DOWNGRADED AT 3 EAR INTERVALS: DECLASSI AFTER 12 YEARS DOD 200.10 1 (c Scientific and Technical Information Facility By authority of AJS- Falls' Date 2 Changed by <u>Shurley</u> Date 2 Classified Document Master Control Station CLASSIFICATION CHANGE **GUIDANCE** AND NAVIGATION Approved: 1345 Date: MILTON B. TRAGESER, DIRECTOR APOLLO GUIDANCE AND NAVIGATION PROGRAM UNCLASSIFIED Approved: Date ROØER B. WOODBURY DEPUTY DIREC INSTRUMENTATION LABORATORY Ê TYPE I DOCUMENT APPROVED BY NASA

R-477 (Unclassified Title) GUIDANCE AND NAVIGATION SYSTEM OPERATIONS PLAN APOLLO MISSION 202

January 1965

John M. Dahlen Albrecht Kosmala Daniel J. Lickly John T. Shillingford Balraj Sokkappa

COPY # <u>112</u> OF <u>330</u> COPIES THIS DOCUMENT CONTAINS <u>128</u> PAGES

ACKNOW LEDGMENT

This report was prepared under DSR Project 55-191, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-153.

> This document contains information affecting the national defense of the United States within the meaning of the Estionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or the revelation of thich in any manner to an unauthorized person is prohibited by law.

TABLE OF CONTENTS

Section

.

1	INTRODUCTION
2	G&N FLIGHT OPERATIONS SUMMARY
3	LOGIC AND TIMELINE FOR SPACE - CRAFT AND MISSION CONTROL
4	GUIDANCE EQUATIONS
5	CONTROL DATA
6	G&N ERROR ANALYSIS
7	G&N CONFIGURATION
8	INSTRUMENTATION
9	G&N PERFORMANCE ANALYSIS
10	DISTRIBUTION

1. INTRODUCTION

1.1 Purpose

This plan governs the operation of the Guidance and Navigation System and defines its functional interface with the spacecraft and ground support systems on Mission 202.

1.2 Authority

This plan constitutes a control document to govern the implementation of:

- (1) Detailed G&N flight test objectives
- (2) G&N interfaces with the spacecraft and launch vehicle
- (3) Digital UPLINK to the Apollo Guidance Computer (AGC)
- (4) AGC logic and timeline for spacecraft control *
- (5) Guidance and navigation equations*
- (6) Digital DOWNLINK from the AGC
- (7) G&N System configuration

Revisions to this plan which reflect changes in control items (1) through (7) require approval of the NASA Configuration Control Board.

This plan also constitutes an information document to define:

- (1) Trajectory uncertainties due to G&N component errors (Error Analysis)
- (2) Trajectory deviations due to spacecraft performance variations and launch vehicle cut-off dispersions (Performance Analysis)
- (3) G&N instrumentation (PCM telemetry and on-board recording) exclusive of AGC DOWNLINK
- (4) External tracking data

Revisions to this plan which reflect changes in information items (1) through (4) will not require approval of the NASA CCB.

1.3 Preliminary Data

Unapproved data are printed in red.

*To support these functions this document contains a Control Data section which defines the reference trajectory, AGC memory data and applicable mission data (mass, propulsion, aerodynamic and SCS data)

2. G&N FLIGHT OPERATIONS SUMMARY

This section defines the mission plan as originated by NASA and summarizes the manner in which the G&N system will operate to implement this plan as developed by MIT in cooperation with NASA and NAA/S&ID. This section is divided into three parts:

Par 2.1 Test Objectives

Par 2.2 Spacecraft and Mission Control

Par 2.3 Mission Description

2.1 Test Objectives

2.1.1 Spacecraft Test Objectives which require proper operation of G&N System:

- 1) Evaluate the thermal performance of the CM heat shield ablator during a high heat load, long duration entry.
- 2) Demonstrate CM adequacy for manned entry from low earth orbit.
- 3) Determine nominal mode separation characteristics of the CSM from the SIVB and the CM from the SM.
- Demonstrate multiple SPS restart (after the second major burn, two 3 second burns with 10 second intervals between burns are required).
- 5) Determine performance of CSM systems: G&N, SCS, ECS (pressure and temperature control), EPS, RCS and Telecommunications.
- 2.1.2 Detailed G&N Test Objectives
 - 1) Evaluate performance of the following integrated G&N/Spacecraft modes of operation:
 - a. Boost Monitor

* ·· · · ·

- b. Thrust Vector Control
- c. Orbit Attitude Control
- d. Lift Vector Control
- e. Unmanned Spacecraft Control
- 2) Determine accuracy of G&N system in computation of spacecraft position and velocity during all mission phases.
- 2.2 Spacecraft & Mission Control

2.2.1 Spacecraft Control

Spacecraft Control is implemented by the Apollo Guidance Computer (AGC) provided by MIT and the Mission Control Programmer (MCP) provided by NAA/S&ID. Basically, the MCP performs those non-guidance functions that would otherwise be performed by the crew, while the AGC initiates major modes which are dependent upon trajectory or guidance functions.

The function interface between the AGC and the MCP is complex and its description is deferred until Section 3. The electrical interface is simple,

> مد، بر • •

being relay contacts in the AGC DSKY wired to the MCP, and is described in ICD MH01-01200-216. The following AGC output discrete signals are provided:

- 1) G&N ATT. CONTR. MODE SELECT
- 2) G&N ENTRY MODE SELECT
- 3) G&N $\triangle V$ MODE SELECT
- 4) + X TRANSLATION ON/OFF
- 5) CM/SM SEPARATION COMMAND
- 6) FDAI ALIGN
- 7) T/C ANTENNA SWITCH
- 8) G&N FAIL INDICATION
- 9) 0.05 g INDICATION
- 10) GIMBAL MOTOR POWER ON/OFF
- 11) SPARE

2.2.2 Mission Control

Mission Control is provided by the Clear Lake Mission Control Center (CLMCC) via the Digital Command System (DCS), which has many discrete inputs to the spacecraft and an UPLINK to the AGC. The discrete commands to the spacecraft and the AGC UPLINK are described in Section 3.

The AGCUPLINK provides the CLMCC with the capability to enter the AGC with any instruction or data which can be entered by the crew via the DSKY keyboard. It is specifically planned to use this link to provide the AGC with several discrete commands for contingencies. This link will also be used to update the orbit parameters in erasable memory with more accurate data if it is available from ground tracking.

2.2.3 Guidance Errors

The performance of the G&N system for mission 202 has been estimated assuming that no navigation data is inserted via the AGC UP-LINK.

The most significant G&N error is that error in the critical path angle at entry which is estimated to be 0.165 degree on a one sigma basis. The next most significant error is manifested in the CEP at splash which is estimated to be 15.6 n.m.

A complete breakdown of G&N errors is given in Section 6.

2.3 Mission Description

The purpose of this section is to describe G&N functions during each mission phase. Note that these functions are described in greater detail, sufficient to define programming requirements, in Section 3.

The reference trajectory is defined in Section 5 in sufficient detail to satisfy MIT's requirements for development of guidance equations, spacecraft control logic and determination of flight environment.

Section 9 presents those path and attitude characteristics resulting from guidance control which are believed to have significant effects on other spacecraft equipment and ground support systems.

The overall mission profile is illustrated in Fig. 5-1 and Table 5-1 and might well be examined at this point.

2.3.1 Pre-Launch

During this phase the IMU stable member is held at a fixed orientation with respect to the earth. The X PIPA input axis is held to the local vertical (up) by torquing the stable member about Y and Z in response to Y and Z PIPA outputs. Azimuth orientation about the X axis is held by a gyro-compassing loop such that the Z PIPA axis point downrange at an azimuth of 105 degrees East of True North. Initial azimuth is determined by tracking a ground target with the G&N Sextant prior to closeout at -11 hours. Upon receipt of the GUIDANCE RELEASE signal from the Saturn I. U. the stable member is released to maintain a fixed orientation in inertial space for the remainder of the mission. In this manner the Saturn and Apollo IMU stable members retain a fixed relative orientation. Also at the time of GUIDANCE RELEASE the G&N system starts its computation of position and velocity which continues until first SPS burn cut-off.

2.3.2 SI Boost

The boost trajectory is described in Fig. 5-2. Upon receipt of the LIFT OFF signal from the Saturn I. U. the AGC will command the CDUs to the time history of gimbal angles associated with the nominal SI attitude polynomials. The CDU outputs will then represent vehicle attitude errors and will be displayed on the FDAI and telemetered to the ground. This SI attitude monitor is a required element of the launch vehicle malfunction detection scheme, and, in association with computed position and velocity, constitute the Boost Monitor data provided by the G&N system during this period.

2.3.3 Staging, Coast and SIVB Boost

The G&N system will not have the capability to control the SIVB. During this period the G&N system will monitor IMU gimbal angles to detect tumbling and will compute the free fall time to entry interface altitude (300,000 ft.) from present position and velocity. These quantities are used in the Abort Logic and, in association with computed position and velocity, constitute the Boost Monitor data provided by the G&N system during this period.

2.3.4 Aborts from SIVB Boost

Aborts from the boost phase are mechanized in the same way as manned flight aborts whenever possible. G&N control of CSM aborts from SIVB boost is enabled by the MCP 2 seconds after start of the MCP SIVB/ CSM Separation sequence. Upon receipt of the SIVB/CSM SEPARATION signal from the spacecraft the AGC determines a sequence of events using the control logic given in Section 3. Briefly, the sequence of events is derived from three tests:

- A. Has the AGC received the ABORT signal from the ground via the UPLINK?
- B. Do the spacecraft body rates exceed the tumbling threshold?
- C. Does the free-fall time to entry interface altitude fall below the abort T_f criterion of 160 seconds?

For NO ABORT and NO TUMBLING, the AGC commands a normal separation and SPS burn to the nominal First Burn aim point as described more fully below.

If the ABORT signal is received and there is NO TUMBLING, the AGC commands an abort separation sequence followed by an SPS abort burn to the downrange Atlantic Recovery Point. Landing area control capability is illustrated on Fig. 5-1 which shows a continuous recovery area and the selected downrange Atlantic Recovery Point. This downrange point is the splash point obtained if, after a nominal SIVB cut-off and separation sequence, the SPS is fired for 7 seconds in the trajectory plane with the spacecraft X axis 35 degrees above the visible horizon and the CM is oriented for full up lift during the entry phase. The G&N system will control the thrust and lift vectors to achieve this splash point with the constraints, (1) that the spacecraft X axis be directed 35 degrees above the visible horizon during thrusting and (2) that the entry point - splash point separation provide CM lift sufficiently positive to reduce entry g's below a level acceptable for human tolerance. A 10 g limit is incorporated in the entry program also to minimize excessive g loads.

If the abort occurs too early in the boost phase or at an "unsafe" flight path angle, the selected downrange Atlantic Recovery Point cannot be reached because either (1) there is insufficient fuel in the SM tanks, or (2) the booster cut-off conditions are such that the spacecraft would dip into the aumosphere while thrusting. These two conditions are avoided by test C which is mechanized as an interrupt. If the free-fall time falls below 160 seconds so that test C results in a NO answer, the AGC will command engine shutdown and a CSM attitude maneuver to the CM/SM separation attitude. When the free fall time to entry interface altitude falls below 75 seconds the AGC will command CM/SM SEPARATION and CM orientation to the aerodynamic trim attitude. The lift vector will be up during the entry phase. Note that "early" aborts result in splash points within the continuous recovery area.

If TUMBLING is detected, the AGC will start the SPS 2.5 seconds after separation. This will result in stabilization by the SCS rate loops, and SPS cutoff by the AGC when it senses that spacecraft body rates have dropped below the tumbling threshold. Following SPS shutdown the AGC will estimate the maneuver time, T_M , required to orient to the abort SPS burn attitude (X axis 35 degrees above the visible horizon). If the free-fall time to entry interface altitude is greater than T_M + 160, the AGC will command the CSM to the abort SPS burn attitude, command engine on at T_M and guide to the downrange Atlantic Recovery area. Again as in the non-tumbling abort case the engine will be shutdown if free-fall time drops below 160 seconds. If after tumbling arrest burn shutdown the free-fall time is less than T_M + 160, the AGC will command the CSM to the CM/SM SEPARATION attitude. Abort area control is illustrated in Fig. 9-4.

2.3.5 CSM/SIVB Separation

There are two CSM/SIVB separation sequences, a normal sequence and an abort sequence used if tumbling or the abort signal is present. In the normal sequence the SPS is ignited by the AGC a fixed time delay of 12.7 seconds after it receives the CSM/SIVB SEPARATION signal. This time delay permits the RCS ullage thrust to build up enough separation distance to prevent the SPS from damaging the SIVB or upsetting its attitude. On the other hand the time delay is not so long as to cause an unjustified ΔV penalty. After separation the AGC computes the initial SPS thrust attitude and commands the required attitude maneuver. If the spacecraft is not completely oriented at the end of the fixed time delay, the SPS is started anyway and orientation is completed during the first few seconds of the burn. Only when large rates and/or large negative pitch attitude dispersions exist at SIVB cut-off will the fixed time delay be too short to permit completion of spacecraft orientation before SPS ignition.

In the abort separation sequence, the SPS is ignited by the AGC a time delay of 2.5 seconds after it receives the CSM/SIVB SEPARATION signal. This time delay is made as short as possible to minimize the probability of CSM-SIVB re-contact or loss of IMU reference in the tumbling case and to get the CSM away from the SIVB as quickly as possible in any abort case.

2.3.6 SPS First Burn

First burn thrust will be controlled by the G&N system to achieve the reference trajectory major axis and eccentricity at cut-off. The trajectory plane at cut-off will include the Pacific Recovery Point at nominal splash time. The nominal attitude, flight path angle and altitude histories are given by Fig. 9-1. Section 9 also contains tables which show the effects of CSM performance variations and launch vehicle cutoff dispersions. The steer law used in this maneuver is given in Section 4, where are found all the CSM guidance equations for Mission 202. It will be noted that the universal cross product steering law for Apollo is used whenever possible, specifically, for this mission, in all cases except tumbling arrest and the short third and fourth burns.

2.3.7 Coast Phase, First Burn Cut-off to Second Burn Ignition

Following first burn cut-off the AGC will compute and command a spacecraft attitude maneuver to align the X-axis to the local vertical, nose down, and the Y-axis to a fixed angle of 0 degrees from the angular momentum vector $\underline{R} * \underline{V}$. Simultaneously the AGC will establish the second burn ignition point by a process of precision numerical integration.

When the inner gimbal angle reaches degrees the AGC will command FDAI ALIGN for 10 seconds thereby resetting the backup attitude reference to correct for its accumulated drift error. The CSM attitude during this interval will be within 1 degree of a pre-determined attitude with respect to the IMU stable member.

After a time interval of 2006 secs. from first burn cut-off the vehicle attitude in tracking the local vertical will come closest, in the nominal case, to the second burn ignition attitude. At this time the local vertical mode will be terminated and the AGC will command the vehicle to the second burn ignition attitude, which it will hold inertially until ignition.

2.3.8 Second, Third and Fourth SPS Burns

Second burn ignition occurs after a fixed time delay of 3041 seconds from first burn cut-off. The AGC will command + X TRANSLATION 30 seconds before ignition to provide ullage. Thrust is controlled by the G&N system to achieve the reference trajectory major axis and eccentricity at cut-off, and a trajectory plane which includes the Pacific Recovery Point at nominal splash time.

Second burn is terminated by the AGC six seconds before the required velocity is attained. The spacecraft attitude at this time will be held until fourth burn cutoff. During second burn the G&N attitude error signal will develop a bias proportional to the c.g. shift from the engine gimbal trim position set in prior to second burn ignition. After second burn cutoff the CDUs will be moved off from their position at cutoff by a stored estimate of this bias in order to minimize the attitude transient after engine shutdown.

The AGC will start and shutdown the SPS on a time basis so that the last two burns are each of 3 seconds duration and so that the two short coast periods are each of 10 seconds duration. The AGC will control the + X TRANS-LATION signal so that the RCS will provide ullage thrust as well as attitude control during the 10 second coast periods. Note that the SCS disables +X translation during SPS firing.

The nominal attitude, flight path angle and altitude histories are given by Fig. 9-2. Figure 9-3 shows the slant range, azimuth and elevation to the CSM from the Carnarvon tracking station. Tables in Section 9 show the effects of CSM performance variations and launch vehicle cut off dispersions. 2.3.9 Pre-Entry Sequence

The fourth burn cutoff attitude is held until the free-fall time to entry interface altitude drops below the normal T_f criterion of 160 seconds, when the G&N system will start pitching the spacecraft up to the CM/SM separation attitude (+ X axis up in the trajectory plane and tipped forward in the direction of motion 60 degrees above the velocity vector. When the free-fall time drops below 75 seconds the AGC will command CM/SM SEPARATION. After a 5 second time delay to allow for separation and stabilization, the G&N system will start orienting the CM to the entry attitude. The CM will then be at the aerodynamic trim angle of attack with roll angle for down lift. 2.3.10 Entry

The velocity and critical flight path angle at entry are directly controlled by the G&N system during the second, third and fourth burns. The nominal entry trajectory provided by the guidance equations is illustrated in Fig. 9-4. The entry guidance equations, which are given in Section 4, are designed to provide a trajectory which will satisfy heat shield test objectives while controlling the roll angle so as to splash at the designated Pacific Recovery Point.

3. LOGIC AND TIMELINE FOR SPACECRAFT AND MISSION CONTROL

- 3.1 Interfaces, Ground Commands and Constraints
 - 3.1.1 G&N Interface with Spacecraft

The following interfaces will be effective on Mission 202/AF 011/ AGE 017:

3.1.1.1 AGC Outputs to MCP

This interface is documented in ICD No. MH01-01200-216 and provides the following signals:

- (1) G&N ATTITUDE CONTROL MODE SELECT
- (2) G&N ENTRY MODE SELECT
- (3) G&N ΔV MODE SELECT

(4) +X TRANSLATION ON/OFF

There is a requirement for this command (over and above the translation requirement) to provide for termination of Direct Ullage mode.

At SIVB/CSM Separation the AGC must command "+X TRANSLATION ON" to key the MCP to terminate the "SIVB/ CSM Separate" command to the MESC, which in turn deactivates the MESC-controlled "DIRECT ULLAGE" command. The MESC will not terminate direct ullage earlier than 3.5 sec after receipt of "SIVB/CSM Separate" nor continue it longer than 12 sec regardless of whether the SIVB/CSM Separate command is terminated or not.

(5) CM/SM SEPARATION COMMAND

(6) FDAI ALIGN

This signal will be initiated and held for 10 seconds soon after orientation to SPS second burn attitude when the IMU gimbal angles are near prescribed values. This will result in FDAI ALIGN when the spacecraft is within 1-1/2 degrees of a prescribed inertial orientation.

(7) T/C ANTENNA SWITCH

The AGC has the capability to switch the T/C Antennas although the requirements for this function have not yet been defined and thus not incorpor porated in AGC programming. (8) G&N FAIL INDICATION

This signal is generated by the AGC based upon its assessment of certain functions with the G&N. The AGC generated G&N FAIL INDICATION will be an "OR" of the following normal Block I FAIL indices; IMU FAIL - an "OR" of IG servo error MG servo error OG servo error 3200 CPS loss wheel supply loss ACCEL FAIL - an "OR" of x PIPA error y PIPA error z PIPA error CDU FAIL - an "OR" of CDU 25.6 KC supply CDU Motor excit. loss Inner CDU error Middle CDU error

Each of these three FAIL signals (IMU, ACCEL, CDU) are subject to AGC program processing as there are certain phases of normal G&N operation where the FAIL parameters will exceed FAIL thresholds, thus requiring AGC inhibition of FAIL indication. The G&N FAIL circuitry will be scanned for evidence of failure every 480 ms.

As is apparent from the FAIL parameters the G&N FAIL INDICATION signal is basically a monitor of the inertial subsystem and not of the AGC. Thus, confirmation of an AGC failure must be made by the ground by examination of the DIGITAL DOWNLINK.

The G&N FAIL INDICATION can also be sent to the MCP via the Up Data Link (UDL) based upon ground assessment of tracking or telemetry data. Upon receipt of G&N FAIL INDI-CATION the MCP immediately disables all mode commands from the AGC and commands the SCS system to SCS ATTITUDE CONTROL MODE. The attitude reference becomes the BMAG's. The SCS system is now no longer responsive to any G&N originated attitude signals, attitude error signals, engine onoff commands (disabled by removal of ΔV mode), or AGC commands via the MCP.

The MCP can be reset once to retransfer S/C control to G&N, however, this command must come from the ground. (9) .05G INDICATION

G&N will sense .05G with the PIPA's, give this indication to the SCS (via the MCP) and the SCS system will inhibit pitch and yaw attitude control on the assumption that these axes will

be stabilized by aerodynamic forces. Should the G&N .05G indication not be received by the MCP/SCS this attitude control would not be inhibited, and if sufficient pitch and yaw attitude errors are generated, RCS fuel would be wasted throughout entry. The G&N entry program will attempt to null the pitch and yaw error signals during entry based on its estimation of the pitch and yaw trim angles of attack. MIT estimates that the resulting pitch and yaw attitude errors will not exceed the deadbands in the SCS. Should this be incorrect RCS fuel loss will occur. The G&N 0.05G indication is not used within the re-entry program, however, so should this function be backed up by a redundant CM sensor or by the UDL signal, no AGC confusion should result. (10) GIMBAL MOTOR POWER ON/OFF

The AGC must terminate SPS GIMBAL MOTOR POWER in order to key the MCP to select the appropriate SPS motor gimbal trim inputs. The MCP does this sequentially and therefore the AGC must terminate this command only once after 1st SPS burn, (to select trim position for 2nd burn) and once after 2nd SPS burn (to select trim position for 3rd burning). The trim position for the 1st burn is selected by MCP upon keying from the SIVB/CSM Separate Command. The 3rd burn trim position is also satisfactory for the 4th burn. (11) SPARE

This is a relay identical to those used in (1) through (10) and is identically wired to the MIT/NAA interface.

3.1.1.1.1 Detailed Interface Operation

Certain additional facts are pertinent to the use and comprehension of the AGC/MCP interface:

- The AGC must not command more than one SCS mode simultaneously. This requires termination of each mode before commanding the next; 250 ms has been established as sufficient time interval between termination and selection.
- (2) The response of the SCS system to the commands and/or indication signals of the AGC via the MCP are subject to the arming of these command/indications by the MCP. Presently the arming logic for the G&N/MCP interface is as shown in Fig. 3-1.

Fig. 3-1 Arming Logic for G&N/MCP Interface

- (3) In all case the MCP initiates SIVB/CSM Separation. For normal cases its action is keyed upon notification from the Saturn I. U.. For aborts the ground must command the MCP to start the separation.
- 3.1.1.2 Additional Interfaces

 $\label{eq:Pertinent G&N electrical signal interfaces with other S/C subsystems are described in detail in the ICD's below.$

ICD. NO.	TITLE	SIGNALS INCLUDED
MH01-01024-416	Attitude Error Signals	Pitch Error (Body & Body Offset)
		Yaw Error (Body)
		Yaw Error (Body Offset)
		Roll Error (Body)
		Roll Error (Body Offset)
		Error Signal Reference
		(all signals go from G&N to SCS)
MH01-01025-416	Total Attitude Signals	SIN AIG
		COS AIG
		SIN AMG
		COS AMG
		SIN AOG
		COS AOG
		Attitude Signal Reference
		(all signals go from G&N to SCS)
MH01-01038-216	Engine On Signal to SCS	Engine ON/OFF
		(AGC command to SCS system - not via MCP)
MH01-01026-216	Central Timing Equipment Synch. Pulse	AGC synch. pulse to PCM telemetry system
MH01-01028-216	G&N DATA Transmission to Operational PCM Telemetry Equipment	G&N analog data and AGC serial digital data (AGC Downlink) to PCM (Includes flight recorder data).
MH01-01036-200	ACE Uplink/Spacecraft Digital Up-Data Link to AGC	Coded data input to AGC from ground
MH01-01278-216	Launch Vehicle to G&N Inter- faces (Block I Series 100)	 Liftoff Guidance Reference Release
MH01-01280-216	Vehicle Separation Signals to AGC (Block I Series 100)	1. CSM/SIVB Separate

3.1.2 Ground Commands

3.1.2.1 Digital UPLINK to AGC

By means of the AGC Uplink, the ground can insert data or instruct the AGC in the same manner normally performed by the crew using the DSKY Keyboard. The AGC will be programmed to accept the following Uplink inputs:

- (1) ABORT INDICATION (required for abort logic as described earlier)
- (2) LIFT-OFF (backup to discrete input)
- (3) SIVB/CSM SEPARATION (backup to discrete input)
- (4) G&N ATTITUDE CONTROL MODE SELECT
- (5) G&N ΔV MODE SELECT
- (6) G&N ENTRY MODE SELECT
- (7) +X TRANSLATION ON/OFF
- (8) GIMBAL MOTOR POWER ON/OFF
 (inputs (4) (8) will cause the AGC to issue these commands to the MCP)
- (9) Position and Velocity data (provides ground capability to update navigation data in the AGC).

Operational procedures governing the use of these Uplink

inputs must be developed to ensure proper operation within program constraints.

All information received by the AGC from the Uplink is in the form of keyboard characters. Each character transmitted to the AGC is triply redundant. Thus, if C is the 5 bit character code, then the 16 bit message has the form:

1CCC

where C denotes the bit-by bit complement of C. To these 16 bits of information the ground adds a 3 bit code specifying which system aboard the spacecraft is to be the final recipient of the data and a 3 bit code indicating which spacecraft should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5 bit code for transmission.) The rate of transmission is 1 K bits/sec. allowing for slightly over 9 keyboard characters per sec. If the message is received and successfully decoded, the receiver onboard will send back an 8 bit "message accepted pulse" to the ground and shift the original 16 bits to the AGC (1CCC).

3.1.2.2 Discrete Real Time Commands to MCP

The following list details the real-time commands planned for support of the Apollo 202 Mission. This list is restricted to commands for the Command/Service Module Systems and is exclusive of commands to the SIVB and AGC Uplink commands:

- 1. Abort(Also Backup for SIVB/CSM Separation Start)
- 2. LET Jettison Start-Backup to onboard command from S-IVB.
- 3. Thrust off- Turn off SPS engine; backup to onboard command in case of malfunction.
- 4. Thrust On Turns on SPS engine; backup to onboard command in case of malfunction.
- 5. CM/SM Separation Backup to onboard command from the G&N.
- 6. Lifting Entry Necessary for no-roll entry in the SCS entry mode.
- 7. G&N Failure Backup to G&N function.
- 8. G&N Failure Inhibit Reset G&N failure.
- 9. Roll Rate Gyro Backup Switches roll BMAG to rate mode and uses this gyro for roll rate data.
- 10. Yaw Rate Gyro Backup Switches yaw BMAG to rate mode and uses this gyro for yaw data.
- 11. Pitch Rate Gyro Backup Switches pitch BMAG to rate mode and uses this gyro for pitch rate data.
- 12. Roll A and C Channel Disable Disables the automatic A and C RCS roll channels.
- 13. Roll B and D Channel Disable Disables the automatic B and D RCS roll channels.
- 14. Pitch Channel Disable Disables the automatic pitch RCS channels.
- 15. Yaw Channel Disable Disables the automatic yaw RCS channels.
- 16. -Direct rotation + pitch
- 17. -Direct rotation pitch
- 18. -Direct rotation + yaw
- 19. -Direct rotation yaw
- 20. -Direct rotation + roll
- 21. -Direct rotation roll
- 22-23. SM Quad A Propellant Off/On.
- 24-25. SM Quad B Propellant Off/On.
- 26-27. SM Quad C Propellant Off/On.
- 28-29. SM Quad D Propellant Off/On.
- 30-31. CM System A Propellant Off/On.
- 32-33. CM System B Propellant Off/On.

- 34. Direct Ullage (Also sets SCS ΔV mode)
- 35-37. Fuel Cell Purge (cell #1 cell #3)
 - 38. FDAI align
- 39-40. T/C Antenna Switch (-Z, +Z)
 - 41. UDL/S-Band Comm. Switch

42-45. Cryogenic Heater Fan Switch $(0_2#1, 0_2#2 H_2#1, H_2#2)$ Commands 12-21 will be used to control S/C attitude in cases where the G&N is not operable.

Of these commands only six are intimately concerned with G&N operation; abort, thrust off, thrust on, G&N Failure Inhibit, G&N Fail, Direct Ullage.

- Abort: As discussed above, this abort command may be accompanied by an abort command to the AGC via AGC Uplink.
- Thrust The ground may thus inhibit starting of or may stop the SPS
- Off: thrust. Should AGC-controlled firing be inhibited or shutdown the ΔV monitor logic would after 10 seconds exit from thrust vector control and hold attitude until the free-fall interrupt occurs.
- Thrust AGC Engine On logic presently includes a monitor of ΔV to On: ensure engine ignition. This monitor continues for 10 sec after sensing no thrust during which time the ground might start the SPS engine. If suitable ΔV has not been sensed after 10 seconds the AGC would exit from thrust vector control and hold attitude until the free-fall interrupt occurs. Should the ground successfully start the engine within 10 sec the AGC will guide the burn normally. It must be assumed however that as the AGC Engine On command did not work correctly, AGC Engine Off will not either. The ground must therefore command a timely "Thrust Off" compatible with the AGC TVC calculations.

G&N This command is a ground backup for the G&N originate 1Failure: command. As all control of the vehicle by G&N is thereby inhibited, the resulting confusion of the AGC (it has no knowledge of the ground command) is interesting but irrelevant.

Direct A backup command for ground use during a ground controlled Ullage: burn in the SCS ΔV mode. Its use during G&N controlled flight would inhibit G&N attitude control with the possibility of the G&N being unaware of the control loss.

G&N This command overrides the G&N FAIL signal. Failure Inhibit: 3.1.3 Backup Control Systems Constraints on G&N Operation

3.1.3.1 Backup Attitude Reference System

The backup attitude reference system is the SCS BMAGs in conjunction with AGCU. G&N control of the CSM orientation is always done with consideration for the maintenance and accuracy of this systime. As the SCS system is presently designed, the BMAG's operate as free gyros in the G&N ΔV MODE; in other modes they are caged through the AGCU.

As the mechanical stops of the BMAG's are at $\pm 17^{\circ}$ it is apparent that during boost (MONITOR MODE) and attitude maneuvers (G&N ATTITUDE CONTROL OR ENTRY MODES) both involving angular changes of over 17° the BMAG's must be caged. In the G&N ΔV mode however, attitude changes over 17° might occur.

The rate limits of the backup attitude reference system in the caged mode are 5° /sec in Pitch and Yaw and 20° /sec in Roll. To preclude controlling the S/C at rates beyond which the backup attitude reference system can maintain its reference, the G&N will limit its command rate to the CSM.

3.1.3.2 Backup Entry Control

During the pre-entry coast the G&N system must orient the CM for aerodynamic trim and lift vector down. Then, in the event of G&N FAIL INDICATION, the MCP/SCS will hold this attitude until it senses a prescribed "g" level at which time it will command a continuous roll angular velocity.

3.2 Normal and Abort Mission Logic

The following pages describe the timeline and logic for AGC control of the spacecraft.

3.2.1 Normal Sequence of Events

3.2.2 AGC Program Logic

SECTION 3.21

GROUND				a 1 1 1			SEAN ONTRE		GROWND SYNCHAINZ ATTION OF	ANT THE SKOUND SKOUND PRELAUNCH FRELAUNCH FRELAUNCH	
/6 FN AGC	MANUAL OR REYBOARD INPUT	SET FINE ALIGN	68 N STARTS GYROCGNPHSS- ING MODE FOR INU RUGN- MENT TO LAUNCH AZIMUTH	OPTICS SIGHTING TO VERIEY EYRCCONTARSING	CLUSE OPTICS HATCH		FINAL GAN SYSTENS		START AGC AGC	COMMAND SPS AGC COMMAND SPS AGC GMBAL MCTOR UPLINK	
ROGRAMMER MCP	HONT			DANNAL OR	GEE COMMIN D	RENETING RENETING RENETING RENETING RENETING FALL ATC SWITH WE IN AGC. NEW RENE CREW	ONLY TO MCP. MCP WILL NOT REVEAT TONK LEME WILL SUR CSM SEMANTON.	CLOSEOUT		START GANBAL NOTAL START SEQUENCE	
MISSION CONTR	PRELA							SPACECRAFT			
S/C 011 MESC								START			
SIR/SIVE											
		sul11-		5	- Yhrs	5 + S	عمر ۲۱ مل	5	6- 30 M		

GROUND				GROUND BAKKUP OF	RELEASE 60 N LUNK			SROUD BACKUD OF			
AGC	STOP FDAI ALIGU	COMMAND G&N ATT. COUT. MODE		GUIDANCE REF RELEASE AGC	SUCALUE 14 INECTIAL: GUIDAUCE 14 INECTIAL: AGC TERMINATES FINE AGC MUGA MODE 4 GYOCOM- AGC PASSUGGING ATT COUT.	INGENIZHU IS INERTIAL UPLINE	AGC RECEIVES LIFTOFF INDICATION : STARTS SIB ROOST PHASE COMPUTICU	WERTHE ACCTURQUES ACC CONTTED ANGLESICOU COMPUTED ANGLESICOU ERRORS ARE TEIDRT-	AGC ALSO STARTS AGC ALSO STARTS CONTNUOUS MONITOR OF VENCLE POSTITION AND VELOCITY FOR TRANSMISSION TO SOULD		
ACR	STOP FDAL ALIGN	COMMAND GAN	CALI BRATE TELENETRY								
CSM	STOP FDA I ALIGN		CALIBRATE CALIBRATE			51B BoosT					
MESC											
SIB/SIVB				SATURU) GUID. SYST	GOES INERTIAL	SIB EXMUE	п mod-Gтон	RELEASE AUD LI FTOFF		LIFT-OFF SIGNAL TERMINATED	START
TIME	To-30		6-25			- 4- 4-	-	° +		1 + 5 -	

	GROUND		PHASE TERMALS TINE ALO MODE								
		AT SIB CUTCFF ASC TERNI- INATES SIB BOOST MONITOR PHASE COMPUTATION OU BASIS OF AGC SURED TIME! AS AGC COMMANDS & A DUM	SYSTEM TO FINE ALIGN MODE IN READINESS FUR POSSIBLE ASORT ASORTINUES MONITOR AGC CONTINUES MONITOR FO	VELOCITY FOR SIVE BURN. THIS IS SULE CALIGATIONOF GUNFOR SIVE BOOLT MOUITOR				B005T			
	AUR							ARATION & SIVE			
4 V U	N N N										
	MENC										
alta/site	AVIS/AIC	END PITCH PROGRAM START F LLT	MAXIMUM DV NAMIC PRESSURE	STOP GRAVITY TILT	N BOARD ENGINE	OUT BOARD ENGION CUT-OFF	ENGINE THRUST TERMINAMON	SIG/SIVE	SIVE ENGINE	SIVE ENSIDE REACHES FULL THRUST	•
л Ж.Е	U VE	To + 52	To+78	T₀+t 36	T ₀ +139.5	6+145.5	[°+150		12 + 12 H	To+156.7	
- ace work	ני-∢ ב				0DE	IEM WI	NE YF	·· EI			>

- 2CZ WODE

G \$ N MONITOR MODE.

TIME SIP SUB ME SC C SM M C P A G C 7. + 30.6 SiP SUB ME SC C SM M C P A G C 7. + 50.8 SiP SUB ME SC C SM M C P A G C 7. + 50.8 SiP SUB SiP SUB SiP SUB A G C 7. + 50.8 SiP SUB SiP SUB SiP SUB A G C 7 30.8 SiP SUB SiP SUB SiP SUB A G C 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB SiP SUB SiP SUB 7 30.8 SiP SUB SiP SUB<	GROUND	TRACKING ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR BY ANTEUR		GROUND BACKUPOF SIVB/CSM SEPARATAN
TIME SIB/SIVB MESC CSM MCP T- +366 T- +366 T- +366 T- +508 T-	0 O O	MICE WE PATTA LINK		SEPARATION ARC NOLINK
TIME SIB/SIVB MESC CSM T-ME SIB/SIVB MESC CSM T-+508	Ω U Σ	1 8 SPS BOOST. START SINGKSM SEPARTION 5 COMMAND 5 EVENCENT	ARM BACK UP MODE SUTCHING FOR 6 (U) FAIL	
TIME SIB/SIVB MESC To + 36(For + 508 To + 636 Examples To - 508 To -	S S S	CSM SEPARATION	ADATER CSM	
TIME SIB/SIVB To + 366 To + 508 To + 508 To + 508 To + 6.36 Server Server To + 6.44 Server To + 6.36 Server	MËSC	START SVIB/CSM	START START DIRECT ULLAGE CUTOFF SIVE REDUNDENT FR NORMENT FR NORMENT ON SECARATION SECARATION SECARATION	SIVE/CSM SEPARATE INDICATION
$\frac{1}{15} + \frac{1}{64443}$	SIB/SIVB	STAT SAL	Sive Evenes Sive Sive Corr Sabustin Sabustin Sabustin Sabustin Command	
	TIME	$T_{0} + 366$ $T_{0} + 508$ $T_{0} + 636$ $T_{5} - 83$ $T_{5} - 83$ $T_{5} - 83$		τ ₅ +644.3 Τ5

FINE ALIGN MODE -

- BON MONITOR MODE -

- 2C2 WODE

0

	STARTS						L L L L L L L L L L L L L L L L L L L	
AGC	BASED ON ELAPSED TIME IST SPS BURN STORF ACC ZUD SPS BURN SEQUEN	COMMAND + X TRAND	COMMAND GIMBAL MUCR	TER WINATE GANATICON	COMMAND 6 & N DV MODE			SUBTRACT #3 FITCH SUBTRACT #3 FITCH AND YAW GIMBAL MOTOR TRIM AUGLES FROM CDU'S TO LIVENE
ΔUΣ	SPS Buen	COMMAND +X TRANS	COMMAND GIMBAL MOTOR	TERMINATE GRU ATT. COLT.	COMMAND G&U DV MODE			·
CSM	0200	+X TRANS ON	GIMBAL MOTOR	TERMINATE GA U ATT COUT	SET GAN	SAS ENGINE ON: + XTRANS INHIB- TTED: TRANSTER CDU ERRORS FROM RCS JETS GIMBALS	SPS EUGINE	
MESC								
StB/SIVB								
TIME		Tcor+301	Co1 +3038	Col ⁴ 3040.60	Tcort 304a.75	Tot 3023 (HOMIHAL) [5+ 3305 (HOMINAL) Tcot 304	10+4041 (10041414) (10041444) (10+3396 (10+3396 (10+3396	•

GROUND	GROWND BACKUR OF SPS BLUGIVE GU COMMAND	GROUND DREND OF SSS EVENE OFF COMMAN			
ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი	COMMAND SPS ACC DAMAUR ENGINE CN ARON SPS ACC DAMAUR	COMMAND SPS ACC DOWNANK ENGINE OFF AGC UPLUN MCP UP DATA LINK	TERMIUATE +X TRAUS.	TERMINATE GIN DV MODE	Commanu 555 Gineal Mater Pauera OFF Commanu 64N ATT Cont Made
MCP BURN		Commave Sis ENGINE	+ X TRAUS	TERMINARE CAN	COMMAND 3FS CIMBAL MATA POWER OFF COMMAND G4U
csw 4TH SPS	COMMAN O SPS EVELUE SPS EVELUE SPS EVELUE INHIGTE FAMSTER FRAMS FR	C C C C C C C C C C C C C C C C C C C	OFF OFF TANNER OF COULEADER FROM 3FS FROM 3FS FORT OF ATT CONT	TERMINATE GU	SP5 6m04L harar Awer SE7 G+ N
AESC	<u></u>				
SIB/SIVB					
TIME	7 _{ce3} + 10	T _{co3} +13 (T _{co4})	Tco4+1.25	T _{co4} + 2	Tco++ 2 Tco++2.25
		300W TV	vod 114	•	- WONITOR MONITOR GUN

ı.

i

1

GROUND			C		1 1 1 1 1 1 1 1 1 1 1 1 1 1	
U 9 4	COMMAUD GIMBAL MOTOR POURR OFF	BASED ON ELVASED TIME FON ZUD SED BURN CUT OF AGU STARTS 30.55 BURN SEQUENCE	GIMBAL MOTOR POUJER ON COMMAND SP		ENGINE COM MAID SPIL	
۵ U ک	Manual Control of Cont			CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		-
C S M TRANSFER OF CDU ERRORS FROM SPERINE GIMBALS TORICS GIMBALS TORICS	GIMBAL MOTOR POWER OFF GIMBALS TO TRALS POSITION # 3	32D SPS BURN	GIMEAL MOTOR POWER ON SPSENGIVE ON	HX TRANSTATION TRANSFER CDU TRANSFER CDU RECORS FROM RCS JETS TO STS ELGLINE 6108.		TRANSFER OF COU ERRER OF FROU ERRER OF FROU ERBOS ENGINE GIMBALS
MESC						
SIB/SIVB	<u> </u>					<u></u>
TIME T _{co2} +125	T _{co2} + 2		Tcu2+7		Tco 3)	T _{co3} +1.25

BOW SOR

.,•

- JOW AT N+9-

GROUND											<u></u>			
AGC	THEE FALL TIME	THAN IGO SEC	INTERUPT PROGRAMS AND RESET SYSTEM	START CM/SM SEP	COMMAND GAN SYSTEN TO FINE ALIGN MUDE	AGC READS VENCE ATTITUDE & CALCUUTES ATTITUDE MANEUVER	COMMAND 6 LO SYSTEN TO ATTIT. CONTROL MODE	START VEHICLE	TIME DELAY FOR	COMMAND PITH	TIME DELAY FOR CSM RESPONSE	COMMAND ROLL	TIME DELAY FOR CAM RESPONSE	FRAUDEN FOR CN/SM SE PARATION COMMUN TO BE KEVED ON
MC P	ATION ORIENTATION		RESETALL MODES AND COMAND 6 KN											
K S S S	CW/SM SEPAR		567 G & C											
MESC														
TIME														
চ-ৰ	<i></i>	dow I	NOJ 1/1	/		7000 	(-		30	ow 11	ער כמי	(৮		

GROULU		SROULD BACKUP FOR CM ISM]									
AGC	FREE FALL TIME TO 300,00, FT IS LESS THAN 755E C	SEPARATION	YAII ALAO DO									
A C P	2	START CM/SM	CUT OUT PSEUDO PATE	SELECT MAX DEADBAND	ARM.056 BKKUP AND SCSENTRY MODE COMMAND IV MCP	COMMAND SEPARATION						
CSM	C M/SM SEPARATIO		PSE UDO RATE	MAX DEEDBAND			RCS PRESURCED	EUERGIZE CM			CM/SM UMBILICAL DEADFACE	C M/SM
WS									START SM RCS SEQUENCE	FRELX TRANSL SM-RCS		
MESC						START CM/SW SEPARATION	PRESSURIZE CM RCS	TRANSFE R SK ATT COUT FROM SM TO CM REACTON	START SM RCS SEQUENCE	,		RESET
TIME		بی ۲	5 S	s F		Ts+.2	τ ⁺ .2	ts t	T _s + .e	T ₅ +.2	Ts+ 25	T.+.25

c

----- GAN ATT COUT, MODE-----

>

3.2.2 AGC Program Logic, Mission 202

The following diagrams illustrate the AGC logic for Mission 202. Each group of logical decisions and/or computations enclosed within a dotted line represents a routine. Routines marked * are performed at a specified time under AGC waitlist control. Such routines cannot be interrupted by an other AGC activity and will run to completion.

The terminology used is defined as follows:

- Call Cause a specified routine (an AGC "waitlist task") to be started at a specific time. Waitlist tasks are designated * (a task called once at a specified time) or ** (a task which, once called, continues until terminated)
- Go To Branch to another part of the program without return
- Do Branch to a routine with a return to the next operation in sequence.
- Set A permanent change of state of a flag or register valid until being reset.
- T Present time.
- Store Store indicated quantity in erasable for future reference.

CM REENTRY ATTITUDE

* C.G. BIAS REMOVE

ENTRY

Refer to	Section	4	for	AGC	Entry A	alic
----------	---------	---	-----	-----	---------	------

_

4. GUIDANCE EQUATIONS FOR CSM

4.1 Powered Flight Guidance Scheme

The guidance scheme for Mission 202 is the same as that planned for all Apollo CSM powered flights. It is based on the possibility of an analytical description of a required velocity (\underline{v}_r) which is defined as the velocity required at the present position \underline{r} , in order to achieve the stated objective of a particular powered flight maneuver.

If \underline{v} is the present velocity, then the velocity to be gained (\underline{v}_g) is given by

$$\underline{\mathbf{v}}_{\mathbf{g}} = \underline{\mathbf{v}}_{\mathbf{r}} - \underline{\mathbf{v}} \tag{1}$$

Differentiation of both sides yields

$$\frac{\dot{v}}{g} = \frac{\dot{v}}{r} - \frac{\dot{v}}{2}$$
(2)

$$= \underbrace{\mathbf{v}}_{\mathbf{r}} - \underline{\mathbf{g}} - \underline{\mathbf{a}}_{\mathbf{T}}$$
(3)

$$= \underline{b} - \underline{a}_{T}$$
(4)

where

$$\underline{\mathbf{b}} = \underline{\mathbf{v}}_{\mathbf{r}} - \underline{\mathbf{g}}$$
(5)

and g is the gravitational acceleration.

The steering command is developed by formulating a desired thrust acceleration (a _T) as that which satisfies the equation

$$\underline{a}_{T_{D}} * \underline{v}_{g} = c \underline{b} * \underline{v}_{g}$$
(6)

where c is a constant scalar.

^{*} Indicates vector cross product

Hence a measure of the error between $\underline{a}_T __D$ and the actual acceleration \underline{a}_T is given by

$$\underline{\omega} c = \frac{\underline{v}_g * \underline{m}}{|\underline{v}_g| |\underline{m}|}$$
(7)

where

$$\frac{\mathbf{\dot{m}}}{\mathbf{m}} = c\mathbf{b} - \mathbf{\underline{a}}_{\mathrm{T}} \tag{8}$$

It can be verified that $\underline{\omega}_c$ is also the axis about which the thrust vector should be rotated to null the error. Hence $\underline{\omega}_c$ is used as the steering command.

Once a required velocity \underline{v}_r is defined satisfactorily, the procedure for the generation of the steering command $\underline{\omega}_c$ is the same for all phases of I owered flight. The equations for the required velocity for the various I hases are described in the succeeding pages. Descriptions of the initial alignment procedure, ignition and cutoff logic and implementation in AGC are also included.

4.2 Nominal Mission

4.2.1 Required Velocity

The required velocity for the first and second burns of the nominal mission is defined as that velocity which will put the vehicle in an elliptical trajectory of predefined parameters (semi major axis a, and eccentricity e). The values used are

Firs	t Burn	Second Burn
a	2.22806 \times 10 ⁷	2.82776×10^{7}
e	0.102415	0.252865

These numbers correspond to the trajectory described in Section 5. The value of c in Eq. (6) is 1.

The required velocity can be written as

$$\underline{\mathbf{v}}_{\mathbf{r}} = \underline{\mathbf{i}}_{\mathbf{r}} \cdot \mathbf{v}_{\mathbf{rad}} + \mathbf{i}_{\mathbf{H}} \cdot \mathbf{v}_{\mathbf{H}}$$
(9)

where

$$v_{\rm rad} = \pm \left[\frac{\mu}{p} \left[e^2 - \left(\frac{p}{r} - 1 \right)^2 \right] \right]^{1/2}$$
 (10)

$$v_{\rm H} = + \left(\frac{\mu \, \rm p}{r^2}\right)^{1/2}$$
 (11)

$$p = a(1 - e^2)$$
 (12)

$$\frac{\mathbf{i}}{\mathbf{r}} = \frac{\mathbf{r}}{\left|\mathbf{r}\right|} \tag{13}$$

and

$$\frac{i}{-H} = \text{UNIT} (\underline{i}_{N} * \underline{i}_{r})$$
(14)

The positive sign is used in Eq. (10) for the radial velocity during first burn and the negative sign is used during second burn.

4.2.2 Yaw Steering

Plane control during the nominal mission is achieved by specifying the normal (\underline{i}_N) to the required plane appearing in Eq. (14). The required trajectory plane is defined to be the plane containing the present position vector (\underline{r}) and the landing site vector $(\underline{r}_{LS}; 14.9N, 165.6E)$ at the <u>nominal time</u> (5090 sec) of landing and is given by

 $\underline{i}_{N} = \text{UNIT} (\underline{r} * \underline{r}_{LS}) \text{ Sign} \left[(\underline{r} * \underline{r}_{LS}) \cdot \underline{i}_{W} \right]$ (15)

where \underline{i}_{W} is the earth's polar unit vector. At cutoff the vehicle velocity will be equal to \underline{v}_{r} , thereby ensuring the trajectory plane to be \underline{i}_{N} according to Eqs. (9) and (14).

During the third and fourth burns, no computations are made for \underline{v}_r . The desired thrust direction is held fixed at the direction computed at the end of the second burn.

4.2.3 Engine Ignition

In the nominal mission the engine is always ignited after a fixed interval of time from a previous event. The first burn is

initiated 12.7 seconds after receipt of SIV-B/CSM separation signal, the second burn 3041 seconds after first burn cutoff, the third burn 10 seconds after second burn cutoff and the fourth burn 10 seconds after third burn cutoff.

4.2.4 Engine Cutoff

During all the burns a time to cutoff (T $_{\rm g}$) is continuously being estimated from the equation

$$T_{g} = \left|\underline{v}_{g}\right| / \left|\underline{a}_{T}\right|$$
(16)

The accuracy of T_g increases as T_g $\rightarrow 0$, because as $|\underline{v}_g| \rightarrow 0$, $|\underline{b}| \rightarrow 0$.

For the first burn, when T_g falls, for the first time, below the computational repetitive interval of Δt , the clock is set to turn off the engine T_g seconds later. The second burn is turned off the moment T_σ falls below 6 seconds for the first time.

In the third and fourth burns the engine is turned off 3 seconds after ignition.

4.3 Aborts During Boost

The guidance equations for aborts during boost have been designed to meet the following constraints that have been imposed on the spacecraft attitude.

The visual horizon is to be kept on a hairline on the forward window during the entire powered flight and this line should be independent of the time at which abort is initiated.

The window geometry indicates that this requires the thrust direction to be between 4° and 36° to the line of sight to the visual horizon. Within this limitation, the larger the angle, the greater is the interval of time before nominal SIV-B cutoff during which the capability exists to reach a particular recovery area in the event of an abort. Hence a thrust angle of 35° to the line of sight to the horizon is used. (See Fig. 4.1).

4.3.1 Required Velocity

The definition of a required velocity, in the usual sense, consistent with the direction of thrust pre-specified as above, is not possible. Hence, a pseudo required velocity is defined for aborts, which,

•

when incorporated into the general steering scheme, will satisfy not only the constraint on the thrust direction but also permit recovery from a specified landing area.

Let \underline{r}_e be the entry position (300,000 ft) corresponding to a free fall from the present position. Then we can write

$$x = \cot\left(\frac{\theta_{f}}{2}\right)$$
(17)

$$\frac{r_e \cot \gamma + r \cot \gamma_e}{r_e - r}$$
(18)

and

$$\sin \theta_{\rm f} = \frac{2x}{x^2 + 1} \tag{19}$$

$$\cos \theta_{f} = \frac{x^{2} - 1}{x^{2} + 1}$$
(20)

where

$$\cot \gamma = \frac{\underline{v} \cdot \underline{i}_{r}}{\underline{v} \cdot \underline{i}_{H}}$$
(21)

$$\cot \gamma_{e} = r/p \left[e^{2} - \left(\frac{p}{r_{e}} - 1 \right)^{2} \right]^{1/2}$$
(22)

$$\underline{i}_{H}' = \underline{i}_{p} * \underline{i}_{r}$$
(23)

$$\underline{i}_{p} = \text{UNIT} (\underline{r} * \underline{v}) \tag{24}$$

 $\boldsymbol{\theta}_{f}$ is the free-fall central angle to the entry point,

r, is the radius at 300,000 ft altitude,

 $\gamma_{\scriptscriptstyle P}$ is the flight path angle w.r.t. the local vertical at entry

 γ is the present flight path angle (w.r.t. vertical)

The entry-point is given by

$$\underline{\mathbf{r}}_{e} = \mathbf{r}_{e} \left(\underline{\mathbf{i}}_{r} \cos \theta_{f} + \underline{\mathbf{i}}_{H'} \sin \theta_{f} \right)$$
(25)

Now, let \underline{r}_T be the desired entry point (target vector). The error d can be written as

$$d = \left| \frac{\mathbf{r}}{\mathbf{T}} - \frac{\mathbf{r}}{\mathbf{e}} \right| \tag{26}$$

The target vector is the inertial position of $14,3926^{\circ}N$ latitude and 313° longitude at 975 seconds from lift-off. This choice corresponds to minimum plane change for aborts at 617.4 seconds from the nominal boost trajectory.

The rate of change of this error is computed by differencing \underline{r}_{e} as

$$d = \frac{\Delta d}{\Delta t}$$
 (27)

$$\stackrel{\text{\tiny 2}}{=} \left| \underline{\mathbf{r}}_{\mathbf{e}_{n}} - \underline{\mathbf{r}}_{\mathbf{e}_{n-1}} \right| / \Delta t \tag{28}$$

where the subscript n denotes the nth computational repetition

Observing that d/d is a measure of the time to cutoff (T_g) and that T_g according to Eq. (16) is $|\underline{v}_g| / |\underline{a}_T|$ in the general scheme, the magnitude of \underline{v}_g is defined as

$$\left| \underbrace{\mathbf{v}}_{g} \right| = \frac{d}{d} \left| \underbrace{\mathbf{a}}_{d} \mathbf{T} \right|$$
(29)

 \mathbf{or}

$$\left|\underline{\mathbf{v}}_{g}\right| = \frac{\mathrm{d}}{\Delta \mathrm{d}} \left|\underline{\Delta \mathbf{v}}\right| \tag{30}$$

where Δv is the velocity increment measured with the accelerometers in the interval Δt .

Now consider Eq. (6). Set c = 0; then

$$\frac{a}{T}_{D} + \frac{v}{g} = 0$$
(31)

If the direction of \underline{v}_g is chosen as the desired and known direction of \underline{a}_T , the specified constraint on the spacecraft attitude will be satisfied.

Figure 4-l shows the geometry of the spacecraft window. The angle ϕ between the thrust and <u>r</u> is given by

$$\phi = \theta + \sin^{-1} \left(\frac{R_{vh}}{|r|} \right)$$
(32)

where θ is the specified angle (35[°]) to the horizon and R_{vh} is the radius to the visual horizon.

From Eq. (32) and Eq. (30) we can define \underline{v}_g as,

$$\underline{\mathbf{v}}_{g} = \frac{d}{\Delta d} \frac{|\Delta \mathbf{v}|}{(-\cos \phi \underline{\mathbf{i}}_{r} + \sin \phi \mathbf{i}_{H'})}$$
(33)

4.3.2 Yaw and Roll Steering

The development of Eq. (33) is based on \underline{i}_r and $\underline{i}_{H'}$ which are both in the present trajectory plane according to Eq. (23). However, normally, a plane change will be required to reach the same landing site from different points of aborts on the boost trajectory.

Let the plane containing the present position \underline{r} and the target vector (See Section 4.3.1) \underline{r}_{T} be defined by

$$\underline{\mathbf{i}}_{\mathrm{N}} = \mathrm{UNIT} \left(\underline{\mathbf{r}} * \underline{\mathbf{r}}_{\mathrm{T}} \right) \mathrm{Sign} \left[\left(\underline{\mathbf{r}} * \underline{\mathbf{r}}_{\mathrm{T}} \right) \cdot \underline{\mathbf{i}}_{\mathrm{w}} \right]$$
(34)

The velocity increment along \underline{i}_p (normal to \underline{v}) to null the error between \underline{i}_p and \underline{i}_N is given by (See Fig. 4-2).

$$\Delta v_{N} = |v| (\underline{i}_{p} * \underline{i}_{N}) \cdot \underline{i}_{r}$$
(35)

The acceleration along \underline{i}_p required to accomplish the plane change is given by

$$\underline{\mathbf{a}}_{\mathrm{N}} = \underline{\mathbf{i}}_{\mathrm{p}} - \frac{\Delta \mathbf{v}_{\mathrm{N}}}{\mathbf{T}_{g} + \delta}$$
(36)

where δ is a small scalar (5 seconds). In order to prevent large yaw rate commands, a limit of 5 ft/sec² is imposed on $\left|\frac{a}{N_n} - \frac{a}{N_{n-1}}\right|$.

Equation (33) can be now modified, to include yaw steering,

as

$$\underline{\mathbf{v}}_{g} = \underline{\mathbf{i}}_{T} \quad \frac{\mathrm{d}}{\Delta \mathrm{d}} \, |\Delta \mathbf{v}| \tag{37}$$

where

$$\underline{i}_{T} = \left[\text{UNIT} - \underline{i}_{r} \cos \phi + \text{UNIT} (i_{H'} a_{T} + \underline{a}_{n}) \sin \phi \right]$$
(38)

and a_{T} is the magnitude of the thrust acceleration.

The required velocity is given by

$$\underline{\mathbf{v}}_{\mathbf{r}} = \underline{\mathbf{v}} + \underline{\mathbf{v}}_{\mathbf{g}} \tag{39}$$

where \underline{v}_g is given by Eq. (37). With the required velocity so computed and with c = 0, the same steering (Eq. 6) as for the nominal mission is used.

The rate command resulting from the required velocity \underline{v}_r has only pitch and yaw components. However, the vehicle must be rolled such that the pitch axis is in the horizontal plane (See Fig. 4-1) This is achieved by generating a roll command (ω_R) from

$$\underline{\omega}_{R} = -(\underline{i}_{R} - \underline{i}_{pitch}) - \underline{i}_{roll}$$
(39a)

The negative sign is the result of the desired orientation in which the spacecraft \underline{z} - axis is pointed up.

The roll rate command is added to the rate command generated from Eq. (7). Note that the roll rate computed according to Eq. (39a) must not be commanded unless the spacecraft z-axis is within 90° of local vertical.

4.3.3 Engine Ignition

In the case of a non-tumbling abort the engine is ignited 2.5 secs after receipt of the SIV-B/CSM separation signal.

If tumbling has been detected by the time the separation signal is received, the engine is ignited 2.5 secs later and is shut down when tumbling has been arrested. If the capability of landing area control

Fig. 4-2 Computation of \underline{a}_n and \underline{i}_t

exists, the engine is re-ignited after a time interval calculated to be sufficient to orient to the desired initial thrust direction.

4.3.4 Engine Cutoff

When T g falls below Δt , the clock is set to turn off the engine T g seconds later under normal area control. However, the engine will be turned off if any one of the following violations has occurred before T $_{\sigma} \leq \Delta t$.

a) Free-fall time to 300,000ft is below 160seconds b) \underline{r}_e is beyond \underline{r}_T . That is,

$$\underline{\mathbf{r}} \cdot \underline{\mathbf{r}}_{e} < \underline{\mathbf{r}} \cdot \underline{\mathbf{r}}_{T} \tag{40}$$

ft should be pointed out that the estimate of T_g is very poor in the early part of the burn for long burns. Hence its value at ignition cannot be used in back-up systems.

4.4 AGC Computations

Since the information about the thrust acceleration comes from the accelerometers in the form of velocity increments (Δv), the computations in the AGC are in terms of increments of velocity rather than instantaneous acceleration. The repetetive guidance computations are shown in the form of a block diagram in Fig. 4-3. The computational blocks are common to all powered flight maneuvers except the computation of \underline{v}_r described in the preceding sections.

4.4.1 Average g Equations

The vector position and velocity are updated in each computational cycle with a set of equations based on the average gravitational acceleration written as

$$\underline{g}_{n} = \frac{\mu}{r_{n}^{2}} \frac{i}{r_{n}} r_{n}$$
(46)

$$\underline{\mathbf{v}}_{n} = \underline{\mathbf{v}}_{n-1} + \frac{\underline{\mathbf{g}}_{n-1} + \underline{\mathbf{g}}_{n}}{2} \Delta t + \underline{\Delta \mathbf{v}}$$
(47)

and

$$\underline{\mathbf{r}}_{n} = \underline{\mathbf{r}}_{n-1} + \Delta t \left(\underline{\mathbf{v}}_{n-1} + \underline{\mathbf{g}}_{n-1} \quad \frac{\Delta t}{2} + \frac{\Delta v}{2} \right)$$
(48)

where the subscript n denotes the nth computational repetition.

4.4.2 Steering Command

The vector \underline{b} was defined in Eq. (5) as

$$\underline{\mathbf{b}} = \underline{\mathbf{v}}_{\mathbf{r}} - \underline{\mathbf{g}}$$
 (5)

In the AGC (as shown in Fig. 4-3), the increment ($\underline{b} \Delta t$) is computed as

$$\underline{b} \Delta t \stackrel{\simeq}{=} \underline{\Delta v}_{r} - \underline{g} \Delta t \tag{49}$$

Then the steering command in Eq. (7) can be written as

$$\underline{\Delta\theta}_{c} = \frac{\underline{v}_{g} * \underline{\Delta m}}{|\underline{v}_{g}| |\underline{\Delta m}|} \Delta t$$
(50)

where

$$\underline{\Delta\theta}_{c} = \underline{\omega}_{c} \Delta t \tag{51}$$

$$\underline{\Delta m} = c \underline{b} \Delta t - \underline{\Delta v}$$
(52)

4.4.3 Orbital Integration Equations

Position and velocity during the free-fall phases of the mission are calculated by a direct numerical integration of the equations of motion. Since the disturbing accelerations are small the technique of differential acceleration due to Encke is mechanized in the AGC, as described in MIT Report R-467, The Compleat Sunrise.

4.5 Initial Thrust Alignment

Before the engine is ignited for any particular maneuver, the vehicle should be oriented so that on ignition the thrust is in the desired direction at that point. Since the time of ignition is known beforehand, the position and velocity at ignition can be computed prior to the arrival of the vehicle at that point. By integrating over Δt seconds from that point, the vectors \underline{v}_g and $b\Delta t$ can be computed as shown in Fig. 4-3.

The desired thrust direction can be now calculated (prior to arrival at the ignition point) as

$$\underline{i}_{T} = \text{UNIT} (\underline{c}\underline{b} + (\underline{q} - \underline{i}_{g} \cdot \underline{c}\underline{b}) \underline{i}_{g}$$
(53)

where

$$\underline{i}_{g} = \text{UNIT}(\underline{v}_{g}) \tag{54}$$

q =
$$(a_T^2 - (cb)^2 + (\underline{i}_g \cdot c\underline{b})^2)^{1/2}$$
 (55)

and a_{T} is an estimate of the magnitude of the thrust acceleration.

Once \underline{i}_T is computed from Eq. (53), the vehicle is oriented prior to arrival at the ignition point such that the thrust axis is along \underline{i}_T .

4.6 Entry Mode

Included in this section is a set of flow charts that describe the logic and equations that control the entry vehicle. Figure 4.4 shows the overall picture of the sequence of operations during entry. Each block in Figure 4.4 is described in detail in subsequent charts. Table 4-1 defines symbols which represent computed variables stored in erasable memory. The value and definition of constants is given in Section 5.

Every pass through the entry equations, which is now anticipated to be once every 2 seconds, is begun with the section called navigation. (See Figure 4.5). This integrates to determine the vehicles new position and velocity vector. This sub-routine is used by other phases than entry and will probably be operated during all of flight 202.

Next, the targeting is done. This updates the desired landing site position vector and computes some quantities based on the vehicles position and velocity and the position of the landing site. (See Figure 4.6).

The next sequence of calculations is dependent upon the phase of the entry trajectory that is currently being flown. First is the initial roll angle computation. (See Figure 4.7). This merely adjusts the initial roll angle $(180^{\circ} \text{ for flight } 202 \text{ is now planned})$ and tests when to start the next phase.

Fig. 4-4 Re-Entry Steering

Fig. 4-5 Re-Entry Steering - Navigation

Fig. 4-6 Re-Entry Steering - Targetting

Fig. 4-7 Re-Entry Steering - Initial Roll

The next phase maintains a constant drag trajectory while testing to see if it is time to go into the up-control phase. The testing is presented in Figures 4.8 and 4.9. The constant drag equations are given in Figure 4.10. The other phases (up-control, ballistic and final) are listed in Figure 4.11, 4.12 and 4.13. The final phase is accomplished by a stored reference trajectory. Its characteristics as well as the steering gains are stored as shown in Figure 4.14. The routine that prevents excessive acceleration build-up (G limiter) is given in Figure 4.15. And finally, the section that does the lateral logic calculations and computes the commanded roll angle is shown in Figure 4.16.

Fig. 4-8 Re-Entry Steering - Huntest

Fig. 4-9 Re-Entry Steering - End Huntest

Fig. 4-10 Re-Entry Steering - CONSTD

Fig. 4-11 Re-Entry Steering - UP CONTRL

Fig. 4-12 Re-Entry Steering - Ballistic

Fig. 4-13 Re-Entry Steering - Predict 3

ĿЧ
O.
Z
E
2
Ē
Ē
ច
$\overline{\mathbf{z}}$
H
E
S
4
H
ሲ
٦
H
S
Έ
£

A/DV 0/SEC)	AREF ² D FT/SEC ² N	R/DAPR IM/SEC	DR/DA NM/FT/SEC	RTOGO NM	DR/DL/D NM
(77)	18.7	0	03959	0	cn .
ന	.8.7	13.6	03959	0	.05
Ţ	2.6	57.4	04232	2	2.177
9	0.0	78.86	05625	8	6.772
8	1.5	160.9	-• 09033	21	17.69
6	о . С	343.5	1411	45	45.52
6	8.5	607.9	198	74	90.0
102	ю. •	847.4	2374	98	137.4
118	.7	1699	3308	169	325.9
125	. 2	2119	3607	209	462.1
120	.4	3146	4959	265	679.6
6	5.4	3860	6486	343	977.6
3	3.1	4963	-2.022	503	1403
	6.4	5485	-7.572	641	1505
		5485	-7.572	641	1505

Fig. 4-14 Final Phase Reference

Fig. 4-15 Re-Entry Steering - GLIMITER

Fig. 4-16 Re-Entry Steering - Lateral Logic

TABLE 4-1

VARIABLES FOR RE-ENTRY CONTROL

- - T O	INITIAL PROFESSION
-	
117	UNIT VECTOR NORTH
-	
V	VELOCITY VECTOR
-	
Ú	BUSLICH AFCICB
	VECTOD EAST AT INITIAL TARGET
_	
i (Ţ O	NORMAL TO PTE AND UZ
-	
ur⊂.	EVOLH BVLE AECIOD
-	
Τ	IVBCET AECTOR
	UNIT MODMAL TO TRA FECTORY DIANE
• •	INITIAL DRAG FOR HEGONIELES
A ()	INTIAL DAVE SCA DECIMINE
AL O	COMST FOR UPCOMIRU
ASKEP	KEPLEP RANGE
ASP1	FINAL PHASE RANGE
ASDUP	UDRANGE
A SD 3	GAMMA COPRECTION
ASD	PREDICTED RANGE = ASKEP+ASP1+ASPUP+ASP3
0	TOTAL ACCELERATION
00	CONTROLLED CONST DRAG
DADVI	D DRACIDV-ADRIME (ETNAL DHASE)
DADVD	
DDDDVR	REFERENCE DINKNEYDV (FIMAL PEAGE)
DREE	REFERENCE URAG
⊢1	DRANGEZD DRAG (FINAL PEASE)
F <u>2</u>	DRANGE/DAPPIME (FINAL PHASE)
FACT1	CONST FOR UPCONTRL
FACT2	CONST FOR UPCONTRL
FACTOR	USED IN DECONTRE
KIRALL	INDICATOR FOR POLL SWITCH (0)
K2POLL	INDICATOR FOR POLL SHITCH (1)
LATANG	LATERAL RANGE
I FO	EXCESS C.F. OVER GPAV = (VSO-1)CS
	LAD CORRECTION FOR L'RCONTRI
	DEANGEZEV
PREDANGI	PREDICTED RANGE (FINAL PHASE)
PDOT	ALTITUDE RATE
RDOTREE	REFERENCE ROOT FOR UPCONTRI
POLLC	POLL COMMAND
PDOTI	EXIT POOT FOR L'PCONTRI
RTOGO	DANGE TO GO (EINAL DHASE)
T	TIME
ΤΗΓΤΔ	DESTRED PANGE (RADIANS)
THETNM	DESIDED PANGE (NM)
VCORR	VELOCITY CORRECTION FOR LIRCONTRU
VI OPS	VELOCITY MAGNITHDE
V	TNITTAL VELOCITY FOR HECONTRA
VT	INTIAL VELIXITY FOR HOCONTON
VL	ANTI VELOCITY FOR OPERATES
VRFF	KEEFKENCE AGEOCIEL EGA DECTARESE
	2 2
VBARS	VI. /VSAT
	2 2
VSO	NORMALISED VELOCITY SQUARED = V /VSAT
WΤ	FARTH RATE X TIME
Y	D RANGE/D(L/D)
HUNTIND	SWITCH TO SELECT CONST DIEVELION
HIND	SWITCH TO ITERATE IN HUNTERT (O)
RELVELSW	REL VELOCITY SWITCH (O)
FGSW	SWITCH (0)
 Second second sec	the second se

5. MISSION AND VEHICLE DATA

5.1 Scope

Section 5 is a summary of all Flight 202 mission and vehicle data that have an impact on AGC programming. Data have been collected under the following headings:

Section 5.2 Mission Data. Establishes the outlines of the mission in terms of trajectories, profiles etc. Includes performance figures for Saturn boost phase inasmuch as they affect conditions pertaining at take-over of control by G&N system.

Section 5.3 Memory Data. Contains all mission- and vehicle-dependent data that are, in one form or another, written directly into the memory of the AGC. In a wired-memory computer such as the AGC, the very limited erasable section is intended primarily for storage of computational variables. An attempt has been made to consign those mission parameters that do not change during flight to the fixed section of the memory. Some exceptions have had to be made in the case of the Saturn boost polynomials and SPS aim-point criteria, since these will not be available until shortly before the flight.

Section 5.4 Vehicle Data. Contains information that will mainly affect simulations and rope verification and will not, with only one or two exceptions, appear directly in the AGC program.

Section 5.5 Physical Constants. These definitions will be used in AGC programs and verification work.

Numerical data are presented in the most convenient and widely accepted units. The AGC is, however, programmed in the metric set of kilogram, meter, and centisecond (10^{-2} sec) . Conversion to other sets of units is done by use of the factors defined in Section 5.5.2.

Points on the surface of the earth are defined in terms of geodetic latitude and longitude referred to the Fischer ellipsoid of 1960, and geocentric radius.

5.2 Mission Data

5.2.1 Mission Trajectories

Reference trajectory	1
(Saturn boost, SPS1, coast, SPS2)	not available
Reference entry trajectory	
(Pre-05g to touch-down)	not available ¹
Nominal mission profile	see Fig. 5.1
Major events during nominal mission	see Table 5.1
Nominal Saturn boost profile	see Fig. 5.2

Note 1. No official trajectories issued. All dependent data in this report are derived from MSC SA-202 optimum trajectory dated September 1964, and an undated entry reference trajectory communicated on 11 November 1964.

TABLE 5-1. MAJOR EVENTS, MISSION 202								
EVENT	t,	V _i	i	AZ	ALT. N	L GEOD.	E.LONG	WEIGHT
	(sec)	(fps)	(deg)			LAT. (deg)		
								<u></u>
Lift-off	0	0	0	90.00	0	28.53	279.42	1,322,530
SIB c/o	145.5	7,022	24.02	102.43	175,508	28.23	279.98	434,058
SIVB Ign	.151	6,953	22.80	102.49	190,757	28.21	280.06	320,240
LES Jett	161	7,037	21.01	102.66	216,802	28.17	280,21	306,928
SIVB c/c	617.4	21,848	2.635	112.05	544,569	23.43	294.61	83,099
SPS Ign.	628. 4 [*]	21,834	2.395	112.31	554,893	23.20	295.18	45,701
SPS c/o	882.0	25,632	5.77	117.70	918,950	16.46	309.35	27,956
Apogee	2528.	22,713	-0.006	105.89	3,606,674	-27.99	29.56	27,956
Ullage	3893.4	24,837	-5.80	64.61	1,620,500	-19.95	109.25	27,942
SPS Ign.	3923.4	24,923	-5.82	63.99	1,543,640	-19.24	110.95	27,942
SPS c/o	4014.	27,739	-7.67	62.18	1,243,966	-16.26	116.48	21,589
SPS Ign.	4024.	27,647	-7.53		1,218,301	-16.15	116.63	21,589
SPS c/o	4027.	27,751	-7.56		1,207,390	-16.05	116.82	21,379
SPS Ign.	4037.	27,789	-7.44		1,171,147	-15.72	117.43	21,379
SPS c/0	4039.6**	27,878	-7.46		1,161,917	-15.60	117.59	21,200
Entry	4319.6	28,690	-3.51		397,603	- 5.16	134.85	
End of Entry	5087.6	1,791			49,613	14.9	165.6	
End of Entry for No SPS ΔV 1469.4 9.25 320.6								
End of Entry for No SPS ΔV_2 4977. 4.7 148.4								
* Data from this time on is from MIT 2000 in the little								
**								
Fourth Burn cutoff due to propellant depletion in this simulation								

5.2.2	Nominal SIVB Separation Attitude Conditions	
	X-axis in plane of maneuver, forward of local vertical by	67.20 ⁰
	(Y-axis along momentum vector $\underline{R} * \underline{V}$	
	Z-axis above local horizontal)	
	Roll rate	$0^{\rm O}/{ m sec}$
	Pitch rate	$0^{\rm O}/{ m sec}$
	Yaw rate	$0^{\rm O}/{ m sec}$

2.3	3σ Dispersions from Nominal at SIVB Separation	
	X-axis attitude dispersion	2 ⁰
	Y-axis attitude dispersion	2°
	Z-axis attitude dispersion	2 ⁰
	Roll rate residual	$0.2^{\circ}/\sec$
	Pitch rate residual	$0.2^{\circ}/\text{sec}$
	Yaw rate residual	0.2 ⁰ /sec

5.

5.2.4 SIVB Engine-off Transient

Decay time 100%-10%	not available
Decay time 10%-0%	not available
Tail-off impulse 100%-10%	not available
Tail-off impulse 10%-0%	not available

5.3 Memory Data

5.3.1 Prelaunch

		Memory Type	Value
Launch position:	Latitude	F	28. 53253 ⁰ N
	Longitude	F	$279.41701^{\rm O}{\rm E}$
	Radius	F	6, 373, 305. 2 meters
Inertial referenc	e plane (IMU) azimuth	F	105.0000 ⁰ E of N

5.3.2 Saturn Boost

	Memory Type	Value
Roll polynomial coefficient (s)	Е	not available
Pitch polynomial $coefficient(s)$	Ε	not available
Heading polynomial coefficient(s)	Е	not available
Interval: Lift-off-SI attitude monitor	r	
terminate	F	150 sec
Interval: Lift-off-LET jetison		
assumed complete	\mathbf{F}	171 sec

÷

5.3.3 Attitude Maneuvers

	Memory Type	Value
Limit: commanded S/C angular		
rate:		
Roll (CSM)	F	$7.2^{\circ}/\mathrm{sec}$
Roll (CM only)	F	15 ⁰ /sec
Pitch, Yaw (CSM, CM)	F	4 ⁰ /sec
Interval between attitude updates	(CSM)F	1 sec
(CM only)	F	0.5 sec
Interval for stabilization after		
maneuver		
(CSM)	F	6 sec
(CM)	F	3 sec

5-12

- -

5.3.4 TVC (Normal mission)

	Memory Type	Value
CSM c.g. displacement in X-Y plane: (SPS 1)	F	6.60 ^{0 1}
CSM c.g. displacement in X-Y plane: (SPS 2)	F	3.35 ^{0 1}
CSM c.g. displacement in X-Y plane: (SPS 3)	F	0.30 ^{0 1}
CSM c.g. displacement in X-Z plane: (SPS 1)	F	2.25 ⁰ 1
CSM c.g. displacement in X-Z plane: (SPS 2)	F	0.60 ^{0 1}
CSM c.g. displacement in X-Z plane: (SPS 3)	F	-0.70 ^{0 1}
Mass loss rate of SPS engine	F	2.175 slug/sec
Initial mass of CSM + propellants	F	1,428 slugs
Tailoff impulse (mean) of SPS engine	F	8,400 lb-sec
Minimum ΔV criterion for thrust monitor	F	1 ft/s/s
Interval for thrust monitor	\mathbf{F}	10 sec
Interval between steering updates	F	1 sec
Steer law gain	F	0.25
Steer law velocity bias	F	160 ft/sec
Steer law coefficient (C)	F	1.0
Interval: freeze CDUs to engine-off comma	nd F	1.8 sec
Interval: SIVB/CSM Sep SPS 1 ignition	F	12.7 sec
Interval: SPS 1 cut-off - SPS 2 ignition	E	3041 sec
Interval: SPS 2, 3 cut-off - SPS 3, 4 ignition	ı F	10 sec

Note 1: Figures derived from data in Section 5.4.1 using weight data in Table 5-1.

5-13

Memory Type Value Interval: SPS 3, 4 ignition - SPS 3, 4 cut-off \mathbf{F} 3 sec Interval: + X translation - SPS 2 ignition \mathbf{F} 30 sec 0.25 sec Interval: between SCS mode change commands \mathbf{F} Interval: Gimbal mot. power ON - Engine start \mathbf{F} 2 secSPS 1 aim-point criteria 2.22806x10⁷ft \mathbf{E} Semi-major axis Eccentricity Ε 0.102415 SPS 2 aim-point criteria: 2.82776x10⁷ft Semi-major axis Е Eccentricity 0.252865 Ε Interval: Lift-off - touch down. (Nominal \mathbf{E} 5090 sec mission)

5-14

5.5.5 Entry (Normal mission)	Symbol	Memory Type	Value
CSM attitude for SM/CM Separation:			
X-axis above velocity vector by		\mathbf{F}	60 ⁰
(Y-axis along monentum vector ($\mathbf{R} * \mathbf{V}$),			
Z-axis above velocity vector)			
CM Pacific pre-entry attitude:			
X-axis below velocity vector by		\mathbf{F}	160 ⁰
(Y-axis along momentum vector ($\underline{\mathbf{R}} * \underline{V}$),			
Z-axis below velocity vectory. A lift-			
vector down attitude)			
Trim angle of attack		F	20 ⁰
Interval: SM/CM Sep start maneuver		\mathbf{F}	5 sec
Pacific recovery point: Latitude		E	14.000 ⁰ N
Longitude		E	16 5. 600 ⁰ E
Constant on ALP	C1	\mathbf{F}	1.25
Initial shaping roll	C10	F	0
Constant drag gain (on drag)	C16	F	0.01
Constant drag gain (on RDOT)	C17	F	0.0002
Lead velocity for up control start	C18	F	500 ft/s
Minimum constant drag	C19	F	35 ft/s/s
Minimum D for lift up	C20	F	200 ft/s/s
Minimum drag to start Kepler	DMIN	F	6 ft/s/s
Minimum drag to end Kepler	DMIN2	F	6.5 ft/s/s
G-limit	GMAX	F	10g
Minimum drag for lift up if down	KA	F	0.2g
Up control gain, optimized	KB3	F	0.0034
Up control gain, optimized	KB4	F	`3.4
Lateral switch gain	KLAT	F	0.0075
Time of flight calculation gain	KTETA	F	1,500

	Symbol	Memory Type	Value
Max L/D	LAD	F	0.3
LAD cos (15°)	L/DCMINR	\mathbf{F}	0.2895
Up control L/D	LEWD	\mathbf{F}	0.1
Final phase L/D	LOD	F	0.18
Final phase range	Q2	\mathbf{F}	641 n.m.
Final phase dR/dV	Q3	\mathbf{F}	0.07 n.m/ft/s
Final phase initial velocity	Q4	\mathbf{F}	23,500 ft/s
Final phase $dR/dRDOT$	Q 5	\mathbf{F}	0.3 n.m/ft/s
Final phase initial RDOT	Q 6	F	820 ft/s
Minimum drag for up control	Q7	\mathbf{F}	6 ft/s/s
Minimum RDOT to close loop	VRCONTRL	F	700 ft/s
Minimum VL	VLMIN	\mathbf{F}	18,000 ft/s
Normalization factor, acceleration	GS	\mathbf{F}	32.2 ft/s/s
Atmosphere Scale Height	HS	F	28,500 ft
Normalization factor, velocity	VSAT	F	25,766.197 ft/sec
Nominal earth's radius (entry only)	RE	F	21, 202, 909 ft

5.3.6 TVC (Abort)

	Symbol	Memory Type	Value
Criterion for tumbling detection		F	nət available
Interval: SIVB/CSM Sep SPS ignition (tumbling and abort)		F	2.5 sec
Interval: Time-to-go bias		F	5 sec
Interval: between steering updates		F	2 sec
Thrust attitude:			
X-axis above visual horizon by		\mathbf{F}	35 ⁰
(Y-axis normal to local vertical,			
Z-axis above local horizontal)			
Limit: commanded change in yaw accelera- tion		F	$5 \mathrm{ft/s/s}$
Abort aim-point: Latitude		Е	14.3926 ⁰ N
Longitude		Е	313.0000 ⁰ E
Interval: Lift-off - abort aim-point			
(Abort from nominal mission (See Section 4.0))		Е	975 sec
Mean geo-centric radius of visual horizon	R _{vh}	F	not available

5.3.7 Entry (Abort)

		Memory Type	Value
CM Atlantic pre-entry at	ttitude:		
X-axis above velocity ve	ctor by	F	160 ⁰
(Y-axis along neg. mome	entum vector(<u>V*R</u>)		
Z-axis above velocity ve	ctor		
A lift-vector up attitude)			
Atlantic recovery point:	Latitude	E	not avail- able
	Longitude	E	not avail- able

5.3.8 Free-fall time (T_f) monitor

	Memory Type	Value
Entry interface altitude	F	300,000 ft
Abort T _f criterion (A) to start orientation to CM/SM Separation Attitude	ı F	160 sec
Normal T _f criterion (N) to start orientati to CM/SM Separation Attitude	on F	160 sec
Interval: min T _f to start CM/SM Separation	F	75 sec
Interval: between T _f updates	F	1 sec

5.4 Vehicle Data

5.4.1 CSM Data

Weight empty	MS	21,200 lbs	
Weight of initial fuel load	ML	24,500 lbs	
Variation of principal inertia with mass	IXX	Defined in Fig. 5.4	
Variation of principal inertia with mass	ΓYY	Defined in Fig. 5.5	
Variation of principal inertia with mass	IZZ	Defined in Fig. 5.6	
Variation of product of inertia with mass	IXY	Defined in Fig. 5.7	
Variation of product of inertia with mass	IYZ	Defined in Fig. 5.8	
Variation of product of inertia with mass	IZX	Defined in Fig. 5.9	
Variation of C.G. X-location ² with mass	CGX	Defined in Figs. 5.10, 5.11	
Variation of C.G. Y-location 2 with mass	CGY	Defined in Figs. 5.12, 5.13	
Variation of C.G. Z-location ² with mass	CGZ	Defined in Figs. 5.14, 5.15	
Fuel equivalent slosh mass	MF	14.3 slugs	
Oxidizer equivalent slosh mass	MO	44.6 slugs	
Fuel mass C.G. X-location	\mathbf{RF}	958 ins. (Apollo Ref.)	
Oxidizer mass C.G. X-location	RO	966 ins. (Apollo Ref.)	
Fuel mass natural frequency	WF	4.07 ¹ rad/sec	
Fuel mass damping ratio	ZF	.005	
Oxidizer mass natural frequency	WO	3.82^1 rad/sec	
Oxidizer mass damping ratio	ZO	.005	
RCS thruster moment arm	\mathbf{LT}	7.1 feet	
Engine hinge point location	\mathbf{LE}	833 ins. (Apollo	
Spacecraft Launch Configuration		Ref.) See Fig. 5-3	

- NOTE: 1. Data corresponds to initial thrust acceleration of 20.9 ft/sec² and the relation $(W^2a_T)_t = (W^2a_T)_{initial}$ is assumed.
 - 2. Angles given as positive rotations of engine hinge-point to c.g.) line about positive CSM Y and Z axes.

Fig. 5-3 CSM Launch Configuration

INC.

Fig. 5-4 IXX Moment of Inertia against CSM Weight

Fig. 5-5 IYY Moment of Inertia against CSM Weight

COMERCIAL

Fig. 5-6 IZZ Moment of Inertia against CSM Weight

LIAI A

Fig. 5-7 IXY Product of Inertia against CSM Weight

Fig. 5-8 IYZ Product of Inertia against CSM Weight

CHELDENIT

Fig. 5-9 IXZ Product of Inertia against CSM Weight

Fig. 5-10 C.g. X-Axis Coordinate against CSM Weight

Fig. 5-11 SPS True Gimbal Angle from X-Axis against CSM Weight.

Fig. 5-12 C.g. Y-Axis Coordinate against CSM Weight

CONFIDENT MIL

LDEALTIAI

Fig. 5-13 SPS Gimbal Angle in X-Y Plane against CSM Weight.

· ··· ·· ·· ·· ··· ··· ··· ···

Fig. 5-14 C.g. Z-Axis Coordinate against CSM Weight

-CONFIDENTIAL

CONFIDENTIAL

Fig. 5-15 SPS Gimbal Angle in X-Z Plane against CSM Weight.

5.4.2 SPS Engine Data

Item	Symbol	Value
Mass	ME	20 slugs
Inertia (IY = IZ = IR)	IR	213 slug ft 2
Hinge to c.g. radius	LE	8.0 inches
Vacuum thrust	\mathbf{TF}	2.19 x 10^4 lbs
		(± 1% after 30 sec)
		$\binom{+10\%}{-1\%}$ after 750 sec)
Specific impulse	ISP	318.7 sec (3σ value after 750 sec)
Maximum start and shutdown transient	S	See Fig. 5.16
Mean thrust-off impulse		8,400 lb-sec
Displacement, thrust vector from enginging gimbal axes intersection	ne	<0.125 inches
Misalignment, thrust vector from engi mount plane normal	ne	<0.5 deg.

5-34

.

Fig. 5-16 SPS Engine Start and Shutdown Transients
5.	4.	3	TVC	Autopilot	Data
----	----	---	-----	-----------	------

TVC Autopilot Data	Symbol	Pitch (Y)	Yaw (Z)	Units
Configuration	D	efined in Fig	. 5.17	
Attitude error gain	KA	1.00		rad/rad
Attitude rate gain	KR	0.50	0	rad/rad/sec
Rate command limit	L	0.14	0	rad
		(effec	ctively 16)/sec)
Att. rate filter lead time constant	τ_1	0.12	5	sec
Att. rate filter lag time constant	τ_2	0.04	2	sec
Forward filter gain	KE	1.50)	
Commanded position breakpoint	LMP(1)	0.10	5	$rads(6^{O})$
Commanded position limit	LMP(2)	0.22	27	rads(13 ⁰)
Clutch servo amplifier gain	KS	20.0		Amps/rad
Clutch servo amp. lead time cons	t. $ au_3$	0.02	25	sec
Clutch servo amp. lag time const.	$ au_4$	0.02	29	sec
Clutch servo current limit	LMI	0.60	00	Amps
Clutch gain	KC	3,53	30	lbs/amp
Actuator moment arm	RA	1.00	1.05	feet
Clutch lead time constant	τ_{5}	0.02	22	sec
Clutch lag time constant	τ_{6}	0,02	29	sec
Total actuator load inertia	$_{ m JT}$	281	287	$slug-ft^2$
Actuator load time constant	$ au_7$	0.150	0.154	rad/sec
Actuator load natural frequency	WB	104	81.7	rad/sec
Actuator load damping ratio	ζ	0.104	0.137	
Engine rate limit	LMR	0.30	00	rad/sec
Engine position limit (pitch)	LMY	±0.105		$rad(\pm 6^{\circ})$
Engine position limit (yaw)	LMZ		+0.218 -0.078	$rad(^{+12.50}_{-4.50})$
Position feedback gain	KD	1.0	0	rads/ft/sec
Position pickoff frequency	WD	63.0	46.2	
Rate feedback gain	KG	0.0	90	rads/ft
Rate pickoff frequency	WC	48,1	40.0	rads/sec
5 9	0			

5-36

5.4.4 RCS Autopilot Data							
			Att. Cont.	TVC	Pre-05g	Entry	
Configuration: see Fig. 5-18			Roll, Pitch, Yaw	Roll	Roll Pitch, Ya	w Roll	Pitch, Yaw
Attitude error deadband	D	Degrees	0	0	4.0	4.0	(1)
Attitude error gain	GA	Deg/sec per deg	1.0	1.0	0.2	0.2	(1)
Rate command limiter	더	Deg/sec	8 	- - - 3	1.9^4 0.7^5	1.9 ⁴	(1)
Rate Gain	GR	n. d.	1.0	1.0	0.1	0.1	
Roll-to-yaw coupling angle	ALPHA	Degrees	 	1 1 1	1	33	
Filter gain	К	Deg/sec	1.0	1.0	(2)	(2)	
Filter Time constant	$\tau_{\rm f}$	sec	1.0	1.0	(2)	(2)	
Switch Deadband	B B	Deg/sec Deg/sec	0.2 A-0.007	0.2 A-0.007	0, 2 A-0, 007	0.2 A-0.00	7
NOTES							
1. Pitch, yaw attitude error	channels	open-circu	uited during entry.				
2. Filter feedback open-circ	uited dur	ing entry.					
3. Effective attitude rate lim rates will be limited to 4 ⁰	it set by /sec (pit	saturation ch, yaw) 7.	of electronics at a 20/sec (CSM-roll	ppr&ximat)158/sec	ely 9.3 ⁰ /sec. (CM only-roll)	Commanded	
4. Effective attitude rate lim	it (roll):	$17^{\rm O}/{ m sec}$					
5. Effective attitude rate lim	it (pitch,	yaw): 5 ⁰ /	sec				

5-38

\$

Fig. 5-18 RCS Autopilot Block Diagram

	Item	Units	Value	
			<u>SM</u>	CM
5.4.5	RCS Reaction Jet Data			
	Configuration		(see Fig. 5.19)	(see Fig. 5.20)
	Nominal vacuum thrust	lbs	100 ± 5	91 ± 3
	Specific impulse (steady)	secs	300 ± 5	270 ± 4
	Minimum impulse	lb-sec	0.5 ± 0.1	2.0 ± 0.3
	Thrust rise lag	millisec	<12.5	<13.0
	Thrust rise time constant	millisec	2.0 (exp)	2.0 (linear)
	Thrust decay lag	millisec	<6.0	<4.0
	Thrust decay time constant	millisec	2.0 (exp)	5.0 (linear)
	Duration, minimum impulse electrical signal	millisec	18.0±4.0	18.0±4.0

5-40

Fig. 5-19 (1) CSM Reaction Jet Positions

Fig. 5-19 (2) CSM Reaction Jet Positions

Fig. 5-20 CM Reaction Jet Positions

5.4.6 CM Data

Control Weight	11,000 lbs
Principal inertia (IXX)	5065.0 slug-ft 2
Principal inertia (IYY)	4491.3 $slug-ft^2$
Principal inertia (IZZ)	3973.5 slug-ft^2
Product of inertias (IXY)	-1.7 slug-ft ²
Product of inertias (IYZ)	-43.5 slug-ft ²
Product of inertias (IXZ)	-291.8 slug-ft ²
CG X-location	43.4 inches
CG Y-location	0.5 inches origin =
CG Z-location	5.3 inches S/C sta. 1000
Aerodynamic reference area	129.4 square feet
Aerodynamic reference diameter	154.0 inches
Aerodynamic coefficients	see: Table (5.2), Fig. (5.21)
Variation of coefficients with Mach number	see: Fig. (5.22)

5-44

<u>CONEIDENTIALS</u>

Table 5.2

Aerodynamic Coefficients Against Angle of Attack for the Command Module with Protuberances

α , deg.	$^{\rm C}{}_{\rm M}$	C_{N}	CA	C _L	с _р	L/D
140.465	0.03282	0.13187	-0.99218	0.52987	0.84915	0.62400
145.465	0.02686	0.10490	-1.10571	0.54042	0.97033	0.55695
150.465	0.01851	0.07990	-1.20796	0.52595	1.09038	0.48236
155.465	0.00779	0.06223	-1.29105	0.47950	1.20032	0.39947
160.465	-0.00268	0.05562	-1.36511	0.40405	1.30513	0.30958
165.465	-0.01411	0.04354	-1.42967	0.31666	1.39484	0.22702
170.465	-0.02601	0.01772	-1.47186	0.22634	1.45446	0.15562
175.465	-0.03708	-0.00144	-1.50081	0.12010	1.49600	0.08082

NOTES: 1. Above Table for Mach 10.0

2. Coefficients for Moment Center at

> $X_{c.g.} = 1043.1$ inches $Y_{c.g.} = 0.0$ inches $Z_{c.g.} = 5.4$ inches

Fig. 5-21 CM Axis System and Reference Center of Gravity

5-46

Physical constants 5.5

5.5.1 Geophysical constants

· · · ·	Symbol	Value
Earth's gravitation constant	MUE	$3.986\ 032\ 233 \ge 10^{14}$ meters $^3/\sec^2$
Gravity potential harmonic coeff.	J	$1.62345 \ge 10^{-3}$
	Н	-0.575×10^{-5}
	D	0.7875×10^{-5}
Earth's mean equatorial radius	RE	6.378 165 x 10^{6} meters
Earth's sidereal rate	WIE	7.292 106 35 x 10^{-5} radians/sec
Reference ellipsoid		Fischer, 1960

Reference ellipsoid

5-48

5.5.2 Conversion Factors

	Multiply by
International feet to meters	0.304 8
Pounds to newtons	4.448 221 530
Slugs to kilograms	14.593 902 680
Nautical miles to kilometers	1.852
Statute miles to kilometers	1.609 344 000
Slugs to pounds (g)	32.174 048 000 ft/s/s

5-49

6. G&N ERROR ANALYSIS

This section provides the results of G&N Error Analysis. Table 6-1 summarizes the one-sigma total error at each major event time and breaks these down into the contributions of IMU errors accumulated during each powered phase. Tables 6-2 through 6-16 break down each line of Table 6-1 into the contributions of each IMU sensor error term.

On the basis of these data the following key errors are estimated:

Entry γ_i (one sigma)	:	0.165 degree
Entry V _i (one sigma)	:	18.0 feet per second
CEP at Pacific Recovery Po	int:	15.6 nautical miles

The following comments explain the terminology, method of analysis and the basic assumptions used. $x_{sm} \notin SM \equiv STABLE$

- 1) The IMU Stable Member axes are aligned prior to launch relative to local vertical axes as indicated in sketch. X_{SM} is up along local vertical at instant of launch, while Z_{SM} is along local horizontal pointed down-range at an azimuth of 105 degrees.
- 2) The data in the error tables are given relative to local vertical axes (altitude, track, range) at the particular event designated.
- 3) Only the significant error figures have been listed in the error tables.
- 4) No realignment of the Stable Member was assumed.
- 5) Accelerometer bias errors affect indication errors in two ways. First, they affect the initial pre-launch alignment of the Stable Member. Second, they affect the in-flight computation of position and velocity. The two effects are summed in the tables, since the accelerometer bias error prior to launch is assumed to be correlated with the bias error during flight.
- 6) Accelerometer inputs to the AGC are not used during the free-fall phases of the trajectory.
- 7) "Initial S. M. Alignment Errors" includes only the uncorrelated alignment errors. They do not include the alignment errors due to accelerometer bias errors. The azimuth alignment error (about X_{SM}) is affected principally by by Z gyro drift effect on the gyro-compassing loop. Since there are other contributing factors to azimuth misalignment, this alignment error has been assumed to be statistically independent of Z gyro drift.

8) The position and velocity errors given in the tables for the various IMU sensor error terms are indication errors. No steering error was assumed. The indication errors in position and velocity were computed separately for each sensor error term using an array of error equations and the input position and acceleration trajectory data. These equations take into account the effect of the platform error on the gravity vector computation. For each trajectory run the position and velocity errors due to each platform error are computed simultaneously and printed in a summary table for all trajectory events of interest.

CONFIDENTAL

TABLE 6-1

202 TRAJECTORY ERRORS

Event	Time from	Type of Error	Positio	on Error (n.miles)	Velocit	y Error	(ft/sec)
	(mins)		Alt.	Track	Range	Alt.	Track	Range
SIVB Cutoff	10.3	1) Total Indication Error	0.34	3.07	0.17	9.2	72.1	4.2
SPS 1st Burn	14.7	1) Total Indication Error 2) Effect of IMU Errors	0.75	6.35	0.53	13.5	7 9.5	7.7
Cutoff		during SPS 1st Burn	0,06	0.34	0.05	3.3	17.7	2.3
Coast Apogee	42.2	1) Total Indication Error 2) Effect of IMU Errors	2.68	11.14	5.84	33.8	46.2	12.2
		during SPS 1st Burn	0.74	2.72	1.16	7.3	3.6	3.1
Coast End End (SPS		 Total Indication Error Effect of IMU Errors 	3.84	5.35	11.36	70.3	73.5	16.1
2nd Burn Ignition)	00.4	during SPS 1st Burn	1.46	0.08	2.99	20.0	17.1	6.2
SPS 2nd Burn Cutoff	67 0	 Total Indication Error Effect of IMU Errors during SPS 1st & 2nd 	3.78	6.51	11.80	73.2	74.1	17.7
	01.0	Burns 3) Effect of IMU errors	1.46	0.39	3.20	20.7	22.1	7.7
		during SPS 2nd Burn	0.02	0.05	0.01	3.1	6.1	1.6
Entry Start		 Total Indication Error Effect of IMU Errors during SPS 1st & 2nd 	3.17	9.70	13.20	82.5	53.5	18.0
	72.0	Burns 3) Effect of IMU Errors	1.24	1.43	3.93	24.3	19.8	7.5
		during SPS 2nd Burn	0.20	0.34	0.04	3.9	5.6	0.6
Entry End (at altitude		1) Total Indication Error 2) Effect of IMU Errors during SPS 1st & 2nd	4.76	12.06	14.43	116.0	38.7	28.6
of 50, 000f	it)	Burns & Entry 3) Effect of IMU Error during SPS 2nd Burn	2.25	3.60	4.92	56.1	50.3	11.9
		4) Effect of IMU Errors	1.07	1.64	0.62	36.8	49.0	9.7
		during Entry only	1.70	1.66	0.31	45.3	48.9	7.80

	Error	т	A R	RMS Frror	Final P in L (i	osition E ocal Axe n feet)	rror s	in Local Axes (in ft/sec)		
					Alt.	Track	Range	Alt.	Track	Range
		(E)X _{Io}		0 ft						
ix rors	Position	(F)Y _{IO}		0 ft						
Matr.		(F)Z _{IO}		0 ft	0	0	0	0	0	0
erm		(F)V _{XI}	0	0 ft/sec	0		Ŭ	Ŭ	Ū	
.Co	Velocity	(F)V _{YI}	io	0 ft/sec						
Dia		(F)V _{ZI}	o	0 ft/sec						
5	Tables	A(SM)	xI	3.6 mr		-18,580			-71.61	
uble mbe	S. M.	A (SM)	YI	0.04 mr	153		- 283	0.75		-0.73
Sta Mei	Frrors	A(SM)	ZI	0.07 mr		403			0.89	
	Accul IA	X to Y		0.1 mr						
	Nonorthog-	X to Z		0.1 mr	557		- 157	2.34		-0.61
	onality	Y to Z		0.1 mr						
			Direct effect		-1,316		369	-4.65		1.18
LEROMETER	Bias	ACBX	Fff on Init Mlm Combined Fff	0.2 cm/sec ²						
		Bias Error ACBY Eff on Init M	Direct effect	. 2		- 1,194			- 3,69	
	Error		Fff on Init Mlm	0.2 cm/sec		1.173			2.60	
			Direct effect		- 359	- 21	-1,142	-1.24	1.05	-3.52
ELE		ACBZ	Fif on Init Mlm	0,2 cm/sec ²	- 779		1,441	-3.83		3.73
ACC			Combined Fff		-1,138		299	-5.07		0.21
	Scale	SFEX		87 PPM	- 573	ļ	159	-1.62		0.38
	Factor	SFEY		87 PPM		0			0	
	Error	SFEZ		87 PPM	- 134		- 430	-C.56	ļ	-1.65
	Accel.Sq.	NCXX		10 µg/g"	- 95	i	26	-0.24	<u>+</u>	0.05
	Sensitive Indication	NCYY		10 μg/g ⁴		()		0	<u>+</u>
	Error	NCZZ		10 μg/g ²	- 21		- 68	-0.09		-0.27
	Bins	BDX	Direct effect	3.6 meru		- 333			- 1.97	1.00
	Drift	BDY BD7	Direct effect	3.6 meru 3.6 meru	281	213	- 302	1.86	0.74	-1.29
	Acceler-	ADIA	x	15 meru/g		- 1 594			-7.71	
	ation	ADSR	AV	10.5 meru /g	- 692	1,001	642	-4.95		3, 19
RO	Sensitive Drift	ADIA	7	15 meru /g		608			2.47	
6	Acceler-	A ² D.		1 meru/g^2		- 162	; ;		-0.71	1
	ation Squared	$A^2 D_{\mu}$		1 meru/g^2	Q4	+	- 88	0. 55		-0.42
	Sensitive Drift	$A^2 A_{\prime}$		1 meru/g ²			1 00	1	0.23	
 	Root Sum Sav	(1 uare Er	ror (in ft and ft/	sec)	2 069	18.66	1,028	9.20	72.12	4.16
	Root Sum Su	lare Er	ror (in n. mi. an	ld ft/sec)	0,34	3.07	0.17	9.2	72.1	4.2
L .					¥		<u> </u>		1	

Table 6-2 Total Indication Errors at SIVB Cutoff

-CONFIDE

	Error	т	A R	RMS Error	Final I in I (Position 1 Local Axe in feet)	Error	Final in	Velocity Local Ax (in ft/sec	Error es)
	·····				Alt.	Track	Range	Alt.	Track	Range
Ś		(E)X _{Jo}	,	0 ft						
ror	Position	(F)Y _{IO}	1	0 ft						
Mat.		(F)Z _{IO})	0 ft						
ern.		() [;])V _X	Io	0 ft/sec		0	0	0	0	0
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Velocity	(F)V _Y	Io	0 ft/sec						
Dia		(F)VZ	Io	0 ft/sec						
Ŀ	*	A _(SM)	XI	3.6 mr		-38 364			-78 85	+
ble	S. M.	A _(SM)	VI	0.04 mr	240	00,001	559	0.92	-10.05	0.00
Sta Mer	Alignment Frrors	A _(SM)	71	0.07 mr	240	690	- 338	0.03	1	-0.92
		V to V				622			0.75	
	Accel. IA	A to Y		0.1 mr		<u> </u>				į
	Nonorthog-	X to Z		0.1 mr	1,160		- 671	3.12		-1.47
		Y to Z	, 	0.1 mr	[ļ
			Direct effect	2	-2,598		1,491	~6.97	ļ	3.24
Bid onal Bid Bid Bid Err ON Err ON Err Scal		ACBX	Combined Eff	0.2 cm/sec				 		ļ
	Disa		Direct effect			- 2 307			- 4 72	
	Error	ACBY	Fff on Init Mlm	0.2 cm/sec^2		1,812			2 20	+
	Error		Combined Fff			- 495			- 2.52	
		1 GD G	Direct effect	a a 1 2	-1,412		-1,893	-3.61		-3.79
		ACBZ	Combined Eff	0.2 cm/sec	-1,224		2,844	-4.22		4.67
A(Sealo	SEEV		87 DDM	-2,636		951	-7.83		0.88
	Factor	SFEY		87 PPM 87 PPM	- 962	0	539	-2.07		0,82
	Error	SFEZ		87 PPM			769	1 44		
	A	NCXX		$10 \mu g/{\mu^2}$	- 152	<u> </u>	- <u>162</u> 84	-0.31	1	-1.54
	Sensitive	NCYY		$10 \mu g/g^2$		0				+
	Error	NCZZ		$10 \mu g/g^2$	- 89		- 120	-0.22	ļ	-0.22
		BDX	Direct effect	3.6 meru		- 938		0.55	-9.73	-0.22
	Bias	BDY	Direct effect	3.6 meru	685		- 894	2,55	-2.13	-2.26
	Drift	BDZ	Direct effect	3.6 meru		411			0.77	
	Acceler-	A DIA X	<u> </u>	15 meru/g		- 3,816			-9.27	
	ation	ADSRA	AY	10.5 meru /g	-1,842		2,174	-6 92		5 96
YRC	Sensitive Drift	ADIAZ	:	15 meru /g		1,294			2.71	0.00
	Acceler-	A ² D ₁₁		1 meru/g ²		- 363			-0.82	
	ation Squared	$A^2 D_{IC}$		1 meru/g ²	245		- 290	0 91	<u> </u>	-0.79
	Se ns itive Drift	A ² A.		$1 \text{ meru/} p^2$	+	199		0.01	0.25	0.10
 	Root Sum Sou	<u>1 (1/</u> are Err	or (in ft and ft/s	sec)	4,506	38 600	3 224	13 50	0.25	
	Boot Sum C		on (in n mi	t ft/sec)	0.75	00,000	0.50	10.00	(9.54	7.66
7 1751	Noor sum squ	are Err	or (in n. mi, and		0.15	6.35	0.53	13.5	19.5	7.7

Table 6-3 Total Indication Errors at SPS 1st Burn Cutoff

CONFIDENTIAL

.

			A		Final P	osition E	rror	Final V	Velocity H	Error
			t l	DMS	in L	ocal Axe	8	in L	.ocal Axe	s
	-		B	HMD	(i	n feet)		(i	n ft/sec)	
	Error	т		r.1101						
		1/2012		0.6	Alt.	Track	Range	Alt.	Track	Hange
ι ε		(E)X Io					ļ			
rix rroi	Position	(F)Y		0 ft						
Mat . E		(E)Z _{Io}		0 ft	0	0	0	0	0	o
ern		(F)V _{XI}	o	0 ft/sec						
о Ч С Ч	Velocity	(E)V _{YI}	ío	0 ft/sec						
Dia		(F)V _{ZI}		0 ft/sec						
		A(SM)	XI	3.6 mr		-2,041			-17.46	
ble	Initial S. M.	A _(SM)	YI	0.04 mr	17		- 15	-0.15		-0.13
Stal Men	Alignment Frrors	A(SM)	71	0.07 mr		6			0,05	
		V to V		0 1 mr						
	Accel. IA	X 10 1		0.1 m						0.07
	Nonorthog-	X to Z		0.1 mr	49		- 31	0.42		0.27
	cinality	Y to Z	r	0.1 mr	100		116	1 44		0.00
			Direct effect	2	-180		115	-1.44		0.90
		ACBX	Ett on Init Mim	0.2 cm/sec		 				
ER	D i		Direct effect			-210			- 1.64	
ET	Blas	ACBY	Fff on Init Mlm	$0.2 \mathrm{cm/sec}^2$		18			0.15	
NO.	Dirot		Combined Fff			- 191			- 1.49	
LEI			Direct effect	$0.2 \text{ cm}/\text{cm}^2$	-116		-176	-0.93	<u>+</u>	-1.37
CE		ACBZ	Combined Eff	0.2 cm/sec	- 89	├	- 37	-1.71	<u> </u>	-0.70
AC	C 1 -	CEEV		87 PPM	- 7	 	4	-0.06	<u> </u>	0.03
	Factor	SFEY		87 PPM		0			0	
	Error	SFEZ		87 PPM	- 27		- 41	-0.24		-0.35
		NCXX		$10 \mu g/g^2$	O	1	0	0		C
	Accel.Sq. Sensitive	NCYY		$10 \mu g/g^2$		0			0	
	Indication Error	NCZZ		$10 \mu g/g^2$	- 2	1	- 3	-0.02		-0.02
		BDX	Direct effect	3.6 meru		- 107			-0.98	1
	Bias	BDY	Direct effect	3.6 meru	82		- 73	0.77		-0.66
	Drift	BDZ	Direct effect	3.6 meru		17			0.14	
	Acceler-	ADIA	x	15 meru/g		- 290			-2.51	ļ
	ation	ADSR	AY	10.5 meru /g	-237		210	-2.16		1.84
YRC	Sensitive Drift	ADIA	 Z	15 meru /g		71			0.58	
0	Acceler-	A ² D,.		1 meru/g^2	[- 23			-0.20	1
	ation Squared	$A^2 D$		1 meru/g^2	31	1	- 28	0.28	1	-0,24
1	Sensitive		KA)(SKA)Y	$\frac{78}{1 \text{ meru}/g^2}$	<u> </u>	+ 7		1	0.05	1
		<u> </u>	A)(IA)Z	L					10.04	
<u> </u>	Root Sum Squ	are Eri	ror (in ft and ft/	ser)	376	2,074	276	3.25	17.74	2.32
L	Root Sum Squ	are Er	ror (in n. mi. an	d ft/sec)	0.06	0.34	0.05	3.3	17.7	2.3

Table 6-4 Effect of IMU Errors during SPS 1st Burn at SPS 1st Burn Cutoff

CONFIDENT

TT

			A		Final P	osition F	rror	Final '	Velocity 1	Error
1			1	DMS	in L	oc <mark>al Axe</mark>	s	in I	local Axe	s
	Frror		R	Error	(i	n feet)		(i	in ft/sec)	
		Т		1.1101						
		LEIV		0.6	Alt.	Track	Range	Alt.	Track	Range
rs.		I.J. Ic	·	0 10						
rix	Position	(F)YIo		0 ft						
Mat n. E		(F)Z _{Io}		0 ft	0	0	n	0	0	0
ern.		(F)V _X	Io	0 ft/sec	Ŭ		ũ	5	Ũ	Ŭ
t. C	Velocity	(E)V _Y	Io	0 ft/sec						
Ξđ		(F)VZ	lo	0 ft/sec						
ь	Initial	A _(SM)	XI	3.6 mr		32,300			72.86	
uble mbe	S. M.	A(SM)	YI	0.04 mr	- 2,715	· · · · · · · · · · · · · · · · · · ·	3,804	- 4.62		2,01
Sta	Errors	A(SM)	ZI	0.07 mr		- 573			- 0.67	
		X to Y		0.1 mr						
	Accel. LA	VA- 7		0.1						
	onality	X 10 Z		0.1 mr	- 58		-10,813	9.70		1,26
		Y to Z	, 	0.1 mr						
			Direct effect		- 57		24,562	-22.12		- 2.70
		ACBX	Eff on Init Mlm	0.2 cm/sec~						
ER			Direct effect			1 045			4 26	
L H	Bias	ACBY	Fff on Init Mim	0.2 cm/sec^2		- 1,669	· · · · · · · · · · · ·		4.30	
MO	Error		Combined Fff	,		276		···	2.41	
ER			Direct effect		-25,226		71, 298	-75.49		14.70
E		ACBZ	Eff on Init Mim	$0.2 \mathrm{cm/sec}^2$	13,843		<u>-19,390</u>	23,57		-10.27
AC			Combined Ffi		-11,383		51, 893	-51.92		4.43
	Scale	SFEX	······	87 PPM	- 1,455		10,356	-16.18		0.07
	Factor	SFEY		87 PPM		0		· · · · · · · · · · · · · · · · · · ·	0	
	Error	SFEZ		87 PPM	-10,167		28,67	-36.37		5.93
1	Accel. Sq.	NCXX		10 µg/g ²	288		1,683	- 1.69		0.05
	Sensitive Indication	NCYY		$10 \mu \mathrm{g/g}^2$		0			0	
	Error	NCZZ		$10 \mu g/g^2$	- 1,508		4,290	- 4.54		0.88
		BDX	Direct effect	3.6 meru		714			2.57	
	Bias	BDY	Direct effect	3.6 meru	- 5,996		4,750	- 7.23		4.77
	Drift	BDZ	Direct effect	3.6 meru		- 354			- 0.71	
	Acceler-	A DIA 3	ĸ	15 meru/g		3,080			8.64	
0	ation	A DSR.	AY	10.5 meru /g	15,515		-10,670	17.39		-12.47
YR	Drift	A DIA 2	z	15 meru /g		- 1,085			- 2.51	
	Acceler-	A ² D _{(L}	A)(IA)X	1 meru/g ²		300			0.76	
	Squared	A ² D _{(S}	RA)(SRA)Y	1 meru/g ²	- 2,010		1,361	- 2.23		1.62
	Drift	A ² A _{(I}	A)(IA)Z	1 meru/g ²		- 102			- 0.23	
	Root Sum Sau	are Err	or (in ft and ft /	<u>. </u>	23.320	32.485	69.050	70.32	73.51	16.06
	Root Sum Square Error (in ft and ft/		d ft/sec)	3,84	5.35	11.36	70.3	73.5	16.1	
78 4354	Mer ver		all		¥	l	1	L	L	L

Table 6-5Total Indication Errors at Coast End
(SPS 2nd Burn Ignition)

CONFIDENTIAL

			A		Final P	osition E	Error	Final V	/elocity H	Error
			•	DMC	in L	local Axe	s	in L	local Axe	8
	n		B	RM5	(i	in feet)		(i	n ft/sec)	
	Error	т		PILIOI		<u>`</u>			1	
		100	_	0.6	Alt.	Track	Range	Alt.	Track	Range
2		(E)XIO		5 N						
ri 101	Position	(E)Y		0 ft						
Mat F.E.		(F)Z _{lo}		0 ft	0	0	0	0	0	0
ern		(F)V _X	(o	0 ft/sec		_	_	_		
ပ်- အ	Velocity	(E)V _V	[0	0 ft/sec						
Dia		(F)V ₇	0	0 ft/sec						
	·······	A	vi	3.6 mr		478			16.83	
ber	Initial S. M.	Acoust		0.04 mr	- 432		377	- 0.58		0.33
Stab Aem	Alignment		Y1	0.07 mr		- 2	•••		- 0.05	
~	LIIOIB	(SM)	ZI			- 2			- 0,03	
	Accel. IA	X to Y		0.1 mr			ļ I			
	Nonorthog-	X to Z		0.1 mr	- 763		132	- 0.58		0.63
	onality	Y to Z		0.1 mr						
			Direct effect		2,515	L	- 278	1.78		-2.09
		ACBX	Eff on Init Mlm	$0.2 \mathrm{cm/sec}^2$	l					
æ			Combined Eff							
ETE	Bias	ACRY	Direct effect	$0.2 \mathrm{cm/sec}^2$		64			1.58	
IMO	Error	ACDI	Combined Fff	0.2 cm/sec		58			1.44	
ER(Direct effect		-7,204		18,366	-19.86		4.43
E		ACBZ	Eff on Init Mlm	0.2 cm/sec ²	2,204		- 1,922	2,98		-1.68
ACC			Combined Fff		-5,000		16,444	-16.88		2.75
	Scale	SFEX		87 PPM	97		- 11	0,07		-0,08
	Factor	SFEY		87 PPM		0			0	ļ
	Error	SFEZ		87 PPM	-1,841		4,679	- 5.06		1.13
	Accèl.Sq.	NCXX		$10 \mu g/g^2$	1		0	0		0
	Sensitive Indication	NCYY		$10 \mu g/g^2$		0			0	
	Error	NCZZ		$10 \mu g/g^2$	- 129		328	- 0.36		0.08
		BDX	Direct effect	3.6 meru		20			0.94	
	Bias	BDY	Direct effect	3.6 meru	-2,191		1,932	- 2.98		1.67
	Drift	BDZ	Direct effect	3.6 meru		- 4			- 0.14	
	Acceler-	ADIA	x	15 meru/g		66			2.42	ļ
	ation	ADSR	AY	10.5 meru /g	6,142		- 5,393	8.34		-4.67
YR	Drift	ADIA	Z	15 meru /g		- 19			- 0.56	
0	Acceler-	A ² D,,		1 meru/g ²		5		•	0.19	
	ation Squared	$A^2 D_{i}$		1 meru/g^2	- 789	1	690	- 1.07		0.60
	Sensitive Drift		KANSKAJY	$1 \text{ meru}/\sigma^2$		- 2	1		- 0.05	+
		<u>(I</u>	A)(IA)Z	, g	 	+	<u>+</u>	<u> </u>		
	Root Sum Squ	are Er	ror (in ft and ft/	ser)	8,893	492	18,180	19.96	17.10	6.24
L	Root Sum Square Error (in n. mi. and i			d ft/sec)	1.46	0.08	2.99	20.0	17.1	6.2

Table 6-6Effect of IMU Errors during SPS 1st Burn at Coast End
(SPS 2nd Burn Ignition)

From RNS From RNS From In Local Axes (in feet) in Local Axes (in feet) Non- the construction of the formation of the				A .		Final H	Position 1	Error	Final	Velocity	Error
From Tack From Alt. Track Range Alt. Track Range Position (15)X10 0 ft 0 <td< td=""><td></td><td></td><td></td><td></td><td>RMS</td><td>in I</td><td>Local Axe in feet)</td><td>s</td><td>in l</td><td>Local Axi</td><td>e 8</td></td<>					RMS	in I	Local Axe in feet)	s	in l	Local Axi	e 8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Error	т	R	Error	Ľ,				in it/sec,	,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ					Alt.	Track	Range	Alt.	Track	Range
Position (F)Y ₁₀ 0 ft (F)Y ₁₀ 0 ft (F)Y ₁₀ 0 ft/sec (F)Y ₁₀	yn -		(E)X _{IO}		0 ft					[
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ror	Position	(F)Y		0 ft						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mat n. Er		(F)Z _{IO}		0 ft	0			0	0	
Velocity if d velocity if velocity if vel	ond. Terr		(F)V _X	Io	0 ft/sec			Ŭ			U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	h. C. ag. J	Velocity	(E)V _Y	Ιο	0 ft/sec						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36		(F)V _Z	0	0 ft/sec						
S. M. From A(SM)YI 0.04 mr - 2,720 4,309-4.96 2.12 A(SM)ZI 0.07 mr - 626 - 0.43 Accel. IA Nonorthog- onality X to Y 0.1 mr - 626 - 0.43 Nonorthog- onality X to Z 0.1 mr - 323 -10,663 9.92 1.40 Nonorthog- onality X to Z 0.1 mr - 323 -10,663 9.92 1.40 Bias Accel. IA Onlity X to Z 0.1 mr - 323 -10,663 9.92 1.40 Bias Combined Fff 0.2 cm/sec ² - 74 24,235 -21.87 - 3.52 Bias Combined Fff 0.2 cm/sec ² - 1,324 - 1.24 - 1.24 Combined Fff 0.2 cm/sec ² - 4,424 75,517 - 7.958 15.03 ACBZ Fff on Init Mim 0.2 cm/sec ² - 1,284 - 10.558 53,546 - 0.34 - 0.15 Scale SFEY 87 PPM - 0 - 0 - 0 - 0.558 - 0.34 - 0.15 Scale SFEY 87 PPM - 9,455 30,364 - 32,23	<u>L</u>	Initial	A(SM)	xi	3.6 mr		-39,336			73.40	
$ \frac{55 \times 10^{-1} \text{Frors}}{50 \text{ A}_{\text{SM}/\text{ZI}}} = 0.07 \text{ mr}} = 0.626 - 0.43 - 0.43 $ $ 1000000000000000000000000000000000000$	able	S. M.	A(SM)	YI	0.04 mr	- 2,720		4,309	- 4.96		2.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M Ct	Frrors	A(SM)	ZI	0.07 mr		- 626			- 0.43	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Accel, IA	X to Y		0,1 mr						• • •
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Nonorthog-	X to Z		0.1 mr	- 323		-10,663	9.92		1.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		onality	Y to Z		0.1 mr						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Direct effect		574		24,235	-21.87		- 3.52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ACBX	Eff on Init Mlm	0.2 cm/sec^2						
Bias Direct effect $2,322$ $3,47$ Fror ACBY $\widehat{\text{Pff on Init Mlm}}$ 0.2 cm/sec^2 $-1,824$ -1.24 Combined Fff 0.2 cm/sec^2 $-24,424$ $75,517$ -79.58 $15,03$ ACBZ Fff on Init Mlm 0.2 cm/sec^2 $-24,424$ $75,517$ -79.58 $15,03$ ACBZ Fff on Init Mlm 0.2 cm/sec^2 $-24,424$ $75,517$ -79.58 $15,03$ Scale SFEX 87 PPM $-1,268$ $10,506$ -10.34 -0.15 Factor SFEZ 87 PPM $-9,855$ $30,364$ -32.23 $5,75$ Accei.sg. NCXX $10 \mu g/g^2$ -260 $1,723$ 1.74 $0,03$ Sensitive Indication NCYY $10 \mu g/g^2$ 200 0 0 Print BDX Direct effect 3.6 meru $i,022$ 3.88 $6,31$ Bor. Direct effect 3.6 meru $i,022$ $-0.$	24		L	Combined Fff							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ETE	Bias	ACRY	Direct effect	2		2,322			3.47	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IWC	Error	ACDI	Combined Eff	0.2 cm/sec		400			1. 24	
$ \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	ER(Direct effect		-24,424	498	75.517	-79.58	2.23	15 03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EL		ACBZ	Fff on Init Mlm	$0.2 \mathrm{cm/sec}^2$	13,866		-21,971	25,28		-10.79
Scale SFEX 87 PPM - 1, 268 10, 506 - 10, 34 - 0, 15 Factor SFEY 87 PPM 0 0 0 Error SFEZ 87 PPM - 9, 855 30, 364 - 32, 23 5, 75 Accei.Sq. NCX $10 \mu g/g^2$ - 260 1, 723 - 1, 74 0, 33 Sensitive Indication NCX $10 \mu g/g^2$ - 0 0 0 0 NCZZ $10 \mu g/g^2$ - 1, 460 4, 541 - 4.80 0, 87 Prias BDX Direct effect 3.6 meru i, 022 3.88 Drift BDZ Direct effect 3.6 meru - 304 1.87 Acceier- ation ADSRAY 16.5 meru /g 3, 926 8.98 -13.86 Prift ADIAZ 15 meru /g 373 0.78 -13.86 Sensitive Drift A ² D _{(LA)(IA)X} 1 meru/g ² - 1, 222 - 0.27 -13.86 Squared Sensitive Drift A ² D _{(LA)(IA)X} 1 meru/g ²	ACC			Combined Fff		-10,558		53,546	-54,30		4.24
Factor SFEY 87 PPM 0 0 0 Broor SFEZ 87 PPM - 9, 855 30, 364 -32, 23 5, 75 Accel, Sq. NCXX $10 \mu g/g^2$ - 260 1, 723 - 1.74 0, 03 Sensitive Indication NCXZ $10 \mu g/g^2$ - 0 0 0 0 Error NCZZ $10 \mu g/g^2$ - 1.460 4, 541 - 4.80 0.87 BDX Direct effect 3.6 meru 1,022 3.88 6.31 BDY Direct effect 3.6 meru - 304 1.87 1.87 Acceler- ation ADIAZ 15 meru/g 3,926 8,98 -13.86 Sensitive APAIAZ 15 meru/g -1,222 - 0.27 -13.86 Sensitive A ² D(IA)(IA)X 1 meru/g ² - 1,222 - 0.27 -13.86 Sensitive A ² D(SRA)(SRA)Y 1 meru/g ² - 0.03 -13.86 -13.705 18.29 - 13.86 Drift A ² D(SRA)(SRA)Y <td></td> <td>Scale</td> <td>SFEX</td> <td></td> <td>87 PPM</td> <td>- 1,268</td> <td></td> <td>10,506</td> <td>-10.34</td> <td></td> <td>- (), 15</td>		Scale	SFEX		87 PPM	- 1,268		10,506	-10.34		- (), 15
Birror SFEZ 87 PPM - 9,855 30,364 -32,23 5.75 Accei.Sq. Sensitive Indication Error NCXX $10 \mu g/g^2$ - 260 1,723 - 1.74 0.03 NCYY $10 \mu g/g^2$ 0 0 0 0 NCZZ $10 \mu g/g^2$ - 1.460 4,541 - 4.80 0.87 Pias BDX Direct effect 3.6 meru i,022 3.88 - Pias BDX Direct effect 3.6 meru - 304 1.87 - Acceier- ation ADIAZ 15 meru/g 3.926 3.98 - - Sensitive Drift ADIAZ 15 meru/g - 1,222 - 0.27 - - Acceier- ation Squared Sensitive Drift $A^2 D_{(IA)(IA)X}$ 1 meru/g^2 373 0.78 - Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30		Factor	SFEY		87 PPM		0			0	
Accei. Sq. Sensitive Indication Error NCXX $10 \mu g/g^2$ 260 $1,723$ 1.74 0.03 NCYY $10 \mu g/g^2$ 0 0 0 0 NCZZ $10 \mu g/g^2$ 0 $4,541$ -4.80 0.87 NCZZ $10 \mu g/g^2$ -1.460 $4,541$ -4.80 0.87 Prift BDX Direct effect 3.6 meru $i,022$ 3.88 Drift BDZ Direct effect 3.6 meru -304 1.87 Acceler- ation Squared Sensitive Drift ADSRAY 10.5 meru /g $3,926$ 8.98 -13.86 Acceler- ation Squared Sensitive Drift $ADSRAY$ 10.5 meru /g $-1,222$ -0.27 Acceler- ation Squared Sensitive Drift $A^2 D_{(IA)(IA)X}$ $1 meru/g^2$ 373 0.78 A ² D_{(IA)(IA)Z} $1 meru/g^2$ -115 -0.03 Root Sum Square Error (in ft and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7		Error	SFEZ		87 PPM	- 9,855		30,364	-32,23		5.75
Sensitive Indication Error NCYY $10 \mu g/g^2$ 0 0 NCZZ $10 \mu g/g^2$ - 1.460 4,541 - 4.80 0.87 NCZZ $10 \mu g/g^2$ - 1.460 4,541 - 4.80 0.87 Fias BDX Direct effect 3.6 meru i,022 3.88 Drift BDY Direct effect 3.6 meru - 6,019 5,964 - 5.58 6.31 Acceler- ation ADIAX 15 meru/g 3,926 8.98 - 13.86 Sensitive Drift ADIAZ 15 meru/g - 1,222 - 0.27 - 13.86 Acceler- ation Squared Sensitive Drift $A^2 D_{(IA)(IA)X}$ 1 meru/g^2 - 373 0.78 - 1.80 Acceler- ation Squared Drift $A^2 D_{(IA)(IA)X}$ 1 meru/g^2 - 0.03 - 0.03 - 0.03 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7		Accel.Sq.	NCXX		$10 \mu g/g^2$	- 260		1,723	- 1.74		0.03
Error NCZZ $10 \mu g/g^2$ -1.460 $4,541$ -4.80 0.87 Hias BDX Direct effect 3.6 meru $i,022$ 3.88 3.88 Drift BDX Direct effect 3.6 meru $-6,019$ $5,964$ -5.58 6.31 Acceler- ation ADIAX 15 meru/g $3,926$ 8.98 $-13,705$ 18.29 -13.86 Prift ADSRAY 10.5 meru/g $15,864$ $-13,705$ 18.29 -13.86 Acceler- ation ADIAZ 15 meru/g $-1,222$ -0.27 Acceler- ation $A^2D_{(IA)(IA)X}$ 1 meru/g ² 373 0.78 Squared Sensitive Drift $A^2D_{(SRA)(SRA)Y}$ 1 meru/g ² $2,055$ $1,755$ 2.35 1.80 Root Sum Square Error $A^2A_{(IA)(IA)Z}$ 1 meru/g ² $29,982$ $39,576$ $71,726$ 73.17 74.11 17.70 Root Sum Square Error $(in n.mi. and ft/sec)$ 3.78 6.51 11.30 $73.$		Sensitive Indicati on	NCYY		$10 \mu g/g^2$		0			0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Error	NCZZ		$10 \mu g/g^2$	- 1.460		4,541	- 4.80		0.87
BDY Direct effect 3.6 meru $-6,019$ $5,964$ -5.58 6.31 Drift BDZ Direct effect 3.6 meru -304 1.87 Acceler- ation ADIAX 15 meru/g $3,926$ 8.98 $-13,705$ 18.29 -13.86 Drift ADSRAY 10.5 meru/g $15,864$ $-13,705$ 18.29 -13.86 Sensitive Drift ADIAZ 15 meru/g $-1,222$ -0.27 Acceler- ation Squared Sensitive Drift $A^2D_{(IA)(IA)X}$ 1 meru/g^2 373 0.78 Root Sum Square Error (in ft and ft/sec) $22,982$ $39,576$ $71,726$ 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.70		Rine	BDX	Direct effect	3.6 meru		i,022			3.88	
BDZ Direct effect 3.6 meru - 304 1.87 Acceler- ation ADIAX 15 meru/g 3,926 8.98 Sensitive Drift ADSRAY 10.5 meru/g 15,864 -13,705 18.29 -13.86 Acceler- ation ADIAZ 15 meru/g -1,222 -0.27 - Acceler- ation $A^2D_{(IA)(IA)X}$ 1 meru/g ² 373 0.78 - Sensitive Drift $A^2D_{(SRA)(SRA)Y}$ 1 meru/g ² - 2,055 1,755 - 2.35 1.80 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7		Drift	BDY	Direct effect	3.6 meru	- 6,019		5,964	- 5.58	ļ	6.31
Acceler- ation ADIAX 15 meru/g 3,926 8.98 Sensitive Drift ADSRAY 16.5 meru/g 15,864 -13,705 18.29 -13.86 Acceler- ation ADIAZ 15 meru/g -1,222 -0.27 -0.27 Acceler- ation $A^2 D_{(IA)(IA)X}$ 1 meru/g ² 373 0.78 - Squared Sensitive Drift $A^2 D_{(SRA)(SRA)Y}$ 1 meru/g ² - 2,055 1,755 - 2.35 1.86 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7			BDZ	Direct effect	3.6 meru		- 304			1.87	
O_{P} Alton ADSRAY 10.5 meru /g 15,864 -13,705 18.29 -13.86 Sensitive Drift ADIAZ 15 meru /g - 1,222 - 0.27 Acceler- ation Squared Sensitive Drift $A^2D_{(IA)(IA)X}$ 1 meru/g ² 373 0.78 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.11 17.70		Acceler-	ADIAX		15 meru/g		3,926		 	8.98	ļ
B_{0} Drift ADIAZ 15 meru /g - 1,222 - 0.27 Acceler- ation Squared Sensitive Drift $A^{2}D_{(IA)(IA)X}$ 1 meru/g^{2} 373 0.78 $A^{2}D_{(SRA)(SRA)Y}$ 1 meru/g^{2} - 2,055 1,755 - 2.35 1.86 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7	õ	Sensitive	ADSRA	AΥ	10.5 meru /g	15,864		-13,705	18.29	ļ	-13.86
Acceler- ation Squared Sensitive Drift $A^2 D_{(IA)(IA)X}$ 1 meru/g ² 373 0.78 $A^2 D_{(SRA)(SRA)Y}$ 1 meru/g ² - 2,055 1,755 - 2.35 1.86 $A^2 D_{(IA)(IA)Z}$ 1 meru/g ² - 115 - 0.03 Root Sum Square Error (in ft and ft/sec) Root Sum Square Error (in n.mi. and ft/sec) 3.78 3.78	GYF	Drift	ADIAZ	;	15 meru /g		- 1,222			- 0.27	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Acceler- ation	A ² D(1/	A)(IA)X	1 meru/g ²		373			0.78	ļ
Drift A ² A _{(IA)(IA)Z} 1 meru/g ² - 115 - 0.03 Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7		Squared Sensitive	A ² D(S	RA)(SRA)Y	1 meru/g ²	- 2,055		1,755	- 2.35		1.80
Root Sum Square Error (in ft and ft/sec) 22,982 39,576 71,726 73.17 74.11 17.70 Root Sum Square Error (in n.mi. and ft/sec) 3,78 6.51 11.30 73.2 74.1 17.70		Drift	A ² A (L4	A)(IA)Z	1 meru/g ²		- 115			- 0.03	
Root Sum Square Error (in n. mi. and ft/sec) 3.78 6.51 11.30 73.2 74.1 17.7		Root Sum Squ	are Err	or (in ft and ft/s	ser)	22, 982	39,576	71,726	73.17	74.11	17.70
		Root Sum Square Error (in n.mi. and f		l ft/sec)	3,78	6.51	11.30	73.2	74.1	17.7	

Table 6-7 Total Indication Errors at SPS 2nd Burn Cutoff

CONFIDENTIAL

	Error	т	R	RMS Frror	Final P in L (i	osition E ocal Axe n feet)	rror s	Final V in L (i	/elocity E .ocal Axe n ft/sec)	Crror 5
					Alt.	Track	Range	Alt.	Track	Range
		(E)X _{lo}		0 ft						
ix	Position	(F)Y		0 ft						
Er		(F)Z		0 ft	0	0	0	0	0	0
erm		(F)V _{XI}	0	0 ft/sec	Ĵ	Ĵ	ů.	Ŭ	-	
це. То	Velocity	(E)V _{YI}	0	0 ft/sec						
<u>D</u>		(F)VZI	0	0 ft/sec						
r	Initial	A(SM)	(1	3.6 mr		-2,318			21.56	
able mbe	S. M.	A(SM)	71	u. 04 mr	- 440		461	- 0.55		0.40
Me	Frrors	A(SM)	ZI	0.07 mr		1			0.12	
	Accel, IA	X to Y		0.1 mr						
	Nonorthog-	X to Z		0.1 mr	- 796		279	- 0.59		0.60
	onality	Y to Z		0.1 mr						
			Direct effect		2,670		- 794	2.69		-2,59
		ACBX	Fff on Init Mlm	0.2 cm/sec ²						
R			Direct effect			185			0.93	
ET.	Bias	ACBY	Fff on Init Mlm	0.2 cm/sec^2		3			0.35	
NON	LIIO		Combined Fff			188			1.28	
LE			Direct effect	0.2×10^{-2}	-7,022		19,619	-20.76	<u> </u>	4.95
CCE		ACBZ	Combined Fff	0.2 cm/sec	-4.777	ł	17,262	-17.94	+	2.92
Ā	Scale	SFEX		87 PPM	110		- 36	0, 26		-0.20
	Factor	SFEY		87 PPM		0			0	
	Error	SFEZ		87 PPM	-1,802		4,988	- 5.45		1.03
	Accel So	NCXX		$10 \mu g/g^2$	2		- 1	0.02	L	-0.01
	Sensitive	NCYY		$10 \mu g/g^2$		0			0	
	Error	NCZZ		$10 \mu g/g^2$	- 126		350	- 0.37		0.08
h		BDX	Direct effect	3.6 meru		175			2.35	
	Blas	BDY	Direct effect	3.6 meru	-2,136		2,407	- 0.75		3.09
		BDZ	Direct effect	3.6 meru	 	97			2.39	
	Acceler-	A DIA	x	15 meru/g		552		l 		
0	ation Sensitive	ADSR	AY	10.5 meru /g	6,249		- 6,592	7.81	+	-5.71
YR	Drift	ADIA	Z	15 meru /g		24		ļ	1.55	
	Acceler-	A ² D(I	A)(IA)X	1 meru/g ²		26	L		0,25	·
	Squared	A ² D(S	RA)(SRA)Y	1 meru/g^2	- 803		845	- 1.00		0.73
	Drift	A ² A (1	A)(IA)Z	1 meru/g^2		2			0,14	
	Root Sum Squ	are Er	ror (in ft and ft/	sec)	8,870	2,359	19,472	20,66	22.14	7.73
	Root Sum Squ	lare Er	ror (in n. mi. ar	nd ft/sec)	1.46	0.39	3.20	20.7	22.1	7.7
7 6256	ARV 465		·		A					

Table 6-8Effect of IMU Errors during SPS 1st and 2nd Burn
at SPS 2nd Burn Cutoff

6-10

-CONTRIDENT AT

	Error	т	A R	RMS Error	Final F in L (Position Local Axe in feet)	Error es	Final in	Velocity Local Ax (in ft/sec	Error es
	· · · · · · · · · · · · · · · · · · ·				Alt.	Track	Range	Alt.	Track	Range
s)	0 ft						
rroi	Position	(E)Y _{IC})	0 ft						
Mat Mat		(F)Z)	0 ft	0	0	0		0	
ern		(F)V _X	Io	0 ft/sec	0				0	0
G. T.	Velocity	(E)V _Y	Io	0 ft/sec						
Dia		(F)V _Z	Io	0 ft/sec						
<u> </u>		A _(SM)	XI	3.6 mr		227			4 99	
ole	Initial S. M.	A	VI	0.04 mr	5		2	0.10	4,00	0.05
Stal	Alignment Frrors	A	11 71	0.07 mr	, ,			0.10	+	0.05
<u> </u>		(SM)	21			8			0.17	÷
	Accel, IA	X to Y		0.1 mr				_	ļ	+
	Nonorthog-	X to Z		0.1 mr	5		- 3	0.11	<u> </u>	-0.07
	onality	Y to Z	2	0.1 mr		·				
			Direct effect		25		- 17	0,53		-0.35
		ACBX	Eff on Init Mlm	0.2 cm/sec^2				ļ	4	
EB			Combined Fif				<u> </u>	 	+	<u> </u>
ET	Bias	ACBY	Fff on Init Mlm	0.2 cm/sec^2		- 30	<u> </u>	 	-0.63	
MO	Error		Combined Fff	,		- 7		†	-0.14	+
ER			Direct effect		17		25	0.35		0.53
CEI		ACBZ	Fff on Init Mlm	0.2 cm/sec^2	- 23		- 12	-0.51		-0.26
AC			Combined Fff		- 6		13	-0.16		0.27
	Scale	SFEX		87 PPM	8		- 5	0.18		-0.12
	Factor	SFEY		87 PPM		0			0	
		SF E.Z.			- 3		- 5	-0.07	<u> </u>	-0.10
	Accel. Sq.	NCXX		10 µg/g	1		0	0.02	+	-0.01
	Indication	NCYY	·	$10 \mu g/g^2$		0			0	
	Error	NCZZ		10 µg/g ²	0		0	0		0
	Bise	BDX	Direct effect	3.6 meru		65			1.42	
	Drift	BDY	Direct effect	3.6 meru	118		60	2.58	·	1.33
		BDZ	Direct effect	3.6 meru		115	<u> </u>	┨	2.52	
	Acceler-	A DIA 3	K	15 meru/g		35	 		0.77	
Q	Sensitive	A DSR.	AY	10.5 meru /g	- 70		- 35	-1.51		-0.77
GYF	Drift	A DIA 2	Z	15 meru /g		97		ļ	2.10	
_	Acceler-	A ² D(L	A)(IA)X	1 meru/g ²		3			0.06	
	Squared	A ² D(S	RA)(SRA)Y	1 meru/g ²	9		4	0.19		0.10
	Drift	A ² A ₍₁)	A)(IA)Z	1 meru/g^2		9			0.19	1
	Root Sum Squ	are Err	or (in ft and ft/	sec)	140	282	73	3.06	6.11	1.61
L	Root Sum Squ	are Err	or (in n. mi. and	t (t/sec)	n. 03	0.05	0.01	3.1	6.1	1.6

Effect of IMU Errors during SPS 2nd Burn at SPS 2nd Burn Cutoff

Table 6-9Effect of IMU Errors during SPS 2nd Burn at SPS
2nd Burn Cutoff

6-11

SONFIDENTIAL

			٨		Final P	osition E	rror	Final V	Velocity I	Error
			†	RMS	in L	ocal Axe	s i	in L	local Axe	s
	Frror		R	Error	{i	n feet)		(1	n ft/sec)	
	LIIOI	T			Alt,	Track	Range	Alt.	Track	Range
		(E)X _{Io}		0 ft						
NOTS	Position	(F)Y	1	9 ft						
Err		(F)Z,		0 ft						
d. M		(F)V _V		0 ft/sec	0	0	0	0	0	0
Ű.	Velocity	(E)V,		0 ft/sec						
Diag		(F)V		0 ft/sec						
		Accus		3.6 mr		58.534			52.86	
ber	Initial S. M.	A (SMI)		0.04 mr	- 2,400		5,968	- 6,26		2.17
Stab Mern	Alignment	(SM) A(SM)		0.07 mr		- 714			- 0.15	
		(SM)	21							
	Accel, IA	X to Y		0.1 mr						
	Nonorthog-	X to Z	, 	0.1 mr	- 1,351		- 9,853	9.84		1.80
	onality	Y to Z	, 	0.1 mr				0 1 00		4.62
			Direct effect	2	3,063		22, 286	-21.93		- 4.02
		ACBX	Combined Eff	0.2 cm/sec						
ER	Bieg		Direct effect			3,201			2,31	
AET.	Error	ACBY	Fff on Init Mlm	0.2 cm/sec ²		- 2,079			- 0.43	
SON			Combined Fff			1,122	00.007	01.07	1.88	14.40
LEI		A CD 7	Direct effect	$0.2 \text{ cm}/\text{cm}^2$	-18,174		88,387	-91.87	<u> </u>	-11.06
CE		ACBZ	Combined Fff	0.2 cm/sec	- 5 944		57 956	-59 73		3.34
AC	Sapla	SEEV		87 PPM	- 348		10 745	-11 12		- 0.37
	Factor	SFEY		87 PPM	010	0	10,110		0	
	Error	SFEZ		87 PPM	- 7,444		35,501	-37.25		5.63
	Accel So	NCXX	· · · · · · · · · · · · · · · · · · ·	$10 \mu g/g^2$	- 117		1,803	- 1.89		0.01
	Sensitive	NCYY		$10 \mu g/g^2$		0			0	
	Error	NCZZ	· · · · · · · · · · · · · · · · · · ·	$10 \mu g/g^2$	- 1,092		5,304	- 5,53		0.84
		BDX	Direct effect	3.6 meru		2,102			3.23	
	Bias	BDY	Direct effect	3.6 meru	- 4,917		9,940	- 7.84		5.61
	Dritt	BDZ	Direct effect	3.6 meru	l	262	ļ		1.87	ļ
	Acceler-	A DIA	X	15 meru/g	ļ	6,330			6.83	
0	ation	ADSR	AY	10.5 meru /g	15,079		-24, 114	25,69		- 14.57
YR	Drift	ADIA	z	15 meru /g		- 1,227			0.25	
0	Acceler-	A ² D ₍₁	A)(IA)X	1 meru/g ²		578			0.58	
	ation Squared	A ² D ₁	SRA)(SRA)Y	1 meru/g ²	- 1,955		3,104	- 3.31		1.89
	Sensitive Drift	A ² A,	۵)(IΔ)Z	1 meru/g ²	1	- 117	,		0.02	
	Root Sum Sa		ror (in ft and ft/	<u> </u>	19 231	58 944	80.193	82.52	53.48	18.03
	Root Sum Squ		non (in n mi n	d ft/sec)	3 17	9 70	13 20	82.5	53.5	18.0
L	Root Sum Squ	are Er	ror un n.mi. an	u it/sec)	3.17	T a. 10	13.20	02.0	1	1.0.0

Table 6-10 Total Indication Errors at Entry Start

			A		Final H	osition H	rror	Final	Velocity	Error
			Ī	RMS	in I	local Axe	s	in I	local Axe	s
	Error	r	R	Frror	, i	in reet)		(1	in it/sec}	
		/			Alt.	Track	Range	Alt.	Track	Range
10		(E)X _{Io}		0 ft						
ix ror:	Position	(F)Y		0 ft						
Matr Er		(F)Z		0 ft		1				
nd. P		(F)V _X	 Io	0 ft/sec	0	0	0	0	C	C
g. T	Velocity	(E)V _Y	To	0 ft/sec						
Dia		(F)V _Z	Ιυ	0 ft/sec						
ы	Initial	A _(SM)	XI	3.6 mr		8.514			19 27	
uble mbe	S. M.	A(SM)	YI	0.04 mr	- 400		748	- 0.75		0.40
Sta Mei	Frrors	A(SM)	ZI	0.07 mr		37			0, 11	
		X to Y		0.1 mr						
	Accel. LA Nonprthog-	X to Z		0.1 mr						
	onality	X to Z		0.1 mr	- 827		793	- 1.01		0.69
	· · · · · · · · · · · · · · · · · · ·	1.02	Direct offect	0.1 mi	2 971		- 2 779	2.04		2.15
		ACBX	Eff on Init Mlm	0.2 cm/sec^2	2,811		- 2,110	3.94		-3.15
~			Combined Eff	,		 				
TEF	Bias		Direct effect			448			0.80	
ME,	Error	ACBY	Fff on Init Mlm	0.2 cm/sec ⁴	L	107			0.33	
RO			Combined Fff	·	5 334	555	00.000		1.13	1 50
ELE		ACBZ	Fff on Init Mlm	0.2 cm/sec^2	2.037		- 3,816	-24.05		4.73
C C			Combined Fff		-3,297		19.712	-20.23		2.68
A	Scale	SFEX	1	87 PPM	154	<u>+</u>	- 160	0.28		-0.27
	Factor	SFEY		87 PPM		0	109	- 0.20	0	0.21
	Error	SFEZ		87 PPM	-1,448	1	5,947	- 6.40		1.07
	Accel. So.	NCXX		$10 \mu \mathrm{g/g}^2$	ō		- 0	0.01		-0.02
	Sensitive Indication	NCYY		$10 \ \mu g/g^2$		0			О	
	Error	NCZZ		$10 \ \mu g/g^2$	- 98		420	- 0.44		0.08
	-	BDX	Direct effect	3.6 meru		855			2.13	
	Bias	BDY	Direct effect	3.6 meru	-1,179		3,867	- 1.12		2.14
		BDZ	Direct effect	3.6 meru	 	793			2.20	
	Acceler-	ADIA	<u>.</u>	15 meru/g		1,243			2.83	
0	ation Sensitive	A DSR.	AY	10.5 meru /g	5,633	L	-10,670	10.56		-5.70
ΥR	Drift	ADIAZ	2	15 meru /g		477			1.44	
Ĭ	Acceler-	A ² D(L	A)(IA)X	1 meru/g ²		97			0.22	
	Squared	A ² D(S	RA)(SRA)Y	1 meru/g ²	- 725		1,359	- 1.36		0.73
	Drift	A ² A _{(L}	A)(IA)Z	1 meru/g ²		42			0.13	
	Root Sum Squ	are Eri	or (in ft and ft/	ser)	7,513	8,715	23,880	24.25	19.81	7.53
	Root Sum Squ	are Eri	or (in n. mi. an	d ft/sec)	1.24	1.43	3.93	24.3	19.8	7.5
7 6254	MAY 445		··· ···		u	L	L	μ	I	1

Table 6-11 Effect of IMU Errors during SPS 1st and 2nd Burns at Entry Start

6-13

CONFIDENTIAL_

			A		Final P	osition F	rror	Final	Velocity	Error
			t i	PMS	in L	ocal Axe	s	in l	Local Axe	s
	Vanon		R	Error	(1	in feetl		(in ft/sec)	
	F.1101	т			A 1.	Trook	Ranzo	A 1+	Track	Bange
				0 ft	A.I	TTACK	nange	A.I	1.40%	menge
rs	Dustation	Io		0.6						
irro	Position	(F)Y Io							1	
Ma n.E		(F)Z _{I0}			0	Ú	0	0	э	0
ond.		(F)VXi	<u>.</u>	0 ft/sec						
1. C	Velocity	(E)V _{YI}	с	0 ft/sec						
ΔĒ		(17)V _{ZI}	0	0 ft/sec						
		A(SM)	KĨ	3.6 mr		1,648			4.49	
ole aber	Initial S. M.	A	71	0.04 mr	40		3	0.13		0.01
Stal Men	Alignment Frrors	Acon	71	0.07 mr		57			0 16	
		(SNI)		0.1					1	+
	Accel, IA	X to Y		0.1 mr		<u> </u>		0.00		0.11
	Nonorthog -	X to Z		0,1 mr	29		- 39	0.05		-0.11
	onality	Y to Z		0.1 mr				 	+	
		1	Direct effect	. 2	134		-180	0.44		-0.50
		ACBX	Eff on Init Mlm	0.2 cm/sec				 	+	
8			Direct effect			- 214	<u> </u>		-0.58	+
E E	Bias	ACBY	Fff on Init Mlm	0.2 cm/sec^2		166		<u> </u>	0.45	
WO	Error		Combined Fff			- 48			-0.13	
ER			Direct effect		189		118	0.59		0,31
E		ACBZ	Fff on Init Mlm	0.2 cm/sec^2	- 205	Ì	- 13	-0.66		-0.03
ACC			Combined Fff		- 16		105	-0.07		C.28
	Scale	SFEX		87 FPM	44		- 60	0.14	+	-0.17
	Factor	SFEY		87 PPM		0	+		0	
	Error	SFEZ		87 P1'M	- 35		- 22	-0.11		-0.06
	Accel.Sq.	NCXX		10 µg/g	4		- 5	0.01		-0.02
	Sensitive Indication	NCYY	·	$10 \mu g/g^2$		0		l		
	Error	NCZZ		$10 \mu g/g^2$	2		1	0.01		0
		BDX	Direct effect	3.6 meru		477			1.30	
	Bias	BDY	Direct effect	3.6 meru	1,048		67	3.35		0.13
	Drift	BDZ	Direct effect	3.6 meru		850		-	2.32	+
	Acceler-	A DIA	x	15 meru/g		260		-	0.71	
	ation	A DSR	AY	10.5 meru /g	- 612		- 39	-1.95		-0.07
YRC	Sensitive Drift	ADIA	Z.	15 meru /g		708			1,93	
0	Acceler-	A^2D .		1 meru/g ²		20			0.05	
	ation Squared	$A^2 D$		1 meru/g^2	78		5	0.25		0.01
	Sensitive	1 2 A	SRA)(SRA)Y	$1 \text{ meru}/g^2$	-	63	+	-	0.17	
			A)(IA)Z					-		-
	Root Sum Sq	uare Er	ror (in ft and ft)	(sec)	i,226	2,060	234	3.92	5.61	0.63
	Root Sum Sq	uare Er	ror (in n. mi. ar	nd ft/sec)	0.20	0.34	0.04	3.9	5.6	0.6

Table 6-12 Effect of IMU Errors during SPS 2nd Burn at Re-entry Start

CONFIDENTIAL

			A •		Final I in I	Position I	Error	Final in l	Velocity Local Ax	Error
	Error	т	R	RMS Frror	(in feet)		(in ft/sec)	
					Alt.	Track	Range	Alt.	Тгаск	Range
s		(E)X _{IO}		0 ft	1					
rix	Position	(F)Y		0 ft						
Mat n. Ei		(F)Z		0 ft		0			6	
ond. Terr		(F)V _X	Io	0 ft/sec	1			U U	0	0
ag.	Velocity	(E)V _Y	Io	0 ft/sec	1					
ΞĞ		(F)V _Z	10	0 ft/sec						
L 0	Initial	A(SM)	XI	3.6 mr		72,198			1.86	
able	S. M. Alignment	A(SM)	YI	0.04 mr	- 3.317		8,430	- 11.06		- 1.21
м М	Frrors	A(SM)	ZI	0.07 mr		- 953			- 1.13	
	Accel. IA	Χ το Υ		0.1 mr						
	Nonorthog-	X to Z		0.1 mr	- 903		- 6,514	7.39		3.77
	onality	Y to Z		0.1 mr						
			Direct effect		1,757		12,345	- 17.64		-15.0C
		ACBX	Eff on Init Mlm	0.2 cm/sec 2						
ы	1		Combined Eff							
ETB	Bias	ACBY	Eff on init Mlm	$0.2 \text{ cm}/\text{sec}^2$		1,631			- 6.11	
MO	Error		Combined Fff	0.2 cm/sec		- 1 147			- 3.30	
ER			Direct effect		-23,933		100,229	-111.25	- 3.41	-25, 28
GEI		ACBZ	Eff on Init Mlm	$0.2 \mathrm{cm/sec}^2$	16,909		-42,983	56.39		6.18
AC			Combined Fff		- 7,023		57,246	- 54.86		-19.10
	Scale	SFEX		87 PPM	- 1,298		10,112	- 11.47		- i.82
1	Factor	SFEY		87 PPM		0			0	
	Error	SFEZ		87 PPM	-11,211		40,671	- 49.22		- 9.56
	Accel. Sq.	NCXX		10 µg/g ²	- 320		1,570	- 2.18		- 1.25
	Sensitive Indication	NCYY	·····	$10 \mu g/g^2$		0			0	
	Error	NCZZ		$10 \mu g/g^2$	- 1,599		6,039	- 7.05		- 1.47
	Bias	BDX	Direct effect	3.6 meru		4,307			10.09	
	Drift	BDY BDZ	Direct effect	3.6 meru 3.6 meru	-12,100		14,663	- 52,03		- 7.86
	Accelora	ADIAY		15 meru/a		- 5,270			-31.00	
	ation	ADERA	v	10.5 meru/g		8,174			- 2,86	
RO	Sensitive	10007	1 I	15 moru /g	22,045	- 5 87.0	-41,880	65,19	10.14	3.16
GY	Acceler-	A ² D		$\frac{15 \text{ meru}/g}{1 \text{ meru}/g^2}$		- 0,070			-38,14	
	ation	$\frac{1}{\Lambda^2 D}$	<u>(IA)X</u>	1 meru/g	2, 202	843			1.08	
	Schsitive	1 (SI	RA)(SRA)Y	1 meru/g	- 2,896		5,400	- 8.8i		0,56
	171 flt		s)(tA)2	i meru/g		- 558			- :.99	
	Root Sum Square Error (in ft and ft/		(er)	28,923	73,302	87,695	116.03	38.73	28.61	
	Root Sum Squa	are Err	or (in n. mi. and	ft/sec)	4.78	12.06	i4.43	116.0	3 8. 7	28.6

Table 6-13 Total Indication Errors at Entry End (at 50,000 ft Alt).

-CONFIDENTIAL>

			A		Final P	osition F	rror	Final V	/elocity I	Error
			+	0.140	in L	ocal Axe	s	in L	.ocal Axe	s
	-		B	K M5	(i	n feet)		(i	n ft/sec)	
	Error	τ		1 1101				r		
ļ		<u></u>			Alt.	Track	Range	Alt.	Track	Range
v.		(1.) X to								
rix ror	Position	(F)Y _{Io}		υπ						
Mat Er		(F)Z		0 it	0	0	0	0	0	0
nd. 1 erm		(F)V _{XI}	 [υ	U ft/sec	Ū	Ŭ	Ŭ	Ũ	Ŭ	_
°.⊤	Velocity	(F)V		0 ft/sec						
Dia Dia		(F)V.,	[0]	0 ft/sec						
		AIGMI	VI	3.6 mr		20 284			31 15	
le ber	Initial S. M.	A	<u></u>	0.04 mr	- 720	20,204	1 1 95	- 2 54	91.10	- 0.26
Stab Jern	Alignment	A (SM)	<u>Y1</u>	0.07 p.c		226	1,100	2.01	1 70	
		"(SM)	ZI			- 3.36			- 1.14	
	Accel. IA	X to Y		0,1 mr						
	Nonorthog-	X to Z		0.1 mr	- 1,148		1,781	- 2.58		- 0.61
	onality	Y to Z		0.1 mr						
			Direct effect		3,777		- 8,881	8.05		- 5.38
		ACBX	Fff on Init Mlni	$0.2 \mathrm{cm/sec}^2$	ļ					
e c			Combined Fff							
E	Bias	ACOV	Direct effect	0.1		- 1,003			- 4.30	
OME	Error	ACBY	Combined Eff	0.2 cm/sec		- 1 983	i		9.30	
ERC			Direct effect		- 4.766		27,117	24,54		- 7.11
EL		ACBZ	Eff on Init Mlm	0.2 cm/sec ²	3,673		- 6,092	12.95		1.31
00			Combined Fff		- 1,093		21,025	-11,59		- 5,80
4	Scale	SFEX		87 PPM	262		74	0,76		2.03
	Factor	SFEY		87 PPM		- 51			- 0.07	L
	Error	SFEZ		87 PPM	- 2,300		7,140	~ 9.43		- 1.37
	Accel. Sa.	NCXX		$10 \mu g/g^2$	- 12		- 154	- 0,08		- 0.67
	Sensitive	NCYY		$10 \mu g/g^2$		4			- 0.02	
	Error	NCZZ		$10 \mu g/g^2$	- 122		493	- 0.47		- 0.12
		BDX	Direct effect	3.6 meru		2 844			10.67	
	Hias	BDY	Direct effect	3.6 meru	- 7,370		4,180	-39.52		- 7.59
	Drift	BDZ	Direct effect	3.6 meru		- 5,740			-31.32	
	Acceler-	ADIA	x	15 meru/g		2,510			- 0.23	
	ation	A DSR	AY	10.5 meru /g	10,148		-16,954	35.33		32.58
YRC	Sensitive Drift	ADIA	Z	15 meru/g		- 3,870			-19.11	
0	Acceler-	A ² D _{/1}		1 meru/g ²		323			1.34	
1	ation Squared	$A^2 D_{c}$		1 meru/g^2	- 1.352	<u> </u>	2.169	- 4.94	1	- 0.57
	Sensitive Drift	A^2A	<u> </u>	$1 \text{ meru/} g^2$	1	_ 301			- 2.08	-
	Root Sum Squ	uare Eri	A)(LA)Z ror (in ft and ft/	sec)	13,665	21,867	29,873	56.08	50.27	11.91
	Root Sum Sou	are Er	ror (in n. mi. an	d ft/sec)	2.25	3.60	4.92	56,1	50.3	11.9
L				·	1	L	L		1	

TP 6254 REV 465

Table 6-14 Effect of IMU Errors during SPS 1st and 2nd Burns and Entry End (Alt. of 50,000 ft)

	Error	т	A R	RMS Frror	Final F in I (Position Local Axe in feet)	Error	Final in I {	Velocity Local Axe in ft/sec)	Firror 's
	·				Alt,	Track	Range	Alt.	Track	Range
s		(E)X _{Io}		0 ft						
rix	Position	(F)Y)	0 ft						
Mat n. Eı		(F)Z _{IO})	0 ft	0		2		0	
ond. Fern		(F)V _X	Ιο	0 ft/sec			U U	0	0	0
ag.	Velocity	(E)V _Y	Io	0 \ft/sec						
Ξă		(1 ⁻)V _Z	Io	0 ft/sec						
L	Initial	A(SM)	xi	3.6 mr		6,435			29.17	
able	S. M. Alignment	A(SM)	YI	0.04 mr	- 112	1	- 89	- 0.94		-0.24
Me	Frrors	A(SM)	21	0.07 mr		- 296			- 1.71	
[Accel, IA	X to Y		0.1 mr						
i	Nonorthog-	X to Z	,	0.1 mr	19		- 205	- 0.03		- <u> </u>
	onality	Y to Z	;	0.1 mr		<u> </u>				
			Direct effect		- 78		-2,431	- 0.25		-4.58
		ACBX	Eff on Init Mlm	0.2 cm/sec^2						
8			Combined Fff			_				
ETE	Bias	ACBY	Direct effect	$11.2 \text{ cm}/\text{cos}^2$		-2,306	•		- 4,46	
MO	Error		Combined Fff	or a citiy set		- 863			- 1.98	
ER			Direct effect		3,246		~ 610	8.44	0.11	-1.12
CEL		ACBZ	Eff on Init Mlm	0.2 cm/sec^2	57)		454	4.77		1.22
AC			Combined Fff		3,817		- 156	13.21		0.10
	Scale	SFEX		87 PPM	113	<u> </u>	323	0.44		2.06
	Factor	SFEY		87 PPM		- 51	L		- 0.07	
i i	P,FFOF	Sr F.Z.		87 PT/M	- 250		62	- 1.02		0.15
	Accel, Sq.	NCXX		$10 \mu g/g^{-}$	- 14	÷ - ·	- 151	- 0.08		-0.67
	Indication	NCYY		$\frac{10 \ \mu g/g}{2}$		- 4			- 0.02	
	r.rror	NCZZ		10 μg/g ⁴	23		- 4	0.12		-0.02
	Bias	BDX	Direct effect	3.6 meru		2,070			10,55	
	Drift	BDZ	Direct effect	3.6 meru 3.6 meru	-4,283		-2,344	-31.37		-7.49
	A	ADIAL	,	15		-5,626			-31, 31	
	ation	ADIA	· · · ·	15 meru/g		523			- 0.52	
RO	Sensitive	ADSRA	A Y	10.5 meru /g	1,500		1,315	12.51		3.00
CYI	Drift	A DIA Z		15 meru /g		3,408			19,05	
	Acceler- ation		A)(IA)X	1 meru/g ⁴		166			1.32	
	Squared Sensitive	A [°] D(S	RA)(SRA)Y	1 meru/g ²	- 241		- 177	- 2.01		-0.54
	Drift	A ² A(L/	A)(LA)Z	1 meru/g ²		- 349			- 2.07	
	Root Sum Squ	are Err	or (in ft and ft/s	ser)	6,492	9,977	3,783	36.77	49.03	9.69
	Root Sum Square Error (in n. mi. and		ift/sec)	1.07	1.64	0.62	36.8	49.0	9.7	

Table 6-15Effect of IMU Errors during SPS 2nd Burn and Entry
at Entry End (50,000 ft alt)

-COMFIDERMAS

GONEDENILA

Ă.					Final Position Error			Final Velocity Error		
				DMS	in Local Axes			in Local Axes		
				Error	(in feet)			(in ft/sec)		
Error T			r.r.or							
				0.ft	Ait.	Track	Range	Alt.	Track	Range
Init. Cond. Matrix Diag. Term. Errors	Position	(E)X _{Io}			-					[
		(F)Y _{Io}			0	C	0	0	0	0
		(F)Z _{Io}		0 ft						
	Velocity	(F)V _{XIo}		0 ft/sec						
		(E)V _{YIO}		0 ft/sec						
		(F)V _{ZIO}		0 ft/sec						
Stable Member	Initial S. M. Alignment Frrors	A _{(SM)XI}		3.6 mr		2,493			28.14	
		A(SM)VI		0.04 mr	- 284		11	- 1.25		-0,16
		A(SM)71		0.07 mr		- 433			- 1.75	
	<u></u>			0.1						
}	Accel. IA Nonorthog-	X to Y		0,1 mr						
		X to Z		0.1 mr	- 10		- 69	- 0.11		-0,78
	onality	Y to Z		0.1 mr						
			Direct effect	0.2 cm/sec ²	- 212		- 1,795	- 0.63		-4.31
	Bias Error	ACBX	Fif on Init Mlm							
ER			Direct effect			- 1.797			- 4.33	
ET		ACBY	Fff on Init Mlm	0.2 cm/sec ²		- 1.261			- 5.09	
ACCELEROM			Combined Fff			- 3,058			- 9,42	
		ACBZ	Direct effect	0.2 cm/sec ²	2,201		- 316	6.57		-0,77
			Eff on Init Mlm		1,446		- 55	6.39		0.83
					3,041			0.21		2 15
	Scale	SFEX		87 PPM 87 PPM		- 51	000	0.31	- 0.07	2.10
	Error	SFEZ		87 PPM	- 55	1	7	- 0.67		0.09
		NCXX		$10 \mu g/g^2$	- 18		- 132	- 0.09		-0.66
	Accel. Sq. Sensitive Indication Error	NCVV		$10 \mu g/g^2$.	- 4			- 0.02	
		NCTI		$10 \mu g/g^2$	13		- 2	0,11		-0.01
		NC22		10 µg/g					10: 25	
GYRO	Bias Drift	BDX	Direct effect	3.6 meru	- 8 757	928	254	-39,66	10.25	-5.50
		BDZ	Direct effect	3.6 meru	0,101	- 7,662			-31.84	
	Acceler-	ADIAX		15 meru/g		- 100	•		- 0,68	
	ation	ADSRAY		10.5 meru /g	4,107		- 201	17.34		1.84
	Sensitive	A DI A 7		15 meru /g		- 5 103			-19.49	+
	Drift Acceler- ation Squared Sensitive Drift	A DIA 2		$15 \text{ meru}/\text{g}^2$		120			1 30	+
		A ^{-D} (IA)(IA)X		1 meru/g		120	1		1.00	-0.20
		A D(SRA)(SRA)Y		1 meru/g	- 572	¦ 	16	- 2.63		-0.35
		A ⁴ A(IA)(IA)Z		1 meru/g ²		- 500)		- 2.11	<u> </u>
	Root Sum Squ	10,35	10,06	1,942	45.30	48.88	7.80			
Root Sum Square Error (in n. mi. and ft/sec)						1.66	0.31	45.3	48.9	7.80
	The state way vision									

Table 6-16Effect of IMU Errors during Entry only at Entry End
(50,000 ft Alt)

7. G&N CONFIGURATION

System 017 will be the G&N system for Mission 202. It is a Block I series 50 system with one modification; the wiring of the 11 spare relays in the main DSKY to the MCP to provide the AGC/MCP signal interface (refer ICD #MH01-01200-216) described in Section 3.

Without giving a detailed analysis of each G&N Block configuration, a brief description of each and the reason for its evolution is useful in understanding G&N's capabilities for Mission 202.

Block I is the original G&N design. It is composed of IMU, AGC, PSA, CDU's (mechanical), Harnesses, and OPTICS (sextant and telescope). As the G&N flight requirements became more clearly defined it was apparaent that Block I would need modification to qualify for flight.

Block I, series 100 therefore evolved. It is the Block I system modified generally as follows:

- (a) IMU Vibration dampers added; moisture insulation added.
- (b) AGC Cooling interface modified; humidity proofing added.
- (c) PSA Cooling interface modified; humidity proofing added.
- (d) CDU's Minor electrical and mechanical changes.
- (e) Harnesses All wiring changed to teflon; connectors humidity proofed.
- (f) OPTICS Addition of automatic star tracker, photometer and minor servo modifications.

When the full design and production schedule impact of the series 100 modifications become clear the Block I series 50 configuration was originated, being a limited 100 series modification qualified for flight and available on an early schedule.

Block I series 50 is basically the Block I series 100 system less the automatic star tracker and the photometer.

8. INSTRUMENTATION

8.1 G&N Instrumentation

The inflight information from G&N is available in three distinct forms: PCM telemetry of the AGC DIGITAL DOWNLINK, (PCMD); PCM telemetry of low bandwidth G&N measurements, (PCM +, PCM, PCME); and on-board recording of high band-width G&N measurements (TR).

The PCM telemetry of the AGC DIGITAL DOWNLINK has been clearly defined at the MIT/NAA interface as 50 words of 40 bits each per second. The particular format of this DOWNLINK is AGC program variable and can remain under MIT's control without having interface repercussion (see 8.1.1).

The PCM telemetry of the low band-width measurement and the on-board recording of the high band-width measurements have been defined by NASA in "NASA Program Apollo Working Paper 1141, Apollo SC Measurement Requirements, Apollo Mission A-202, Spacecraft 001" dated November 11, 1964 (see 8.1.2).

8.1.1 AGC Digital Downlink

The AGC digital downlink consists of 50 words/sec on the high rate and 10 words/sec on the low rate. Each "word" contains 40 bits (a 16 bit register transmitted twice and an 8 bit "word order code"). Since the high rate will be used exclusively for flight 202 all further discussion will use the 50 words/sec rate.

The digital downlink format is controlled by an AGC program which loads the next word to be transmitted into register OUT4. The program has an established priority (see Fig. 8-1). This program is entered on an interrupt caused by an "endpulse" from the telemetry system. Relay words have the highest priority and will be sent down on the next telemetry word. These relay words contain the state of all latching DSKY relays and therefore indicate displays (display word) and mode status of the G&N and MCP/SCS. Relay words for flight 202 are listed below.

The maximum rate for relay words is 1 word/120 msec. If a relay command has occurred, a relay word is loaded into OUT4 and the AGC returns to whatever program it was in before the interrupt. In a similar way, if no relay word is used, the AGC checks to see if an "input character word" has been received (manual keyboard entry, mark, or uplink). The maximum rate of input character words could occur due to uplink words; this rate is 1 keyboard character/110 msec (see section 3.1.2.1). If no relay or input word is indicated, the AGC checks to see if an ID word is required (there is an ID word for every block of 4 data words). If no relay, input, or ID word is sent, the AGC will load OUT4 with the next data word to be sent. A list of the data words which will be used for flight 202 is also listed below.

While it is theoretically possible to get almost 18 relay and input character words/sec leaving only 32 words/sec for both ID and data words, it is estimated that the AGC will average at least 32 data words/sec and 8 ID words/sec.

Fig. 8-1 AGC Downlink Transmission Logic

RELAY WORDS

Α.	Display Words						
	Item		Remark				
$Vg_{\mathbf{x}}$	$vg_y vg_z$	three components of v powered flight	velocity-to-be-gained during				
T_{ff}		free-fall time to 300,	000 ft when calculated				
w _x	Wy Wz	Spacecraft Body Rate	s when calculated				
в.	Other Relay Commands						
	Item		Remark				
1.							
	G/N ATT CONTRO G/N ΔV MODE SE G/N ENTRY MODI CM/SM SEP COMI +X TRANSLATION G/N FAIL INDICA .05 G INDICATION GIMBAL MOTOR I FDAI A LIGN T/C ANTENNA SW	JL SELECT LECT E SELECT MAND ON/OFF TION V POWER ON/OFF /ITCH	MCP/SCS Modes				
2.	ZERO ENCODE		CON Mada				
	COARSE ALIGN LOCK CDU FINE ALIGN RE-ENTRY ATT CONTR ZERO OPT. CDU'	S	G&N Modes				
3.							
	CDU ZERO LIGHT CDU FAIL LIGHT PIPA FAIL LIGHT IMU FAIL LIGHT OR OF ALL ALAR COND LAMP TEST	MS F	FAILURE & WARNING LIGHTS				
DATA WORDS

This list is comprised of three groups: Group I is transmitted throughout the flight; group II is transmitted only in non-powered flight; and group III is transmitted only in powered flight.

Point Measured	Remarks
Group I	
Time I	AGC Timing Register
Time II	AGC Timing Register
INO	Contains keyboard characters, mark, block uplink, inhibit upsinc
IN2	Four lowest order time bits, CDU, PIPA, and IMU Fail and Parity Alarm, Lift Off, Guid Release, SIVB Separate,
IN 3	Zero CDU encoders, lock CDU, fine align, re-entry, OPT modes 2 & 3, star present, zero OPT, Coarse align, ATT SW and TRN SW, Sextant On, OR OF C1-C33
OUT1	Engine on; block end pulse; ID word; RUPT trap reset; T/M, program, and program check fail alarms, key release, and computer activity
Position & Velocity	Six double precision words (12 words in all)
Group II	
3 actual CDU counters	Used to monitor platform alignment
Group III	
PIPA	Contents of the three PIP accumulation registers
CDU's (actual and desired)	6 AGC registers which give actual and desired CDU angles
8.1.2 G&N PCM Tele Board Recordin	metry (exclusive of DIGITAL DOWNLINK) and On- g for Mission #202

OPERATIONAL

CG0001	v	Computer Digital Data	PCMD	50 S/S	(See 8.1.1)
CG1101	v	-28 VDC Supply	PCM+	1	
CG1110	v	2.5 VDC TM Bias	PCM+	1	
CG1503	х	IMU +28 VDC Operate	PCME	10	
CG1513	x	IMU +28 VDC Standby	PCME	10	
CG1523	x	AGC +28 VDC	PCME	10	

OPERATIONAL (Cont'd)

CG1533	Х	OPTX +28 VDC	PCME	10
CG2110	V	IGA Torque Motor Input	PCM	10
CG2112	V	IGA IX Res Output, sine, inphase	РСМ	10
CG2113	V	IGA IX Res Output, cos, inphase	РСМ	10
CG2117	V	IGA Servo Error, inphase	\mathbf{PCM}	100
CG2140	V	MGA Torque Motor Input	\mathbf{PCM}	10
CG2142	V	MGA IX Resolver Output, sine inphase	РСМ	10
CG2143	V	MGA IX Resolver Output, cos, inphase	PCM	10
CG2147	V	MGA Servo Error in Phase	PCM	100
CG2167	v	OGA Servo Error in Phase	PCM	1
CG2170	V	OGA Torque Motor Input	PCM	10
CG2172	V	OGA IX Resolver Output, sine inphase	РСМ	10
CG2173	V	OGA IX Resolver Output, cos, inphase	РСМ	10
CG2177	V	OGA Servo Error, in Phase	PCM	100
CG2206	V	IGA CDU IX Res Error, in phase	РСМ	1
CG2236	v	MGA CDU IX Res Error, in phase	PCM	1
CG2264	V	OGA CDU 16X Res Error, in phase	PCM+	10
CG2266	V	OGA CDU IX Res Error, in phase	PCM	1
CG2300	т	PIPA Temp.	PCM+	1
CG2301	Т	IRIG Temp.	PCM+	1
CG2302	С	IMU Heater Current	PCM+	1
CG2303	С	IMU Blower Current	PCM+	1
CG3102	V	SXT Trun Motor Drive in phase	PCM	10
CG3112	V	SXT Shaft Motor Drive, in phase	PCM	10
CG3200	V	Trun CDU Motor Drive in phase	PCM	10
CG3209	V	OPTX Direct Trunnion Contlr, in phase	PCM	10
CG3220	V	Shaft CDU Motor Drive in phase	PCM	10
CG3229	V	OPTX Direct Shaft Contlr in phase	PCM	10

OPERATIONAL (Cont'd)

CG4300	Т	AGC Temp.	PCM	10
CG5000	Х	PIPA FAIL	PCME	10
CG5001	Х	IMU FAIL	PCME	10
CG5002	Х	CDU FAIL	PCME	10
CG5003	Х	Gimbal Lock Warning	PCME	10
CG5005	Х	Error Detect	PCME	10
CG5006	Х	IMU Temp. Light	PCME	10
CG5007	Х	Zero Encoder Light	PCME	10
CG5008	Х	IMU Delay Light	PCME	10
CG5020	Х	AGC Alarm #1 (Program)	PCME	10
CG5021	Х	AGC Alarm #2 (AGC Activity)	PCME	10
CG5022	Х	AGC Alarm #3 (T/M)	PCME	10
CG5023	Х	AGC Alarm #4 (PROG CHK FAIL)	PCME	10
CG5024	Х	AGC Alarm #5 (Scalar FAIL)	PCME	10
CG5025	Х	AGC Alarm #6 (Parity FAIL)	PCME	10
CG5026	Х	AGC Alarm #7 (Counter FAIL)	PCME	10
CG5027	Х	AGC Alarm #8 (Key Release)	PCME	10
CG5028	х	AGC Alarm #9 (RUPT Lock)	PCME	10
CG5029	Х	AGC Alarm #10 (TC Trap)	PCME	10
CG5030	х	Computer Power Fail Light	PCME	10
CG6000	Р	IMU Pressure	PCM	1

FLIGHT QUALIFICATION

CG2010	v	XPIPASG. Output, inphase	TR	2000 cps.
CG2030	v	Y PIPA SG. Output, inphase	TR	2000 cps.
CG2050	v	Z PIPA SG. Output, inphase	TR	2000 cps.
CG6001	D	NAV Base Roll Vibration	TR	2000 cps.
CG6002	D	NAV Base Pitch Vibration	TR	2000 cps.
CG6003	D	NAV Base Yaw Vibration	TR	2000 cps.

8.2 External Data Requirements

G&N requirements for external data fall into three categories:

8.2.1 Navigation Data via the Uplink

No requirement for this data is made at this time.

8.2.2 Radar Tracking Data for Post Flight Analysis

Tracking data requirements to a degree of accuracy and completeness which would permit the most comprehensive determination of G&N flight performance, are given in Table 8-1. Subsequent revisions of this plan will reflect more realistic requirements.

8.2.3 Radar Tracking Data for Real-Time Monitor of G&N

This requirement is given by Table 8-2, which is derived from the total indication error expected in the position and velocity data telmetered to the ground via the AGC DOWNLINK.

TABLE 8-1

EXTERNAL TRACKING DATA REQUIREMENTS TO SUPPORT POST FLIGHT ANALYSIS OF G&N

Three orthogonal components of position and velocity are required in IMU coordinates at one second intervals during each powered phase. The required accuracies are given in this table in local vertical coordinates.

		one sigm	a		one sigm	a
Phase	Pos	ition Err	or (ft)	Velc	city Erro	or (fps)
	Alt.	Track	Range	Alt.	Track	Range
s-IB Boost	200	1900	100	0.9	7.2	0.4
1st SPS Burn	40	210	30	0.3	1.8	0.2
2nd, 3rd, 4th SPS Burns	10	30	10	0.3	0.6	0.2
Entry	1100	1000	200	4.6	4.9	0.8

TABLE 8-2

EXTERNAL TRACKING DATA REQUIREMENTS TO PROVIDE REAL-TIME MONITOR OF G&N

Three orthogonal components of position and velocity are required in IMU coordinates at one second intervals during each powered phase. The required accuracies are given in this table in local vertical coordinates.

		one sigma	a	01	ne sigma	
	\mathbf{Posi}	tion Erro	or (ft)	Veloc	ity Error	(fps)
	Alt.	Track	Range	Alt.	Track	Range
S-IB Boost	200	1900	100	0.9	7.2	0.4
1st SPS Burn	400	3900	300	1.4	8.0	0.8
2nd, 3rd, 4th SPS Burns	2300	4000	7200	7.3	7.4	1.8
Entry	2900	7300	8800	11.6	3.9	2.9

9. G&N Performance Analysis

This section presents brief summaries of the performance of those phases of the 202 mission that are under G&N control. The data (in Figs. 9-1, 9-2, 9-3, 9-4, 9-5, and 9-6) has been derived from point mass studies using the Saturn Boost phase of the trajectory referenced in Section 5.

The data in the Tables 9-1 through 9-8 present performance data derived by perturbing the nominal mission with the dispersions listed on the following page.

The affects of these dispersions are demonstrated in the tables as follows:

- Table 9-1Time, latitude, longitude, altitude, velocity, flight path angle and
range (central angle from SIVB cut-off point) at the start of the first
SPS burn.
- Table 9-2Same as Table 9-1 at the end of the first SPS burn, plus fuel remaining and burn time.
- Table 9-3Time latitude, longitude, altitude, velocity flight path angle, R, A,and E from Carnarvon at the start of the second SPS burn.
- Table 9-4 Same as Table 9-3 at the end of the second SPS burn.

Table 9-5 Same as Table 9-3 at the final cut off.

- Table 9-6Time latitude, longitude, altitude, velocity flight path angle at entry
after fourth burn or fuel depletion.
- Table 9-7 Velocity and flight path angle at entry without the two short burns.

Table 9-8 Same as Table 9-6 after the first burn only.

The radar at Carnarvon was taken to be at 24.867S latitude and 113.63E longitude at a radius of 20,913,669 feet.

The latitude and longitude at entry in Table 9-7 above will be practically the same as Table 9-6 above.

Fig. 9-6 shows the track during the nominal second SPS burn and the two short burns. The ignition point and final cut off points of extreme cases are also shown. It should be observed that

- a) The maximum westerly dispersion at ignition is about 0.5⁰ longitude.
- b) The dispersion in track (213036) cannot be rectified by modification of the second ignition logic.

Any downrange dispersion at SIVB cut-off will move the entire trajectory downrange by the amount of dispersion.

List of Dispersions

Mac Run	Dispersions
210066	617.4 sec, + 200'/sec inertial velocity
210067	617.4 sec, + $40'/sec$ inertial velocity
210068	617.4 sec, -40'/sec inertial velocity
210069	617.4 sec, + 3000 ft altitude
210070	617.4 sec, - 3000 ft altitude
210071	617.4 sec, + 0.5 [°] flight path angle
210072	617.4 sec, - 0.5 ⁰ flight path angle
210073	617.4 sec, + 3 sec I _{sp}
210074	617.4 sec, -3 sec I _{sp}
210075	617.4 sec, + 660 lbs thrust
210076	617.4 sec, -660 lbs thrust
210077	617.4 sec, + 500 lbs weight
210078	617.4 sec, - 500 lbs weight
210890	600 sec, + 30,000 ft. altitude
	-2 ⁰ flight path angle
	-3 sec I _{sp}
	- 660 lbs thrust
	+ 500 lbs weight
210891	600 sec, negative of above
211683	617.4 sec, nominal
213036	617.4 sec, +1 ⁰ azimuth
	-1.63 southern latitude
NOTE:	1. Nominal I_{sp} was increased by 3 seconds over the November figure.
	2. All cases have an 11 second coast between SIVB time indi- cated and SPS 1 ignition.
	3. Altitude is in feet Velocity is in ft/sec
	All angles are in degrees Time is in seconds; total time is measured from lift-off

Range from Carnarvon is slant range in n.m.

Radius of earth used in 20, 925, 738 feet.

The coast time used is 3041 seconds

Precision integration was used during coast

Fig. 9-1 Mission 202 First Burn Trajectory

Fig. 9-2 Second, Third and Fourth Burn Trajectory

9-4

-5

Fig. 9-4 Area Control Capability for Aborts During Saturn Boost

i

SPS First Burn Ignition

Mac Run	Ignition Time	Lat.	Long.	Arc.	Alt.	2	۲
210066	628.4	23. 20	295.19	0.646	555239	22034	2.41
210067	628.4	23. 20	295.18	0.641	555138	21874	2.40
210068	628.4	23.20	295.18	0.639	555088	21794	2.39
210069	628.4	23.20	295.18	0.640	558114	21834	2.40
210070	628.4	23. 20	295.18	0.640	552113	21834	2.39
210071	628.4	23.20	295.18	0.640	557207	21831	2.90
210072	628.4	23.20	295.18	0.640	553019	21837	1.90
210073	628.4	23.20	295.18	0.640	555113	21834	2.40
to	Same						
210078							
210890	611.0	23.58	294.22	0. 607	559265	20715	-4.20
210891	611.0	23. 58	294.22	0.607	515147	20692	3.58
211683	628.4	23.20	295.18	0.640	555113	21834	2.40
213036	628.4	21.56	295.17	0.640	555113	21834	2.40

SPS First Burn Cut Off

Fuel Left	7525	7012	6758	6894	6876	7174	6578	7011	6757	6943	6822	7169	6599	1418	4333	6884	6780
λ	5.77	5.77	5.77	5.77	5.77	5.78	5.76	5.77	5.77	5.77	5.77	5.77	5.79	5.67	5.79	5.77	5.77
Λ	25638	25632	25629	25627	25634	25601	25661	25630	25632	25642	25619	25626	25635	25824	25585	25631	25629
Alt.	914031	918982	921243	923082	917178	945703	893486	921056	919192	910220	930580	923819	916432	752820	959525	920130	921928
Arc	15.997	16.392	16.586	16.477	16.501	16.197	16.799	16.525	16.452	15.980	17.033	16.680	16.298	21.479	17.833	16.489	16.581
Long.	308.97	309.30	309.47	309.37	309, 39	309.13	309.65	309.41	309.35	308.95	309, 85	309.55	309.22	312.77	309.66	309.38	309.29
Lat.	16.68	16.49	16.40	16.45	16.44	16.58	16.30	16.43	16.47	16.68	16.20	16.36	16.54	14.57	16.30	16.45	14.75
Burn Time	244.94	252, 33	256.00	254.04	254. 31	250.00	258.59	254.75	253. 59	245.92	263.01	257.27	251.08	340.15	285.16	254.17	255.68
Mac Run	210066	210067	210068	210069	210070	210071	210072	210073	210074	210075	210076	210077	210078	210890	210891	211683	213036

SPS Second Burn Ignition

 Azimuth	-30.20	-26.86	-25.22	-26.18	-25.89	-28.95	-22.94	-25.74	-26.35	-30.33	-21.48	-24.43	-27.65	6.61	-23.73	-26.04	-20.97
Elev.	30. 27	30.18	30.10	30.09	30.18	29.75	30.46	30.12	30.16	30.32	29.77	30.03	30.22	26.82	29.39	30.14	23.34
Range (nm)	465.1	464.6	464.9	464.4	465.0	462.1	468.4	464.7	464.7	465.5	465.9	464.9	464.8	551.8	462.2	464.7	533.6
~	-5.83	-5.83	-5.83	-5.83	-5.83	-5.84	-5.82	-5.83	-5.83	-5.83	-5.83	-5.83	-5.83	-5.77	-5.84	-5.83	-5.83
>	24920	24925	24928	24930	24923	24955	24898	24928	24926	24915	24938	24931	24922	24747	24970	24927	24932
Alt.	1545371	1540221	1537872	1536144	1541913	1514190	1564895	1538141	1539997	1549110	1528456	1535303	1542763	1699460	1500239	1539027	1534096
Long.	110.31	110.65	110.82	110.72	110.75	110.44	111.05	110.77	110,70	110.30	111.20	110.90	110.57	114.54	110.97	110.73	110.67
Lat.	-19.42	-19.25	-19.16	-19.21	-19.20	-19.35	-19.05	-19.19	-19.22	-19.42	-18.97	-19.12	-19.29	-17.28	-19.08	-19.21	-17.40
 Time	3914.3	3921.7	3925.4	3923.4	3923.7	3919.4	3928.0	3924.1	3923.0	3915.3	3932.4	3926.7	3920.5	3992.1	3937.2	3923.6	3925.1
Mac Run	210066	210067	210068	210069	210070	210071	210072	210073	210074	210075	210076	210077	210078	210890	210891	211683	213036

From Carnarvon

SPS Second Burn Cut Off

I		•	· -··			···· _,·	·			- 6	-							i
von 1	Azimuth	14.38	15.52	16.06	15.57	15.70	14.48	17.16	16.11	15.48	12.64	18.79	16.77	14.79	13.63	6.47	15.64	12.85
<u>m Carnar</u>	Elev.	17.33	16.89	16.68	16.86	16.89	16.92	16.62	16.63	16.95	18.27	15.28	16.32	17.26	23. 28	21.05	16.88	12.85
Froi	Range	563.5	573.1	577.8	573.5	575.0	563.0	589.1	577.9	572.9	552.1	601.7	583.5	567.5	589.0	518.81	574.2	668.8
	٨	-7.64	-7.64	-7.64	-7.62	-7.64	-7.56	-7.72	-7.63	-7.65	-7.69	-7.58	-7.62	-7.66	-6.53	-7.35	-7.63	-7.63
	Λ	27624	27615	27610	27599	27592	27640	27585	27615	27610	27586	27635	27607	27618	25352	26950	27595	27613
	Alt.	1250376	1251680	1252555	1251168	1256700	1226923	1278291	1249716	1254557	1269437	1234429	1247262	1256943	1643339	1315852	1253933	1248948
	Long.	115.81	116.03	116.13	116.04	116.06	115.83	116.35	116.14	116.02	115.50	116.68	116.27	115.89	115.68	114.52	116.05	115.98
	Lat.	-16.59	-16.48	-16.42	-16.47	-16.46	-16.58	-16.31	-16.42	-16.48	-16.76	-16.12	-16.34	-16.55	-16.67	-17.27	-16.46	-14.76
	Time	4008.3	4013.7	4016.4	4014.4	4014.7	4011.4	4019.0	4016.4	4014.0	4004.3	4026.4	4018.7	4011.5	4013.0	3998. 4	4014.6	4016.1
	Burn Time	94	92	91	91	91	92	91	92	91	89	94	92	91	20.89	61.27	91	91
	Mac Run	210066	210067	210068	210069	210070	210071	210072	210073	210074	210075	210076	210077	210078	210890	210891	211683	213036
	L	· ·			-													

•

Final Cut Off Conditions

From Carnaryon

Azimuth	22.05	22.90	23.31	22.93	23.03	22.12	23.63	23.34	22.76	20.71	25.39	23.42	22.35	22.98
Elev.	12.78	12.40	12.22	12.38	12.41	12.42	12.50	12.17	12.52	13.63	10.99	12.18	12.72	12.39
Range	631.2	642.1	647.5	642.6	644.2	631.2	653.6	647.7	640.7	617.3	675.1	649.0	635.6	643.4
~	-7.45	-7.45	-7.46	-7.44	-7.46	-7.37	-7.52	-7.45	-7.46	-7.51	-7.39	-7.41	-7.48	-7.45
Δ	27904	27898	27894	27882	27875	27921	27797	27897	27874	27875	27913	27828	27903	27878
Alt.	1155966	1157306	1158195	1157013	1162358	1133495	1190537	1155440	1161644	1174504	1140699	1159533	1162261	1159684
Long.	117.42	117.63	117.73	117.63	117.66	117.44	117.81	117.74	117.59	117.10	118.28	117.76	117.49	117.65
Lat.	-15.74	-15.62	-15.56	-15.61	-15.60	-15.71	-15.51	-15.55	-15.63	-15.90	-15.25	-15.54	-15.69	-15.60
Time	4034.3	4039.7	4042.4	4040.4	4040.7	4037.4	4042.9	4042.1	4039.6	4030.3	4052.4	4042.9	4037.5	4040.6
Burn Time	100	86	97	97	97	98	94.92	98	96.57	95	100	96.24	97	57
Mac Run	210066	210067	210068	210069	210070	210071	210072	210073	210074	210075	210076	210077	210078	211683

Final Entry Conditions

At 400, 000 ft. Altitude

٨	-3.49	-3.50	-3.50	-3.50	-3.50	-3.50	-3.52	-3.50	-3.50	-3.50	-3.50	-3.52	-3.49	-4.75	-3.88	-3.50	-3.50
Λ	28702	28698	28695	28682	28680	28697	28634	28695	28684	28693	28696	28632	28708	26748	27940	28681	28695
٨	-3.47	-3.48	-3.49	-3.49	-3.52	-3.53	-3.51	-3.48	-3.51	-3.56	-3.56	-3.54	-3.50	-4.79	-3.93	-3.50	-3.48
Δ	28711	28706	28703	28690	28686	28699	28642	28705	28690	28693	28695	28637	28715	26749	27941	28688	28704
Alt.	394160	394943	395452	395282	397910	400988	395489	394113	397455	403404	403655	398082	396989	403303	403340	396594	393717
Long.	134.7	134.9	135.0	134.9	134.9	134.1	135.6	134.0	134.9	134.4	134.9	135.0	134.8	141.8	134.5	135.0	135.0
Lat.	-5.26	-5.13	-5.07	-5.13	-5.12	-5.63	-4.67	-5.06	-5.16	-5.46	-5.10	-5.07	-5.21	-5.26	-5.35	-5.13	-3.84
Time	4314	4320	4322	4320	4321	4307	4333	4322	4320	4310	4323	4323	4317	4484	4332	4321	4322
Mac Run	210066	210067	210068	210069	210070	210071	210072	210073	210074	210075	210076	210077	210078	210890	210891	211683	213036

Entry Conditions (400, 000 ft) After Second Burn (no short burns)

Mac Run	V	γ
210066	28497	-3.57
210067	28518	-3.57
210068	28514	-3.57
210069	28502	-3.57
210070	28501	-3.57
210071	28518	-3.57
210072	28515	-3.56
210073	28516	-3.57
210074	28516	-3.57
210075	28508	-3.57
210076	28520	-3.57
210077	28506	-3.57
210078	28526	-3.56
211683	28501	-3.57
213036	28514	-3.57

Entry Conditions After First Burn (No Second Burn)

ac Run	Time	Lat.	Long.	Alt.	Λ	٨
210066	4364	-4.76	135.3	399677	26241	-5.34
210067	4371	-4.58	135.6	397107	26244	-5.34
210068	4374	-4.48	135.7	, 394821	26246	-5.34
210069	4372	4.54	135.6	393152	26248	-5.34
210070	4373	-4.53	135.7	398742	26242	-5.34
210071	4358	-5.04	134.9	396344	26245	-5.34
210072	4387	-4.02	136.4	396602	26244	-5.34
210073	4373	-4.51	135.7	395084	26246	-5.34
210074	4372	-4.55	135.6	396887	26244	-5.34
210075	4367	-4.70	135.4	398418	26242	-5.34
210076	4381	-4.24	136.1	385683	26257	-5, 33
210077	4376	-4.43	135.8	392327	26249	-5.34
210078	4369	-4.64	135.5	399577	26241	-5.34
211683	4373	-4.53	134.7	395945	26245	-5.34
213036	4374	-3.24	135.7	390864	26251	-5.34

The entry conditions at 400,000 feet are 26237 ft/sec 5.34 $^{\rm O}$ for all cases.

R-477 DISTRIBUTION LIST

Internal

R.	Alonso	A. Hopkins	E. Olsson
R.	Arrufo	F. Houston	J. Rhode
R.	Baker	L. B. Johnson	M. Richter
R.	Battin (5)	M. Johnston	M. Sanders
Ρ.	Bowditch	A. Kosmala (3)	M. Sapuppo
D.	Bowler	A. Koso	R. Scholten
R.	Boyd	M. Kramer	E. Schwarm
Ε.	Copps	A. Laats	J. Shillingford (3)
R.	Crisp	L. Larson	W. Shotwell (MIT/ACSP)
J.]	Dahlen (5)	J. Lawrence ($MIT/GAEC$)	J. Sitomer
Ε.	Duggan	T. J. Lawton (2)	B. Sokappa
к.	Dunipace (MIT/AMR)	T. M. Lawton (MIT/MSC)	M. Sullivan
J. 3	B. Feldman	D. Lickly	J. Suomala
S. 3	Felix (MIT/S&ID)	H. Little	R. Therrien
J. :	Flanders	G. Mayo	W. Toth
J. 1	Fleming	J. McNeil	M. Trageser
G.	Fujimoto	H. McOuat	R. Weatherbee
F.	Grant	R. Morth	L. Wilk
Eld	on Hall	James Miller (2)	R. Woodbury
Edv	vard Hall	John Miller	W. Wrigley
Ε.	Hickey	J. Nevins	Apollo Library (2)
D.	Hoag	J. Nugent	MIT/IL Library (6)

External		
(ref. PP1-6	4; April 8, 1964)	
P. Ebersole (N.	ASA/MSC)	(2)
W. Rhine (NASA	A/RASPO)	(1)
L. Holdridge (N	JAA S&ID/MIT)	(1)
T. Heueremann	(GAEC/MIT)	(1)
AC Spark Plug		(10)
Kollsman		(10)
Raytheon		(10)
Major W. Delar	ney (AFSC/MIT)	(1)
NAA RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California	(1)
FO:	National Aeronautics and Space Administration, MSC Florida Operations, Box MS Cocoa Beach, Florida 32931 Attn: Mr. B. P. Brown	(3)
HDQ:	NASA Headquarters 600 Independence Ave., SW Washington 25, D.C. 20546 Attn: MAP-2	(6)
AMES:	National Aeronautics and Space Administration Ames Research Center Moffett Field, California Attn: Library	(2)
LEWIS:	National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Attn: Library	(2)
FRC:	National Aeronautics and Space Administration Flight Research Center Edwards AFB, California Attn: Research Library	(1)
LRC:	National Aeronautics and Space Administration Langley Research Center Langley AFB, Virginia Attn: Mr. A. T. Mattson	(2)
GSFC:	National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Attn: Manned Flight Support Office Code 512	(2)

MSFC:	National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama Attn: R-SA (10) L. Richards (10)	(20)
ERC:	National Aeronautics and Space Administration Electronics Research Center 575 Technology Square Cambridge, Massachusetts Attn: R. Hayes/A. Colella	(1)
GAEC:	Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York Attn: Mr. A. Whitaker	(10)
NAA:	North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Mr. R. Berry (40) Mr. L. Hogan (10)	(50)
GAEC RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Grumman Aircraft Engineering Corporation Bethpage, L. I., New York	(1)
ACSP RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept. 32-31 AC Spark Plug Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle	(1)
WSMR:	National Aeronautics and Space Administration Post Office Drawer MM Las Cruces, New Mexico Attn: BW44	(2)
MSC:	National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Control Group Houston 1, Texas 77058	(100)
	Mr. H. Peterson Bureau of Naval Weapons c/o Raytheon Company Foundry Avenue Waltham, Massachusetts	(1)
	Queens Material Quality Section c/o Kollsman Instrument Corp. Building A 80-08 45th Avenuc Elmhurst, New York 11373 Attn: Mr. S. Schwartz	(1)
	Mr. H. Anschuetz USAF Contract Management District AC Spark Plug Division of General Motors Milwaukee, Wisconsin 53201	(1)

ŀ