpful in this respect.) Note that CD*TR*GS 

destroys part of VBUF; thus if CD*TR*GS and AX*SR*T are being called in 

succession the vector must be placed at VBUF after the call to CD*TR*GS. 

Except for the generally insignificant MPAC +2, CD*TR*GS leaves the MPAC 

area as it finds it — incidently. 

AX*SR*T does not destroy the values at SINCDU and COSCDU. Thus 

the call to CD*TR*GS need not be repeated, when AX*SR*T is called more than 

once, unless the angles have changed. This, and the fact that the sines 

and cosines remain available to the user, can be the source of significant 

time savings. 



Four permanent interface routines are provided. All restore 

user’s EBANK setting. All are called from interpretive using "CALL" and 

return via QPRET. All expect and return the vector to be transformed 

interpreter-style at MPAC; components at MPAC, MPAC +3, and MPAC +5. 

TRG*NBSM and TRG*SMNB both expect to see the 2’s complement angles 

at CDUSPOT (order Y Z X). TRG*NBSM does the NB to SM transformation; 

TRG*SMNB, vice versa. 

*NBSM* and *SMNB* expect to see the sines and cosines rather than 

the angles themselves. Otherwise they are like, respectively, TRG*NBSM 

and TRG*SMNB. 

Note that just as CD*TR*GS need be called only once for each series 

of transformations using the same angles, so too only one of TRG*SMNB and 

TRG*NBSM need be called for each series. 
j 

Summary of execution times (all are approximate and are in the 

presence of interrupts): 

AX*SR*T 13 ms. 
CD*TR*GS 54 ms. 
TRG*SMNB 62 ms. 
TRG*NBSM 62 ms. 
*SMNB* 14 ms. 
*NBSM* 14 ms. 

SMNB 119 ms. 
NBSM 124 ms. 

extinct routines 

III. EXHORTATION 

Time savings, as illustrated above, were effected by the use of 

basic language; memory savings by machiavellian means. Rewriting inter¬ 

pretive coding in the vernacular was found to be FUN, and, if only as an 

exercise, is recommended. 


