

AND CONTROL

R-532 Volume I of II REENTRY GUIDANCE FOR APOLLO

by Raymond Morth January 1966 E D-ocu U-nutiliz C-utback E-xpendit

CAMBRIDGE 39, MASSACHUSETTS

AASSACHUSETTS INSTITUTE OF TECHNOLOGY

GUIDANCE AND NAVIGATION

1.21 Date: 1/2766 Approved: MILTON B. TRAGESER, DIRECTOR

APOLLO GUIDANCE AND NAVIGATION PROGRAM

Date: 121/66 Approved:_ ROGER B. WOODBURY, DEFUTY DIRECTOR

INSTRUMENTATION LABORATORY

R-532 Volume I of II REENTRY GUIDANCE FOR APOLLO

> by January 1966

R-eturn	
E-very	
D-ocument	
U-nutilized	to
C-utback	
E-xpenditur	es

Return this document to: Technical Information Center Bldg. 1 (AJOI) when the need for information contained is satisfied. THANK YOU.

Raymond Morth

COPY # 129

CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

R-532

REENTRY GUIDANCE FOR APOLLO

ABSTRACT

The design of the reentry steering for the Apollo spacecraft is discussed in detail.

Error performance is the critical design factor. A great deal of effort has been spent to find a system that would steer properly in spite of navigation errors. The most significant error is in the initial indicated rate-of-climb. To achieve this error performance a computed reference trajectory is used during the critical supercircular phase, with control gains that have been chosen on a statistical basis to minimize the miss distance.

The many other factors which affected the design are presented. Some of these are requirements on the trajectory by the heat shield and monitor system, and limitations on the attitude maneuvers by the roll control system fuel.

The performance of the automatic self-contained system using a digital computer is presented. Guidance to all possible points throughout the entry corridor is demonstrated.

The detailed computer logic for the Apollo Guidance Computer is also presented.

by Raymond Morth January 1966

iii

TABLE OF CONTENTS

Volume I of II

Chapter

Ι	Introduction
II	Capabilities and Requirements
III	Design Goals
IV	Guidance Description
V	Guidance Performance
VI	AGC Program

Appendices

А	Derivation of the Up-Control Reference, $V = f(D)$
В	Hook on Altitude Rate
С	The Final Phase Reference
D	Error Characteristics
E	Altitutde Rate Calculation
F	Characteristics of the Constant Drag Controller
G	Range Calculations for the Up-Control Section
Н	Limit Altitude Rate for G-Limiter
I	Nomenclature
J	Recent Modifications
К	Reference

Volume II of II (Separately bound classified document)

Instrument Error Performance

V

PROLOGUE

Since "Apollo Reentry Guidance", R-415, was written several changes have occurred. These changes as well as more complete performance data are the subject of this report.

The most significant change is the reduction of the lift-to-drag ratio (L/D) of the Apollo command module from .5 to .3. This is a profound change in that the vehicle's performance characteristics have been sharply reduced. No longer is a 5000 nautical mile range possible for entries near the undershoot (10 g) limit. The maximum range possible for a .3 L/D vehicle is about 2500 nautical miles in this case. This reduced range capability affects the entire Apollo mission, putting stronger requirements on such things as the number of landing sites, and the time of the lunar month for return to earth. The entry steering design is also affected, with more accurate ranging required in the early phases because the final phase has less capability to correct for deviations.

It was felt since R-415 is essentially out of date, that this report should be made self-contained, repeating some of the material in R-415.

I INTRODUCTION

A large amount of experience in reentry from orbit has been gained in the Mercury and Gemini programs. To date, there has been essentially no guidance during the reentry phase, though the Gemini spacecraft has a reentry guidance system, yet the results have been satisfactory. This raises the question: Is reentry guidance necessary for the Apollo mission? The answer is an emphatic yes. The main reason lies in the dynamics of reentry at escape velocity. Although escape velocity is only 40% greater than orbital velocity, the sensitivity of reentry range to variations in the reentry flight path angle is several orders of magnitude greater than that for the orbital case. (See Section II for a detailed discussion.) Thus a ballistic entry or a constant L/D entry would impose unreasonable accuracy requirements on the preceding phase. Further, even if such accuracy were possible, large landing point errors would be caused by non-standard atmospheric conditions and variations in the spacecraft aerodynamic characteristics. Because, here again, the range sensitivity to these variations is significantly higher than in the orbital case.

The guidance system must be self-contained because of radio black-out which is caused by an ion sheath surrounding the vehicle. Though there are means of penetrating this sheath such as by injecting water and using extremely high radio frequencies, these methods are as yet unproved, and it would be unwise to rely on their timely development.

The two objectives of the reentry guidance are, in order of importance:

1. safe return to the surface of the earth, and

2. landing point control.

These objectives must be achieved in spite of non-ideal equipment performance and non-standard environmental conditions.

To achieve a safe return the vehicle must be in the reentry "corridor", i.e. the entry angle must be large enough so that capture by the atmosphere is assured but not so large so that excessive acceleration will result, (see fig. 1-1.) The midcourse guidance phase has first responsibility to attain this corridor.

The reentry guidance then must achieve the landing site while avoiding excessive g-loads at one extreme and a prolonged ballistic flight at the other. There is a real chance of the latter since longer ranges are attained by exiting from the atmosphere at slightly less than satellite velocity. Should this exit velocity exceed satellite velocity there would be an extended elliptical flight from half way to almost all the way around the earth. This would be highly undesirable since there are limited supplies of power and oxygen, to say nothing about the recovery problem from an unpredictable point on the earth.

1-3

II CAPABILITIES AND REQUIREMENTS

The Apollo command module is a wingless, axially symmetric reentry vehicle constructed so that its center of gravity is displaced from its axis of symmetry. The c.g. offset causes the vehicle to trim to a low angle of attack, about 20 degrees, providing the lift for trajectory control. The trajectory is controlled by rolling the vehicle about the wind axis with hypergolic reaction control jets, so that the lift may be directed anywhere in a plane perpendicular to the velocity vector.

A major vehicle design problem has been to provide sufficient center of gravity offset so that the vehicle lift-to-drag ratio, L/D, will be large enough. At present the L/D is about .3. As the following charts will show, further reduction of the L/D would seriously degrade the mission.

Shown in fig. 2-1 are maximum range capabilities for a series of low L/D vehicles which hold lift up throughout the reentry trajectory. Range is plotted against the initial flight path angle. The first point to note from this figure is that long range capability is due more to initial energy than to lifting capability. All vehicles, even the ballistic vehicle (L/D = 0), can achieve a very large range if they enter at the right flight path angle. But the sensitivity of range to initial flight path angle is very large as seen by the slopes of the solid lines. For example, a ballistic vehicle going 4000 nautical miles has a sensitivity of about 10,000 nautical miles per milliradian. This sensitivity decreases with both increasing L/D and decreasing range, but for ranges greater than 1500 n.m. the sensitivities are too great to permit an open-loop guidance system.

The dotted line in fig. 2-1 shows the cases which have a maximum acceleration of 10 g's. This line shows the increase in allowable initial flight path angle with increasing L/D. Further, the figure shows the range penalty for decreasing L/D. At the 10 g limit, about 2500 n.m. is the maximum possible range with an L/D of .3 while over 6000 n.m. is possible with an L/D of .4.

The minimum possible range is determined by the maximum g level that can be tolerated as well as by the initial entry angle. Figure 2-2 shows

Fig. 2-1 Range for constant 4/0 entry.

2-2

a measure of this minimum range. This range was attained by directing the lift down after the initial pull-out modulating this lift direction by a g-limiter logic so that a 10 g limit will not be exceeded.

The maximum lateral range is shown in fig. 2-3 which plots the entry "foot print" for three values of L/D. That the lateral range is quite small emphasizes the fact that ranging capability is due to initial velocity (or energy) rather than aerodynamic characteristics. Note that the lateral range capability for L/D = .3 is roughly half that for L/D = .4.

The next three charts show the vehicle capabilities for initial velocities less than satellite velocity. The curve for L/D = .3 can be considered a maximum range capability and the L/D = 0 curve can be considered a minimum range capability. At these velocities there is not a significant range reduction attained by lifting down. The next curve shows the time of flight for the L/D = .3 cases. These curves have been useful to the designer of the powered steering for the abort cases.

Design Requirements

The several requirements on the guidance system are listed below

- 1. Guide to all possible landing sites over the entry corridor
- 2. Do this with a 3 sigma accuracy of 15 n.m. in track and range
- 3. Choose those trajectories recognizable by a simple monitor
- 4. Choose trajectories that are compatible with the heat shield
- 5. Use only vehicle lift directed by a reaction control system with limited fuel
- Do all this with a self-contained system, because of radio blackout

Vehicle capabilities dictate a range requirement of 2500 n.m. maximum, and 1500 n.m. minimum for all entry angles. Note again that this maximum range is reduced from the previous 5000 n.m. value which was possible with the higher L/D.

The accuracy requirement is largely a requirement on the initial condition uncertainties. The errors accumulated during entry due to both the steering and navigation meet this requirement easily. There is some possibility of reducing unusually large initial errors by monitoring the drag build-up. This is discussed in Appendix E.

The monitor function is to detect a guidance system failure. This is particularly difficult in some cases where the failure might result in a ballistic phase starting at just above satellite velocity. Since the monitor system has simple instruments which are supposed to be more reliable, the guidance system is constrained to generate trajectories in which "good" and "bad" is more easily detected.

Fig. 2-2 Minimum possible range.

Fig. 2-3 Maximum lateral range.

Fig. 2-4 Maximum Range for L/O = 0.3

Fig. 2-5 Ballistic Range.

Fig. 2-6 Time of Flight

III DESIGN GOALS

To meet these requirements several goals were set forth to evaluate the various designs that evolved. These are

- 1. Have large error handling capability
- 2. Use explicit techniques where possible
- 3. Adapt to the digital computer which is shared with several other mission phases

The main design goal was to synthesize a system which would steer correctly in spite of large errors in the form of initial condition uncertainties and gyro and accelerometer errors, as well as adapt to large deviations in the atmosphere and vehicle aerodynamic characteristics. Two distinct types of errors are encountered. The first is a navigation error, or lack of knowledge of position and velocity. This type of error is largely uncontrollable. That is, there is not much chance of reducing the position or velocity error without more measurements. The final miss will be at least the initial uncertainty propagated through the entry trajectory by the navigation equations. However, as described in Appendix E, very large uncertainties can be reduced by monitoring the acceleration build-up.

A second and more serious error is designated a "steering error". This error is a miss of the indicated target due to improper control action based on imperfect data. Early in the flight, more particularly in the critical up-control phase, an imperfect altitude rate signal, for example, will cause a range deviation so large that the final phase cannot correct for it. That is, in the critical early portion of the flight an error will cause the vehicle to fall outside the "foot print" and a huge miss results.

The central goal of this steering design was to find a scheme to reduce this "steering error". As will be described, a self-generated reference trajectory in the critical up-control phase has this effect. The reference trajectory in a sense weights all the input variables, thus not allowing any one variable to cause a large deviation. Secondly, gains to control to this reference trajectory have been chosen to minimize the miss distance in the presence of noisy inputs. This is done on a statistical basis and is described in more detail in Reference 8. This type of performance criterion, i.e. maximum adaptability to errors, would appear to be more desirable than most of the criteria seen in the optimal control literature today. Much more work can be done along these lines on the entry problem.

IV GUIDANCE DESCRIPTION

General

A typical entry is shown in fig. 4-1 to illustrate the main features of the steering design. This is an acceleration versus velocity plot such as has been proposed for the monitor display.

Initially the vehicle is at point (1). Starting at point (1), the lift is directed up. Then the acceleration builds up and the velocity decreases until a point near peak acceleration, detected by a threshold altitude rate, is reached, point (2). Variations in this initial policy will be described in the detailed discussion. At point (2) a constant drag control is started. At the same time a range prediction is made. This calculates the range for constant L/D flight starting at present drag and velocity, and continuing the flight at constant L/D. Constant drag control is maintained until the range prediction is within 25 n.m. of the desired range. When this occurs, point (3), control is shifted to a self-generated reference trajectory that goes to the edge of the atmosphere, point (4). A ballistic phase is then maintained until the acceleration again builds up, point (5). Finally, steering to the landing site is accomplished by using a prestored reference trajectory, shown as a dotted line.

Very short ranges omit the up-control portion, and very long ranges omit the constant drag portion. Special cases such as an abort from orbit would start directly in the final phase.

Heating and monitor considerations led to selecting this type of trajectory. A high heating rate is desirable because it leads to a low integrated heat load, and the heat load sizes the heat shield. A trajectory with a constant drag portion tends to have a high heat rate because the initial stay in the atmosphere is prolonged. The reduction in heat load is more dramatic in the shallow entries where the constant drag level is larger than the drag at pull-out. In the limit, a trajectory in which the up-control portion is delayed as long as possible would have the least heat load. This extreme delay is not practical, of course, since there would be great danger of falling short of the target.

The monitor function is to detect uncontrolled skip-outs at greater than satellite velocity. The trajectory in which the up-control portion has been delayed is more easily distinguished from an uncontrolled skip-out than is one with no delay. This is true whether the monitoring function is accomplished by means of a trace on an acceleration-velocity plot as has been proposed by North American Aviation, or by a meter displaying rate of change of acceleration with velocity, dA/dV, as has been proposed by the Ames laboratory of NASA. Since the maximum range has been decreased to 2500 n.m., the monitor task has been greatly simplified. This is because the exit velocity for a 2500 n.m. trajectory is much less than that for a 5000 n.m. trajectory.

Input Variables

The input variables to the steering equations are fixed by the inertial measurement unit which is shared with other mission phases. The basic input is integrated acceleration generated by the PIPA-s (Pulsed Integrating Pendulous Accelerometers). This along with the initial condition of position and velocity, the target location, and the location of the earth North Pole vector, $\overline{U}Z$, are the basic inputs.^{*}

There are several choices on how to rearrange these basic inputs. The derived variables that have been chosen are:

> D = total acceleration T = time from start of entry \overline{R} = position vector \overline{V} = velocity vector $\overline{R}T$ = target vector \hat{R} = altitude rate

Acceleration is preferred to altitude. The acceleration provides a measure of the pressure altitude, and is less susceptible to variations in atmospheric density and vehicle aerodynamic characteristics. Also, no requirement is made on the inherently divergent altitude channel of the inertial measurement unit.

^{*} Notation peculiar to this report is in Appendix I.

All the other choices are straight-forward except for that of altitude rate. The altitude rate signal is subject to large biases because the direction of the position vector is not known precisely. See the detailed discussion in Appendix D. The alternative, rate of change of drag with velocity (dA/dV) is a noisy signal. The noise is due both to vehicle oscillations and the quantization in the PIPA-s. Shown in fig. 4-2 is an estimate of this noise level due to vehicle oscillations. The amplitude of the oscillation is mainly a function of the dead zone in the rate damper channel of the Stabilization and Control System (SCS).

Altitude rate is chosen as the lesser of two evils. The steering equations have been designed to accomodate large biases in this signal. Many schemes that were studied would have a large miss because of this error. The drag rate signal did not cause unusually large steering errors but did cause excessive roll control system fuel consumption particularly at the lower drag levels. The vehicle would alternate between zero and 180 degrees roll angle following the noise on the drag signal A fairly sophisticated filter was required to smooth this signal.

The drag rate information is better used to correct the bias in the smoother altitude rate signal. One possibility for this is described in Appendix F.

Computer Logic

The flow graph in fig. 4-3 shows the computer logic. This logic is entered every two seconds, and flow is directed to the appropriate branch by the mode selector. The final result is a roll command sent to the SCS by means of the coupling and display unit (CDU).

The Initialization Section, entered once at the start of entry, does the necessary initialization of variables, switches, etc.

The Navigation Section updates the position and velocity vectors with acceleration data by using the so-called "average-g" integration.

The Targeting Section calculates the range and lateral range to the landing site which is projected ahead by the earth rotating through an estimated time of flight.

Fig. 4.2. Drag noise due to angle of attack oscillations

Fig. 4.3. Computer Logic

The Mode Selector selects the appropriate branch. In the diagram, the branches are arranged from left to right as they would be selected in time-sequence by the Mode Selector.

The Initial Roll Section holds constant roll angle, down-lift for shallow entries and up-lift for steep entries, until safe capture by the atmosphere is assured and ranging starts.

The Huntest Section checks to see if the predicted range of a constant L/D flight from present velocity and acceleration equals the desired range. If the predicted range is long, the Constant Drag section is entered. If the predicted range is within 25 n.m. of the desired range, the Up-control Section is entered.

In the Up-control Section the vehicle is steered to the edge of the atmosphere by using a self-generated reference trajectory.

The Constant Drag Section holds constant acceleration with a simple linear proportional control.

The Ballistic Phase Section holds a constant roll command. Pitch and yaw commands are also generated because the aerodynamic stability is inadequate in this low dynamic pressure region.

The Final Phase Section steers to the landing site by using a prestored reference trajectory.

The G-Limiter Section modifies the roll commands where needed so that the limit acceleration will not be exceeded.

The Lateral Logic Section periodically switches the roll command from one side to the other so that one control variable, roll angle, can control both range and lateral range.

Initialization

The Initialization Section sets up the computation cycle by setting certain initial variables and branches in the logic. The input to this section are the initial position and velocity vectors, the initial target vector all in earth-centered inertial coordinates, and the corresponding timing mark. Also as an input is an initial estimate of the entry angle so that the initial roll attitude may be set. The vectors $\overline{R}TE$, $\overline{U}TR$, and $\overline{W}E$ are calculated so that the target position may be updated with the earth's rotation. Also, an initial calculation is made of the range, THETA, and the lateral range, LATANG.

The lateral logic parameter is set so that the initial lift will be toward the target.

K2ROLL = -SGN(LATANG)

The address of the starting phase is set to INITROLL. At INITROLL the decision is made if the particular trajectory is an abort case.

Other parameters are set to their initial values of zero. These are all the switches and K1ROLL.

Navigation

The "average-g" method of navigation is used to update position and velocity. The main idea is that the average gravity acceleration over the time interval is used to incorporate the velocity increment measured by the PIPA-s.

The computation cycle proceeds as follows: first the velocity increment is read as $\overline{D}ELV$. Then the position vector is updated by using the gravity acceleration corresponding to the position vector at the start of the computation cycle.

$$\overline{R} = \overline{R} + \overline{T}EM DT$$

where

 $\overline{\text{TEM}} = \overline{\text{VI}} + \text{DT} \ \overline{\text{G}}/2 + \overline{\text{DELV}}/2$

The gravity acceleration at the end of computation cycle is then computed using this position vector.

Fig. 4.4. "Average-g" Navigation

 $\overline{G} = -\mu E/2 R^2 ((1 - J(RE/R)^2 (1-5 SL^2)) UNIT(\overline{R}) + 2 SL J(RE/R^2 \overline{UZ})$ where

R = ABVAL(
$$\overline{R}$$
)
SL = sine of Geocentric Latitude
= UNIT(\overline{R}) $\cdot \overline{U}Z$

Note that the second spherical harmonic coefficient, J, is used to represent the oblate earth. Finally, the velocity is calculated using the average of the two gravity acceleration vectors by

$$\overline{VI} = \overline{TEM} + \overline{DELV}/2 + DT \overline{G}/2$$

A thorough discussion of this method is given by R. Bairnsfather in Reference 7, where he presents the effects of round-off and truncation on computational accuracy. The errors due to these effects are shown to be in the order of a few feet for the average entry trajectory.

He also shows that the errors introduced in computing velocity by the approximate representation of the oblate earth are less than the eight decimal digit precision of a double precision AGC number.

Targeting

This section processes the position and velocity vectors generated by the Navigation Section to get the range and lateral range to the landing site as well as certain control parameters.

The control parameters are

 $V = ABVAL(\overline{V})$, total velocity either relative or inertial

 $VSQ = V^2/VSAT^2$, normalized square of velocity

LEQ = (VSQ - 1) GS, gravity plus centripetal accelerations

D = ABVAL(DELV)/DT, total acceleration

 $\hat{R} = \overline{V} \cdot UNIT(\overline{R})$, altitude rate

 $\overline{\text{UNI}}$ = UNIT($\overline{\text{V}}$ *UNIT($\overline{\text{R}}$)), unit normal to trajectory plane

Initially the velocity vector is calculated as the inertial value, VI. But late in the flight, when V is less than VMIN, the velocity vector is calculated as a velocity relative to a fixed altitude above the rotating earth by

$$\overline{V} = \overline{V}I - KWE \overline{U}Z * UNIT(\overline{R})$$

This decision is marked by the switch RELVELSW. At the same time, the target is no longer projected ahead through an estimated time of flight, but the range is calculated to the instantaneous location of the target. At these low velocities it does not make sense to chase a target going at earth rate, but rather we steer in coordinates fixed to the rotating earth.

The target vector is rotated through an angle WT by the equation

$$\overline{\text{URT}} = \overline{\text{URT0}} + \overline{\text{UTR}} (\text{COS WT} - 1) + \overline{\text{RTE}} \text{SIN WT}$$

where

 $\overline{U}RT0$ = initial target vector $\overline{R}TE = \overline{U}Z * \overline{U}RT0$ $\overline{U}TR = \overline{R}TE * \overline{U}Z$

Figure 4-6 is the appropriate diagram. \overline{U} RTO, \overline{U} TR, and \overline{R} TE are set up in the Initialization Section.

The angle, WT, through which the initial target vector is rotated is based on the time of flight which is estimated in one of three different ways. Initially, at supercircular velocities

$$WT = WIE (KTETA THETA + T)$$

Fig. 4.5. Targeting

Fig. 4-6 Projection of target vector through estimated time of flight.

Fig. 4-7 Range and lateral range.

The time of flight is approximately proportional to the range-to-go. This assumes flight at constant velocity, KTETA approximately equals RE/VSAT. An examination of the guided trajectories in Section V shows that this assumption is reasonable.

During the first part of the final phase

WT = WIE (THETA
$$RE/V + T$$
)

The time of flight is calculated assuming the rest of the flight will be at the present velocity. It is no longer fair to assume flight at satellite velocity.

Finally, when relative velocity is used near the very end of the flight, the target is not projected ahead. That is, we steer the present position of the target by using WT = WIE T.

The lateral range is calculated by

LATANG = $\overline{U}RT \cdot \overline{U}NI$

Small angles are assumed since the right hand side of the above equation defines the sine of the lateral range.

The range is calculated by

THETA = $ARCCOS(\overline{URT}\cdot UNIT(\overline{R}))$

See fig. 4-7. If we go past the target, detected by $\overline{RT}*\overline{R}\cdot\overline{UNI}$ less than zero, the steering is disabled and a 180 degree roll is called. This logic is performed only in the final phase.

The range formula is unambiguous for ranges up to 180 degrees. If ranges greater than half way around the earth are ever contemplated, additional logic would be required to allow for this possibility. Likewise the lateral logic would have to be changed since all great circles converge at a point 180 degrees away from the present point. The ARCCOS function is not very accurate for arguments near one. The algorithm for this function has been modified to improve the accuracy by making use of the triple precision result of a double precision multiplication. Let x equal the argument of the ARCCOS. If 1-x is less than 1/16384, i.e. the high order part is zero, the quantity 1-x is shifted left 13 places and the ARCCOS is approximated by

ARCCOS(x) = SQRT(2(1-x))

Initial Roll

The Initial Roll Section holds a constant roll attitude until the sensible atmosphere is detected (at .05 g). At this time INRLSW is set to one so that this branch will not be entered again. Then up-lift is called and the final phase is entered if the velocity is low, less than VFINAL. If the velocity is high, a test is made to determine the position in the entry corridor. Down-lift is called if the entry is shallow. This is detected when the velocity is greater than

VFINAL - K_{44} $(\dot{R}/V)^3$

This curve, shown in fig. 4-8a, is parallel to the overshoot boundary curve defined at the .05 g level.

As described in Appendix D, a shallow entry angle is accompanied by a positive \hat{R} error. This error would indicate an even shallower entry. The test, therefore, would call for the proper lift direction even in the presence of very large errors.

This lift direction is then maintained until the acceleration exceeds KA. Then the L/D command is set to LAD. This command is held until the altitude rate is less than a threshold altitude rate, VRCONTROL, at which time the next phase is started.

KA is fixed at 2 g's for lunar entries and .2 g's for the 202 case, but may vary for some of the other flight tests.

Fig. 4.8. Initial Roll

Fig. 4-8a. Criterion for Up- or Down-Lift

A more sophisticated policy is being considered for this phase. This policy would examine the acceleration build-up to determine where the vehicle is in the entry corridor, and then direct the lift accordingly. So far however, the simple roll policy appears to be adequate.

Huntest

The Huntest Section checks to see if a constant L/D policy from present conditions will give the desired range. If so, range control is started using a self-generated reference trajectory. If the range is longer than the desired range, control is shifted to a constant drag controller. The reference trajectory, which approximates constant L/D flight, is a parabola relating drag and velocity. The predicted ranges are represented by simple approximate formulae.

The first "subtask" of this section is to project ahead from present conditions to a point having zero altitude rate. This point is a possible starting point for the up-control phase and has a starting velocity V1, and a starting acceleration A0. If R is negative the starting velocity is calculated assuming flight at maximum L/D until $\hat{R} = 0$.

$$V1 = V + \dot{R}/LAD$$

The same assumption is used to calculate A0, see Appendix A.

A0 =
$$(V1/V)^2$$
 (D + $\dot{R}^2/(2 \text{ HS LAD}))$

If R is positive, flight at nominal L/D is assumed from zero \dot{R} , and LEWD is used in place of LAD in the two equations above.

This refinement was needed for the 202 mission in which this part of the trajectory is flown at low dynamic pressure and hence for a long time period. The nominal entry for a lunar mission is at a much higher dynamic pressure, and in this case these corrections will be quite small.

Fig. 4-9. Huntest

:.

Fig. 4-10. Range Prediction

The next "subtask" of this section is to establish the drag level for the constant drag controller. This is D or C19, whichever is larger, with a maximum value of DOMAX. HUNTIND is a switch to allow this calculation only one time, the first pass through this section. Very short ranges could call for a higher drag level than C19, and logic has been written to allow for this possibility. So far, the logic has not been needed and therefore has not been included.

Next, the exit velocity, VL, is related to the initial velocity and the initial and final drag levels by the relation

VL = FACT1(1 - SQRT(FACT2 Q7 + ALP))

where

ALP = $2 C1 A0 HS/(LEWD V1^2)$ FACT1 = V1/(1 - ALP)FACT2 = ALP(ALP - 1)/A0 C1 = shaping constant

As shown in Appendix A, this relation holds for constant L/D flight if the gravity plus centripetal acceleration is negligible, a good approximation near satellite velocity.

If the exit velocity is too low, less than VLMIN, the program control is shifted to the final phase, PREDICT3. If the exit velocity is greater than satellite velocity, VSAT, program control is shifted to the constant drag controller.

The altitude rate at exit is calculated by a simple linear relation with velocity, with a correction to allow for the neglected centripetal and gravity accelerations.

GAMMAL = $LEWD(V1-VL)/VL - CH1 GS DVL^{2}(1 + AHOOK DVL)/(DHOOK VL^{2})$ where

> DHOOK = ((1 - VS1/FACT1)² - ALP)/FACT2 AHOOK = CHOOK(DHOOK/Q7 - 1)/DVL DVL = VS1 - VL VS1 = VSAT or V1, whichever is lower CH1, CHOOK = shaping constants

$$4 - 21$$

If the gravitation acceleration effect is too great, GAMMAL can be negative, indicating that the desired exit condition cannot be reached. In this case, the exit velocity, VL, is adjusted to the zero flight path angle condition by

$$VL = VL + GAMMAL VL/(dR/dV)$$

where

 $d\dot{R}/dV = LEWD - CH1 GS(3 AHOOK DVL² + 2 DVL)/(DHOOK VL)$

And the acceleration at exit, Q7, is adjusted to correspond to this new VL by

$$Q7 = ((1 - VL/FACT1)^2 - ALP)/FACT2$$

These two variables (GAMMAL and VL) are enough to calculate the predicted range ASP as the sum of five components, each represented by simple approximate formulae, derived in Appendix G.

ASP = ASPDWN + ASPUP + ASKEP + ASP1 + ASP3

ASPDWN = range to pull-out(where R = 0) in n.m. = - R V ATK /(A0 LAD RE)

ASPUP = range to exit in n.m. = (ATK HS/(RE GAMMAL1)) $LN(A0 VL^2/(Q7 V1^2))$

ASKEP = ballistic range in n.m. = 2 ARCSIN(VBARS COSG GAMMAL/E) where VBARS = $VL^2/VSAT^2$, normalized exit velocity squared COSG = 1 - GAMMAL²/2 E = SQRT(1 + (VBARS - 2)COSG² VBARS) ASP1 = final phase range in n.m. = Q2 + Q3 VL

ASP3 = correction to final phase for flight path angle in n.m. = Q5(Q6 - GAMMAL)

If the difference between the predicted and desired ranges, DIFF, is less than 25 n.m., control is shifted to the up-control section. If no iteration has been called, HIND = 0, and the predicted range is too great, DIFF is negative, then control is shifted to the constant drag controller. DIFF and V1 are saved to aid in a possible future iteration.

If HIND = 1, an iteration has been indicated. This iteration is started when the desired range is more than 25 n.m. greater than the predicted range. In this case the starting velocity, V1, is altered to cause the predicted and desired range to agree.

V1 = V1 + VCORR

where

VCORR = VCORR DIFF/(DIFFOLD - DIFF)

The VCORR on the right hand side of the last equation is either the last velocity correction or V1OLD - V1 on the first pass through the iteration. No correction greater than 1000 fps is allowed so that the iteration will be well-behaved. Also, the velocity correction is halved if it appears that the exit velocity may exceed satellite velocity on the next pass through the iteration.

Usually no iteration is involved. It is only on the steep entry long range case that an iteration is called. In this case, the very first pass through this section gives too short a predicted range, and V1 must be increased until the range is great enough.

There is some consideration of changing the iteration cases to an iteration on LEWD rather than V1. It is more reasonable to raise the nominal L/D at the present starting point than to find a different starting point where we should have been. At this time it is not decided if the additional programming required is warranted.

Up-control

The Up-control Section steers the vehicle along a self-generated reference to suitable conditions at the edge of the atmosphere. In this section, sensitivity to errors was the determining design factor. The reference trajectory technique was found to be less sensitive to altitude rate errors. This reference is self-generated allowing the desired flexibility. Optimum gains were chosen on a statistical basis to follow this reference. These optimum gains were chosen to minimize the effects of errors.

Drag is the independent variable of this reference. Other designs had velocity as the independent variable. There is no double value in the reference near exit velocity if drag is the independent variable. A second advantage is that the system response is faster to a commanded velocity than to a commanded drag level, thus a tighter control can be maintained.

Also, there is no iteration in most cases to get this reference. This gives better response than did previous systems because the actual starting condition for the up-control phase is closer to the reference starting condition.

The central equation is

L/D = LEWD - KB2 F1(KB1 F1 (R - RREF) + V - VREF)

where

L/D = commanded lift-to-drag ratio in vertical plane LEWD = reference L/D KB1, KB2 = optimum constant gains F1 = (D - Q7)/(A0 - Q7) VREF = FACT1(1 - SQRT(FACT2 D + ALP)) RREF = LEWD(V1 - VREF) + RCORR RCORR = CH1 GS((VS1-VREF)² + AHOOK(VS1-VREF)³)/(DHOOK VREF)

Prior to implementing this equation certain tests are made. First, as is common programming practice, tests are made at the start to see if the phase is over. If the drag is less than Q7, the minimum drag, the ballistic

Fig. 4-11. Up-control

Fig. 4-12. Circuit to Reduce Gain for Large Commands

phase is started. If the altitude rate is negative and the velocity less than VL + C18, the final phase is started. Other tests call for full positive lift if the drag is greater than the starting drag, A0, because the reference is not defined at these high drag levels.

The method used to determine the optimum form of Eq. 1, along with the optimum gain parameters, KB1, and KB2, is described in detail in Reference 8. The objective was to find varying gains, multiplying (R -RREF) and (V - VREF) so that exit conditions would result in minimum dispersion at the target. The sources of error considered were uncertainties in altitude rate and velocity and deviations in atmospheric scale height. The optimization procedure consisted of the following four steps. First, an approximate set of equations of motion were derived, in which drag, rather than time, is the independent variable. Second, these approximate equations were linearized about a reference trajectory. Third, a set of linear equations (variance equations) which describe the statistical behavior of the system for an ensemble of cases were derived from the former set. Finally, a computer program containing the variance equations was used to vary the gains in an iterative steepest-descent, fashion so that the projected dispersion at the target was minimized. The resulting gains are optimal for one particular range (2500 n.m.), but work well for all ranges.

The optimum gains are high values and can lead to a roll angle history with several switches between zero and 180 degrees. To smooth this response, reduced gains are used for large error signals. Figure 4-8 shows the nonlinear circuit that is used.

A short segment of control is made if the velocity is above the starting velocity V1. This causes the vehicle to follow a trajectory as if the L/D were LAD, the maximum value. This is done so that there will be no long open loop segment at maximum L/D, a possible problem at the lower drag levels. The control is very similar to the constant drag control.

$$L/D = LAD + C16 (D - DR) - C17 (\dot{R} - RDTR)$$

where

RDTR = LAD (V - V1)
DR =
$$(V1/V)^2$$
 A0 - (V - V1)² LAD/(2 HS)

Still another test, NEGTEST, will not allow L/D to be negative if the drag level exceeds C20. This is to preclude a lateral switch, rolling through the full down-lift attitude. At these high drag levels, such a maneuver could cause the vehicle to fall short of the target.

Constant Drag

The constant drag controller holds the drag level to D0 with three terms,

$$L/D = -LEQ/D0 + C16 (D - D0) - C17 (R + 2 HS D0 / V)$$

The first term, -LEQ/D0, is the L/D required for equilibrium. The second term, C16(D - D0), is a constant gain on the drag difference. The third term, -C17 (\dot{R} + 2 HS D0/V), is a constant gain on the difference between R and R for constant drag.

The gain C16 is designed to give a 90 second period to the equivalent second order system. For fixed frequency this gain should be inversely proportional to the square of drag. The damping gain, C17, is designed to give a damping ratio of .7. This gain should be inversely proportional to the drag level for fixed damping ratio. The governing equation by which these gains were derived can be found by taking perturbations about equilibrium of the constant drag level and neglecting certain terms. See Appendix F. The perturbation equation is

 $\delta \dot{D} + (2D/V + C17 D) \delta \dot{D} + (C16 \beta D^2 - \beta (V^2/R - G)) \delta D = 0$

where

$$\delta \mathbf{D} = \mathbf{D} - \mathbf{D}\mathbf{0}$$

The natural divergence at supercircular velocities can be noted, as well as the drag dependence of the natural frequency and damping ratio.

Should constant drag control be desired over a wide range of constant drag levels, this drag dependence of the gains could be used.

Fig. 4-13. Constant Drag Control

Ballistic Phase

The ballistic phase controls the vehicle attitude in all three axes by commanding gimbal angles. The last roll command generated in the previous phase is held constant. The pitch is commanded to an assumed 20 degree angle of attack with respect to a calculated relative velocity vector. Yaw is commanded to zero sideslip angle with respect to the relative velocity vector. These pitch and yaw commands are generated continously throughout entry. But the SCS ignores the pitch and yaw commands if the acceleration exceeds .05 g's.

A triad at the relative velocity vector is calculated by

 $\overline{U}VA = UNIT(\overline{V} - KWE \overline{U}Z*UNIT(\overline{R}))$ $\overline{U}YA = UNIT(\overline{U}VA*\overline{R})$ $\overline{U}NA = UNIT(\overline{U}YA*\overline{U}VA)$

A triad at the navigation base is then calculated by

ŪBY = ŪYA COS(ROLLC) + ŪNA SIN(ROLLC) ŪBX = -UNIT(ŪBY*ŪVA) SIN(13) - ŪVA COS(13) ŪBZ = ŪBX*ŪBY

See fig. 4-14.

This triad $(\overline{U}BX,\overline{U}BY,\overline{U}BZ)$ is supplied to the subroutine CALCGTA which generates the gimbal angle commands (OGC, MGC, IGC). See Reference 11.

The final phase is started when the acceleration exceeds Q7 + .5 fps.

Final Phase

The final phase is based on a stored nominal trajectory. This nominal is made up of six fifteen point tables with velocity as the independent variable. As stated before, the analytic approach is preferred because it has greater

Fig. 4-14. Ballistic Phase

ATTITUDE CONTROL PHASE

Calculates commanded gimbal angles (OGC, MGC, IGC) by computing desired orientation of Nav Base with respect to relative velocity vector. :

ŪVA	= UNIT $(\overline{V} - KWE \ \overline{UZ} * UNIT(\overline{R}))$
ŪYA	= UNIT ($\overline{U}VA \times \overline{R}$)
ŪNA	= UNIT ($\overline{U}YA * \overline{U}VA$)
ŪBY	= ŪYA COS (ROLLC) + ŪNA SIN (ROLLC)
ŪBX	= -UNIT (UBY * UVA) SIN (13) - UVA COS (13)
ŪBZ	$= \overline{U}BX * \overline{U}BY$

Call CALGTA with (UBX, UBY, UBZ) Return with (OGC, IGC, MGC).

Velocity Vector $\overline{U}BX$, $\overline{U}BY$, $\overline{U}BZ$ = Unit Triad at Nav Base OGC, IGC, MGC = Gimbal Angle Commands

(Outer, Inner, Middle)

with Relative

Fig. 4-15

flexibility in adapting to off-design conditions. As a matter of fact, previous designs used simple analytic formulae based on the equilibrium glide concept. but with the present low L/D, equilibrium glide flight is no longer a good approximation. Were some analysis available to represent a near-ballistic vehicle as is the Apollo command module, this would certainly be preferred.

On the other hand, the range calculation is simpler for a vehicle of low capability. Since the vehicle has a smaller band of possible ranges, the analysis need only represent this smaller band. That is, the linear perturbation theory is pushed less far out of the linear range.

The central equation is

L/D = LOD + 4 (THETNM - PREDANGL)/F3

where

LOD = nominal L/D = .18 THETNM = desired range in n.m. PREDANGL = predicted range in n.m. F3 = dRANGE/d(L/D)

The predicted range, PREDANGL, is obtained from a stored table with corrections for drag and altitude rate.

PREDANGL = RTOGO(V) + F2(V)(R - RDOTREF(V)) + F1(V)(D - DREF(V))

The prestored tables are shown in fig. 4-16. The details of the reference generation are described in Appendix F. Essentially, the reference is a two-dimensional trajectory over a spherical non-rotating earth. The reference L/D is chosen at .18 so as to be in the center of capability for a .3 L/D vehicle. The partial derivatives to provide the drag and altitude rate corrections are solved from linear perturbation equations (the adjoint set) also described in Appendix C. Linear interpolation is used between the stored points. A dummy point is stored at each end to guarantee good behavior of the interpolation. The last eight points of F3 = dRANGE/d(L/D) are multiplied by two. This is to provide reduced gain near the end of the

Fig. 4-16. Final Phase

VREF	RDOTREF	DREFR	DR/DRDOT	DR/DA F1	RTOGO	DR/DL/D F3
FPS	FPS	FPSS	NM/FPS	NM/FPSS	NM	NM
0	-331	34.1	0	02695	0	1
337	-331	34.1	0	02695	0	1
1080	-693	42.6	.002591	03629	2.7	6.44 x 2
2103	-719	60.	.003582	05551	8.9	10.91 x 2
3922	-694	81.5	.007039	09034	22.1	21.64 x 2
6295	-609	93.9	.01446	1410	46.3	48.35 x 2
8531	-493	98.5	.02479	1978	75.4	93.72 x 2
10101	-416	102.3	.03391	2372	99.9	141.1 x 2
14014	-352	118.7	.06139	3305	170.9	329.4
15951	-416	125.2	.07683	3605	210.3	465.5
18357	-566	120.4	.09982	4956	266.8	682.7
20829	-781	95.4	.1335	6483	344.3	980.5
23090	-927	28.1	. 2175	-2.021	504.8	1385
23500	-820	6.4	. 3046	-3.354	643.0	1508
35000	-820	6.4	. 3046	-3.354	643.0	1508

Fig. 4-17. Final Phase Reference

flight to conserve reaction jet fuel. The higher gain is needed at the start of the phase to control large deviations from the nominal. Linear perturbation theory underestimates the range contribution of large positive deviations of \hat{R} . A high gain is needed at the start of this phase to control these cases. An alternate way that has been considered is to include an additional range term proportional to \hat{R}^2 .

The steering is disabled when the velocity is very low, less than VQUIT. This again is to conserve reaction jet fuel.

Lateral Logic

The lateral logic shifts the lift vector from one side of the vertical to the other. This is done so that one control variable, roll angle, can control both lateral and longitudinal range. A variable dead-zone is calculated of allowable lateral range at the target. Then if this dead-zone is exceeded, the lift is directed to the other side so as to decrease the lateral range.

To this end, the lateral range dead-zone is calculated by the simple approximation Y = KLAT VSQ. KLAT is chosen so that Y represents about half the vehicle's lateral range capability.

A bias term, YBIAS, is added to Y so that there are fewer switches near the end of the flight. When the vehicle's projected lateral range at the target, LATANG, exceeds this Y and is increasing, lift is directed to the other side by changing the sign of K2ROLL. The sign convention is such that positive roll angle causes positive lateral range.

A special case occurs when the roll angle is within 15 degrees of full positive or full negative lift. In this case, a 15 or 165 degree roll is called if the roll would decrease the lateral range. In this case also, there is a switch if LATANG exceeds Y/2.

Also, special provision is made to roll in the shortest direction during a switch. This condition is detected by a negative L/D, and is accomplished by using K1ROLL.

Fig. 4-18. Lateral Logic

In the lateral logic the effect of the low vehicle L/D is also seen. The dead-zone Y must be designed for the minimum expected L/D, and with a higher L/D more lateral switches will occur.

G-Limiter

The g-limiter overrides the commanded roll angle if the g-limit will be exceeded. If the altitude rate exceeds a limit altitude rate, R1, full positive lift is called. This limit altitude rate, derived in Appendix H, is

• R1 =-SQRT((2 HS GMAX/V)² + 2 HS LAD(GMAX-D) + 2 HS LEQ(GMAX-D)/GMAX)

If the vehicle has this limit altitude rate full positive lift will result in a peak acceleration of GMAX.

No test for g-limiting is made if the drag is less than GMAX/2. And of course full positive lift is called if the drag is greater than GMAX.

Fig. 4-19. G-limiter

V GUIDANCE PERFORMANCE

Steering Performance

Shown in fig. 5-1 is the guided entry for the nominal reentry for the lunar mission.

The initial conditions are

 $H_0 = 400,000$ ft. $V_0 = 36,200$ fps $\gamma_0 = -6$ degrees Range = 2000 n.m. Latitude = -12.7 degrees Longitude = 122.9 degrees East Azimuth = 61 degrees

The trajectory is terminated at 25,000 ft. near the point of chute deployment.

The vehicle is described by L/D = .34, W/CDA = 66 psf.

The 1962 ICAO model atmosphere is used. The trajectory is generated with a 4 degree of freedom simulation. The SCS model is the North American Aviation design which includes a 20 deg/sec limit roll rate. The guidance parameters are tabulated in fig. 6-1.

Figure 5-1a shows the altitude, velocity, acceleration and range from start of entry as a function of time.

More interesting is fig. 5-1b which shows the roll angle, lateral range = LATANG, lateral switch limit = Y, and reaction control fuel for the roll channel.

The roll angle time history is the key to the significant events. At point (1), the start of entry, a roll to -15 degrees is made to decrease the initial LATANG which was about 80 n.m. Initially the trajectory plane contained the target, but the target was calculated to rotate about 80 n.m. out of this plane during the estimated time of entry.

At point (2) the altitude rate is less than 700 fps and the constant drag control is started.

At point (3) the reference trajectory has been established and zero roll is called to null out the negative altitude rate that was a part of the constant drag phase. Point (4) is the start of the reference trajectory.

Point (5) is the first lateral switch. LATANG is seen to change direction. This is after an intersection with the -Y curve which is not shown.

Point (6) marks the start of the final phase. There is a slight discontinuity in LATANG as a different calculation is made of the estimated time of flight.

Points (7), (9), (10), and (11) are lateral switches in the final phase.

Point (8) marks the start of using relative velocity rather than inertial velocity. The limit cycle operation of the SCS can be seen here as well as between points (5) and (6).

The total roll fuel is about 60 seconds of burn.

Eight other trajectories are shown in figs. 5-2 to 5-9 completing a set of three entry angles and three ranges.

The maximum range of 2350 n.m. corresponds to a total range traversed 2500 n.m. when the effect of the earth rotation is included. The minimum range of 1500 n.m. is close to the minimum possible for a shallow entry into a thin atmosphere. The shallow entry angle of -5.2 degrees is near the skip-out boundary for a .3 L/D vehicle entering a thin atmosphere. The steep entry angle of -6.7 degrees is dictated by a maximum possible range for a .3 L/D vehicle entering a tmosphere.

Tabulated are summaries of these trajectories plus the trajectories with L/D variations to .3 and .4 and with altitude rate errors of ± 200 fps. The extreme atmosphere cases of shallow entry into a thin atmosphere and steep entry into a thick atmosphere are also tabulated. Other trajectories with atmospheric variations are not shown since the entry angle variation has the same effect as the atmospheric variation.

The significant parameters that are tabulated are

RANGE = inertial range from start of entry n.m. VEL. = velocity at start of entry, fps GAMMA = flight path angle at start, deg. ERVR = altitude rate error, held constant, fps SQA = atmospheric density factor, see NASA TN D-612 MISS = steering miss only, n.m.

FUEL = roll fuel for dual system, seconds dQCONV/dT = convective heat rate at stagnation point Btu/sq.ft/sec= .79323374 RN^{-1/2}(ρ/ρ_{o})^{3/2}(VA/1000)^{3.15} dQRAD/dT = radiative heat rate at stagnation point, Btu/sq.ft/sec= 7.5 RN (ρ/ρ_{o}) (VA/10000)^{12.5} RN = nose radius = 1 ft VA = relative velocity, fps

Fig. 5-1a 2000 n.m., - 6 Degree Entry

Fig. 5-1b 2000 n.m., -6 Degree Entry

Fig. 5-2a 2350 n.m., -5.2 Degree Entry

Fig. 5-3a 2000 n.m., -5.2 Degree Entry

Fig. 5-3b 2000 n.m., -5.2 Degree Entry

Fig. 5-4a 1500 n.m., -5.2 Degree Entry

Fig. 5-4b 1500 n.m., -5.2 Degree Entry

Fig. 5-5a 2350 n.m., -6 Degree Entry

Fig. 5-5b 2350 n.m., -6 Degree Entry

Fig. 5-6a 1500 n.m., -6 Degree Entry

Fig. 5-6b 1500 n.m., -6 Degree Entry

Fig. 5-7a 2350 n.m., -6.7 Degree Entry

Fig. 5-8a 2000 n.m., -6.7 Degree Entry

Fig. 5-8b 2000 n.m., -6.7 Degree Entry

Fig. 5-9b 1500 n.m., -6.7 Degree Entry

	MAC RUN		284198		5.2 L/D = .3			(*		7/30/65)	
RANGE NM	L/D	VEL. FP5	GAMMA DEG.	E _{RVR} FPS	SQA	MISS NM	MAX=G G=S	FUEL SEC.	QCONV BTU/SQFT	QRAD BTU/SQFT	
2350	•30	36200	=5.20	200	0	1.14	4.41	71•4	99006	2342	
2350	.30	36200	-5.20	0	0	0.15	3.94	74.6	102884	2270	
2350	•30	36200	=5.20	-200	0	0.78	4.84	69•9	105125	2207	
2000	•30	36200	=5.20	200	0	0.73	6.50	71+1	93223	2370	
2000	•30	36200	~ 5•20	0	0	0.86	5.98	66•1	96411	2297	
2000	.30	36200	=5.20	-200	0	0.61	5.78	66.2	98853	2231	
1500	• 30	36200	-5.20	200	0	0.95	4.80	58,9	82928	2414	
1500	.30	36200	-5.20	0	0	0.07	4.24	50.4	84923	2345	
1500	•30	36200	=5.20	-200	0	0.68	3.77	46•9	86612	2280	

Fig. 5-10 Shallow entry, L/D = .3

	MAC RUN		284202		$5_{0}2^{} L/D = 0.34$				(7/30/65)		
RANGE NM	L/D	VEL. FPS	GAMM/ DEG	ERVR FPS	SQA	MISS NM	MAX-G G-S	FUEL SEC.	QCONV BTU/SQF	QRAD T BTU/SQFT	
2350	•34	36200	-5.20	200	0	0.94	4.42	64•6	99236	2339	
2350	•34	36200	-5.20	0	0	0.22	3.95	57.9	102842	2284	
2350	•34	36200	-5.20	-200	0	1.33	5.37	70.2	104334	2218	
2000	•34	36200	-5.20	200	0	1.01	6.56	75.0	93595	2368	
2000	• 34	36200	-5.20	0	0	0.20	6.02	56.1	96278	2311	
2000	•34	36200	-5.20	-200	0	1.19	5,93	67.2	98653	2240	
1500	• 34	36200	-5.20	200	0	1.02	5.22	69•2	82993	2415	
1500	•34	36200	-5,20	0	0	1.45	4.10	43.9	84912	2358	
1500	• 34	36200	-5.20	-200	0	1.33	3.83	52.5	86720	2289	

Fig. 5-11 Shallow entry, L/D = .34

	MA	CRUN	2839	18	5.	2 L.	/D = •4		(7/29/65)
RANGE NM	L/D	VEL. FPS	GAMM DEG	A ERVR • FPS	SQA	MISS NM	MAX-G G-S	FUEL SEC•	QCONV BTU/SQF	QRAD T BTU/SQFT
2350	• 40	36200	-5.20	200	0	1.04	5.74	86.1	97315	2375
2350	• 40	36200	-5.20	0	0	0.08	4.47	78.1	101515	2307
2350	• 40	36200	-5.20	-200	0	1.23	6.03	70.7	103887	2238
2000	• 40	36200	-5.20	200	0	1.43	7.14	79.4	92813	2401
2000	•40	36200	-5.20	0	0	0.28	6.40	70.3	95647	2333
2000	• 40	36200	-5.20	-200	0	2.00	6.25	64.3	98295	2265
1500	• 40	36200	-5.20	200	0	0.72	6.78	84.0	82763	2448
1500	•40	36200	-5.20	0	0	0.47	4.66	67.0	847 7 8	2382
1500	• 40	36200	-5.20	-200	0	0.66	4.11	55.3	86569	2315

FIG. 5-12 SHALLOW ENTRY, L/D = .4

RANGE NM	L/D	VEL. FPS	GAMMA DEG.	ERVR	SQA	MISS NM	MAX-G G=S	FULL SEC.	QCONV BTU/SQFT	QRAD BTU/SQFT
2350	•30	36200	-6.00	200	0	0.92	4.69	56•6	95543	2621
2350	.30	36200	-6.00	0	0	0.29	4.39	71.6	99411	2568
2350	• 30	36200	-6.00	-200	0	0.58	4.34	73.3	101231	2536
2000	.30	36200	-6.00	200	0	0.87	5,29	47.4	90538	2641
2000	• 30	36200	-6.00	0	0	0.18	4.92	65•4	93381	2589
2000	.30	36200	-6.00	_2 ₀ 0	0	0.59	5.44	56.9	94954	2556
1500	• 30	36200	-6.00	200	0	1.33	5.79	59.8	82011	2681
1500	.30	36200	-6.00	0	0	0.32	6.48	63.3	83503	2632
1500	.30	36200	-6.00	-200	0	0,94	5.52	54.0	84511	2606
	RANGE NM 2350 2350 2350 2000 2000 2000 1500 1500 1500	RANGE L/D 2350 .30 2350 .30 2350 .30 2350 .30 2000 .30 2000 .30 2000 .30 1500 .30 1500 .30	RANGE L/D VEL. 2350 .30 36200 2350 .30 36200 2350 .30 36200 2350 .30 36200 2000 .30 36200 2000 .30 36200 2000 .30 36200 2000 .30 36200 1500 .30 36200 1500 .30 36200 1500 .30 36200	RANGE L/D VEL. GAMMA DEG. 2350 .30 36200 -6.00 2350 .30 36200 -6.00 2350 .30 36200 -6.00 2350 .30 36200 -6.00 2350 .30 36200 -6.00 2000 .30 36200 -6.00 2000 .30 36200 -6.00 2000 .30 36200 -6.00 1500 .30 36200 -6.00 1500 .30 36200 -6.00 1500 .30 36200 -6.00	RANGE L/D VEL. GAMMA ERVR DEG. ERVR FPS 2350 .30 36200 -6.00 200 2350 .30 36200 -6.00 0 2350 .30 36200 -6.00 0 2350 .30 36200 -6.00 0 2350 .30 36200 -6.00 200 2000 .30 36200 -6.00 200 2000 .30 36200 -6.00 200 2000 .30 36200 -6.00 0 2000 .30 36200 -6.00 0 1500 .30 36200 -6.00 0 1500 .30 36200 -6.00 0	RANGE L/D VEL. FPS GAMMA ERVR DEG. DEG. SQA 2350 .30 36200 -6.00 200 0 2350 .30 36200 -6.00 200 0 2350 .30 36200 -6.00 0 0 2350 .30 36200 -6.00 -200 0 2000 .30 36200 -6.00 -200 0 2000 .30 36200 -6.00 200 0 2000 .30 36200 -6.00 0 0 2000 .30 36200 -6.00 200 0 1500 .30 36200 -6.00 200 0 1500 .30 36200 -6.00 0 0 1500 .30 36200 -6.00 0 0	RANGE L/D NMVEL. FPSGAMMA ERVR DEG.SQA FPSMISS NM2350 $\cdot 30$ 36200 $-6 \cdot 00$ 200 0 0.92 2350 $\cdot 30$ 36200 $-6 \cdot 00$ 0 0.29 2350 $\cdot 30$ 36200 $-6 \cdot 00$ -200 0 0.58 2000 $\cdot 30$ 36200 $-6 \cdot 00$ 200 0 0.87 2000 $\cdot 30$ 36200 $-6 \cdot 00$ 200 0 0.18 2000 $\cdot 30$ 36200 $-6 \cdot 00$ -200 0 0.59 1500 $\cdot 30$ 36200 $-6 \cdot 00$ 200 0 0.32 1500 $\cdot 30$ 36200 $-6 \cdot 00$ -200 0 0.32 1500 $\cdot 30$ 36200 $-6 \cdot 00$ -200 0 0.94	RANGE L/D NMVEL. FPSGAMMA ERVR DEG.SQAMISS NMMAX-G G=S2350 $\cdot30$ 36200 -6.00 200 0 0.92 4.69 2350 $\cdot30$ 36200 -6.00 0 0 0.29 4.39 2350 $\cdot30$ 36200 -6.00 -200 0 0.58 4.34 2000 $\cdot30$ 36200 -6.00 200 0 0.87 5.29 2000 $\cdot30$ 36200 -6.00 200 0 0.18 4.92 2000 $\cdot30$ 36200 -6.00 -200 0 0.59 5.44 1500 $\cdot30$ 36200 -6.00 200 0 1.33 5.79 1500 $\cdot30$ 36200 -6.00 0 0 0.32 6.48 1500 $\cdot30$ 36200 -6.00 -200 0 0.94 5.52	RANGE L/D NMVEL. FPSGAMMA DEG.ERVR FPSSQA NMMISS NMMAX=G G=SFUEL SEC.2350 $\cdot 30$ 36200 -6.00 200 0 0.92 4.69 56.6 2350 $\cdot 30$ 36200 -6.00 00 0.29 4.39 71.6 2350 $\cdot 30$ 36200 -6.00 -200 0 0.58 4.34 73.3 2000 $\cdot 30$ 36200 -6.00 200 0 0.87 5.29 47.4 2000 $\cdot 30$ 36200 -6.00 200 0 0.18 4.92 65.4 2000 $\cdot 30$ 36200 -6.00 200 0 0.59 5.44 56.9 1500 $\cdot 30$ 36200 -6.00 200 0 1.33 5.79 59.8 1500 $\cdot 30$ 36200 -6.00 0 0 0.32 6.48 63.3 1500 $\cdot 30$ 36200 -6.00 -200 0 0.94 5.52 54.0	RANGE NML/DVEL. FPSGAMMA DEG.ERVR FPSSQAMISS NMMAX-G G=SFUEL

MAC RUN 284723 6.0 --- L/D = .3 (8/02/65)

Fig. 5-13 Mid entry, L/D = .3

	MAC RUN 284604		04	6	•0	L/D = .	34	(8/02/65)		
RANGE NM	L/D	VEL. FPS	GAMM, DEG	A ERVR FPS	SQA	MISS NM	MAX=G G=S	FUEL SEC.	QCONV BTU/SQFT	GRAD BTU/SQF1
2350	•34	36200	=6.00	200	0	0.91	4.68	75•2	95806	2591
2350	• 34	36200	=6.00	0	0	1.36	4.22	54.0	100575	2532
2350	•34	36200	=6.00	-2 ₀ 0	0	0.53	4.81	67.0	100887	2489
2000	•34	36200	-6.00	200	0	0.88	5,62	65+8	90901	2613
2000	•34	36200	-6.00	0	0	0.72	4.86	58•9	94248	2551
2000	•34	36200	-6.00	-200	0	0.58	5.84	67.7	95539	2510
1500	• 34	36200	-6.00	200	0	0.82	6.80	58•3	82373	2654
1500	•34	36200	-6.00	0	0	0.19	5,51	59.2	84041	2598
1500	•34	36200	-6.00	-200	0	1.79	5.39	47•9	84803	2560

Fig. 5-14 Mid entry, L/D = .34

MAC RUN		28472	6	6	•0	L/D = •	4	(8/02/65)		
RANGE	L/D	VEL. FPS	GAMMA DEG.	ERVR	SQA	MISS	MAX-G G-5	FUEL SEČ.	QCONV BTU/SQFT	QRAD BTU/SQF1
2350	•40	36200	=6.00	200	0	0.82	4.67	68.8	95902	2563
2350	.40	36200	-6.00	0	0	0.28	4.17	69•5	100033	2490
2350	•40	36200	-6.00	_Z00	0	0.74	5.09	72.4	101920	2436
2000	•40	36200	-6.00	200	0	1.47	6.97	80.6	90111	2587
2000	•40	36200	-6.00	0	0	0.30	5.73	68.8	93987	2513
2000	•40	36200	-6.00	_2 00	0	0.78	6.22	63.9	96381	2456
1500	•40	36200	-6.00	200	0	1.41	7.08	54+3	82334	2628
1500	•40	36200	-6.00	0	0	0.18	5.95	53.0	84141	2564
1500	•40	36200	-6.00	-200	0	1.53	5.58	61.7	85373	2512

Fig. 5-15 Mid entry, L/D = .4

	MAC RUN		283389			6.7 L/D:	=.3, YUL	TEST	(7/28/65)		
RANGE NM	L/D	VEL. FP5	GAMMA DEG	ERVR FPS	SQA	MISS NM	MAX-G G=5	FUEL SEC.	QCONV BTU/SQF	QRAD 1 BTU/SQF1	r
2350	•30	36200	-6.70	200	0	0.84	7.63	47•1	80863	3198	
2350	•30	36200	-6.70	0	0	0,26	7.63	60.7	83553	3185	
2350	• 30	36200	=6.70	-200	0	20.12	7.63	111.7	85959	3180	
2000	.30	36200	-6.70	200	0	1.68	7.63	39.6	79388	3202	
2000	• 30	36200	-6.70	0	0	0.87	7.63	40.7	81058	3195	
2000	• 30	36200	-6.70	_200	0	0,65	7,63	43.2	80415	3187	
1500	• 30	36200	-6.70	200	0	1.31	7.63	25.6	75706	3214	
1500	•30	36200	-6.70	0	0	1.41	7.63	42•1	76358	3204	
1500	•30	36200	-6.70	-200	0	0.70	7.63	43.2	77846	3195	

Fig. 5-16 Steep entry, L/D = .3

MAC RUN		28330	1	6	•7 L/D=	•34•YUL	TEST	(7/28/65)		
RANGE	L/D	VEL. FPS	GAMMA DEG.	ERVR FPS	SQA	MISS NM	MAX=G G=S	FUEL SEC.	QCONV BTU/SQFT	QRAD BTU/SQFT
							1			
2350	• 34	36200	=6.70	200	20	0.99	7.77	46 • 5	79499	3220
2350	• 34	36200	-6.70	0	0	0.39	7.24	48.2	81262	3125
2350	•34	36200	=6.70	. 200	0	0.64	7.24	50+1	86636	3108
2000	•34	36200	-6.70	200	0	0,92	7.24	77.0	81335	3142
2000	• 34	36200	-6.70	0	0	0.12	7.24	37.6	80347	3132
2000	• 34	36200	-6.70	_200	0	4.20	8.15	43.7	79953	3122
1500	•34	36200	-6.70	200	0	1.10	7.49	48•2	75709	3152
1500	•34	36200	-6.70	0	0	0,55	7.24	49.4	77302	3139
1500	•34	36200	=6.70	-200	0	1.45	7.24	55.0	78428	3131

Fig. 5-17 Steep Entry, L/D = .34

	MAC RUN		283224		6.7 L/D=.4. YULTE			TESI	ESI (7/28/65)		
RANGE	L/D	VEL. FPS	GAMMA DEG	ERVR FPS	SQA	MISS NM	MAX=G G=5	FUËL SEĈ.	QCONV BTU/SQF	QRAD 1 BTU/SQFT	
2350	•40	36200	= 6•70	200	0	1.30	6.78	66•1	80186	3060	
2350	•40	36200	=6.70	0	0	2.15	9.14	49.4	79772	3040	
2350	•40	36200	=6.70	-200	0	0.87	6.78	60•4	88314	3009	
2000	•40	36200	-6.70	200	0	0.72	7.63	77•6	79550	3060	
2000	•40	36200	=6.70	0	0	0.54	8•78	42.0	80256	3045	
2000	•40	36200	-6.70	-200	0	0.74	6.78	50.6	84785	3022	
1500	•40	36200	=6.70	200	0	1.34	8.99	59•7	76115	3077	
1500	•40	36200	-6.70	0	0	4.95	8.68	51.0	77344	3061	
1500	•40	36200	-6.70	_200	0	2.22	6.78	73.5	79635	3039	
	RANGE 2350 2350 2350 2000 2000 2000 1500 1500	RANGE L/D 2350 .40 2350 .40 2350 .40 2350 .40 2000 .40 2000 .40 1500 .40 1500 .40	MAC RUN RANGE L/D VEL. 2350 .40 36200 2350 .40 36200 2350 .40 36200 2350 .40 36200 2000 .40 36200 2000 .40 36200 2000 .40 36200 2000 .40 36200 1500 .40 36200 1500 .40 36200	MAC RUN 28322 RANGE L/D VEL. GAMMA NM FPS DEG 2350 .40 36200 =6.70 2350 .40 36200 =6.70 2350 .40 36200 =6.70 2350 .40 36200 =6.70 2000 .40 36200 =6.70 2000 .40 36200 =6.70 2000 .40 36200 =6.70 1500 .40 36200 =6.70 1500 .40 36200 =6.70 1500 .40 36200 =6.70 1500 .40 36200 =6.70	MAC RUN 283224 RANGE L/D VEL. GAMMA ERVR 2350 .40 36200 =6.70 200 2350 .40 36200 =6.70 0 2350 .40 36200 =6.70 0 2350 .40 36200 =6.70 -200 2000 .40 36200 =6.70 -200 2000 .40 36200 =6.70 200 2000 .40 36200 =6.70 200 1500 .40 36200 =6.70 200 1500 .40 36200 =6.70 200 1500 .40 36200 =6.70 200 1500 .40 36200 =6.70 200	MAC RUN 283224 6 RANGE L/D VEL. GAMMA ERVR SQA 2350 .40 36200 =6.70 200 0 2350 .40 36200 =6.70 200 0 2350 .40 36200 =6.70 200 0 2350 .40 36200 =6.70 -200 0 2000 .40 36200 =6.70 -200 0 2000 .40 36200 =6.70 200 0 2000 .40 36200 =6.70 200 0 2000 .40 36200 =6.70 200 0 1500 .40 36200 =6.70 200 0 1500 .40 36200 =6.70 200 0 1500 .40 36200 =6.70 200 0 1500 .40 36200 =6.70 200 0	MAC RUN 283224 6.7 L/D= RANGE L/D VEL. GAMMA ERVR SQA MISS 2350 .40 36200 =6.70 200 0 1.30 2350 .40 36200 =6.70 0 0 2.15 2350 .40 36200 =6.70 -200 0 0.87 2000 .40 36200 =6.70 200 0 0.72 2000 .40 36200 =6.70 200 0 0.72 2000 .40 36200 =6.70 200 0 0.74 1500 .40 36200 =6.70 200 0 1.34 1500 .40 36200 =6.70 200 0 1.34 1500 .40 36200 =6.70 200 0 1.34 1500 .40 36200 =6.70 200 0 2.22	MACRUN 283224 6.7 L/D=.4. YUL RANGEL/DVEL.GAMMAERVRSQAMISSMAX=G2350.40 36200 = 6.70 200 0 1.30 6.78 2350.40 36200 = 6.70 00 2.15 9.14 2350.40 36200 = 6.70 -200 0 0.87 6.78 2000.40 36200 = 6.70 200 0 0.72 7.63 2000.40 36200 = 6.70 200 0 0.74 6.78 2000.40 36200 = 6.70 200 0 0.74 6.78 1500.40 36200 = 6.70 200 0 1.34 8.99 1500.40 36200 = 6.70 200 0 1.34 8.99 1500.40 36200 = 6.70 200 0 2.22 6.78	RANGE L/DVEL. FPSGAMMA ERVR DEG.SQA FPSMISS NMMAX=G G=5FUEL SEC.2350.40 36200 = 6.70 200 0 1.30 6.78 6601 2350.40 36200 = 6.70 200 0 1.30 6.78 6601 2350.40 36200 = 6.70 0 0 2.15 9.14 49.4 2350.40 36200 = 6.70 200 0 0.87 6.78 60.4 2000.40 36200 = 6.70 200 0 0.72 7.63 77.6 2000.40 36200 = 6.70 200 0 0.74 6.78 50.6 1500.40 36200 = 6.70 200 0 1.34 8.99 59.7 1500.40 36200 = 6.70 0 0 4.95 8.68 51.0 1500.40 36200 = 6.70 200 0 2.22 6.78 73.5	MACRUN 283224 $6.7 \text{ L/D=.4. YULTEST}$ (1)RANGEL/DVEL.GAMMAERVRSQAMISSMAX=GFUELQCONVNMFPSDEG.FPSNMG=SSEC.BTU/SQF2350.4036200=6.7020001.306.7866.1801862350.4036200=6.70002.159.1449.4797722350.4036200=6.70-20000.876.7860.4883142000.4036200=6.7020000.727.6377.6795502000.4036200=6.7020000.548.7842.0802562000.4036200=6.7020001.348.9959.7761151500.4036200=6.70004.958.6851.0773441500.4036200=6.70-20002.226.7873.579635	

Fig. 5-18 Steep entry, L/D = .4

MAC RUN 28			28358	585		•7 L/D=	•3• THI	CK • YUI	TEST (7	/29/65)
RANGE	L/D	VEL. FPS	GAMMA DEG	ERVR FPS	SQA	MISS NM	MAX-G G-S	FUEL SEC.	QCONV BTU/SQF1	GRAD BTU/SQFT
2350	•30	36200	=6.70	200	20	0.54	8.16	46.7	78099	3287
2350	•30	36200	-6.70	0	20	0.19	8.16	53+1	80105	3279
2350	• 30	36200	-6.70	-200	20	0.52	8.16	41.0	80486	3272
2000	.30	36200	-6.70	200	20	1.67	8.16	49.2	77345	3291
2000	• 30	36200	-6.70	0	20	0.22	8.16	53+6	78961	3283
2000	• 30	36200	=6.70	-200	20	0.65	8.16	56+9	81327	3278
1500	• 30	36200	=6.70	200	20	63.70	8.16	53+1	73729	3303
1500	•30	36200	=6,70	0	20	1,14	8.16	41.5	75499	3294
1500	.30	36200	=6,70	_200	20	21.63	8.16	72.7	75119	3287

Fig. 5-19 Steep entry, thick atmosphere, L/D = .3

	MAC RUN 285193		5.2 - L/D = .3		THIN	THIN (8/0				
RANGE NM	L/D	VEL. FPS	GAMM) DEG	ERVE	R SQA	MISS NM	MAX=G G=S	FUEL SEC.	QCONV BTU/SQF1	QRAD BTU/SQFT
2350	• 30	36200	- 5.20	200	-20	1.61	4.25	61.1	103887	2094
2350	•30	36200	≈5.2 0	0	-20	0.59	4.64	66•1	105513	2067
2350	• 30	36200	=5.20	-200	-20	0.61	5.64	50.5	106979	2033
2000	•30	36200	=5.20	200	-20	0.68	8.09	76.2	97359	2117
2000	• 30	36200	-5.20	0	-20	0.23	7.71	65•6	98687	2095
2000	•30	36200	=5.20	- 200	-20	0.57	6.20	52.5	99992	2070
1500	• 30	36200	=5.20	200	-20	0.24	4.61	49•9	85178	2161
1500	•30	36200	=5,20	0	-20	1.47	4.28	48.4	86275	2139
1500	• 30	36200	=5.20	-200	-20	0.53	5.12	46•8	87603	2105

Fig. 5-20 Shallow entry, thin atmosphere, $\rm L/D$ = .3

VI AGC PROGRAM

The detailed reentry program is shown in succeeding pages. Both basic and interpretative programming have been used. These are described in References 3 and 4.

The program speed and size is summarized in fig. 6-1. The program is roughly 1500 words long and the computation time varies from .5 to 1.0 second depending on the program mode.

The program is listed in the form ready for the YUL assembler. The right half of the list (column 41 on the card) contains comments to aid in reading the program.

It is assumed here that prior to entry the vehicle is in the entry attitude and that the SCS, IMU, and CDU are all in the entry mode. Further it is assumed that the mission control program (not described) has put a 2 second call to the "Wait List"* for the PIPUP routine, and the entry calculations have been started in the Initialization Section, STARTENT.

This section starts the attitude control job by assigning a priority of 14 to the job UPTHETA1. The various quantities are initialized in STARTENT, then the program waits until the next cycle to start the normal entry calculations.

Further entries to the main computation are made through the PIPA reading routine, PIPUP. This routine reads the PIPA-s by calling PIPASR by way of ISWCALL. ISWCALL is a routine to call a subroutine in a different switchable bank from the one currently being executed. (It is equivalent to SWCALL except it may be used in the interrupt mode.) The PIPUP routine then perpetuates itself by giving a two second call to the Wait List. It also sets up the INTERPIP routine with a .5 second call to the Wait List. INTERPIP is a routine to read the PIPA-s in a finer time interval to give a more detailed acceleration history. The main computational cycle is then set up by giving a priority of 16 to the program starting at ENTRYTOP.

*Details of the "wait list" and program control are in Ref. 6.

The UPTHETA1 job calls itself by putting a two second call to the Wait List for UPTHETA3, and UPTHETA3 calls UPTHETA with a priority of 14.

The computer variables are listed in fig. 6-2. The maximum value shows the value of the variable if the scaled variable had a value of one. (The real maximum is one bit less than this - 1 part in 2^{28} for double-precision variables.)

The unscaled constants are listed in fig. 6-3. The scaled constants, of course, appear in the AGC program listing.

	T I ME SEC	SIZE WORDS
INITIALIZE	.117	57
READ PIPA-S	.001	105
NAVIGATE	.230	147
TARGETING	.270	147
MODE SELECTOR	.001	2
INITIAL ROLL	•015 •053	63
HUNTEST	•301 •350	316
CONSTANT DRAG CONTROL	.067	56
UP-CONTROL	•106 •136	111
BALLISTIC PHASE (INCLUDES ATTITUDE CONTROL)	• 371	71
FINAL PHASE	•043	190
G-LIMITER	•009 •037	38
LATERAL LOGIC	.061	82
CONSTANTS		131

Fig. 6-1 $\,$ Program speed and size.

VARIABLE	DESCRIPTION	MAXIMUM VALUE	COMPUTER NAME
URTO	INITIAL TARGET VECTOR	2 (UNIT VECTOR)	≖ RTINIT
υz	UNIT VECTOR NORTH	2	= (UZ) OR UNITW
v	VELOCITY VECTOR	2 VSAT	= (V)
R	POSITION VECTOR	2 EXP 29 METERS	= RN
- V I	INERTIAL VELOCITY	128 M/CENTISEC	= VPIP
RTE	VECTOR EAST AT INITIAL TARGET	2	= RTEAST
UTR	NORMAL TO RTE AND UZ	2	= RTNORM
URT	TARGET VECTOR	2	= (RT)
UNI	UNIT NORMAL TO TRAJECTORY PLANE	2	
DELV	INTEGRATED ACCEL. FROM PIPAS	5.85 16384 CM/S	
G	GRAVITY VECTOR	1/32 M/CS/CS	= GRAVITY
AO AHOOKDV	INITIAL DRAG FOR UPCONTRL TERM IN GAMMAL CALC+ = AHOOK DVL	805 FPSS 805/16 VSAT FPS FPSS	FPSS=FT/SEC/SEC
ALP ASKEP ASP1 ASP3 ASPDWN ASP COSG D D0 DHCOK DIFF	CONST FOR UPCONTRL KEPLER RANGE FINAL PHASE RANGE UP-RANGE GAMMA CORRECTION RANGE DOWN TO PULL-UP PREDICTED RANGE COSINE(GAMMAL) TOTAL ACCELERATION CONTROLLED CONST. DRAG TERM IN GAMMAL COMPUTATION THETNM-ASP (RANGE DIFFERENCE)	1 21600 NM 21600 NM 21600 NM 21600 NM 21600 NM 21600 NM 21600 NM 2 805 FPSS 805 FPSS 805 FPSS 21600/16 NM	NM = NAUTICAL MILE = COSG/2
DR DR DREFR DVL E F1 F2 F3 FACT1 FACT2 FACT2 FACT0R GAMMAL GAMMAL1	REVIOUS VALUE OF DIFF REFERENCE DRAG FOR DOWNCONTROL REFERENCE DRAG VS1-VL ECCENTRICITY DRANGE/D DRAG (FINAL PHASE) DRANGE/D RDOT (FINAL PHASE) DRANGE/D (L/D) CONST FOR UPCONTRL CONST FOR UPCONTRL USED IN UPCONTRL FLIGHT PATH ANGLE AT VL SIMPLE FORM OF GAMMAL	21000/10 NM 805 FPSS 2 VSAT 4 2700/805 2700/2VS NM/FPS 2700 NM 2 VSAT 1 1 1 1 1 RADIAN 1 RADIAN	

Fig. 6-2 Computer Variables

VARIABLE	DESCRIPTION	MAXIMUM VALUE	COMPUTER NAME
K1ROLL K2ROLL	INDICATOR FOR ROLL SWITCH INDICATOR FOR ROLL SWITCH		
LATANG	LATERAL RANGE	4 RADIANS	
LEQ	EXCESS C.F. OVER GRAV=(VSQ-V)GS	128.8 FPSS	
L/D	DESIRED LIFT TO DRAG RATIO (VERTIC	TAL PLANE)	
PREDANGL	PREDICTED RANGE (FINAL PHASE)	2700 NM	
07	MINIMUM DRAG FOR UPCONTROL	805 FPSS	
RDOT	ALTITUDE RATE	2 VSAT	
RDOTREF	REFERENCE RDOT FOR UPCONTROL	2 VSAT	
RDTR	REFERENCE RDOT FOR DOWNCONT	2 VSAT	
ROLLC	ROLL COMMAND	8 REVOLUTIONS	
RTOGO	RANGE TO GO (FINAL PHASE)	2700 NM	
SL	SINE OF LATITUDE	1	
T	TIME	16384 SEC	= TENTRY
THETA	DESIRED RANGE (RADIANS)	2 PI RADIANS	= THETAH
THETNM	DESIRED RANGE (NM)	21600 NM	
V	VELOCITY MAGNITUDE	2 VSAT	
V1	INITIAL VELOCITY FOR UPCONTROL	2 VSAT	
VIOLD	PREVIOUS VALUE OF V1	2 VSAT	
VCORR	VELOCITY CORRECTION FOR UPCONTROL	2 VSAT	
VL	EXIT VELOCITY FOR UPCONTROL	2 VSAT	
VREF	REFERENCE VELOCITY FOR UPCONTROL	2 VSAT	
VS1	VSAT OR VI, WHICHEVER IS SMALLER	2 VSAT	
	2 2		
VBARS	VL /VSAT	4	
	2 2		
VSQ	NORMALISED VEL. SQUARED = V /VSAT	4	= VSQUARE
WT	EARTH RATE TIMES TIME	1 REVOLUTION	= WIE (DTEAROT)
x	INTERMEDIATE VARIABLE IN G-LIMITER		
Y	LATERAL MISS LIMIT	4 RADIANS	

Fig. 6-2a Computer Variables (cont'd)

EXTRA COMPUTER ERASABLE LOCATIONS NOT SHOWN ON FLOW CHARTS ------

	VARIABLE	DESCRIPTION	MAXIMUM	VALUE
	C/DO GOTOADDR XPIPBUF YPIPBUF ZPIPBUF JJ M1 GRAD FX FX + 1 FX + 2 FX + 3 FX + 4 FX + 5 UNITV UNITR TEM1B	SCALED RECIPROCAL OF DO ADDRESS SELECTED BY SEQUENCER BUFFER TO STORE X PIPA COUNTS BUFFER TO STORE Y PIPA COUNTS BUFFER TO STORE Z PIPA COUNTS COUNTS PASSES THRU PIPA READ ROUTI INDEX IN FINAL PHASE TABLE LOOK-UP INDEX IN FINAL PHASE TABLE LOOK-UP INTERPOLATION FACTOR IN FINAL PHAS DRANGE/D L/D = F3 AREF RTOGO RDOTREF DRANGE/D RDOT = F2 DRANGE/D DRAG = F1 UNIT V VECTOR UNIT R VECTOR TEMPORARY LOCATION	NE 2700 NM 805 FPS 2700 NM VSAT/4 21600/21 2700/80 2 2	S NM/FPS
	SWITCHES			
(6) (7) (8 (9) (10) (11)	GONEPAST RELVELSW EGSW HUNTIND HIND INRLSW	INDICATES OVERSHOOT OF TARGET RELATIVE VELOCITY SWITCH FINAL PHASE SWITCH INITIAL PASS THRU HUNTEST INDICATES ITERATION IN HUNTEST INDICATES INIT ROLL ATTITUDE SET		

Fig. 6-2b Computer Variables (cont'd)

CONSTANTS A	AND GAINS	VALUE						
C1	FACTOR IN ALP COMPUTATION	1.25						
C16	CONSTD GAIN ON DRAG	.01						
C17	CONSTD GAIN ON ROOT	.001						
C18	BIAS VEL. FOR FINAL PHASE START	500	FPS					
C19	MINIMUM CONST DRAG	130	FPSS					
C20	MAX DRAG FOR DOWN-LIFT	175	FPSS					
CHOOK	FACTOR IN AHOOK COMPUTATION	.25						
CH1	FACTOR IN GAMMAL COMPUTATION	.75						
DOMAX	MAX CONST DRAG	175	FPSS					
DT	COMPUTATION CYCLE TIME INTERVAL	2	SEC.					
GMAX	MAXIMUM ACCELERATION	322	FPSS		(10	G-S)	
KA	DRAG TO ROLL UP IF DOWN INITIALLY (=KAT)	64.4	FPSS					
KB1	OPTIMIZED UPCONTROL GAIN	3.4						
KB2	OPTIMIZED UPCONTROL GAIN	.0034						
KDMIN	INCREMENT ON Q7 TO DETECT END OF KEPLER PHASE	• 5	FPSS					
KLAT	LATERAL SWITCH GAIN	.0125						
KTETA	TIME OF FLIGHT CONSTANT	1000						
×44	GAIN USED IN INITIAL ROLL SECTION	44389312	FPS					
LAD	MAX L/D (MIN ACTUAL VEHICLE L/D)	• 3						
LATBIAS	LATERAL SWITCH BIAS TERM	• 4	NM					
L/DCMINR	LAD COS(15 DEG)	.2895						
LEWD	UPCONTROL L/D	•1						
LCD	FINAL PHASE L/D	.18						
Q 2	FINAL PHASE RANGE - 23500 Q3	-1002	NM					
Q3	FINAL PHASE DRANGE/D V	•07	NM/FPS					
Q 5	FINAL PHASE DRANGE/ D GAMMA	7050	NM/RAD					
26	FINAL PHASE INITIAL FLIGHT PATH ANGLE	.0349	RAD					
Q7F	MIN DRAG FOR UPCONTROL	6	FPSS					
VFINAL	VELOCITY TO START FINAL PHASE ON INITIAL ENTRY	25000	FPS					
VLMIN	MINIMUM VL	18000	FPS					
VMIN	VELOCITY TO SWITCH TO RELATIVE VEL	VSA1/2	EDC					
VRCONTRL	RDCI TO START INTO HUNTEST	100	FPS					
VCORLIM	MAX VALUE OF VCORR	1000	FPS					
ZONM	TOLERANCE TO STOP RANGE TTERATION	22	EDC					
	VELOCITY TO STOP STEERING	1005	FFS					
CONVERSION	FACTORS AND SCALING CONSTANTS							
CONVERSION	FACTORS AND SCREING CONSTANTS							
ΔΤΚ	ANGLE IN RAD TO NM	3437.74	68 NM/RA	D				
GS	NOMINAL & VALUE FOR SCALING	32.2	FPSS					
HS	ATMOSPHERE SCALE HEIGHT	28500	FT					
J	GRAVITY HARMONIC COEFFICIENT	.001623	45					
KWE	EQUATORIAL EARTH RATE	1546.70	168 FPS					
MUE	EARTH GRAVITATIONAL CONSTANT	3.98603	2233 E 14	CUBIC	M/	SEC	SEC	
RE	EARTH RADIUS	2120290	0 FT					
VSAT	SATELLITE VELOCITY AT RE	25766.1	973 FPS					
WIE	EARTH RATE	.000072	9211505 RA	D/SEC				

Fig. 6-3 Constants, Gains and Conversion Factors

0001 SETLOC 56000

R0002 THE PIPUP SECTION IS A TASK WHICH READS THE PIPAS EVERY .5 R0003 SECONDS. ACCELERATION HISTORY OVER THE LAST TWO SECONDS (FOUR READINGS) R0004 IS MAINTAINED IN THE XPIPBUF, YPIPBUF, AND ZPIPBUF REGISTERS. EACH PIPA R0005 READING IS SUMMED INTO THE XPIPSUM ETC. REGISTERS, AND EVERY FOURTH READ R0006 ING AVERAGE G IS CALLED TO USE THE SUMMED READINGS TO UPDATE POSITION R0007 AND VELOCITY AND SET THE PIPSUM REGISTERS TO ZERO.

R0008	GOES TH	HRU PIP	UP ONLY EVERY 2	SEC. (ELSEWHERE MORE OFTEN.)
0009 0010 0011	REPIPUP	CADR CAF TC	REPIPASR -1 PIPUP + 1	REREAD PIPAS IF NECESSARY.
0012 0013 0014	PIPUP	CADR CAF TC	PIPASR -1 ISWCALL	GO TO PIPAREAD SUBROUTINE.
0015 0016 0017		CAF TC OCT	THIRTN NEWPHASE 5	PICK UP AT RED05.13 5.13 RESTART. (NO TIME CALL.)
0018 0019 0020	RED05.13	CAF TC CADR	DT WAITLIST PIPUP	
0021		C 5 T 5	PIPTIME + 1 TBASE5	SAVE NEW TIME.
0023 0024 0025		CAF TC CADR	IPIPDT WAITLIST INTERPIP	READ ACCELERATION MORE OFTEN.
0026 0027 0028		CAF TC CADR	PRIO16 FINDVAC ENTRYTOP	
0029 00 3 0		CAF TS	TWO PIPCTR	
0031 0032 0033		CAF TC OCT	FOURTN NEWPHASE 5	THIS WILL PICK UP AT ENTRYTOP + 3 5.14 RESTART.
0034		TC	TASKOVER	

0035 IPIPDT DEC 50

0

P0036		JOB WH	ICH PROCESSES	PIPA READINGS TO UPDATE POSITION AND VELOCI
0037	ENTRYTOP	XCH AD	TENTRY TWO	UPDATE ENTRY TIME.
0039		ХСН	TENTRY	IN SECS SINCE START OF ENTRY.
0040 0041		CAF TS	ONE PIPAGE	
0042 0043 0044		C S T S C S	DELVX XPIPBUF + 3 DELVY	
0045 0046 0047		T 5 C 5 T 5	YPIPBUF + 3 DELVZ ZPIPBUF + 3	SAVE PIP COUNTS.
0050 0051 0052 0053		TC OCT TC CADR	PHASCHNG 01705 BANKCALL 1/PIPA	5.15 RESTART PICKS UP AT REFAZE4. COMPENSATE THE PIPA DATA
0054	REFAZE4	TC	INTPRET	
0055 0056		ITC	0 CALCRVG	GO TO AVERAGE G INTEGRATION ROUTINES TO USE PIPA READINGS TO UPDATE POSITION AND
0058		TC OCT	PHASCHNG 02105	5.17 RESTART AT REFAZE8.
0060	REFAZE8	TC	INTPRET	

P0061 PROCESS AVERAGE & OUTPUT ... SCALE IT AND GET INPUT DATA

0062 0063 0064 0065	SCALEPOP	VXSC STORE	0 VPIP KVSCALE (V)	KVSCALE = (12800/.3048)0(25766.1973 X2) KVSCALE = .81491944 V VECTOR
0066 0067		TEST	2 VXSC	(VREL) = (V) → KWE UNITR*UNITW
0069 0070 0071 0072 0073 0074		STORE	RELVELSW GETUNITV UNITR UNITW KWE (V)	SWITCH NUMBER.
0075	\$	STURE		NEW V VECTOR IS RELATIVE.
0076	GETUNITV	NOLOD	1	
0078		STORE	UNITV	HALF MAX: OF COURSE.
0079 0080 0081 0082		TSLT STORE	0 28D 2 VSQUARE	RESCALE MAGNITUDE SQUARED. SHIFT COUNT. (2 BECAUSE HALP-LEN SORD VELOCITY SQUARED. (NORMAL SCALING)
0083		DSU	0	IEQ = VSQUARE-1
0084		200	VSQUARE	4 G-S FULL SCALE
0085		STORE	LEQ	
0087 0088 0089 0090	10 II.	TSLT	0 30D 1 V	
0001		COR	,	
0092		TSLT	1	
0093			(V)	RDOT = V.UNITR
0094			UNITR 1	AND SCALE BACK UP. UNITS ARE 1/2-
0096		STORE	RDOT	AND SCHEE DACK OF Y DITTES ARE 1720

00) •5 /25
ABOVE .
THE

0120	UPDATERT	ITC	0 EARROT2		UPDATE PREDICTED TARGET VECTOR RT	
0122 0123 0124		NOLOD DOT	1 RTB UNI	÷	SINCE (RT) UNIT VEC, THIS IS 1/4 MAX. LATANG = RT.UNI	
0126 A0127		STORE	LATANG		LATANG = MAC LATANGLE/4 (NO 2 PI) UNUSUAL SCALING FOR LATANG. (= ASIN L.	•
0128 0129 0130	GETANGLE	DOT DSU DAD	3 BPL TSLT		THETA = ARCCOS(RT.UNITR) RT IS UNIT VECTOR	
0132 0133 0134 0135 0136 0137		ACUS	RT UNITR NEAR1/4 TINYTHET NEAR1/4 1		TO IMPROVE ACCURACY. CALC RANGE BY TINYTHET IF HIGH ORDER PART OF ARCCOS ARGUMENT IS ZERO	
0138		STORE	ТНЕТАН			
0140 0141 0142	REFAZE10		PHASCHNG 02205 INTPRET	5	5.18 RESTART AT REFAZE10	

P0143		JUMP TO PARTICULAR RE-ENTRY PHASE.
0144 0145	SEQUENCE	ITCI O BRANCHES TO VARIOUS CONTROL PHASES. GOTOADDR ADDRESS OF PHASE EQS STORED HERE.
R0146 R0147	APPROPRIA	GOTOADDR CONTAINS THE ADDRESS OF THE ROLL COMMAND EQUATIONS ATE TO THE CURRENT PHASE OF RE-ENTRY. SEQUENCING IS AS FOLLOWS:
R0148 R0149 R0150	INITROLL	SET HERE INITIALLY. HOLDS INITIAL ROLL ATTITUDE UNTIL KAT EX- CEEDED. THEN HOLDS NEW ROLL ATTITUDE UNTIL VRTHRESH EXCEEDED. THEN BRANCHES TO
R0151 R0152 R0153 R0154 R0155 R0156 R0157	HUNTEST	THIS SECTION CHECKS TO SEE IF THE PREDICTED RANGE AT NOMINAL L/D FROM PRESENT CONDITIONS IS LESS THAN THE DESIRED RANGE IF NOT A ROLL COMMAND IS GENERATED BY THE CONSTANT DRAG CONTROLLER. IF SO CONTROL AND GOTUADDR ARE SET TO UPCONTRL USUALLY NO ITERATION IS INVOLVED EXCEPT IF THE RANGE DESIRED IS TOO LONG ON THE FIRST PASS THRU HUNTEST.
R0158 R0159 R0160 R0161 R0162	UPCONTRL	CONTROLS ROLL DURING THE SUPER-CIRCULAR PHASE. UPCONTRL IS TERM INATED EITHER (A) WHEN THE DRAG (AS MEASURED BY THE PIPAS) FALLS BELOW Q7 OR (B) IF RDOT IS NEGATIVE AND REFERENCE VL EXCEEDS V. IN CASE (A). GOTOADDR IS SET TO KEP2 AND IN (B) TO PREDICT3. SKIPPING THE KEPLER PHASE OF ENTRY.
R0163 R0164 R0165 R0166 R0167	KEP2	GOTOADDR IS SET HERE DURING THE KEPLER PHASE TO MONITOR DRAG. SPACECRAFT IS INSTANTANEOUSLY TRIMMED IN PITCH AND YAW TO THE COMPUTED RELATIVE VELOCITY VECTOR. THE LAST COMPUTED ROLL ANGLE IS MAINTAINED. WHEN THE MEASURED DRAG EXCEEDS 07+.5. GOTOADDR IS SET TO
R0168 R0169 R0170	PREDICT3	THIS CONTROLS THE FINAL SUB-ORBITAL PHASE. ROLL COMMANDS CEASE WHEN V IS LESS THAN VQUIT. AN EXIT IS MADE TO TERMALT WHEN TERMINAL ALTITUDE IS REACHED.

P0171	OUT OF	SEQUEN	ICE SUBSECT	ION T	0	COMPUTE ETA.
0172	BOOKMARK	EQUALS				
0173		SETLOC	ENDRIBSS			
0174 0175 0176 0177 0178 0179 0180	GETETA	TEST DMP	1 EGSW SUBETA THETAH KTETA FTA			NOT USED AT LOW VEL WHERE THETA NEG. BRANCHES IF INTO EQ. GLIDE PHASE. = 1000X2PI/(2)E1+ 163.84
0181 0182 0183 0184	GETETA2	NOLOD DAD STORE	1 PIPTIME DTEAROT			DONT REALLY WANT IT. BUT NO PUSH WANTED
0185 0186		ITC	0 UPDATERT			
0187 0188 0189 0190 0191 0192	SUBETA	DSU BPL	1 SWITCH V FOURTH SUBETA2 RELVELSW			SWITCH FROM INERTIAL TO RELATIVE VELOCITY WHEN V LESS THAN .5 VSAT.
0193 0194 0195 0196 0197 0198	SUBETA2	DMP DDV	1 ITC THETAH KT V GETETA2			KT = RE(2 PI)/ 2 VS 16384 163.84 /2 VSAT
0199 0200 0201	SETMIND	DMOVE	0 181TDP D			MAKE D NON-ZERO.
0202		IIC	GETUNI			-
0204 0205 0206 0207 0208 0209 0210 0211	TINYTHET	NOLOD DSU TSLT DMP STORE	3 ABS SQRT 1BITDP + 1 13D KACOS THETAH			ENTER WITH X249 GET 1/4 - MPAC SCALE UP BEFORE SORT. HAS FACTOR FOR UP SCALING. X = SQRT(2(1-COSX)). IN RADIANS X/2PI=(1/64PI)(SGRT(((1-COSX)/4)2EXP13)
0212 0213		RTB	0 REFAZE10			OFF TO PRE-SEQUENCER

P0214 MAINTAINS INITIAL ROLL UNTIL D = KAT, GOES INTO HUNTEST WHEN R0215 RDOT = VRCONT.

0216 0217	BOOKMRK1	EQUALS SETLOC	BOOKMARK	
0218	HUNTCADR	CADR	HUNTEST	
0219 0220 0221	INITROLL	TEST DSU EXIT	2 BMN	IF D05 G NEG, GO TO LIMITL/D IF NOT, SET .05 G SWITCH FOR SCS
0222 0223 02231 02232 02233			INRLSW INITRL1 D •05G LIMITL/D	
0224		TC	RELAYON	SEND .05 G SIGNAL TO SCS.
0226 0227 0228			NEWMODE 00064 INTPRET	SET MODE TO AFTER .05 G STATE.
022802		DMOVE	0	
022806		STORE	L/D	
022808 02281 022812		SWITCH DSU RTB	2 BPL	IF V-VFINAL NEG, GO TO FINAL PHASE
022814 022816			INRLSW V	
022818 02282			VFINAL UPDWNTST	
022822 022824 022826		CAF TS TC	KEPCADR GOTOADDR INTPRET	
022828 02283		ITC	0 LIMITL/D	
022832	UPDWNTST	DDV	0 RDOT	DECHLT INTO DD
022830			v	RESULT INTO PD
022838 022842 022842 022844 022846 022848 022848		NULOD DSQ DDV DAD BMN DSU	DMP DSU BOV LODON	IF V-VFINAL+K(RDOT/V)CUBED POS+L/D=-LAD
JELUJ				

	RE-ENTRY	CONTRO	L	
022854 022856 022858 02286 022862 022864 022864		STORE	K44 VFINAL V LIMITL/D LIMITL/D LAD L/D	
022868 02287		ITC	0 LIMITL/D	
022872 0229 0230 0231 0232 0233 0234 0236 0237	INRLSW INITRL1	EQUALS DSU BPL DMOVE STORE	LATSW 2 LODON KAT D VRTHRES LAD L/D	IF KAT-D POS, GO TO OUT WITH COMMAND IF NEG, L/D = LAD WHEN D GREATER THAN KAT, L/D = LAD
0238 0239 0240 0241 0242 0243 0244 0245	VRTHRES	DAD BMN CAF TS	1 EXIT RDOT VRCONT LIMITL/D HUNTCADR GOTOADDR	IF RDOT + VRCONT NEG, GO TO STEER IF POS, SET SELECTOR TO HUNTEST. DO LATERAL CONTROL IF NEEDED. SPACER.

A

P0246 ... HUNTEST SECTION ... CHECKS TO SEE WHEN PREDICTED RANGE = DESIRED ONE

0247 0248 0249 0250	PREHUNT HUNTEST	TC DMOVE STORE	INTPRET, O LAD TEM1B	IF RDOT POS. TEM1B = LAD	
0251 0252 0253 0254 0255 0256		BMN LODON STORE	l DMOVE RDOT AOCALC LEWD TEM1B		
0257 0258 0259 0260 0261 0262	AUCALC	DDV DAD STORE	1 RDOT TEM1B V V1	V1 = V + RDOT/TEM1B	
0263 0264 0265 0266 02661 02662 02663 02663 02664 02665 02666 02667 02668		DSQ DDV DAD DMP	3 DDV DMP DDV RDOT TEM1B 2C1HS D V1 V1 V1 V1 V1 VSQUARE A0	AO=(V1/V)SQ(DO+RDOT SQ/(TEM1B 2 C1 HS)	
0267 0268 0269 0270 0271 0272 0273	TESTHSW	TEST DMOVE STORE	1 SWITCH HUNTSW1 HUNTEST1 A0 HUNTSW1 D0	IF HUNTSW1 ON (BRANCH). GO TO HUNTEST1 HUNTSW1 = HUNTIND DO = AO	
0274 0275 0276 0277 0278 0279 0280		DSU BMN STORE	1 DAD C19 DO MAXTST1 DO DO	1F C19-D POS. D0= C19	
02801 02802 02803 02804 028045	MAXTST1	DSU BPL	1 DAD DOMAX DO HUNTEST2	IF DO-DOMAX POS.DO=DOMAX	
		NL-LININI	CUNTRU	L	
---	----------------------	-----------	-------------	-----------------	--
	02805 02806		STORE	D0 D0	
	0281 0282 0283	HUNTEST2	DDV	0 C001 D0	
	0284		STORE	C/D0	
	0285		DMOVE	0	ZERO DIFFOLD THE FIRST TIME THRU.
	0287		STORE	DIFFOLD	
	0288 0289		DAD	0 V1	VIOLD = V1 + C18 (500FPS) MAKES OLD VCORR -500 AND NEW +500
	0291		STORE	VIOLD	INITIAL VALUE ON VCORR = -500 FPS 50 (INITIAL VALUES IF NEEDED ON 1ST PASS)
	0292 0293		DMOVE	0 07F	Q7 = Q7F
	0294		STORE	Q7	
	0295	HUNTEST1	DMP DDV	2 RTB	ALP = A0 2HSD/LWD / V1 V1
	0297		DDV	AO	
	0299 0300			2HSD/LWD V1	
	0301			FRESHPD	
	0303		STORE	ALP	
	0304		NOLOD	1	
	0306		6030	NEARONE	FACT1 = V1 / (1 - ALP)
	0308		STORE	FACT1	
	0309		DSU	1	54672
	0311		DHP	ALP	FACT2 = ALP(ALP - 1) / AO
1	0313			ALP	
1	0314 0315		STORE	AO FACT2	
(0316		DMP	2	VL = FACT1(1 - SQRT(ALP + Q7 FACT2))
(0317 0318		DAD BDSU	SQRT DMP	
(0319 0320			Q7 FACT2	
()321)322			ALP	
(323		STOP	FACT1	
			JIUKE	VL.	

0325 0326 0327 0328 0329 0330 0331		NOLOD BDSU DDV STORE	2 DMP V1 LEWD VL GAMMAL1	GAMMAL = LEWD(V1-VL)/VL GAMMAL1 USED IN UPCONTRL
0332 0333 0334 0335 0336 0337 0338 0339		DSU BMN DSQ STORE	1 VL VMIN PREFINAL O VL VBARS	IF VL-VMIN NEG. GO TO SHORT PREFINAL = SHORT VRARS = VL VL
0340 0341 0342 0343 0344 0345		DSU BMN STORE	1 HALVE VL BECONSTD DVL	IF VSAT - VL NEG, GO TO CONSTD. VSAT = .5 GOTOADDR MAY BE SIDETRACKED. DVL = VSAT - VL
0346 0347 0348 0349 0350		DMOVE STORE NOLOD DSU	O HALVE VS BMN	VS = VSAT IF V1 GREATER THAN VSAT. GO CM.
0351 0352 0353 0354 0355		BDSU STORE DMOVE	V1 GETDHOOK DVL DVL	DVL = UVL - (VSAT-V1) = V1 - VL
0357 0358		STORE	V1 VS	VS = V1
0359 0360 0361 0362 0363 0364 0365 03655 0366 0367 0368 0369	GETDHOOK	TSRT DDV TSLT DSU STORE	3 BDSU DSQ DDV VS 1 FACT1 HALVE 1 ALP FACT2 DHOOK	DHOOK = ((1-VS/FACT1)SQ - ALP)/FACT
0370 0371		TSRT DDV	1 DSU	RESCALE BY 32.

2

0372 0373 0374 0375 0376	STORE	DHOOK 5 07 CHOOK AHOOKDV
0377	NOLOD	4
0378	DAD	DMP
0379	DMP	DMP
0380	DDV	DDV
0381	BDSU	BMN
0382		1/8TH
0383		CH1
0384		DVL
0385		DVL
0386		DHOOK
0387		VBARS
0388		GAMMAL 1
0389		NEGAMA
0390	STORE	GAMMAL

GAMMAL = GAMMAL1-CH1 DVLSQ(1+AHOOK DVL /DHOOK VBARS

FIND CONDITIONS FOR GAMMAL = 0.

P0391 ... PREDICT RANGES FOR EACH PHASE OF TRAJECTORY ...

0392 0393 0394 0395 0396	RANGER	DSQ TSRT	1 BDSU GAMMAL 2 HALVE	COSG = 1-GAMMAL SQ/2 • TRUNCATED SERIES
0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407		STORE DSU DMP DMP DAD	COSG/2 3 DMP TSLT SQRT VBARS HALVE VBARS COSG/2 COSG/2 2	E=SQRT(1+VBARS-2)VBARS COSG COSG) MULT BY 4
0408 0409 0410 0411 0412 0413 0414 0415 0416		DMP DMP ASIN	C1/16 2 DDV TSLT VBARS COSG/2 GAMMAL 1	E (E/4 REALLY) INTO PD. ASKEP/2 = ARCSIN(VBARS COSG SING/E) E FROM PD. ASKEP INTO PD.
0417 0418 0419 0420 0421		DMP DAD	1 DAD VL Q3 Q2	ASP1 = $Q2 + Q3(VL-Q4) = Q2^{\circ} + Q3 VL$ ASP1 + ASKEP INTO PD.
0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432		DSQ DMP DDV DMP	3 DDV RTB DDV V1 Q7 VBARS A0 LOG C12 GAMMAL 1	ASPUP = -C12 LOG(V1 V1 Q7/VBARS D)/GAMM AL1
0433 0434 0435 0436 0437 0438		DMP DMP	1 DDV KC3 RDOT V A0	ASPDWN = KC3 RDOT V / AO ASPDWN INTO PD.

	RE-ENTRY	CONTRO		
0439 0440 0441 0442 0443 0443		DSU DMP DAC	2 DAD DAD Q6 GAMMAL	ASP3 = Q5(Q6-GAMMAL) ASP = ASP1+ASKEP+ASPUP+ASP3
0445 0446 0447 0448 0449		NULOD BDSU	US ISRT THETAH 4 DIEE	DIFF = (ASP-THETA)/16
0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460		NOLOD ABS BMN LODON LODON	4 DSU TEST BMN DSU 25NM GOTOUPSY HIND GETVCOR DIFF DCONSTL	IF ABS((THETAH-ASP) - 25NM NEG,GOTOUPSY IF HIND SET, GO TO GET LV THE REPEATWAY IF DIFF NEG, GO TO CONSTD VCCRR = V1 - V10LD
0461 0462 0463		STORE	V1 V1OLD VCORR	VCORR = V1 - VIOLD
0464 0465 0466 0467 0468 0469 0470	GETVCOR	DSU DDV STORE	1 BDDV DIFFOLD DIFF VCORR DIFF VCORR	<pre>VCORR = VCORR(DIEF/(DIFFOLD-DIFF))</pre>
0471		EXIT	0	
0472 0473		TC OCT	PHASCHNG 02003	HAVE GROUP 3 PICK UP AT PREHUNT. 3.16 RESTART.
0474 0475		CAF TS	ADENDEXT GOTOADDR	SIDETRACK NEXT PASS UNTIL THIS ONE DONE. ONLY AFTER RESTART IS LEFT AFTER DETOUR.
0476		TC	INTPRET	
0477 0478 0479 0480 0481 0482		NOLOD BDSU DAD	2 BPL VCOP'.IM CHKVL	IS VCORR - 1000 POS. VCORR = 1000
0482		STORE	VCORR	LEAVING VCORLIM IN MPAC

6-22

0484 0485 0486 0487 0488 0489 0490 0491 0492 0493	CHK VL	DAD DSU LODON STORE	2 BMN TSRT VCORR VL HALVE GETNUV1 VCORR 1 VCORR	IF VL + VCORR - VSAT POS. VCORR=VCORR/
0494 0495 0496 0497	GETNUV1	DAD STORE	0 V1 VCORR V1	
0498 0499		DMOVE	0 DIFF	SAVE OLD VALUE OF ASP
0500 0501 0502 0503 0504 0505 0506		TEST SWITCH	1 ITC HIND HUNTEST1 HUNTEST1 HUNTEST1	SET HIND AND GO TO HUNTESTI
0507 0508 0509 0510	NEGAMA	NOLOD DMP	1 DMP VL 1/3RD	ENTER WITH GAMMAL IN MPAC FIND GAMMAL VL / 3 •• AND PUSH DOWN PARTIAL RESULT••
0511 0512 0513 0514 0515 0516		DAD DMP DDV BDSU	3 DMP DDV	DEL VL = GAMMAL VL/3)/(LEWD/3 - DVL(2/3 + AHOOKDV)(CH1 GS/DHOOK VL))
0517 0518 0519 0520 0521			AHOOKDV 1/12TH DVL CH1 DHOOK VL LEWD/3	OUT OF AND BACK INTO PD.
0517 0518 0519 0520 0521 0522 0523 0524		DAD	AHOOKDV 1/12TH DVL CH1 DHOOK VL LEWD/3 0 VL VL	OUT OF AND BACK INTO PD.

6-23

05.30 0531		-		
0533		STORE	G7	
05332 05334		DSQ	0	GET NEW VBARS.
05336		STORE	VBARS	
0534		DMOVE	0	
0536		STORE	GAMMAL	GAMMAL = 0
0537 0538		ITC	0 RANGER	
				· · · · · · · · · · · · · · · · · · ·
0539	UPCADR	CADR	UPCONTRL	
0540	GOTOUPSY	EXIT	0	BACK TO BASIC.
0541	HUNTDUMP	CAF	UPCADR	RESET GOTOADDR
0543 0544			NEWMODE 00065	CHANGE MODE TO SIGNAL END OF HUNT-TEST
0545 0546 0547		CS TC OCT	ONE NEWPHASE 3	MAKE GROUP 3 INACTIVE WHEN DONE WITH THE ITERATIONS. GROUP 3.
0548		TC	INTPRET	••• AND GO INTO UPCONTROL

P0549 THIS SECTION IS THE UPCONTROL FOR THE SUPERCIPCULAR PHASE

0550 0551 0552	UPCONTRL	DSU BPL DSU	3 LODON PMN	IF V-V1 POS+ GO TO DEWNCONTROL IF D-Q7 NEG+ GO TO KEP
0553 0554 0555 0556		LODON	BMN V V1 DOWNCNTL	IF RDOT NEG. GO TO VLTEST VLTEST TESTS FOR START OF FINAL PHASE
0557 0558 0559 0560 0561			D Q7 KEP RDOT VLTEST	SET CONSTS, ETC FOR BALLISTIC PHASE.
0562	CONTI	DSU	1	
0563 0564 0565		BPL	D AO	IF D-AO NEG.L/D=LAD.GO TO 310
0566 0567		DMP	GOPOSLAD 2	VREF=FACT1(1-SQRT(FACT2 D + ALP))
0568		DAD BDSU	DMP	
0570 0571			D FACT2	
0572 0573			ALP NEARONE	
·0574 0575		STORE	FACT1 VREF	
0576		NOLOD	1	RDOTREF = LEWD(V1-VREF)
0577 0578		BDSU	DMP V1	
0579		STORE	LEWD	
0581		DSU	1	IF VSAT - VREF NEG, GO TO CONTINU2
0582		BMN	NOLOD	NOLOD TO PUSH DOWN (HALVE-VREF)
0584 0585			VREF CONTINU2	NO RDHOOK UNTIL VREF LESS THAN VSAT. PUSHING DOWN IF NO BRANCH.
0586		NOLOD	5	RDHOOK=CH1(AHOOKDVL/DVL(DV+1))DV DV
0588		DAD	DMP	WHERE DV = VS - VREF
0590		DDV	DDV	
0591		BD20	AHOOKDV	
0593 0594			DVL 1/8TH	
0595 0596			CH1 0	ABOVE SHOULD HAVE PUSHED INTO LOC 0.
0597 0598				

,

0599 0600 0601		STORE	VREF RDOTREF RDOTREF	RDOTREF = RDOTREF - RDHOOK
0602 C0 0603 0604	ONTINU2	DSU	0 A0 Q7	FACTOR = (D-Q7/(A0-Q7) PARTIAL RESULT IN PD
0605 0606 0607 0608		DSU DDV	1 D Q7	FACTOR INTO PD
0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621		DSU DMP DAD DMP	3 DDV DSU DDV RDOT RDOTREF 0 KB1 V VREF KB2	L/D = LEWD -((PDOT-RDOTREF)F1/KB1+V-VREF)F1/KB2 KB2 IS NEGATIVE DELTA L/D INT PD
0622 0623 0624 0625 0626 0627 0628 0629 06291 06292 06293 NE 06295 06295 06295 06297 06298	_XT1	BOV ABS BMN DAD DAD BOV STORE	3 DSU DMP SIGN GOMAXL/D 0 POINT1 NEXT1 POINT1 POINT1 1 LEWD - GOMAXL/D L/D	NON-LINEAR CIRCUIT FOR REDUCING HIGH GAINS HERE
062991 NE 062992 062993 062994 0630 0631 0632 0633 0635 0636	GTESTS	NOLOD BPL DSU DMP STORE	3 LODON BMN LIMJTL/D D C20 LIMITL/D 3ZEROS L/D	IF L/D NEG, AND D-C20 POS, L/D = 0 L/D = 0 (NO NEG LIFT)
0637 0638		IIC	0 LIMITL/D	

6-26

P0639	DCONSTD	CONSTA	NT DRAG CONTROLLE	R	
0641	000000	DHUVE	DIFF	SAVE OLD VALUE OF DIFF FOR NEXT	PASS.
0642		STORE	DIFFOLD		
0643		DMOVE	0	V1OLD = V1	
0645		STORE	VIOLD		
0646	BECONSTD	AXT 1	1	RESETS GOTOADDR TO GO TO HUNTES	T
0647		SXA .1		RESETS GOTORDER TO GO TO HONTES	
0648			HUNTEST GOTOADDR		
0650	CONSTD	DMP	0		
0651			LEQ C/DO	CLDO LEO INTO PD	
0453		0.40			
0654		DMP	DAD		
0655		DMP	DAD		
0657			D0	RDOTREF = -2 HS DO7V	
0658			V		
0660	·		K2D	C/DO LEG + K2D(RDOT-RDOTREF) INTO	D PD
0661		DMOVE	0		
0662			DO	DO INTO PD	
0663	CONSTD1	DSU	2		
0664 0665		DMP	DAD		
0666		I OLI	D		
0668			- K1D		
0669			-		
0671			GOMAXL/D		
0672		STORE	L/D		
0673 0674		ITC	0 NEGTESTS		
0675	DOWNCNTL	DSU	2	RDTR = LAD(V1-V)	
0676		DMP	DAD		
0678		UMP	V		
0679			V1		
0681			RDOT		
0682 0683			K2D LAD/256	LAD + K2D (PDOT-POID) INTO DO	
0(0)				LOU T KEDIKUUT-KUTKI INTU PU	
0084		DSU	1		

6-27

0685 0686 0687 0688		050	DDV V1 V2C1HSLAD	(VI-V)SQ/(2 C1 HS/LAD) INTO PD
0689 0690 0691 0692 0693 0694		D 5 Q D D V D 5 U	2 BDDV V1 VSQUARE A0	DREF = (V/V1)SQ A0 - PD
0695 06951		ITC	O CONSTD1	
0696	KEP	EXIT	0	
0697 0698 0699 0700		CAF TS TC OCT	KEPCADR GOTOADDR NEWMODE 00066	SET GOTOADDR TO KEPLER PHASE. SET MODE TO KEPLER PHASE.
0701		TC	INTPRET	
0702 0703 0704 0705 0706 0707 0708 0709	KEP2 ENDEXIT	DAD DSU EXIT TC	1 BMN Q7 KDMIN D PREFINAL O OVERNOUT	IF Q7+KDMIN - D NEG, GO TO FINAL PHASE MIN DRAG = Q7 + .5 FT/SEC/SEC FALL THRU IF POS. GOTOADDR IS SET HERE DURING VLHUNT.
0710 0711	KEPCADR P3CADR	CADR CADR	KEP2 PREDICT3	
0712 0713 0714 0715 0716 0717	VLTEST	DSU DSU	1 BPL V VL C18 CONT1	IF V-VL-C18 NEG,EGSW=1,SELECTOR=PREDIC GO TO PREDICT3
0718 0719 0720	PREFINAL	SWITCH EXIT	1 Egsw	
0721 0722 0723 0724		CAF TS TC OCT	P3CADR GOTOADDR NEWMODE 00067	SET TO PREDICT3 PHASE.
0725		TC	INTPRET	••• AND FALL INTO PREDICT3•••

P0726 SUBORBITAL CONTROL (REFERENCE TRAJECTOORY BY TABLE LOOK-UP.)

0721 0728 0729	PREDICT3	DSU BMN TEST	4 LODON	IF V - VQUIT NEG, STOP STEERING
0730 0731 0732		VXV BMN	DOT EXIT V	IF (RT)*UNITR.UNI NEG. SET GONEPAST
0733			VQUIT	
0736			GONEGLAD	
0738 0739 0740			KI UNITR UNI SETGRAST	(MIGHT SAVE THIS FROM EARLIER
0741		C 5	NECIA	
0742	ВАСК	TS	JJ	
0743 0744			V	
0745		AD	VREFER	VREF - V. HIGHEST VREF AT END OF TABLE.
0747		ccs	JJ	IF VREF-V POS LOOP BACK DECREMENT JJ • JJ CANNOT BE ZERO
0748		TC	ВАСК	
0749 0750		AD TS	ONE TEM1B	V-VREF IN TEM1B (MUST BE POSITIVE NUM)
0751 0752		INDEX	JJ VRFFFR	
0753		INDEX	JJ	
0755		хсн	TEM1B	V(K+I) = V(K) (POS NUM)
0758		DV	TEM1B	
0758		TS	GRAD	GRAD = (V-VREF)/(VK+1 - VK) (POS NUM
0759 0760	BACK2	CAF	FIVE	
0761		CAF	DEC15	
0763		TS	11 11	
0764		INDEX	A	
0765		CS	VREFER	
0767		AD	JJ VREEER + 1	X(K+1) = X(K)
C768		EXTEND		$\Delta N T = \Delta N$
0769		MP	GRAD	
0771		AD	JJ VREEER	
0772		INDEX	M1	
0773		TS	FX	FX = AK + GRAD (AK+1 - AK)
0114		CCS	MI	

0775		TC	BACK2	
0176 0771 0778 0779		CAF XCH AD EXTEND	ZERO FX + 1 D	ZERO FX + 1 DREFR
0780 0781		MP TS	FX + 5 TEM1B	F1 TEM1B= F1(D-DREF)
0782 0783		CS DOUBLE	RDOT	FORM RDOTREF - RDOT
0784		DOUBLE		SCALE UP BY 8 FOR THIS PHASE.
0787		EXTEND	FX + 3	RDOTREF
0789			FX + 4 TEM1B FX + 2	F2 ADD F2 (DADV1-DADVR)
0791 0792		ХСН ТС	PREDANG	NO OVERFLOW SKIP PLEASE.
0793		SMOVE	4 BDSU	THETAH - PRED ANGLE
0796		BOV	DAD	L/D = LOD + (THET-PA)/Y
0798		BOV	PREDANG	
0800 0801 0802 0803 0804 0805			3 THETAH FX 5 GOMAXL/D LOD GOMAXL/D	rX = DRANGE/D L/D = Y
0806		STORE	L/D	
0807 0808		ITC	0 GLIMITER	
0809 0810	GOPOSLAD	DMOVE		
0811		STORE	L/D	
0812 0813		ITC	0 LIMITL/D	
0814 0815	SETGPAST	SWITCH	0 GONEPAST	SHOULD BE BY TARGET IF HERE.
0816 0817 0818	GONEGLAD	COMP STORE	0 LAD L/D	L/D = - LAD
0819 0820		ITC	O GLIMITER	

0821 GOMAXL/D 0822 0823 0824 0825	RTB DMP STORF	1 SIGNMPAC LAD L/D
0826 GLIMITER 0827 0828 0829 0830 0831 0832 0833 0834	DSU BPL BMN	Z DAD DMP GMAX/2 D LIMITL/D GMAX/2 GOPOSLAD 2HS
0835 0836 0837 0838 0839	DMP DAD	1 DMP LEQ 1/GMAX LAD
0840 0841 0842 0843 0845 0846 0848	DDV DAD DAD ROUND	3 SQRT BMN VSQUARE GOPOSLAD

L/D = LAD SIG(MPAC)

2HS (GMAX-D) INTO PD

AND FALLS INTO LIMITL/D SECTION.

2HS (GMAX-D) (LEQ/GMAX+LAD) INTO PD

L/D = (RDOT+XLIM+KGLIM1 LEQ)/(KGLIM2 D

XLIM = SQRT(PD+(2HSGMAX/V)SQ) IF RDOT+XLIM NEG. L/D=LAD

+

IF GMAX/2-D POS. GO TO LIMITL/D IF GMAX-U NEG. GO TO GOPOSLAD

6-31

P0859	COMES HERE TO	COMPUTE ROLL	COMMAN	D. CHECK LATER	AL ERRORS. AND	STEER
0860 0861 0862 0863 0864 0865 0866 0867	LIMITL/D TEST DMP STOR	1 DAD GONEPAST L355 VSQUARE KLAT LATBIAS E Y		NO LATERAL CON Y = KLAT VSQUA	TROL IF PAST T RE + LATBIAS	TARGET
0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881	L350 ABS DSU LODO BMN TSRT STOR	4 BMN SIGN LODON L/D L/DCMINR L353 LATANG K2ROLL L357 Y 1 E		IF ABS(L/D)-L/ IF K2ROLL LATA Y = Y/2	DCMINR NEG, GO	D TO L353 L357
0882 0883 0884 0885 0886 0886 0887 0888 0891	L353 SIGN DSU RTB	I 2 BMN LATANG K2ROLL Y L355 BL361		IF LATANG SIGN	I(K2ROLL)-Y PO	S, SWLTCH
0892 0893 0894 0895 0896 0897 0898 0899	L355 DDV TSRT SIGN STOP	2 ACOS L/D LAD 1 K2ROLL RE ROLLC		ROLLC = ACOS() ROLLC = ROLLC	(L/D)/LAD) SIGN (K2ROLL)	

0900	STEER	EXIT	0	
0904	STEER2	CS EXTEND	ROLLC	SCALE ROLL OUTPUT FOR 16 SPEED.
0906		MP	NEG1/8	ROLL = ROLLC/8 + K1ROLL
0908 0909 0910		AD TS TC		AFRAID TO STORE POSS BAD NUM IN THETAD SKIPS ON OVERFLOW
0911 0912		CAF	LIMITS MPAC	ALLOW OVERFLOW (GO TO NEGMAX FROM POSMX
0913 0914 0915		INHINT TS CS	THETAD BIT3	THETAD = X CDU = ROLL
0916		AD	TMMARKER BIT3	SET BIT 3 IN TMMARKER WHEN THETAD COMP
0919	OVERNOUT	TC OCT	PHASCHNG 01405	RECYCLE GROUP 5 TO PIPUP WAIT STATE. 5.12 RESTART. (PIPUP SYNCED WITH 2 SEC)
0921 09221 0923	BL361	TC CS TS	ENDOFJOB K2ROLL K2ROLL	K2ROLL = - K2ROLL
0924 0925 0926 0927 0928		CCS TC TC TC TC	L/D RE-ENTER RE-ENTER +2 RE-ENTER	IF L/D POS. EXIT SO IT WONT STORE IN PUSH LIST.
0929 0930 0931 0932 0933 0934 0935		CCS CAF TC CS AD TS	K2ROLL K3ROLL +2 K3ROLL K1ROLL K1ROLL	<pre>k1ROLL = K1ROLL + K3ROLL SIGN(K2ROLL) K3ROLL =125</pre>
0955		ic .	RE-ENTER	SKIPS THIS ON OVERFLOW.
0938 0937 0938 0939 0940		INDEX CAF AD TS TC	A LIMITS KIROLL KIROLL RE-ENTER	POSMAX + 1 = NEGMAX ETC. NO LIMIT ON NUMBER OF ROLL REVS DURING ENTRY. (ROUTINE IS GENERAL.) STILL DOESNT WORRY ABOUT 2SCOMP. THO.
0941 0942 0943 0944	L357	SIGN STORE	0 L/DCMINR L/D L/D	L/D = L/DCMINR SIGN(L/D)
0945		ITC	0	
0947	ENDSTR	EQUALS		

P	0951	ROUT	INE TO	PREDICT AND SET I	PITCH ANGLE FOR 2ND ENTRY CONDITIONS.
	09515 0952 0953 0954	UPTHETA3	SETLOC CAF TC CADR	PFS25/1 PRIO14 FINDVAC UPTHETA1	IN BANK 25 TO MAKE ROOM IN BANK 27
	0955		TC	TASKOVER	
	0956	UPTHETA1	TC	INTPRET	STARTS OFF IN BASIC
	0957 0958	UPTHETA	ΙΤΟ	0 GETUNB	FIND DESIRED SPACECRAFT ORIENTATION.
	0959 0960		ITC	0 CALCGTA	GET OGC. IGC. MGCGIMBAL COMMANDS
	0961		EXIT	0	
	0962 0963 0964 0965 0966		CS COM DOUBLE TS CS	IGC THETAD + 1 MGC	COMMAND PITCH ANGLE
	0967 0968 0969		COM DOUBLE TS	THETAD + 2	CHANGE FORM INTERP SCALING TO CDU. COMMAND YAW ANGLE
	0970 0971 0972 0973		INHINT CAF TC CADR	PITCHDT WAITLIST UPTHETA3	CALL UP ATTITUDE CONTROL LOOP PITCHDT SECONDS AFTER FINISHING THIS TIME.
	0974	UPNOVER	тс	ENDOFJOB	
	09745 09747	PITCHDT IPIPDT1	DEC	200 50	

.

P0975 PIPAS ARE READ (BUT NOT CLEARED) AT A HIGHER RATE HERE.

0976 0977 0978 0979 0980 0981 0982 0983 0983	INTERPIP	CS INDEX TS CS INDEX TS CS INDEX TS	PIPAX PIPCTR XPIPBUF PIPAY PIPCTR PIPAZ PIPCTR ZPIPBUF
0985		CCS	PIPCTR
0986		TC	+4
0987		CAF	TWO
0988		TS	PIPCTR
0989		TC	TASKOVER
0990		TS	PIPCTR
0991		CAF	IPIPDT1
0992		TC	WAITLIST
0993		CADR	INTERPIP
0994		TC	TASKOVER

0996 ENDUPTHT EQUALS

6-35

P1000 DETERMINE TIME TO OPEN CHUTE HERE IF NEEDED

10015 1002 1003	DT DEC15	SETLOC DEC DEC	ENDSTR 200 15	MAIN	LOOP DT.	
1004	K 3ROLL ADENDEXT	DEC	125 ENDEXIT			
R1006	DEFINED	BY EQUAL	_S			
1007 1008 1009 1010	HIND ASP Y GAMMAL1	EQUALS EQUALS EQUALS EQUALS	HIND25W 0 20D 22D	HUNT TEMP	INDICATOR	SWITCH

P1011 TABLE USED FOR SUB-ORBITAL REFERENCE TRAJECTORY CONTROL.

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026	VREFER	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	0 006539 020958 040809 076107 122156 165546 196012 271945 309533 356222 404192 448067 456023 67918		REFERENCE VELOCITY SCALED V/51552.3946 15 POINTS ARE STORED AS THE INDEPEND55T VARIABLE AND THEN SIX 15 POINT FUNC- TIONS OF V ARE STORED CONSECUTIVELY HIGH VELOCITY FOR SAFETY
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041		DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	008035 008035 010820 016550 026935 042039 058974 070721 098538 107482 147762 193289 602557 99999		DRANGE/DA SCALED DRDA/(2700/805)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1055 1055 1055 1056		DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	0 0494520 B- 0683663 B- 1343468 B- 2759846 B- 4731437 B- 6472087 B- -1.171693 B- -1.466382 B- -1.905171 B- -2.547990 B- -4.151220 B- -5.813617 B- -5.813617 B-	- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	-DRANGE/DRDOT SCALED((2VS/8 2700) DR/DRDOT)
1057 1058 1059		DEC DEC DEC	00642065 00642065 0134426	B3 B3 B3	RDOTREF SCALED (8 RDT/2VS)

•

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	013947 013462 011813 0095631 00806946 00806946 0109791 0151496 0179817 0159061 0159061	6 83 8 83 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9		
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1094 1085 1086	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	0 0 0032963 0081852 017148 027926 037 063296 077889 098815 127519 186963 238148 238148		RANGE TO	GO SCALED RTOGO/2700 2.7 NM 8.9 22.1
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	042360 042360 052919 074534 101242 116646 122360 127081 147453 155528 149565 118509 034907 007950 007950		-AREF	SCALED AREF/805
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	<pre>• 000371 • 000371 • 004770 • 008081 • 016030 • 035815 • 069422 • 104519 • 122 • 172407</pre>		DRANGE/D	L/D SCALED Y/2700

1112	DEC	.252852
1113	DEC	.363148
1114	DEC	•512963
1115	DEC	• 558519
1116	DEC	•558519

END OF STORED REFERENCE

1117 ENDREENS EQUALS

P1118	CONTI	NUATION	OF RE-ENTRY SECT	ION IN 2ND BANK. (CONSTANTS AND M923=8
1119		SETLOC	BOOKMRK1	
1120 1121 1122	NEARONE 1/3RD 1/12TH	2DEC 2DEC 2DEC	•999999999 •33333333 •0833333333	ONE THIRD ONE TWELFTH
R1123			VSAT = 25	766.1973 FT/SEC.
R1124				RE = 21.202.900 FEET
1125 1126 1127 1128	LEWD LEWD/3 FOURTH 3ZEROS	2DEC 2DEC 2DEC 2DEC	•1 •033333333 •25 0	LEWD/3 (LEWD = \cdot 1)
1129	1BITDP	20CT DEC	00000 00001 0	DOUBLE PREC 1 BIT
1131 1132 1133 1134	NEAR1/4 C18 KDMIN C1/16	20CT 2DEC 2DEC 2DEC	07777 00000 •0097026346 •00062111801 •0625	1/4 LESS 1 BIT IN UPPER PART. 500/2VS .5/805 1/16
1135 1136 1137 1138 1139	Q2 Q2 Q3 Q5 Q6	2DEC 2DEC 2DEC 2DEC 2DEC	 16278661 046388889 167003132 326388889 0368889 	2(1.0) 28500 805/ .1 (2V5) SQ -1002/21600 = (643/21600-Q2.(23500/2V5)) .07 2V5/21600 .3 23500/21600
1140 1141 1142 1143	Q7F VMIN C12 GS	2DEC 2DEC 2DEC 2DEC 2DEC	•0074534161 •34929485 •00684572901 ••16	820723500 6/805 (VALUE OF Q7 IN FIXED MEM.) 18000/2VS 32 28500/(21102900 2 PI)
1144 1145 1146 1147 1148	KB1 KB2 C19 VCORLIM VQUIT	2DEC 2DEC 2DEC 2DEC EQUAL S	•29411765 •0057074322 •16149068 •019405269 VCORLIM	1/3.4 -1/(.0034 2 VS) 130/805 1000/2VS BOLH APE 1000 ET/SEC
1149 1150 11505	KAFIX C20 DOMAX	2DEC 2DEC EQUALS	•08 •21739130 C20	64.4/805 (2 G-S) (175 FPSS) LIFT UP IF ABOVE C20
1151 1152 11525 1153	25NM KID K2D KVSCALE	2DEC 2DEC 2DEC 2DEC	•0011574074 B-4 •0314453125 •201298418 •81491944	25/(21600 16) (25 NAUT MILES) •01 805/256 •001 2V5/256 12800/(2 VS •3048)
1155 1156 1157 1158	KTETA KT •05G LAD	2DEC* 2DEC* 2DEC 2DEC 2DEC	• 91021328 • 383495203 E2 B-1 • 157788327 E2 B-1 • 002 • 3	5•85 16384/(4 •3048 100 805) 4* 1000 2PI/16384(163•84) 4* RE(2PI)/2V5(16384)163•84 •05/25
1159 1160 1161	LAD/256 KLAT LATBIAS	2DEC 2DEC 2DEC	• 001171875 • 0125 • 00003	•3/256 APPRX •5 NM/ 4(21600/2 PI)
1163	KACOS	2DEC 2DEC	•120056652 •004973592	1/32(2PI)

1164 1165 1166 1167	LAD/KC1 0KC2 CH00K 1/8TH	2DEC 2DEC 2DEC 2DEC	•375 •0074051405 1 B-5 •125	LAD/KC1 = .3/.8 2HS LAD(32.2)25/KC2(2VS)SQ (KC2=.7) .25/8
1168 1169 1170	CH1 KC3 LOD	2DEC 2DEC 2DEC	•24 -•082540747 •18	8 CH1/ 25 (CH1 = •75) KC3 (2VS)SQ /2PI 25 32•2 LAD R
1171 1172 1173	VRCONT HALVE NEG1/8	2DEC 2DEC EQUALS	•0135836886 •5 K3ROLL	700/2 VSAT
1174 1175 1178 1179	L/DCMINR COO1 GMAX/2 L/GMAX	2DEC 2DEC 2DEC 2DEC	•2895 -•000625 •2	LAD COS(15 DEG) -(4/25) / 256 (LEQ/D0 CONST) 5/25
1180 1181 1182 1183	2H5 2H5GMX5Q KWIEM CO5(13)	2DEC 2DEC 2DEC 2DEC 2DEC	• 0172786611 • 000047768341 • 147323336 • 9763	2 28500 25 32.2/(4 VS VS) ((2 28500 322/(4VS VS))SQ RESULT IN METERS OVER 12800 REAL COS OF 12.5 DEG. NOT 1/2 COSINE.
1104	-51N(13)	ZDEC	21644	REAL SIN OF 12.5 DEG. NO FACTOR OF 1/2
11841 11842 11843	2C1HS 2C1HSLAD POINT1	2DEC 2DEC 2DEC	•0215983264 •071994421 •1	2 1.25 28500 805/(2 VS)SQ 2 1.25 28500 805/(.3 4 VS VS)
11844 11845 11846 R1185	K44 VFINAL KAT	2DEC 2DEC 2DEC	•00116091912 •48513173 •08	2 VS/(236 57.3 57.3 57.3) 25000/2 VS 2 G-S (2/25)
	••• [OF R	E-ENTRY CONSTANTS	

R1186 R1187	CLOSED SUBROUTINE TO COMPUTE DESIRED NAV BASE ORIENTATION NEEDED DURING ENTRY PHASE.
R1188	ENTER WITH VN. UNITR. UNITW. AND ROLLC
R1189	COMPUTES UXNB. UYNB. AND UZNB. (NAV BASE UNIT VECTORS)

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199	GETUNB	RTB VXV VAD VXSC	3 VXSC UNIT FRESHPD UNITR UNITR WIEM VN COS(13)	RESET PUSH COUNTER. GET VELOCITY OF ATMOSPHERE GET UVA RELATIVE VELOCITY RESOLVE BY COS OF 13 DEG. NEG OF REAL VEL. EARTH RATE CONST IN METERS X 4. UVA COS(13) INTO PD.
1200 1201 1202 1203		NOLOD VXV STORE	1 UNIT UNITR 16D	UYA = UNIT(VA*RN) UYA INTO LOC 16 OF VAC AREA.
1204 1205 1206 1207		cos vxsc	1 ROLLC 16D	COS (ROLLC) GET UYA COS(ROLLC). PUSH INTO LOC 6. AND PUSH.
1208 1209		SIN	0 ROLLC	SIN (ROLLC) INTO PD AT LOC 12
1210 1211 1212 1213 1214 1215		VXV UNIT VAD STORE	2 VXSC UNIT 16D 0 UYNB	UNA = UNIT(UYA*UVA) UNB = UYA COS(ROLL) + UNA SIN(ROLL) UNIT COULD BE REPLACED BY VSLT 1. UYA STORED AT LOC 16 UVA FIRST ITEM INTO PUSH LIST 1 SCAL AND 1 VEC FROM PD.
1216 1217 1218 1219 1220 1221		NOLOD VXV VXSC STORE	2 UNIT VSU O -SIN(13) UXNB	UN = UNIT (UYNB*UVA) UXNB = -UN SIN(13) - UVA COS(13) PULLS UVA COS(13) FRON PD+
1222 1223 1224 1225 1226		NOLOD VXV STORE	1 VSLT UYNB 1 UZNB	UZNB = UXNB*UYNB
1227		ITCQ	0	AND RETURN.

P1228 R1229	SUBRO IT WILL	UTINE T BE REST	O READ PIPA COUNT ARTABLE.	ERS, TRYING TO BE VERY CAREFUL SO THAT
R1230 R1231	(EXIT	(ARR IS THR	IVE IN INTERRUPTE U ISWRETRN)	D STATE OR INHIBITED AFTER RESTART.)
1232 1233 1234 1235 1236 1237 1238 1239 1240	PIPASR	CS TS TS CAF TS TS TS TS	ZERO TEMX TEMY TEMZ ZERO DELVX + E DELVY + L DELVZ + 1 PIPAGE	PUT THESE INTO THE IMPOSSIBLE STATE FOR THEIR INITIAL VALUES. PIP COUNTERS MAY NOT HAVE POS ZERO IN ZERO THIS TO INDICATE IN PIPA READING.
1241 1242 1243 1244 1245	REPIPI	TC CS TS CS TS	READTIME + 1 RUPISTOR + 1 PIPTIME + 1 RUPTSTOR PIPTIME	PROBABLY NOT NEEDED SINCE NOT MUCH CHANCE OF TIME1 OVERFLOWING NOW. (BUT JUST POSSIBLE IF MANY RESTARTS.
1246 1247 1248 1249 1250 1251	REPIPIB	CS TS XCH XCH TS TS	PIPAX TEMXY TEMX PIPAX DELVX DELVX + 1	PUT NEGZERO INTO PIPACTRS AS READ. Double save.
1252 1253 1254 1255 1256 1257	REPIP2 REPIP2B	CS TS XCH XCH TS TS	PIPAY TEMXY TEMY PIPAY DELVY + 1	
1258 1259 1260 1261 1262 1263	REPIP3	CS TS XCH XCH TS TS	PIPAZ TEMXY TEMZ PIPAZ DELVZ + 1	REPEAT PROCESS FOR Z PIPA. SAVE NEG OF PIPA READ SAVE HERE AS PICK UP NEGZERO RESETTING PIPA AS READ OUT) AND STORE IN Z. SHOWS THAT IT REALLY MADE IT.
1264 1265 1266 1267 1268 1269 (270 1211 (212	2EPTP4	CS TS TS CS MASK AD TS TC	ZERO DELVX + 1 DELVY + 1 DELVZ + 1 BIT1 TMMARKER 6IT1 TMMARKER ISWAETRN	LEAVE THESE AT NEGZERO SET BIT 1 IN TM MARKER. AND EXIT. SHOULD HAVE COME THRU ICALL

P1273		ROUTINE	E TO RESTART IF	READING PIPA COUNTERS.
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290	REPIPASR	CCS TC CCS TC TC TC TC TC TC TC TC TC TC TC TC TC	PIPAGE PIPASR DELVZ + 1 REPIP4 +3 REPIP4 DELVY + 1 +3 CHKDELVX +1 TEMZ +4 +3 +2 REPIP3 TEMXY	<pre>WAS I READING PIPS. NO PIPAGE = PLUS CONST. PIPAGE = O (I WAS READING PIPS.) Z WAS READ OK. Z NOT DONE, CHECK Y. HAS IT CHANGED FROM ITS +ZERO INIT VALU YES, Y DONE. TRY TO REDO Z. NO, GO LOOK AT X. YES. DOES TEMZ STILL = -O. NO TRY TO RESTORE YES, GO BACK AND READ Z AGAIN. MUCH MORE LOGIC COULD BE INCORPORATED DOES FUNCTION OF STORE STO</pre>
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302	CHKDELVX	TC TC TC TC TC TC TC TC TC TC TC TC	REPIP3B DELVX + 1 +3 CHKTEMX +1 TEMY +4 +3 +2 REPIP2 TEMXY REPIP2B	TO CHECK PIPA CTR FOR SIZE. HAS THIS CHANGED. YES NO. YES
1303 1304 1305 1306 1307 1308 1304	СНК ТЕМХ	CCS TC TC TC TC CS TC	TEMX +4 +3 +2 REPIP1 TEMXY RFPIP1B	HAS THIS CHANGED. YES YES NO

P1310 R1311	ENTRY I	NITIALI	ZATION ROUTINE.	
1312 1313	STARTENT	TC OCT	PHASCHNG 03204	KEEP UPTHETA RUNNING IN CASE OF RESTART. 4.26 RESTART.
1314 1315		TC OCT	PHASCHNG 02305	PICK UP CURRENT STRING AT NEWMODE63. 5.19 RESTART. RESYNCING PIPUP ALSO.
1316 1317 1318 1319		INHINT CAF TC CADR	PRIO14 FINDVAC UPTHETA1	ESTABLISH UPTHETA FOR 1ST TIME. START UPTHETA JOB.
1320 1321 1322	NUMODE63	RELINT TC OCT	NEWMODE 00063	ENTRY PHASE = MODE 63
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336		CAF TS CAF TS CAF TS CAF TS CAF TS CS MASK AD TS	INITCADR GOTOADDR EARGCADR CALCG ZERO TENTRY NUDELTAT DELTAT NU/PIPDT 1/PIPADT ENTMASK STATE ENTRYSW STATE	INITIALIZE SWITCHES(BITS 6-11 IN STATE) 6=GONEPAST, 7= RELVELSW, 8= EGSW, 9=HUNTSW1, 10=HIND, 11=INRLSW, ALL BUT RELVELSW SET TO NON-BRANCH (1)
1340		TC	INTPRET	
1341 1342 1343 1344 1345 1346 1347 1348 1349		RTB VXV COMP	2 DOT RTB CDUXFIX VN UNITR RTINIT SIGNMPAC K2ROLL	SET CDUX AGAIN JUST IN CASE. THIS GIVES LATANG. GETS SIGN OF MPAC K2ROLL = - SIGN(LATANG)
1350 1351 1352 1353 1354 1355		DOT TSLT STORE	1 ACOS UNITR RTINIT 1 THETAH	
1356 1357 1358		VMOVE	O RT RTINIT	

1359		COMP	0	
1360 1361		STORE	DTEAROT	
1362		ITC	0	
1363		RTB	EARROT1 0	
1365		· · ·	OVERNOUT	
1366	INITCADR	CADR	INITROLL	

EXIT SETTING RESTART BITS TO 5.12 FOR EN

1366 INITCADR 1367 EARGCADR 1368 NUDELTAT 1369 NU/PIPDT 1370 ENTMASK 1371 ENTRYSW 1372 ENDD2025	CADR CADR DEC DEC OCT OCT EQUALS	INITROLL CALCGEAR 200 B5 200 B6 01760 01360
---	--	--

AVERAGE G INTEGRATOR

R0001 R0002 R00025 R0003 R0004 R0005 R0006 R0007 R0008 R0008 R0008 R0008 R0008 R0009 R0010 R0010 R0011 R0012 R0013 R0014 R0015 0021	ROUTIN GRAVITATI THE VELOC FOR TH OBLATENES ROUTIN CALCRVG. THAT THE SHIFTING ROUTIN 1) 2) 3) 4) 5) IT LEA 2(-5) M/C	NE CALCE IONAL AC CITY INC HE EARTH SS IS CC NE NORMA IT REC SCALED THE VEC NE CALCE THRUST VN SCAL ADDRESS DELTAT PUSH-DC AVES UPE SS/CS SETLOC	RVG INTEGRATES TH CELERATION OVER REMENT AS MEASUR -CENTERED GRAVIT MPUTED TO THE SE ALISE MUST BE CAL DUIRES RN SCALED MAGNITUDE OF THE TOR LEFT N BINAR RVG REQUIRES ACCELERATION INC ED AT 2(+7) M/CS S OF CALCGLUN OR SCALED AT 2(+9) DWN COUNTER SET T DATED RN+ SCALED ENDINFSS	HE EQUATIONS OF MOTION BY AVERAGING THE A TIME INTERVAL, DELTAT, AND INCLUDING RED BY THE PIPAS. ATIONAL FIELD THE PERTURBATION DUE TO COND HARMONIC COEFFICIENT J. LED PRIOR TO THE FIRST ENTRY INTO TO 2(+29)M IT LEAVES RN NORMALISED, SO E VECTOR CONTAINS ONE LEADING ZERO, BY RY PLACES. REMENTS IN DELV SCALED SAME AS PIPAX,Y,Z CALCGEAR IN CALCG CS TO ZERO AT 2(29-N) M, VN, AND GRAVITY SCALED AT
0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032	NORMLISE	ABVAL TSLC SXA+1 SXA+1	3 INCR • 1 INCR • 1 ITA RN X1 2 NSHIFT 14D XSHIFT 52	COUNT NUMBER OF LEADING ZEROS IN ABVAL (RN) AND STORE -N(=2-M) IN NSHIFT RN MUST BE SCALED AT 2(+29)M SAVE C(X1)=-N SAVE C(X1) =14-N
0033 0034 0035 0036 0037 0038 0039 0040 0041		VMOVE VSLT* STORE ITC ITCI	1 RN 14D+1 RN CALCGRAV	RN SCALED AT 2(29-N)METRES

	AVERAGE	G INTE	GRATOR	
0042 0043 0044	CALCRVG	VXSC	0 DELV KPIP	DV TO PD SCALED AT 2 (+4) M/CS
0045 0046 0047 0048 0049 0050		VXSC LXA+1	1 BVSU GRAVITY DELTAT XSHIFT O	(DV-(OLD GDT))/2 TO PD SCALED 2(+3)M/CS
0051 0052 0053 0054 0055 0056 0057 0058 0059 0060		NOLOD VSRT VXSC VAD	3 VAD VSLT* ITA 4 VN DELTAT 1.1 RN S2	
0061 0062 0063		STORE ITC	O CALCGRAV	SCALED AT 2(29-N) METERS
0064 0065 0066 0067 0068		NOLOD VXSC VAD VAD	3 BVSU VSRT DELTAT	
0069 0070 0071 0072			- 4 VN	(DV-(OLD GDT))/2 DV/2
R00731	IN AVER	STORE	VNI	SCALED AT 2(+7) MET/CS
00732		EXIT	0	TIS BE 2 OF ACTIVE PROG BEFORE COPY CYCLE.
007322 007324 007326		INDEX CS TS	FIXLOC S2 AVGRETRN	SAVE NEG RETURN ADDRESS IN NON-VAC AREA. SAVE NEG OF RETURN ADDRESS.
00733 007335		TC CADR	BANKCALL INCPHAS2	
00734 007343 007347 00735 007353 007357 00736	REFAZE6	INHINT CAF TS INDEX CS COM INDEX	ELEVEND MPAC MPAC RN1 MPAC	USE MPAC FOR LOOP COUNTER. RN1 AND VN1 MUST BE IN ORDER. LEAVE RN1 ALONE IN CASE OF RESTARTS. SELECT THE RIGHT TERM.

AVERAGE G INTEGRATOR

	007363		TS	RN	AND GO THRU COPY CYCLE.
	007367 00737 007373 007377 00738 007382		CCS TC CS MASK AD TS	MPAC REFAZE6 + 2 BIT2 TMMARKER BIT2 TMMARKER	ARE WE DONE NO. NOT YET. YES. MPAC = 0. SET BIT 2 TO ONE IN TMMARKER.
A	007385 007387 00739 0074		RELINT CS TC	AVGRETRN BANKJUMP	WHAT ABOUT GRAVITY FOR RESTART NEG OF ADDRESS WAS STORED.
	0075	ELEVEND	DEC	11	11D (ELEVEN DECIMAL. OF COURSE.)
	0076 0077 0078	CALCGRAV	NOLOD UNIT STORE	1 UNITR	
	00782 00784 00786		DMOVE STORE	0 30D RMAG	SCALED AT 2(30-N)M
	0079 0080 0081 0082		TSLT STORE	0 28D 3 RMAGSQ	SCALED AT 2(57-2N)M(+2)
	0083 0084 0085 0086 0087		ITA XAD•1	1 ITCI 27D NSHIFT CALCG	
	0088 0089 0090 0091	CALCGEAR	DOT STORE	0 UNITR UNITW 25D	
	0092 0093 0094 0095 0096 0097		NOLOD DSQ TSLT	2 DMP BDSU DP(5/8) 4 DP2(-3)	
	0098 0099 0100 0101		DDV TSLT*	1 J (RE) 50 RMAGSQ	SCALED AT 2(+40) M(+2)

AVERAGE G INTEGRATOR

0102		STORE	0•1 23D	J (REZRN) SQ SCALED AT	2 (-3)
0104 0105 0106 0107 0108 0109		NOLOD DMP VAD	2 VX5C UNITR UNITR		
0110 0111 0112 0113 0114		DMP VX5C	1 VAD 23D 25D UNITW		
0115 0116 0117 0118		DMOVE ITC	1 MUEARTH MU/RSQ		
0119 0120	CALCGLUN	VMOVE	0 UNITR		
0121 0122 0123 0124		DMOVE INCR • 1	1 MUMOON 6		
0125 0126 0127 0128 0129 0130	MUZRSQ	NOLOD DDV VXSC STORE	2 TSLT* RMAGSQ 5•1 GRAVITY	C(X1)=14-2N (EARTH) =20-2N (MOON) SCALED AT 2(-5) M/CS/0	CS.
0131 0132		ITCI	0 27D		
0133 0134 0135 0136 0137 0138 0139	KP1P DP2(-3) DP(578) MUEARTH MIMITE J144151	2DEC 2DEC 2DEC 2DEC 2DEC 2DEC 2DEC	0.59904 0.125 0.625 0.009063188 0.00713445: 0.07006663	5.93603223 a.14 (c.1.) 4.90277800 [j]	2 (+ 42) M (+ 37 + CS (+ 2) 2 (+ 36) M (+ 3) / CS (+ 2) 2 (+ 40) M (+ 2)

POWERED FLIGHT SUBROUTINES

P1240 THIS CODING APPEARS IN THE POWERED FLIGHT SECTION.

R12405 R1241 R1242 R1243 R1244 R1245	THIS I ION WIE (I UNITW- VECTOR II RESPECTIV ENTRY AT	ROUTINE DTEAROT IT REQU N RT WI VELY A EARROT	RESOLVES THE VEO SCALED AT ONE F IRES DTEAROT SCAU TH EASTERLY AND F T THE SAME SCALIF I IS REQUIRED.	CTOR IN RTINIT THROUGH AN ANGULAR ROTAT- REVOLUTION ABOUT THE UNIT POLAR AXIS LED AT 2(+28)CS. IT LEAVES THE RESOLVED NORMAL COMPONENTS IN RTEAST AND RTNORM NG. FOR CONTINUOUS UPDATING ONLY ONE ITH SUBSEQUENT ENTRIES AT EARROT2.
1248 1249 1250 1251 1252 1253	EARROTI	VXV VSLT STORE	1 UNITW RTINIT 2 RTEAST	
1254 1255 1256 1257 1258		NOLOD VXV STORE	1 VSLT UNITW 1 RTNORM	
1259 1260 1261 1262	EARROT2	STZ DDV	1 BOV OVFIND DTEAROT	BRANCH TO OVERADAY UNTIL DTEAROT LESS THAN ONE SIDEREAL DAY
12622 12624 12626		STORE	1/WIE OVERADAY 30D	TIME FOR ONE SIDEREAL REVOLUTION
1263 1264 1265 1266 1267		NOLOD COS VXSC	2 DSU DP2(-1) RTNORM	DP2(-1) = DOUBLE PREC5
1268 1269 1270		SIN VXSC	2 VAD	
1271 1272 1273 1274		STORE	30D RTEAST RTINIT RT	
1275		ITCQ	0	
12751 12752 12753 12754 12755 12756	OVERADAY	SIGN BDSU STORE	1 DTEAROT DTEAROT DTEAROT	
12757		BPL	Ð	GO BACK WITHOUT DISTURBING QPRET.

POWERED FLIGHT SUBROUTINES

127575 12758			1/WIE EARROT2	ANY POSITIVE CONSTANT WILL DO.	
1276 12765 1277	WIE 1/WIE ENDPFLSS	2DEC 2DEC EQUALS	0.190148570 0.032098670	EARTH RATE SCALED AT 2(-14) REV/SEC 8.61642098 E4 SECS SCALED AT 2(+28) C	S

APPENDIX A

DERIVATION OF THE UP-CONTROL REFERENCE, V = f(D)

Start with the equations of motion of a point mass assuming small flight path angle

dV/dT = -D	(D and L are accelerations)	(A-1)
$d\dot{R}/dT = V^2/R$	- G + L	(A-2)
dH/dT = R		(A-3)

If the centripetal and gravity accelerations are neglected, V^2/R - G = 0, we can write dividing (A-2) by (A-1)

$$dR/dV = -L/D$$

which can be integrated starting at V = V1, \dot{R} = 0

$$R = L/D (V1 - V)$$
 (A-4)

Now we can solve for H as a function of V by combining (A-1), (A-3), and (A-4) to eliminate time

$$dH/dV = -L/D (V1 - V)/D$$
(A-5)

Relate drag to velocity by

$$D = 1/2 \rho V^2 (SCD/m)$$
 (A-6)

and $_{\rho}$ to H by assuming an exponential variation of density with altitude

$$\rho = \rho \ 1 \ e^{-\beta(H-H1)} \tag{A-7}$$

A-1
Substitute (A-6) and (A-7) into (A-5) to get

$$dH/dV = -L/D (V1-V)(1/2 \rho 1 e^{-\beta(H-H1)} V^2 SCD/m)$$
 (A-8)

Equation (A-8) integrates directly to

$$(SCD/m)/(\beta L/D)(-1/2 \rho 1 e^{-\beta(H-H1)} + 1/2 \rho 1) = -LN(V1/V) + V1/V - 1$$

or

$$(SCD/m)/(\beta L/D)(-1/2 \rho + 1/2 \rho 1) = -LN(V1/V) + V1/V - 1$$
 (A-9)

The log function can be expanded in a series

$$LN(1 + w) = w - w^2/2 + ...$$

SO

$$LN(V1/V) + V1/V - 1 = (V1/V - 1)^2/2$$

Put the result back into (A-9)

$$(SCD/m)/(\beta L/D)(-1/2 \rho + 1/2 \rho 1) = 1/2 ((V1 - V)/V)^2$$
 (A-10)

To solve for V in terms of D , regroup Eq. (A-10) into a quadratic in $V\,.$

$$V^{2}$$
 (2 D1/($\beta V1^{2}$) - L/D) + 2 L/D V1 V - 2 D/ β - L/D V1² = 0

Rewrite this equation

$$X^{2} L/D(\alpha - 1) + 2 L/D X - L/D(\beta D/D1 + 1) = 0$$

where

$$X = V/V1$$

$$\alpha = 2 D1/(\beta V1^2 L/D)$$

A-2

Solve this equation with the quadratic formula noting that the positive sign on the square root is appropriate

$$X = -1/(\alpha - 1) + \sqrt{(1/(\alpha - 1)^{2} + \alpha (D/D1 + 1)/(\alpha - 1))}$$

This can be simplified to

F2 = $\alpha (\alpha - 1)/D1$

$$X = (1/(1 - \alpha))(1 - \sqrt{(\alpha - 1)\alpha D/D1 + \alpha})$$
 (A-11)

Finally, summarize by rewriting the result in the form used in the $\ensuremath{\mathrm{AGC}}$

$$V = F1 (1 - \sqrt{(F2D + \alpha)})$$

$$\alpha = 2 D1 / (\beta V1^2 L/D)$$

$$F1 = V1/(1 - \alpha)$$
(A-12)

where

A-3

APPENDIX B

HOOK ON ALTITUDE RATE

This derivation is to allow for the previously neglected gravity and centripetal accelerations in the reference path for the up-control phase. When the L/D slipped to its present value, this refinement was necessary since the neglected acceleration became a larger part of the total acceleration.

Start again with the basic equations for a point mass, this time including the gravity and centripetal accelerations.

$$\frac{dV}{dT} = -K1 e^{-\beta H} V^{2}$$
(B-1)
$$\frac{dR}{dT} = K2 e^{-\beta H} V^{2} + (V^{2}/VS^{2} - 1) G$$
(B-2)

$$dH/dT = \dot{R}$$
 (B-3)

Divide (B-2) by (B-1)to eliminate time

$$d\dot{R}/dV = -K2/K1 + (G/(K1 e^{-\beta H}))(1/V^2 - 1/VS^2)$$
 (B-4)

Note that $K_2/K_1 = L/D$. This time (B-3) and (B-4) are a non-linear set and cannot be integrated directly as was the case in Appendix A.

The key approximation needed to integrate this set of equations is to assume at straight line variation of the density ratio e^{H} with velocity.

$$e^{\beta H} = 1 + AH(VS - V)$$

The constant AH is yet to be determined. This approximation yields for Eq. (B-4).

$$d\dot{R}/dV = -L/D + G/K1 (1 + AH(VS - V)) (1/V^2 - 1/VS^2)$$
 (B-5)

This readily integrated from VS to V

$$R = R0 + L/D(VS - V) + G/K1 ((1 + AH VS)(-1/V + 1/VS) - AH LN(V/VS))$$

We can simplify (B-6) by making a series approximation for the logarithm

$$LN(V/VS) = (V - VS)/VS - .5 ((V - VS)/VS)^{2}$$

This substitution gives after some algebra

$$\hat{R} = \hat{R}0 + L/D(VS-V) + (G/(DHOOK V))(-(VS-V)^2 - AH(VS-V)^3)$$
 (B-8)

DHOOK = drag at VS

Note that

where

$$R0 + L/D$$
 (VS - V) = LEWD (V1 - V)

Now return to determining AH.

The drag is assumed to vary parabolically with velocity (as calculated in Appendix A), with no gravity correction. This yields an exit velocity, VL, at the exit drag, Q7. A straight line is drawn between the acceleration at VS (DHOOK) and the acceleration at VL (Q7). The desired slope of the density variation is then

$$AH = ((DHOOK - Q7)/Q7)/(VS - VL)$$

This assumes that the velocity is constant over this time period , a small approximation compared to some of the others.

The square and cube terms of (VS-V) in Eq. (B-8) give the general shape of \mathring{R} versus velocity shown in fig. B-1. Of some importance is V2, the

velocity at which \hat{R} becomes zero. This signifies a peak altitude for the up-control phase and that the exit acceleration, Q7, cannot be reached, because the gravity acceleration is too great. To allow for this effect the following is done. If \hat{R} is negative on the particular computation cycle, the derivative $d\hat{R}/dV$ is approximated at VL by

 $d\hat{R}/dV = (-3 \text{ AH DVL}^2 - 2 \text{ DVL}) \text{ G}/(\text{DHOOK VL}) + \text{LEWD (B-9)}$

where

$$DVL = VS - VL$$

Then V2 is calculated using this derivative

$$V2 = VL + RL/(dR/dV)$$
(B-10)

This V2 is set equal to the exit velocity VL, and a new exit acceleration is calculated by using the usual parabolic relation

Q7 =
$$((1 - VL/F1)^2 - \alpha)/F2$$

Remember

$$\alpha = 2 \text{ A0 HS}/(\text{LEWD V1}^2)$$

F1 = V1/(1 - α)
F2 = $\alpha(\alpha - 1)/A0$

This Q7 is used for reference trajectory calculation in future computation cycles.

This rather simple scheme for calculating V2 works because the exit altitude rate is only slightly different from zero the first time it becomes negative. Thus only one pass through this Newtonian type iteration is required.

Fig. B-1. "Hook" on Altitude Rate

B-4

APPENDIX C

THE FINAL PHASE REFERENCE

The final phase reference is generated by these equations

 $\dot{X} = V COSG$ $\dot{V} = -Q SCD - G SING$ $\dot{\gamma} = -V/(RE + H) - G/V) COSG + Q SCL/V$ $\dot{H} = V SING$

where

SING = sin γ , COSG = cos γ SCD = G/(W/CDA), SCL = LOD SCD Q = 1/2 ρ V²

These equations represent flight over a spherical non-rotating earth. The atmospheric density, ρ , is defined by the 59 ARDC standard atmosphere, as is the rate of change of density with altitude, DRDZ, and the scale height, HS = -DRDZ/ ρ .

The adjoint to the set of linearized perturbation equations of the above set are then solved. This set is

L2 = -COSGL1 + (2 Q SCD/V) L2 + ((-1/RE - G/V²) COSG - Q SCL/V²) L3 - SING L4 L3 = V SING L1 + G COSG L2 + (V/RE - G/V) SING L3 - V COSG L4 L4 = 1/2 V² SCD DRDZ L2 - 1/2 V SCL DRDZ L3

C-1

These are solved with time running backwards, and with V, γ , H, and X generated from the first set. The appropriate boundary conditions are L1(T) = 1, L2(T) = 0, L3(T) = 0, L4(T) = 1/(tan((T))), L5(T) = 0.

These equations generate the required derivatives which may be identified

dX/dV = L2, ft/fps dX/dRDOT = L3/V, ft/fps dX/dH = L4, ft dX/d(L/D) = L5, n.m.

If we assume the change in drag is due to a change in altitude we may write

$$dX/dD = -HS L4/D$$
, ft/fps

This technique is well established and may be found in Reference 3 among others.

APPENDIX D

ERROR CHARACTERISTICS

Initial Condition Deviations and Uncertainties

It is important to give a detailed discussion of the initial condition deviations and uncertainties since these pose the most significant design problem for the entry steering. The uncertainties, lack of knowledge of our position are by far more important than are the deviations, differences from our planned position; both will be discussed here.

The most important uncertainty is our lack of knowledge of altitude rate. This uncertainty has two components corresponding to the estimated inertial velocity vector and the estimated direction toward the center of the earth. These two components are highly correlated. Shown in fig. D-1 is a typical situation. We are at position 2, corresponding to perigee, while we think we are at position 1 before perigee. At parabolic speeds the range angle, THETA, is twice the flight path angle, γ . Our indicated inertial velocity is off by $+\gamma$, while the indicated direction of down is off by THETA = -2γ . The net result is that the error in flight path angle is $-\gamma$. In other words, a positive R uncertainty becomes a negative \dot{R} uncertainty when the correlated range uncertainty is included. Further, positive altitude rate uncertainties, which tend to cause the vehicle fall short, are accompanied by negative range uncertainties which also tend to cause the vehicle to fall short.

All this correlation is possible because of the following observation. The perigee has a fixed angle in space. The reason for this is not known, but it is suspected that the small velocity corrections made near the end of the Midcourse phase cannot change this angle by an appreciable amount, but can only change the altitude at perigee. Moreover, the equations of the Midcourse section allow for this fact, so that the calculated perigee direction is also fixed. This being true, the entry angle deviation is equal to the range uncertainty at the time of the last velocity correction. Of course, the range uncertainty can be improved with further observations. Summarizing then, the entry angle deviation is equal to the flight path uncertainties if no observations have improved that uncertainty.

Error Propagation

Fortunately, the altitude rate uncertainty decreases with time. This can be seen by considering the following equation for altitude rate,

$$\vec{R} = \vec{V} \cdot \vec{U}R$$

Perturbing this equation, we can write for the error in altitude rate,

$$\delta \mathbf{R} = \delta \overline{\mathbf{V}} \cdot \overline{\mathbf{U}} \mathbf{R} + \overline{\mathbf{V}} \cdot \delta \overline{\mathbf{U}} \mathbf{R}$$

We have shown previously, for parabolic entry velocities that if $\delta R = 1$, then

$$\delta \overline{V} \cdot \overline{U}R = -1$$
 and $\overline{V} \cdot \delta \overline{U}R = 2$

During the critical time of entry, $\delta \overline{V}$ and $\delta \overline{U}R$ are almost constant, varying with the Schuler period. Also \overline{V} is almost parallel to $\delta \overline{U}R$. So we may write

$$\delta R / \delta R 0 = 2 V / V 0 - 1$$

where $\delta R0$ and V0 are the initial values. Figure D-2 dramatizes this relation. Shown is the actual altitude rate uncertainty history for a typical entry plotted next to this formula. Of course, the variation in $\delta \overline{V}$ and $\delta \overline{U}R$ will introduce further variations in δR , as will the instrument and platform errors. All of which are not included here. But all of these effects are secondary over the critical up-control phase. More important is the assumed correlation between the two contributors to δR . The correlation of

$\overline{V} \cdot \delta \overline{U}R / \delta \overline{V} \cdot \overline{U}R = -2$

is quite good at parabolic velocities, but must be redetermined for other velocities. The point of all this is that should we be able to determine the altitude rate error by independent means, we would be able to determine the correlated range error and thereby reduce our position uncertainty.

Fig. D-1. Correlation of Range and Velocity

Fig. D-2. Propagation of Altitude Rate Error During Entry

D-4

APPENDIX E

ALTITUDE RATE CALCULATION

The equation of interest is that for drag acceleration.

$$D = 1/2 \rho V^2 SCD/m$$

If assume an exponential atmosphere, $\rho=\rho\,0~e^{-H/HS}$, we can write for the rate of change of altitude.

$$\dot{H} = HS(2 V/V - D/D)$$

Use the H notation to distinguish it from the measured R. Since we measure only differences in drag and velocity we write the equivalent difference equation,

$$H_{i-3/2} = 2 \text{ HS/DT} (2(V_{i-1} - V_{i-2})/(V_{i-1} + V_{i-2}) - (D_{i-1} - D_{i-2})/(D_{i-1} + D_{i-2}))$$

The subscript i refers to present time, i.e. multiply the subscript by the time increment to get the time of the sample. We "smooth" the drag acceleration by averaging the last three points,

$$\hat{D}_{i-1} = (D_i + D_{i-1} + D_{i-2})/3$$

This corresponds to a least square fit through the last three points. Substituting the "smoothed" values for the D's we get

E-1

We seek the time at which H = 0, at which time we will set the indicated R to zero. We do this by looking for a change in the sign of H. When this occurs, we make a correction to \hat{R} by

$$R = R + RCORR$$

where

$$\begin{array}{l} \text{RCORR} = -(\text{X R}_{i-2} + (1 - \text{X}) \text{ R}_{i-1}) \\ \text{X} = \dot{\text{H}}_{i-3/2} / (\dot{\text{H}}_{i-3/2} - \dot{\text{H}}_{i-5/2}) + .5 \end{array}$$

The error in this calculation is due mainly to a random error in the drag due to vehicle oscillations. This was shown to be about 1 fpss in Section II. The worst case will arise when one sample is +1 and the next sample is -1. In this case, the error in \hat{H} is

2 HS 2/(DT 6 D)

If DT = 2 seconds, a large DT is desirable, and D = 150 fpss, the error in H is 56 fps.

The results of the previous section show that this corresponds to a range error of 10 n.m. The rms error of course is less than this worst case and is 5 n.m..

This correction is not incorporated into the logic at this time. This is because of the uncertainty in the estimation of the drag noise. The early flights should improve this uncertainty.

APPENDIX F

CHARACTERISTICS OF THE CONSTANT DRAG CONTROLLER

The same assumptions as in Appendix E lead to this equation for the rate of change of drag.

 $\dot{D} = -\beta D \dot{R} - 2 D^2/V$ = 0, for constant drag

The second derivative is

$$\dot{D} = -\beta D \ddot{R} - \beta R \dot{D} - (4 D/V) \dot{D} - D^2/V^2 \dot{V}$$

= 0, for constant drag.

Let $\delta D = D - D0$, where D0 is the constant drag value and

$$\delta \dot{R} = \dot{R} - 2 HS D/V$$

then

$$\delta \overset{\bullet}{\mathrm{D}} = -\beta \mathrm{D} \,\delta \overset{\bullet}{\mathrm{R}} - \beta \overset{\bullet}{\mathrm{R}} \,\delta \overset{\bullet}{\mathrm{D}} + (4\mathrm{D}/\mathrm{V}) \,\delta \overset{\bullet}{\mathrm{D}} - \mathrm{D}^2/\mathrm{V}^2 \,\delta \,\mathrm{D} - \beta \mathrm{D}^2 \,\delta(\mathrm{L}/\mathrm{D})$$

This can be simplified by neglecting - $D^2/V^2\delta D$ and recognizing

and and and and

$$\delta \mathbf{R} = \mathbf{L}/\mathbf{D} \delta \mathbf{D}$$

$$\mathbf{L}/\mathbf{D} = -(\mathbf{V}^2/\mathbf{R} - \mathbf{G})/\mathbf{D}$$

$$\beta \mathbf{R}' = -2 \mathbf{D}/\mathbf{V}$$

$$\delta (\mathbf{L}/\mathbf{D}) = C16 \delta \mathbf{D} - C17 \delta \mathbf{R}$$

$$\delta \mathbf{R} = -\delta \mathbf{D}/(\beta \mathbf{D})$$

The final result is

$$D + (2D/V + C17 D)\delta D + (C16 D^2 - \beta(V^2/R - G))\delta D = 0$$

APPENDIX G

RANGE CALCULATIONS FOR THE UP-CONTROL SECTION

ASPDWN

To calculate the range from the start of up-control to pull-out (R = 0) assume constant velocity and constant acceleration over this short period. The range is then the product of velocity and time, where time is -R/(LAD A0).

ASPDWN = -R V/(LAD A0), ft = -R V ATK/(A0 LAD RE), n.m.

ASPUP

To calculate the range from pull-out to exit, assume constant $\ddot{R} = \ddot{R}L$, the exit value with no velocity correction, and constant velocity VL. The range is the product of velocity and time. In this case the time is the change of altitude divided by \ddot{R} . The change in altitude is calculated assuming an exponential change of density with altitude

H = HS LN($\rho 1 / \rho L$)

where

 $\rho 1$ = initial density = K A0/V1² ρL = final density = K Q7/VL²

Summarizing

ASPUP = (HS VL/RL) LN(A0 VL²/(Q7 V1²)), ft = (HS ATK GAMMAL1/RE) LN(A0 VL²/(Q7 V1²)), n.m.

ASKEP

The kepler range is a straight-forward application of conic sections. The derivation is included here for completeness.

From the polar form of the ellipse we can write

$$\cos f = (1 - \ell/R)/E$$

where

f = true anomaly ℓ/R = semilatus rectum/R $= \overline{V}^2 \cos^2 \gamma$ E = eccentricity $= 1 - 2 \overline{V}^2 \cos^2 \gamma + \overline{V}^4 \cos^2 \gamma$ = flight path angle \overline{V} = normatized velocity = V/VSAT

The ballistic range is 2f.

It is more convenient to solve for the sine of the true anomaly which is in view of the above relations

$$\sin f = V^2 \cos \gamma \sin \gamma / E$$

Since the flight path angle is small, these approximations are made

 $\cos\gamma = \text{COSG} = 1 - \text{GAMMAL}^2/2$ $\sin\gamma = \text{GAMMAL}$

We have then the final result

ASKEP = 2 ATK sin⁻¹(VBARS COSG GAMMAL/E), n.m.

where

$$VBARS = VL^2/VSAT^2$$

ASP1

The final phase range is a linear correction to the reference range at the start of the final phase reference trajectory.

ASP1 = Q2 + Q3 VL

ASP3

The flight path angle correction to the final phase range uses the initial values of the reference trajectory altitude rate and rate of change of range with altitude rate

ASP3 = Q5(Q6 - GAMMAL)

APPENDIX H

LIMIT ALTITUDE RATE FOR G-LIMITER

If the vehicle is at the limit altitude rate, R1, full positive lift will just cause the g-level to become tangent to the maximum g-level. This limit altitude rate is derived as follows.

Start with the equation for rate of change of altitude rate.

$$dR/dT = V^2/R - G + 1/2 \quad V^2 SCL/m$$

Eliminate time by using dH/dT = R

$$\mathbf{\hat{R}}$$
 d $\mathbf{\hat{R}}$ = (LEQ + L) dH

where

LEQ =
$$V^2/R$$
 - G
L = $1/2 \rho V^2$ SCL/m e^{-H/HS}

Integrate from point 1 (present conditions) to point 2 (at maximum g) assuming constant velocity

$$R2^2 - R1^2 = 2 LEQ (H2 - H1) - 2 HS (L2 - L1)$$

but and

and

$R2^2$ = (2 HS GMAX/V) ²
H2-H1 = HS LN(L1/L2) = HS LN(D/GMAX)
L = L/D D = LAD D

So we can write

 $R1^2 = (2 \text{ HS GMAX/V})^2 - 2 \text{ HS LEQ LN}(D/GMAX) + 2 \text{ HS LAD (GMAX - D)}$

Represent the log function by a truncated series

LN(D/GMAX) = LN(1 + (D -GMAX)/GMAX)= (D - GMAX)/GMAX

So we can write

 $R^{\circ}1^2 = (2 \text{ HS GMAX/V})^2 + 2 \text{ HS LAD}(\text{GMAX - D}) + 2 \text{ HS LEQ}(\text{GMAX - D})/\text{GMAX}$

Finally we take the negative square root

$$\mathbf{R}_{1} = -\mathrm{SQRT}(\mathbf{R}_{1}^{2})$$

APPENDIX I

NOMENCLATURE

Ā	Vector with 3 components
Ā*Ē	Vector cross product of \bar{A} and \bar{B}
Ā ∙ B	Vector dot product of \bar{A} and \overline{B}
SQRT	Square root
ABVAL	Absolute value of vector only
=	Is replaced by. e. $A = B + C$ means quantity labeled A is replaced by the sum of B and C
À	Time derivative of A
δ	Variation
ARCCOS	Arccosine function
LOG	Logarithm to Naperian base
SGN	Signum function = $+1$ for pos arg, = 0 for 0 arg, = -1 for neg arg.

APPENDIX J

Between the time this report was prepared and it was ready for publication, certain improvements were made in the steering logic. These changes are minor but lead to a significant improvement in performance in some of the more difficult parts of the design envelope. In view of this, they are included here rather than adopted into the main body of the report so that the description and results in the report may be consistent.

The first change, shown in revised diagram of HUNTEST, allows for a change in the reference L/D for the Up-control phase, LEWD. If the drag is greater than D2, LEWD = LEWD2. Otherwise LEWD = LEWD1.

(LEWD2 = .2, LEWD1 = .1, D2 = 175 fpss)

The second change shown in the same diagram fixes the constant drag value, D0, at one value (130 fpss) for all entry angles.

The third change uses the weighted average of GAMMAL and GAMMAL1 rather than GAMMAL1 in the calculation of ASPUP.

GAMMAL1 = (1-Q19) GAMMAL1 + Q19 GAMMAL ...(Q19 = .2)

The revised diagram for the Up-control section shows the next change. In this phase Q7MIN is now used in calculating FACTOR. This is done so that the gains in the Up-control phase will not decrease to zero as the drag approaches Q7. (Q7MIN = 35 fpss) Also, A1 is used instead of A0 in calculating FACTOR. A1 is calculated to be either A0 or D in the HUNTEST section depending on the sign of \hat{R} . This last calculation is made so that FACTOR will be near one at the start of the Up-control phase so that the full effect of the gains will be had.

Finally, K44 is decreased from 236 to 156 so that down-lift will be held for all entries shallower than mid-entry. This factor has considerable latitude, since there is a large band of entry angles for which the initial lift may be either down or up.

Fig. J-1 Huntest Section (revised)

Fig. J-2 Up-control Section (revised)

APPENDIX K References

- 1. Wingrove R. C., "A Survey of Atmospheric Reentry Guidance and Control Methods" IAS paper 63-86, Jan 1963
- Lickly, Morth, Crawford, "Apollo Reentry Guidance" MIT IL Report R-415, July 1963
- 3. Muntz C. A., "A List Processing Interpreter for AGC 4" MIT IL AGC Memo #2, Jan 1963
- 4. ----, Apollo Guidance Computer Information Series, "Issue 2 Machine Instructions", Raytheon Company FR-2-102A, March 1963
- 5. Blair-Smith H., Apollo Guidance Computer Information Series, "Issue
 13 YUL Programming System", Raytheon Company FR-2-113, Dec.
 1963
- 6. ----, Apollo Guidance Computer Information Series, "Issue 12A Job Control and Task Control", Raytheon Company FR-2-112A, April 1964.
- Bairnsfather, R. "Navigation Algorithms for Non-Freefall Flight", MIT SGA Memo #47, June 1963
- Crawford, B. "Optimization of Reentry 'Up-phase' Guidance MIT SGA Memo 35-64, Sept. 1964
- 9. Lessing, H.C., Tunnell, P.J., and Coate, R.E., "Lunar Landing and long-range earth re-entry guidance by application of perturbation theory, "J. Spacecraft and Rockets 1, 1964

K-1

- 10. Smith, O.E., Chenoweth, H.B., "Range of Density Variability from Surface to 120 km. altitude," NASA TN D 612, July 1961
- 11. Battin, R., Crisp, R., et al, "The Compleate Sunrise," MIT IL Report R-467, Sept. 1964

R-532

DISTRIBUTION LIST

Internal:

M. Adams (MIT/GAEC) J. Arnow (Lincoln) R. Battin (40) R. Bowditch/F. Siraco A. Boyce R. Boyd R. Byers G. Cherry N. Cluett E. Copps W. Coleman R. Crisp G. Cushman J. Dahlen J. DeLisle E. Duggan J. Dunbar R. Euvrard J.B. Feldman P. Felleman S. Felix J. Flanders (MIT/KSC) J. Fleming L. Gediman J. Gilmore F. Grant D. Grief Eldon Hall W. Heintz T. Hemker (MIT/NAA) E. Hickey

D. Hoag F. Houston L.B. Johnson M. Johnston B. Katz A. Koso M. Kramer W. Kupfer A. Laats D. Ladd J. Larsen L. Larson J. Lawrence (MIT/GAEC) T.J. Lawton T. M. Lawton (MIT/MSC) D. Lickly R. Magee L. Martinage G. Mayo J. McNeil R. McKern R. Morth R. Mudgett R. Millard James Miller John Miller J. Nevins J. Nugent E. Olsson W. Patterson M. Petersen

M. Richter (MIT/MSC) J. Rhode K. Samuelian P. Sarmanian G. Schmidt W. Schmidt R. Scholten E. Schwarm J. Sciegienny N. Sears J. Shillingford W. Shotwell (MIT/AC) T. Shuck J. Sitomer W. Stameris J. Stone J. Suomala W. Tanner R. Therrien W. Toth M. Trageser R. Weatherbee R. White L. Wilk M. Wolff R. Woodbury W. Wrigley D. Yankovich Apollo Library (2) MIT/IL Library (6)

External	
W. Rhine (NASA/MSC)	(2)
NASA/RASPO	(1)
L. Holdridge (NAA/MIT)	(1)
T. Heuermann (GAEC/MIT)	(1)
AC Electronics	(10)
Kollsman	(10)
Raytheon	(10)
Major H. Wheeler (AFSC/MIT)	(1)
MSC:	(25 + 1R)
National Aeronautics and Space Administration	
Manned Spacecraft Center Apollo Document Distribution Office (PA2) Houston, Texas 77058	
LRC:	(2)
National Aeronautics and Space Administration	
Hampton, Virginia Attn: Mr. A. T. Mattson	
GAEC:	(3 + 1R)
Grumman Aircraft Engineering Corporation Data Operations and Services, Plant 25 Bathpage, Long Island, New York Attn: Mr. E. Stern	
NAA:	(18 + 1R)
North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Apollo Data Requirements AE99 Dept. 41-096-704 (Bldg 6)	
NAA RASPO:	(1)
NASA Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space and Information Systems Division Downey, California 90241	
ACSP RASPO:	(1)
National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept. 32-31 AC Electronics Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle	

1R)

External (Cont):

ACSP RASPO: (Cont)

Mr. H. Peterson Bureau of Naval Weapons c/o Raytheon Company Foundry Avenue Waltham, Massachusetts

Mr. S. Schwartz DOD, DCASD Garden City 605 Stewart Avenue Garden City, L. I., N. Y. Attn: Quality Assurance

Mr. D.F. Kohls AFPRO (GMRKKA) AC Electronics Division of General Motors Milwaukee 1, Wisconsin 53201 (1)

(1)

(1)