Attached are pages extracted from GSOP R-567, LUMINARY $1 C$, which have been updated to reflect LUMINARY 1D PCRs effected as of now.

This is a preliminary publication issued for information, evaluation, and comments. Formal publication of R-567, Program LUMINARY 1D is scheduled for April 1970.

The following PCRs were evaluated, and included in Sections 2, 3, 4, and 5 of GSOP as noted below:

	Section 2 Revision 8	Section 3 Revision 4	Section 4 Revision 8	Section 5 Revision 8
286 Format Change to Landing Site Update	*			
287 Removal of 526 Alarm in P22 and P20			\% *	* ${ }^{\text {a }}$
821.2 Move AZO to Fixed Memory				**
872.2 Initiate TFI to P30s		∞	* $x^{\text {c }}$	
874.2 Change Decimal Load Technique		\bigcirc	*	
892 Delete R29	*	先	*	*
896 LR Velocity Read Centered at PIPTIME		0	**	**
897 Delete PCR 775		(1)		*
898 LR Velocity Read	*	¢ z	\#	**
899 N38 in C/A, IS, and R/P Lists	*	岂		
942 LR Update Cutoff		0 	*	*
944 Read X-Pointer Input from CDU	*			
945 Descent Downlist	*			
970.2 Modify Gyro Torquing Routine				

* Reflected in this section of GSOP; preliminary change pages included.
** May impact this section, but changes not included since coding is as yet incomplete.
A blank space indicates that no change is required.

 GUIDANCE, NAVIGATION AND CONTROL

PRELIMINARY

$$
R-567
$$

Sections 2, 4, \& 5
of GSOP
January 1970

MI [INSTRUMENTATION cambrioge 39, massachuserts LABORATORY

PRELIMINARY

SECTION 2 CHANGES

REVISION INDEX COVER SHEET

GUIDANCE SYSTEM OPERATIONS PLAN

GLOP \#R-567	Title: For Manned LM Earth Orbital and Lunar Missions
	Using Program LUMINARY 1B (Rev. 116)
Section \#2	Title: Data Links (Rev. 5)

This publication, a complete new revision (Rev. 5), incorporates revisions and additions as indicated below.

PCR-LNY
PR 277
PR 279

PR 284
PR 802.2
PR 816
PR 823
PR 827
PR 839
PR 841

PCR 844

LNY 89*
LNY 90*

Description of Change
A fixed DUMPCNT.
Variable insertion computation with capability to abort at any time:
VGTIGs on C/A downlist.
Save alarm data after "error reset".
Modify R03 to permit astronaut setting of 1° deadband.
Delete P31 (Lambert aim point guidance program).
Add ZDOTD to Ascent/Descent downlist.
R12 and LR reposition routine improvements.
PGNCS derived vehicle attitude rates on FDAI error needles.

Deletion of P38/P78 and P39/P79.

State vector integration in P00, P27.
Response to V97 in P63.

Guidance System Operations Plan for Manned LM Earth Orbital and Lunar Missions Using Program LUMINARY 1C

Section 2 Data Links (Revision 7)

TABLE OF CONTENTS

Paragraph	Title	Page
2.	PGNCS Data Links	$2-1$
2.1	Digital Uplink to LGC (P27)	$2-3$
2.1 .1	LM Liftoff Time Increment	$2-6$
2.1 .2	LM Contiguous Block Update	$2-8$
2.1 .3	LM Scatter Update	$2-11$
2.1 .4	LGC Octal Clock Increment	$2-13$
2.1 .5	Use of the Contiguous Block Update VERB	$2-13$
2.1 .2	Absolute Addresses for UPDATE Program	$2-19$
2.2	LGC Digital Downlink	$2-20$
2.2	Erasable Memory Dump Downlist	$2-21$
	Downlists:	$2-25$
	Orbital Maneuvers - Contents	$2-28$
	Orbital Maneuvers - Descriptions	$2-89$
	Coast and Align - Contents	$2-92$
	Coast and Align - Descriptions	$2-95$
	Rendezvous and Prethrust - Contents	$2-98$
	Rendezvous and Prethrust - Descriptions	$2-101$
	Descent and Ascent - Contents	$2-104$
	Descent and Ascent - Descriptions	$2-107$
	Lunar Surface Align - Contents	$2-110$
	Lunar Surface Align - Descriptions	$2-111$
	AGS Initialization and Update - Contents	$2-114$
	AGS Initialization and Update - Descriptions	$2-117$

tion routine is complete. A display of " 27 " in the program lights, along with a ground verification that BIT3 of FLAGWRD7 has been inverted and that the operator error light is "OFF", should indicate to the operator that the completion of P27 is temporarily being delayed.

After P27 is re-activated or if it initially finds that the integration routine is not in use, it will inhibit other routines from using State Vector data and complete the data verification requirements for the specific update Verb in use. (For each Verb, see appropriate verification section.)

2.1.1.2.1.1 Verb 70 Double Precision Time Verffication

Program 27 verifies that the double precision octal time can be subtracted from the LGC clock without causing overflow. (For this operation two of the UPBUFF registers, UPBUFF 18 D and 19D, are used as temporary buffers for TIME2 and TIME1.) If the double precision input time can be subtracted from the LGC clock without causing overflow, P27 proceeds to increment TEPHEM and decrement the LGC clock, the CSM State Vector time, and the LM State Vector time. Program 27 will then turn the uplink activity light "OFF", replace the downe link list code in DNLSTCOD with the code for the Coast and Align downlist, release the State Vector data for other routines, and reinstate the previous program.

If, on the other hand, an overflow would occur, P27 will leave the LGC clock intact and turn the operator error light "ON". It will then turn the uplink activity light "OFF", replace the downlink list code in DNLSTCOD with the code for the Coast and Align downlist, release the State Vector data, and reinstate the previous program.

2.1.1.2.2 Modify Some or All of the Update Data

If, during the verification time, some of the UPBUFF registers, are found to be in error, the ground station may make corrections by either of the following methods:
a. Individual parameters in UPBUFF +0 to UPBUFF +19 D may be changed by sending a two digit octal identifier followed by the ENTER code. For example, if input word 2 (UPBUFF+1) required change, the ground station would transmit "02ENTER". This causes P27 to display the UPBUFF+1 address in R 3 and flash V21N01, requesting a new octal data load from the ground. After transmission of the data and its ENTER code, P27 repeats the V21N02 flash to request data acceptance, modification or rejection (section 211/1.2). NOTE: If the octal identifier is $\leqslant 0$ or $>$ COMPNUMB, P27 will continue the V21N02 flash and completely disregard the value just entered. It should also be noted that the contents of UPCOUNT is never changed during line-by-line correction.

If, however, COMPNUMB is valid, P27 will perform exactly as specified in the third paragraph of section $2,1,2,3$.

2. 1.4 LGC Octal Clock Increment

To initiate a double precision octal time increment, the ground station transmits "VERB73ENTER".

The loading procedure for this update is identical to the VERB70 update defined in section 2.1.1 except that 3 is placed in UPVERB instead of 0.

If the update data is acceptable, it is immediately used to increment the clock (i, e., positive double precision time is added to the clock). No delay is encountered if the orbital integration routine is in use since the registers that are used for the orbital integration routine are not modified.

2.1.5 Use of the Contiguous Block Update VERB

VERB 71, defined in section 2.1.2, can be used to perform the following updates:

1. LGC CSM/LM STATE VECTOR UPDATE
2. LGC DESIRED REFSMMAT UPDATE
3. LGC REFSMMAT UPDATE
4. LGC EXTERNAL DELTA V UPDATE
5. LEC LANDING SITE UPDATE In defining each of these updates, it is assumed that the ground station has transmisted VERB71 ENTER and performed Program 27 verification as required prior to transmittal of the index value, ECADR and update parameters. It is also assumed that final verification of each update will be done as specified in section 2. 1. 2, 3.

2. 1.5.1 LGC CSM/LM STATE VECTOR UPDATE

This data consists of a single precision state vector identifier, three (3) doable precision components of position, three (3) double precision components of velocity and a doable precision time. The identifier (UPSVFLAG) indicates CSM or LM and whether coordinates are earth-centered or moon-centered as follows:

If a quantity other than $0,-0,2$ or -2 is loaded into UPSVFLAG, the data will also be interpreted as earth-centered. A 0 or -0 will update the UPSVFLAG erasable but the LGC will not perform a state vector update. In the other numeric cases a valid state vector update will be performed (earth-center).

The LGC CSM/LM STATE VECTOR UPDATE data must be sent in the following sequence:

Octal Identifier	Data Value	Data Definition
1	$\mathrm{21}_{8}$	(index value) ENTER
2	(AAAA)*	(ECADR, UPSVFLAG) ENTER
3	XXXXX	(identifier) ENTER
4	XXXXX	(most sig. part of X position) ENTER
5	XXXXX	(least sig. part of X position) ENTER
6	XXXXX	(most sig. part of Y position) ENTER
7	XXXXX	(least lig. part of Y position) ENTER
10_{8}	XXXXX	(most sig. part of Z position) ENTER
118	XXXXX	(least sig. part of Z position) ENTER
128	XXXXX	- (most sig. part of X velocity) ENTER
138	XXXXX	(least sig. part of X velocity) ENTER
148	XXXXX	(most sig. part of Y velocity) ENTER
158	XXXXX	(least sig. part offY velocity) ENTER
168	XXXXX	(most sig. part of Z velocity) ENTER
${ }^{17} 8$	XXXXX	(least sig. part of Z velocity) ENTER
208	XXXXX	(most sig. part of time from LGC clock zero) ENTER
${ }^{21} 8$	XXXXX	(least sig. part of time from LGC clock zero) ENTER

2.1.5.2 LGC DESIRED REFSMMAT UPDATE

XSMD - XSMD +17 is a 3×3 double precision matrix which represents the Reference to Stable Member Desired Transformation. Scaled 2^{-1}.

The LGC DESIRED REFSMMAT UPDATE must be sent in the following sequence:

Octal Identifier	Bata Value	Data Definition
1	${ }^{24} 8$	(index value) ENTER
2	(AAAA)*	(ECADR, XSMD) ENTER

* Refer to Paragraph 2.1. Sto obtain the absolute address (ECADR) for this UPDATE.

Octal Identiffer	Data Value
4	XXXXX
5	XXXXX
6	XXXXX
7	XXXXX
10_{8}	XXXXX
11_{8}	XXXXX
12_{8}	XXXXX
13_{8}	XXXXX
14_{8}	XXXXX
15_{8}	XXXXX
16_{8}	XXXXX
17_{8}	XXXXX
20_{8}	XXXXX
21_{8}	XXXXX
22_{8}	XXXXX
23_{8}	XXXXX
248	XXXXX

Data Definition

(most sig. part of Row 1 Col. 1) ENTER (least sig, part of Row 1 Col. 1) ENTER (most sig. part of Row 1 Col. 2) ENTER (least sig. part of Row 1 Col. 2) ENTER (most sig. part of Row 1 Col. 3) ENTER (least sig. part of Row 1 Col. 3) ENTER (most sig. part of Row 2 Col. 1) ENTER (least sig. part of Row 2 Col. 1) ENTER (most sig. part of Row 2 Col. 2) ENTER (least sig. part of Row 2 Col. 2) ENTER (most sig. part of Row 2 Col. 3) ENTER (least sig. part of Row 2 Col. 3) ENTER (most sig. part of Row 3 Col. 1) ENTER (least sig. part of Row 3 Col. 1) ENTER (most sig. part of Row 3 Col. 2) ENTER (least sig. part of Row 3 Col . 2) ENTER (most sig. part of Row 3 Col, 3) ENTER (least sig. part of Row 3 Col . 3) ENTER

2. 1. 5. 3 LGC REFSMMAT UPDATE

REFSMMAT - REFSMMAT + 17D is a 3×3 double precision matrix used to convert from reference coordinates to stable member coordinates. The elements of the matrix are scaled, units $/ 2^{1}$.

The LGC REFSMMAT UPDATE must be sent in the following sequence:

Octal Identifier	Data Value
2	
24_{8}	
3	
4	XXXA

Data Definition
(index value) ENTER
(ECADR. REFSMMAT) ENTER
(most sig. part of Row 1 Col. 1) ENTER (least sig. part of Row 1 Col. 1) ENTER (most sig. part of Row 1 Col. 2) ENTER (least sig. part of Row 1 Col. 2) ENTER (most sig. part of Row 1 Col. 3) ENTER (least sig. part of Row 1 Col. 3) ENTER (most sig. part of Row 2 Col. 1) ENTER (least sig. part of Row 2 Col. 1) ENTER (most sig. part of Row 2 Col. 2) ENTER (least sig. part of Row 2 Col. 2) ENTER (most sig. part of Row 2 Col. 3) ENTER

* Refer to Paragraph 2.1. Sto obtain the absolute address (ECADR) for this UPDATE.

2.1.5.4 LGC EXTERNAL DELTA V UPDATE

This data consists of three velocity components in local vertical coordinates and the time of ignition. The scale factors are as follows:

1. DELVSLV $_{x, y, z}$ (meters/centisecond)/2 ${ }^{7}$
2. TIG centiseconds/2 2^{28}
$\operatorname{DELVSLV}_{x, y, z}$ must be in a local vertical system at an origin which corresponds to the LM state (earth-centered or moon-centered) at TIG.

The LGC EXTERNAL DELTA V UPDATE data must be sent in the following sequence:

Octal
Data
Identifier
Data Definition
1

128
(index value) ENTER
(AMA)* (ECADR, DELVSLV) ENTER
XXXXX (most sigh part of DELVSLV ${ }_{x}$) ENTER
XXXXX (least sig. part of DELVSLV ${ }_{x}$) ENTER
XXXXX (most sig. part of DELVSLV ${ }_{y}$) ENTER
XXXXX (least sig. part of DELVSLV ${ }_{y}$) ENTER XXXXX (most sig. part of DELVSLV ${ }_{z}$) ENTER 108 XXXXX (least sig. part of DELVSLV ${ }_{2}$) ENTER ${ }^{11} 8$ XXXXX (most sig. part of TIG) ENTER
${ }^{12}{ }_{8}$ XXXXX (least sig. part of TIG) ENTER

* Refer to Paragraph 2. 1. Wto obtain the absolute address (ECADR) for this UPDATE.
\triangle Reused Grep $\begin{array}{ll}\#-567 & \begin{array}{l}2.11 \\ P C K\end{array} \# 286 \\ \text { Rev. } 8 \text { Preliminary }\end{array}$
2.1 .5 .5

LGC LANDING SITE UPDATE
This data consists of the Landing Site Vector (X, Y, Z) in moon-fixed coordinates and the nominal time of landing referenced to the computer clock. The scale factors are as follows:

1. $\operatorname{RLS}_{x, y, z}$ meters $/ 2^{27}$
2. TLAND centiseconds/2 28

The LGC LANDING SITE UPDATE may be sent in the following sequence:

Data Definition
(index value) ENTER
(AAAA)* (ECADR, RLS) ENTER

XXXXX (most sig. part of RLS ${ }_{x}$) ENTER (least sig. part of RLS_{x}) ENTER (most sig. part of RLS ${ }_{y}$) ENTER (least sig. part of RLS ${ }_{y}$) ENTER (most sig. part of RLS_{z}) ENTER (least sig. part of RLS_{z}) ENTER (most sig. part of TLAND) ENTER (least sig. part of TLAND) ENTER

* Refer to Paragraph 2.1. to obtain the absolute address (ECADR) for this UPDATE.

凹Revised GSOR \#R-567 PCR\# 286 Rev. 8 Preliminaxy
2. 1. Absolute Addresses for UPDATE Program

AHSULUTE ADDRFSSES FOR UPDATE PROGRAM THIS SECTION PROVIDES ECADRS FOR SECTION 2 OF LUMINARV GSOP

$$
2-18 a
$$

\triangle Revised GSOP\#R-567 PCR\#286 Rev.8. Reliminary

$$
\frac{\text { Word Number }}{\begin{array}{c}
39-44 \\
\text { (Cont'd) }
\end{array}}
$$

$\frac{\text { Flagword }}{0} \quad \frac{\text { Bit }}{3}$

Contents

Meaning
FREEFLAG. Used as a temporary flag to control the internal logic of the following subroutines:

R54 - Used as a counter to control two passes through CHKSB which computes the star data check error. Set to 1 for first pass, set to 0 for second pass. Also used to indicate the response of the astronaut to the star data check display V06N05. Set to 1 if the astronaut performed PROCEED, V33E. Set to 0 if the astronaut performed RECYCLE, V32E.

R51 - Bit interrogated after R54 in P52. If bit is 1 , gyro torquing (R55) is accomplished. If bit is 0, gyro torquing is bypassed and V50N25 R1 $=00014$ is displayed.

P57 - GRAVITY VECTOR DETERMINATION routine is used to indicate astronaut response to error display. Bit is set to 0 if the astronaut performed PROCEED, and set to 1 if the astronaut performed RECYCLE.

P51 - Bit interrogated after R54. If bit is 1 , the new REFSMMAT is computed and stored and the REFSMMAT flag is set. If bit is $0, P 51$ is started again and V50N25 R1 $=00015$ is displayed.

LSPOS - Used as a counter to control two passes through POSITB. Bit is 0 for first pass, 1 for second pass.

R10FLAG. Bit set to 1 during ascent (in P12, P70, and P71) to indicate that R10 only outputs data to altitude and altitude rate meters. Bit reset to 0 (initially and during descent) to indicate that R10 outputs data to the Forward and Lateral velocity crosspointers, in addition to the altitude and altitude rate meters. Bit is checked in R10 (Landing Analog Displays) in order to determine the type of output to display.

15 NJETSFLG. Used for thrust determination in P41. Set in R03 (entered via V48) as follows: set to 1 if bit 11 of DAPDATR1 is 0 , indicating that $2-j e t X$ translation is specified; set to 0 if bit 11 of DAPDATR1 is 1 , indicating 4 -jet X translation.
Word Number

$39-44$
(Cont ${ }^{\text {d }}$ d)

Contents

Flagword Bit

Not used.
IMPULSW. Bit set to 1 when a countdown to initiate engine (DPS or APS) cutoff is required (i.e. the value of time-to-go is known and is not to be updated further). The bit is set to 0 unconditionally at the start of $\$ 40.13$ (entered about 5 seconds before nominal ignition, and comprising the "short burn test and time-to-go predictor" routine), and is then set to 1 if it is concluded that the predicted burn duration is to be less than 6 seconds. (For DPS burns, a thrust level of approximately 10% is used.) The bit is set to 1 when time-to-go (for "long" burns) is less than 4 seconds; it is reset to 0 after being sensed (when the action to perform the engine cutoff has been initiated, so as to avoid double initiation).

GSOP R-567

Contents

XDELVFLG. Set to $\frac{\text { Meaning }}{1 \text { if an External Delta } V \text { burn is to be per- }}$ formed. Set to 0 if a Lambert burn is required. Set to 1 in P30 before N42 display. and P75 - set to 0 in subroutine S34/35. 2. For P32/P72 and P33/P73 set to 1 in subroutine ADVANCE.

ETPIFLAG. A 1 means elevation angle supplied for P34, P74compute TPI. A 0 means no elevation angle supplied for P34, P74compute ELEV. Set to 0 initially in P34, P74. After ELEV has been input (V06N55), the bit is set to 1 if the ELEV input is non-zero.

FINALFLG. A 1 means last pass through rendezvous program computation. A 0 means interim pass through rendezvous program computation. Set to 0 by subroutine SELECTMU which is called at the start of P32 thru P35, and P72 thru P75 to perform initialization. Bit is set to 1 by P30. Set to 1 by subroutine VN1645 (which is called to perform calculations and display Noun 45 data) upon receipt of proceed to Noun 45 if FINALFLG not already set.

AVFLAG. Set to 1 if LM is active vehicle, set to 0 if CSM is active vehicle. Set to 1 in subroutine AVFLAGA which is called at the start of P32, P33, P34 and P35 to indicate that the LM is the active vehicle. Set to 1 in subroutine S40.9 and program P42. Set to 0 in subroutine AVFLAGP which is called at the start of P72, P73, P74 and P75.

PFRATFLG. Set to 1 if an IMU orientation matrix has been stored for the preferred IMU alignment option. Set to 1 in P40, P41, and P42 after computation of the "preferred IMU orientation" for engine ignition. Bit is reset to 0 in P52 after completion of coarse align and gyro torque coarse align, and at the end of re-align routine R 51.
CALCMAN3. Set to 1 by the attitude maneuver routine (KALCMANU) to indicate that no gimbal lock avoidance (in going from checks for intermediate gimbal lock as well as the gimbal lock

Word Number
39-44
(Cont'd)
$\frac{\text { Flagword }}{\frac{3}{2}} \frac{\text { Bit }}{3}$

2

2
avoidance feature have been removed, the bit should be 1 after the first maneuver computation and remain so (the final middle gimbal angle, THETAD +2 is hecked and must be less than about 70° for the maneuver to be carried out).

CALCMAN2. A 1 means perform maneuver starting procedure (in KALCMANU). A 0 means bypass starting procedure. Set to 1 at the end of a large attitude calculation of maneuver parameters and reset after some computations concerning initial conditions for generation of the commands have been completed. Bit signifies that first iteration through the command generation equations is being performed; depending on phasing of the telemetry output with respect to the guidance computations, the 1 setting may or may not be observed on the downlink.

LUNAFLAG. Used in lat-long subroutine. A 1 means lunar latlong. A 0 means earth lat-long. Set to 0 or 1 by routines that call lat-long subroutine.

VFLAG. Used in automatic star selection routine (R56) during IMU alignment program (P52). Set to 1 to indicate that a pair of stars are not in the AOT field-of-view. Set to 0 if pair of stars found. Initially set to 1 at beginning of R56 and is used temporarily for program control purposes.

Bit used for two distinct functions, hence assigned two separate mnemonics.

R04FLAG. Set to 1 by Verb 63 entry to indicate R04 is running and set to 0 at the end of R04. Set to 0 by Verb 78 entry to indcate R77 is running, rather than R04, since the two routines use much of the same coding. Set to 0 in R00 (V37). Set to 0 in the beginning of $P 20 / P 22$ in order that alarm 521 be sent if the radar cannot be read. Set to 1 by R65 before reading RR and set to 0 by R65 after reading RR. The bit is checked in the RADAREAD routine (which is used by R04 and P20/P22) if the radar cannot be read; if the bit is 1 (R04 is running), alarm 521 will not be sent.

$$
2-41
$$ (i. e. explicit targeting) is tested in guidance parameter computations. Equations before call to FINDCDUW.

P7071FLG. Set 1 near the beginning of P70 and P71 to indicate that the ascent guidance equations are operating in abort mode
 Pad-loaded 0. Tested as follows: near the beginning of Ascent Guidance Equations, if 1 compute needed ZDOTD; in middle of Ascent Guidance Equations, if 1 compute estimated pericynthion radius (RP), in tipover segment of Asqent Guidance Equations
FLPC. Bit is set to 1 in Ascent Guidance Equations when Time-to-go is less than 10 seconds. A 1 indicates that the pitch rate parameter is nulled, thereby releasing altitude control. Bit is assumed to be 0 in padload. A 0 indicates that the pitch rate parameter is a function of altitude and altitude rate. Bit

FLPI. Bit is set to 1 in P12 initialization (pre-launch computation) to use Ascent Guidance Equations as a subroutine. A 1 indicates that program sequence will return to P12. Bit is reset to 0 immediately upon return from Ascent Guidance Equations. A 0 indicates that normal Ascent Guidance operation will be continued (call FINDCDUW). Bit is tested in Ascent Guidance

FLRCS. Bit is set to 1 when an engine cuts off while guidance is under control of Ascent Guidance Equations. A 1 indicates that the thrust-magnitude filter will be bypassed, and that the Ascent Guidance Equations will only be used to generate $\underline{V}_{G B}$. Bit is assumed to be 0 in padload. Bit is reset to 0 in P70, P71 initialization. A 0 indicates that the thrust-magnitude filter will be used (if ΔV is large enough), and that the normal mode of the guidance equations will be used. Bit is tested at the beginning of thrust-magnitude filter, and early in Ascent Guidance Equations.

LETABORT. Bit is set to 1 in P63 after ignition, permitting the calling of the abort programs P70 and P71. Bit is reset to 0 during P68, prohibiting any subsequent call to P70 or P71. Bit is also reset to 0 after a TERMINATE or PROCEED response to the V16N85 display following injection, and at the beginning of P71. Bit is tested at the beginning of P70, P71.
FLAP. This bit is examined by P71 in order to determine if it has been preceded by the P70 abort program. If P71 finds it set the abort will proceed using target initialization set up by P70. If P71 finds it reset then either P70 did not precede P71 or else the P70 target initialization had not been completed by the time P71 was selected. In this case, P71 performs the target initialization itself. P70 sets the bit to 1 when all target initialization is complete. P71 also sets the bit to 1 if it is required to do its own initialization but this has no real function.

- VFAILFLG. Velocity fail test. Set 1 when corresponding radar reading has failed the LR data responsibility test. Bit is reset 0 when the corresponding radar reading has passed the responsibility test.

Word Number
39-44 (Cont'd)
$\frac{\text { Flagword }}{11} \frac{\text { Bit }}{15}$

Contents

Meaning
LRBYPASS. Bit is reset to 0 by P63 to permit R12 operation. R09, the "R10, R11, R12 service monitor", checks LRBYPASS and when it is 0, R12 is entered. When the bit is set to 1 , R09 bypasses R12. This bit is set to 1 by R00 (V37) or by an abort (R11), insuring that R12 will be off when either P12, P70, or P71 is called.

| 11 | 12 |
| :--- | :--- | :--- |
| 11 | 11 |
| 11 | 11 |
| 11 | 9 |
| 11 | 11 |

VXINH. If the Z velocity component fails to pass the data reasonability test, the bit is set to 1 and the X velocity component is not updated with landing radar data. If the next velocity sample to pass the reasonability test is not an X component, the bit is reset to 0 and the data is accepted; X component data will be rejected, and then the bit will be reset to 0 . This process prevents updating with questionable data caused by cross lobe lock-up on the X component.
PSTHIGAT. Bit is initially reset to 0 . Bit is set to 1 when the criteria for repositioning the landing radar antenna are first met, and indicates that the antenna should be either repositioning or in position 2. Bit remains set for the duration of the landing. NOLRREAD. Bit is set to 1 when PSTHIGAT is set to 1 , to prevent reading the landing radar while the antenna is repositioning. Bit is reset to 0 after the antenna achieves position 2 and allows further readings. If the antenna does not achieve position 2 , and the astronaut chooses to proceed without R12 (i.e. V34E response to flashing V05N09 alarm 00523), bit will remain set to 1 and therefore inhibit landing radar reading. XORFLG. Bit is set to 1 when the LM estimated altitude first falls below 30 K feet. At this point, R12 inhibits X axis override in the digital autopilot. Bit remains set to 1 for the duration of the landing. Its purpose is to prevent R12 from inhibiting X axis override in P65.

HFAILFLG. Altitude fail test. Set 1 when corresponding radar reading has failed the LR data responsibility test. Bit is reset when the corresponding radar reading has passed the responsibility test.

$$
2-60
$$

\triangle Revised GSop \#R-567 R RR \# 945 Rev. 3 Preliminary

Word Number $39-44$ $\left(\right.$ Cont $\left.^{\prime} \mathrm{d}\right)$ $\frac{\text { Flagword }}{11}$	$\frac{\text { Bit }}{8}$

Contents

Meaning
LRINH. This bit is controlled by the astronaut. Bit is initially reset to 0 and therefore the landing radar data is read and tested but not incorporated into the state vector. Bit may be set to 1 via extended verb 57 to permit landing radar data incorporation into the state vector. Bit is reset to 0 via extended verb 58 to inhibit landing radar data incorporation. Bit may be reset
to 0 after it has been set to 1 in V57.

VELDATA. Bit is set to 1 by the landing radar velocity read routine after a valid reading has been made. A 1 indicates that a landing radar velocity reading has been made and that the data is available. Bit is reset to 0 by R12 after the data is used. Bit has a limited value on the downlink because it is set and reset at least once during a two second interval; and, due to the fact that the downlink reads this bit at the same point during each pass, it may read exactly the same (either always set or always reset) on each pass.

LPOS2FLG. Set 1 in SETPOS2 to inform that position 2 transformation is being used. Reset 0 in fresh start and V37 logic. Also set 0 for abort or abort stage.

RNGEDATA. Bit is set to 1 by the landing radar altitude read routine after a valid reading has been made. A 1 indicates that a landing radar altitude reading has been made and that the data is available. Bit is reset to 0 by R12 after the data is used. Bit has a limited value on the downlink because it is set and reset at least once during a two second interval; and, due to the fact that the downlink reads this bit at the same point during each pass, it may read exactly the same (either always set or always reset) on each pass.

$$
2-61
$$

Contents

FAILREG＇s，a set of three single－precision cells used to retain alarm pattern code information．They are all reset to 0 by a fresh start．FAILREG and FAIL REG＋1 are also reset to 0 by use of the ＂ERROR RESET＂keycode．FAIL REG contains the first alarm code received after the＂ERROR RESET＂，FAILREG＋1 contains the second，and FAILREG +2 will always contain the most recent alarm code．Octal quantities．

RADMODES．A flagword associated with radar modes．A fresh start sets bits 7 and 2 to 1 ，sets bit 6 to the value of bit 6 of channel 33 ，and sets all other bits to 0 ．

Bit Meaning
15 Continuous Designate．A 1 means that commands are issued by the LGC to the Rendezvous Radar without checking to see if lock－on is achieved．A 0 indicates that the LGC checks for lock－on when designating the antenna．Set to 1 by selection of the continuous designate option of Verb 41，RR Coarse Align，and RR Automatic Search Routine（R24）．Set 0 by Verb 56 （Terminate Tracking），Verb 37 selection of P00， Verb 44 （Terminate RR Coarse Align），by answering the dis－ play（V16 N80）of R24，and by RR Monitor Routine（R25）if the RR mode changes from LGC to manual or off，i．e．，if the RR auto mode discrete（Bit 2 of channel 33）changes from 0 to 1．Also set 0 at the start of P20，P22，and P12．

Remode．A 1 means that a change in the antenna mode has been requested or is in progress．A 0 indicates that no re－ mode is requested．Set to 1 when the Radar Designate Rou－ tines（R21，R24，Verb 41）determine that a designate may be performed after a remode has been done，and by R21 when on the lunar surface（in P22）．Set to 0 by the remode sub－ routine at the end of remoding and by Verb 56 or a Verb 37 request for another program and by R25 when the RR auto－ mode discrete changes from 0 to 1 ．

RR CDU Zero．A 1 means that the RR CDUs are being zeroed．A 0 means that they are not being zeroed．A 1 inhibits an RR CDU fail from lighting the tracker fail light． Set to 1 by R25 when the RR auto－mode discrete changes from off／manual to on，and by Verb 40 with Noun 72．Set to 0 by the RR zero subroutine at the end of the CDU zero， by Verb 56 or a Verb 37 request for another program and by a change in the RR auto－mode discrete from 0 to 1 ．

$\frac{\text { Bit }}{12}$

Contents
 Meaning

RR Antenna Mode. A zero means the antenna is in Mode I, a 1 indicates Mode II. The bit is set to the appropriate value by the RR turn-on sequence in R25 after an RR CDU zero, by the remode subroutine at the conclusion of a remode, and by a Verb 37 request for a new program.

Monitor Reposition. A 1 means that an RR reposition is taking place. A 0 means that no reposition is taking place. A 1 inhibits further checking of the antenna gimbal limits by R25. When a designate is possible and about to begin, a 1 in this bit delays the designate until the reposition is completed. If this bit is set to 1 during a designate operation, the designate is terminated with an error return (503 alarm). Set to 1 by the RR Monitor Routine (R25) when it detects the antenna gimbal angles outside the limits for the present mode. Set to 0 by the Reposition Routine at the end of the reposition, by Verb 56 or a Verb 37 request for another program and by R25 when the RR auto-mode discrete changes from on to off/manual.

Designate. A 1 means that an RR designate has been requested or is in progress. A 0 indicates that a designate has not been requested nor is one in progress. Set to 1 at the start of a designate by R21, R24 or Verb 41. Set to 0 by Verb 44, by R21 when the designate is completed, by R24 when the V16 N80 display is answered, and by Verb 56.

of P20, P22 and P12.
Landing Radar Altitude Scale. A 1 means that the landing radar altitude reading is on the high scale. A 0 means low scale. Set to the value in channel 33 bit 9 by R04 and R77 and each time the LR altitude is read.

Word Number
$64 b$

Contents
DAPBOOLS. A flagword associated with the DAP. A fresh start sets DAPBOOLS to 21322 g*

Bit	Name	1 Meaning	0 Meaning
15	PULSES	Minimum impulse command mode.	Not in minimum impulse command mode.
14	USEQRJTS	Gimbal unusable. Use jets only.	Gimbal may be used.
13	CSMDOCKD	CSM-DOCKED (Use backup DAP)	CSM not docked.
12	OURRCBIT	Still in rate command.	Not in rate command.
11	ACC4OR2X	4-Jet X-Axis translation requested.	2-Jet X -Axis translation requested.
10	AORBTRAN	B-System for X-translation.	A-System for X-translation.
9	LPDPHASE (XOVINHIB)	In LPD Phase (X-Axis override locked out).	Not in LPD Phase.
8	DRIFTBIT	Assume zero offset. Drift ing Flight.	Offset acceleration likely (DPS, APS).
7	RHCSCALE	Normal RHC scaling requested.	Fine RHC scaling requested.
6	ULLAGER	Internal Ullage request.	No internal ullage request.
5-4	DBSL2FLG DBSELECT	These bits used together to indicate astronaut-chosen deadband ($5^{\circ}, 1^{\circ}$ or 0.3°).	
3	ACCSOKAY	Computed accelerations probably correct.	Computed accelerations probably incorrect.
2-1	AUTRATE1	These bits are used together to indicate astronautchosen KALCMANU maneuver rates.	

Word Number Contents
64 b Bits $13,11,10,7,5,4,2$, and 1 are changed only in R03. Bit 15 (Cont'd) is set by V76 and P68. It is reset by V77, P63, P70, P71, R40 and at ignition of all burn programs (including P12, P40, P41, and P42). Bit 12 is under internal DAP control. Bit 3 is set by 1/ACCS, cleared by fresh start and restart.

DELTA VELOCITY ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) at CDH. In reference coordinates. Used to calculate $\Delta V_{C D H}$ in local vertical coordinates. Calculated each iteration of CDHMVR subroutine (once in P33/P73, possibly numerous times in P32/P72). Also calculated after the localvertical velocity is displayed in P33/P73(regardless of whether or not overwrite occurs). Earth-centered if CMOONFL.G is zero, moon-centered if CMOONFLG is one. Scaled 'meters/centisecond)/2 ${ }^{7}$.

POSTORKP. Running sum of positive torque about control axis P. Calculated every 0.1 second when DAP is running. Scaled jetseconds/32.
NEGTOKP. Running sum (always positive) of negative torque about control axis P. Calculated every 0.1 second when DAP is running. Scaled jetseconds/32.

CHANNEL 11. Output channel. Bits are used to control engine on/off and for display parameter quantities. Set by a fresh start. A restart zeroes all output channels by hardware means. The program associated with restart or processing of a V37 program change preserves the value of bits 14,13 and 1 and sets remaining bits to 0 . A restart then sets bit 13 to 1 if ENGONFLG (bit 7 of flagword 5) is 1 and sets bit 14 to 1 if ENGONFLG is 0 .
\qquad Meaning
15 Not used.
14-13 Engine on-off. A 1 in bit 14 and a 0 in bit 13 turns off the descent (ascent) engine. A 0 in bit 14 and a 1 in bit 13 turns on the descent (ascent) engine. All other combinations are ignored.
12-11 Not used.
10 Caution Reset signal (for display system lights). A 1 indicates an Error Reset Key code (uplink or DSKY) has been received.

9 Used in hybrid simulation only.
8 Not used.
7 Operator Error Light. Set to θ when an Error Reset Key code (uplink or DSKY) is received. Set to 1 if various procedures (mainly DSKY, such as illegal noun/verb combinations) are not performed properly.
6 Flash verb and noun lights. Set 1 to indicate that an operator action is required.

69. VECTOR $1 X$
70. VECTOR 1 Y
71. VECTOR $1 Z$
72. VECTOR 2 X
73. VECTOR $2 Y$
74. VECTOR $2 Z$
75. LR VEL X
76. TET
77. RR SHAFT CDU
78. Actual PIPA Y
79. RR Trunnion Error Counter
80. LM MASS
81. IMODES 30
82. TIG
83. Actual Body Rate X (OMEGAP)
84. Actual Body Rate 2 (OMEGAR)
85. CDU XD
86. CDU 2D
87. Actual CDU X
88. Actual CDU Z
89. Moment Offset Q
90. POSTORK P
91. Channel 11
92. Channel 13
93. Channel 30
94. Channel 32
95. DSPTAB + 0
96. DSPTAB +2
97. DSPTAB +4
98. DSPTAB +6
99. DSPTAB +8 D
100. DSPTAB + 10D

Contents
Second Register
VECTOR 1 X
VECTOR 1 Y
VECTOR 12
VECTOR 2 X
VECTOR 2 Y
VECTOR $2 Z$
LR VEL Y

Actual PIPA x
Actual PIPA Z
RR Shaft Error Counter
CSM MASS
IMODES 33
TIG
Actual Body Rate Y (OMEGAQ)
Garbage
CDU YD
Garbage
Actual CDU Y
RR TRUNNION CDU
Monent Offset R
NEGTORK P
Channel 12
Channel 14
Channel 31
Channel 33
DSPTAB +1
DSPTAB +3
DSPTAB +5
DSPTAB +7
DSPTAB + 9D
DSPTAB + 11D

Comments

associated with STAR ID1 stable member coord.
associated with Star ID2 stable member coordinates.

Raw data Pannotion

Body Axes

Internal
CDUs desired

OGC, IGC, MGC. The X, Y, and Z gyro torquing angles computed in CALCGTA in P52, P57; counted down as gyros are torqued. During coarse align in CALCGA in P52, P57 the desired gimbal angles. Scaled degrees $/ 360$.

STAR IDs. 68a contains the star I.D. for the sighting vector in words 69-71. 68 b contains the star I. D. for the sighting vector in words 72-74. Set during PICAPAR and after astronaut changes star number. These I. Dis will be the LGC catalogue number (Refer to Control Data section of this GSOP) multiplied by six. Scaled 2^{-14}.

STAR SIGHTING VECTOR 1 (STARSAV1). During P52, P51 and Technique 2 of P57 STARSAV1 contains the 1 st optics sighting vector. During Technique 0 of P57 it contains the Y spacecraft axis and the gravity vector during techniques 1 and 3 . In stable member coordinates. Scaled 2^{-1}.

STAR SIGHTING VECTOR 2 (STARSAV2). During P52, P51 and Techniques 2 and 3 of P57 STARSAV2 contains the end optics sighting vector and contains the 1st sighting vector temporarily during sighting on the and body. During P57 techniques 0 and 1, STARSAl2 contains the Z spacecraft axis. In stable member coordinates. Scaled 2^{-1}.
Repeat of word ${ }_{25}$ of this list.
ACTUAL RR SHAFT CDU. RR shaft angle CDU counter. Defines RR antenna position (along with trunnion angle). Updated from RR CDUs as shaft angle changes. This register is an unsigned 15 -bit fraction. The quantity is scaled degrees $/ 360$.
77b, 78 ACTUAL PIPAS (X, Y, Z). Velocity increments along the IMU Stable Member X, Y, and Z axes. Data is valid commencing at approximately 15 seconds after ISS Turn-on. Automatic increments when ISS is on. Zeroed every 2 seconds during powered flight. Zeroed after coarse alignment in P51, P52, and P57. Zeroed by NBDONLY (after reading) if SURFFLAG is set 1 . In stable member coordinates. Scaled 'centimeters/second)/ 2^{14}.

79 Repeat of word 29 of this list.
80-94
95-100
Same as words 80-94 on Orbital Maneuvers List.
Same as words 45-50 on Orbital Maneuvers List.
76 TET. Time of state vector being integrated or time to which last state vector was integrated. It is stepped by half-time-step increments, plus or minus, whenever integration is being done. Scaled, centseconds $/ 2^{28}$.
First Register \quad Second Register

64.	RADMODES
65.	POSTORK U
66.	POSTORK V
67.	Spare
68.	CDH Time
69.	CDH Delta V_{x}
70.	CDH Delta V_{y}
71.	CDH Delta V_{z}
72.	TPI Time
73.	TPI Delta V_{x}
74.	TPI Delta V_{y}
75.	TPI Delta V_{z}
76.	Elevation Angle
77.	RR SHAFT CDU
78.	Actual PIPA Y
79.	RR Trunnion Error Counter

DAPBOOLS
NEGTORK U
NEGTORK \vee
Spare
CDH Time
CDH Delta V_{x} CDH Delta V_{y} CDH Delta V_{z} TPI Time
TPI Delta V_{x}
TPI Delta V_{y}
TPI Delta V_{z}
DELVEET 2
Reference Coordinates

DELVEET 3
Reference Coordinates

Elevation Angle
Actual PIPA X
Actual PIPA Z
RR Shaft Error Counter
CSM Mass
IMODES 33
TIG

| $\begin{array}{l}\text { Actual Body Rate } \mathrm{Y} \\ \text { (OMEGAQ) } \\ \text { Garbage }\end{array}$ Body Axes
 CDU YD
 Garbage
 Inter nal
 CDUs Desired |
| :--- | :--- |

Actual CDU Y
RR TRUNNION CDU
Moment Offset R
NEGTORK P
Channel 12
Channel 14
Channel 31
Channel 33
TET
Central Angle
Garbage
CDH DELTA Altitude
TTF $\triangle V$ Magnitude (DBLV TPF)
Spare

Shaft incorporations). Marks are taken about once a minute in P20, so four calculations are made about once a minute when UPDATFLG is set. They are not calculated if the No Update Flag is set. Scaled radians $/ 2^{5}$ if in earth sphere of influence. Scaled radians $/ 2^{3}$ if in lunar sphere of influence. A 0 in bit 11 of flagword 8 (LMOONFLG) indicates earth sphere, a 1 indicates lunar sphere. These words are updated only in P20, hence they are useful only on the Rendezvous and Prethrust List.
RR TRUNNION and SHAFT ERROR COUNTERS. Rendezvous Radar error counter commands; 29a is trunnion, 29 b is shaft. They are placed in the RR error counters and specify the rate at which the RR antenna is driven. Values range from +384 to -384 and vary according to the angular error between the present and desired RR positions. Calculated every 0.5 second in the Radar Designate Routine 'IOOI)ES) whenever the I.(iC is driving the $[R R$ antenna which occurs when:

1. The IRR monitor 'R25) detects the antenna out of mode limits.
2. V41 N72 (RR Coarse Align) is operated.
3. R21 (RR designate) is operated in P20/P22.
4. R24 (R1R Automatic Search) is operated in $120 / \mathrm{P} 22$. A magnitude of 384 corresponds to a rate command of about 10 degrees/second. The exact rate depends on the characteristics of the motors in the RR gyros. 29 a and 29 b are cach scaled 2^{-14}. Same as words $30-75$ on Orbital Manuevers I.ist. Same as word 13 on Orbital Maneuvers L.ist. Same as words 77-79 on Coast and Align I.ist. Same as words 80-94 on Orbital Maneuvers I.ist.

CENTRA1. ANGLE from IGNITION to INTEIRCEPT. Central angle covered by the passive vehicle from ignition time to intercept time. Used in P32/P72 as Mag for program control purposes. Astronaut input by V25 N55 during P34/P74. Used as input to TIME THETA routine to calculate time of transfer. Scaled degrees/360.
CDH APSIS. The number of apsidal crossings (apogee or perigee) until the CDH time. The register will contain 00001 to indicate CDH ignition will occur at first crossing, etc. Input by astronaut by V 25 N55. In P34/P35 and P74/P75, 0 means use ronic integration and no target offsets; not 0 means use precision integration and the number of offsets contained in this register. Scaled 2^{-14}. Same as word 79 on Orbital Maneuvers List.
TPF $\triangle V$ MAGNITUDE. Magnitude of the delta velocity vector at Intercept. Calculated each P34/P74 or P35/P75 cycle. Scaled (meters/centisecond)/2 ${ }^{7}$.
Spare. See page 2-70 for definition.

spares. See pase $2 \rightarrow 70$ Aro definitued,

LR VELOCITY. Velocity along one of the antenna axes (as indicated by VSELECT). . Each is the sum of five readings. A different component is read every 2 seconds during LR velocity updates. Scaled $(\mathrm{ft} / \mathrm{sec}) /\left(\mathrm{K} \times 2^{28}\right)$ where $\mathrm{K}=-0.6440$ for $\mathrm{X}, \mathrm{K}=1.212$ for Y , and $K=0.8668$ for Z. Divide by 5 for average of readings.

LR RANGE TIME. Time of CDUs for LR Range Reading when R12 running 28 Scaled centiseconds $/ 2^{28}$, referenced to computer clock.

LR RANGE (d. p.). Landing radar slant range. Scaled ft/(1.079×2^{28}).
Always low scale. Calculated every 2 seconds during altitude updates.

The Y, Z and X CDUs for LR Range Reading for
R12 at LR Range Time. 15 -bit fractions scaled degrees $/ 360$.
-LATVEL(12a)FORVEL(12b). Lateral and forward velocity. The orthogonal components of the horizontal velocity of the vehicle with respect to the moon, which are essentially parallel and perpendicular to the $X-Z$ plane of the vehicle(for small pitch and roll angle displacements). It is scaled, $(\mathrm{ft} / \mathrm{sec}) /\left(0.5571 \times 2^{14}\right)$ and is computed and displayed four times per second.

Contents
DESIRED THRUST AXIS ORIENTATION. Defines the desired thrust axis orientation ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in stable member coordinates. Input command for FINDCDUW. Calculated once every 2 seconds during powered flight. The magnitude of the vector is variable.

VG VEC ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$). A stable member vector that indicates current velocity error. Scaled (meters/centisecond)/2 ${ }^{7}$. Calculated every 2 sec . during P12 (after ignition), P70 and P71. Good for ascent and aborts, not good for descent.
$\mathrm{TTF} / 8$. Landing guidance time to go, negative in sign. The computed time to achievement of the target conditions currently being airned for. Used in the guidance equations and as a basis for guidance phase switching. Calculated once every 2 seconds during P63 (after full throttle), and P64. Scaled centiseconds/2 ${ }^{17}$. In P65 TTF/8 will continue to be modified, but for no functional reason. Approximately 2 seconds will be added to TTF/8 every pass through P65.
DELTAH. LR Altitude minus LGC altitude. Scaled meters $/ 2^{24}$. Calculated every 2 seconds during altitude updates.
LANDING SITE VECTOR(X, Y, Z). Landing site in moon-fixed coordinates. "LAND" is initialized from this vector (RLS) at the start of P63. RLS is recomputed after landing by P68 and is computed by P57 if the landing site determination option is selected. Otherwise except perhaps by uplink, it does not change. Scaled meters/2 ${ }^{27}$.
ZDOTD. The desired down-range velocity at injection. Garbage until P12 selection or until P70 or P71 selection. In P12 it is a constant (Loaded by astronaut via 1)SKY). In P70/P71 it is recomputed every 2 seconds. Scaled (meters/centisecond)/2 ${ }^{7}$.
Same as words 27-29 on Rendezvous and Prethrust List.
Same as words 30-66 on Orbital Maneuvers List.
LM STATE VECTOR in GUIDANCE COORDINATES. Words 67-69 contain the position vector (X, Y, Z) scaled meters $/ 2^{24}$. Words $70-72$ contain the velocity vector ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) scaled (meters/centisecond) $/ 2^{10}$. Calculated once every 2 sec.during P63 (after full throttle), P64 and P65. Not good during ascent and aborts.

POSITION OF LANDING SITE (LAND). Position vector (X, Y, Z) of current landing site in stable member coordinates. Updated for lunar rotation once every 2 seconds during P63 (after full throttle), P64 and P65. May be changed by astronaut redesignation during P64, and also by selection of N69. Scaled meters $/ 2^{24}$.

Word Number
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

Second Register

First Register
I. D. $\left(77772_{8}\right)$

CSM State Vector (Rx)
CSM State Vector (Ry)
CSM State Vector (Rz)
CSM State Vector (VA)
CSM State Vector (iVy)
CSM State Vector (VI)
CSM State Vector Time
RR RANGE (RAW)
CDU Y (Vehicle)
CDU X (Vehicle)
RR TRUNNION CD
MARKTIME
FALIGN
REFSMMAT ($\mathrm{R}_{1} \mathrm{C}_{1}$)
REFSMMAT ($\mathrm{R}_{1} \mathrm{C}_{2}$)
REFSMMAT ($\mathrm{R}_{1} \mathrm{C}_{3}$)
REFSMMAT ($\mathrm{R}_{2} \mathrm{C}_{1}$)
REFSMMAT ($\mathrm{R}_{2} \mathrm{C}_{2}$)
REFSMMAT ($\mathrm{R}_{2} \mathrm{C}_{3}$)

Sync (77340 ${ }_{8}$)
CSM State Vector (Rx)
CSM State Vector (Ry)
CSM State Vector (Rz)
CSM State Vector (VA) Reference
CSM State Vector (Wy)
CSM State Vector (VI)
CSM State Vector Time
$\left.\begin{array}{l|l}\text { RR RANGE RATE (RAW) } \\ \text { CDU Z (Vehicle) } \\ \text { Number of Marks } \\ \text { RR SHAFT CDU }\end{array}\right\}$ at Mark Time MARKTIME
TALIGN
REFSMMAT $\left(R_{1} C_{1}\right)$
REFSMMAT ($\mathrm{R}_{1} \mathrm{C}_{2}$)
REFSMMAT ($\mathrm{R}_{1} \mathrm{C}_{3}$) REFSMMAT
REFSMMAT ($\mathrm{R}_{2} \mathrm{C}_{1}$)
3×3
REFSMMAT ($\mathrm{R}_{2} \mathrm{C}_{2}$) Matrix
REFSMMAT $\left(\mathrm{R}_{2} \mathrm{C}_{3}\right) \quad \mathrm{R}=$ row, $\mathrm{C}=$ Column Y NAV Base Vector (lIst complY NAV Base Vector (lIst comp)
Y NAV Base Vector (ind comp) Y NAV Base Vector (2nd comp)
Y NAV Base Vector (3rd comp) Y NAV Base Vector (3rd comp)
Z NAV Base Vector (list comp) Z NAV Base Vector (list comp)
with respect to lunar fixed coordinate system
Z NAV Base Vector (ind comp) Z NAV Base Vector (ind comp)

Z NAV Base Vector (3rd comp) Z NAV Base Vector (3rd comp)
DELTA BETA
DELTA BETA
an TET
RR Shaft Error Counter
Final Desired CDUX (THETAD)
Final DesiredCDU Y (THETAD+1) Final Desired CDU Z (THETAD+2)

* RSBBQ RSBBQ +1

Actual Body Rate X(OMEGAP) Actual body rate Y (OMEGAQ)

Actual body rate Z (OMEGA) GARBAGE CDUKD
CDUZD
Actual CDUX
Actual CDUZ
CDUYD
Garbage
Internal

Actual CDUY
RR TRUNNION CD
Flagword 1
Flagword 0

V LUNAR SURFACE ALIGN LIST

Word Number
la
ib
2-8
9-13
14

15-20
21-23

24-26

> 27
> $30-64$
> $65-74$
> $75-77$

78
79
80-98
99-100

28

29

Contents
I. D. word for this list. Will contain 77772 . Sync bits. Will contain 77340_{8}. Same as words 2-8 on Orbital Maneuvers List. Same as words 9-13 on Rendezvous and Prethrust List. TALIGN. Time to which a landing site or LM state vector is referenced for the landing site and nominal IMU alignment orientations during P52 and P57. Scaled centiseconds/2 ${ }^{28}$, referenced to computer clock.

Same as words 15-20 on Orbital Maneuvers List.
Y NAV BASE VECTOR (X, Y, Z). Orientation of Y component of navigation base with respect to lunar-fixed coordinate system. Computed initially by P68. Computed with each P57 alignment if REFSMFLG (Bit 13 of flagword 3) is set 1 . Unit vector. Scaled 2^{-1}.

Z NAV BASE VECTOR (X, Y, Z). Orientation of Z component of navigation base with respect to lunar-fixed coordinate system. Computed initially by P68. Computed with each P57 alignment if REFSMFLG (Bit 13 of flagword 3) is set 1 . Unit vector. Scaled 2^{-1}.

Same as word $27 \leftrightarrows$ on Rendezvous and Prethrust List.
Same as words 30-64 on Orbital Maneuvers List.
Same as words 65-74 on Coast and Align List.
GRAVITY VECTOR. Defines direction of gravity with respect to body axes. Initially computed by P68. Recomputed with each technique 1 \& 3 alignment in P57. Unit vector. Scaled 2^{-1}.
Same as word 9 on Coast and Align List.
Same as word 79 on Coast and Align List.
Same as words 80-98 on Orbital Maneuvers List.
Spares. See page $2-70$ for definition.

Same as word 76 on Coast and Align List.
Same as word 29 on Rendezvous and Prethrust List.

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.

I.D. and Sync	36	CDUZD	70	DELVEET2 + 2
R-OTHER	37	CDUX	71	DELVEET2 +4
R-OTHER +2		(2nd reg is CDUY)	72	TTPI
R-OTHER +4	38	CDUZ	73	DELVEET3
V -OTHER		(2nd reg is CDUT)	74	DELVEET3 +2
V -OTHER +2	39	STATE	75	DELVEET3 +4
V-OTHER +4	40	STATE +2	76	DNRRANGE
T-OTHER	41	STATE +4		(2nd reg is DNRRDOT)
DELLT4	42	STATE + 6	77	DNLRVELX
RTARG	43	STATE +8		(2nd reg is DNLRVELY)
RTARG +2	44	STATE +10 D	78	DNLRVELZ
RTARG +4	45	DSPTAB		(2nd reg is DNLRALT)
ELEV	46	DSPTAB +2	79	DIFFALT
TEVENT	47	DSPTAB +4	80	LEMMASS
REFSMMAT	48	DSPTAB +6		(2nd reg is CSMMASS)
REFSMMAT +2	49	DSPTAB +8	81	IMODES30
REFSMMAT + 4	50	DSPTAB +10D		(2nd reg is IMODES33)
REFSMMAT +6	51	TIME2	82	TIG
REFSMMAT +8	52	RN	83	OMEGAP
REFSMMAT +10 D	53	RN +2		(2nd reg is OMEGAQ)
TCSI	54	RN + 4	84	OMEGAR
DELVEET1	55	VN	85	CDUXD
DELVEET1 + 2	56	$\mathrm{VN}+2$		(2nd reg is CDUYD)
DELVEET1 + 4	57	VN +4	86	CDULD
VGTIG	58	PIPTIME	87	CDUX
VGTIG +2	59	OMEGAPD		(2nd reg is CDUY)
VGTIG +4		(2nd reg is OMEGAQD)	88	CDUZ
DNLRVELZ	60	OMEGARD		(2nd reg isCDUT)
(2nd reg is DNLRALT)	61	CADRFLSH	89	ALPHAV
TPASS 4	62	CADRFLSH +2		(2nd reg is ALPHAR)
REDOCTR		(2nd reg is FAILREG)	90	POSTORKP NEGTOTKP
(2nd reg is THETAD)	63	FAILREG +1		(2nd reg is
THETAD +1	64	RADMODES	91	Channels 11, 12
(2nd reg is THETAD +2)		(2nd reg is DAPBOOLS)	92	Channels 13, 14
RSBBQ	65	POSTORKU	93	Channels 30, 31
(2nd reg is RSBBQ +1)		(2nd reg is NEGTORKU)	94	Channels 32, 33
OMEGAP	66	POSTORKV	95	PIPTIME1
(2nd reg is OMEGAQ)		(2nd reg is NEGTORKV)	96	DELV
OMEGAR	67	SPARE	97	DELV +2
CDUXD	68	TCDH	98	DELV + 4
(2nd reg is CDUYD)	69	DELVEET2	99	SPARE
			100	TGO

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.

1	I.D. and Sync	35	CDUXD	71	STARSAV1 +4
2	R-OTHER		(2nd reg is CDUYD)	72	STARSAV2
3	R-OTHER +2	36	CDUZD	73	STARSAV2 +2
4	R-OTHER +4	37	CDUX	74	STARSAV2 + 4
5	V -OTHER		(2nd reg is CDUY)	75	DNLRVELX
6	V -OTHER +2	38	CDUZ		(2nd reg is DNLRVELY)
7	V -OTHER +4		(2nd reg is CDUT)	76	甲-mervise TE?
8	T-OTHER	39	STATE		
9	AGSK	40	STATE +2	77	CDUS
10	TALIGN	41	STATE +4		(2nd reg is PIPAX)
11	POSTORKU	42	STATE +6	78	PIPAY
	(2nd reg is NEGTORKU)	43	STATE +8		(2nd reg is PIPAZ)
12	POSTORKV	44	STATE +10D	79	LASTYCMD
	(2nd reg is NEGTORKV)	45	DSPTAB		(2nd reg is LASTXCMD)
13	DNRRANGE	46	DSPTAB +2	80	LEMMASS
	(2nd reg is DNRRDOT)	47	DSPTAB +4		(2nd reg is CSMMASS)
14	TEVENT	48	DSPTAB +6	81	IMODES30
15	REFSMMAT	49	DSPTAB +8		(2nd reg is IMODES33)
16	REFSMMAT +2	50	DSPTAB +10D	82	TIG
17	REFSMMAT +4	51	TIME2	83	OMEGAP
18	REFSMMAT +6	52	RN		(2nd reg is OMEGAQ)
19	REFSMMAT +8	53	$\mathrm{RN}+2$	84	OMEGAR
20	REFSMMAT +10 D	54	RN +4	85	CDUXD
21	AOTCODE	55	VN		(2nd reg is CDUYD)
22	RLS	56	$\mathrm{VN}+2$	86	CDUZD
23	RLS +2	57	VN +4	87	CDUX
24	RLS +4	58	PIPTIME		(2nd reg is CDUY)
25	DNLRVELX	59	OMEGAPD	88	CDUZ
	(2nd reg is DNLRVELY)		(2nd reg is OMEGAQD)		(2nd reg is CDUT)
26	DNLRVELZ	60	OMEGARD	89	ALPHAQ
	(2nd reg is DNLRALT)	61	CADRFLSH		(2nd reg is ALPHAR)
27	VGTIG	62	CADRFLSH +2	90	POSTORK P
28	VGTIG +2		(2nd reg is FAILREG)		(2nd reg is
29	VGTIG + 4	63	FAILREG +1	91	Channels 11, 12
		64	RADMODES	92	Channels 13, 14
30	REDOCTR		(2nd reg is DAPBOOLS)	93	Channels 30, 31
	(2nd reg is THETAD)	65	OGC	94	Channels 32, 33
31	THETAD +1	66	IGC	95	DSPTAB
	(2nd reg is THETAD +2)	67	MGC	96	DSPTAB +2
32	RSBBQ	68	BESTI	97	DSPTAB +4
	(2nd reg is RSBBQ +1)		(2nd reg is BESTJ)	98	DSPTAB +6
33	OMEGAP	69	STARSAV1	89	DSPTAB +8
	(2nd reg is OMEGAQ)	70	STARSAV1 +2	100	DSPTAB +10D

\triangle Revised GSOP\# $\#_{R-56 T} \quad P \subset R \#_{899}^{2-111}$

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.

For each word the mnemonic of the first register is given. The second register is always the register adjacent to the first.
(2nd reg is OMEGAQ)
OMEGAR
(2nd reg is CDUT)
39 STATE
40 STATE +2
41 STATE +4
42 STATE +6
43 STATE +8
44 STATE +10D
45 DSPTAB
46 DSPTAB +2
47 DSPTAB +4
48 DSPTAB +6
49 DSPTAB +8
DSPTAB +10D
51
52 RN
$53 \mathrm{RN}+2$
$54 \mathrm{RN}+4$
55 VN
$56 \mathrm{VN}+2$
57 VN +4
58 PIPTIME
59 OMEGAPD
(2nd reg is OMEGAQD)
60 OMEGARD
61 CADRFLSH
62 CADRFLSH +2
(2nd reg is FAILREG)
63 FAILREG +1
RADMODES
(2nd reg is DAPBOOLS)
65 POSTORKU
(2nd reg is NEGTORKU)
66 POSTORKV
(2nd reg is NEGTORKV) 99
67 SPARE

68 SPARE
69 AGSK
70 UPBUFF
71 UPBUFF +2
72 UPBUFF +4
73 UPBUFF +6
74 UPBUFF +8
75 UPBUFF +10D
76 UPFUBB +12 D
77 UPBUFF +14D
78 UPBUFF +16D
79 UPBUFF +18D
80 LEMMASS
(2nd reg is CSMMASS)
81 IMODES30
(2nd reg is IMODES33)
82 SPARE
83 OMEGAP
(2nd reg is OMEGAQ)
84 OMEGAR
85 CDUXD
(2nd reg is CDUYD)
86 CDUZD
87 CDUX
(2nd reg is CDUY)
88 CDUZ
(2nd reg is CDUT)
89 ALPHAQ
(2nd reg is ALPHAR)
90 POSTORKP
(2nd reg is
NEGTETKP
91 Channels 11, 12
92 Channels 13, 14
93 Channels 30, 31
94 Channels 32, 33
95 DSPTAB
96 DSPTAB +2
97 DSPTAB +4
98 DSPTAB +6
DSPTAB +8
100 DSPTAB +10 D

SECTION 4 CHANGES
required for loading the first component of whatever Noun is used therewith;
Verb 22 loads the second component of the Noun; Verb 23 , the third component; Verb 24 , the first and second components of the Noun; and Verb 25 loads all three components of the No un. A similar component format is used in the Display and Monitor Verbs.

When the decimal Display Verb is employed, all the component members of the Noun being used are scaled as appropriate, converted to decimal, and displayed in the data display registers.

Decimal data is identified by a + or $-\operatorname{sign}$ preceding the \square numerical characters. If decimal is used for loading data of any component members of a multi-component Load Verb, it must be used for all components of the Verb. Thus no mixture of decimal and octal data is permitted for different components of the same Load Verb. (If this is violated, the OPR ERR alarm is turned on.)

There is a class of verbs called Monitor Verbs which display data every one second. Once a Monitor Verb is executcd, the data on the display panel continues to be updated until the Monitor is turned off.

The Monitor is turned off by: PRO, VERB 34 ENTR (terminate), and internal program initiation of the Keyboard and Display System Program, (if the DSKY is not busy) or by a Fresh Start of the LGC, or by a re-cycle verb, or a Restart.

Monitor action is suspended (but not ended) by the depression of any key, except RSET. This turns on the KEY RLSE light immediately. Monitor action continues after the Keyboard and Display System is released. Thus it is possible to suspend a monitor while the astronaut loads some data (or requests another display) and to return to the original monitor when his intervention is concluded.

After any use of the DSKY, the numerical characters (verb, noun and data words) remain visible until the next use of the DSKY. If a particular use of the DSKY involves fewer than 3 data words, the data display registers ($\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$) not used remain unchanged unlcss blanked by deliberate program action.

The DSKY procedures above were described for manual operation; however, the principles described remain the same for DSKY operation by the LGC Programs and Routines.

As outlined in the Mission Programs $\{\sec .4 .4 .9$) the majority of DSKY operations are of the following categories:
a) Display - to display data to the operator. Display Verbs present data computed by the mission program.
b) Load - to request a data load as described in detail below.

If an internal program attempts to use the Keyboard and Display System, but finds that the astronaut has used it and not yet released it, the KEY REL light is turned on. When the astronaut finds it convenicnt, he should strike the KEY REL button to allow the internal program to use the keyboard and display pancl.

+.2.2.5 Display - Vcrb/Noun Flashing

This is an internally initiated action. The appropriate astronaut response to a flashing display Verb/Noun combination is:
(a) Correct the data (see Section 4.2.2.6 below). Pcrform the appropriate Load Verb sequence. Upon the final ENTR, the program proceeds normally.
(b) VERB 32 ENTR (recyclc). This causes the program to return to a previous location.
(c) PRO. This indicates acceptance of the displayed data, and a desire for the internal sequence to continue normally.
(d) VERB 34 ENTR (terminate). The astronaut wishes to terminate the operation.

NOTE: Uncommon responses are defincd in the program logic of Section 4.4.9.

4.2.2.6 Load - Verb/Noun Flashing

Whenever any data is to be loaded the Verb/Noun flashes. The flash occurs whether the data load is initiated by the LGC or by the astronaut. The appropriate data display register (R1, R2, or R3) is blanked in anticipation of the data load. Data is loaded in 5 -character words and is displayed character-by-character in one of the 5 -position data display registers as it is keyed in.

Numerical data is considered decimal if the data word is preceded by a plus or minus sign; if no sign is supplied it is considcred octal. The plus and minus keys are accepted only when they precede the first numerical character of the data word; they are ignored at any other time.
octal data may be loaded with high order zeros suppressed. If decimal is used for any component of a multicomponent Load Verb, it must be used for all components of that Verb. No mixing of octal and decimal data is permitted for different components of the same Load Verb. (If this principle is violated, the OPR ERR alarm is turned on.)

The ENTR key must be pressed after each data word. This tells the program that the numerical word punched in is complete. The flash is turned off after the last ENTR of a loading sequence.

As data is loaded, it is temporarily stored in buffers. It is not placed into its final destination, as specified by the Noun Code, until the final ENTR of the load sequence.
only to supply the data again; he need not attempt to re-execute the Verb/Noun combination. (Note, if decimal data is supplied for the address of a "machine address to be specified" noun, the alarm and recycle are performed at the ENTR immediately following the address keyed in.)

Violation of the following principles causes the OPR ERR light to be turned on, and a recycle to be performed:
(a) The address keyed in for a "machine address to be specified" noun must be octal.
(b) In multicomponent load verbs, no mixing of octal and decimal data is permitted. All the data words loaded for a given noun must either be all octal or all decimal.
(c) Octal data must not be loaded into a "decimal only" noun.
(d) Decimal data must not be loaded into an "octal only" noun.
(e) Decimal data loaded must not numerically exceed the maximum permitted by the scale factor associated with the appropriate component of the noun.
(f) All 3 words must loaded for the Hours, Minutes, Seconds scale.
(g) When loading with the Hours, Minutes, Seconds scale, the minutes must not exceed 59; the seconds must not exceed 59.99; and the total magnitude must not exceed 745 hours, 39 minutes, 14.55 seconds.
(h) Two numerical characters must be supplied for the Program Code under V37.

4.2.2.13 Operator Error and Key Rejection

There are situations which cause the OPR ERR light to be turned on and the offending key depression to be simply rejected. These are:

An 8 or 9 is punched while loading a word which was not preceded by a plus or minus sign. The 8 or 9 is simply rejected. The remaining characters may then be supplied or the offending word removed and its loading begun again. 21,22 or 23.

$$
\text { PCR } 892 \text { - "Delete R29" }
$$

The Routine "Powered Flight RR Designate Routine (R29)" has been deleted from the LUMINARY 1D Program. All references to this Routine have also been deleted. Those areas affected are as follows:

> INDEX (Sections 4.4 .1 and 4.4 .10) FLAG LIST (See attached) P12

P63
R00
R04
$R 20$ (See attached)
R20
R29 (Deleted)
R41
R77
V36
V40N72
V41N72
V59
4.4.8 flags referenceo in sectich 4 of r507
REV

FLAG	PCR	If FLAG SEt
ABORT ENAELE FLAG		AGOR I PROGRAMS ENABLEC
ABORT TARGET ING FLAG	893	J2,K $\overline{2}$ PARAME TERS USEO FOR AECRI TARGE II AG
ACTIVE FLAG VEHICLE		LM IS ACT IVE vericle
APS ABCRT CONTINLATION FLAG		APS CCNT INUEC ABORI AFTER DPS ABORT
APS FLAG	EOIT	CRE H HAS SPECIFIEO THAI CPS hAS dEEA STAGEO
ASTRONALT FLAG		CREM HAS APPRUVEO IGNI TION
A ITITLOE FLAG		LGC HAS STCREC LHATIITLDE IN MUUN-FIXEC CC-CRC
AUX FLAG		If tOLE FLAL RESET SERVICER HLL EXERCISE OVMUN
AVERAGE G FLAG	895	A VERAGE C ISEKVICEK) LESTREC
CCPP E FLAG		ELEV. ANGLE SUPFLIEC FLR P34/74
CCNTIALCLS CESIGMATE FLAG	ECIT	LUC CLPrancs Rr hi Inclit lCCK CA
OESIGNATE FLAG	7	K DESIGMATE

PRELIMINARY
FLAG/ LUMINARY

R10	410
T 3KUPT	P51,P52,P57,R00,R50
* $05, \mathrm{R} 30, \mathrm{*} 31, \mathrm{R} 76$, V85	476
tve computations	P30,P32,P33,P72,P73
$\begin{aligned} & \text { P 32,P } 33, \text { P } 34, \text { P } 35, \text { P } 72 \text {, } \\ & \text { P7 3, P74, P75 } \end{aligned}$	$\begin{aligned} & \text { P30,P32,P33,P34,P35, } \\ & \text { P72,P73,P 74, P } 75 \end{aligned}$
R26	R26
R09	R12
R12	812
R40	P12, P40, P42, P7C,P71, 2LO,R40, FRESH START (v3eE)
P12,P40,P42,P63,R40	$\begin{aligned} & \mathrm{P}_{12}, \mathrm{P}_{4} 0, \mathrm{P}_{4} 1, \mathrm{P}_{4}, \mathrm{P}_{6} 3, \end{aligned}$
P4C,P42,P63,R40	P40, P42
$R 47$	P51,P57,R02
R10	R10
P57	P57
R10	P12,P63

INERTIAL
OATA AVAIL-
AULE
GYRC CCR-
PENSAIIUN
EXTEALEE VERR
IN PRUGRESS
EXTERAAL CELTA
V UO CCMF
EDIT LAST FASS
THROUGH
RENG. CLIMP.
FIKST PASS
CF R2G
GIMBAL LUCK

FLASH LK
ALTITLOE
FAIL LANF
AFTER MIGATE
TIG HAS
ARRIVED
MINIMUM IMPULSE
IMU IN USE
ak CIUS IA LSE
FUR INERTIAL FUR INERTIAL
CATA CISFIAY INITIAL PASS
3
3
4
3
3
3
3
3
3 UID FLAG
DRIFT FLAG
EXTENDED VERB ACTIVE
FLAG
EXIERNAL CELTA Y FLAG
FINAL FLAG
FIRST PASS FLAG
GIMBAL LOCK FLAG
H FLA SH FLAG
HIGATE FLAG
IDLE FLAG
IGNITICN FLAG
IMPULSE FLAG
IAUSE FLAG
INERTIAL CATA DISCRETE
LANDING ANALOG DISPLAYS

PRELIMINARY

$$
\text { (0) } 51353254
$$

II) TC CBTAIN VEHICLE RANGE ANC VELCCITY DATA RELAT IVE TO THE LUNAR SURFACE FROM THE LR.
(2) TC INCCRPURATE THE LR RANGE AND VELUCITY DATA INTO THE LP STATE VECTOR.
(3) TU NOTIFY IHE CREM CF ABADRMALITIES IN THE PROCESS CF LGC INTERROGATION OF THE LR -
(4) TC CCMMANC THE LR TC PCSITION 02, ANC ISSUE AN ALARM IF THAT COMMANO IS NOT SUCCESSFUL.

(1) THE NECESSARY PAKAMETERS (AS OE SCRIBEO IN SECTION S. 3.4 CF RSG7) FOR CONVERSION OF THE LR OATA TO STATE VECTOR UPCATES ARE STOREC IN THE LCC.
(2) THE FURMAT OF DHE LR DATA ANO THE TECHNIQUE OF ITS TRANSFER TO THE LGC ARE AS OESCRIBEO IN SECTION S. 3. 4 OF RSGT. MANUAL DSKY ENTRY (SEE (4) BELOW), NO LR CATA HILL BE INCCRPCRATED INTO THE LH STATE VECTOR. FLAG IS SET BY A
(4) THERE ARE 2 EXTENDEU VERES AYAILABLE TO THE CREW TO ALLOW MANUAL CONTROL OF THE USE OF
LPOATING. THEY ARE
UPOATING. THEY ARE :
VSBE RESETS THE LR PERMIT FLAG, PREVENTING USE CF ALL LR OATA.
 VELOCITY OATA, READ VELCCITY, RANGE CATA, LPOSZ, Y FLASH, ANO H FLASH.
 P7I. IT IS RESET BY P63.

GRUUNO
52
ASSUNPT IONS:
VSTE SETS (CR RESETS) THE LR PERMIT FLAG, ENABLING USE OF GOOO LR DATA.

范
앙
io

© ¢ $\quad \stackrel{\circ}{\circ}$
$* 100$

SECTION 5 CHANGES

Powered Landing Maneuver and Post Landing Phase

A) Nominal

P-63 Landing Braking Phase
P-64 Landing Approach Phase
P-65 Automatic Landing Phase Guidance
(or)
P-66 Rate of Descent Landing Guidance

P-68 Landing Confirmation Program
P-57 Lunar Surface Alignment Program
R-47 AGS Initialization Routine
B) Abort to Orbit

1. Aborts During Powered Landing Maneuver

P-70 DPS Abort Guidance Program
P-71 APS Abort Guidance Program
2. Aborts from the Lunar Surface (Anytime Launch Case)

P-27 LGC Update Program (CSM State vector update)
P-57 Lunar Surface Alignment (Fast Alignment Mode)
P-12 Powered Ascent Guidance Program
5. 1-17

X Revised
LUMINARY
L.
A) Nominal

P-12 Powered Ascent Guidance

B) Aborts

None

VI Rendezvous Phase
A) Nominal

P-20 Rendezvous Navigation Program
P-32 CSI Pre-Thrust Program
P-33 CDH Pre-Thrust Program
P-34 TPI Pre-Thrust Program
P-35 TPM Pre-Thrust Program

5. 1-19

Fig. 3. 4.3-1 State-Vector-Update Routine
(Page 2 of 4)
5. 3-60

PrELIMINARY

At this time, the LR-Updating Permit flag (LRPERMIT) is checked. If this flag has been set to unity by the astronaut, the altitude updating-procedure is begun. Otherwise, it is bypassed. If the measured altitucle 550 ft , at, the up 中 he diflertace between the altitude measurement at the measurefient time (\mathbf{q}^{*}) and its extrapolated estimate (q^{\prime}) is used to update the LM position vector at the PIPA-output processing time. As can be seen in Fig. 3.4.3-1, the weighted measurement difference is used to update the position component of the state vector ($\underline{r}_{\mathrm{P}}$) along the direction estimated for the altitude measurement ($\underline{\mathrm{u}}_{\mathrm{hP}}$). The altitude-measurement weighting function (w), as can be seen, is stored as a linear function of the estimated LM altitude (h^{\prime}). The coefficients h_{m} and k_{h}, will be stored in erasable memory.

A check is next made to see if the Velocity Measurement flag (VELDATA) is set at unity. This flag is set at unity in the LR Velocity-Data Read Subroutine (Section 5. 3. 4, 4.) after Velocity Data -Good discretes are observed on three consecutive computation cycles through the subroutine. As soon as the test indicates that no Velocity Data-Good discrete is present, then the measurement flag (VELDATA) is reset to zero. If VELDATA is unity, then the preliminary computations for velocity updating are begun; if the flag is zero, the entire velocity updating process is by-passed.

The preliminary computations for velocity updating involve first the selection of the coefficient (c) to be used in the linear weighting function for the velocity component of interest. This depends on the particular component used on the current cycle, which is identified by the velocity-component flag (FLV) from the LR Velocity-Data Read Subroutine (Section 5.3.4.4.). The numerical values for the coefficients k_{VX}, k_{VY}, and k_{VZ}, will be stored in erasable memory. Next, the unit vector for the velocity component being processed ($\underline{u}_{A B}$) is selected. The unit vectors for the different velocity components as shown in Fig. 3.4.3-1, are referred to as $\underline{u}_{X A B}{ }^{\prime} \underline{u}_{Y A B}$, and $\underline{u}_{\mathrm{ZAB}}$. (See Fig. 3.4.4-5.)

An estimate of vehicle velocity at the measurement time ($\underline{v}_{u}^{\prime}$) is next obtained. Because of the fact that the velocity measurements are not taken at the normal PIPA-processing times, it is necessary to read the PIPA-output data also at the measurement time (t_{u}) and store the data for use on the next computation cycle through the State-Vector Update Routine. The velocity-measurement estimate ($\mathrm{v}_{\mathrm{u}}^{\prime}$), as indicated in Fig. 3.4.3-1, is obtained by adding the velocity change measured by the PIPA-output data from the preceding updating time ($\Delta \tilde{v}_{u_{p}}$) to the preceding-cycle updated velocity (\underline{v}_{n-1}). The effect of the lunar gravitational acceleration is included in the computation of \underline{v}^{\prime} by using the previous-cycle value ($\mathrm{g}_{\mathrm{n}-1}$) over the interval from the preceding updating time ($\mathrm{t}_{\mathrm{n}-1}$) to the measuremont time (t_{u}).

Delete Section 5.6.18 Powerad Flight RR Designate Rontine (PP. 5.6-98 to 5.6-105).

$$
5.6-98
$$

$$
\mathrm{R}-567
$$

LUMINARY 1D

Group	23A	S. MacDougall Gustafson Kachmar Klumpp Kriegsman Levine (4) Muller	$\frac{\text { IL } 7-205}{\text { Philliou }}$ Pickford Pippenger Pu Reber Robertson	15	
Group	23B	J. Flaherty Barnert Berman Eyles Finkelstein Gilson	L.7-238A Kirven McCoy Millard Moore	9	
Group	23B	$\begin{aligned} & \text { J. Kaloostian } \\ & \hline \text { Bernikowich } \\ & \text { Dunbar } \\ & \text { Ostanek } \end{aligned}$	$\begin{aligned} & \frac{\text { IL } 7-221 \mathrm{~L}}{\text { Volante }} \\ & \text { White } \end{aligned}$	5	
Group	23B	D. Lutkevich Allen Babicki Beck Danforth Daniel DeC ain Entes Flaherty Glendenning	LL7-228 Good Hubbard Kana Klawsnik Maher Nayer Reed (20) Williams Wolff	37	
Group	23P	$\frac{\text { A. Tucholke }}{\text { Battin }}$	[L7-203	1	
Group	23B	$\begin{aligned} & \text { C. Taylor } \\ & \text { Densmore } \\ & \text { Hamilton } \end{aligned}$	$\begin{aligned} & \frac{\text { IL } 7-221 \mathrm{~L}}{\text { Rosenberg }} \\ & \text { Rye } \end{aligned}$	4	;
Group	33	$\begin{aligned} & \text { J. Hargrove } \\ & \hline \text { Drane } \\ & \text { Glick } \end{aligned}$	$\begin{aligned} & \frac{\text { LL } 7-111}{\text { Johnson (23P) }} \\ & \text { Mimno } \end{aligned}$	4	$\frac{1}{2}$
Group	23H	$\frac{\text { B. Lynn }}{\text { Cook }} \begin{aligned} & \text { Kossuth } \end{aligned}$	$\frac{\text { IL } 7-234 \mathrm{~A}}{\text { OConnor }}$	3	\geq
Group	23C	T. Carlton Bairnsfather Fraser Goss Jones Kalan Keene	$\begin{aligned} & \text { IL11-102 } \\ & \hline \text { Penchuk } \\ & \text { Pope } \\ & \text { Schlundt } \\ & \text { Stengel } \\ & \text { Work } \end{aligned}$	11	-

D-1

MIT Instrumentation Laboratory
P.O. Box 21025
Kennedy Space Center, Florida 32815
Attn: Mr. Robert O'Donnell
MIT Instrumentation LaboratoryCode EG/MIT Building 16NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. Thomas Lawton
NASA MSC HW
Building M7-409(5)
Kennedy Space Center, Florida 32815
Attn: Mr. Frank Hughes
Mr. A. Metzger (NASA/RASPO at MIT/IL)
AC Electronics Division
General Motors Corporation
Milwaukee, Wisconsin
Attn: Mr. J. Stridde, Dept. 32-31
Attn: Mr. Reino Karell (13)
(2)
Attn: Mr. W. Siarnicki, Dept. 38-02 (1)
Kollsman Instrument Corporation
575 Underhill Boulevard
Syosset, Long Island
Attn: Mr. F. McCoy
Raytheon CompanyBoston Post Road
Sudbury, Massachusetts 01776
Attn: Mr. R. Zazrodnick
NASA/MSFC: National Aeronautics and Space Administration (10)
George C. Marshall Space Flight Center
George C. Marshall Space Flight Center Huntsville, Alabama
Attn: J. Mack R-ASTR-5 (1)
Attn: V. Buckelew S\&E-AERO-MFG (1)
A. Deaton R-AERO-DG (1)
F. Moore R-ASTR-N (1)
H. Hosenthien R-ASTR-F (1)
A. McNair I-MO-R (1)
D. Germany I-I/IB-E (1)
R. Barraza I-V-E (1)
W. Chubb R-ASTR/NG (1)
J. McCullough I-VE/T (1)
NASA/ MSC National Aeronautics and Space AdministrationManned Spacecraft CenterAPOLLO Document Control Group (PA 2)Houston, Texas 77058Attn: A. Alber, FS5 (letter of transmittal only)

BELLCOMM:	Bellcomm, Inc. 110017 th Street N.W. Washington, D.C. 20036 Attn: Info. Analysis Section	(6)
LINK:	LINK Group, GPSI SIMCOM 1740 A NASA Boulevard Houston, Texas 77058	(3)
183	Attn: Mr. D. Klingbell	
TRW	H. V. Kienberger Bldg 82 Room 2045 TRW Systems Group One Space Park Redondo Beach, Calif 90278	(1)
NASA/GSFC:	National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Attn: Mr. Paul Pashby, Code 813	(2)
GA:	Grumman Aerospace LEM Crew Systems Bethpage, Long Island, New York 11714 Attn: Mr. J. Marino (1R) Mr. C. Tillman (13) Mr. F. Wood (1) Mr. H. Sherman (Attn: W. Webster) (3) Mr. R. Pratt (4) Mr. B. Sidor (1) Mr. R. Kress (1)	$(23+1 R)$
NAR:	North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California 90241 Attn: CSM Data Management D/396-402 AE99	$(1+1 R)$
NASA/RASPO GA:	National Aeronautics and Space Administration Resident APOLLO Spacecraft Program Officer Grumman Aerospace LEM Crew Systems Bethpage, Long Island; New York 11714	(1)
NASA/WSMR:	National Aeronautics and Space Administration Post Office Drawer MM Las Cruces, New Mexico Attn: RH4 Documentation	(2)
NASA/RASPO NAR	National Aeronautics and Space Administration Resident APOLLO Spacecraft Program Office North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California	(1)

NASA-KSC:	National Aeronautics and Space Administration John F. Kennedy Space Center J.F. Kennedy Space Center, Florida 32899 Attn: Technical Document Control Office	(3)
NASA/RASPO GE:	NASA Daytona Beach Operation P.O. Box 2500 Daytona Beach, Florida 32015 Attn: Mr. A.S. Lyman	(1)
N ASA/HDQ:	NASA Headquarters 600 Independence Avenue S.W. W ashington, D.C. 20546 Attn: MAP-2 Attn: Mission Director, Code MA Attn: Robert Aller, Code MAO	(6)
NASA/LEWIS:	National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Attn: Library	(2)
NASA/FRC :	National Aeronautics and Space Administration Flight Research Center Edwards AFB, C alifornia Attn: Research Library	(1)
NASA/LRC:	National Aeronautics and Space Administration Langley Research Center Langley AFB, Virginia Attn: Mr. A.T. Mattson	(2)

