GEORGE C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA

Memorandum

R-ASTR-NG-157 WChubb/1w/876-7418

TO

See Distribution

DATE JAN 11 1965

FROM

Chief, Guidance and Control Systems Analysis Branch, R-ASTR-NG

SUBJECT

Action Item 10.6.2 of the Guidance and Control Implementation Sub-panel (Determining the Number of Roll Maneuvers that the S-IVB Auxiliary Propulsion System can Perform in Earth Orbit on Saturn IB and Saturn V)

- REFERENCES (a) Volume II"Dynamics and Control Working Group Meeting, October 6, 7, 1964" (Douglas Publication)
 - (b) Estimated Auxiliary Propulsion System (APS) Propellant Requirements and Roll Maneuver Capability for Saturn IB and Saturn V, R-ASTR-NG-159
 - (c) "Sixth Vehicle Mechanical Design Integration Working Group Meeting 25, 26 August 1964" (Douglas Publication)
- 1. Action Item 10.6.2 of the Guidance and Control Implementation Sub-panel requests that MSFC determine the number of roll maneuvers that the S-IVB Auxiliary Propulsion System can perform in earth orbit on Saturn IB and Saturn V. In order to comply with this request, it is necessary to make a detailed study of the estimated fuel requirements of the Saturn V/S-IVB and Saturn IB/S-IVB Auxiliary Propulsion Systems (APS). The required study has been performed by Douglas and by MSFC. Details of the Douglas study may be found in Reference (a) Details of the MSFC study may be found in Reference (b).
 - 2. A summary of the results of the Douglas and MSFC studies for Saturn IB/S-IVB and Saturn V/S-IVB are given in Figures 1 and 2 respectively. The main difference in the studies are as follows:
 - (a) Douglas assumed an uncoupled system in pitch, yaw and roll while MSFC assumed coupling in pitch, yaw and roll.
 - (b) Douglas assumed ±10% variation in vent thrust levels and perfect thrust vector alignment, MSFC assumed ±1.5% variation (Ref. (c)) in vent levels and ±1/2° thrust vector tolerance.
- (c) Douglas used various engine Specific Impulse (ISP) values, MSFG used only one (211).

R-ASTR-NG-157

DATE JAN 1 1 1965

SUBJECT: Action Item 10.6.2 of the Guidance and Control
Implementation Sub-panel (Determining the Number of Roll
Maneuvers that the S-IVB Auxiliary Propulsion System
can Perform in Earth Orbit on Saturn IB and Saturn V)

3. The results of both studies agree that, based on present knowledge of APS engine characteristics and anticipated vehicle disturbances, etc., the S-IVB Auxiliary Propulsion Systems can perform the desired 21 roll maneuvers (.5°/s) in both the Saturn V and Saturn IB configurations.

J. L. Mack

2 Enc: a/s

Approva1

Lor F. B. Moore,

Chief, Guidance and Control

Division

SUBJECT Action Item 10.6.2 of the Guidance and Control Implementation Sub-panel (Determining the Number of Roll Maneuvers that the S-IVB Auxiliary Propulsion System can Perform in

Earth Orbit on Saturn IB and Saturn V)

DATE JAN 1 1 1965

Distribution:

Mr. McNair, R-AERO-P

Mr. Ledford, R-AERO-P

Mr. Richard, R-ASTR-S

Mr. Hammers, R-ASTR-S

Mr. Coates, R-P&VE-P

Mr. Moore, R-ASTR-N

Mr. Gassaway, R-ASTR-N

Mr. Bridges, R-ASTR-NF

Mr. Kalange, R-ASTR-NF

Mr. Caudle, R-ASTR-NF

Mr. Tutt, R-ASTR-NF

Mr. Alcott, R-ASTR-NF

Mr. Vick, R-ASTR-NF Mr. Mack, R-ASTR-NG

Record copy, R-ASTR-NG

Mr. Blanton, R-ASTR-NGI

Mr. Hight, R-ASTR-NGI

Mr. Brooks, R-ASTR-NGI

Reference file, R-ASTR-X

Mr. Wood, R-ASTR-N

3

FIGURE 1

SATURN IB/S-IV APS PROPELLANT ALLOCATION

	l ISP				1bf/mod	ł
Circuit Process Section	OPERATION	DOUGLAS	MSFC	PROPELLANT DOUGLAS	MSFC	REMARKS
1.	a. S-IB/S-IVB Separation b. 230 ft # exhaust gas swirl effect c. Lateral CG offset (guidance	253	211	23.08	5.0 20.6 2.0	
anachachin	effect)					
2.	4 1/2 hour earth orbit (±1° deadband) a. Initial convergence b. LH ₂ blow-down c. LOX blow-down d. Attitude stabilization e. 21 maneuvers (.5°/s)	253 208 208 208 208	211	.85 6.73 1.09 8.34 21.00	31.93	The MSFC study included the coupled effect of all disturbances and thus the effect of each disturbance cannot be broken out separately.
3.	Total propellant required per module	A CONTRACTOR OF THE CONTRACTOR CO	Autor Librario (Sec. 1180 Ostociano) Carrida	61.09	59.53	Total propellant available is 61.06 lb

Enclosure 1

FIGURE 2 SATURN V/S-IVB APS PROPELLANT ALLOCATION

OPERATION	ISP Douglas MSFC		PROPELLANT 1bf/mod Douglas MSFC		REMARKS
1. J-2 First & second burn a. S-II/S-IVB separation b. 230 ft#				5.0	
exhaust gas swirl c. Lateral CG offset (guidance effect)	Y	*	Y	20.6	
ellect)	208	211	24.86		and Care Care Care Care Care Care Care Care
2. 4 1/2 hour earth orbit					
a. Ullage control (prior to continuous vent)	270		26.7	34.1	
b. Attitude stabili- zation	244	,	30.7		The MSFC study includes the coupled effect
c. 21 roll maneuvers (.5°/s)	272		27.3		of all disturb- ances and thus cannot be broken out separately.
d. Continuous LH ₂ vent	208		26.3	44.6	
e. Override LH	208		1.51	ľ	
f. Lox vent	208		3.51		
g. Ullage engine disturbance balance	208		3.0	ē	
h. Chilldown & restart	270	211	88.0	120.80	AMOUNTAINE MEDITAINE CHECKING WEST MEDITAINE DISSO SINGHICON CHECKING SINGHI

Page 1 of 2 pages Enclosure 2

FIGURE 2 (continued)

SATURN V/S-IVB APS PROPELLANT ALLOCATION

	OPERATION	ISP Douglas	MSFC	PROPELLANT Douglas	lbf/mod MSFC	REMARKS
3,	Translunar Coast a. Attitude Stabilization b. LOX tank			7.4 Negligib		
٠	blowdown c. LH ₂ tank blowdown	√ 208	211	8.61	7.9	
4.	Total Propellant required/module	ë.	N. 8 P	247.89	235.00	Total propellant available is ~260 lbf

Page 2 of 2 pages

Enclosure 2 (continued)