
*8 - J - 7"& 

DEFINITION AND DESCRIPTION OF THE 

VARIABLE GUIDANCE PERIOD SERVICER 

Eyles 



What is Servicer? 

Servicer is a routine which runs periodically during 

powered flight in which navigation and guidance are performed. 

Servicer begins with the reading of the accelerometers, the 

average-G equation, and other vehicle state computations. 

This part is common to all the powered flight phases. Servicer 

next transfers control to the appropriate guidance equation and 

concludes after the output of displays and of commands to the 

autopilot and throttle. 

PIPA reading 

&. 

state computations 



Fixed and Variable Servicers 

If the reading of the PIPAs occurs at a constant frequency 

the Servicer is said to be fixed. Guidance period does not vary. 

If, on the other hand, the time of reading the PIPAs can vary in 

response to variations in the length of the Servicer computations, 

the Servicer is variable. In this case guidance period changes 

and must be computed instead of being assumed. 

LUMINARY’S Servicer 

The Servicer now in LUMINARY is a fixed Servicer which 

runs with a period of 2 seconds. It is started every pass by 

an interrupt — the READ ACCS task — in which the PIPAs are 

read and a Servicer job set up. This job is set up whether or 
t 

not the job initiated by the previous READACCS task has been 

completed. When TLOSS or extra computations cause the 

Servicer job to expand to the extent that it is not completed 

before the next READACCS, the next Servicer job begins anyway. 

The remainder of the first Servicer job is stored in the core 

sets and vac areas to be executed later, whenever there is time. 

This means (1) that the work at the end of the Servicer job does 

not get done, (2) that dangerous and very complex bahavior may 

occur when odd left-over pieces of Servicer jobs at last get 

executed, and (3) that eventually software restarts result when 

core sets (alarm 31202) or vac areas (alarm 31201) are exhausted. 



re
a
d

a
c
c
s
 

re
a
d
a
c
c
s

 
Here are pictures of the LUMINARY Servicer, in 

normal operation (A), and in trouble thanks to TLOSS (B). 



ZERLINA History 

The Servicer developed in ZERLINA is a second-generation 

variable Servicer. The first was developed over a year ago in 

another off-line version, DIANA by MOONLIGHT. Here guidance 

period was not continuously variable, but it could be changed by 

the astronaut in increments of 1/4 second by means of extended 

verbs. Despite its shortcomings this version contributes to the 

present effort (1) an idea of the difficulties and the magnitude of 

the effort involved in incorporating a variable Servicer, and (2) 

some specific blocks of coding, notably the average-G equations. 

Landings and the P40s were tested in this early version. 

« ZERLINA by ZOROASTER originated as a version of LUMINARY 

revision 145 in February of this year. By revision 18 it contained 

a variable Servicer essentially complete and tested in all the 

powered-flight phases of the nominal mission. In later revisions 

of ZERLINA a new Landing Analog Displays routine was developed 

which has already found its way into LUMINARY. Throughout, 

ZERLINA has been kept up to date with the main-line LUMINARY 

and ZERLINA revision 35 is the equivalent of LUMINARY revision 

174 except for its superior Servicer. ZERLINA shares most of 

its subroutines with LUMINARY. 



ZERLINA’s Servicer 

The variable Servicer developed in ZERLINA runs with a 

minimum period of 2 seconds. In normal operation when its 

computations are completed the Servicer job sleeps until the 

2 seconds are up. But if TLOSS or extra work expand the 

Servicer duty cycle to the extent that it takes more than 2 

seconds, the start of the suceeding Servicer cycle is slipped 

until it finishes. Guidance period is automatically stretched 

to fit the required duties and sleep time is eliminated. Because 

in this case the Servicer job is always active — at priority 20 — 

the other jobs that must be executed are given higher priorities 

to enable them to break in. 

Since it can vary, guidance period is computed every pass. 

This is turn Trees Servicer from rigid timing constraints and 

so the READACCS task can be eliminated. The PIPAs are read 

in the Servicer job. It makes restart protection easier and 

increases Servicer1 s ruggedness under time-stress. 

In ZERLINA the Servicer job runs end-to-end and thus cannot 

overlap itself. When it finishes it simply starts over. This means 

that the guidance equation — whichever is connected — must after 

issuing its commands transfer control to the beginning of Servicer, 

marked by the tag PIPCYCLE, instead of ending the job. 



Here are pictures of the ZERLINA Servicer, in normal 

operation (A), and adjusting to high TLOSS (B). 

0 
TIME '— 

1 
x_ 

2 
J- 

3 
X 

4 5 6 
i 

1 J r 
• 

ml o; 
Estate 

ctf* 
0; u, I 

1 
guidance 

§ 

1 
m; ol 

state 
T5i 
ctf! 

Si 
1 

guidance^ state guidance/^ 

"Si 
Si € 

' t ! 

m ! 
0 . 
^ ! state 

cti . 
0 . 
^ 1 

1 

! 
1 * 
; guidance 
• • l 
1 • 
1 1 

1 

re
a
d

a
c
c
s

 

i 

state guidance 

»; 
0. 
0: 
g3 * state.. 

"O: 
a. 
0 • 

On the next pages are dutyc.ycle and guidance period plots 

for Landings run on ZERLINA with zero and with 20% TLOSS. 

After that comes a flowchart of the Servicer job and its 

auxiliaries. 



ZE
R

L1
N

A
 L

A
N

D
IN

G
: 

N
O
 T

LC
SS

 

? n { 

r1 



, 
S

E
C

O
N

D
S
 

G
.E

.T
. 

3
8

3
3

0
0
 

3
3

3
9

-0
0
 

3
3
3
5
0
0
 

3
S

B
&

C
0
 

3
3

8
7

0
0
 

3
8
8
8
D

O
 

3
8

8
9

0
0
 

3
8

9
0

0
0

 



ZE
R

LI
N

A
 L

A
N

D
IN

G
: 

20
%
 T

LO
SS

 





Start Servicer here. 



Variable Servicer Topics 

PREREAD is changed in one way. Formerly the task in 

which the Landing Analog Displays, the Abort Monitor, and 

certain. Landing Radar functions are performed (called QUART ASK 

in ZERLINA) was set up for 8 passes by the READACCS task. 

Now it is set up for an indefinite number of passes by PREREAD. 

Minimum Period Logic. First to be executed after PIPCYCLE 

is the Minimum Period Logic: if it has been less than PGMIN since 

the last PIPA reading then Servicer goes to sleep for the remaining 

time. PGMIN is 2 seconds. The reasons for such logic are 

(1) to establish a (hard) lower bound on guidance period for scaling 

purposes, (2) to provide a mechanism for granting (but not guaran¬ 

teeing) some time to low priority extended verbs, and (3) to insure 
* 

enough time for at least one full downlist to be sent for each 

Servicer cycle. Picking PGMIN to be 2 seconds has the additional 

advantage of making it unnecessary to remove the assumption of a 

2 second period from the P40s guidance equations. The margin 

during these phases is so great that even the TLOSS at which the 

DAP breaks down is insufficient to make PGUIDE exceed 2 seconds. ' 

Cyclical PIPA Reader is the name of one of the devices which 

made the writing of this variable Servicer somewhat easier. This 

works as follows: after PREREAD the PIPAs are never zeroed and 

each DELV is computed, not read from the PIPA, as the difference 

between this and the previous value of the PIPA, stored in PIPAOLD. 

Correction for the chance that the PIPA in question overflowed 



between the two readings is easily performed under the 

comfortable assumption that 81.92 m/s cannot be honestly 

accumulated during one PIPA interval. (With DPS thrusting 

full-bore and both DPS and APS tanks empty it would take 

over 8 seconds to build up this velocity.) Advanteges of this 

PIPA reading philosophy are (1) the straightforwardness it gives 

the PIPA reader restart protection, and (2) that it lets asyn¬ 

chronous routines like the P66 ROD equation work with a 

completely different PIPA interval without the interference of 

a periodic zeroing of the PIPAs by Servicer. 

Maximum Period Logic. Here if PGUIDE1 exceeds PGMAX 

alarm 555 is issued. This is a plain alarm, not a POODOO or 

BAILOUT. This logic establishes a (soft) upper limit on 

guidance period for scaling purposes. 5 seconds is a reasonable 

value for PGMAX. 

i 

l/PIPA. Guidance period is input to the IMU compensation 

routine l/PIPA (and l/GYRO) through the register l/PIPADT, which 

is computed every pass from PGUIDE1. The scaling of l/PIPADT 

8 10 
had to be changed from units of 2 centiseconds to units of 2 . 

ABDVACC. ABDELV has always contained delta-V magnitude 

over the PIPA interval. With the PIPA interval a constant 2 

seconds ABDELV could be used as an acceleration, but with guidance 

period varying it cannot be. So it is supplemented by ABDVACC, a 

true acceleration computed from ABDELV by multiplying it by . 

2SECS/PGUIDE1 for use by the delta-V Monitor, the Ascent Guidance 

(in place of ABDVCONV), and l/ACCS. 



Average-G. The average-G equations were modified to take 

account of guidance period and to compute G, a gravitational 

acceleration in units of 2" m/cs/cs, instead of GDT/2, a 

velocity in which the DT is an implicit 2 seconds. G suits 

most users better than GDT/2. The average-G equations in 

LUMINARY are: 

PGUIDE = 2 seconds 

R1S = PGUIDE (V + DELV/2 + GDT/2) + R 

Compute GDT1/2 from R1S. 

' VIS = GDT1/2 + DELV/2 + GDT/2 + DELV/2 + V 

In ZERLINA these become: 

PGUIDE 1 = PIPTIME1 - PIPTIME 

R1S = (PGUIDE1 G/2 + DELV/2 + V) PGUIDE1 + R 

Compute G1 from R1S. 

VIS = PGUIDE1 Gl/2 + PGUIDE1 G/2 + DELV/2 

+ DELV/2 + V 



Landing Radar Incorporation Logic. Changes in the landing 

radar portion of Servicer include the addition of a state vector 

integration to find LM altitude and velocity at the time of the 

radar read. This is necessary because R12READ cannot be 

synchronized with PIPTIME, as it is in current LUMINARYs, 

because PIPTIME is not known in advance. Also a Nav Base to 

Stable Member transformation must be performed on the antenna 

beam vectors which is valid at the time of the radar read. 

RDGIMS, a task set up by R12READ , records the PIPAs, the 

CDUs, and time (in register LRTIME) at the mid-point of the read. 

Using consistent values for the time of the read Servicer computes 

a position and a velocity correction which are used to modify R1S 

and VIS. These changes are almost like putting back coding which 

existed in LUMINARY 1C and earlier when the velocity read was 

not synchronized. This is the most time consuming of the extra 

computations required by the variable Servicer, but it does not 

prevent Landings from running at the minimum period of 2 seconds 

throughout in the absense of TLOSS. During Landing Radar 

operation the CDUs and time for the radar read sent out on the 

downlist are the values recorded in RDGIMS, not the values at 

PIPTIME as in LUMINARY. Finally, HCALC1 is used for altitude 

at the time of the radar read. The register HCALC is used for 

DSKY display, in P66 as in the other phases. In LUMINARY, for 

no good reason, both are used for display. 



Changes outside Servicer 

Restart Tables. Servicer in ZERLINA has only a job to 

restart protect, the READ ACCS task having been eliminated, 

and so the special variable phase-change routine SERVCHNG 

and the' type of PHASCHNG in which the restart point is 

specified by a 2CADR in-line are all that is needed in estab¬ 

lishing restart points. Thus all the group 5 restart tables 

can be deleted. 

Pinball Noun Tables. Because HCALC1 is only altitude at 

the time of the radar read and HCALC is at all times the 

altitude suitable for display on the DSKY, nouns 60, 63 and 

92 should have HCALC substituted for HCALC 1. 

Landing Guidance Equations. The Landing guidance has to 
\ 

be modified to use G instead of GDT/2. Additionally, in the 

same section, priority is raised to 23 before the display routine 

is called and lowered again to 20 afterwards. This is so the 

off-line display job will have sufficient priority to break in on 

the Servicer job and post its displays even in the presense of 

TLOSS. Also, the VACRLEAS calls at the end of the Landing 

guidance are removed. Otherwise Servicer would start again at 

PIPCYCLE without a vac area. 



P66 Guidance. Of the two P66 ROD computations performed 

every 2 seconds, in LUMINARY one is part of the Servicer job 

and the other is separate. In ZERLINA both are outside of the 

Servicer job in an asynchronous loop with a 1 second period. 

This loop is initiated and initialized when P66 is selected. The 

P66 ROD equation is executed every 1 second regardless of how 

slowly Servicer is running. The P66 horizontal control equation 

remains part of the Servicer job and will be executed less often 

when there is high TLOSS. In the P66 ROD equation G takes the 

place of GDT/2 and adjustments are made to adapt it to the 

Cyclical PIPA Reader. 

Throttle Control Routine. Because a 2 second guidance period 

is implicit both in ABDELV and in FWEIGHT (a thrust compensation 

number, but really porportional to velocity not acceleration), both 

used in the computation of present thrust, this computation is 

changed. In LUMINARY it is 

FP = ABDELV MASS + FWEIGHT. 

In ZERLINA it becomes 

FP = (ABDELV MASS + FWEIGHT) 2SECS/PGUIDE. 

FINDCDUW wishes to complete the commanded attitude 

manoeuvre in exactly one guidance period. Thus, if guidance 

period expands, the rate commanded by FINDCDUW must be 

diminished. This is done by the usual method of multiplying 

by 2SECS/PGUIDE. Thus the guidance period from the preceeding 

full pass is used to predict the period for the pass about to begin. 



When guidance period is fluctuating from pass to pass, as it 

sometimes does in P66, this prediction may be wrong and an 

attitude overshoot may result. However the time constant of 

the P66 horizontal equation (5 seconds) is sufficiently long to 

assure stability. 

Ascent Guidance. In the Ascent Guidance routine G replaces 

GDT/2, ABDVACC replaces ABDVCONV as the input to the thrust 

magnitude filter, and, as in the Landing guidance, priority is 

raised before the display routine is called and lowered afterwards. 

Landing Analog Displays are adapted to the Cyclical PIPA 

Reader. Also, since QUARTASK continues indefinitely once set 

up by PREREAD, there is no need to count passes in this routine. 

Abort Interface. When a P70 or P71 abort is commanded a 
\ 

software restart is performed to flush the Landing guidance. In 

LUMINARY this guidance is protected in a different group than 

Servicer (group 3) and so the flushing is accomplished by turning 

off group 3 before the restart. In ZERLINA both Servicer and the 

guidance equation are protected in group 5. When Servicer 

transfers control to the guidance equation it sets the new SERVOVER* 

flag; when control returns to Servicer SERVOVER is reset. 

Accordingly, before its software restart, the abort lead-in checks 

the SERVOVER flag and if it is set, indicating guidance in progress, 

the address of PIPCYCLE is substituted for the guidance address in 

the group 5 restart registers. Thus only Servicer, and not the 

guidance equation, is restarted after the software restart. 



IMU Compensation. In l/PIPA and l/GYRO, the IMU 

compensation routines called by Servicer every pass, slight 

changes must be made to adapt to the new scaling of l/PIPADT. 

l/ACCS in LUMINARY uses ABDELV as an acceleration. 

In ZERLINA it is modified to use ABDVACC, a true acceleration. 

instead. 



ZERLINA in Operation 

The operational differences between ZERLINA and LUMINARY 

are in what will not happen, not in what will. The possibility 

of 31201 and 31202 alarms and anomalous behavior due to TLOSS 

is drastically diminished. VI6 monitors can be used without fear 

in ZERLINA. 

Alarm 1466, issued by LUMINARY when a P66 guidance pass 

is dropped, does not exist in ZERLINA. P66 guidance is never 

dropped. One new alarm does exist in ZERLINA, already 

mentioned in the Maximum Period Logic: alarm 555. With PGMAX 

set at 5 seconds this alarm will not occur with a TLOSS lower 

than 20%. If it did occur it would probably do so in P66 when 

guidance period is greatest. In this case rapid nulling of 

horizontal velocity could not be expected from the P66 horizontal 

equation and probably attitude should be controlled manually in 

attitude-hold. ROD performance will be unaffected because the 

P66 ROD equation continues to run every second. 

Another alarm sometimes seen in very high TLOSS ZERLINA 

runs is alarm 32000. This alarm, with a software restart, is 

issued when the DAP cycle overlaps itself. It would appear in 

LUMINARY runs too if other things did not happen first. Testing 

so far indicates that the correct response to this alarm is to 

press on. 

But I should end up by emphasizing that TLOS.S will cause 

no alarm in ZERLINA until it reaches the neighborhood of 20%. 


