Massachusetts Institute of Technology
Charles Stark Draper Laboratory
Cambridge, Massachusetts

Mission Simulation Memo \#2-70

TO: Distribution
FROM: B. A. Kriegsman and D. E. Gustafson
DATE: 18 February 1970
SUBJECT: Powered Landing-Maneuver Navigation over Rough Terrain

Summary
This memo contains a series of viewgraphs prepared for presentation at the design-review meeting held at MSC on February 3, 1970 to consider various "terrain-filtering" schemes for use in the powered landing maneuver. The major results and recommendations are:
(1) A simple a-priori terrain model should be stored in the LGC for use during the approach phase. This results in a smoother LPD-angle profile, and reduces LPD pointing errors.
(2) The altitude weighting function during the braking phase should be reduced from its present value to limit pitch-angle oscillations of the thrust vector.
(3) It is not necessary to include a LR prefilter in the navigation system. Essentially the same effect can be obtained by properly shaping the altitude weighting function.
(4) Essentially the same weighting functions as in the present system should be used during the approach phase in order to keep altitude estimation errors small.
(5) On the basis of statistical simulation results it was found that the best choice of weighting functions, in a minimum mean-squared error sense, was dependent on the altitudevariation characteristics of the actual approach terrain to the site and the a-priori models in the LGC. To provide flexibility under these conditions, a two or three segment altitude weighting function should be used.
(6) It is possible to obtain useful estimates of terrain-datum uncertainty with a fairly simple slope estimator; based on the correlation between terrain-datum error and altitude measurement error $\left(\widetilde{h}-h^{\prime}\right)$. This estimator can, in certain cases, improve the approach-phase trajectory.
(7) The altitude reasonableness test lockout level must be sufficiently high at the start of P64 so that good LR data are not permanently inhibited.

General Information

The problem is concisely defined in Fig. 1. Of particular importance is the fact that it is desired to estimate not local altitude, but rather altitude w. r.t to the landing site. A major source of difficulty is that the LR measures range to a point on the ground along the range beam rather than range to the landing site.

The key assumptions are given in Fig. 2. The LR acquisition altitude of 35,000 feet for range and 30,000 feet for velocity were considered to be reasonable numbers with the current LR dropout : boundaries. The altitude-data reasonableness test was removed for
this study to avoid problems caused by the inhibiting of LR data after High-Gate, if the estimation errors are not sufficiently small at that time.

The basic criteria used to evaluate the navigation system performance during the landing maneuver are given in Fig. 3. In essence, if the altitude estimation errors w.r.t. the site are sufficiently small about one minute before High-Gate and are held down thereafter, then all the various performance indicators will be satisfied. The most important of the performance indicators were found to be the LPD profile, the LPD pointing error, the terminal altitude vs range to go profile, and the thrust-vector elevation-angle profile.

Models for the terrains used in the landing study are given in Fig. 4 as a function of range-to-go, and in Fig. 5 as a function of time. Zero time in Fig. 5 is taken as the time that the full-thrustposition command is nominally issued. The terrain profile seen by the navigation system (Fig. 5) is significantly different from the distance profile (Fig. 4) because of the wide range of vehicle velocities during the landing maneuver. The basic effect is that the number of measurements over a given terrain segment increases as the vehicle slows down en route to the site.

The primary $L R$ data filtering techniques investigated are outlined in Fig. 6. The basic relations for implementing these schemes are given in Figs. 7-10. It should be noted that a terrain-slope estimation option is provided for both Filter \#3 (Fig. 9) and Filter \#4 (Fig. 10). Also, the values of n and w shown for Filter \#3 were preliminary values.

Use of A•Priori Terrain Models in LGC

The possibility of storing a-priori terrain-altitude variation models in the LGC was studied in detail for Censorinus B and C landing sites. The basic models used for the a-priori terrains are shown in Figs. 11 and 12. The major results of the study are summarized in Fig. 13.

An important advantage of using prestored terrains is that the LPD profiles are improved and the pointing errors are reduced. This is demonstrated in Figs. 14 and 15 for Censorinus, using the present navigation system. The advantage of a prestored terrain is shown also in Fig. 16 for a landing at Fra Mauro, using a navigation filter similar to \#4-B in Fig. 10.

It should be notcd in Fig. 13 that it is suggested that the terrain seen along the range beam should be stored, rather than the local terrain variation. Storing the local terrain can introduce significant errors at long ranges from the site, where the rangc beam may be 30-40 degrees from local vertical. It should also be noted that it is suggested that the terrain be stored as a function of the down-range distance to the initial site, which will differ from the actual site if redesignations are made.

With the present landing-trajectory targets, it was found that it is better to under-store the terrain rather than to over-store it in the a-priori model, particularly during the approach phase. The important point here is that navigation errors which indicate that the vehicle is higher than it actually is should be avoided.

Performance Comparisons of Candidate Navigation Systems

In order to examine the performance of the various navigation filters described in Fig. 6, a series of simulated landing trajectories were flown over Censorinus B and C with selected combinations of terrain-datum uncertainty, initial velocity estimation errors, and initial altitude estimation errors. Cases with both simple and more complete a-priori terrain models were studied, along with cases where no stored terrains were used. The numerical values used in the test runs were 1 degree for terrain-datum uncertainty, $10 \mathrm{f} / \mathrm{s}$ for vertical-velocity estimation error at DDI, and about 2000 ft. for altitude estimation error at the time of LR range acquisition.

A typical set of test data is given in Figs. 17-20 for a Censorinus-C landing with a 1 -degree terrain-datum uncertainty, - using various candidate navigation filters in combination with a simple
a-priori terrain. Thrust-vector elevation profiles are compared in Fig. 17, LPD characteristics in Fig. 18; and terminal altitude vs. range-to-go profiles are shown in Fig. 19. An evaluation of the relative merits of the different filters basea on these data is given in Fig. 20. Also presented in Fig. 20 are comparison data on required ΔV, High-Gate altitude, and LM velocity at an altitude of about 500 fcet w.r.t. the site.

The question as to whether a terrain-datum uncertainty should be estimated, is considered in Fig. 21 for Filter \#4-B. • It has been found that the long baseline uncertainty can be estimated with varying degrees of success. Small local slopes, on the other hand, could not be usefully estimated without introducing other problems. Two extreme cases are shown in Fig. 21: the cases where the terraindatum estimator most significantly help and hurt the navigation system performance. It should be noted that with a simple a-priori terrain, the major effect is on the terminal altitude or range-to-go profile.

The major results and recommendations are summarized in Fig. 22.

$\begin{array}{r}\ddot{9} \\ \dot{1} \\ \hline 1\end{array}$

Definition of Problem

Fig2: Basic Assumptions in Study
- LR acquisition takes place at $h=35,000$ R for range measuren and at $h=30,000 \mathrm{ft}$ for velocity measurenents.
- The primary terrain profiles considered were Censorinus. B, Censorinus C, and Copermicus
- Terrain-datum uncertainy taken as I degree (3-sigma), but w the maximum altulude deviation whe the site limided to 5000 feet

Fig. 4: Local Terrain Variation vs Range-to-Gd
 -20007

Fig. 6:

 	(0)
 	(c) (V) ร.
पpieq Jidues-02' 'un?	
	If 8 mily
	warsh fubsald

Fight: Navigation Equations for Present System

$$
\begin{aligned}
& \rho^{\prime}=r_{p}-r_{S P} \\
& \delta h=\tilde{h}-\rho^{\prime} \\
& W=L R H H\left(1-\frac{\Omega^{\prime}}{\text { LRHMMX }}\right) \\
& r_{p}=r_{p}+W \delta R U_{H P}
\end{aligned}
$$

$h^{\prime}=a^{\prime}$ prion LM attune estimate whet Landing site
$r_{p}=L M$ position vedor
$r_{S P}=$ Landing-sile position vector $\left(r_{L S}\right)$
$\tilde{h}=L R$ altitude measurement (stat range projected along lon veil)
$W=L R$ altitude Weighting function
$\underline{u}_{H P}=$ unit vector along Local vertical

Fig. Filler "2: Basic Equations (LEC)

$$
\begin{aligned}
& S_{n}=\frac{\sum_{1}^{n}\left(n_{n}-\Delta n_{n, i}\right) r_{G 0_{i}}-\sum_{i}^{n}\left(Q_{i}-\Delta n_{n}\right)}{\sum_{i}^{n} r_{E 0_{i}}^{2}-\frac{1}{n} \sum_{1}^{n}\left(\sum_{i}^{n} r_{G o_{i}}\right)^{2}} \\
& r_{p}=I_{p}+W\left(\tilde{\rho}^{*}-\frac{n}{n}\right) U_{H p}, \text { when } n \geq 30
\end{aligned}
$$

Fig: Filter 3: Navigation Equations (T .More)
A.) Smoothing Only

$$
\begin{aligned}
& \delta h^{\prime \prime}=(1-W)\left(\frac{n-1}{n}\right) \delta_{n}^{*}+\frac{1}{n}\left(\hat{h}-\rho_{n}^{\prime}\right) \\
& m=m+1 \\
& r_{p}=\Gamma_{p}+\log _{8} \underline{U}_{\mu}
\end{aligned}
$$

B.) Smoothing and Slope Estimation

$$
\begin{aligned}
& k=\left(\frac{n c}{W}-1\right) / n r_{60}, W=.05, c=.04
\end{aligned}
$$

$$
\begin{aligned}
& S=S+\delta S \\
& r_{p}=r_{p}+W \cdot \delta \ell^{*} U_{H P} \\
& m=m+1
\end{aligned}
$$

Figlo: Filler \#4: Basic Relations
A.) No slope estimation

$$
\begin{aligned}
& W_{H}=\operatorname{LRWH}\left(1-\frac{R^{\prime}}{\text { RHMW }}\right. \text {) } \\
& \eta^{\prime}=r_{p}-r_{s p} \\
& \delta=\tilde{n^{\prime}}-\rho^{\prime} \\
& r_{p}=r_{p}+H_{H} \delta_{8} U_{n}
\end{aligned}
$$

	$P 63$	06866
LRHH	0.10	50,000
LRHMK	0.25	50,005

B. Whit slope estrintion

$$
\begin{aligned}
& r_{z}=r_{\text {Ep }}-r_{\text {SEP }} \\
& r_{p}=r_{p}+H_{H} \delta_{0} \mu_{\text {mp }} \\
& S=S+W_{\text {SL }}+f_{h} \\
& n=n+1
\end{aligned}
$$

Fig.l: Stored-Terrain Models for Censornmus B

Fig 13: Use of Stored Terrain Models: Result Summary

- Primary effect is improved LPD-ande profile and reduced LPD
pointing error in approach phase
- Simple terrain models for Cencormus-B and C adequate for above purpose:
more important to store accurately in approach phase than to model
in more detail in braking phase

Fig. $:$: LPD Characteristics With \& Without Stored Terrain
present systein, Censorinus B, simple stored terran +1 deg slope, $-10 \mathrm{f} / \mathrm{s}$ v. vel, error

Figs: Present System with Various Terrain Models
Censorruss-C, $-1-\operatorname{deg}$ slope (upp-idil)
$-10 \mathrm{f} / \mathrm{s}$ vert. vel. est error al PDII.

Figlt: Use of Stored Termain for. Fra Mauo Landing
Nominal, eiroo- Free trauedoy for Fir Mavio

LPD Pioiting Eror

Fris LPD Angle \& LPD Pointing Error
for Different LR Fillers
Cenormus-C, Simple Stored Terrain Model,

Fig 19: Altitude vs. Range tanGo for Vanous Fillers
Censormus-C, Simple terran models +1 degree slope, + Howls ven vel est enteral PDI

 20:
Fig.
(8
(3)
Θ

Filter

P

?

Filter Type	Pitch Prorile	IPD Char.	Tern. Hus Roo
Present Systom	Faim	Fir-Gocd	Gook
帚	Good	Fair-Ecod	Eir
$\begin{aligned} & \# 3-A \\ & H 3-B \end{aligned}$	Good Poor	$\begin{aligned} & \text { Poor } \\ & \text { Poot } \end{aligned}$	Por Good
+4-A	Good	Far-Cad	Fiv $=600 d$
\#4-B	Good	Fif Cad	Goch

Group 23A
Battin
Sears
Hamilton
Copps
Felleman
Nevins
Hoag
Laats
Larson, R。:
Fraser
Ogletrec
Johnson, L. B.
Johnston
White
Strunce

EXTERNAL

Mr. H. W. Tindall FM
NASA
Manned Spaeecraft Center
Houston, Texas 77058

Mr. T. Gibson FS
NASA
Manned Spaeecraft Center
Housion, Texas 77058

Dr. K. Cox EG23
NASA
Manned Spacecraft Center
Houston, Texas 77058

Mr. F. Benneit FMG NASA.
Manned Spaeeeraft Center
Houston, Texas 77058

Mr. J. McPherson FM4 NASA.
Manncd Spaeceraft Centcr
Houston, Texas 77058

Mr. R. Savely FM4 NASA
Manned Spaeecraft Ccnter
Houston, Texas 77058
Mr。P. Pixley FM4 NASA
Manned Spacecraft Center
Houston, Texas 77058

TRW Houston
Technical Library
Bldg. H-2, Room 1067
P. O. Box 58327

Houston, Texas 77058

