

Approved: \qquad Date:

MILTON B. TRAGESER, DIRECTOR APOLLO GUIDANCE AND NAVIGATION PROGRAM
Date: $\mathbb{Z} 2 / 10 r$ aNTRUM. INSTRUMENTATION LABORATORY

TYPE I DOCUMENT
APPROVED BY NASA

R-477 (Rev. 1)
(Unclassified Title)
GUIDANCE AND NA VIGA TION SYSTEM OPERA TIONS PLAN APOLLO MISSION 202

July 1965
John M. Dahlen
Albrecht Kosmala
Daniel J. Lickly
Raymond H. North
John T. Shillingford
Balraj Sokkappa

INSTRUMENTATION LABORATORY

CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

This document contains information affecting the national defens of the United States within the meaning of the lapighage Laws, Title 18, U.S.C., Sections 793 and 94 , the transmission or the revelation of whi h in any manner to an unauthorized person is prohibied by law.

TABLE OF CONTENTS

Section	
1	INTRODUCTION
2	G\&N FLIGHT OPERATIONS SUMMARY
3	LOGIC AND TIMELINE FOR SPACE -
	CRAFT AND MISSION CONTROL
4	GUIDANCE EQUATIONS
5	CONTROL DATA
6	G\&N ERROR ANALYSIS
7	G\&N CONFIGURATION
8	INSTRUMENTATION
9	G\&N PERFORMANCE ANALYSIS
10	DISTRIBUTION

Alteration of technical content since R-477 January 1965 is indicated by "(Rev. 1-7/65)" at bottom of page.

1. INTRODUCTION

1.1 Purpose

This plan governs the operation of the Guidance and Navigation System and defines its functional interface with the spacecraft and ground support systems on Mission 202.

1.2 Authority

This plan constitutes a control document to govern the implementation of
(1) Detailed G\&N flight test objectives
(2) G\&N interfaces with the spacecraft and launch vehicle
(3) Digital UPLINK to the Apollo Guidance Computer (AGC)
(4) AGC logic and timeline for spacecraft control*
(5) Guidance and navigation equations ${ }^{\text {i* }}$
(6) Digital DOWNLINK from the AGC
(7) G\&N System configuration

Revisions to this plan which reflect changes in control items (1) through (7) require approval of the NASA Configuration Control Board.

This plan also constitutes an information document to define:
(1) Trajectory uncertainties due to $G \& N$ component errors (Error Analysis)
(2) Trajectory deviations due to spacecraft performance variations and launch vehicle cut-off dispersions (Performance Analysis)
(3) G\&N instrumentation (PCM telemetry and on-board recording) exclusive of AGC DOWNLINK
(4) External tracking data

Revisions to this plan which reflect changes in information items (1) through (4) will not require approval of the NASA CCB.

[^0]
2. G\&N FLIGHT OPERA TIONS SUMMARY

This section defines the mission plan as originated by NASA and summarizes the manner in which the $G \& N$ system will operate to implement this plan as developed by MIT in cooperation with NASA and NAA/S\&ID. This section is divided into three parts:

Par 2.1 Test Objectives
Par 2. 2 Spacecraft and Mission Control
Par 2. 3 Mission Description

2.1 Test Objectives

2.1.1 Spacecraft Test Objectives which require proper operation of G\&N System:

1) Evaluate the thermal performance of the CM heat shieldablator during a high heat load, long duration entry.
2) Demonstrate $C M$ adequacy for manned entry from low earth orbit.
3) Determine nominal mode separation characteristics of the CSM from the SIVB and the CM from the SM.
4) Demonstrate multiple SPS restart (after the second major burn, two 3 second burns with 10 second intervals between burns are required).
5) Determine performance of CSM systems: G\&N, SCS, ECS (pressure and temperature control), EPS, RCS and Telecommunications.

2.1.2 Detailed G\&N Test Objectives

1) Evaluate performance of the following integrated G\&N/Spacecraft modes of operation:
a. Boost Monitor
b. Thrust Vector Control
c. Orbit Attitude Control
d. Lift Vector Control
e. Unmanned Spacecraft Control
2) Determine accuracy of $G \& N$ system in computation of spacecraft position and velocity during all mission phases.

2. 2 Spacecraft \& Mission Control

2.2.1 Spacecraft Control

Spacecraft Control is implemented by the Apollo Guidance Computer (AGC) provided by MIT and the Mission Control Programmer (MCP) provided by NAA/S\&ID. Basically, the MCP performs those non-guidance functions that would otherwise be performed by the crew, while the AGC initiates major modes which are dependent upon trajectory or guidance functions.

The function interface between the AGC and the MCP is complex and its description is deferred until Section 3. The electrical interface is simple,
being relay contacts in the AGC DSKY wired to the MCP, and is described in ICD MH01-01200-216. The following AGC output discrete signals are provided:

1) G\&N ATT. CONTR. MODE SELECT
2) G\&N ENTRY MODE SELECT
3) G\&N $\triangle V$ MODE SELECT
4) + X TRANSLATION ON/OFF
5) CM/SM SEPARATION COMMAND
6) FDAI A LIGN
7) T/C ANTENNA SWITCH
8) G\&N FAIL INDICA TION
9) 0.05 g INDICA TION
10) GIMBAL MOTOR POWER ON/OFF
11) BACKUP ABORT COMMAND

2.2.2 Mission Control

Mission Control is provided by the Houston Mission Control Center (MCC-H) via the Digital Command System (DCS), which has many discrete inputs to the spacecraft and an UPLINK to the AGC. The discrete commands to the spacecraft and the AGC UPLINK are described in Section 3.

The AGC UPLINK provides MCC-H with the capability to enter the AGC with any instruction or data which can be entered by the crew via the DSKY keyboard. It is specifically planned to use this link to backup the LIFTOFF and SIVB/CSM SEPARATION inputs, signal boost abort and update the orbit parameters in erasable memory during coast with more accurate data if it is available from ground tracking.

2.2.3 Guidance Errors

The performance of the G\&N system for mission 202 has been estimated assuming that no navigation data is inserted via the AGC UPLINK.

The most significant G\&N error is that error in the critical path angle at entry which is estimated to be 0.165 degree on a one sigma basis. The next most significant error is manifested in the CEP at splash which is estimated to be $15.6 \mathrm{n} . \mathrm{m}$. A complete breakdown of G\&N errors is given in Section 6.

2.3 Mission Description

The purpose of this section is to describe G\&N functions during each mission phase. Note that these functions are described in greater detail, sufficient to specify the AGC program, in Section 3.

The reference trajectory is defined in Section 5 in sufficient detail to satisfy MIT's requirements for development of guidance equations, spacecraft control logic and determination of flight environment.

$$
\begin{gathered}
2-2 \\
\text { (Rev. } 1-7 / 65 \text {) }
\end{gathered}
$$

Section 9 presents those path and attitude characteristics resulting from guidance control which are believed to have significant effects on other spacecraft equipment and ground support systems.

The overall mission profile is illustrated in Fig. 5-1 and Table 5-1 and might well be examined at this point.

2.3.1 Pre-Launch

During this phase the IMU stable member is held at a fixed orientation with respect to the earth. The X PIPA input axis is held to the local vertical (up) by torquing the stable member about Y and Z in response to Y and Z PIPA outputs. Azimuth orientation about the X axis is held by a gyro-compassing loop such that the Z PIPA axis points downrange at an azimuth of 104.9901 degrees East of True North. Initial azimuth is determined by tracking a ground target with the G\&N Sextant at $T_{0}-13.5$ hours. Upon receipt of the GUIDANCE RELEASE Signal irom the Saiurni. U. the stable member is released to maintain a fixed orientation in inertial space for the remainder of the mission. In this manner the Saturn and Apollo IMU stable members retain a fixed relative orientation. Also, at the time of GUIDANCE
RELEASE, the G\&N system starts its computation of position and velocity, which continues until first SPS burn cut-off.

2.3. 2 SI Boost

The boost trajectory is described in Fig. 5-2. Upon receipt of the LIFT OFF signal from the Saturn I. U., 5 seconds after GUIDANCE RELEASE, the AGC will command the CDUs to the time history of gimbal angles associated with the nominal SI attitude polynomials. The GUIDANCE RELEASE signal is backed up by the LIFTOFF signal. The CDU outputs after resolution will then represent vehicle attitude errors in spacecraft axes and will be displayed on the FDAI and telemetered to the ground. This SI attitude monitor is a required element of the launch vehicle malfunction detection scheme, and, in association with computed position and velocity, constitute the Boost Monitor data provided by the G\&N system during this period.

2. 3. 3 Staging, Coast and SIVB Boost

The G\&N system will not have the capability to control the SIVB. The CDUs will be held until LET jetison at which time they will be switched to the Fine Align Mode. After LET jetison the G\&N system will monitor IMU gimbal angles to detect tumbling and will compute the free-fall time to entry interface altitude ($400,000 \mathrm{ft}$.) from present position and velocity. These quantities are used in the Abort Logic and, in association with computed position and velocity, constitute the Boost Monitor data provided by the G\&N system during this period.

2.3.4 Aborts from SIVB Boost

Aborts from the boost phase are mechanized in the same way as manned flight aborts whenever possible. G\&N control of CSM aborts from SIVB boost is enabled by the MCP 2.5 seconds after start of the MCP SIVB/CSM Separation sequence. Upon receipt of the SIVB/CSM SEPARATION signal from the Mission Event Sequence Controller (MESC) the AGC determines a sequence of events using the control logic given in Section 3. Briefly, the sequence of events is derived from three tests:
A. Has the AGC received the ABORT signal from the ground via the UPLINK?
B. Do the spacecraft body rates exceed the tumbling threshold?
C. Does the free-fall time to entry interface altitude fall below the abort T_{ff} criterion of 160 seconds?

For NO ABORT and NO TUMBLING, the AGC commands a normal sequence and SPS burn to the nominal First Burn aim point as described more fully below.

If the ABORT signal is received and there is NO TUMBLING, the AGC commands an abort separation sequence followed by an SPS abort burn to the downrange Atlantic Recovery Point. Landing area control capability is illustrated on Fig. 5-1 which shows a continuous recovery area and the selected downrange Atlantic Recovery Point. The G\&N system will control the thrust and lift vectors to achieve this splash point with the constraint that the spacecraft X axis be directed 35 degrees above the visible horizon during thrusting. A 10 g limit is incorporated in the entry program to minimize excessive g loads.

If the abort occurs too early in the boost phase or at an "unsafe" flight path angle, the selected downrange Atlantic Recovery Point cannot be reached because either (1) there is insufficient fuel in the SM tanks, or (2) the booster cut-off conditions are such that the spacecraft would dip into the atmosphere while thrusting. These two conditions are avoided by test C which is mechanized as an interrupt. If the free-fall time falls below 160 seconds so that test C results in a YES answer, the AGC will command engine shutdown and a CSM attitude maneuver to the CM/SM separation attitude. When the free-fall time to entry interface altitude falls below 85 seconds the AGC will command CM/SM SEPARATION and CM orientation to the aerodynamic trim attitude. The lift vector will be up during the entry phase. Note that "early" aborts result in splash points within the continuous recovery area.

If TUMBLING is detected the AGC will start the SPS 3.0 seconds after receipt of the SIVB/CSM SEPARATION signal. This will result in stabilization by the SCS rate loops, and SPS cutoff by the AGC when it senses that spacecraft body rates have dropped below the tumbling threshold. Following SPS shutdown the AGC will estimate the maneuver
(Rev. $1-7 / 65$)
time, T_{M}, required to orient to the abort SPS burn attitude (X axis 35 degrees above the visible horizon). If the free-fall time to entry interface altitude is greater than $\mathrm{T}_{\mathrm{M}}+160$, the AGC will command the CSM to the abort SPS burn attitude, command engine on at T_{M} and guide to the downrange Atlantic Recovery area. Again as in the non-tumbling abort case the engine will be shutdown if freefall time drops below 160 seconds. If, after tumbling-arrest burn shutdown, the free-fall time is less than $T_{M}+160$, the AGC will command the CSM to the CM/SM SEPARA TION attitude. Abort area control is illustrated in Fig. 9-4.

2.3.5 CSM/SIVB Separation

There are two CSM/SIVB separation sequences, a normal sequence and an abort sequence used if tumbling or the abort signal is present. In the normal sequence the SPS is ignited by the AGC a fixed time delay of 12.7 seconds after it receives the CSM/SIVB SEPA RATION signal. This time delay permits the RCS ullage thrust to build up enough separation distance to prevent the SPS from damaging the SIVB or upsetting its attitude. On the other hand the time delay is not so long as to cause an unjustified ΔV penalty. After separation the AGC computes the initial SPS thrust attitude and commands the required attitude maneuver. If the spacecraft is not completely oriented at the end of the fixed time delay, the SPS is started anyway and orientation is completed during the first few seconds of the burn. Only when large rates and/or large negative pitch attitude dispersions exist at SIVB cut-off will the fixed time delay be too short to permit completion of spacecraft orientation before SPS ignition.

In the abort separation sequence, the SPS is ignited by the AGC a time delay of 3.0 seconds after it receives the CSM/SIVB SEPARATION signal. This time delay is made as short as possible to minimize the probability of CSM-SIVB recontact or loss of IMU reference in the tumbling case and to get the CSM away from the SIVB as quickly as possible in any abort case.

2.3.6 SPS First Burn

first burn thrust will be controlled by the G\&N system to achieve the reference trajectory major axis and eccentricity at cut-off. The trajectory plane at cut-off will include the Pacific Recovery Point at nominal splash time. The steer law used in this maneuver is given in Section 4, where are found all the CSM guidance equations for Mission 202. It will be noted that the universal cross product steering law for Apollo is used whenever possible, specifically, for this mission, in all cases except tumbling arrest and the short third and fourth burns.

2.3.7 Coast Phase, First Burn Cut-off to Second Burn Ignition

Following first burn cut-off the AGC will compute and command a spacecraft attitude maneuver to align the X -axis with the local vertical, nose down, and the Y -axis with the angular momentum vector $\mathrm{R} * \mathrm{~V}$.

When the commanded inner gimbal angle reaches -259.55 ± 0.25 degrees the AGC will command FDAI ALIGN for 10 seconds thereby resetting the backup attitude reference to correct for its accumulated drift error. At this time, nominally 300.0 seconds after 1 st SPS burn cutoff, the outer gimbal angle will be $180.0^{\circ} \pm 1.0^{\circ}$ and the middle gimbal angle will be $0.0^{\circ} \pm 1.0^{\circ}$.

After a time interval of 2037.2 secs. from first burn cut-off the vehicle attitude in tracking the local vertical will come closest, in the nominal case, to the second burn ignition attitude. At this time the local vertical mode will be terminated The AGC will then establish the second burn ignition point by a process of precision numerical integration and will compute the second burn ignition attitude. The AGC will then command the vehicle to this attitude, which it will hold inertially until ignition.

2. 3. 8 Second, Third and Fourth SPS Burns

Second burn ignition occurs after a fixed time delay of 3163.7 seconds from first burn cut-off. The AGC will command + X TRANSLATION 30 seconds before ignition to provide ullage. Thrust is controlled by the G\&N system to achieve the reference trajectory major axis and eccentricity at cut-off, and a trajectory plane which includes the Pacific Recovery Point at nominal splash time.

Second burn is terminated by the AGC six seconds before the required velocity is attained. The spacecraft attitude at this time will be held until fourth burn cutoff. During second burn the $G \& N$ attitude error signal will develop a bias proportional to the c.g. shift from the engine gimbal trim position set in prior to second burn ignition. After second burn cutoff the CDUs will be moved off from their position at cutoff by a stored estimate of this bias in order to minimize the attitude transient after engine shutdown.

The AGC will start and shutdown the SPS on a time basis so that the last two burns are each of 3 seconds duration and so that the two short coast periods are each of 10 seconds duration. The AGC will control the $+X$ TRANSLATION signal so that the RCS will provide ullage thrust as well as attitude control during the 10 -second coast periods. Note that theSCS disables +X translation during SPS firing.

2.3.9 Pre-Entry Sequence

The fourth burn cutoff attitude is held until the free-fall time to entry interface altitude drops below the normal T_{f} criterion of 160 seconds, when the G\&N system will start pitching the spacecraft up to the CM/SM separation attitude $(+\mathrm{X}$ axis up in the trajectory plane and tipped forward in the direction of motion 60 degrees above the velocity vector). When the free-fall time drops below 85 seconds the AGC will command CM/SM SEPARATION. After a 7 -second time delay to allow for separation and stabilization, the G\&N system will start orienting the CM to the entry attitude. The CM will then be at the aerodynamic trim angle of attack with roll angle for down lift.

2.3.10 Entry

The velocity and critical flight path angle at entry are directly controlled by the G\&N system during the second, third and fourth burns. The entry guidance equations, which are given in Section 4, are designed to provide a trajectory which will satisfy heat shield test objectives while controlling the roll angle so as to splash at the designated Pacific Recovery Point.

2.3.11 Navigation Update

The ground will compare radar tracking data with the AGC state vector transmitted via DOWNLINK after first SPS burn cutoff, and, if necessary, update the AGC during the coast phase. The update is initiated by a Digital Command System message to "accept a navigation update". Upon verification via DOWNLINK that the AGC is ready to receive the data, the DCS loads position, velocity, and time for use in second SPS burn guidance. After verification via DOWNLINK that the data are correctly loaded the DCS will signal the AGC to use the new data. (see Section 3.1.2)

3. LOGIC AND TIMELINE FOR SPACECRAFT AND MISSION CONTROL

3.1 Interfaces, Ground Commands and Constraints

3.1.1 G\&N Interface with Spacecraft

The following interfaces will be effective on Mission 202/AF 011/AGC 017:
3.1.1.1 AGC Outputs to MCP

This interface is documented in ICD No. MH01-01200-216 and provides the following signals:
(1) G\&N AT'TITUDE CONTROL MODE SELECT
(2) G\&N ENTRY MODE SELECT
(3) G\&N $\triangle V$ MODE SELECT
(4) + X TRANSLATION ON/OFF

There is a requirement for this command (over and above the translation requirement) to nrovide for terminotion of nimoct Ullage mode.

At SIVB/CSM Separation the AGC must command " +X TRANSLATION ON" to key the MCP to terminate the "SIVB/CSM Separate" command to the MESC, which in turn deactivates the MESC-controlled "DIRECT ULLAGE" command. The MESC will not terminate direct ullage earlier than 2.5 sec after receipt of "SIVB/CSM Separate" nor continue it longer than 12 sec regardless of whether the SIVB/CSM Separate command is terminated or not.
(5) CM/SM SEPARATION COMMAND
(6) FDAI ALIGN

This signal brings the backup attitude reference system (BMAG's caged to AGCU) to a zero reference determined by the current vehicle attitude. It is initiated first during the prelaunch countdown.

It is again initiated after the first SPS burn when the CSM has been commanded to the local vertical and the commanded inner gimbal angle reaches $-259.55^{\circ} \pm 0.25^{\circ}$. This will result in FDAI A LIGN when the spacecraft is within 1 degree of a prescribed inertial orientation.

When initiated, the signal must be continued for 10 sec . (7) T/C ANTENNA SWITCH

The AGC has the capability to switch the T/C Antennas although the requirements for this function have not yet been defined and thus not incorporated in AGC programming.

(8) G\&N FAIL INDICATION

This signal is generated by the G\&N Failure Detection Module. This module is mounted at the rear of the main DSKY and is electrically interposed between the NAA harness to the DSKY and the DSKY itself.

The module is composed of two sections:
(1) ELECTRONICS SECTION - Monitors bit 4 of register OUT 1. This bit. is under the control of the AGC UPLINK and DOWNLINK programs and is used to control the TELEMETRY ALARM light in the NAV DSKY. Superimposed on the AGC UPLINK and DOWNLINK program's control of bit 4 is control by the NIGHT WATCHMAN program. This program briefly complements the existing state of bit 4 and then restores its initial condition.

The ELECTRONICS SECTION of the G\&N Failure Detection Module monitors only the brief complement (or lack of complement) of bit 4. If the complement pulse is lacking for more than $1.6 \mathrm{sec}\binom{-0.6}{+1.6}$ the ELECTRONICS SECTION generates the G\&N FAIL INDICATION which is a contact closure to the MCP and G\&N ERROR LIGHT, and a 5 VDC level to the S/C TELEMETRY SYSTEM (A TM discrete as distinguished from AGC Digital Downlink). Should the complement pulse be restored the G\&N FAIL INDICATION is removed.
(2) WIRING JUNCTION BOX
(a) Routes the G\&N FAIL INDICATION to the NAA harness for the MCP, S/C TELEMETRY SYSTEM and the G\&N ERROR LIGHT in the CAUTION and WARNING PANEL.
(b) Routes all remaining wires of the DSKY interface directly through the module.
The logic of the generation of the G\&N FAIL INDICATION is thus under the control of the "Night Watchman's Alarm" program. This program monitors $G \& N$ activity in two phases completing a a monitor cycle in 480 ms .

The first phase involves the examination of an error register (OLDERR). Should this register indicate an error present, the complement pulse would not be generated and a G\&N FAIL INDICATION would result. The error register will include the following error indications;
(1) The failure of an AGC RESTART sequence. This sequence is autornatically done when the AGC's normal sequences have been momentarily interrupted by failures such as TC TRAP, PARITY FAIL or a momentary loss of PRIMARY POWER. The RESTART sequence will normally perform a limited recycle of the interrupted sequences restoring the initial conditions within milliseconds.
(2) The receipt by the AGC of an indication from the Inertial Subsystem error detection circuitry of an IMU FAIL or
ACCEL FAIL. Each of these fail indications is a summation of several relevant analog parameters, any one of which will cause a fail indication if exceeding the following criteria.
(a) IMU FAIL

IG Servo Error - greater than 2.9 mr for 2 sec
MG Servo Error - greater than 2.9 mr for 2 sec
OG Servo Error - greater than 2.9 mr for 2 sec 3200 cps loss - decrease to 50% of normal level wheel supply loss - decrease to 50% of normal level The receipt of this fail indication is ignored by the AGC program if the G\&N system is in the Coarse Align Mode. In this mode (used only during pre-
launch alignment for Mission 202) the servo errors normally exceed the criteria above.
(b) ACCEL FAIL

X PIPA Error - greater than 27 mr for 5 sec
Y PIPA Error - greater than 27 mr for 5 sec
Z PIPA Error - greater than 27 mr for 5 sec
The receipt of this fail indication is ignored by the AGC program during the COAST Phase (start of CSMI orientation to local vertical until termination of local vertical phase).

3-3
(R(v. 1-7/65)

The second phase excercises the AGC executive programs by a request for a new job (NEWJOB) via a periodic programmed interrupt (T4RUPT) with a high job priority (36 -the highest available with the exception of an alarm priority). This new job examines bit 4 of register OUT 1 and complements it as described above. Should the executive routines or the interrupt processes be disabled (as, for instance, if an AGC program had become trapped in a loop) the NEWJOB request would not be honored, the complement pulse would not be generated, and a G\&N FAIL INDICA TION would result.

The G\&N FAIL INDICATION can also be sent to the MCP via the Up Data Link (UDL) based upon ground assessment of tracking or telemetry data. Upon receipt of G\&N FAIL INDICATION the MCP immediately disables all mode commands from the AGC and commands the SCS system to SCS $\triangle \mathrm{V}$ MODE. The attitude reference becomes the BMAG's. The SCS system is now no longer responsive to any G\&N-originated attitude signals, attitude error signals, engine on-off commands (disabled by removal of $\Delta \mathrm{V}$ mode), or AGC commands via the MCP.

The MCP can be reset to retransfer S / C control to $\mathrm{G} \& N$; however, this command must come from the ground. (9) . 05 G INDICATION

G\&N will sense. 05G with the PIPA's, give this indication to the SCS (via the MCP) and the SCS system will inhibit pitch and yaw attitude control on the assumption that these axes will be stabilized by aerodynamic forces. Should the G\&N . 05G indication not be received by the MCP/SCS this attitude control would not be inhibited, and if sufficient pitch and yaw attitude errors are generated, RCS fuel would be wasted throughout entry. The G\&N entry program will attempt to null the pitch and yaw error signals during entry based on its estimation of the pitch and yaw trim angles of attack. MIT estimates that the resulting pitch and yaw attitude errors will not exceed the deadbands in the SCS. Should this be incorrect RCS fuel loss will occur. The G\&N 0.05 G indication is used within the re-entry program, however, so should this function be backed up by a redundant CM sensor or by the UDL signal, no AGC confusion should result.

(10) GIMBAL MOTOR POWER ON/OFF

The AGC must terminate SPS GIMBAL MOTOR POWER in order to key the MCP to select the appropriate SPS motor gimbal trim inputs. The MCP does this sequentially and therefore the AGC must terminate this command only once after 1st SPS burn, (to select trim position for 2 nd burn) and once after 2nd SPS burn (to select trim position for 3rd burning). The trim position for the 1 st burn is selected by MCP upon keying from the SIVB/ CSM Separate Command. The 3rd burn trim position is also satisfactory for the 4th burn.
(11) BACKUP ABORT COMMAND

This is a relay identical to those used in (1) through (10) and is identically wired to the MIT/NAA interface to provide a Luckup or altomate about aignol to the Mon.

3.1.1.1.1 Detailed Interface Operation

Certain additional facts are pertinent to the use and compret.ension of the AGC/MCP interface:
(1) The AGC must not command more than one SCS mode simultaneously. This requires termination of each mode before commanding the next; 250 ms has been established as sufficient time interval between termination and selection.
(2) The response of the SCS system to the commands and/or indication signals of the AGC via the MCP are subject to the arming of these command/indications by the MCP. Presently the arming logic for the G\&N/MCP interface is as shown in Fig. 3-1.
(3) In all cases the MCP initiates the SIVB/CSM Separation Sequence. For normal cases its action is keyed upon notification from the Saturn I. U. For boost aborts the ground or the AGC BACKUP A BORT SIGNAL must command the MCP to start the sequence.
3.1.1.2 Additional Interfaces

Pertinent G\&N electrical signal interfaces with other S / C subsystems are described in detail in the ICD's below.

ICD NO.	TITLE	SIGNALS INCLUDED
MH01 01224-216	Attitude Error Signals	Pitch Error (Body \& Body Offset)
		Yaw Error (Body)
		Yaw Error (Body Offset)
	Roll Error (Body)	
		Roll Error (Body Offset)
		Error Signal Reference
	(all signals go from G\&N to SCS)	

(Rev. 1 -7/65)

ICD NO.
TITLE

MH01 01225-216

MH01 01238-216

MH01 01226-216

MH01 01228-216

MH01 01236-200

MH01 01278-216
MH01 01280-216

Total Attitude Signals

Engine On Signal to SCS

Central Timing Equipment Synch. Pulse
G\&N DATA Transmission to Operational PCM Telemetry Equipment
ACE Uplink/Spacecraft Digital Up-Data Link to AGC

Launch Vehicle to G\&N Interfaces (Block I Series 100)
Vehicle Separation Signals to AGC (Block I Series 100)

SIGNALS INCLUDED
SIN AIG
COS AIG
SIN AMG
COS AMG
SIN AOG
COS AOG
Attitude Signal Reference
(all signals go from G\&N to SCS)
Engine ON/OFF
(AGC command to SCS system - not via MCP)
AGC synch. pulse to PCM telemetry system
G\&N analog data and AGC serial digital data (AGC Downlink) to PCM (In cludes flight recorder data).
Coded data input to AGC from ground

1. Liftoff
2. Guidance Reference Release
3. CSM/SIVB Separate

Fig. 3-1 Arming Logic for G\&N/MCP Interface.

$$
3-7
$$

3.1.2 Ground Commands

3.1.2.1 Digital UPLINK to AGC

By means of the AGC UPLINK, the ground can insert data or instruct the AGC in the same manner normally performed by the crew using the DSKY Keyboard. The AGC will be programmed to accept the following UPLINK inputs:
(1) ABORT INDICATION (required for abort logic as described earlier)
(2) LIFTOFF (backup to discrete input)
(3) SIVB/CSM SEPARATION (backup to discrete input)
(4) POSITION and VELOCITY data (provides ground capability to update navigation data in the AGC).
(5) AGC CLOCK ALIGNMENT
(6) SPS GIMBAL MOTOR POWER ON/OFF (for only prelaunch control of gimbal motors).
(7) FDAI ALIGN (primarily for prelaunch use).

Operational procedures governing the use of the se Uplink inputs must be developed to ensure proper operation within program constraints.

All information received by the AGC from the Uplink is in the form of keyboard characters. Each character transmitted to the AGC is triply redundant. Thus, if C is the 5 -bit character code, then the 16 -bit message has the form:

$1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$

where \bar{C} denotes the bit-by-bit complement of C. To these 16 bits of information the ground adds a 3-bit code specifiying which system aboard the spacecraft is to be the final recipient of the data and a 3-bit code indicating which spacecraft should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5-bit code for transmission.) If the message is received and successfully decoded, the receiver onboard will send back an 8-bit "message accepted pulse" to the ground and shift the original 16 bits to the AGC ($1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$).

All uplink words given in this section are in the form trans mitted from the uplink receiver to the AGC. Therefore they do not contain the vehicle or sub-system addresses added on by the ground facilities. For the purpose of this section, the following definitions hold:

1. 1 uplink word = 1 character
2. 5 characters or uplink words = contents of one AGC register
3. 1 downlink word $=$ verification of 1 character or a display change.

3.1.2.1.1 ABORT INDICATION - to send an abort message to

 the AGC, the following special word should be sent via the uplink.| Binary Uplink Word | Equivalent Keyboard Character |
| :---: | :---: |
| $\left(\begin{array}{l}1 \mathrm{C} \\ \overline{\mathrm{C}} \\ \mathrm{C}\end{array}\right)$ | (C) |

1100110110010011 ABORT
3.1.2.1.2 LIFTOFF - to send the backupliftoff discrete to the AGC, the following 6 words should be sent via the uplink.

1	10001	01110	10001	VERB
1	00111	11000	00111	7
1	00101	11010	00101	5
1	11100	00011	11100	ENTER
1	00011	11100	00011	3
1	11100	00011	11100	ENTER

3.1.2.1.3 SIVB/CSM SEPARATION - to send this backup separation discrete to the AGC, the following 6 words should be sent via the uplink.

1100010111010001
1001111100000111
1001011101000101
1111000001111100
1001001101100100
1111000001111100

VERB
7
5
ENTER
4
ENTER
3.1.2.1.4 NAVIGATION UPDATE - to begin a navigation update on flight 202 prior to SPS 2 burn the following 4 words should be sent via uplink.

1100010111010001
VERB
1001111100000111
7
1001101100100110
1111000001111100
The ground station should then await confirmation via Downlink that the AGC is in Major Mode 27.

In Major Mode 27 the AGC will accept a complete ground navigation update in the format to be described below.
(Rev. 1-7/65)

The data itself will take the form of three (3) double precision components of position, three (3) double precision components of velocity, and double precision time. The position and velocity components should be given in stable member co-ordinates (see Sec. 2.3.1) and the time should be in the time of the "fix" referenced to AGC CLOCK ZERO. The data must be sent in the following sequence:

XXXXX	(most sig. part of X position). . .	ENTER
XXXXX	(least sig. part of X position)....	ENTER
XXXXX	(most sig. part of Y position)....	ENTER
XXXXX	(least sig. part of Y position).	ENTER
XXXXX	(most sig. part of Z position).	ENTER
XXXXX	(least sig. part of Z position).	ENTER
XXXXX	(most sig. part of X velocity)....	ENTER
XXXXX	(least sig. part of X velocity)....	ENTER
XXXXX	(most sig. part of Y velocity). . .	ENTER
XXXXX	(least sig. part of Y velocity)....	ENTER
XXXXX	(most sig. part of Z velocity)....	ENTER
XXXXX	(least sig. part of Z velocity)....	ENTER
XXXXX	(most sig. part of time from AGC clock zero)	ENTER
XXXXX	(least sig, part of time from AGC clock zero)............	ENTER

where each " X " and "ENTER" above represents an uplink word. If, for some reason, the ground wishes to resend any 5 uplink word group before the ENTER associated with that group has been transmitted, the following "CLEAR" word should be sent

$$
1111100000111110
$$

and the 5 word group retransmitted.
If the ground station wishes to terminate the load before the ENTER associated with the least sig. part of time has been sent, the following 4 uplink words must be sent

Binary UPLINK WORD ($1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$)

1100010111010001
1000111110000011
1001001101100100
1111000001111100

Equivalent Keyboard Character
(C)

VERB
3
4
ENTER
which will return the AGC to the mode it was in before the update was initiated.
(Rev. 1-7/65)

After the ENTER associated with the least sig. part of time, the ground station must verify via Downlink that the AGC has correctly received the navigational update before sending another ENTER to signal the AGC that it can use the data in guidance computations.

This entire load must be completed at least 50 sec ${ }^{*}$ before SPS 2 ignition.

If, during the final verification period after the ENTER associated with the least sig. part of time, it is found that the data in the AGCare notcorrect, the ground station may change the load in either of the following ways.

1) If only a few parts must be changed the ground station should send

Binary Uplink Work
($1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$)
1100010111010001
1000111110000011
1001001101100100
1111000001111100

Equivalent Keyboard Character
(C)

VERB

3
4
ENTER
followed by the relative address of the part to be changed, these addresses run in order from 1 to $16{ }_{8}$ for the 14 parts of the load shown above; i.e. if the least sig. part of the Y velocity were to be changed VERB 34 ENTER should be followed by

1000011111000001
1
1000101110100010
2
1111000001111100
ENTER
then the 5 uplink words corresponding to the part to be changed are sent followed by an ENTER. This procedure, VERB 34 ENTER etc., must be repeated for each part to be changed. When all changes are made and verified via Downlink an additional ENTER must be sent to signal the AGC that it can use the data.
2) If many parts must be reloaded, the ground station may choose to start the load from the beginning. To do

[^1]this during the final verification period after the ENTER associated with the least sig. part of time the ground station must send VERB 34 ENTER followed by another VERB 34 ENTER which will terminate the load and allow the $A G C$ to return to its pre-update condition.

If the AGC receives an improperly coded word from the uplink receiver during the load (not $C \overline{\mathrm{C}} \mathrm{C}$) it will turn on bit 4 of OUT 1 which is transmitted via Downlink (see Sec. 8.1.1). When this occurs the ground station should send the following 3 uplink words:
1000000000000000
(to clear uplink buffer)
1100100110110010
ERROR RESET
1111100000111110
CLEAR

The ground station should then begin loading with the first word of the 5 word group it was sending when the alarm condition occured.

If insufficient time remains to SPS $2+X$ translation, the AGC will change its major mode and proceed with the internally computed data.

The scale factors for AGC navigational updating are:

position	meters $/ 2^{24}$
velocity	$($ meters $/ \mathrm{C} . \mathrm{S}.) / 2^{7}$
"fix" time	C.S. $/ 2^{28}$
$(1 \mathrm{C} . \mathrm{S} .=.01 \mathrm{sec})$	

The AGC is a fixed pt. machine with the pt. just to the left of the most significant bit.

The scaling indicated above will be sufficient to force the 3 components of position and the 3 components of velocity and time to numbers less than one.

To form the double precision quantities ready for coding and transmission the scaled magnitudes of time and each component of position and velocity should be expressed as two binary words as follows:

$$
\begin{aligned}
& 1^{\text {st }} \text { word } \mathrm{O} \quad \mathrm{X} \\
& 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9} 2^{-10_{2}-11_{2}-12_{2}-13_{2}-14} \\
& 2^{\text {nd }} \text { word } \\
& \begin{array}{r}
\mathrm{X} \\
\mathrm{X}
\end{array} \mathrm{X} \quad \mathrm{X}
\end{aligned}
$$

(Rev. 1-7/65)

Each X above represents a binary bit of the appropriate magnitude, the place value of which is indicated below the corresponding X. Once the magnitude of the component is accounted for in the above 28 X's, the sign must be considered.

If the component is positive, the words remain as formed; if the component is negative, the "1's complement" of the 2 words is used (all 1's are replaced by 0 's and all 0 's by 1 's).

The first word is then transformed into a 5 character octal word. The first character is the octal equivalent of the first three bits, the second character is the octal equivalont of the novt three hits: etc. This word is referred to as the "most significant part" of data in the text above. Similarly the second word is transformed into a 5 character octal word which is the "least significant part" of data.

Each character must now be coded into a 16 bit uplink word for transmission. A table of the characters and their uplink word follows.
3.1.2.1.5 AGC CLOCK ALIGN -to align the AGC clock two procedures are required. To set the AGC clock to a specific value, the following uplink words must be sent.

Binary Uplink Word $(1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C})$	Equivalent Keyboard Character (C)
1100010111010001	VERB
1000101110100010	2
1000011111000001	1
1	111110000011111
1000011111000001	NOUN
1	001101100100110
1	111000001111100

This must be followed by \pm XXXXX ENTER where each X represents one decimal digit, properly coded (see Table 1) and the total number represents the time in C. S. that will be set into the AGC clock. If it is required to zero the clock, all the X 's should be zeros.

TABLE 1

Character	Uplink Word
0	1100000111110000
1	1000011111000001
2	1000101110100010
3	1000111110000011
4	1001001101100100
5	1001011101000101
6	1001101100100110
7	1001111100000111
8	1010001011101000
9	1010011011001001
VERB	1100010111010001
NOUN	1111110000011111
ENTER	1111000001111100
ERROR RESET	1100100110110010
CLEAR	1111100000111110
KEY RELEASE	1110010011011001
+	1110100010111010
-	1110110010011011
ABORT	1100110110010011

NOTE: It is good operation procedure to end every uplink message with a KEY RELEASE.

Since there are uncertainties in time of transmission, etc., it is anticipated that a time increment may be needed. To increment the AGC clock, the following uplink words must be sent.

Binary Uplink Word $\ldots\left(1 \mathrm{C} \overline{\mathrm{C}}_{\mathrm{C}}\right)$

1100010111010001
1001011101000101
1001011101000101
1111000001111100

Equivalent Keyboard Character (C)

VERB
5
5
ENTER

This must be followed by \pm XXXXX ENTER where the total number represents the time increment in $C . S$.

The AGC must already have the inertial co-ordinates of the launch pad at some reference time, TEPOCH, wired in fixed memory. Also the difference between TEPOCH and the clock zero time, ΔT, must have been loaded in erasable memory. The diagram below shows the relationship of the different times.

The following restraints must be observed on the magnitudes of the times shown above.

1) $\mid \Delta T+A G C$ clock \mid at guidance reference release must be less than $2^{28} \mathrm{C}$.S. since the AGC must use this time to determine the inertial platform coordinates at guidance reference release.
2) |AGC clock | during the flight must be less than 2^{28} C.S. to prevent overflow.
3.1.2.1.6 SPS GIMBAL MOTOR POWER ON/OFF - To turn the SPS Gimbal Motors on or off the following message must be sent

V75E
XE $\left\{\begin{array}{c}\text { Refer to TABLE I } \\ \text { for Codes }\end{array}\right\}$
where the X above is a 1 if the motors are to be turned on or a 2 if they are to be turned off.
3.1.2.1.7 FDAI ALIGN - To start an FDAI ALIGN sequence (terminated by program after 10 sec) the following message must be sent

V75E $\binom{$ Refer to TABLE I }{ for codes }

3.1.2.2 Discrete Real-Time Commands to MCP

The following list details the real-time commands (RTC's) planned for support of the Apollo 202 Mission. This list is restricted to commands to the Mission Control Programmer and is exclusive of commands to the SIVB and AGC Uplink commands:
RTC \# 02...04 Fuel Cell Purge (cell \#1 - cell \#3)
etc. 05

31/37 CM System B Propellant Off/On.
Reset RTC 02-04
Lifting Entry - Necessary for no-roll entry in the SCS entry mode.
Direct Thrust On - Turns on SPS engine; backup to onboard command in case of malfunction.
Direct Thrust off - Turn off SPS engine; backup to onboard command in case of malfunction

Reset RTC 10-12
Direct rotation + pitch.
Direct rotation - pitch.
Direct rotation + yaw.
Direct rotation - yaw.
Direct rotation + roll.
Direct rotation - roll.
Direct Ullage.
Reset RTC 14-22
SM Quad A Propellant Off/On.
SM Quad B Propellant Off/On.
SM Quad C Propellant Off/On.
SM Quad D Propellant Off/On.

Let Jettison Start-Backup to onboard command from S-IVB.

G\&N Failure - Backup to $G \& N$ function.
G\&N Failure Inhibit - Reset G\&N failure.
Reset RTC 41-42
Roll Rate Gyro Backup-Switches roll BMAG to rate mode and uses this gyro for roll rate data.
Pitch Rate Gyro Backup - Switches pitch BMAG
to rate mode and uses this gyro for pitch rate data.
(Rev. $1-7 / 65$)

Yaw Rate Gyro Backup - Switches yaw BMAG to rate mode and uses this gyro for yaw data.
$64 . .67 \quad$ Cryogenic Heater Fan Switch $\left(0_{2} \# 1,0_{2} \# 2, H_{2} \# 1\right.$,
FDAI align.
Reset RTC 44-47.
-Z.Antenna ON.
+ZAntenna ON.
G\&N Antenna Switching - Enable of G\&N command capability for Antenna switching.

Roll A and C Channel Disable - Disables the automatic A and C RCS channels.
Roll B and D Channel Disable - Disables the automatic B and D RCS roll channels.
Pitch Channel Disable - Disables the automatic pitch RCS channels.
Yaw Channel Disable - Disables the automatic yaw RCS channels.
Reset RTC 54-57.
CM/SM Separation - Backup to onboard command from the G\&N
UDL/S Band RCVR ON.
UDL UHF RCVR ON. $\mathrm{H}_{2} \# 2$).
Reset RTC 64-67.
Abort (A1so Backup for SIVB/CSM Separation Start).

Commands 14-17, 20-21, and 54-57 will be used to control S/C attitude in cases where the $G \& N$ is not operable. Commands 62-67 are operable on Mission 202 but are not intended to be used (designed for 500 series mission use only).

Of these commands only six are intimately concerned with G\&N operation; RTC 11, 12, 22, 41, 42 and 71.

RTC 11-Direct AGC Engine On logic presently includes a monitor
Thrust of ΔV to ensure engine ignition. This monitor On: continues for 10 sec after sensing no thrust during which time the ground might start the SPS engine. If suitable ΔV has not been sensed after 10 seconds the AGC would exit from thrust vector control and hold attitude until the free-fall interrupt occurs. Should the ground successfully start the engine within 10 sec the AGC will guide the burn normally. It must be assumed however

RTC 12-Direct Thrust Off:

RTC 22-Direct Ullage:

RTC 41-G\&N
Failure:

RTC 42-G\&N
Failure Inhibit:

RTC 71-Abort:
that as the AGC Engine On command did not work correctly, AGC Engine Off will not either. The ground must therefore command a timely "Thrust Off" compatible with the AGC TVC calculation.

The ground may thus inhibit starting of or may stop the SPS thrust. Should AGC-controlled firing be inhibited or shutdown the $\Delta \mathrm{V}$ monitor logic would after 10 seconds exit from thrust vector control and hold attitude until the free-fall interrupt occurs.
A backup command for ground use during a ground controlled burn in the SCS $\triangle V$ mode. Its use during $G \& N$ controlled flight would inhibit $G \& N$ attitude control with the possibility of the $G \& N$ being unaware of the control loss.

This command is a ground backup for the $G \& N$ originated command. All control of the vehicle by $G \& N$ is thereby inhibited.

This command overrides the G\&N FAIL signal. Use of this command does not guarantee that the AGC will correctly resume control of the S / C.

This command normally initiates SIVB/CSM Separation in a boost abort. For appropriate AGC action, it must be accompanied by an abort command to the AGC via AGC Uplink which itself generates the G\&N BACKUP ABORT command to the MCP. The G\&N BACKUP ABORT command initiates identical action in the MCP as RTC 71. Thus there are two methods of initiating boost aborts.
(a) RTC 71 and "Abort" to AGC via UPLINK.
(b) "Abort" to AGC via uplink alone

3.1.3 Backup Control Systems Constraints on G\&N Operation

3.1.3.1 Backup Attitude Reference System

The backup attitude reference system is the SCS BMAGs in conjunction with AGCU. G\&N control of the CSM orientation is always done with consideration for the maintenance and accuracy of this sys time. As the SCS system is presently designed, the BMAG's operate as free gyros in the $G \& N \triangle V$ MODE; in other modes they are caged through the AGCU.

As the mechanical stops of the BMAG's are at $\pm 17^{\circ}$ it is apparent that during boost (MONITOR MODE) and attitude maneuvers (G\&N ATTITUDE CONTROL OR ENTRY MODES) both involving angular changes of over 17° the BMAG's must be caged. In the $G \& N \Delta V$ mode however, should attitude changes over 17° occur, integrity of the backup attitude system will be lost. Such changes are not anticipated in the nominal mission.

The rate limits of the backup attitude reference system in the caged mode are $5^{\circ} / \mathrm{sec}$ in Pitch and Yaw and $20^{\circ} / \mathrm{sec}$ in Roll. To preclude controlling the S / C at rates beyond which the backup attitude reference system can maintain its reference, the $G \& N$ will limit its command rate to the CSM and CM.
3.1.3.2 Backup Entry Control

During the pre-entry coast the $G \& N$ system must orient the CM for aerodynamic trim and lift vector down. Then, in the event of G\&N FAIL INDICATION, the MCP/SCS will hold this attitude until it senses a prescribed " g " level at which time it will command a continuous roll angular velocity.

3. 2 Normal and Abort Mission Logic

The following pages describe the timeline and logic for AGC control of the spacecraft.
3.2.1 Normal Sequence of Events
3.2.2 AGC Program Logic
SECTION 3.2 .1

GgON N 8
gaow s.3
GGON NDITV GNIS

3-20
(Rev. 1-7/65)

3-21
(Rev 1-7/65)

$\begin{aligned} & \text { 吕 } \\ & \text { O } \\ & \text { 웅 } \end{aligned}$				
U				拭至号
$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \hline \end{aligned}$				
$\underset{0}{\Sigma}$				
$\begin{aligned} & U \\ & \text { 異 } \end{aligned}$				
$\frac{\stackrel{y}{5}}{\frac{8}{5}}$				
$\sum_{\text {H }}^{\text {H }}$	$\begin{array}{ll} 8 \\ i \circ & 8 \\ i \circ \\ H \end{array}$		$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { H }}}$	$\begin{aligned} & i_{0} \\ & \mathrm{H}^{\circ} \end{aligned}$

3-23
(Rev, 1-7/65)

3-24
(Rev. 1-7/65)

8	
\because	
\%	Hix
\%	
1	
I	
1	

3-31
(Rev 1-7/65)

3-32
(Rev, 1-7/65)

3-33
(Rev. 1-7/65)

3-34
(Rev. 1-7/65)

居		
¢		
${ }_{\sim}^{\circ}$		
易		룬
苞		
㖾		

(Rev. 1-7/65)

3-42
(Rev. 1-7/65)

$\left.\begin{array}{c}3-43 \\ \text { (Rev } 1-7 / 65\end{array}\right)$

3-44
(Rev. 1-7/65)

3.2.2 AGC Program Logic, Mission 202

The following diagrams illustrate the presently programmed AGC logic for Mission 202.

A program timeline shows the major program sections operating during each phase of the mission along with a functional description of each.

The block diagrams following the timeline expand in detail on each of these program sections and serve to explain fully the AGC logic involved in guidance, (navigation), and spacecraft control functions. Certain details are added to assist the reader in following through the actual program print out.

The terminology used is defined as follows:
Establish - Cause a specified job to be performed under executive control.

ENDOFJOB - Terminate a job.
TOSLEEP - Suspend operation of a job.
Call - Cause a specified task to be started at a specified time, under AGC waitlist control. A task may interrupt a job and, once called, continues to completion.
TASKOVER - Terminate a task.
Do - Branch to a routine with a return to the next operation in sequence.

Set - Cause an "on" state of a specified bit in a register (flag).
Remove - Cause an "off" state of a specified bit in a register (flag).
Store - Store indicated quantity in erasable for future reference.
T - Present time.
TFF - Free fall time to $400,000 \mathrm{ft}$ altitude.
The "on" state of flagwords used are defined as follows:

FLAGWRD1

TUMB - Tumble state detected.
ENTRY - Ready for entry.
STEER - TVC steering mode on.
DVMON - ΔV monitor on.
INT1 - TFF < TFF criteria.
INIT - Initial VR, thrust attitude computation.
INTP - Free fail interrupt enabled.

CHDT - Change computation time step.
SHTDN - Preparation for free fall commenced.
COAST - In coast phase.
VERT - Local vertical control on.
MONIT - Saturn pitch monitor on.
FLAGWRD2
ARRST - Tumble arrest burn
ABRT - Abort burn
TABT - Burn after tumble arrest
SPS1 - SPS 1 burn
SPS 2 - SPS 2 burn
SPS3 - SPS 3 burn
SPS 4 - SPS 4 burn
$\left.\begin{array}{l}\text { CALC - } \\ \text { ROLL - } \\ \text { SPLIT - } \\ \text { MANU - }\end{array}\right\} \begin{aligned} & \text { Control flags for } \\ & \text { Calcmanu routine }\end{aligned}$
DOMAN - Enables manujob (attitude maneuvers)
CMSM - Separation commanded

(interface with std. entry routine)
14. CAICHVG
(Ipdates: RN, VN, R (iRAV)

ENGINEON

GIMPOWON
Set SCS gim. mtr. yowr, discrete
Call. ATTCNOFF
in 3.5 sec
TASKOVER
3.5 sec

ATTCNOFF

Set engine on
Do RFiA I'TIME
Store TCUTOFF

Set DVMON flag
ali TNGJNOFE..... SPS3 or SPS4 flag set?

TASKOVER
DO ROLLJOB
(Maintains wings
level via TVC)
14 sec
PLUSXOFF
Remove ses +x
trans. discrete
1 sec
ROLLTASK
[ENGINEON]

$$
3-57
$$

(Rev. 1 - 7/65)

Clear DEILN Rog.

Call VERTASK1

$$
\text { in } 2 \sec
$$

Establish VERTTIOOH TASKOVER VERTIJOB
Do CALCRVG
(Updates RN, VN, and

Do CALCSMNB
[VERTASK]
(Compute nav, base coord)
Do CALCNBSC
(Compute S/C coord)
Compute roll \& pitch/yaw
commands to maintain local vertical
Do SMCDURES
(Resolve dommands into
gimbal Coord.)
Do INCRCDUS
(Increment thetad's)
Do LOADTIME
(Read present time)

$\begin{gathered} \text { TPRESENT -TCUTOFF } \\ >\text { VERTIME? } \end{gathered}$	N	$\frac{\text { EXITLOC4 }}{\text { ENDOFJOB }}$
Y		if sec
Remove COAST \& VERT flags		VERTASK1
Do AVETOMID		[VERTASK]

(202 orbital integ.)
Do 202SPS2
(Compute VR 4 sec prior to ign)
Set RN, VN, \& deltat
Do CA L.CGRAV
(Set grav! at ign.)
Do 202 SPS2
(Compute VR at ign. \& CBPT)
Do BURNJNIT
(Initial burn vector etc.)
Initialise CALCRVG
Do CALCGRAV
Do ATTIJOB1
[ATTIJOB]
(Mancuver to SPS2 Initial attitude)

2 sec
VERTASK1
[VERTASK]

4. GUIDANCE EQUATIONS FOR CSM

4.1 Powered Flight Guidance Scheme

The guidance scheme for Mission 202 is the same as that planned for all Apollo CSM powered flights. It is based on the possibility of an analytical description of a required velocity ($\underline{v}_{\mathrm{r}}$) which is defined as the velocity required at the present position \underline{r}, in order to achieve the stated objective of a particular powered flight maneuver.

If \underline{v} is the present velocity, then the velocity to be gained $\left(\underline{v}_{g}\right)$ is given by

$$
\begin{equation*}
\underline{v}_{\mathrm{g}}=\underline{v}_{\mathrm{r}}-\underline{v} \tag{1}
\end{equation*}
$$

Differentiation of both sides yields

$$
\begin{align*}
\dot{\underline{\dot{v}}}_{\mathrm{g}} & =\dot{\underline{\dot{x}}}_{r}-\underline{\dot{\mathrm{v}}} \tag{2}\\
& =\underline{\dot{ }}_{r}-\underline{g}-\underline{a}_{T} \tag{3}\\
& =\underline{b}-\underline{a} T \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{b}=\dot{\underline{b}}_{r}-g \tag{5}
\end{equation*}
$$

and g is the gravitational acceleration.
The steering command is developed by formulating a desired thrust acceleration (${\underset{\mathrm{a}}{\mathrm{T}_{\mathrm{D}}}}$) as that which satisfies the equation

$$
\begin{equation*}
\underline{a}_{T_{D}}^{*} \underline{v}_{g}=\mathrm{c} \underline{b} * \underline{v}_{g} \tag{6}
\end{equation*}
$$

where c is a constant scalar.

[^2]Hence a measure of the error between ${ }^{\mathrm{a}} \mathrm{T}_{\mathrm{D}}$ and the actual acceleration a $_{T}$ is given by

$$
\begin{equation*}
\underline{\omega} c^{=} \frac{\underline{v}_{g}^{*} \underline{\dot{m}}}{\left|\underline{v}_{g}\right||\underline{\underline{m}}|} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\dot{m}}=\underline{c} \underline{b}-\underline{a} T \tag{8}
\end{equation*}
$$

It can be verified that $\underline{\omega}_{c}$ is also the axis about which the thrust vector should be rotated to null the error. Hence $\underline{\omega}_{c}$ is used as the steering command.

Once a required velocity \mathbf{v}_{r} is defined satisfactorily, the procedure for the generation of the steering command $\underline{\omega}_{c}$ is the same for all phases of powered flight. The equations for the required velocity for the various phases are described in the succeeding pages. Descriptions of the initial alignment procedure, ignition and cutoff logic and implementation in AGC are also included.

4.2 Nominal Mission

4.2.1 Required Velocity

The required velocity for the first and second burns of the nominal mission is defined as that velocity which will put the vehicle in an elliptical trajectory of predefined parameters (semi major axis a, and eccentricity e). The values used are
\First Burn

a	2.2491076×10^{7} feet	2.8286389×10^{7} feet
e	0.10988556	0.25332143

Second Burn
2.8286389×10^{7} feet
0.25332143

These numbers correspond to the trajectory described in Section 5 .
The value of c in Eq. (6) is 1 .
The required velocity can be written as

$$
\begin{equation*}
\underline{v}_{r}=\underline{i}_{r} v_{r a d}+i_{H} v_{H} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{v}_{\mathrm{rad}}= \pm\left[\frac{\mu}{\mathrm{p}}\left[\mathrm{e}^{2}-\left(\frac{p}{r}-1\right)^{2}\right]\right] . \tag{10}\\
& \mathrm{v}_{\mathrm{H}}=+\left(\frac{\mu \mathrm{p}}{\mathrm{r}^{2}}\right)^{1 / 2} \tag{11}\\
& \mathrm{p}=a\left(1-\mathrm{e}^{2}\right) \tag{12}\\
& \underline{i}_{r}=\frac{\underline{r}}{|\underline{r}|} \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{i}_{H}=\operatorname{UNIT}\left(\underline{i}_{N}^{*} \underline{i}_{r}\right) \tag{14}
\end{equation*}
$$

The positive sign is used in Eq. (10) for the radial velocity during first burn and the negative sign is used during second burn.

4.2.2 Yaw Steering

Plane control during the nominal mission is achieved by specifying the normal (\underline{i}_{N}) to the required plane appearing in Eq. (14). The required trajectory plane is defined to be the plane containing the pressent position vector (r) and the landing site vector taken as point of drogue chute deployment at $24,000 \mathrm{ft}$ ($\underline{\mathrm{r}}_{\mathrm{LS}} ; 17.15 \mathrm{~N}, 170.00 \mathrm{E}$) at the nominal time (5243.5 sec) of landing and is given by

$$
\begin{equation*}
\underline{i}_{N}=\operatorname{UNIT}\left(\underline{r} * \underline{r}_{L S}\right) \operatorname{Sign}\left[\left(\underline{r} * \underline{r}_{L S}\right) \cdot \underline{i}_{w}\right] \tag{15}
\end{equation*}
$$

where ${\underset{i}{w}}^{w}$ is the earth's polar unit vector. At cutoff the vehicle velocity will be equal to $\underline{v} r$, thereby ensuring the trajectory plane to be $\underline{i}_{\mathrm{N}}$ according to Eqs. (9) and (14).

During the third and fourth burns, no computations are made for \underline{v}_{r}. The desired thrust direction is held fixed at the direction computed at the end of the second burn.

4.2.3 Engine Ignition

In the nominal mission the engine is always ignited after a fixed interval of time from a previous event. The first burn is
initiated 12.7 seconds after receipt of SIV-B/CSM separation signal, the second burn 3163.67 seconds after first burn cutoff, the third burn 10 seconds after second burn cutoff and the fourth burn 10 seconds after third burn cutoff.

4.2.4 Engine Cutoff

During all the burns a time to cutoff (T_{g}) is continuously being estimated from the equation

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}=\left|\underline{v}_{\mathrm{g}}\right| /|\underline{\mathrm{a}} \mathrm{~T}| \tag{16}
\end{equation*}
$$

The accuracy of T_{g} increases as $T_{g} \rightarrow 0$, because as $\left|\underline{v}_{g}\right| \rightarrow 0,|\underline{b}| \rightarrow 0$.
For the first burn, when T_{g} falls, for the first time, below the critical value of 4.0 seconds, the clock is set to turn off the engine T_{g} seconds later. For the second burn, when T_{g} falls, for the first time, below 10 secs, the clock is set to turn off the engine $\left(T_{g}-6\right)$ secs later.

In the third and fourth burns the engine is turned off 3 seconds after ignition.

4.3 Aborts During Boost

The guidance equations for aborts during boost have been designed to meet the following constraints that have been imposed on the spacecraft attitude.

The visual horizon is to be kept on a hairline on the forward window during the entire powered flight and this line should be independent of the time at which abort is initiated.

The window geometry indicates that this requires the thrust direction to be between 4° and 36° to the line of sight to the visual horizon. Within this limitation, the larger the angle, the greater is the interval of time before nominal SIV-B cutoff during which the capability exists to reach a particular recovery area in the event of an abort. Hence a thrust angle of 35°. to the line of sight to the horizon is used (See Fig. 4.1).

4.3.1 Required Velocity

The definition of a required velocity, in the usual sense, consistent with the direction of thrust pre-specified as above, is not possible. Hence, a pseudo required velocity is defined for aborts, which,

Fig. 4-1 Window Geometry
when incorporated into the general steering scheme, will satisfy not only the constraint on the thrust direction but also permit recovery from a specified landing area.

Let $\underline{r}_{\mathrm{e}}$ be the entry position (400,000 ft) corresponding to a free fall from the present position. Then we can write

$$
\begin{align*}
x & =\cot \left(\frac{\theta_{f}}{2}\right) \tag{17}\\
& =\frac{r_{e} \cot \gamma+r \cot \gamma_{e}}{r_{e}-r} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& \sin \theta_{f}=\frac{2 x}{x^{2}+1} \tag{19}\\
& \cos \theta_{f}=\frac{x^{2}-1}{x^{2}+1} \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
\cot \gamma & =\frac{\underline{v} \cdot \underline{i}_{r}}{\underline{v} \cdot \underline{i}_{H}} \tag{21}\\
\cot \gamma_{e} & =r / p\left[e^{2}-\left(\frac{p}{r_{e}}-1\right)^{2}\right]^{1 / 2} \tag{22}\\
& \underline{i}_{H^{\prime}}=\underline{i}_{p} * \underline{i}_{r} \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\underline{i}_{p}=\operatorname{UNIT}(\underline{r} * \underline{v}) \tag{24}
\end{equation*}
$$

θ_{f} is the free-fall central angle to the entry point,
r_{e} is the radius at $400,000 \mathrm{ft}$ altitude,
γ_{e} is the flight path angle w. r.t. the local vertical at entry
γ is the present flight path angle (w. r.t. vertical)
The entry-point is given by

$$
\begin{equation*}
\underline{r}_{e}=r_{e}\left(\underline{i}_{r} \cos \theta_{f}+\underline{i}_{H^{\prime}} \sin \theta_{f}\right) \tag{25}
\end{equation*}
$$

Now let \underline{r}_{T} be the desired landing site (target vector) at the nominal time. The target vector for aborts is the inertial position of $4.00^{\circ} \mathrm{N}$ and $329^{\circ} \mathrm{E}$ longitude at 1420 seconds from lift-off. This choice corresponds to minimum plane change for aborts at 609.95 seconds from the nominal boost trajectory. The normal (1_{N}) to the desired plane is defined in section 4.3.2.

The desired entry point ($\underline{r e d}$) is a function of the entry velocity and flight path angle. This vector is computed during each computational repetition as a function of the expected entry velocity and the inertial location of the nominal landing site.

If the engine were to be cut-off at the present t ime, the velocity at entry (v_{e}) will be (from the vis-viva integral)

$$
\begin{equation*}
\mathrm{v}_{\mathrm{e}}=\left(\mathrm{v}^{2}+2 \mu\left(\frac{1}{\mathrm{r}_{\mathrm{e}}}-\frac{1}{\mathrm{r}}\right)\right)^{1 / 2} \tag{25a}
\end{equation*}
$$

Based on this velocity v_{e} an anticipated entry range (ϕ_{e}) is computed from an empirical formula

$$
\begin{equation*}
\phi_{\mathrm{e}}=\frac{6076.15}{\mathrm{R}_{\mathrm{e}}}\left(.1875 \mathrm{v}_{\mathrm{e}}-3712.5\right) \tag{25b}
\end{equation*}
$$

if $\mathrm{v}_{\mathrm{e}} \geqq 21400 \mathrm{ft} / \mathrm{sec}$, and

$$
\begin{equation*}
\phi_{e}=\frac{6076.15}{R_{e}} \tag{25c}
\end{equation*}
$$

if $\mathrm{v}_{\mathrm{e}}<21400 \mathrm{ft} / \mathrm{sec}$.
The desired entry vector $(\underline{r e d})$ is computed as
$\left.\underline{r}_{e d}=r_{e} \underline{1}_{r_{L S}} \operatorname{Cos} \phi_{e}-\operatorname{UNIT}\left(\underline{1}_{N}^{*} \underline{1}_{r_{L S}}\right) \sin \phi_{e}\right)$
At cut-off, $\underline{r}_{e d}=\frac{r}{e}$ and the actual entry velocity is v_{e}, satisfying the entry range equation.

The error d can be written as

$$
\begin{equation*}
d=\left|\underline{\mathbf{r}}_{\mathrm{ed}}-\underline{\mathbf{r}}_{\mathrm{e}}\right| \tag{26}
\end{equation*}
$$

[^3]The rate of change of this error is computed by differencing $\underline{r} e^{a s}$

$$
\begin{align*}
\dot{d} & =\frac{\Delta d}{\Delta t} \tag{27}\\
& \underline{\underline{x}}\left|\underline{r}_{e_{n}}-\underline{r}_{e_{n-1}}\right| / \Delta t \tag{28}
\end{align*}
$$

where the subscript n denotes the nth computational repetition
Observing that d / \dot{d} is a measure of the time to cutoff (T_{g}) and that T_{g} according to Eq. (16) is $\underline{v}_{g}\left|/\left|\underline{a}_{T}\right|\right.$ in the general scheme, the magnitude of \underline{v}_{g} is defined as

$$
\begin{equation*}
\left|\underline{v}_{g}\right|=\frac{d}{d}\left|\underline{a}_{T}\right| \tag{29}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\underline{v}_{\mathrm{g}}\right|=\frac{\mathrm{d}}{\Delta \mathrm{~d}}|\underline{\Delta v}| \tag{30}
\end{equation*}
$$

where Δv is the velocity increment measured with the accelerometers in the interval Δt.

Now consider Eq. (6). Set $c=0$; then

$$
\begin{equation*}
\underline{\mathrm{a}}_{\mathrm{T}}^{\mathrm{D}}{ }^{*} \underline{\mathrm{v}}_{\mathrm{g}}=0 \tag{31}
\end{equation*}
$$

If the direction of $\underline{v}_{\mathrm{g}}$ is chosen as the desired and known direction of \underline{a}_{T}, the specified constraint on the spacecraft attitude will be satisfied.

Figure 4-1 shows the geometry of the spacecraft window. The angle ϕ between the thrust and r is given by

$$
\begin{equation*}
\phi=\theta+\sin ^{-1}\left(\frac{\mathrm{R} v h}{|\underline{\mathrm{r}}|}\right) \tag{32}
\end{equation*}
$$

where θ is the specified angle $\left(35^{\circ}\right)$ to the horizon and $R{ }_{v h}$ is the radius to the visual horizon.

From Eq. (32) and Eq. (30) we can define $\underline{v}_{\mathrm{g}}$ as,

$$
\begin{equation*}
\underline{v}_{\underline{g}}=\frac{\mathrm{d}}{\Delta \mathrm{~d}} \underline{\mathrm{v} \mid}\left(-\cos \phi \underline{\underline{i}} r+\sin \phi \dot{i}_{\mathrm{H}^{\prime}}\right) \tag{33}
\end{equation*}
$$

4.3.2 Yaw and Roll Steering

The development of Eq. (33) is based on $\underset{\underline{i}}{r}$ and $\underset{\dot{i}^{\prime}}{ }$, which are both in the present trajectory plane according to Eq. (23). However, normally, a plane change will be required to reach the same landing site from different points of aborts on the boost trajectory.

Let the plane containing the present position \underline{r} and the target vector (See Section 4.3.1) \underline{r}_{T} be defined by

$$
\begin{equation*}
\underline{i}_{N}=\operatorname{UNIT}\left(\underline{r} * \underline{r}_{T}\right) \operatorname{Sign}\left[\left(\underline{r} * \underline{r}_{T}\right) \cdot \underline{i}_{w}\right] \tag{34}
\end{equation*}
$$

The velocity increment along $\underline{i}_{\mathrm{p}}$ (normal to \underline{v}) to null the error between ${\underset{\sim}{i}}_{p}$ and ${\underset{i}{N}}^{N}$ is given by (See Fig. 4-2).

$$
\begin{equation*}
\Delta \mathrm{v}_{\mathrm{N}}=|\mathrm{v}|\left(\underline{i}_{\mathrm{p}} * \underline{i}_{\mathrm{N}}\right) \cdot \underline{i} \mathrm{r} \tag{35}
\end{equation*}
$$

The acceleration along $\underset{i}{i}$ pequired to accomplish the plane change is given by

$$
\begin{equation*}
\underline{a}_{N}=\frac{i}{-p} \frac{\Delta v_{N}}{T_{g}+\delta} \tag{36}
\end{equation*}
$$

where δ is a small scalar (5 seconds). In order to prevent large yaw rate commands, a limit of $5 \mathrm{ft} / \mathrm{sec}^{2}$ is imposed on $\left|\frac{a}{N_{n}}-\frac{a}{-} N_{n-1}\right|$.

Equation (33) can be now modified to include yaw steering,
as

$$
\begin{equation*}
\underline{v}_{\mathrm{g}}=\underline{\mathrm{i}}_{\mathrm{T}} \quad \frac{\mathrm{~d}}{\Delta \mathrm{~d}}|\Delta \mathrm{~V}| \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{i}_{T}=\operatorname{UNIT}\left[-\underline{i}_{r} \cos \phi+\operatorname{UNIT}\left(i_{H^{\prime}} a_{T}+\underline{a}_{n}\right) \sin \phi\right] \tag{38}
\end{equation*}
$$

and a_{T} is the magnitude of the thrust acceleration.
The required velocity is given by

$$
\begin{equation*}
\underline{v}_{\mathbf{r}}=\underline{v}^{+} \underline{v}_{g} \tag{39}
\end{equation*}
$$

where $\underline{v} g$ is given by Eq. (37). With the required velocity so computed and with $c=0$, the same steering (Eq. 6) as for the nominal mission is used.

The rate command resulting from the required velocity \underline{v}_{r} has only pitch and yaw components. However, the vehicle must be rolled such that the pitch axis is in the horizontal plane (See Fig. 4-1). This is achieved by generating a roll command $\left(\underline{\omega}_{R}\right)$ proportional to the cross product of the desired pitch-axis vector, unit ($\underline{\sim}^{*} \underline{i}_{\text {roll }}$), with the actual pitch axis unit vector, $\underline{\underline{i}}^{\text {pitch }}$.

$$
\begin{equation*}
\underline{\omega}_{R}=K_{\text {roll }}\left[\underline{i}_{\text {roll }} \cdot\left(\underline{\underline{i}}_{\text {pitch }}^{*} \text { UNIT }\left[\underline{r}_{*}^{*} \underline{i}_{\text {roll }}\right]\right)\right] \stackrel{i}{\underline{i}} \text { roll } \tag{39a}
\end{equation*}
$$

The roll rate command is added to the rate command generated from Eq. (7).

4.3.3 Engine Ignition

In the case of a non-tumbling abort the engine is ignited 3.0 secs after receipt of the SIV-B/CSM separation signal.

If tumbling has been detected by the time the separation signal is received, the engine is ignited 3.0 secs later and is shut down when tumbling has been arrested. If the capability of landing area control

$$
4-10
$$

Fig. 4-2 Computation of ${\underset{a}{n}}$ and $\underline{\underline{i}}_{t}$
exists, the engine is re-ignited after a time interval calculated to be sufficient to orient to the desired initial thrust direction.

4.3.4 Engine Cutoff

When T_{g} falls below 4.0 secs, the clock is set to turn off the engine T_{g} seconds later under normal area control. However, the engine will be turned off if any one of the following violations has occured before $\mathrm{T}_{\mathrm{g}}<4.0$ secs.
a) Free-fall time to $400,000 \mathrm{ft}$ is below 160 seconds
b) \underline{r}_{e} is beyond \underline{r}_{T}. That is,

$$
\begin{equation*}
\underline{\mathrm{r}} \cdot \underline{\mathrm{r}}_{\mathrm{e}}<\underline{\mathrm{r}} \cdot \underline{\mathrm{r}}_{\mathrm{T}} \tag{40}
\end{equation*}
$$

It should be pointed out that the estimate of T_{g} is very poor in the early part of the burn for long burns. Hence its value at ignition cannot be used in back-up systems.

4.4 AGC Computations

Since the information about the thrust acceleration comes from the accelerometers in the form of velocity increments (Δv), the computations in the AGC are in terms of increments of velocity rather than instantaneous acceleration. The repetetive guidance computations are shown in the form of a block diagram in Fig. 4-3. The computational blocks are common to all powered flight maneuvers except the computation of \underline{v}_{r} described in the preceeding sections.

4.4.1 Average g Equations

The vector position and velocity are updated in each computational cycle with a set of equations based on the average gravitational acceleration written as

$$
\begin{gather*}
\underline{r}_{n}=\underline{r}_{n-1}+\Delta t\left(\underline{v}_{n-1}+\underline{g}_{n-1} \frac{\Delta t}{2}+\frac{\Delta v}{2}\right) \tag{46}\\
\underline{g}_{n}=\frac{-\mu}{r_{n}^{2}}\left[\left[1+\left(\frac{r_{e}}{r_{n}}\right)^{2} J\left(1-5 \sin ^{2} \phi\right)\right] \underline{i}_{r_{n}}+\left(\frac{r_{e}}{r_{n}}\right)^{2} 2 J \sin \phi \underline{i}_{w}\right] \tag{47}
\end{gather*}
$$

and

$$
\begin{equation*}
\underline{v}_{n}=\underline{v}_{n-1}+\frac{\left(g_{n-1}+g_{n}\right)}{2} \quad \Delta t+\Delta \underline{v} \tag{48}
\end{equation*}
$$

where the subscript n denotes the nth computational repetition.

$$
\begin{aligned}
\mathrm{J} & =1.62346 \times 10^{-3}, \text { the first gravitation harmonic coefficient. } \\
\sin \phi & =\sin \text { (Latitude) } \\
& =\underline{i}_{-} \cdot \stackrel{i}{w}
\end{aligned}
$$

4.4.2 Steering Command

The vector \underline{b} was defined in Eq. (5) as

$$
\begin{equation*}
\underline{\mathrm{b}}=\dot{\underline{v}}_{\mathrm{r}}-\underline{\mathrm{g}} \tag{5}
\end{equation*}
$$

In the AGC (as shown in Fig. 4-3), the increment ($\underline{b} \Delta t$) is computed as

$$
\begin{equation*}
\underline{\mathrm{b}} \Delta \mathrm{t} \cong \underline{\Delta v}_{\mathrm{r}}-\underline{g} \Delta \mathrm{t} \tag{49}
\end{equation*}
$$

Then the steering command in Eq. (7) can be written as

$$
\begin{equation*}
\underline{\Delta \theta} c=\frac{\underline{v}_{\mathrm{g}} * \underline{\Delta m}}{\left|\underline{v}_{\mathrm{g}} \| \Delta \mathrm{m}\right|} \Delta t \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
\underline{\Delta \theta} & =\underline{\omega} \mathrm{c} \Delta \mathrm{t} \tag{51}\\
\Delta \mathrm{~m} & =\mathrm{c} \underline{\mathrm{~b}} \Delta \mathrm{t}-\underline{\mathrm{v}} \tag{52}
\end{align*}
$$

4. 4. 3 Orbital Integration Equations

Position and velocity during the free-fall phases of the mission are calculated by a direct numerical integration of the equations of motion. Since the disturbing accelerations are small the technique of differential acceleration due to Encke is mechanized in the AGC, as described in MIT Report R-467, The Compleat Sunrise.

4.5 Initial Thrust Alignment

Before the engine is ignited for any particular maneuver, the vehicle should be oriented so that on ignition the thrust is in the desired direction at that point. Since the time of ignition is known beforehand, the position and velocity at ignition can be computed prior to the arrival of the vehicle at that

$$
4-14
$$

point. By integrating over Δt seconds from that point, the vectors \underline{v}_{g} and $\underline{b} \Delta t$ can be computed as shown in Fig. 4-3.

The desired thrust direction can be now calculated (prior to arrival at the ignition point) as

$$
\begin{equation*}
\underline{i}_{T}=\operatorname{UNIT}\left[\underline{q}+\left(\mathrm{a}_{\mathrm{T}}^{2}-|\underline{q}|^{2}\right)^{1 / 2} \underline{\underline{i}}_{\mathrm{g}}\right] \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{i}_{\mathrm{g}}=\operatorname{UNIT} \quad\left(\underline{\mathrm{v}}_{\mathrm{g}}\right) \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\underline{q}=c \underline{b}-\underline{(i}_{g} \cdot c \underline{b}\right) \underline{i}_{g} \tag{55}
\end{equation*}
$$

and a_{T} is an estimate of the magnitude of the thrust acceleration.
Once \underline{i}_{T} is computed from Eq. (bふ), the venicie is urienicu piivi to axaival at the ignition point such that the thrust axis is along ${\underset{\sim}{i}}_{T}$, and the pitch axis is along the desired pitch axis vector, UNIT ($\underline{r} * i_{r o l l}$) i.e. a wings-level, $z(y a w)$ - axis up roll attitude.

4. 6 Free-Fall Time

Since the free-fall time is not very large, the radial acceleration from cutoff to entry can be assumed constant. With this assumption the equation for the magnitude of the radius can be written as

$$
\begin{equation*}
r\left(T_{f}\right)=\ddot{r}(0) \frac{T_{f}^{2}}{2}+r(0) T_{f}+r(0) \tag{56}
\end{equation*}
$$

where T_{f} is the free-fall time to the radius $r\left(T_{f}\right)$ and $T_{f}=0$ corresponds to present time.

Solving Eq. (56) for T_{f} yields

$$
\begin{equation*}
T_{f}=\frac{-\dot{r}(0)-\sqrt{\dot{r}(0)^{2}-2 \dot{r}(0)\left(r(0)-r T_{f}\right)}}{\ddot{r}(0)} \tag{57}
\end{equation*}
$$

Setting $r\left(T_{f}\right)=r_{e}$ in Eq. (57) the time of free-fall to entry is given as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{f}}=\frac{-\dot{\mathrm{r}}-\sqrt{\dot{\mathrm{r}}^{2}-2 \ddot{\mathrm{r}}\left(\mathrm{r}-\mathrm{r}_{\mathrm{e}}\right)}}{\ddot{\mathrm{r}}} \tag{58}
\end{equation*}
$$

If $r<r_{e}$, the radical in Eq. 58 will be negative. In this case T_{f} is set equal to zero. On the other hand, if \ddot{r} is so small, to cause an overflow, T_{f} is set to the maximum value of $2^{28} / 100$ seconds.

4. 7 Entry Mode

Included in this section is a set of flow charts that describe the logic and equations that control the entry vehicle. Figure 4.4 shows the overall picture of the sequence of operations during entry. Each block in Figure 4.4 is described in detail in subsequent charts. Table 4-1 defines symbols which represent computed variables stored in erasable memory. The value and definition of constants is given in Section 5 .

Every pass through the entry equations (done once every 2 seconds) is begun with the section called navigation. (See Figure 4.5). This integrates to determine the vehicles new position and velocity vector. This sub-routine is used by other phases than entry and is called the Average G routine.

Next, the targeting is done. This updates the desired landing site position vector and computes some quantities based on the vehicle's position and velocity and the position of the landing site. (See Figure 4.6).

The next sequence of calculations is dependent upon the phase of the entry trajectory that is currently being flown. First is the initial roll angle computation. (See Figure 4.7). This merely adjusts the Initial roll angle (180° for a nominal 202 entry; 0° for abort cases) and tests when to start the next phase.

The next phase maintains a constant drag trajectory while testing to see if it is time to go into the up-control phase. The testing is presented in Figures 4. 8 and 4.9. The constant drag equations are given in Figure 4.10. The other phases (up-control, ballistic and final) are listed in Figure 4.11, 4. 12 and 4. 13. The final phase is accomplished by a stored reference trajectory. Its characteristics as well as the steering gains are stored as shown in Figure 4.14. The routine that prevents excessive acceleration build-up (G limiter) is given in Figure 4.15. And finally, the section that does the lateral logic calculations and computes the commanded roll angle is shown in Figure 4. 16.

Fig. 4-4 Re-Entry Steering

Fig 4-5 Re-Entry Steering - Navigation (AVG. G)

Fig. 4-6 Re-Entry Sterring - Targetting

Fig 4-7 Re-Entry Steering - Initial Roll

Fig. 4-8 Re-Fntry Steering - Huntest

Fig 4-9 Re-Entry Stcering - Range Prediction

Fig 4-10 Re-Entry Stecring - CONSTD

Fig. 4-11 Re-Entry Steering - UPCONTRL

$$
4-24
$$

(Rev. 1-7/65)

Fig. 4-12 Re-Entry Steering - Ballistic

Fig. 4-13 Re-Entry Steering - Predict 3

$$
\begin{aligned}
& \begin{array}{l}
\text { DR/DRDOT } \\
\text { F2 } \\
\text { NM/FPS } \\
0 \\
0 \\
.002591 \\
.003582 \\
.007039 \\
.01446 \\
.02479 \\
.03391 \\
.06139 \\
.07683 \\
.09982 \\
.1335 \\
.2175 \\
.3046 \\
.3046
\end{array}
\end{aligned}
$$

Fig. 4-15 Re-Entry Steering - GLIMITER

Fig. 4-16 Re-Fntry Steering - Lateral Logic

VA RIA BLES FOR RE-ENTRY CONTROL

U $\overline{\mathrm{R}} \mathrm{TO}$	INITIA L TARGET VECTOR
$\overline{\mathrm{U}} \mathrm{Z}$	UNIT VECTOR NORTH
$\overline{\mathrm{V}}$	VELOCITY VECTOR
$\overline{\mathrm{R}}$	POSITION VECTOR
R'TE	VECTOR EAST AT INITIAL TARGET
UTR	NORMAL TO $\bar{R} T E$ AND $\bar{U} Z$
$\bar{W} \mathrm{E}$	EARTH RATE VECTOR
U $\bar{R} T$	TARGET VECTOR
UNI	UNIT NORMAL TO TRAJECTORY PLANE
$\overline{\mathrm{D}} \mathrm{ELV}$	INTEGRATED ACCELERA TION VECTOR
$\overline{\mathrm{G}}$	GRAVITY VECTOR
AO	INITIAL DRAG FOR UPCONTRL
A HOOK	TERM IN GAMMAL COMPUTA TION
A LP	CONST FOR UPCONTRL
ASKEP	KEPLER RANGE
ASP1	FINAL PHASE RANGE
ASPUP	UPRANGE
ASP3	GAMMA CORRECTION
ASPDWN	RANGE DOWN TO PULL-UP
ASP	PREDICTED RANGE = ASKEP+ASP 1+ASPUP+ASP 3+ASPDWN
COSG	COSINE (GAMMA L)
D	TOTAL A CCELERATION
DO	CONTROLLED CONST DRAG
DHOOK	TERM IN GAMMAL COMPUTATION
DIFF	THETNM-ASP (RANGE DIFFERENCE)
DIFFOLD	PREVIOUS VALUE OF DIFF
DR	REFERENCE DRAG FOR DOWNCONTROL
DREF	REFERENCE DRAG
DVL	VS1 -VL

TABLE 4-1 (Cont'd)

E	ECCENTRICITY
F1	DRANGE/D DRAG (FINAL PHASE)
F2	DRANGE/DRDOT (FINAL PHASE)
F3	חRANGF./D(t/ D) (FINAL PHASE)
FACT1	CONST FOR UPCONTRL
FACT2	CONST FOR UPCONTRL
FACTOR	USED IN UPCONTRL
GA MMA L	FLIGHT PATH ANGLE AT VL
GAMMAL1	SIMPLE FORM OF GAMMAL
KA	A CCELERATION LEVEL TO ROLL LIFT UP
K1ROLL	INDICATOR FOR ROLL SWITCH
K2ROLL	INDICA TOR FOR ROLL SWITCH
LATANG	LA TERAL RANGE
LEQ	EXCESS C.F. OVER GRAV $=(\mathrm{VSQ}-1) \mathrm{GS}$
L/D	DESIRED LIFT TO DRAG RATIO (VERTICAL PLANE)
PREDANGL	PREDICTED RANGE (FINAL PHASE)
Q7	MINIMUM DRAG FOR UPCONTROL
RDOT	ALTITUDE RATE
RDOTREF	REFERENCE RDOT FOR UPCONTRL
RDTR	REFERENCE RDOT FOR DOWNCONTRL
ROLLC	ROLL COMMAND
RTOGO	RANGE TO GO (FINAL PHASE)
SL	SIN OF LATITUDE
T	TIME
THETA	DESIRED RANGE (RADIANS)
THETNM	DESIRED RANGE (NM)
V	VELOCITY MA GNITUDE
V1	INITIA L VELOCITY FOR UPCONTRL
V1OLD	PREVIOUS VALUE OF V1

TABLE 4-1 Cont'd

VCORR	VELOCITY CORRECTION FOR UPCONTRL
VL	EXIT VELOCITY FOR UPCONTRL
VS1	VSAT OR V1, WHICHEVER IS SMALLER
VBARS	VL $^{2} /$ VSAT
VSQ	NORMA LIZED VELOCITY SQUARED $=\mathrm{V}^{2} / \mathrm{VSAT}^{2}$
WT	EARTH RATE X TIME
X	INTERMEDIATE VARIABLE USED IN G LIMITER
Y	LATERAL MISS LIMIT

INITIAL STATE

RELVELSW EGSW

HUNTIND
HIND
LA TSW
GONEPAST

RELATIVE VELOCITY SWITCH FINA L PHASE SWITCH INITIAL PASS THRU HUNTEST INDICATES INTERA TION IN HUNTEST NO LATERAL CONTROL WHEN ON INDICATES OVERSHOOT OF TARGET
BRANCH (1)
NON-BRANCH (0)

5. MISSION AND VEHICLE DATA

5.1 Scope

Section 5 is a summary of all Flight 202 mission and vehicle data that have an impact on AGC programming. Data have been collected under the following headings:

Section 5. 2 Mission Data. Establishes the outlines of the mission in terms of trajectories, profiles etc. Includes performance figures for Saturn boost phase inasmuch as they affect conditions pertaining at take-over of control by G\&N system.

Section 5. 3 Memory Data. Contains all mission- and vehicle-dependent data that are, in one form or another, written directly into the memory of the AGC. In a wired-memory computer such as the AGC, the very limited erasable section is intended primarily for storage òf computational variables. An attempt has been made to consign those mission parameters that do not change during flight to the fixed section of the memory. Some exceptions have had to be made in the case of the Saturn boost polynomials and SPS aim-point criteria, since these will not be available until shortly before the flight.

Section 5. 4 Vehicle Data. Contains information that will mainly affect simulations and rope verification and will not, with only one or two exceptions, appear directly in the AGC program.

Section 5. 5 Physical Constants. These definitions will be used in AGC programs and verification work.

Numerical data are presented in the most convenient and widely accepted units. The AGC is, however, programmed in the metric set of kilogram, meter, and centisecond $\left(10^{-2} \mathrm{sec}\right)$. Conversion to other sets of units is done by use of the factors defined in Section 5.5.2.

Points on the surface of the earth are defined in terms of geodetic latitude and longitude referred to the Fischer ellipsoid of 1960 , and geocentric radius.

It is pointed out that not all items of numerical data included in this section are to be found in the memory explicitly as defined. They are often rescaled, changed in units, or combined with other data for storage in the most convenient and/or economical fashion.

5.2.1 Mission Trajectories

Saturn Boost Trajectory ${ }^{1}$ Apollo Trajectory Document No. 65-FMP-1, (For data from Lift-off to Apollo Mission 202, Joint Reference TraSIVB thrust cut-off) jectory, April 12, 1965. Published jointly by MSFC/MSC.
Spacecraft Trajectory (ForProject Apollo Spacecraft Reference Tra-data from SIVB thrust cut-off to touch down)jectory SA-202 April 9, 1965. Published asMSC Internal Note No. 65-FM-37.
Nominal mission profile
see Fig. 5.1
Major events during nominal see Table 5.1
mission
Nominal Saturn boost pro-file

Note 1. MIT is in receipt of a computer print-out of this portion of the referenced trajectory from MSC, which provides additional information at more frequent points during the boost than the document quoted.

Fig. 5-2 Saturn Boost Trajectory Profile

5-5
(Rev. 1-7/65)

Table 5-1

Event	$\begin{gathered} \mathrm{t} \\ (\mathrm{sec}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{i}} \\ (\mathrm{fps}) \end{gathered}$	$\begin{gathered} \gamma_{i} \\ (\operatorname{deg}) \end{gathered}$	$\begin{aligned} & \mathrm{AZ}_{\mathrm{i}} \\ & (\mathrm{deg}) \end{aligned}$	$\begin{gathered} \text { ALT } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { N. Geod. } \\ \text { Lat. } \\ \text { (deg) } \end{gathered}$	W. Long (deg)	Weight
liftoff	0	1341.61	90	90	0	28.53	80.56	
SIB c/o	148.65	6977. 31	62.78	102.34	201,409	28.40	80.00	
SIY A Ign.	151.75	6932.95	63.45	102.37	211, 136	28.38	79.96	
LES Jett.	171.75	7097. 35	68.46	102.73	269, 621	28.31	79.66	
SIVB c/o	609.95	21,802	85.07	111.92	715,530	23.71	65.72	
SPS Ign.	630.95*	21, 751	85.52	112.26	752,673	23.24	64.60	43, 685
SPS c/o	865.14	25, 416	83.76	117.16	1,209, 592	17.25	51.70	27, 842
Apogee	2395. 14	22,440	89.372	110.45	3,995, 357	-24.17	-19.81	
Ullage	3998.82							
SPS Ign.	4028.82	25,116	96.28	63.69	1,475,984	-18. 55	-112.11	27,801
SPS c/o	4114.82	27,678	97.52	62.17	1,199, 135	-15.96	-117.17	21,983
SPS Ign.	4124.82	27,716	97.40	61.99	1,163,191	-15.63	-117.78	21,983
SPS c/o	4127.82	27,818	97.41	61.94	1,152, 455	-15.53	-117.97	21, 780
SPS Ign.	4137.82	27,855	97.29	61.77	1,116, 843	-15.20	-118.58	21,780
SPS c/o	4140.82	27, 959	97.30	61.72	1,106,214	-15.10	-118.77	21, 577
Entry	4402.0	28, 706	93.57	58.65	399, 188	-5.11	-134.79	11,000
End of Entry	5262.0	1,483			24,793	17.24	-170.00	

[^4]5.2.2 Nominal SIVB Separation Attitude Conditions

X-axis in plane of maneuver, forward of inertial vertical defined at the launch point by $\quad 76.00^{\circ}$
(Y-axis along momentum vector $\mathrm{R} * \underline{\mathrm{~V}}$ Z-axis above local horizontal)

Roll rate	$0^{\circ} / \mathrm{sec}$
Pitch rate	$0^{\circ} / \mathrm{sec}$
Yaw rate	$0^{\circ} / \mathrm{sec}$

5.2.3 3σ Dispersions from Nominal at SIVB Separation

X -axis attitude dispersion $\quad 2^{\circ}$
Y-axis attitude dispersion $\quad 2^{\circ}$
Z-axis attitude dispersion $\quad 2^{\circ}$
Roll rate residual
$0.2^{\circ} / \mathrm{sec}$
Pitch rate residual
$0.2^{\circ} / \mathrm{sec}$
Yaw rate residual
$0.2^{\circ} / \mathrm{sec}$

5. 2. 4 SIVB Engine-off Transient

Decay time $100 \%-10 \%$ not available
Decay time $10 \%-0 \%$
Tail-off impulse $100 \%-10 \%$
Tail-off impulse $10 \%-0 \%$
not available not available not available

5. 3 Memory Data

5.3.1 Prelaunch

Launch Pad \#34: Latitude
Longitude
Geocentric Radius Ellipsoid Radius

Inertial reference plane (IMU) azimuth

Optical target 1

Azimuth
Elevation
Optical target 2
Azimuth
Elevation

Memory

Type

F
F
F
F
F

F
F

F
F Not available

5.3.2 Saturn Boost

	Memory Type	Value
(Interval: $\begin{aligned} & \text { Lift-off-LET jettison } \\ & \text { assumed complete }\end{aligned}$		171.0 sec)
Interval: Lift-off to start of roll maneuver	E	8.0 sec
Interval: Duration of roll maneuver	F	5.0 sec
(Interval: $\begin{aligned} & \text { Lift-off to start of Pitch } \\ & \text { maneuver }\end{aligned}$		10.0 sec)
Interval: Duration of Pitch maneuver	E	126.0 sec
Interval: End of pitch maneuver to LEN jetison assumed complete (start of tumble monitor)	E	25. 0 sec
Roll maneuver: Rotation about inertial vertical	E	5°
Roll maneuver rate (constant)	E	$1^{\circ} / \mathrm{sec}$
Pitch polynomial ${ }^{1}$ coefficient A_{0}°	$\mathrm{E}+0.89930120$	$\times 10^{+2}$
A_{1}	E-0.6240 1300	$\times 10^{-2}$
A,	E-0.5634 4084	$\times 10^{-2}$
${ }^{\text {a }} 3$	E-0.14615114	$\times 10^{-3}$
A_{4}	$\mathrm{E}+0.30904335$	$\times 10^{-5}$
A_{5}	E-0.19927579	$\times 10^{-7}$
A_{6}	$\mathrm{E}+0.44652766$	$\times 10^{-10}$

Note 1. Form of pitch polynomial is:
$\theta=\sum_{n=0}^{6} A_{n} t^{n}$
where $\theta=$ angle between inertial horizontal at launch and vehicle X -axis, in degrees
$t=$ Time in secs $(t=0$ at 10 secs after Lift-off)

5.3.3 Attitude Maneuvers

Memory
Type \quad Value

Limit: commanded S/C angular rate:

Roll (CSM)
Roll (CM only)
Pitch, Yaw (CSM, CM)
Interval between attitude updates
Interval for stabilization after maneuver
Interval: SPS1 cut-off to end of local vertical phase

F
F

F

F
F

F
$7.2^{\circ} / \mathrm{sec}$
$15^{\circ} / \mathrm{sec}$
$4^{\circ} / \mathrm{sec}$
0.5 sec
5.0 sec
2037.2 sec
5.3.4 TVC (Normal mission)

	Memory Type	Value
CSM c.g. displacement in $\mathrm{X}-\mathrm{Y}$ plane: (SPS 1)	F	$6.60^{\circ} 1$
CSM c.g. displacement in $\mathrm{X}-\mathrm{Y}$ plane: (SPS 2)	F	$3.35{ }^{\circ} 1$
CSM c.g. displacement in $\mathrm{X}-\mathrm{Y}$ plane: (SPS 3)	F	$0.30^{\circ} 1$
CSM c.g. displacement in $\mathrm{Y}-\mathrm{Z}$ plane: (SPS 1)	F	$2.25{ }^{\text {o }} 1$
CSM c.g. displacement in $\mathrm{X}-\mathrm{Z}$ plane: (SPS 2)	F	$0.60^{\circ} 1$
CSM c.g. displacement in $\mathrm{X}-\mathrm{Z}$ plane: (SPS 3)	F	$-0.70^{\circ 1}$
(Mean Tail-off impulse/Mean thrust) of SPS engine	F	0.39 sec
Minimum ΔV criterion for thrust monitor	F	$1 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
Interval for thrust monitor	F	10 sec
Interval between steering updates	F	2 sec
Steer law gain	F	0.125
Steer law velocity bias	F	$160 \mathrm{ft} / \mathrm{sec}$
Steer law coefficient (C)	F	1.0
Maximum Interval: freeze CDUs to engine-off cmnd.	d. F	4.0 sec
Interval: SIVB/CSM Sep. - SPS 1 ignition	F	12.7 sec
Interval: SPS 1 cut-off - SPS 2 ignition	E	3163.67 sec
Interval: SPS 2, 3, cut-off - SPS 3,4ignition	F	10 sec
Interval: SPS 3,4 ignition - SPS 3,4 cut-off	F	3 sec
Interval: + X translation - SPS 2 ignition	F	30 sec
Interval: between SCS mode change commands	F	0.25 sec
Interval: Gimbal mot. power ON - Engine start	F	4.0 sec

[^5]| Interval: | Engine off - Gimbal mot. power OFF | F | 3.0 sec |
| :---: | :---: | :---: | :---: |
| Minimum | Interval: RVT update to SPS2 ignition | F | 50 sec |
| Maximum to rec | Interval: Receipt of SIVB/CSM sep ceipt of VERB 77 abort | F | 1.7 sec |
| Interval: | SPS1 cut-off to FDAI align command | F | 300 sec |
| Six second | ds of ΔV prior to SPS2 cut-off | F | $172.0 \mathrm{ft} / \mathrm{sec}$ |
| Interval: | mean effective SPS tail-off duration | F | 0.39 sec |
| SPS 1 | aim-point criteria | | |
| | Semi-major axis | E | 2.2491076×10^{7} feet |
| | Eccentricity | E | 0.10988556 |
| SPS2 | aim-point criteria | | |
| | Semi-major axis | E | 2.8286389×10^{7} feet |
| | Eccentricity | E | 0.25332143 |
| Interval: | Lift-off - touch down (Nominal mission) | E | 5243.5 sec |

	Symbol	Memory Type	Value
Final phase dR/dGAMMAL	Q5	F	$7050 \mathrm{n} . \mathrm{m}$.
Final phase initial GAMMAL	Q6	F	0.0349
Minimum drag for up control	Q7F	F	$6 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
Limit value of VCORR	VCORLIM	F	$1000 \mathrm{ft} / \mathrm{s}$
Minimum RDOT to close loop	VRCONTRL	F	$700 \mathrm{ft} / \mathrm{s}$
Velocity to switch to relative velocity	VMIN	F	$12,883 \mathrm{ft} / \mathrm{s}$
Minimum VL	VLMIN	F	18,000 ft/s
Velocity to stop steering	VQUIT	F	$1,000 \mathrm{ft} / \mathrm{s}$
Normalization factor, acceleration	GS	F	$32.2 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
Atmosphere Scale Height	HS	F	28,500 ft
Normalization factor, velocity	VSAT	F	25, 766. 197 ft/sec
Nominal earth's radius (entry only)	RE	F	$\underset{\mathrm{ft}}{21,202,909}$
Range angle to nautical mile factor	ATK	F	$\begin{gathered} 3437.7468 \\ \text { n. m. /rad. } \end{gathered}$

5.3.6 TVC (Abort)

	Symbol	Memory Type	Value
Criterion for tumbling detection		F	$5^{\circ} / \mathrm{sec}$
Interval: SIVB/CSM Sep. - SPS ignition (tumbling and abort		F	3.0 sec
Interval: Time-to-go-bias		F	5 sec
Interval: between steering updates		F	not available
Thrust attitude:			
X -axis above visual horizon by		F	35°
(Y -axis normal to local vertical			
Z -axis above local horizontal)			
Limit: commanded change in yaw acceleration		F	$5 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
Abort target point: Latitude		E	$4.00^{\circ} \mathrm{N}$
Longitude		E	$329.00^{\circ} \mathrm{E}$
Interval: Lift-off - abort target point			
(Abort from nominal mission (See Section 4.0))		E	1420 sec
Mean geo-centric radius of visual	R_{vh}	F	$\begin{gathered} 6.378165 \times 10^{6} \\ \text { meters } \end{gathered}$
Entry range angle constant		F	$1,139 \mathrm{sec}$ 7
Entry range angle coefficient		F	2,261,239 feet
Entry range angle critical entry velocity		F	$21,400 \mathrm{ft} / \mathrm{sec}$
Minimum entry range coefficient		F	300 rad

[^6]
5. 3. 7 Entry (Abort)

Memory
Type \quad Value
CM Atlantic pre-entry attitude:
X-axis above velocity vector by F 160°
(Y-axis along neg. momentum vector ($\mathrm{V} * \mathrm{R}$)
Z-axis above velocity vector
A lift-vector up attitude)

Atlantic recovery point:	Latitude	E	not available
	Longitude	E	not available

5.3.8 Free-fall time (T_{f}) monitor

	Memory Type	Value
Entry interface altitude	F	400, 000 feet
Abort T_{f} criterion (A) to start orientation to CM/SM Separation Attitude	F	160 sec
Normal T_{f} criterion (N) to start orientato CM/SM Separation Attitude	F	160 sec
Interval: $\quad \min T_{f}$ to start $C M / S M$ Separation	F	85 sec
Interval: between T_{f} updates	F	2 sec

5.4 Vehicle Data
5.4.1 CSM Data

Weight empty	MS	21,200 lbs
Weight of initial fuel load	ML	22,500 lbs
Variation of principal inertia with mass	IXX	Defined in Fig. 5.4
Variation of principal inertia with mass	IYY	Defined in Fig. 5.5
Variation of principal inertia with mass	IZZ	Defined in Fig. 5.6
Variation of product ${ }^{4}$ of inertial with mass	IXY	Defined in Fig. 5.7
Variation of product ${ }^{4}$ of inertia with mass	IYZ	Defined in Fig. 5.8
Variation of product ${ }^{4}$ of inertia with mass	IZX	Defined in Fig. 5.9
Variation of C. G. X-location ${ }^{2}$ with mass	CGX	Defined in Figs. 5. 10, 5.11
Variation of C. G. Y-location ${ }^{2}$ with mass	CGY	Defined in Figs. 5.12,5.13
Variation of C.G. Z-location ${ }^{2}$ with mass	CGZ	Detined in Figs. 5.14,5.15
Fuel equivalent slosh mass	MF	14.3 slugs
Oxidizer equivalent slosh mass	MO	44.6 slugs
Fuel mass C.G. X-location ${ }^{3}$	RF	970 ins to 840 ins (Apollo ref.)
Oxidizer mass C. G. X-location ${ }^{3}$	RO	974 ins to 840 ins (Apollo ref.)
Fuel mass natural frequency	WF	$4.07{ }^{1} \mathrm{rad} / \mathrm{sec}$
Fuel mass damping ratio	ZF	. 005
Oxidizer mass natural frequency	WO	$3.82{ }^{1} \mathrm{rad} / \mathrm{sec}$
Oxidizer mass damping ratio	ZO	. 005
RCS thruster moment arm	LT	7.1 feet
Engine hinge point location	LE	833 ins. (Apollo ref.)
Spacecraft Launch Configuration		See Fig. 5-3

NOTE: 1. Data corresponds to initial thrust acceleration of $15.7 \mathrm{ft} / \mathrm{sec}^{2}$ and the relation $\left(\mathrm{W}^{2} / \mathrm{a}_{\mathrm{T}}\right)_{\mathrm{t}}=\left(\mathrm{W}^{2} / \mathrm{a}_{\mathrm{T}}\right)_{\text {initial }}$ is assumed.
2. Angles given as positive rotations of (engine hinge-point to c.g.) line about positive CSM Y and Z axes.
3. Range is from vehicle half-full to empty. A linear interpolation is assumed.
4. The products of inertia are assumed to satisfy:

Fig. 5-3 CSM Launch Configuration

Fig. 5-4 IXX Moment of Inertia against CSM Weight

Fig. 5-5 IYY Moment of Inertia against CSM Weight

Fig. 5-6 IZZ Moment of Inertia against CSM Weight

Fig. 5-7 IXY Product of Inertia against CSM Weight

Fig. 5-8 IYZ Product of Inertia against CSM Weight

Fig. 5-9 IXZ Product of Inertia against CSM Weight

Fig. 5-10 C. g. X-Axis Coordinate against CSM Weight

Fig. 5-11 SPS True Gimbal Angle from X-Axis against CSM Weight.

Fig. 5-12 C.g. Y-Axis Coordinate against CSM Weight

Fig. 5-13 SPS Gimbal Angle in X-Y Plane against CSM Weight.

Fig. 5-14 C.g. Z-Axis Coordinate against CSM Weight

Fig. 5-15 SPS Gimbal Angle in X-Z Plane against CSM Weight.

5.4.2 SPS Engine Data

Item	Symbol	Value
Mass	ME	20 slugs
Inertia ($\mathrm{IY}=\mathrm{IZ}=\mathrm{IR}$)	IR	213 slug ft ${ }^{2}$
Hinge to c.g. radius	LE	8.0 inches
Vacuum thrust	TF	21,500 1bs
		$\begin{aligned} & (\pm 1 \% \text { after } 30 \mathrm{sec}) \\ & \left(\begin{array}{l} +10 \% \\ -1 \% \end{array} \text { after } 750 \mathrm{sec}\right) \end{aligned}$
Specific impulse	ISP	317.8 ± 4.8 secs (3σ variation)
Maximum start and shutdown transients		See Fig. 5. 16
Mean thrust-off impulse		8,400 lb-sec
Displacement, thrust vector from engine gimbal axes intersection		<0. 125 inches
Misalignment, thrust vector from engine mount plane normal		$<0.5 \mathrm{deg}$.

Fig. 5-16 SPS Engine Start and Shutdown Transients

TVC Autopilot Data	Symbol	Pitch (Y)	Yaw (Z)	Units
Configuration	Defined in Fig. 5.17			
Attitude error gain	KA	1.0		rad/rad
Attitude rate gain	KR			$\mathrm{rad} / \mathrm{rad} / \mathrm{sec}$
Rate command limit	L			rad
		(effectively $16^{\circ} / \mathrm{sec}$)		
Att. rate filter lead time constant	τ_{1}	0.1		sec
Att. rate filter lag time constant	τ_{2}	0.0		sec
Forward filter gain	KE	1.5		
Commanded position breakpoint	LMP(1)			$\operatorname{rads}\left(6^{\circ}\right)$
Commanded position limit	LMP (2)			$\operatorname{rads}\left(13^{\circ}\right)$
Clutch servo amplifier gain	KS	20.0		Amps/rad
Clutch servo amp. lead time const. τ_{3}		0.025		sec
Clutch servo amp. lag time const.	τ_{4}	0.029		sec
Clutch servo current limit	LMI	0.600		Amps
Clutch gain	KC	3,530		lbs/amp
Actuator moment arm	RA	1.00	1. 05	feet
Clutch lead time constant	τ_{5}	0.022		sec
Clutch lag time constant	τ_{6}	0.029		sec
Total actuator load inertia	JT	281	287	slug-ft ${ }^{2}$
Actuator load time constant	WA	6.652	6.499	rad/sec
A ctuator load natural frequiency	WB	104	81.7	rad/sec
Actuator load damping ratio	ζ	0.104	0.137	
Engine rate limit	LMR	0.300		rad/sec
Engine position limit (pitch)	LMY	± 0.105		$\operatorname{rad}\left(\pm 6^{\circ}\right.$)
Engine position limit (yaw)	LMZ	.	$\begin{aligned} & +0.192 \\ & -0.052 \end{aligned}$	$\operatorname{rad}\binom{+11.0^{\circ}}{-3.0^{\circ}}$
Position feedback gain	KD	1.00		rads/ft/sec
Position pickoff frequency	WD	63.0	46.2	
Rate feedback gain	KG			rads/ft
Rate pickoff frequency	WC	48.1	40.0	rads/sec
5-36				

Fig. 5-17 TVC Autopilot Block Diagram

$$
5-37
$$

(Rev. 1 - 7/65)

$$
\underset{H}{E}
$$

$$
\begin{gathered}
\nabla^{6 \cdot I} \\
z \cdot 0 \\
0 \cdot \square \\
\text { II Dy }
\end{gathered}
$$

Commanded
9. $3^{\circ} / \mathrm{sec}$.
CM only-roll)

$$
\therefore \mathbb{U}
$$

터 厹

$$
凶 r^{4} 4
$$

5.4.4 RCS Autopilot Data
Configuration: see Fig. 5-18 Attitude error deadband
Attitude error gain
Rate command limiter
Roll-to-yaw coupling angle

Rate Gain

NOTES
ALPHA

$$
\begin{gathered}
\text { Att. Cont. } \\
\text { Roll, Pitch, Yaw } \\
0 \\
1.0 \\
---(3) \\
1.0 \\
--- \\
1.0 \\
1.0 \\
0.2 \\
\text { A-0.007 }
\end{gathered}
$$

1. Pitch, yaw attitude error channels open-circuited during entry.

$$
\begin{aligned}
& \text { Pre-05g } \\
& \text { Roll Pitch, Yaw } \\
& \quad 4.0 \\
& 0.2 \\
& 1.9^{4} \quad 0.7^{5} \\
& 0.1 \\
& --- \\
& --(2) \\
& --(2) \\
& 0.2 \\
& \text { A- } 0.007
\end{aligned}
$$

$$
\begin{gathered}
\text { Pitch, Yaw } \\
--(1) \\
---(1) \\
---(1)
\end{gathered}
$$

Fig. 5-18 RCS Autopilot Block: Diagram

5.4.5 RCS Reaction Jet Data

Item

Configuration

Nominal vacuum thrust
Specific impulse (steady)
Minimum impulse
Thrust rise lag
Thrust rise time constant
Duration, minimum impulse electrical signal

Units
SM (see Fig. 5.19) (see Fig. 5. 20)
lbs
100 ± 5
secs 283 ± 11 (3 σ)
0.75 ± 0.15
millisec < 12.5
millisec $2.0(\exp)$
millisec 18.0 ± 4.0
millisec 18.0 ± 4.0

Value
CM
91 ± 3
270 ± 4
2.0 ± 0.3
<13.0
2.0 (linear)
18.0 ± 4.0

Fig. 5-19 (1) CSM Reaction Jet Positions

Fig. 5-19 (2) CSM Reaction Jet Positions
$x_{c}=270.50$

notes 111 not on outermi-inters pi or a roil engines
(2) all tinear measurements in inches
(3) der numbering syggeite er mit

5.4.6 CM Data

Control Weight
Principal inertia (IXX)
Principal inertia (IYY)
Principal inertia (IZZ)
Product of inertias (IXY)
Product of inertias (IYZ)
Product of inertias (IXZ)
CG X-location
CG Y-location
CG Z-location
Aerodynamic reference area
Aerodynamic reference diameter
Aerodynamic coefficients
Variation of coefficients with Mach number
$11,000 \mathrm{lbs}$
5065.0 slug-ft ${ }^{2}$
4491. 3 slug-ft ${ }^{2}$
3973.5 slug-ft ${ }^{2}$
-1.7 slug-ft ${ }^{2}$
-43.5 slug-ft ${ }^{2}$
-291.8 slug- $-\mathrm{ft}^{2}$
43.4 inches
0.5 inches
5.3 inches
from CM
origin = S/C sta. 1000
129.4 square feet
154.0 inches
see: Table (5.2), Fig. (5. 21)
see: Fig. (5.22)

Note 1. See note at foot of 5.4.1

Table 5. 2
Aerodynamic Coefficients Against Angle of Attack for the Command Module with Protuberances

α, deg.	C_{M}	C_{N}	$\mathrm{C}_{\text {A }}$	C_{L}	C_{D}	L/D
140.465	0.03282	0.13187	-0.99218	0.52987	0.84915	0.62400
145.465	0.02686	0.10490	-1.10571	0.54042	0.97033	0. 55695
150.465	0.01851	0.07990	-1.20796	0. 52595	1.09038	0.48236
155.165	0.00770	○. กЕ22?	-1.20105	ก. 47050	1 20ก32	$\bigcirc 39947$
160.465	-0.00268	0.05562	-1.36511	0.40405	1. 30513	0. 30958
165.465	-0.01411	0.04354	-1.42967	0. 31666	1.39484	0.22702
170.465	-0.02601	0.01772	-1. 47186	0.22634	1.45446	0.15562
175.465	-0.03708	-0.00144	-1. 50081	0.12010	1. 49600	0.08082

NOTES: 1. Above Table for Mach 10.0
2. Coefficients for Moment Center at

$$
\begin{aligned}
& X_{c . g .}=1043.1 \text { inches } \\
& Y_{c . g .}=0.0 \text { inches } \\
& Z_{c . g .}=5.4 \text { inches }
\end{aligned}
$$

NOTE : COEFFICIENTS FOR MOMENT CENTER AT
$X_{\text {c.g. }}=1043.1$ ins
$Y_{\text {c.g. }}=0.0 \mathrm{ins}$
$Z_{\text {c.g. }}=5.4$ ins

Fig. 5-22 Experimental Trim Values for Block I CM with External Protruberances

5.5 Physical constants

5.5.1 Geophysical constants

	Symbol	Value
Earth's gravitation constant	MUE	3. 986032233×10^{14} meters ${ }^{3} /$ sec 2
Gravity potential harmonic coeff.	J	1.62345×10^{-3}
	H	-0.575×10^{-5}
	D	0.7875×10^{-5}
Earth's mean equatorial radius	RE	6.378165×10^{6} meters
Earth's sidereal rate	WIE	$\begin{aligned} & \text { 7. } 29211504 \times 10^{-5} \\ & \text { radians } / \mathrm{sec} \end{aligned}$
Reference ellipsoid		Fischer, 1960

5.5.2 Conversion Factors
Multiply by
International feet to meters 0.3048
Pounds to newtons 4.448221530
Slugs to kilograms 14. 593902680
Nautical miles to kilometers 1. 852
Statute miles to kilometers 1. 609344000
Slugs to pounds (g) $32.174048000 \mathrm{ft} / \mathrm{s} / \mathrm{s}$

6. G\&N ERROR ANA LYSIS

This section provides the results of G\&N Error Analysis. Table 6-1 summarizes the one-sigma total error at each major event time and breaks these down into the contributions of IMU errors accumulated during each powered phase. Tables 6-2 through 6-16 break down each line of Table 6-1 into the contributions of each IMU sensor error term.

On the basis of these data the following key errors are estimated:

Entry γ_{i} (one sigma)	$:$	0.165 degree
Entry V_{i} (one sigma)	$:$	18.0 feet per second
CEP at Pacific Recuveíy Puini.	$i 5.0$ nauival miles	

The following comments explain the terminology, method of analysis and the basic assumptions used.

1) The IMU Stable Member axes are aligned prior to launch relative to local vertical axes as indicated in sketch. X_{SM} is up along local vertical at instant of launch, while $Z_{S M}$ is along local horizontal pointed down-range at an azimuth of 105 degrees.

2) The data in the error tables are given relative to local vertical axes (altitude, track, range) at the particular event designated.
3) Only the significant error figures have been listed in the error tables.
4) No realignment of the Stable Member was assumed.
5) Accelerometer bias errors affect indication errors in two ways. First, they affect the initial pre-launch alignment of the Stable Member. Second, they affect the in-flight computation of position and velocity. The two effects are summed in the tables, since the accelerometer bias error prior to launch is assumed to be correlated with the bias error during flight.
6) Accelerometer inputs to the AGC are not used during the free-fall phases of the trajectory.
7) "Initial S. M. Alignment Errors" includes only the uncorrelated alignment errors. They do not include the alignment errors due to accelerometer bias errors. The azimuth alignment error (about X_{SM}) is affected principally by by Z gyro drift effect on the gyro-compassing loop. Since there are other contributing factors to azimuth misalignment, this alignment error has been assumed to be statisticaily independent of Z gyro drift.
8) The position and velocity errors given in the tables for the various IMU sensor error terms are indication errors. No steering error was assumed. The indication errors in position and velocity were computed separately for each sensor error term using an array of error equations and the input position and acceleration trajectory data. These equations take into account the effect of the platform error on the gravity vector computation. For each trajectory run the position and velocity errors due to each platform error are computed simultaneously and printed in a summary table for all trajectory events of interest.

202 TRAJECTORY ERRORS

	Prror		$\hat{1}$	$\begin{aligned} & \text { RMS } \\ & \text { frrur } \end{aligned}$	```Final Position Error in Local Axes (infeet)```			```Final Velocity Error in Local Axes (inft/sec)```		
					Alt.	Track	Range	Alt.	Track	Range
	Position			0 ft	0	0	0	0	0	0
		${ }^{(F) Y_{10}}$		0 ft						
		$(\mathrm{F}) \mathrm{Z}_{\text {Io }}$		0 ft						
	Velocity			$0 \mathrm{ft} / \mathrm{sec}$						
		(F) $_{Y}$		$0 \mathrm{ft} / \mathrm{sec}$						
		(F) $\mathrm{V}_{7 \text { I }}$		$0 \mathrm{ft} / \mathrm{sec}$						
	Initia: S. M. Alignment Frrors	${ }^{A_{\text {(SM) }}}$		3.6 mr		-18,580			-71.61	
		$A_{(S M) Y}$		0.04 mr	153		- 283	0.75		-0.73
		$\mathrm{A}_{\text {(SM) }}$		0.07 mr		403			0.89	
	Accil. LA Nonorthog onality	X to Y		0.1 mr						
		X to Z		0.1 mr	557		157	2.34		-0.61
		Y to Z		0.1 mr						
	Bias Firror	ACBX	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-1,316		369	-4.65		1.18
			Fff on Init Mlm							
			Combined Fff							
			Direct effect			- 1.194]			- 3.60	
		ACBY	Iff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		1,5731			2.60	
			Combined Fff			- 2_{1}			1.09	
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	- 359		-1,142	-1.24		-3.52
			Fff on Init Mlm		- 779		1,44:	-3.83		3.73
			Combined Fff		-1,138		29:	-5.07		0.21
	Scale Facior trror	SFFEX		87 PPM	- 573		155	-1.62		0.38
		SFEV		87 PPM		0			0	
		SFEZ		87 PPM	- 134		430	-C. 58		-1.65
	Accel. Sq. Sensitive Indication Erior	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 95		26	-0.24		0.05
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0	
		NCZ.Z		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 21		- 68	-0.05		-0.27
$\begin{aligned} & 0 \\ & \underset{y}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Bias } \\ & \text { Drift } \end{aligned}$	BDX	Direct effect	3.6 meru		- $\quad 333$			-1.97	
		BDY	Direct effect	3.6 meru	281		- 302	1.86		-1.29
		BDZ	Direct effect	3.6 meru		213			0.74	
	Acceler- ation Sensitive Drift	ADIAX		$15 \mathrm{meru} / \mathrm{g}$		- 1,594			-7.71	
		ADSRAY		10.5 meru /g	- 692		642	-4.95		3.19
		A DIAZ		$15 \mathrm{meru} / \mathrm{g}$		608			2.47	
	Acceleration Squared Sensitive Drift	$A^{2} D_{(L A)}(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 162			-0.71	
		$A^{2} \mathrm{D}_{\text {(SRA) }}(\mathrm{SRA}) \mathrm{Y}$		$1 \mathrm{meru} / \mathrm{g}^{2}$	94		- $\quad 88$	0.65		-0.42
		$A^{2} A^{(L A)}$ (LA) Z		$1 \mathrm{meru} / \mathrm{g}^{2}$		58			0.23	
Root Sum Square Error (in ft and ft/ser)					2,069	18,667	1,028	0.20	72.12	4.16
Root Sum Square Error (in n, ml, and $\mathrm{ft} / \mathrm{sec}$)					0.34	3.07	0.17	9. 2	72.1	4.2

Table 6-2 Total Indication Errors at SIVB Cutoff

Table 6-3 Total Indication Errors at SPS 1st Burn Cutoff

	Frror			RMS Frror	```Final Position Error In Local Axes (in feet)```			```Final Velocity F.rror in Local Axes (1n ft/sec)```			
				Alt.	Track	Range	Alt.	Track	Range		
	Position	${ }^{(5 .)} \mathrm{X}_{10}$			0 ft	0	0	0	0	0	0
		(F) $\mathrm{Y}_{\text {Io }}$		0 ft							
		${ }^{(F)} \mathrm{Z}_{\text {Io }}$		0 ft							
	Velocity	${ }^{(F)} \mathrm{V}_{\text {XIo }}$		$0 \mathrm{ft} / \mathrm{sec}$							
		${ }^{(F)} \mathrm{V}_{\mathrm{Y} \mathrm{Ic}}$		$0 \mathrm{ft} / \mathrm{sec}$							
		(F) $\mathrm{V}_{\text {ZIo }}$		$0 \mathrm{ft} / \mathrm{sec}$							
范	Initial S. M. Alignment Frrors	${ }^{\text {A }}$ (SM)XI		3.6 mr		-2,041			-17.46		
		${ }^{\text {A }}$ (SM)YI		0.04 mr	i7		- 15	-0.15		-0.13	
		${ }^{\text {A }}$ (SM)ZI		0.07 mr		6			0.05		
	Accel. IA Nonorthog onality	X to Y		0.1 mr							
		x to 2		0.1 mr	49		- 31	0.42		0.27	
		Y to Z		0.1 mr							
	Bias Error	ACBX	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-180		115	-1.44		0.90	
			Eff on Init Mlm								
			Combined Fff								
		ACBY	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		-210			- 1,64		
			Fff on Init M1m			18			0.15		
			Combined Fff			-191			- 1.49		
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-116		-176	-0.93		-1.37	
			FIf on Init Mlm		- 89		79	-0.78		0.67	
			Combined Fff		-205		- 97	-2. 71		-0.70	
	Scale Factor Error	SFEX		87 PPM	- 7		4	-0.06		0.03	
		SFEY		87 PPM		0			0		
		SFFEZ		87 PPM	- 27		- 41	-0.24		-0.35	
	Accel. Sq. Sensitive Indication Error	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	0		0	0		0	
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0		
		NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 2		- 3	-6.02		-0.02	
$\begin{aligned} & 0 \\ & \underset{y y}{c} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Bias } \\ & \text { Drift } \end{aligned}$	BDX	Direct effect	3.6 meru		- 107			-0.98		
		BDY	Direct effect	3.6 meru	82		-73	0.77		-0.66	
		BDZ	Direct effect	3.6 meru		17			0.14		
	Acceler- ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		- 290			-2.51		
		A DSRAY		10.5 meru /g	-237		210	-2.16		1.84	
		ADIAZ		15 meru /g		71			0.58		
	Acceleration Squared Sensitive Drift	$A^{2} D_{\text {(IA }}$ (IA)X		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 23			-0.20		
		$A^{2} D_{\text {(SRA) }}$ (SRA) Y		$1 \mathrm{meru} / \mathrm{g}^{2}$	31		- 28	0.28		-0.24	
		$A^{2} A_{(L A)}(\mathrm{LA}) \mathrm{Z}$		$1 \mathrm{meru} / \mathrm{g}^{2}$		7			0.05		
Root Sum Square Error (in ft and ft/ser)					376	2,074	276	3.25	17.74	2.32	
Root Sum Square Error (in n. mi. and ft/sec)					0.06	0.34	0.05	3.3	17.7	2.3	

Table 6-4 Effect of IMU Errors during SPS 1st Burn at SPS 1st Burn Cutoff

Table 6-5 Total Indication Errors at Coast End (SPS 2nd Burn Ignition)

	Error			RMS Frror	Final Position Error in Local Axes (in feet)			```Final Velocity Error in Local Axes (In ft/sec)```		
					Alt.	Track	Range	Alt.	Track	Range
	Position	(E) X_{10}		0 ft	0	0	0	0	0	0
		${ }_{(E) Y} \mathrm{I}_{\text {Io }}$		0 ft						
		(E) $\mathrm{Z}_{\text {Io }}$		0 ft						
	Velocity	(F)V ${ }^{\text {XIo }}$		$0 \mathrm{ft} / \mathrm{sec}$						
		${ }^{(E)} \mathrm{V}_{\mathrm{YIo}}$		$0 \mathrm{ft} / \mathrm{sec}$						
		$(\mathrm{F}) \mathrm{V}_{\text {ZIo }}$		$0 \mathrm{ft} / \mathrm{sec}$						
	Initial S. M. Alignment Errors	${ }^{\text {A }}$ (SM) XI		3.6 mr		478			16.83	
		${ }^{\text {A }}$ (SM)YI		0.04 mr	- 432		377	-0.58		0.33
		${ }^{\text {A }}$ (SM) ZI		0.07 mr		- 2			-0.05	
	Accel. IA Nonorthogonality	X to Y		0.1 mr						
		x to Z		0.1 mr	- 763		132	-0.58		0.63
		Y to Z		0.1 mr						
	Blas Error	A CBX	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	2,515		- 278	1.78		-2.09
			Fff on Init Mlm							
			Combined Fif							
		ACBY	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		64			1.58	
			Fff on Init M1m			- 6			- 0,14	
			Combined Fff			58			1,44	
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-7,204		18, 366	-19.86		4.43
			Fiff on Init Mlm		2,204		- 1,922	2.98		-1.68
			Combined Fff		-5,000		16,444	-16.88		2.75
	Scale Factor Error	SFEX		87 PPM	97		- 11	0.07		-0,08
		SFEY		87 PPM		0			0	
		SFEZ		87 PPM	-1,841		4,679	-5.06		1.13
	Accèl. Sq. Sensitive Indication Error	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	1		0	0		0
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0	
		NCZ Z		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 129		328	-0.36		0.08
$$	$\begin{aligned} & \text { Bias } \\ & \text { Drift } \end{aligned}$	BDX	Direct effect	3.6 meru		20			0.94	
		BDY	Direct effect	3.6 meru	-2,191		1,932	-2.98		1.67
		BDZ	Direct effect	3.6 meru		- 4			-0.14	
	Acceleration Sensltive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		66			2.42	
		ADSRAY		10.5 meru $/ \mathrm{g}$	6,142		- 5, 393	8.34		-4.67
		A DIA 2		15 meru/g		- 19			- 0.56	
	Acceleration Squared Senaltive Drift	$A^{2} D_{(L A)}(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		5			0.19	
		$A^{2} D_{\text {(SRA }}$ (SRA) Y		$1 \mathrm{meru} / \mathrm{g}^{2}$	- 789		690	-1.07		0.60
		$A^{2} A^{\prime}(L A)(L A) Z$		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 2			- 0.05	
	Root Sum Square Error (in ft and ft/ser)				8,893	492	18, 180	19.96	17.10	6.24
	Root Sum Square Error (in n, ml, and $\mathrm{ft} / \mathrm{sec}$)				1.46	0.08	2.99	20.0	17.1	6.2

Table 6-6 Effect of IMU Errors during SPS 1 st Burn at Coast End (SPS 2nd Burn Ignition)

	frior			$\begin{aligned} & \text { RMS } \\ & \text { frror } \end{aligned}$	Final Position Error in Local Axes (in feet)			```Final Velocity Error in Local Axes (inft/sec)```		
					Alt.	Track	Range	Alt.	'rrack	Range
	Pesition	(E) $\lambda_{\text {Io }}$		0 ft	0	0	0	0	0	Range
		(F) Y_{10}		0 ft						
		(F) Z_{1}		0 ¢t						
	Velocity	(r)V ${ }^{\text {Xio }}$		$0 \mathrm{ft} / \mathrm{sec}$						
		${ }^{(r)} \mathrm{V}^{\text {YIo }}$		$0 \mathrm{ft} / \mathrm{sec}$						
		${ }^{(F) V_{2 i o}}$		$0 \mathrm{ft} / \mathrm{sec}$						
	Initial S. M. Alignment Frrors	${ }^{\text {A (SM)X: }}$		3.6 mr		-39, 336			73.40	
		${ }^{\text {A (SM)Y! }}$		0.04 mr	- 2, 720		4,309	-4.96		2. 12
		${ }^{\text {A }}$ (SM)ZI		0.07 mr		- 626			- 0.43	
	Aceet. ia Nonorthog onality	x to y		0.1 mr						
		X to Z		0.1 mr	- $\quad 323$		-10,663	9.92		1. 40
		Y to Z		0.1 mr						
	Bias Error	A CBX	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	574		24,235	-21.87		- 3.52
			Fif on Init Mlm							
			Combined Fff							
		ACBY	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		2,322			3.47	
			Fff on Init Mlm			- 1.8824			- 1.24	
			Combined Fff			498			2.23	
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-24, 424		75,517	-79.58		15. 03
			F.ff on Init Mlm		13,866		-2i, 971	25.28		-i0. 79
			Combined Fff		-10,558		53,546	-54.30		4.24
	Scale Factor irror	SFEX		87 PPM	- 1,268		10,506	-10.34		- 0.15
		SFEY		87 PPM		0			0	
		SFEZ		87 PVM	- 9,855		30,364	-32.23		5.75
	Accei. Sq. Sensitive Indication Erro:	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}{ }^{2}$	- 260		i, 723	- 1.74		0.33
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0	
		NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 1.460		4,541	- 4.80		0.87
$$	$\begin{aligned} & \text { Hias } \\ & \text { Dr'ft } \end{aligned}$	BDX	Direct effect	3.6 mers		i, 022			3. 88	
		BDY	Direct effect	3.6 meru	- 6,019		5,964	-5.58		6.31
		BDZ	Direct effect	3.6 meru		- 304			1.87	
	Accoier- ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		3,926			8.98	
		ADSRAY		10.5 meru /g	15, 864		-13, 705	18.29		-13.86
		A DIAZ		15 meru/g		- 1,222			- 0.27	
	Acceieration Squared Sensitive Drift	$A^{2} D_{\text {d }}(I A)(I A) X$		1 meru/g ${ }^{2}$		373			0.78	
		$\left.A^{2} D(S R A) \text { iSRA }\right) Y$		$1 \mathrm{meru} / \mathrm{g}^{2}$	- 2, 055		1,755	-2.35		1.85
		$A^{2} A^{(L A)}(\mathrm{LA}) \mathrm{Z}$		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 115			- 0.03	
Root Sum Square Error (ir, ft and $\mathrm{ft} / \mathrm{ser}$)					22,982	39,576	71,726	73.17	74.11	17.70
	Root Sum Square Error (in $\mathrm{n} . \mathrm{ml}$. and $\mathrm{ft} / \mathrm{sec}$)				3.78	0.51	11.30	73.2	74.1	17.7

Table 6-7 Total Indication Errors at SPS 2nd Burn Cutoff

	Frror			$\begin{aligned} & \text { RMS } \\ & \text { frror } \end{aligned}$	```FInal Position Error In Local Axes (infert)```			```Final Velocity Error in Local Axes (in It/sec)```			
				Alt.	Track	Range	Alt.	Track	Range		
	Position	(F.) X_{10}			0 ft	0	0	0	0	0	0
		$(F) \mathrm{Y}_{10}$		0 ft							
		(F) Z_{10}		0 ft							
	Velocity	$(F) V^{\text {XIo }}$		$0 \mathrm{ft} / \mathrm{sec}$							
		(F) $\mathrm{V}_{\mathrm{Ylo}}$		$0 \mathrm{ft} / \mathrm{sec}$							
		${ }^{(F) V^{210}}$		$0 \mathrm{ft} / \mathrm{sec}$							
	Initial S. M. Alignment Frrors	$A_{\text {(SM)XI }}$		3.6 mr		-2,318			21.56		
		${ }^{\text {A }}$ (SM)YI		ט. 04 mr	- 440		461	-0.55		0.40	
		${ }^{\text {(}}$ (SM) ZI		0.07 mr		1			0.12		
	Accel. [A Nonorthog onality	X to Y		0.1 mr							
		X to 2		0.1 mr	- 796		279	-0.59		0.60	
		Y to Z		0.1 mr							
	Bias Error	ACBX	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	2,670		- 794	2.69		-2.59	
			Fff on Init M1m								
			Combined Fff								
		ACBY	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		185			0.93		
			Fff on Init M1m			${ }^{18}$			0.35		
			Combined Fff			188			1.28		
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-2. 022		19.619	-20.76		4.95	
			F.ff on Init Mlm		2,245		- 2,352	2.82		-2.03	
			Combined Fif		-4,777		17,262	-17.94		2.92	
	Scale Factor Frror	SFEX		87 PPM	110		- 36	0.26		-0.20	
		SFEY		87 PPM		0			0		
		SFFR		87 PPM	-1,802		4,988	-5.45		1.03	
	Accel. Sq. Sensitive Indication Error	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	2		-1	0.02		-0.01	
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0		
		NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 126		350	- 0.37		0.08	
$$	Bias Drift	BDX	Direct effect	3.6 meru		175			2.35		
		BDY	Direct effect	3.6 meru	-2,136		2,407	-0.75		3.09	
		BDZ	Direct effect	3.6 meru		97			2.39		
	Acceler- ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		332			3.17		
		ADSRAY		10.5 meru $/ \mathrm{g}$	6,249		- 6,592	7.81		-5. 71	
		ADIAZ		$15 \mathrm{meru} / \mathrm{g}$		24			1.55		
	Acceleration Squared Sensitive Drift	$A^{2} D_{\text {d }}(1 A)(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		26			0.25		
		$A^{2} D_{\text {(SRA }}$ (SRA) Y		$1 \mathrm{meru} / \mathrm{g}^{2}$	- 803		845	- 1.00		0.73	
		$A^{2} A^{2}$ (IA) (IA) Z		$1 \mathrm{meru} / \mathrm{g}^{2}$		2			0.14		
Root Sum Square Frror (in ft and ft/ser)					8,870	2,359	19,472	30.66	22.14	7.73	
Root Sum Square Error (in n. mi. and $\mathrm{ft} / \mathrm{sec}$)					1.46	0.39	3.20	20.7	22.1	7.7	

Table 6-8 Effect of IMU Errors during SPS 1 st and 2nd Burn at SPS 2nd Burn Cutoff

Effect of IMU Errors during SPS 2nd Burn at Sls 2nd Burn Cutoff

	Frror			RMS Frror	Final in	Pusition ocal Ax in $f(e+t)$	Firror es		Velocit Lucal A in ft／se	Firor es
					Alt．	Track	Range	Alt．	Track	Range
		（F） X_{10}		0 ft						
芜莡	Position	（F） Y_{10}		0 ft						
		（F）$Z_{\text {Io }}$		0 ft						
若突		（r） V_{XI}		$0 \mathrm{ft} / \mathrm{sec}$		0	0	0	0	0
0	Velocity	$(\mathrm{F}) \mathrm{V}_{\mathrm{YI}}$		$0 \mathrm{ft} / \mathrm{sec}$						
EG		${ }^{\text {F }} \mathrm{VV}_{\text {ZI }}$		$0 \mathrm{ft} / \mathrm{sec}$						
	Initial	${ }^{\text {A }}$（SM）${ }^{\text {a }}$		3.6 mr		227			4.88	
	S．M． Alignment	${ }^{\text {A }}$（SM）${ }^{\text {d }}$		0.04 mr	5		2	0.10		0.05
いこ	Frrors	${ }^{\text {A }}$（SM）		0.07 mr		8			0.17	
	Accel．LA	x to y		v．i $11 / 4$						
	Nonorthog－	X to Z		0.1 mr	5		－ 3	0.11		－0．07
	onality	Y to Z		0.1 mr						
			Direct effect		25		－ 17	0.53		－0．35
		A CBX	Fff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$						
			Combined Fff							
$\stackrel{\text { 范 }}{2}$			Direct eifect			－ 30			－0．63	
\sum_{Σ}^{5}	Frror	A CBY	Fif on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		23			－0．49	
0			Combined Fif			－ 7			－0．14	
$\begin{aligned} & \text { a } \\ & \mu \end{aligned}$			Direct effect		17		25	0.35		0.53
苞		A CBZ	Fff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	23		－ 12	－0．51		－0．26
$\underset{\sim}{U}$			Combined Fff		6		13	－0．16		0.27
	Scale	Strix		87 PPM	8		－ 5	0.18		－0．12
	Factor	SFFY		87 PPM		0			0	
	Frror	SFFZ		87 PPM	3		－ 5	－0．07		－0． 10
		NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	1		0	0.02		－0．01
	Sensitive Indication	NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0	
	Error	NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	0		0	0		0
	Bias Drift	BDX	Direct effect	3.6 meru		65			1.42	
		BDY	Direct effect	3.6 meru	118		60	2.58		1.33
		BDZ	Direct effect	3.6 meru		115			2.52	
	Acceler－ ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		35			0.77	
		A DSRAY		10.5 meru／g	70		－ 35	－1．51		－0．77
		A DIA 2		$15 \mathrm{meru} / \mathrm{g}$		97			2． 10	
	Acceler－ ation Squared Sensitive Drift	$A^{2} D^{2}(I A)(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		3			O． 06	
		$\left.A^{2} D(S R A) \triangle S R A\right) Y$		$1 \mathrm{mrru} / \mathrm{g}^{2}$	9		4	0． 19		0． 10
		$A^{2} A^{\prime}(\mathrm{IA})(\mathrm{LA}) \mathrm{Z}$		1 neru／${ }^{2}$		9			0.19	
Root Sum Square Frror（in ft and ft／aren）					140	282	73	3．06	6.11	1.61
Root Sum Square Error（in n．mi．and tt／ar．）					li． 1 ？	0.05	0.01	3.1	6.1	1.6

Table 6－9 Effect of IMU Errors during SPS 2nd Burn at SPS 2nd Burn Cutoff

				RMS Frror	```Final Position F.r:or in Local Axes (infeet)```			Final Velocity Error in Local Axes (In $\mathrm{ft} / \mathrm{sec}$)			
				Alt.	Track	Range	Alt.	Track	Range		
	Position	(F) X_{10}			0 ft	0	0	0	0	0	0
		(F) $^{\text {Y }}$ Io		9 f							
		(F) Z_{10}		0 ft							
	Velocity	(F) ${ }^{\text {(FIO }}$		$0 \mathrm{ft} / \mathrm{sec}$							
		(F) $\mathrm{V}_{\mathrm{YIO}}$		$0 \mathrm{ft} / \mathrm{sec}$							
		(F)V ${ }_{2 l 0}$		$0 \mathrm{ft} / \mathrm{sec}$							
	Initial S. M. Alignment Frrors	${ }^{\text {A }}$ (SM) ${ }^{\text {a }}$		3.6 mr		58,534			52.86		
		${ }^{\text {A }}$ (SM) Y		0.04 mr	- 2,400		5,968	-6.26		2.17	
		${ }^{\text {A }}$ (SM) Z		0.07 mr		- 714			- 0.15		
	Accel. IA Nonorthog onality	X 10 Y		0.1 mr							
		X to Z		0.1 mr	- 1,351		- 9,853	9.84		1.80	
		Y 10 Z		0.1 mr							
			Direct effect		3,063		22, 286	-21.93		- 4.62	
		ACBX	Fiff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$							
			Combined Fff								
			Direct effect			3,201			2.31		
		ACBY	Fff on Init M1m	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		- 2,079			-0.43		
			Combined Fif			1,122			1.88		
			Direct effect		-18, 174		88, 387	-91.67		14.40	
		ACBZ	Fff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	12,230		-30,427	31.94		-11.06	
			Combined Fff		- 5, 944		57, 956	-59.73		3.34	
	Scale	SFEX		87 PPM	- $\quad 348$		10, 745	-11.12		-0.37	
	Factor	SFEY		87 PPM		0			0		
	Frror	SFFiZ		87 PPM	- 7,444		35,501	-37.25		5.63	
		NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 117		1,803	- 1.89		0.01	
	Sensitive	NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0		
		NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 1,092		5, 304	-5.53		0.84	
$\begin{aligned} & 0 \\ & 0 \\ & \substack{4 \\ 0 \\ 0} \end{aligned}$	Bias Drift	BDX	Direct effect	3.6 meru		2,102			3.23		
		BDY	Direct effect	3.6 meru	- 4,917		9,940	- 7.84		5.61	
		BDZ	Direct effect	3.6 meru		262			1.87		
	Acceleration Sensitive Drift	A DIA X		$15 \mathrm{meru} / \mathrm{g}$		6,330			6.83		
		A DSRAY		$10.5 \mathrm{meru} / \mathrm{g}$	15,079		-24, 114	25.69		-14.57	
		A DIA Z		15 meru/g		- 1,227			0.25		
	Acceleration Squared Sensitive DrIft	$A^{2} D^{\prime}(1 A)(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		578			0.58		
		$A^{2} \mathrm{D}$ (SRA)(SRA)Y		$1 \mathrm{meru} / \mathrm{g}^{2}$	- 1,955		3,104	-3.31		1.89	
		$A^{2} A^{(L A)}$ (LA) Z		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 117			0.02		
Root Sum Square Error (inft and ft/ser)					19,231	58, 944	80, 193	82.52	53.48	18.03	
Root Sum Square Error (in n. mi, and ft/sec)					3.17	9.70	13.20	82.5	53.5	18.0	

Table 6-10 Total Indication Errors at Entry Start

	Frror			$\begin{aligned} & \text { RASS } \\ & \text { !raror } \end{aligned}$	```Final Pessition Frror in lonal Axes (in feet)```			```Final Velocity Frror in L.ocal Axes (inft/sec)```			
				Alt．	Track	Range	Alt．	Track	Range		
	Position	（F） $\mathrm{X}^{\text {Io }}$			0 ft	0	e	0	0	0	
		${ }^{(F) Y} \mathrm{Y} \mathrm{l}_{0}$		1） ft							
		（F） Z_{10}		6^{19}							
		（1） V_{XI}		$9 \mathrm{ft/sec}$	c						
	Velocity	${ }^{(F)} \mathrm{V}_{\mathrm{Yi}}$		$0 \mathrm{ft} / \mathrm{sec}$							
		${ }^{\text {F F }} \mathrm{V}_{\mathrm{ZI}}$		$\overline{0 \mathrm{f} / \mathrm{sec}}$							
0^{4}	Initial	${ }^{\text {A }}$（SM）		3.6 mr		8，514			19.27		
号合	S．M． Alignment	${ }^{\text {A }}$（SM）Y		0.04 mr	－ 400		748	-0.75		0.40	
が	Frrors	${ }^{\text {A }}$（SM）		0.07 mr		37			0.11		
	A＝こと！．IA	X to Y		0.1 mr							
	Nonorthog－	X to Z		0.1 mr	－ 827		793	－1．01		0.69	
	onality	Y to Z		0.1 mr							
			Direct effect		2，971		－2，778	3.94		－3．15	
		ACBX	Fff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$							
			Combined Fff								
$\stackrel{1}{5}$	Bias		Direct effect			448			0.80		
${ }^{4}$	Error	A CBY	Fff on Init M1m	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		107			0.33		
${ }_{0}^{0}$			Combined Fif			555			1.13		
$\begin{aligned} & \text { LI } \\ & \hline 1 \end{aligned}$			Direct effect		－5，334		23，528	－24．05		4.73	
H H		ACBZ	Fff on Init Mlm	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	2，037		－3，816	3.82		－2．05	
$\underset{4}{4}$			Combined Fff		－3，297		19，712	-20.23		2.68	
	Scale	SFEX		87 PPM	154		－ 160	0.28		－0．27	
	Factor	SFEY		87 PPM		0			0		
	Frror	SFFEZ		87 PPM	－1，448		5，947	－ 6.40		i． 07	
	Accel．Sq．	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	亏		－ 6	0.01		－0．02	
	Sensitive Indication	NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		0			0		
	Error	NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	－ 98		420	－ 0.44		0.08	
		BDX	Direct effect	3.6 meru		855			2.13		
		BDY	Direct effect	3.6 meru	－1，179		3，867	－1．12		2.14	
		BDZ	Direct effect	3.6 meru		793			2.20		
	Acceler－	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		1，243			2.83		
	ation	A DSRA		10.5 meru／g	5，633		－10，670	10.56		－5．70	
	Drift	A DIAZ		$15 \mathrm{meru} / \mathrm{g}$		477			1.44		
	Acceler－ ation	$A^{2} D^{\text {d }}$（LA	）（LA）X	$1 \mathrm{meru} / \mathrm{g}^{2}$		S7			0.22		
	Squared Sensitive	$A^{2} D_{\text {che }}$	RA）（SRA）Y	1 meru／g ${ }^{2}$	－ 725		1，369	－1．36		0.73	
		$A^{2} A_{\text {（LA }}$	）（IA）Z	i meru／g ${ }^{2}$		42			0.13		
	oot Sum Squ	re Erro	or（in ft and ft ／		7.513	8，715	23，880	24.25	19.81	7.53	
	oot Sum Squ	re Erro	or（in n, mi ，an	／ sec ）	1.24	1.43	3.93	24.3	19.8	7.5	

Table 6－11 Effect of IMU Errors during SPS 1st and 2nd Burns at Entry Start

			$\hat{4}$	RMS	Final in	osi：ın acel Ax fert	rror	Final in	Velocity ocal Ax fi／sec	rror
					Alt．	Track	Range	Alt．	Track	Range
		（F） $\mathrm{X}_{\text {Io }}$		0 ft						
${ }^{\times}$	Position	（F） Y_{10}		0 ft						
云宸		（F） Z_{Io}		0 ft	0	i	0	0	\bigcirc	0
		${ }^{\text {（F）}} \mathrm{X}_{\text {Xi }}$		$0 \mathrm{ft} / \mathrm{sec}$						
0	Verocity	${ }^{(r)} \mathrm{V}_{\mathrm{YI}}$		$0 \mathrm{ft} / \mathrm{sec}$						
E可		$(\because) V_{21}$		$0 \mathrm{ft} / \mathrm{sec}$						
		${ }^{\text {A }}$（SM）		3.6 mr		1，648			4.49	
辰	S. M.	${ }^{\text {A }}$（SM）Y		0.04 mr	40		3	0.13		0.01
$\stackrel{\sim}{\sim}$	Frrors	${ }^{\text {（ }}$（SM） 2		0.07 mr		57			0.16	
	Accol．is	X to Y		0.1 mr						
	Nonorthog ．	Ix to 2		0.1 mr	29		－ 39	0.05		－0． 11
	onality	Y to 2		0.1 mr						
			Dire		134		－180	0.44		－0．50
		A CBX	Fff on	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$						
			Com							
	Bias		Dire			－ 214			－0，58	
${ }^{2}$		ACBY	Tif on	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		i66			0.45	
$\underset{\sim}{\mathrm{O}}$			Com			－ 48			－0．13	
$\underset{4}{x}$			Dire		189		118	0.59		0.31
岃		$\therefore \mathrm{CBZ}$	Fiff	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	－ 205		－ 13	－0．66		－0．03
U			Com		16		105	－0．0？		0.28
	Soale	SFFX		87 FPM	44		－ 60	0.14		－0．17
	Factor	SFEY		87［19		0			0	
	Freor	SFEZ		87 ГГハ	35		－ 22	－0．11		－0．06
		NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	4		－ 5	0.01		－0．02
	Sensitive	NCYY		$10 \mu g / g^{2}$		0			0	
		NCZ 7.		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	2		1	0.01		0
$\begin{aligned} & 0 \\ & \text { O } \\ & \text { K } \\ & \hline 0 \end{aligned}$	Bias Drift	BDX	Dir	3.6 meru		477			1． 30	
		BDY	Dir	3.6 meru	1，048		67	3.35		0.13
		BDZ	Dir	3.6 meru		350			2.32	
	Acceler－ ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		260			0.71	
		ADSRAY		10.5 meru $/ \mathrm{g}$	612		－ 39	－1．95		－0．07
		A DIA		$15 \mathrm{meru} / \mathrm{g}$		708			1.83	
	Acceler－ ation Squared Sensitive Drift	$A^{2} D(I A)(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		20			0.05	
		$A^{2} D_{\text {（SRA }}$（SRA）Y		$1 \mathrm{meru} / \mathrm{g}^{2}$	78		5	0.25		0.01
		$A^{2} A^{\text {（LA }}$ ）（IA） 2		1 meru／g ${ }^{2}$		63			0.17	
Root Sum Square Frror（in ft and ft／sm）					i， 226	2，060	234	3.92	5.61	0.63
Root Sum Square Error（in n ．mi，and $\mathrm{ft} / \mathrm{sec}$ ）					D． 20	0.34	0.04	3.9	5.6	0.6

Table 6－12 Effect of IMU Errors during SPS 2nd Burn at Re－entry Start

Table 6-13 Total Indication Errors at Entry End (at 50,000 ft Alt).

	Frrur			HMS irror	```Final Position Error in Local Axes (in feet)```			```Final Velocity F.rror in Local Axes (inft/sec)```		
					Alt.	Track	Range	Alt.	Track	Range
	1「...1tin	(1) ${ }_{10}$			0	0	0	0	0	0
		(F) $\mathrm{Y}_{\text {Io }}$		111						
		${ }^{(1)} Z_{10}$		U $11 /$ sec						
	Vrlocity	(1) V^{10}								
		${ }^{(1))^{Y} \mathrm{IO}}$		U 11 isec						
		(1) $\mathrm{V}_{2} 10$		$0 \mathrm{it} / \mathrm{sec}$						
	$\begin{aligned} & \text { Initial } \\ & \text { S. Ai. } \\ & \text { fighont } \\ & \text { broors } \end{aligned}$	${ }^{\text {A }}$ (SM) XI		$\therefore 6 \mathrm{mr}$		20,284			31.15	
		${ }^{\text {A }}$ (SM)YI		U. $1: 3 \mathrm{nir}$	720		1,195	-2.54		-0.26
		${ }^{n}($ SM $) 7 \mathrm{I}$		0.17714		- 336			-1.72	
	A.e.l. IA innortog - onalaty	x to Y		12.1 mr						
		$x \operatorname{toz}$		1.1 mr	-1,148		1,781	2.58		-0.6i
		$Y \operatorname{toz}$		$0.2 \cdot \mathrm{~m} / \mathrm{sec}^{2}$						
	$\begin{aligned} & \text { Bias } \\ & \text { Error } \end{aligned}$	$\left\|\begin{array}{l} A C B X \\ \triangle \\ \hline A C B Y \end{array}\right\|$	Direct effert		3,777		-8,841	N. 195		- 5.38
			IIf on Lnit Mlan.							
			Combined Fif							
			Direct effrut	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$		-1,003			$\therefore 1.30$	
			Iff on Init M!			- $\quad 980$			$\therefore 5.00$	
			Combined Fif			- 1,983			3.30	
		ACBZ	Direct effect	$0.2 \mathrm{~cm} / \mathrm{sec}^{2}$	-4,766		27,11\%	24.64		-.7.11
			Fiff on Init Mlm		3,673		-6.09\%	12.95		1.31
			Combined Fif		- 1,093		21,02.	11. 59		- 5.80
	Scale Factor lirror	SFEX		87 PPM	262		74	0.76		: 4.03
		SFEY		87 PPM		- 51			-0.07	
		SFE.Z		87 PPM	- 2,300		7,140	-9.43		-1.37
	Accel. Sq. Sensitive Indication Error	NCXX		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 12		- 154	-0.08		-0.67
		NCYY		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$		4			- 0.02	
		NCZZ		$10 \mu \mathrm{~g} / \mathrm{g}^{2}$	- 122		493	-0.47		-0.12
$\begin{aligned} & \text { O} \\ & \text { © } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { Kias } \\ & \text { Drift } \end{aligned}$	BDX	Direct effect	3.6 meru		2.844			10.67	
		BDY	Direct effect	3.6 meru	-7.370		4, 180	-39.52		-7.59
		BDZ	Direct effect	3.6 meru		- 5,740			-31.32	
	Acceler- ation Sensitive Drift	A DIAX		$15 \mathrm{meru} / \mathrm{g}$		2,510			- 0.23	
		A DSRAY		10.5 meru /g	10,148		-16, 954	35.33		32.58
		A DIA 2		15 meru/g.		- 3,870			-19.11	
	Acceleration Squared Sensitive Drift	$A^{2} D_{(I A)}(I A) X$		$1 \mathrm{meru} / \mathrm{g}^{2}$		323			1.34	
		$A^{2} \mathrm{D}_{\text {(SRA) }}$ (SRA) Y		$1 \mathrm{meru} / \mathrm{g}^{\text {2 }}$	- 1.352		2,169	-4.94		-0.57
		$A^{2} A^{(L A)}$ (LA) Z		$1 \mathrm{meru} / \mathrm{g}^{2}$		- 391			-2.08	
Root Sum Square Error (in ft and ft/ger)					13,665	21,867	29,873	56.08	50.27	11.91
Root Sum Square Error (in n. mi, and ft/sec)					2.25	3.60	4.92	56.1	50.3	11.9

Table 6-14 Effect of IMU Errors during SPS 1st and 2nd Burns and Entry End (Alt. of 50,000 ft)

Table 6-15 Effect of IMU Errors during SPS 2nd Burn and Entry at Entry End (50,000 ft alt)

Table 6-16 Effect of IMU Errors during Entry only at Entry End (50,000 ft Alt)

7. G\&N CONFIGURATION

System 017 will be the G\&N system for Mission 202. It is a Block I series 50 systen with one modification; the wiring of the 11 spare relays in the main DSKY to the MCP to provide the AGC/MCP signal interface (refer ICD \#MH01-01200-216) described in Section 3.

Without giving a detailed analysis of each G\&N Block configuration, a brief description of each and the reason for its evolution is useful in understanding G\&N's capabilities for Mission 202.

Block I is the original G\&N design. It is composed of IMU, AGC, PSA, CDU's (mechanical), Harnesses, and OPTICS (sextant and telescope). As the G\&N flight requirements became more clearly defined it was apparent that Block I would need modification to qualify for îlight.

Block I, series 100 therefore evolved. It is the Block I system modified generally as follows:
(a) IMU - Vibration dampers added; moisture insulation added.
(b) AGC - Colling interface modified; humidity proofing added.
(c) PSA - Cooling interface modified; humidity proofing added.
(d) CDU's - Minor electrical and mechanical changes.
(e) Harnesses - All wiring changed to teflon; connectors humidity proofed.
(f) OPTICS - Addition of automatic star tracker, photometer and minor servo modifications.

When the full design and production schedule impact of the series 100 modifications become clear the Block I series 50 configuration was originated, being a limited 100 series modification qualified for flight and available on an early schedule.

Block I series 50 is basically the Block I series 100 system less the automatic star tracker and the photometer.

8. INSTRUMENTATION

8.1 G\&N Instrumentation

The inflight information from G\&N is available in three distinct forms: PCM telemetry of the AGC DIGITAL DOWNLINK, (PCMD); PCM telemetry of low bandwidth G\&N measurements, (PCM+, PCM, PCME); and on-board recording of high band-width G\&N measurements (TR).

The PCM telemetry of the AGC DIGITAL DOWNLINK has been clearly defined at the MIT/NAA interface as 50 words of 40 bits each per second. The particular format of this DOWNLINK is AGC program variable and can remain under MIT's control without having interface repercussion (see 8.1.1).

The PCM telemetry of the low band-width measurement and the on-board recording of the high band-width measurements have been defined by NASA in (1) APOLLO CM/SM BLOCK I, OPERATIONAL BASELINE MASTER MEASUREMENT LIST No. 4 of 15 March 1965 and (2) APOLLO CM/SM BLOCK I R and D BASELINE MASTER MEASUREMENTS LIST No. 4 of 15 March 1965 as modified by (3) NASA TWX 032 02/2231Z of 2 June 1965 from MSC Houston to NAA Downey. (see 8.1.2)

8.1.1 AGC Digital Downlink

The AGC digital downlink consists of 50 words/sec on the high rate and 10 words/sec on the low rate. Each "word" contains 40 bits (a 16 -bit register transmitted twice and an 8 -bit "word order code"). Since the high rate will be used exclusively for flight 202 all further discussion will use the 50 words/sec rate.

The digital downlink format is controlled by an AGC program which loads the next word to be transmitted into register OUT4. This program is entered on an interrupt caused by an "endpulse" from the telemetry system.

The AGC downlink transmits a 100 -word list. This list will take two seconds to be transmitted. The general format of the list is given in Fig. 8-1.

The ID word marks the beginning of the list and also identifies which list is being transmitted. The 14 -word DSPTAB group is included in the list twice so that it will be transmitted at a once-per-second rate. The 14 DSPTAB words contain the states of the latching relays in the DSKY and, therefore, they indicate all displays and the mode status of the G\&N and MCP/SCS. A list of the displays and other relay commands is given below. All keycodes, with the exception of KEY RELEASE and ERROR RESET, will initiate some display change; therefore, Uplink transmissions may also be monitored via DSPTAB.

$$
8-1
$$

(Rev. 1-7/65)

```
Word No.
1
2... 15
16 ... 27
28...(48 + K)
(49 + K) ... }5
52 ... }6
66 ... (97 + J)
(98 + J) ... 100
```


Contents

ID WORD
DSPTAB
COMMON GROUP
PART A \& K MARKERS
DUMMY MARKERS OR ACTUAL MARKERS
DSPTAB
PART B \& J MARKERS
DUMMY MARKERS OR ACTUAL MARKERS

Figure 8.1
GENERAL AGC DOWNLINK FORMAT

8-2
(Rev. 1-7/65)

The 12 -word common group will contain the following data words:

Data Word
Time 2
Time 1
INO

IN2

IN 3

OUT1

FLAGWRD1, FLAGWRD2 and STATE
CDU X
CDU Y
CDU Z

Remarks

AGC clock Register
AGC clock Register
Contains keyboard characters, mark, block uplink, inhibit upsinc
Four lowest order time bits, CDU, PIPA, and IMU Fail and Parity Alarm, Lift Off, Guid. Release, SIVB Separate
Zero CDU encoders, lock CDU, fine align, re-entry, OPT modes $2 \& 3$, star present, zero OPT, Coarse align, ATT SW and TRN SW, Sextant On, OR OF C1-C33
Engine on; block end pulse; ID word; RUPT trap reset; T/M, program, and program check fail alarms, key release, and computer activity
Give information on state of programs
Register gives actual X CDU angle
Register gives actual Y CDU angle
Register gives actual $Z \mathrm{CDU}$ angle

Part A and B contain the following data words:

Data Word	Remarks
Position, Velocity	Output of average G routine
PIPTIME	Time that the PIP registers are read and therefore the time corresponding to position and velocity above during average G task and time for VRECT and RRECT after they are frozen
T_{FF}	Time of free-fall
RRECT, VRECT	The state vector which is frozen just after SPSI tailoff and used in the orbital integration program
TAVEGON	Time that average G program will be activated for SPS2 burn
RAVEGON \& VAVEGON	Position \& velocity from orbital integration program to be used for SPS2 burn
Desired CDU's	3 AGC registers which give desired CDU angles
PIPA's	Sampled contents of the three PIP accumulation registers
Special event time	2 registers which contain the time of guidance ref. release, lift-off, or time of engine on or off, depending on which was last to occur

A new list will be used during a $V 76$ update (see sec. 3.1.2.1.4) in which Parts A and B will contain the update parameters.

There may also be changes to allow for transmission of certain entry program variables during the re-entry portion of the mission. The common section and DSPTAB will always remain in the positions shown in Fig. 8-1 on all data lists.

Since certain groups of data words are updated by programs which are not synchronized with the downlink program, three marker words are required to indicate when these groups were updated. As indicated in Fig. 8-1, these marker words may be interspersed in Part A or Part B. If they do not occur in a particular part, dummy markers are added so that DSPTAB will always retain the positions relative to the ID word shown in Fig. 8-1. These markers are not allowed to interrupt the DSPTAB or common groups of data words. Marker 1 is used for PIPA's and PIPTIME, marker 2 for Position and Velocity, and marker 3 for the desired CDU's and $T_{F F}$.

DSPTAB INFORMATION

A. Displays
$\frac{\text { Item }}{V_{g x}}$
$V_{g y}$
$V_{g z}$

Remark
Components oi veiocity-to-be gained during powered flight
B. Other Relay Commands

Item

1. G/N ATT CONTROL SELECT

G/N $\triangle V$ MODE SELECT
G/N ENTRY MODE SELECT
CM/SM SEP COMMAND
+X TRANSLA TION ON/OFF
G/N FAIL INDICATION
. 05 G INDICA TION
GIMBAL MOTOR POWER ON/OFF
FDAI ALIGN
T/C ANTENNA SWITCH
2. ZERO ENCODE

COA RSE A LIGN
LOCK CDU
FINE A LIGN
RE-ENTRY
ATT CONTR
ZERO OPT. CDU's
3. CDU ZERO LIGHT

CDU FAIL LIGHT
PIPA FAIL LIGHT
IMU FAIL LIGHT
OR OF ALL A LA RMS
COND LAMP TEST

Remark
MCP/SCS Modes

FAILURE \& WARNING LIGHTS
8.1.2 G\&N PCM Telemetry and On-Board Recording for Mission \#202

OPERATIONAL

CG0001	V	Computer Digital Data	PCMD	$50 \mathrm{~S} / \mathrm{S}$ (See 8.1.1)
CG1040	V	+120 VDC Pipa Supply	PCM	1
CG1101	V	-28 VDC Supply	PCM +	1
CG1110	V	2.5 VDC TM Bias	PCM +	1
CG1320	V	IMU 2V 3200 CPS Supply	PCM	1
CG1503	X	IMU +28 VDC Operate	PCME	10
CG1513	X	IMU +28 VDC Standby	PCME	10
CG1523	X	AGC + 28 VDC	PCME	10
CG1533	X	OPTX +28 VDC	PCME	10
CG2015	V	X Pipa SG Output, in phase	PCM	10
CG2035	V	Y Pipa SG Output, in phase	PCM	10
CG2055	V	Z Pipa SG Output, in phase	PCM	10
CG2110	V	IGA Torque Motor Input	PCM	10
CG2112	V	IGA 1X Res Output, sine, in phase	PCM	10
CG2 113	V	IGA 1X Res Output, cos, in phase	PCM	10
CG2 117	V	IGA Servo Error, in phase	PCM	100
CG2140	V	MGA Torque Motor Input	PCM	10
CG2142	V	MGA 1X Resolver Output, sine in phase	PCM	10
CG2 143	V	MGA 1X Resolver Output, cos, in phase	PCM	10
CG2 147	V	MGA Servo Error in phase	PCM	100
CG2170	V	OGA Torque Motor Input	PCM	10
CG2172	V	OGA 1X Resolver Output, sine in phase	PCM	10
CG2173	V	OGA 1X Resolver Output, cos, inphase	PCM	10
CG2177	V	OGA Servo Error, in phase	PCM	100
CG2206	V	IGA CDU 1X Res Error, in phase	PCM	10
CG2236	V	MGA CDU 1X Res Error, in phase	PCM	10

$$
8-6
$$

(rev. $1-7 / 65$)

CG2264	v	OGA CDU 16X Res Error, in phase	PCM +	10
CG2266	v	OGA CDU 1X Res Error, in phase	PCM	10
CG2300	T	PIPA Temp.	PCM +	
CG2301	T	IRIG Temp.	PCM +	
CG2302	C	IMU Heater Current	PCM +	
CG2303	C	IMU Blower Current	PCM +	
CG4300	T	AGC Temp.	PCM	
CG5000	X	PIPA FAIL	PCME	10
CG5001	X	IMU FAIL	PCME	0
CG5002	X	CDU FAIL	PCME	0
CG5003	X	Gimbal Lock Warning	PCME	10
CG5005	X	Error Detect	PCME	10
CG5006	X	IMU Temp. Light	PCME	10
CG5007	X	Zero Encoder Light	PCME	0
CG5008	X	IMU Delay Light	PCME	10
CG5020	X	AGC Alarm \#1 (Program)	PCME	10
CG5021	X	AGC Alarm \#2 (AGC Activity)	PCME	0
CG5022	X	AGC Alarm \#3 (T/M)	PCME	10
CG5023	X	AGC Alarm \#4 (PROG CHK		
		FAIL)	PCME	10
CG5024	X	AGC Alarm \#5 (Scalar FAIL)	PCME	0
CG5025	X	AGC Alram \#6 (Parity FAIL)	PCME	0
CG5026	X	AGC Alarm \#7 (Counter FAIL)	PCME	10
CG5027	X	AGC Alarm \#8 (Key Release)	PCME	10
CG5028	X	AGC Alarm \#9 (RUPT Lock)	PCME	10
CG5029	X	AGC Alarm \#10 (TC Trap)	PCME	10
CG5030	X	Computer Power Fail Light	PCME	10
CG6000	P	IMU Pressure	PCM	
CG6020	T	PSA Temp. 1 Tray 3	PCM	

FLIGHT QUA LIFICA TION

CG2010	V	X PIPA SG Output, in phase	TR	2000 cps
CG2030	V	Y PIPA SG Output, in phase	TR	2000 cps
CG2050	V	Z PIPA SG Output, in phase	TR	2000 cps
CG6001	D	NAV Base Roll Vibration	TR	2000 cps
CG6002	D	NAV Base Pitch Vibration	TR	2000 cps
CG6003	D	NAV Base Yaw Vibration	TR	2000 cps

The Flight Qualification Tape Recorder (TR) has a capacity for 30 minutes of operation. This operating time is controlled by the Mission Control Programmer (MCP). The MCP logic is designed to operate the recorder over the following time intervals.
(a) Normal Mission

ON Liftoff -45 sec
OFF Launch Escape Tower Jettison
ON CSM/SIVB Separation
OFF 1st SPS burn Cutoff +3 sec
ON 2nd SPS burn Ignition -4 sec
OFF When Recorder runs out of tape
($\mathrm{T}_{\mathrm{o}}{ }^{-45}$)
$\left(\mathrm{T}_{\mathrm{o}}+172\right.$)
($\mathrm{T}_{\mathrm{o}}+618$)
($\mathrm{T}_{\mathrm{o}}+868$)
($\mathrm{T}_{\mathrm{o}}+4025$)
$\left(\approx \mathrm{T}_{\mathrm{o}}+5358\right)$
(b) Boost Abort Mission

ON	Liftoff -45 sec
OFF	Launch Escape Tower Jettison
ON	Abort Initiation (CSM/SIVB Separation)
OFF	When Recorder runs out of tape

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{o}}-45\right) \\
& \left(\mathrm{T}_{\mathrm{o}}+172\right) \\
& \left(\mathrm{T}_{\mathrm{ABORT}}\right) \\
& \left(\mathrm{T}_{\mathrm{ABORT}}{ }^{+1583)}\right.
\end{aligned}
$$

8. 2 External Data Requirements

G\&N requirements for external data fall into three categories:

8.2.1 Navigation Data via the Uplink

No requirement for this data is made at this time.

8. 2. 2 Radar Tracking Data for Post Flight Analysis

Tracking data requirements to a degree of accuracy and completeness which would permit the most comprehensive determination of G\&N flight performance, are given in Table 8-1. Subsequent revisions of this plan will reflect more realistic requirements.

8. 2. 3 Radar Tracking Data for Real-Time Monitor of G\&N

This requirement is given by Table 8-2, which is derived from the total indication error expected in the position and velocity data telemetered to the ground via the AGC DOWNLINK.

TABLE 8-1

EXTERNA L TRA CKING DA TA REQUIREMENTS TO SUPPORT POST FLIGHT ANALYSIS OF G\&N

Three orthogonal components of position and velocity are required in IMU coordinates at one second intervals during each powered phase. The required accuracies are given in this table in local vertical coordinates.

| Phase | one sigma | | | one sigma | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Position Error (ft) | | | Velocity Error (fps) | | |
| A -IB Boost | 200 | 1900 | 100 | 0.9 | 7.2 | 0.4 |
| 1st SPS Burn | 40 | 210 | 30 | 0.3 | 1.8 | 0.2 |
| 2nd, 3rd, 4th SPS Burns | 10 | 30 | 10 | 0.3 | 0.6 | 0.2 |
| Entry | 1100 | 1000 | 200 | 4.6 | 4.9 | 0.8 |

TABLE 8-2

EXTERNAL TRACKING DATA REQUIREMENTS TO PROVIDE REAL-TIME MONITOR OF G\&N

Three orthogonal components of position and velocity are required in IMU coordinates at one second intervals during each powered phase. The required accuracies are given in this table in local vertical coordinates.

	one sigma			one sigma		
	Position Error (ft)		Velocity Error (fps)			
Alt.	Track	Range	Alt.	Track	Range	
S-IB Boost	200	1900	100	0.9	7.2	0.4
1st SPS Burn	400	3900	300	1.4	8.0	0.8
2nd, 3rd, 4th SPS Burns	2300	4000	7200	7.3	7.4	1.8
Entry	2900	7300	8800	11.6	3.9	2.9

9. G\&N Performance Data

This section presents brief summaries of the performance of those phases of the Flight 202 mission that are performed under G\&N control.

The first part, (Figs. 9-1, 9-2, 9-3, 9-4, 9-5) illustrates performance data which were derived from point mass studies of the G\&N guidance and navigation equations using the reference boost trajectory defined in Section 5.2.1.

The second part (Fig. 9-6, Tables 9-1 through 9-8) present performance data derived by perturbing the nominal mission defined by the boost trajectory in the previous issue of this report, with the dispersions listed. Perturbation studies for the current trajectory defined in Section 5.2.1 could not be made in time for the publication of this report, but will be included in a later revision.

9-2
(Rev. 1-7/65)

9-3
(Rev. 1-7/65)

Fig. 9-4 Area Control Capability for Aborts During Saturn Boost

$$
9-5
$$

9-6
(Rev. 1-7/65)

The data in the Tables 9-1 through 9-8 present performance data derived by perturbing the nominal mission ${ }^{1}$ with the dispersions listed on the following page.

The affects of these dispersions are demonstrated in the tables as follows:
Table 9-1 Time, latitude, longitude, altitude, velocity, flight path angle and range (central angle from SIVB cut-off point) at the start of the first SPS burn.

Table 9-2 Same as Table 9-1 at the end of the first SPS burn, plus fuel remaining and burn time.

Table 9-3 Time latitude, longitude, altitude, velocity fight path angle, R, A, and E from Carnarvon at the start of the second SPS burn.

Table 9-4 Same as Table 9-3 at the end of the second SPS burn.
Table 9-5 Same as Table 9-3 at the final cut off.
Table 9-6 Time latitude, longitude, altitude, velocity flight path angle at entry after fourth burn or fuel depletion.

Table 9-7 Velocity and flight path angle at entry without the two short burns.
Table 9-8 Same as Table 9-6 after the first burn only.
The radar at Carnarvon was taken to be at 24.867 S latitude and 113.63 E longitude at a radius of $20,913,669$ feet.

The latitude and longitude at entry in Table 9-7 above will be practically the same as Table 9-6 above.

Fig. 9-6 shows the track during the nominal second SPS burn and the two short burns. The ignition point and final cut off points of extreme cases are also shown. It should be observed that
a) The maximum westerly dispersion at ignition is about 0.5° longitude.
b) The dispersion in track (213036) cannot be rectified by modification of the second ignition logic.

Any downrange dispersion at SIVB cut-off will move the entire trajectory downrange by the amount of dispersion.

Note 1. See remarks on first page of Section 9.0.

$$
9-8
$$

(Rev. 1-7/65)

List of Dispersions

NOTE: \quad 1. Nominal $I_{s p}$ was increased by 3 seconds over the November figure.
2. All cases have an 11 second coast between SIVB time indicated and SPS 1 ignition.
3. Altitude is in feet

Velocity is in ft/sec
All angles are in degrees
Time is in seconds; total time is measured from lift-off
Range from Carnarvon is slant range in $n . m$.
Radius of earth used in $20,925,738$ feet.
The coast time used is 3041 seconds
Precision integration was used during coast
Table 9-1
SPS First Burn Ignition

خ	
$>$	
+	
旡	
¢	
烒	

Table 9-2

Mac Run	Burn Time	Lat.	Long.	Arc	Alt.	V	γ	Fuel Left
210066	244.94	16.68	308.97	15.997	914031	25638	5.77	7525
210067	252,33	16.49	309.30	16.392	918982	25632	5.77	7012
210068	256.00	16.40	309.47	16.586	921243	25629	5.77	6758
210069	254.04	16.45	309.37	16.477	$9230 \varepsilon 2$	25627	5.77	6894
210070	254.31	16.44	309.39	16.501	917178	25634	5.77	6876
210071	250.00	16.58	309.13	16.197	$9457(13$	25601	5.78	7174
210072	258.59	16.30	309.65	16.799	893486	25661	5.76	6578
210073	254.75	16.43	309.41	16.525	$9210!6$	25630	5.77	7011
210074	253.59	16.47	309.35	16.452	919192	25632	5.77	6757
210075	245.92	16.68	308.95	15.980	$9102:: 0$	25642	5.77	6943
210076	263.01	16.20	309.85	17.033	9305180	25619	5.77	6822
210077	257.27	16.36	309.55	16.680	$9238: 9$	25626	5.77	7169
210078	251.08	16.54	309.22	16.298	$9164: 32$	25635	5.79	6599
210890	340.15	14.57	312.77	21.479	$7528: 0$	25824	5.67	1418
210891	285.16	16.30	309.66	17.833	959535	25585	5.79	4333
211683	254.17	16.45	309.38	16.489	920130	25631	5.77	6884
213036	255.68	14.75	309.29	16.581	921928	25629	5.77	6780

Table 9-3

Mac Run	Time	Lat.	Long.	Alt.	V	γ	Range (nm)	Elev.	Azimuth
210066	3914.3	-19.42	110.31	1545371	24920	-5.83	465.1	30.27	-30.20
210067	3921.7	-19.25	110.65	1540221	24925	-5.83	464.6	30.18	-26.86
210068	3925.4	-19.16	110.82	1537872	24928	-5.83	464.9	30.10	-25.22
210069	3923.4	-19.21	110.72	1536144	24930	-5.83	464.4	30.09	-26.18
210070	3923.7	-19.20	110.75	1541913	24923	-5.83	465.0	30.18	-25.89
210071	3919.4	-19.35	110.44	1514190	24955	-5.84	462.1	29.75	-28.95
210072	3928.0	-19.05	111.05	1564895	24898	-5.82	468.4	30.46	-22.94
210073	3924.1	-19.19	110.77	1538141	24928	-5.83	464.7	30.12	-25.74
210074	3923.0	-19.22	110.70	1539997	24926	-5.83	464.7	30.16	-26.35
210075	3915.3	-19.42	110.30	1549110	24915	-5.83	465.5	30.32	-30.33
210076	3932.4	-18.97	111.20	1528456	24938	-5.83	465.9	29.77	-21.48
210077	3926.7	-19.12	110.90	1535303	24931	-5.83	464.9	30.03	-24.43
210078	3920.5	-19.29	110.57	1542763	24922	-5.83	464.8	30.22	-27.65
210890	3992.1	-17.28	114.54	1699460	24747	-5.77	551.8	26.82	6.61
210891	3937.2	-19.08	110.97	1500239	24970	-5.84	462.2	29.39	-23.73
211683	3923.6	-19.21	110.73	1539027	24927	-5.83	464.7	30.14	-26.04
213036	3925.1	-17.40	110.67	1534096	24932	-5.83	533.6	23.34	-20.97

Table 9-4

							From Carnarvon,			
Mac Run	Burn Time	Time	Lat.	Long.	Alt.	v	γ	Range	Elev.	Azimuth
210066	94	4008.3	-16. 59	115.81	1250376	27624	-7. 64	563.5	17.33	14.38
210067	92	4013.7	-16.48	116.03	1251680	27615	-7. 64	573.1	16. 89	15.52
210068	91	4016.4	-16. 42	116.13	1252555	27610	-7. 64	577.8	16.68	16.06
210069	91	4014. 4	-16. 47	116.04	1251168	27599	-7. 62	573.5	16.86	15.57
210070	91	4014.7	-16. 46	116.06	1256700	27592	-7. 64	575.0	16.89	15.70
210071	92	4011.4	-16. 58	115.83	1226923	27640	-7. 56	563.0	16.92	14.48
210072	91	4019.0	-16. 31	116.35	1278291	27585	-7.72	589.1	16. 62	17.16
210073	92	4016.4	-16.42	116.14	1249716	27615	-7. 63	577.9	16. 63	16.11
210074	91	4014.0	-16. 48	116.02	1254557	27610	-7. 65	572.9	16.95	15.48
210075	89	4004.3	-16.76	115.50	1269437	27586	-7. 69	552.1	18. 27	12.64
210076	94	4026.4	-16.12	116.68	1234429	27635	-7. 58	601.7	15. 28	18.79
210077	92	4018.7	-16.34	116.27	1247262	27607	-7. 62	583.5	16. 32	16.77
210078	91	4011.5	-16. 55	115.89	1256943	27618	-7.66	567.5	17.26	14.79
210890	$\underline{20.89}$	4013.0	-16. 67	115.68	1643339	25352	-6. 53	589.0	23. 28	13.63
210891	61.27	3998.4	-17. 27	114.52	1315852	26950	-7.35	518.81	21.05	6. 47
211683	91	4014.6	-16.46	116.05	1253933	27595	-7. 63	574.2	16. 88	15.64
213036	91	4016.1	-14.76	115.98	1248948	27613	-7. 63	668.8	12.85	12.85

Table 9-5
Final Cut Off Conditions

From Carnarvon										
Mac Run	Burn Time	Time	Lat.	Long.	Alt.	V	γ	Range	Elev.	Azimuth
210066	100	4034. 3	-15. 74	117.42	1155966	27904	-7.45	631.2	12.78	22.05
210067	98	4039. 7	-15.62	117.63	1157306	27898	-7. 45	642.1	12.40	22. 90
210068	97	4042.4	-15. 56	117.73	1158195	27894	-7. 46	647.5	12.22	23.31
210069	97	4040.4	-15.61	117.63	1157013	27882	-7. 44	642.6	12.38	22.93
210070	97	4040.7	-15.60	117.66	1162358	27875	-7. 46	644.2	12.41	23.03
210071	98	4037. 4	-15.71	117.44	1133495	27921	-7.37	631.2	12.42	22.12
210072	94.92	4042.9	-15. 51	117.81	1190537	27797	-7. 52	653.6	12.50	23. 63
210073	98	4042.1	-15. 55	117.74	1155440	27897	-7. 45	647. 7	12.17	23. 34
210074	96. 57	4039.6	-15.63	117.59	1161644	27874	-7. 46	640. 7	12.52	22. 76
210075	95	4030. 3	-15.90	117.10	1174504	27875	-7. 51	617.3	13.63	20. 71
210076	100	4052.4	-15. 25	118. 28	1140699	27913	-7. 39	675.1	10.99	25. 39
210077	96. 24	4042.9	-15. 54	117.76	1159533	27828	-7. 41	649.0	12.18	23. 42
210078	97	4037. 5	-15.69	117. 49	1162261	27903	-7. 48	635.6	12.72	22.35
211683	97	4040. 6	-15. 60	117.65	1159684	27878	-7.45	643.4	12.39	22.98

Table 9-6
Final Entry Conditions

λ	
$>$	
$>$	
$>$	
荷	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	
$\stackrel{\text { 苟 }}{\mathbf{n}}$	
$\underset{A}{g}$	

Table 9-7
Entry Conditions (400, 000 ft) After Second Burn
(no short burns)

Mac Run	V	γ
210066	28497	-3.57
210067	28518	-3.57
210068	28514	-3.57
210069	28502	-3.57
210070	28501	-3.57
210071	28518	-3.57
210072	28515	-3.56
210073	28516	-3.57
210074	28516	-3.57
210075	28508	-3.57
210076	28520	-3.57
210077	28506	-3.57
210078	28526	-3.56
211683	28501	-3.57
213036	28514	-3.57

Table 9-8
Entry Conditions After First Burn
(No Second Burn)

| Mac Run | Time | Lat. | Long. | Alt. | V | γ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210066 | 4364 | -4.76 | 135.3 | 399677 | 26241 | -5.34 |
| 210067 | 4371 | -4.58 | 135.6 | 397107 | 26244 | -5.34 |
| 210068 | 4374 | -4.48 | 135.7 | 394821 | 26246 | -5.34 |
| 210069 | 4372 | -4.54 | 135.6 | 393152 | 26248 | -5.34 |
| 210070 | 4373 | -4.53 | 135.7 | 398742 | 26242 | -5.34 |
| 210071 | 4358 | -5.04 | 134.9 | 396344 | 26245 | -5.34 |
| 210072 | 4387 | -4.02 | 136.4 | 396602 | 26244 | -5.34 |
| 210073 | 4373 | -4.51 | 135.7 | 395084 | 26246 | -5.34 |
| 210074 | 4372 | -4.55 | 135.6 | 396887 | 26244 | -5.34 |
| 210075 | 4367 | -4.70 | 135.4 | 398418 | 26242 | -5.34 |
| 210076 | 4381 | -4.24 | 136.1 | 385683 | 26257 | -5.33 |
| 210077 | 4376 | -4.43 | 135.8 | 392327 | 26249 | -5.34 |
| 210078 | 4369 | -4.64 | 135.5 | 399577 | 26241 | -5.34 |
| 211683 | 4373 | -4.53 | 134.7 | 395945 | 26245 | -5.34 |
| 213036 | 4374 | -3.24 | 135.7 | 390864 | 26251 | -5.34 |

Internal
R. Alonso
R. Arrufo
R. Baker
R. Battin (5)
P. Bowditch
D. Bowler
R. Boyd
E. Copps
R. Crisp
J. Dahlen (5)
E. Duggan
K. Dunipace (MIT/AMR) (3)
J. B. Feldman
S. Felix (MIT /S\&ID) (3)
J. Flanders
J. Fleming (4)
G. Fujimoto
F. Grant

Eldon Hall
Edward Hall
E. Hickey
D. Hoag
J. Dunbar
A. Hopkins
F. Houston
L. B. Johnson
M. Johnston
A. Kosmala (3)
A. Koso
M. Kramer
E. Olsson
J. Rhode
M. Richter
M. Sanders
M. Sapuppo
R. Scholten
A. Laats
L. Larson
J. Lawrence (MIT/GAEC)
E. Schwarm
J. Shillingford (3)
W. Shotwell (MIT / ACSP)
J. Sitomer
T. J. Lawton (2)
T. M. Lawton (MIT/MSC)
D. Lickly
B. Sokappa
M. Sullivan
J. Suomala
H. Little
R, Therrien
G. Mayo
W. Toth
J. McNeil
M. Trageser
H. McOuat
R. Morth
R. Weatherbee
L. Wilk
James Miller (2)
R. Woodbury
John Miller
J. Nevins
J. Nugent
W. Wrigley
Apollo Library (2)
MIT/IL Library (6)
External
(ref. PP1-64; April 8, 1964)
P. Ebersole (NASA/MSC)
W. Rhine (NASA/RASPO)
L. Holdridge (NAA S\&ID/MIT)
T. Heueremann (GAEC/MIT)
AC Spark Plug
Kollsman
Raytheon
Major W. Delaney (AFSC/MIT)

NAA RASPO: National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California

FO: \quad National Aeronautics and Space Administration, MSC Florida Operations, Box MS Cocoa Beach, Florida 32931
Attn: Mr. B. P. Brown
HDQ: NASA Headquarters
600 Independence Ave., SW
Washington 25, D. C. 20546
Attn: MAP-2
AMES: National Aeronautics and Space Administration Ames Research Center Moffett Field, California Attn: Library

LEWIS: National Aeronautics and Space Administration (2)
Lewis Research Center
Cleveland, Ohio
Attn: Library
FRC: National Aeronautics and Space Administration
Flight Research Center Edwards AFB, California
Attn: Research Library
LRC: National Aeronautics and Space Administration Langley Research Center Langley AFB, Virginia
Attn: Mr. A. T. Mattson
GSFC: \quad National Aeronautics and Space Administration Goddard Space Flight Center
Greenbelt, Maryland
Attn: Manned Flight Support Office Code 512
MSFC: National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: R-SA
(10)
L. Richards
(10)
ERC: National Aeronautics and Space Administration Electronics Research Center
575 Technology Square
Cambridge, Massachusetts
Attn: R. Hayes/A. Colella
GAEC: Grumman Aircraft Engineering Corporation (10)
Bethpage, Long Island, New YorkAttn: Mr. A. Whitaker
North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
Attn: Mr. R. Berry (40)
Mr. L. Hogan (10)
Mr. R. Frimtzis (2)
GAEC RASPO: National Aeronautics and Space Administration(1)
Resident Apollo Spacecraft Program Officer
Grumman Airrroft Fngineoxing Corporation
Bethpage, L. I., New York
ACSP RASPO: National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Dept. 32-31AC Spark Plug Division of General Motors
Milwaukee 1, Wisconsin
Attn: Mr. W. Swingle
WSMR: National Aeronautics and Space Administration
Post Office Drawer MM
Las Cruces, New Mexico
Attn: BW44
MSC: National Aeronautics and Space AdministrationManned Spacecraft CenterApollo Document Control GroupHouston 1, Texas 77058
Mr. H. Peterson
Bureau of Naval Weapons
c/o Raytheon Company
Foundry Avenue
Waltham, Massachusetts
Queens Material Quality Section(1)
c/o Kollsman Instrument Corp.
Building A 80-08 45th Avenue
Elmhurst, New York 11373
Attn: Mr. S. Schwartz
Mr. H. AnschuetzUSAF Contract Management District
AC Spark Plug Division of General MotorsMilwaukee, Wisconsin 53201
BELLCOM(3)
Link Div. of GPI(3)
Hillcrest
Binghamton, New York
Attn: Mr. Fred Martikan

[^0]: *To support these functions this document contains a Control Data section which defines the reference trajectory, AGC memory data and applicable mission data (mass, propulsion, aerodynamic and SCS data)

[^1]: *"Fix" time must be within 200 sec. of SPS $2+\mathrm{X}$ translation time.

[^2]: Indicates vector cross product

[^3]: \# It should be noted that Eq. (25b) does not take into account the entry flight path angle. The co-efficients are pre-computed on the basis of the nominal trajectory and hence the flight path angle is implied in Eq. (25b).

[^4]: *Data fromthistime on is from MIT 202 performance simulations

[^5]: Note 1: Figures derived from data in Section 5.4.1 using weight data in Table 5-1.

[^6]: See $\sec 4.3 .1$.

