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R-649

THE APOLLO RENDEZVOUS NAVIGATION FILTER

THEORY, DESCRIPTION AND PERFORMANCE

ABSTRACT

The Apollo on-board rendezvous navigation filter represents the first applica-

tion of Kalman filtering techniques to the solution of the rendezvous navigation prob-

lem - determination of the relative state of the rendezvousing vehicles. The recursive

formulation of the Kalman filter, utilized in the Apollo on-board cislunar and orbital

navigation systems to minimize errors in estimation of the inertial state of a single

orbiting vehicle, is adapted to minimize errors in estimation of one orbiting vehicle

state with respect to another. The optimum rendezvous navigation filter is developed

as a standard against which to compare the actual Apollo filter, a sub-optimal formulation

made necessary by limited guidance computer storage.

A new approach to orbit navigation is suggested since rendezvous navigation

utilizing the optimum filter is shown to resolve individual state errors in addition to

relative state errors.

The rendezvous radar angle bias estimation scheme, developed specifically

for the Apollo mission, is described and its effectiveness in desensitizing a navigation

system to sensor biases is evaluated.

by Eugene S. Muller, Jr.

Peter M. Kachmar

June 1970
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THE APOLLO RENDEZVOUS NAVIGATION FILTER-THEORY.
DESCRIPTION AND PERFORMANCE

I. INTRODUCTION

The decision to apply recursive Kalman filtering techniques to the design of

the Apollo rendezvous navigation system was made after studies of less complex

techniques proved them to be incapable of meeting the exacting performance require-

ments of the Apollo mission. One such technique involved the measurement of a

portion of the relative state (e. g. , range and range rate) at a predetermined point in

the transfer orbit where this data was adequate to allow an accurate calculation of the

midcourse maneuver required to correct for trajectory dispersions. This method re-

quires a specific type of transfer trajectory and could not possibly satisfy the require-

ment for rendezvous navigation in the wide variety of possible abort trajectories, or

allow for desired flexibility in planning of the primary rendezvous mission profile.

Another technique studied, which was not as sensitive to the type of transfer

trajectory, involved radar measurements of the complete relative state (range, range

rate, angles and angle rates) at discrete intervals in the trajectory. The noisy data
4

was smoothed using polynomial filtering techniques . This scheme proved inadequate

for providing the navigation accuracy required to make midcourse corrections at the

long ranges (200 nm) involved in Apollo abort trajectories. The critical radar para-

meter was angle rate. The accuracy required in the knowledge of this parameter

could not be provided either by direct measurement with state-of-the-art radars or by

polynomial smoothing of radar angle data. Radar angle biases presented an additional

problem not resolved with this technique.

It was at this point that serious consideration was given to utilization of the

recursive Kalman filter to solve the rendezvous navigation problem. (It was noted

that the cislunar navigation problem could be considered a rendezvous problem -- the

moon being the target. ) This filter was fully developed^ for use in Apollo on-board

cislunar navigation to the extent that most of the equations were already pro-

grammed for insertion into the Apollo guidance computer. Computer storage require-

ments were thus fairly well defined, so that it was not a difficult problem to verify that

the Lunar Module guidance computer had sufficient storage to accommodate this type

of filter. Also, there would conceivably be no prohibitive computer storage requirements

1



to include this rendezvous filter in the command module guidance computer, since

most of the cislunar navigation equations would be common to the rendezvous' navi-

gation equations. A simplified block diagram of the cislunar recursive navigation

system is shown in Fig. I-l. After an initial state vector is uplinked to the on-board

computer, this state vector is extrapolated to the time of the star-horizon angle

measurement. The difference between the sextant measurement and the computed

estimate of this angle (5Q) is fed to the navigation filter. A weighting vector (w) is

computed utilizing a state covariance matrix which is extrapolated to the measure-

ment time (and updated, to take into account incorporation of a measurement, for

use with subsequent measurements), a measurement geometry vector (b) and pre-

loaded sensor variance. The change (6^ applied to the current state estimate as a

result of the external measurement is computed as;

rA5x
6^

(5v

= y 6 Q ( 1 )

where: Sr and rfy are position and velocity increments respectively.
A A

The new state estimate (R^, V^) is then extrapolated to the time of the next measure-

ment and the recursive process is repeated. (A detailed explanation of this system

may be found in Ref. 3).

Adapting the system of Fig. I-l to rendezvous navigation begins with considera-

tion of the basic rendezvous navigation problem -- determination of the relative state

between two orbiting vehicles, as opposed to determination of a single vehicle state

in inertial space. Three fundamental changes then become apparent: (a) the target

vehicle state must be included in the navigation system, (b) a sensor which measures

all or some part of the relative state must be incorporated in the system (c) the

navigation filter must be redesigned for minimization of a new cost function -- the

relative state estimation error and possibly sensor bias estimation errors (if the

rendezvous sensor should have prohibitive bias errors). Incorporation of these

changes presents some fundamental problems to solve;

1. Should both vehicle states be updated after measurements or only

one, and if one, which one?

Inclusion of another vehicle state means there will necessarily

be estimation errors associated with that state. Relative state

measurements will be a function of both state errors, whereas

in the cislunar system, very small uncertainties existed in the

knowledge of star and planet positions.

2



Fig. I-l Cislunar Rec ursive Navigation System



2. How is the weighting vector (w) of the navigation filter formulated?

The recursive form of the optimum linear estimator (Eq. 1) should be

preserved so that the problem reduces to determining to

minimize relative state errors for the alternatives mentioned

in (1) above.

3. What environment factors should be modeled into the filter?

Since the relative state is of prime importance, only those

factors which create significant differential effects on the two

vehicle states need consideration. For example, the cislunar

case is essentially a three body problem whereas rendezvous

needs only to consider a single central force field.

4. What, if any, sensor biases should be either estimated or just modeled

into the filter?

The inclusion of a rendezvous radar into the navigation system

presented measurement bias errors of such magnitude to signifi-

cantly affect navigation performance, whereas comparable bias

errors do not exist in the cislunar sensor (sextant).

These problems are examined in detail in this paper. Section II develops

the optimum rendezvous navigation filter. Section III contains a complete description

of the present Apollo rendezvous navigation filter, showing how it differs from the

optimum filter, and describing the effect these differences have on performance and

required operational procedures. Section IV contains a more detailed description of

the Apollo rendezvous radar bias estimation formulation, performance and alternate

application. Section V presents a summary of rendezvous navigation performance on

Apollo flights to date, with emphasis on particular portions of the missions which

illustrate principles discussed in this paper.

II. OPTIMUM RENDEZVOUS NAVIGATION FILTER

A. Relative State Formulation

As shown in references (1, 2) and discussed in the introduction, the recursive

form of the optimum linear estimator involves the periodic updating of the current best
A

state estimate by the addition of a vector increment (6x) to the state, which is computed

as a weighted difference between a measured portion of the state and the estimate of

this measured parameter. (Eq. (1): 6x = Q). In rendezvous navigation, the state

to be estimated is the relative state, i. e. , the difference between the target vehicle

and active vehicle states, and the measured parameter is all or some portion of this

relative state. The general form of a rendezvous navigation system utilizing recursive

Kalman filtering is represented in the flow diagram (Fig. II-l). Having established the

4
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Fig. II-l Rendezvous Navigation System Using Re’cursivc Kalman Filter
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basic form of the navigation filter, the problem of determining the optimum rendezvous

navigation filter reduces to the determination of the optimum weighting vector (wp)

which minimizes the uncertainty in the estimate of the relative state between the active

and target vehicles.

A. 1 Derivation of Optimum Weighting Vector
(‘f.p)

As shown in Fig. II-l the rendezvous navigation update equation is:

6Q (2)

A
where: = increment vector added to current state estimate to obtain

new optimum estimate.

6Q = Q - Q = measured relative parameter minus estimate of
measured relative parameter

= weighting vector which minimizes error in relative state
estimate

Eq. (2) is actually a special formulation of the general form of the optimum linear

estimate of the relative state. This general form, derived after first linearizing the

equations of motion by considering small perturbations about a reference trajectory^

is given by:

+ Ur (6Q - 6Q') (3)

where: 6xR

6x^

6Q

6Q'

6Xj^

updated estimate of the deviation of the relative
state from the reference relative state.

previous estimate of the deviation of the relative
state from the reference state, extrapolated to current
measurement time.

weighting vector

measurement of the deviation of the measured parameter
from the reference value of the measured parameter

current estimate of the deviation of the measured parameter
from the reference value of the measured parameter

"6Tr1 is a 6 -dimensional deviation vector composed of

the relative position and velocity deviation from
R reference

By the simple expedient of defining the reference trajectory as the current estimated

trajectory, 6Xp of Eq. (3) becomes the zero vector. This is achieved by applying

(which now becomes the update increment vector) to the current estimated relative

state to form the new estimated relative state which is also the new reference tra-

jectory. (The estimate of the deviation from the reference (6xj^) is thus driven to

zero at each update. ) This approach preserves the assumption of linearity by assuring

that perturbations from the reference are small. It is also noted that the quantity

6



(6Q - 6Q') is equivalent to (Q - Q') since the same quantity (the reference value of the

measured parameter) is subtracted from Q and Q' to obtain 6Q and 6Q' respectively.

Thus it is seen that Eq. (2) is in fact equivalent to Eq. (3). For the derivation of

which follows, the more general form of the optimum linear estimator (Eq. (3)) will be .

used.

6Q and 6Q' are given by the following equations:

6 Q M Icr 6Xp
T

6Q' = ^R 6x^
T

+ bg'

(4)

where: 62La - true deviation in relative state from reference state.
H

is an n X 1 vector representing the actual biases in the measuring
instrument

A
§’ is the estimate of biases in the measurements*

a is the random error in the measurement (assumed to be white
noise)

the "b" vectors (b^, b^) are the partial derivatives of the measured
-tt —

p

quantity with respect to the state or measurement bias. (e. g. =

9Q/9Xfj so that 6Q due to a state deviation is given by 6Q = b^ )

Substituting Eq. (4) into Eq. (3) and using the following definitions for the

error in estimation of the relative state and error in estimate of the measurement

bias respectively.

-RP
^R

=

-RV
A
i - §

(5)

where: = relative position estimation error
H Jr

^ = relative velocity estimation error
K V

the relative state estimation error after measurement incorporation is found by sub-

tracting from each side of Eq. (3) to yield:

-R
b”^ e' + b e' +
-R -R -i3

(6)

*^8' takes on non-zero values only if bias estimation is included in the filler formulation.

In the present development, only the relative state is estimated so that ^ =
0^. (Bias

estimation is covered in Section IV. )
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where: previous relative state estimation error extrapolated to the
measurement time.

The covariance matrix of relative state estimation errors, defined by:

becomes after measurement incorporation (using Eq. (6)):

Er = E
R -R Er + gr3-

+
“R ^r"^ ^R + 2 h/ GR^' b^ +

5^R

iR

(7)

where: GR^ = and E, = eoe,"^-R -JS -0-3

In order to determine the value of which minimizes the mean squared
error in relative state estimation (the trace of Er)« a variation in Eq. (7) is taken
and is solved for. By setting to zero and solving for we have (derivation
in Appendix B. 1):

( 8 )

Eq (8) is the optimum weighting vector for updating the relative state between

the two vehicles at a given measurement incorporation.

A. 2 Mechanizing a Filter Using the Relative State Formulation

The optimum rendezvous filter is now completely defined. Eq. (2)

^^^.R
~
“r defines the update increment at measurement points and Eq. (8) de-

fines the value of to be used in order to minimize the mean squared relative position

and velocity errors. In order to compute at each measurement update, it is

necessary to have current values of E^, GR/3 and the geometry vectors. The
geometry vectors are computed from the current estimated relative state. The compu-
tation of E^, E^, and GR/J is performed in the following sequence: From a-priori

values, these matrices are extrapolated to the first measurement time. is com-—

K

puted and E^^ and GR/? are updated using and, with E^, are extrapolated to the

next measurement time.

a. a-priori values

(Er)q = initial covariance matrix of relative state estimation errors
(derived for example from monte carlo simulations of that
part of the mission prior to rendezvous).

8



initial covariance matrix of measurement biases (derived
from statistical studies of actual radar performance)

b.

(GR/?)q = zero matrix (no correlation between relative state errors and
measurement biases before using rendezvous sensor).

extrapolation of matrices from time = t^ to time =

"
‘^n+l.n ^R ^*n^ “^n+l.n

"
’^/3n+l,n^j3^^r) ‘^/?n+l.n

= ^n+l.n GR/?(y
<^;3n-tl.n'^

(Note: prime indicates value of variable at time =

where: (fi
is the transition matrix defined by:

<j)
= F </)q = identity matrix,

for a state error defined by:

c. matrix update after measurement incorporation

is updated using Eq. (7)

GR,S = (I - (ip GR/J' - Up b^'^ E^

The optimum filter just derived would serve satisfactorily as a rendezvous

navigation filter provided explicit equations of motion for the relative state exist.

This, in general, is not the case. Only in rendezvous missions involving small relative

ranges and short transfers (typically less than 90 degrees) may the expression for

differential gravity (gravity acceleration acting on target vehicle minus gravity accelera-

tion acting on active vehicle) be accurately linearized so that the relative state may be

extrapolated without precise knowledge of the vehicle inertial state. ^ For this

case, components of the relative state may be measured with respect to any convenient

coordinate system and the filter developed above utilized to minimize relative state

errors.

In the general case, where linearization of differential gravity does not pro-

vide satisfactory accuracy, the relative state may not be extrapolated directly, but

is instead formulated as the difference between the target and active vehicle inertial

states, which are extrapolated by utilizing standard techniques for integrating the

equations of motion. Because of this necessity for maintaining current estimates of

two inertial state vectors, a simple update of the relative state as specified by the

optimum filter is no longer adequate. The optimum change to the relative state

9



derived above must be accomplished by making appropriate changes to the separate

vehicle state vectors. In addition, the relative state may no longer be measured with

respect to any arbitrary coordinate frame, but must be referenced to a known inertial

frame. (This reference is provided by a stable platform aligned to known inertial

directions.

)

There is only one constraint when applying navigation updates to each vehicle

state: the resultant relative state update must be that specified by Eqs. (2) and (8).
A A

Thus, defining 6x^ and 6x.p as the active and target vehicle state updates, this con-

straint may be stated:

6x^^ - 6x^ = 6Xpj = tOpj 6Q (9)

Rewriting Eq. (9) using the optimum recursive form for each vehicle update we have

CO.J, 6 Q — 6Q — u)p^6Q (9a)

or

(10)

Eq. (10) states that any weighting vectors may be used to update each vehicle state

recursively and the relative state will be updated optimally as long as the difference

in the two weighting vectors equals the optimum relative weighting vector. Thus,

by the use of Eq. (10) and Eq. (8) for a more general form of the optimum rendez-

vous navigation filter has been formulated.

If ojrp and ^ are chosen arbitrarily to satisfy Eq. (10), the relative state

will indeed be updated optimally at each measurement incorporation, but the onboard

estimates of each individual vehicle state will be continually degraded. Rather than

making an arbitrary choice of and an investigation can be made to deter-

mine if some optimum value of these weighting vectors can be found which minimizes

or at least contains the estimation errors of each vehicle state.

B. Optimizing Individual State Updates

The general form of the optimum recursive update for the active and target

vehicle states respectively is given by:

6^ =
A,

CO A—A 6 Q “ MD = 6x^ + 6 Q (11a)

K
6x^ =

A
6x1^ + 6Q - 6Q' = 6xlj, +

C0.J, 6Q (11b)

10



(12 )

6Q and 6Q' are given by:

6Q' =

U T
^A 6^A

T
+ b.j,^ 6x.

T A
, . T A

6x^ -T 6x.

-a

-/?

9Q y, - 5Q , _ 9Q
where the b vectors are given by; b^ ~

0^ > ^
““A “"TT ^ ““

and the other quantities are the same as those defined in Eq. (4).

Substituting Eq. (12) into Eq. (11) and defining active and target vehicle state errors

by:

A _ ^ _

e^
“ 6

~
^
^^A

* ~T
~ ^—T ^

Eq. (11) becomes

1a " -A -A

P = P '

-T -T

b. ^ e ' + b™"^ e._' + b e ' + Q (13a)
-A -A -T -T -j3 -/3

T
I

Ha Ha + e.j,' * V +a (13b)

Before utilizing Eqs. (13a) and (13b) to derive optimum values of and the

optimum relative weighting vector (wj^) will be derived for the general case where

both vehicle states are updated. Defining the relative state error by:

and since:
A A

6Xpj = 6x fji

-R ^-R
’

^-R

6x^ and 6x^ = 6x.p - 6x^

we have: - £rp - 2a

Thus, from Eqs. (13a) and (13b) we can write:

-R -r'
" -R

Tp
I + V, T I +

yjT
, _J,Q,

“a £a -T -/? -/?

(14)

(15)

where: “r
" “t ‘^A

Comparing Eq. (15) to Eq. (6), the two expressions are equivalent if we note that

b “ “ ^
'^R' ^A

equal the negative of b.^, can be seen from the fact

that b vectors represent a change in the measured quantity due to a change in a vehicle

state. Since relative parameters are being measured, a change in the target vehicle

11



state (6x^) produces a change in the measured relative quantity which is the same
as an opposite change (-6x^) in the active vehicle state, is equivalent to since

the relative state was defined as target state-active state (Fig. II-l).

Forming the covariance matrix of relative state uncertainties (E„ = e„K —K —
and using variational calculus to determine the optimum oo- which minimizes relative—
state errors as done above, we obtain the general expression for the optimum relative

state error weighting vector (derivation in Appendix B. 2)

-R E ' b„ - E„' b.
"A iiA ""t "T GA/?'b^- GT/?'

b

-/J -/3

/A

(16)

A =
1=a' liA " !1t " G'

+ 2 b^"^ GA^' b + 2 b.j,'^ GT/?'b +
A*

>
II Et

G = e^ ' GA;8

= e e
P -/3-/3

-A^/1 '

It is easily seen that Eq. (16) reduces to Eq. (8) by realizing that;

-A " -R ’

and from Eq. (14)

Er = Ea + Et - G - g'^
(17)

For the individual vehicle state updates given by Eqs. (11a) and (11b) which

utilize measurements of the relative state, expressions will be now derived for the

values of and which minimize the errors in estimation of the active vehicle

state and target vehicle state respectively. In other words, errors in each inertial

state estimate will be minimized without regard to the resulting relative state error.

Using Eq. (13) the expressions for the covariance matrix of active and target

vehicle inertial state estimation errors after measurement incorporation are;

Ea = (I -
-A ^a'^)

E^' (I - b^ ^ ^ E^' b^ + b.^,'^ GT/?' b^

+ b^"^ GT/?''^ + ah _ (I - ^

- <5^ b^"^ GA/?','^) (I - b^ (18)

12



”
“t — ^t' ' —T — ^ —T ^a' ^ ^

^X?' —/?
^

'^a'^
GA/J' b

rprp P T* T’nr'TT’ 'T*

+ GA/?'-^ b^ + Q'^) - (I -co^b^ ) (G'^ b^^ + GT/?' ^ ^

-
<“t -a'^ GT/?''^) (I - b^ (19)

Variational calculus is again used to determine the optimum and u^p for the minimiza-

tion of inertial state estimation errors of both the active and target vehicle, with the

following results (derived in Appendix B. 3)

(20a)

(20b)

(20c)

Examination of and Urp in Eq. (20) yields an extremely significant result.

It is seen that the difference (wrp - w^) is precisely the optimum relative weighting

vector (wpj) given in Eq. (16)! This is just the constraint (specified by Eq. (10)) that

is required of and in order to yield an optimum relative state update. Con-

sequently, there is no reason to arbitrarily choose Wp. and to satisfy Eq. (10).

They can be chosen to optimally update each individual vehicle state. Thus, we may
state this important conclusion: The optimum inertial updates of both the active and

target vehicle states, using a relative state measurement , also yields the optimum

relative state update.

wp, = (Ep,' bp, + G'^ b^ + GT/3' b^)/A

where: A = b. E. ' b. + b™"^ E^' b^ + b E^' b + 2 b. G' b^—A A —A — 1 1—1 —/J /3 —A — 1

+ 2 b^'^ GA/?' b^ + 2 bp,'^ GT/3' b
^

^

C. Mechanization of Optimum Filter

The complete set of equations necessary for the mechanization of the optimum

rendezvous navigation filter (i. e. computation of and Wp.) follow:

a. a-priori values

initial covariance matrix of active and target vehicle
state estimation errors

(E^)

(G)q = (GA/?)q

covariance matrix of measurement biases

(GT/?)^^ = ZERO matrix

13



b. extrapolation of matrices from time = t^ to time - t^^^ (prime

indicates extrapolated value at

®a' " n+l,n n+l.n"^' ®t'
"

‘^T n+1 , n n+1 . n

"
'^/?n+l,n®/jV ‘^/?n+l,n'^'

"
‘^A n+l.n

V

n+l,.n

= ^An+l.nGA/?(W+l.n''* ^^/J- = n+1. n™V n+1. n^

(21 )

where: (/> is the state transition matrix appropriate to the state being extrapolated.

c. matrix update after measurement incorporation

and E.^,: use Eqs. (18) and (19)
' ' -

G = (I - b^'^) G' (I - b^ co^'^) + G-'^ b^ + b^'^
V-ZS'' -P -A

+ GT/?’ b^ + ah <^rj7 - il (E^' b^ + GAP' b^ ^.j,'^)

-
(“A ^t' -A "^p GT/?''^) (I - b.^ u.j.'^) (22)

GAP = (I - b^'^) GAP' -
<±p^

(b.p'^ GT/?' (23)

GT^ = (I - b.p'^) GT/?' - Up. (b^'^ GAP' (24)

The mechanization of this filter in a rendezvous navigation system is depicted

in Fig. II-2.

This optimum rendezvous filter (Fig. II-2) is completely general and requires

no explicit extrapolation of the relative state with its associated approximations. In-

stead, the inertial states of the active and target vehicle are extrapolated to the

measurement time and these two states yield the estimated relative state and the

associated estimated relative state parameters. Each vehicle state is updated by an

increment given by: 6x^ = 6Q, 6x.p = Wrp 6Q, where and w,p are given in Eq, (20).

(NOTE: These update equations use the form which results when the reference tra-

jectory is defined as the current estimated trajectory as discussed previously.

)

14
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Fig. II-2 Optimum Rendezvous Navigation System
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Some special comments should be made about the error term (e^) in Eq. .(13).

This is a general term which may represent any systematic measurement error (e. g.

radar angle biases, stable platform misalignment, etc. ). If this error contribution

behaves significantly different from the estimated vehicle state errors and an accurate

model of its behavior is known, it can be estimated along with the vehicle states.

Under these special conditions, a new may be formulated which minimizes both

the relative state errors and bias estimation error, thus providing superior perfor-

mance to the filter developed above. The simple expedient of including ^ in the

estimated state and updating the estimate of this measurement bias yields the optimum

filter in this case (this procedure is discussed in detail in Section IV).

Certain modifications to the optimum filter will now be discussed in order

to provide additional background for the discussion of the Apollo filter (Section III).

One modification is to update only one vehicle state (e. g. the active state). For this

case we have:

^ , so that 6x.p = £

- Ujj (from Eq. (10)) (25)

- 6x^ (from Eq. (9))

where: is the optimum relative weighting vector given in Eq. (8) (or more generally

in Eq. (16)).

This single state update (SSU) filter is identical in every respect to that

developed originally for the optimum relative state update (Sx^j) except that this

optimum increment is applied to a single inertial state to achieve the required optimum
relative state after a measurement incorporation. Although the SSU filter yields the

optimum relative state update at each measurement incorporation, it does not achieve

the minimum relative state error throughout the entire navigation period. This is

because the individual inertial states are not optimally updated as specified in Eq. (20).

Consequently, the inertial state estimates are not optimum and this inertial estima-

tion error manifests itself in a larger relative error when the states are extrapolated

after measurement incorporation. Even if, after a measurement incorporation, the

relative state error is driven to zero, each individual state will have an estimation

error equal to the state error of the target vehicle. Depending on the magnitude of

this error (which has been growing since the start of navigation), the relative error
will increase accordingly during an extrapolation period. The optimum filter, however,

reduces the inertial state errors in addition to the relative error, so that the relative

error buildup during extrapolation is minimized. Of course, if the target vehicle

state errors are zero, the SSU filter is equivalent to the optimum filter.

iflT
=

“A
=

A

6^ =
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By neglecting to model measurement bias errors (e^) (or by including them

in the estimated state) and updating only the active vehicle, Eq. (8) reduces to;

Sa = Eh'

(

26 )

(noting that (25)jand b^ = - b^

Eq. (26) forms the basis for the Apollo filter which is discussed in Section III.

D. Optimum Filter Performance Results

In order to evaluate the optimum rendezvous navigation filter performance

in a realistic rendezvous sequence, simulations were run of the Apollo 12 rendezvous

profile (Fig. II-3) with the Apollo filter replaced by the optimum filter. The nominal

tracking schedule was followed and the standard Apollo rendezvous radar model was

used with measurements of range, range rate and angles measuring line of sight

direction. Initial conditions are summarized in Fig. II -4. (Note that quantities are

included for a linearized statistical analysis to provide rms results and also a 'single

run' simulation to provide results for one particular mission. )

The initial LM (active vehicle) state errors (and covariance matrix) represent

nominally expected errors after injection off the lunar surface. The CSM (targef

vehicle) state errors, however, are not the nominal ground tracking errors but were

chosen specifically since they are known to cause seriously degraded performance when

the Apollo filter is utilized. The reason is that this particular distribution of state

errors, although not particularly large in magnitude initially, grows exceedingly fast

as the CSM state is integrated in its orbit with no navigational updates. Consequently,

since in the nominal Apollo mission the LM state is the only one updated, both vehicle

inertial state errors grow tremendously (as mentioned in the previous discussion) so

that the relative state errors eventually diverge also. This behavior is illustrated in F'igs.

II-5 and II-6 which plot relative state errors and Figs. II-7 - II-IO which plot each

vehicles' inertial state estimation errors, in a simulation which utilized the Apollo

filter. (NOTE: Nominal operation of the Apollo filter requires reinitialization of the

filter covariance matrix at specified times as indicated by (R) in these figures. This

procedure is not necessary with the optimum filter. A full discussion of this pro-

cedure is contained in Section III. )

When the optimum filter is utilized (with both states updated) in exactly the

same simulation, the resulting relative and inertial state errors are as shown in

Figs. II-ll - 11-16. The improvement is striking. Not only are the relative errors

vastly decreased, but the inertial errors are also decreased appreciably!
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ACTIVE

BELOW

(nmi)

r
.1oI\MCC(J=161)

TPI (T046)
CDH |T=106)

COORDINATE FRAME: TARGET-CENTERED

LOCAL VERTICAL

RADAR TRACKING SCHEDULE
(solid line indicates rendezvous navigation periods,
dashed line indicates "no-navigation'^ periods)

number of

event event time marks*
(min.

)

Initiate rendezvous 18 22
navigation

cease track CSl-9
start track CSI+6 30
cease track CDH-13
start track CDH+9 18
cease track TPI- 13
start track TPI+4 8

cease track MCC-4
*A mark is a radar measurement set (range, range
rate, angles), marks are taken once/minute.

RENDEZVOUS MANEUVERS

CSI = coelliptic sequence initiation

CDH = constant differential height maneuver

TPI = transfer phase initiation (intercept)

MCC = midcourse correction for intercept

CSI (T=48)X

ACTIVE TRAILING (nmi)

Fig. II-3 Relative Motion Plot - Apollo 12 Rendezvous Mission
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• INITIAL VEHICLE STATES (Lunar centered inertial frame)*

ACTIVE: position (ft) = 6. 45E05» -5. 1E06, -2. 57E06
^

velocity (fp8)= -5485, -469, -535 (Note: E06 - 10 )

TARGET: position (ft) = 9. 28E05, -5. 3E06, -2. 6GE06

velocity (fps)= 5281, 849, 149

• ERRORS: The following errors represent nominal Apollo 12 lunar mission errors with the following exceptions:

(a) The target vehicle (CM) state errors are not"ominal ground track errors. ey were c osen

specifically as non-representative ground track errors which produce inordinately large errors

as the trajectory progresses.

(b) Radar biases and inertial platform misalignment errors were assumed zero for simulations in

order to isolate state vector error performance of the filters.

Statistical Analysis "Single run" Simulation

Active Vehicle

(LM) State

Errors

(inertial frame)

2 2

K^: LM Covariance Matrix (ft , fps )

'9.83E06, -2.83E06, -1.3,5E06, 3. 12E02. 5. 0E03, 3. 31E03

^
1. 18E07. -2.05E06, 7. 36E03. 3. 37E03, 2.91E03

^

1. 4(IE07. 2.79E03, 1. 81E03, -6. 03E02

1. 62E01, 3. 23E00, 1. 62E00

Symmetrical 75E01, -4. lE.-Ol

'
-J. 8E01

-

Position error (ft)

8464. 1673, 1201

Velocity error (fps)

0. 16. 5. 64. 3. 5

Target Vehicle

(CM) State

Errors

(inertial frame) *

‘ 2 2

E.J,:
CM Covariance Matrix (ft , fps )

(Diagonal Matrix)

Diagonal Terms: 2. 5E07, 1.6E07, 9E06, (position)

25, 16, 9 (velocity)

Position error (ft)

5000, 4000. 3000

Velocity error (fps)

5. 4. 3

Measurement

Errors

Radar range

Radar range rate

Radar angles

Error Variances

»2
[l/3 % of true range]

T 2
[l . 3 / 3 % of true range rate]

2
(1 milllradlan) /angle

1 (7 errors in random

number generator

1/3% of true range

1.3/3% of true range rate

1 milliradlan

Covariance (Opt Filter

Matrix lApollo
E^ and E.j, (above)

Diagonal Matrix: Initial Diagonals = 10, 000, 10, 000, 10,000

2 2 19, 10, 10

Reinitialized Values = 2000, 2000, 2000, 2, 2, 2

Same

Sensor range
Variances range rate

angles

[
1 / 3 % of estimated range] 11

[
1 . 3 / 3 % of estimated range rate]^

(1 milliradian)2/angle

Same

NOTE: "Single run" simulation refers to a simulation of a mission in which only a single set of errors is used (i.e

one actual mission), as opposed to the statistical analysis which produces RMS results for an ensemble of

misBlons.

• - Inertial frame Is Mean Bessellan Frame (1969).

Fig. II-4 Simulation Initial Conditions
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LEGEND FOR RENDEZVOUS NAVIGATION PLOTS

STATISTICAL UNCERTAINTY refers to lo- (RMS) results
ACTUAL refers to "single run" results
B : rendezvous maneuver
R : Apollo filter covariance matrix reinitialization

Solid line in plots (no symbol notation) represents error magnitudes

COORDINATE FRAME DEFINITION

a. Relative error plots

t''

i
R = Er^A

Ea\ /Et ^t^rget

(active \ / vehicle)

vehicle)
\/

mass center

symbol coordinate

X

+
y

z

definition

UNIT(R)

z^x

UNIT(R^-R^)

b. Inertial error plots

coordinate

X

y

z

definition

y X

UNIT(Ra)

UNIT(V^>< R/^)

Active vehicle inertial errors in active vehicle local vertical frame
Passive vehicle inertial errors in passive vehicle local vertical frame
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Fig. II-5 RMS Relative Position and Velocity Uncertainties (Off-

Nominal Apollo 12 Rendezvous with Apollo Filter)
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Maintaining small errors in estimation of each vehicle's inertial state in a

rendezvous mission (where it is generally assumed that control of relative state

estimation errors is sufficient to solve the rendezvous problem) is important for two
reasons. The first reason, discussed previously, is to assure a small buildup of

estimation errors in the navigated relative state during extrapolation periods. A large

buildup has two deleterious effects on performance: (a) relative state errors are

maintained at a higher level during navigation periods, (b) since operational considera-

tions (e. g. attitude maneuver, maneuver solution comparisons, maneuver targeting)

require navigation to be terminated an appreciable time prior to initiation of a rendez-

vous maneuver, a large relative state error buildup during this extrapolation period

causes large maneuver targeting errors since the accuracy of the AV solution depends

on the relative state errors at maneuver initiation time.

The second reason also involves rendezvous maneuver targeting accuracy,

but is fundamentally independent of relative state estimation errors. Even if the

maneuver could be initiated immediately following a navigation period or if the relative

state errors were identically zero, large errors in knowledge of each vehicle's inertial

state cause large errors in rendezvous maneuver solutions. This effect is illustrated in

Fig. 11-17. A large downrange error (central angle) in the inertial state of the target

vehicle is assumed, but the estimated relative state vector is identical to the true

relative state vector in inertial space. (This results in an altitude and downrange

error in the knowledge of the active vehicle inertial state. ) It is quite evident in a

situation like the one depicted in Fig. 11-17 that a rendezvous maneuver solution computed

from the estimated states will differ appreciably from that required with utilization

of the true vehicle states.

As a result of the improved rendezvous navigation with the optimum filter,

the accuracy of the onboard targeted maneuvers (the objective of rendezvous naviga-

tion) is significantly improved as shown in Fig. 11-18.

As discussed in the development of the optimum filter, the mechanization of

this filter onboard requires certain a priori statistical data in order to initialize the

filter. Among these are two complete covariance matrices which theoretically should

represent precisely the expected mean squared estimation errors and all correlations

of estimation errors for the active and target vehicle states. (For the above simula-

tions this was in fact done, the actual error vectors being generated from the initial

active and target vehicle covariance matrices utilized in the filter. ) Asa practical

matter, this could prove extremely difficult. Sufficient simulations would have to be

run before confidence could be placed in these matrices. Then, if the mission is

altered significantly, these matrices could be worthless. In order to gain some in-

sight into how critical it is to initialize the filter with precise covariance matrices,

the above simulations were rerun utilizing simple diagonal covariance matrices as
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Ry = Target position vector

= Active vehicle position vector

R = Relative state vector = R^ - R.
“T -A

Fig. 11-17 Effect of Inertial State Errors on Rendezvous Targeting

T.
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RENDEZVOUS

NAVIGATION

FILTER

RENDEZVOUS

MANEUVER

MANEUVER
(fp

STATISTICAL .

ANALYSIS

UNCERTAINTY^

s

)

"SINGLE RUN"

SIMULATION

APOLLO

CSI 5.5 118

CDH 26„5 28o0

TPI 35.3 44.5

MCC 5.1 15.7

OPTIMUM

CSI 0.82 0.03

CDH 0.25 0.024

TPI 0.85 1.1

MCC 0.46 0.75

* Maneuver uncertainty is defined as the magnitude of ( AV - AVj^^g )

,

where: AV = estimated maneuver solution

AVjrue
" maneuver solution required if true

states were known exactly.

Fig. 11-18 Rendezvous Maneuver Fncertainties



initial filter loads. These were as follows:

E^: Position Diagonals = 20 . 000, 20,000, 20,000 (ft)

Velocity Diagonals = 20, 20, 20 (fps)

E,j,: Position Diagonals = 5,000, 5,000, 5,000 (ft)

Velocity Diagonals = 5, 5, 5 (fps)

Identical single run state vector errors and sensor errors were those used
in the previous simulation. The resulting "single run" relative state errors and inertial

state errors are plotted in Figs. 11-19 - 11-21. It can be seen that the initial covariance
matrix loads are indeed not critical. The values selected for and were purposely
selected quite different from each other and were not meant to even correspond to the

"single run" error vector magnitudes. The values chosen for E.^, do, however, corres-
pond somewhat in magnitude to the target vehicle "single run" state error (Fig. II-4).

To see if this was significant, the values for E^ and E.^, were just reversed and the

simulation rerun. The appropriate results are shown in Figs. 11-22 - 11-24. These
results are quite similar to the others, further emphasizing the insensitivity of the filter

to initial covariance matrix loads. The major effect of using non-optimum initial

covariance matrices is to insert an initial transient which degrades performance during

early periods of rendezvous navigation. Eventually, the filter covariance matrices

become a function solely of the sensor measurement errors and trajectory geometry,

independent of the initial values. These few simulations are by no means conclusive,

but they do indicate that selection of initial covariance matrices should present no

particularly difficult problem.

E. Application of Optimum Rendezvous Filter for Orbit Navigation

The performance of the optimum filter in the above rendezvous simulations

reveals a result of appreciable significance -- this filter is extremely effective in

reducing inertial state estimation errors. The performance with respect to relative

state errors is excellent as expected, but it might be expected that the best the filter

could do with inertial errors is to contain them within some reasonable limits or at

best obtain a slight reduction, when one considers that measurements are made of the

relative state only. The key point, however, is that this relative state is measured
with respect to known inertial coordinates provided by the stable platform. Thus,

subject to navigation errors and platform misalignment errors, the direction of the

relative state vector is defined in inertial space.

It is this definition of the relative state vector in inertial space which allows

the filter to solve each vehicle inertial state. If the relative state trajectory of two

vehicles orbiting in a central force field is completely specified inertially, the separate

vehicle inertial states are uniquely specified. Specification of the relative state at a
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single point in the trajectory will not uniquely define the two inertial states. It is

necessary to take advantage of the fact that the relative state extrapolates differently

for different inertial states, in order to determine the particular inertial states which

produce the measured relative trajectory. Depending on the relative geometry, this

process may be fairly rapid or may require long periods of rendezvous navigation

before differences in the measured and estimated relative state are large enough to

indicate errors in inertial state estimates. Thus, one would expect to resolve inertial

state errors of two vehicles at a large relative range more rapidly than if the two

vehicles were orbiting at close range. In the former case, inertial state estimation

errors cause the relative state estimation errors to increase more rapidly through

extrapolation than in the latter case, thus providing the information needed by the

filter to resolve inertial errors from relative measurements.

This effect is graphically illustrated in Figs. 11-13 - 11-16. The navigation

updates of the inertial states are extremely effective at the start of the rendezvous

mission and gradually diminish until they are virtually non-existant in the terminal

phase. The relative range is approximately 200 nm when navigation begins (time =

18 min in the figures) and is down to 15 nm at a time of 160 min.

The ability of the optimum rendezvous navigation filter to resolve individual

state estimation errors by utilizing relative measurements of another orbiting vehicle

could have a significant impact in the field of orbit navigation. The rendezvous phase

of a mission may also be utilized to satisfy orbit navigation requirements. This could

eliminate the need to make some sort of inertial measurements (horizon sensing, e. g. )

or the requirement of using ground tracking stations in order to achieve an accurate

onboard inertial state estimate. Even in a mission which does not include a rendezvous,

one might envision the primary vehicle ejecting a small satellite (possibly an inflatable

radar reflecting sphere) and performing rendezvous navigation on the satellite to

determine its own orbit before performing some orbital maneuvers. The satellite's

orbit could be designed to produce a relative trajectory whose geometry is most

sensitive to inertial state errors in order to rapidly generate a relative error and

thus maximize the filter's ability to resolve the primary vehicle inertial state error.

E. 1 Simulation of Orbit Navigation Scheme

This unique approach to orbit navigation was tested in a simulation in which

no particular attempt was made to optimally select the relative trajectory between

the primary vehicle and its satellite. The pertinent initial conditions for this simu-

lation and the resulting relative motion plot are shown in Fig. 11-25. (Sensor errors are

the same as given in Fig. II-4. ) The primary vehicle was placed in a 57 nm circular

lunar orbit and a satellite was ejected at T = 0 with a horizontal velocity increment of

30 fps and a radial velocity increment of 30 fps. These values were more or less

arbitrarily chosen to achieve a reasonable relative range after a short time. Rendez-

vous navigation utilizing the optimum filter was initiated 50 minutes after ejection.
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Relative state estimation errors are shown in Figs. 11-26 and 11-27. It can be seen

that the relative errors, which of course are zero before ejection, grow considerably

before rendezvous navigation is initiated. This is predominantly due to the initial

inertial state errors given to the primary vehicle and its satellite. (These errors

were again specifically chosen since they grow inordinately large without the benefit

of navigation updates. ) A component of relative error also results from the uncer-

tainty in the ejection maneuver (la Apollo accelerometer performance was assumed,

resulting in a 0. 7 fps AV uncertainty for the ejection maneuver. )

Of primary importance, of course, is the performance of the rendezvous

navigation in resolving the inertial state estimation errors of the primary vehicle.

These errors are shown in Figs. 11-28 and 11-29. (Errors in estimation of the satellite

inertial state are also shown in Figs. 11-30 and II-3 1 . ) Both statistical and "single run"

results are excellent. At the start of rendezvous navigation (T = 50 min), the statis-

tical and "single run" inertial errors were 61,000 ft, 53 fps and 116,000 ft, 96 fps

respectively. After about one half orbit of navigation (T ~ 110 nm), these errors are

reduced to 3, 800 ft, 3 fps and 2,100 ft, 0. 3 fps respectively. It should be noted again

that these results are somewhat optimistic since no stable platform misalignment

errors have been assumed, and these errors directly affect inertial errors. Of

course, a similar problem exists with standard orbit navigation schemes such as

landmark tracking. Should the stable platform errors prove significant, the filter

performance can be improved by including the platform misalignment errors in the

estimated state, and estimating them along with the vehicle inertial state.

This simulation, though not conclusive, certainty illustrates the feasibility

of using this rendezvous navigation system to perform orbit navigation.
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APPENDIX A

LIST OF NOTATIONS

AB:

a:

a:

A':

T TA , a ;

variables defined by uppercase letter(s) denotes n x m
matrix

denotes n x 1 vector

denotes expected value of a

denotes value of variable after given integration time

(extrapolation period)

estimated value of variable a

measured value of variable a

denotes transpose of matrix, vector

A-1





APPENDIX B

OPTIMUM WEIGHTING VECTORS

1. Optimum Weighting Vector for Relative State

Formulation of the Rendezvous Filter

The covariance matrix of relative state estimation errors following a

measurement update is as follows (Eq. 7 of text):

Er Er - ^R Er GR/?
T ERbR+GR/J

(B-1)

+ b^ + 2 bT GR;?' b^ +
-R

The mean squared errors in the estimate of the relative position and velocity

deviations are the traces of the position and velocity submatrices of Ej^, defined

as

:

ER

Ep^ (pos)

T
-RV -RP

I

I

1

•k-

I

I

I

I

® RP ^RV

Ep (vel)

If is written as—IX

^R
i

^P (vel)

and this is substituted in Eq. B-1 and expanded it is seen that Ep (pos) is a function

of only tUp (pos) and Ep (vel) a function of only Wp (vel).

B-1



5^

Because of this fact, the optimum (pos) and (vel) will each be optimum
for the estimates of relative position and relative velocity respectively, and' the

mean squared error in the state estimate, Sp (Wp), is the trace of the matrix

Using the technique of variational calculus to determine the optimum to-o,
Hr

Wp = opt ^ R substitute into Eq. B-1. This becomes, after collecting

terms and neglecting products of 6oi)o:

® R ^-R^
"

'‘^r ^®R^
~

^r ^R -R opt E,;+bjGR/!'T

j

®^R -R -/?

T
-Ropt

-Ropt [ -R ^R -R ^/3 ^/i ^^R

2
( kR +

)

—R opt

+ t

(B-2)

opt ( kR Ep bp + b^ b^ + 2bp GR/? b^+Q^) 6 u;R

The trace of the term involving J^p has to be zero for all variations Wwp) in

the optimum weighting vector. This requires that

-R opt = (Er + Gm' b^ )/( b
T
Er b

jj
+ bJ Er b^ + 2b

T OR,3'
b
j
+ <>2

)

(B-3)

Hence the form of the optimum weighting vector u.’p has been determined.

2. Optimum Weighting Vector Wp for the Relative State Formulation of

the Rendezvous Filter with Both Vehicle States Updated

From Eq. 15, the general form of the relative state covariance matrix is

given by the following expression:

B-2



Er * ^R ^R A
E^-bTG'T-bjGA/?'T + bjG' + bT E^

rp irp

+ GT/?

-[
g"^ b^ + GT/? b^ - G b.^ - GA^ b^ a'^ (B-4)

^A ^A ^A
^
^^A ^T " ^T ^T ^T

+ 2b J GA/?' b^ + 2b^ GT/?' b^ + bJ E^ b^ +
-R

It can again be shown that the position and velocity submatrices of Ej^ from Eq. B-4

are functions of only (pos) and (vel) respectively where;

U)-

(pos)

^
^ i£R

Thus the mean squared relative state error estimate is the trace of E^^

Using variational calculus and proceeding as before, we let iiRopt

Sw in Eq. B-4. Collecting terms involving only <5 we have the following

—

R

6e^(^R) = 2t^ - + E.J, b,j. - G b,p + G b ^

+ GT/3 b^ - GA/3 b^
J

S

(B-5)

-Ropt ^A ^A ^A ^ -T ^T ^T ^/? -/?
^ ^-A ° -T

+ 2b2 GA/?' b^ + 2b,J' GT/?' b^ + a
±0 “-T

1
T

6Wr

B-3



Since 6 must vanish for ^deviations
the coefficient of 6 u; must be

—R optimum filter.
u. zero. Thus, the optimum has the followingform by setting the coefficient to zero in Eq. B-5.

-a ^T + G'b,j, + GA/S'

^ -A -A ^ -T ^J3
+ 2bA ^ + ^bj GAP (B-6)

+ 2b.^ GT/? b^ + Q-

3. Optimum Weighting Vectors for Inertial Updates on Both
the Active and Target Vehicles

From Eqs. 13a and 13b for the active and target vehicle inertial state esti-
mation error after measurement update the corresponding covariance matrices of
these errors are respectively:

®A (^ ^A ^A ) ®A (^ ' ^A^a) '^^A '^T ^ kp

+ b
T
GTP' + hj GTP'^ b^ + ) ii'A

(B-7)

- (l - (g' b,^ + gap' bj
J

- (ii'A G bj GAP'^) (l - b^

B-4



ET (
I - bx

)
Ex ( I ^x ^x )

+ ^x (b^
'^A

rp I 'T' 'T* 2 \ T
+ b^ GAP b^ + b^ GAP ^ h^ + a

)

-
(
I - ^T -t) -A ^T ^T )

-(^T-A ^-T-J (^'^T^t)

(B-8)

Letting

u)^ (pos)

(vel)

and

Ct^rji

i^X (pos)

^X (vel)

it can be shown that for both and Ex^ the position and velocity submatrices

are functions of only w (pos) and ^ (vel) respectively; i. e.

,

(pos) = f
^

(pos)^

,

Ex (pos) = f ^i£x (pos)]

(vel) = f (vel)j. Ex (vel) = f ^i^x (vel))

where

EA

I

E^ (pos)
{

T '

-AV -AP 1

T
®AP £AV

E^ (vel)

and similarly for Ex submatrices.

Letting co^ and i^x take on variations and 6 ^x respectively, substituting in

Eqs. B-7 and B-8 and collecting terms involving 5 and rfc^x (again neglecting

second order terms) we have:
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5

2 t
r

2 t
r

- (ea ° '^
g )

*
opt (^I K ^A

* !!? ^T + fej %' ^0 ®-9)

+ g' b^ + 2bJ GAP ^ + 2b^ GT/?' ^ +a^) t5 w

J

- (e^ b^ + g' b^ + GT/?' b^
)

6 wj

-Topt (-A ^A -A -T ^T -T -0 ^/? -/?
(B-10)

+ 2bJ
g' b^ + 2bJ GAP b^ + 2b^ GTP' b^ + Q^) <5^^^

2 2
(5 e^ (w^) and S (w^) must vanish for all variations in and

if^-p ^p^
respec-

tively. Hence, the coefficient of 5 and 6 must be equal to zero. This

yields the following expressions for w^Qp^ and
^p^

for the optimum inertial up-

dates of the active and target vehicles.

—A opt (®A ’^A + ^T -0 )'^

-Topt (e.^ b.p + g"^ b^ + GT/S' b^)/A

A =
-A ^A -A -T ^T -T -0 ^/? -p ^-A ^ -T

+ 2bJ GA0 b^ + 2b.^ GT0 b^ +

B-6
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