

GUIDANCE AND NAVIGATION

 approved: Ooh M. Sachlen Date: 18 Only 1966 JOHN M. DAHLEN, DIR. , SYSTEM ENGINEErING DIV APOLLO GUIDANCE AND NAVIGATION PROGRAM DAVID G. HO \&G, DIRECTOR APOLLO GUIDANCE AN Q AVIGATION PROGRAM
 RALPH R. RAGAS, DEPUTY DIRECTOR INSTRUMENTATION LABORATORY

GUIDANCE AND NAVIGATION SYSTEM OPERATIONS PLAN APOLLO MISSION 501

July 1966
TYPE I DOCUMENT
APPROVED BY NASA

- -

INSTRUMENTATION LABORATORY

CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-238, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.
INTRODUCTION
G\&N FLIGHT OPERATIONS SUMMARY
G\&N SYSTEM DESCRIPTION
LOGIC AND TIMELINE FOR THE
NOMINAL MISSION 501
GUIDANCE EQUATIONS FOR CSM
MISSION AND VEHICLE DATA
G\&N ERROR ANALYSIS
G\&N PERFORMANCE ANALYSIS
DISTRIBUTION

1. INTRODUCTION

1.1 Purpose

This plan governs the operation of the Guidance and Navigation System and defines its functional interface with the spacecraft and ground support systems on Mission 501.
1.2 Authority

This plan constitutes a control document to govern the implementation of:
(1) Detailed G\&N flight test objectives
(2) $G \dot{\alpha} N$ interfaces with the spacecraft and launch vehicle
(3) Digital UPLINK to the Apollo Guidance Computer (AGC)
(4) AGC logic and timeline for spacecraft control**
(5) Guidance and navigation equations*
(6) Digital DOWNLINK from the AGC
(7) G\&N System configuration

Revisions to this plan which reflect changes in control items (1) through (7) require approval of the NASA Configuration Control Board.

This plan also constitutes an information document to define:
(a) Trajectory uncertainties due to G\&N component errors (Error Analysis)
(b) Trajectory deviations due to spacecraft performance variations and launch vehicle cut-off disperions (Performance Analysis)
(c) G\&N instrumentation (PCM telemetry and on-board recording) exclusive of AGC DOWNLINK
(d) External tracking data

Revisions to this plan which reflect changes in information items (a) through (d) will not require approval of the NASA CCB.
*To support these functions this document contains a Control Data section which defines the reference trajectory, AGC memory data, and applicable mission data (mass, propulsion, aerodynamic, and SCS data)

2. G\&N FLIGHT OPERATIONS SUMMARY

This section defines the mission plan as origianted by NASA and summarizes the manner in which the $G \& N$ system will operate to implement this plan as developed by MIT in cooperation with NASA and NAA/S\&ID. This section is divided into three parts;

Par 2.1 Test Objectives
Par 2. 2 Spacecraft and Mission Control
Par 2.3 Mission Description
2.1 Detailed G\&N Test Objectives
(1) Evaluate performance of the following integrated G\&N/Spacecraft modes of operation:
a. $\mathrm{C}-\mathrm{V}$ Boost Monitor
b. Thrust Vector Control of CSM over full dynamic range
c. Orbit Attitude Control of CSM over full dynamic range
d. Lift Vector Control at lunar return conditions
(2) Determine accuracy of $G \& N$ system in computation of spacecraft position and velocity during all mission phases.
(3) Determine $G \& N$ environment during $C-V$ Boost and full CSM thrust.
2. 2 Spacecraft \& Mission Control

2.2.1 Spacecraft Control

Spacecraft Control is implemented by the Apollo Guidance Computer (AGC) provided by MIT and the Mission Control Programmer (MCP) provided by NAA/S\&ID. Basically, the MCP performs those non-guidance functions that would otherwise be performed by the crew, while the AGC initiates major modes which are dependent upon trajectory or guidance functions.

The functional interface between the AGC and the MCP is complex and its description is deferred until Secticn 4. The electrical interface is simple, being relay contacts in the AGC DSKY wired to the MCP, and is described in ICD MH01-01200-216. The following AGC output discrete signals are provided:

1) G\&N ATT. CONTR. MODE SELECT
2) G\&N ENTRY MODE SELECT
3) G\&N $\triangle V$ MODE SELECT
4) +X TRANSLATION ON/OFF
5) $\mathrm{CM} / \mathrm{SM}$ SEPARA TION COMMAND
6) FDAI ALIGN
7) T/C ANTENNA SWITCH
8) G\&N FAIL INDICATION
9) 0.05 g INDICATION
10) GIMBAL MOTOR POWER ON/OFF
11) SPARE

2.2.2 Mission Control

Mission Control is provided by the Houston Mission Control Center (MCC) via the Digital Command System (DCS), which has many discrete inputs to the spacecraft and an UPLINK to the AGC. The discrete commands to the spacecraft and the AGC UPLINK are described in Section 3.

The AGC UPLINK provides the MCC with the capability to enter the AGC with any instruction or data which can be entered manually via the DSKY keyboard. It is not planned to utilize this full capability for mission 501 however. It is specifically planned to use this link only as described in Section 3.

2.2.3 Guidance Errors

The performance of the G\&N system for mission 501 has been estimated with and without navigation data inserted via the AGC UPLINK.

The most significant $G \& N$ error is that error in the critical path angle at entry. The next most significant error is manifested in the CEP at splash.

A complete breakdown of $G \& N$ errors is given Section 7.

2.3 Mission Description

The purpose of this section is to describe $G \& N$ functions during each mission phase. Note that these functions are described in greater detail, sufficient to specify the AGC program, in Section 4.

The reference trajectory is defined in Section 6 in sufficient detail to satisfy MIT's requirements for development of guidance equations, spacecraft control logic and determination of flight environment.

Section 8 presents those path and attitude characteristics resulting from guidance control which are believed to have significant effects on other spacecraft equipment and ground support systems.

2.3.1 Pre-Launch

During this phase the IMU stable member is held at a fixed orientation with respect to the earth. The X PIPA input axis is held to the local vertical (up) by torquing the stable member about Z and Y in response to Y and Z PIPA outputs. Azimuth orientation about the \mathbf{X} axis is held by
a gyro-compassing loop such that the Z PIPA axis points down-range at an azimuth of 71.9901 degrees East of True North. Initial azimuth is determined by tracking a ground target with the $G \& N$ Sextant at $T_{0}-8.5$ hours. Upon receipt of the GUIDANCE RELEASE signal from the Saturn I. U. the stable member is released to maintain a fixed orientation in inertial space for the remainder of the mission. In this manner the Saturn and Apollo IMU stable members retain a fixed relative orientation. Also, at the time of GUIDANCE RELEASE, the G\&N system starts its computation of position and velocity, which continues until SPS first cut-off. No inflight alignment of the IMU will be performed.

2.3.2 Saturn Boost - Pre LET Jettison

The boost trajectory is described in Fig. 6-3. Upon receipt of the LIFT-OFF signal from the Saturn I. U. , 6 seconds after GUIDANCE RELEASE, the AGC will command the CDU's to the time history of gimbal angles associated with the nominal SI attitude polynomials. The GUIDANCE RELEASE signal is backed up by the LIFT-OFF signal. The CDU outputs after resolution will then represent vehicle attitude errors in spacecraft axes and will be displayed on the FDAI and telemetered to the ground.

This Saturn attitude monitor is a required element of the launch vehicle malfunction detection scheme, and, in association with computed position and velocity, constitutes the Boost Monitor data, provided by the G\&N system during this period.

2.3.3 Post - LET Jettison Boost

The G\&N system will not have the capability to control the SIVB. The CDU's will be switched to the Fine Align Mode and the system will monitor IMU gimbal angles to detect tumbling and will compute the freefall time to entry interface altitude ($280,000 \mathrm{ft}$.) from present position and velocity. These quantities are used in the Abort Logic and, in association with computed position and velocity, constitute the Boost Monitor data provided by the $G \& N$ system during this period.

2.3.4 Earth Orbit Coast

During the entire earth coast phase those programs active in the AGC during Post - LET jettison boost are continued. The errors in the AGC's knowledge of position and velocity will be accumulative. A statevector update from the ground is required prior to the second SIVB ignition (TLI). The AGC position and velocity errors are minimized by providing an update as late in earth orbit coast as possible.

2.3.5 CSM/ SIVB Separation

There are three CSM/SIVB separation sequences, a normal sequence, an abort sequence, and a tumble sequence. In the normal sequence after the first 30 minutes of cold-soak coast, the Saturn system initiates the separation sequence and the MESC sends a separation signal to the AGC. The AGC then commands +X translation for six seconds to assure safe physical separation. Ninety seconds later, or 96 secs after separation, the AGC initiates the first SPS burn.

In the abort sequence, the AGC detects the separation signal and in addition a ground-commanded abort signal. Six seconds after the separation signal the AGC initiates an abort burn to an Atlantic recovery area.

If tumbling is detected by the AGC when the separation signal is received, a tumble-arrest burn is started three seconds after separation. When tumbling is arrested the AGC tests for abort and proceeds either to the abort burn or to the first SPS burn of the nominal mission.

2.3.6 CSM Aborts

The only abort program provided in Mission 501 controls a posigrade burn to an Atlantic recovery area.

2.3.7 First SPS Burn

This is normally a short (40-second) burn that raises the apogee acheived by the SIVB from approximately 9000 n mi to 9400 n mi . No ullage is providedprior to this burn in accordance with Mission 501 test objectives.

2.3.8 Coast Phase

Upon completion of the first SPS burn the AGC computes $T_{f f}(400,000 \mathrm{ft})$ and tests the calculated value against a criterion to determine if the first SPS burn was nominal or an alternate burn. Upon satisfactory completion of the $T_{f f}$ test, the AGC will command the CSM to the cold-soak attitude. This attitude is held until the AGC calls up the manuever required for the second SPS burn.

The cold-soak attitude requirements and the AGC implementation to achieve this attitude are described more fully in Section 6.

In general, the requirement is to orient the CSM such that the vector from the earth center to the sun lies nearly in the $X-Z$ plane of the S / C, and the angle between $+X_{S / C}$ and the solar vector (measured from $+X_{S / C}$ toward $-\mathrm{Z}_{\mathrm{S} / \mathrm{C}}$) is between 30° and 120°. The orientation of the CSM about the solar vector will be defined in light of gimbal lock and communications constraints.

At a computed time from entry interface altitude the AGC will establish the Average G routine and begin calculation of free-fall time to $400,000 \mathrm{ft}$. Prior to this time a state-vector update is required. An update of $T_{f f(m i n)}$ (described in Section 2.3.9) is also allowed.

2.3.9 Second SPS Burn

The second SPS burn is initiated by a free-fall time interrupt. When the AGC calculated free-fall time falls below $T_{f f(m i n)}$, the AGC sets the second SPS burn ignition time as $T+10$ minutes. The ground can control the second SPS burn ignition time by updating $\mathrm{T}_{\mathrm{ff}(\mathrm{min})}$ in the time interval allowed.

Nominally, $\mathrm{T}_{\mathrm{ff}(\mathrm{min})}$ will be twenty minutes so that the second SPS burn is commenced when the free-fall time to $400,000 \mathrm{ft}$ is ten minutes. The tenminute interval from $T_{f f(m i n)}$ to SPS second-burn ignition is used by the AGC to orient the CSM and for the downlink second SPS burn data. Second SPS burn cut off occurs approximately four minutes before $400,000 \mathrm{ft}$ entry interface altitude is reached.

2.3.10

When $T_{\text {ff }}$ equals 200 seconds (about 40 seconds after second SPS cutoff in the nominal mission), the CSM is oriented to the separation attitude $\left(+X_{S / C}\right.$ axis up in the trajectory plane and tipped forward in the direction of motion 60 degrees above the velocity vector).

The separation attitude is held until the $T_{f f}$ interrupt routine causes the AGC to issue the CM/SM SEPARATION COMMAND. After a time delay to allow for separation and stabilization, the G\&N system will orient the CM to the computed entry attitude. The entry guidance equations, which are given in Section 5, are designed to provide a trajectory which will satisfy heat shield test objectives while achieving the designated. Pacific splash point.

2.3.11 Navigation Update

The ground may update the AGC state vector during the earth parking orbit and earth-intersecting coast phases, with certain AGC logic restrictions as defined in Section 4. $\mathrm{T}_{\mathrm{ff}(\mathrm{min})}$ may be updated during the earth-intersecting coast phase. The update procedure is defined in Section. 3.

3. G\&N SYSTEM DESCRIPTION

This section defines the specific provisions incorporated in the G\&N System to mechanize the required system operations.

3.1 G\&N Hardware Configuration

System 122 will be the $G \& N$ system for Mission 501. It is a Block I Series 100 system with one modification; the wiring of 11 spare relays and a special failure module in the main DSKY to the MCP to provide the AGC/MCP signal interface. A Block I Series 100 system is comprised of the following assemblies:
(a) Inertial Subsystem

Block I Series 100
Inertial Measurement Unit (IMU)
Inertial System CDU's (electro-mechanical) (ICDU's)
Power Servo Assembly (PSA)
IMU Control Panel
(b) G\&N Harness Block I Series 100
(c) Computer Subsystem

Block I Series 100
Apollo Guidance Computer (AGC)
Display and Keyboard (DSKY - Main Display Console)
Display and Keyboard (DSKY - Lower Equip. Bay)
Computer Harness
(d) Optics Subsystem

Block I Series 100
Scanning Telescope (SCT)
Sextant (SXT)
Optical System CDU's (OCDU's)
Power Servo Assembly (PSA)
Without giving a detailed analysis of each G\&N Block configuration, a brief description of each and the reason for its evolution is useful in understanding G\&N capabilities for Mission 501.

Block I is the original G\&N design. It is composed of IMU, AGC, PSA, CDU's (mechanical), Harnesses, and OPTICS (sextant and telescope.) As the G\&N flight requirements became more clearly defined it was apparent that Block I would need modification to qualify for flight.

Block I, Series 100 therefore evolved. It is the Block I system modified generally as follows:
(a) IMU - Vibration dampers added; moisture insulation added.
(b) AGC - Cooling interface modified; humidity proofing added.
(c) PSA - Cooling interface modified; humidity proofing added.
(d) CDU's - Minor electrical and mechanical changes.
(e) Harnesses - All wiring changed to teflon; connectors humidity proofed.
(f) OPTICS - Minor servo modifications.

When the full design and production schedule impact of the Series 100 modifications became clear the Block I Series 50 configuration was originated, being a limited 100 Series modification qualified for flight and available on an early schedule.

3.2 G\&N/Spacecraft Signal. Interfaces

3.2.1 Interface Controlling Documents (ICD's)

Below are listed the ICD's which are pertinent to an understanding and definition of the operational interfaces between the G\&N system and the SC/ BOOSTER. The majority of these are electrical ICD's (including in some cases function definitions). All of the additional existing ICS's pertaining to mechanical interfaces, thermal interfaces, material compatibility et cetera have not been listed as they are considered not to be within the scope of this document.

General Inter-

facing Area	ICD Title_	ICD No.	Description
G\&N/VEHICLE	Launch Vehicle to G\&N Interface	MH01-01278-216	Signal interface and
			description:

a) GUIDANCE REFERENCE RELEASE
b) LIFTOFF
c) SIVB ULLAGE*
" "
Vehicle Separation Signals to AGC

$\mathrm{G} \& \mathrm{~N} / \mathrm{MCP}$	Outputs - AGC to Mission Control Programmer	MH01-01200-216	For detailed description refer to Section $3.2 .2$
$\mathrm{G} \& \mathrm{~N} / \mathrm{SCS}$	Attitude Error Signal (see Fig. 3-1 also)	MH01-01224-216	Signal interface for: a) PITCH ERROR (BODY and BODY OFFSET) b) YAW ERROR (BODY) c) YAW ERROR (BODY OFFSET)

[^0]

General Inter-
Description
d) ROLL ERROR (BODY)
e) ROLL ERROR
(BODY OFFSET)
f) ERROR SIGNAL

REFERENCE
Total Attitude MH01-01225-216 Signal interface for:
Signals
a) SINE AIG
b) COS AIG
c) SINE AMG
d) $\operatorname{COS} A M G$
e) SIN AOG
f) $\operatorname{COS} \mathrm{AOG}$
g) ATTITUDE SIGNAL REFERENCE

Engine ON-OFF MH01-01238-216 Electrical interface Signal to SCS for the AGC command to the SPS engine.

G\&N/UP and DOWN TELEMETRY SYSTEMS

Data Transmission to Operational PCM T/M equipment
$11 \quad 1$ " "

G\&N/S/C/
POWER
Guidance and Navi- MH01-01227-216
gation Electrical Input Power

ACE Uplink, S/C Digital Up Data Link, Apollo Guidance Computer

MH01-01236-200 Electrical interface between AGC and S/C Updata Link Receiving equipment. Used both for receipt of $A C E$ UPLINK transmissions during ground checkout and AGC UPLINK transmissions from ground during flight. Total AC and DC power specification from S / C for $G \& N$

General Inter-

facing Area	ICD Title	ICD No.	Description
MISCELLAN-	Central Timing	MH01-01226-216	Electrical interface
EOUS	Equipment		for G\&N "SYNCH"
	Synchronizing		pulse to S/C Central
	Pulse		Timing System.

3.2.2 AGC Outputs to MCP

This interface is documented in ICD No. MH01-01200-216 and provides 11 relay closures in the main DSKY and 1 relay closure in the G\&N Failure Detection Module. These relays provide functions as described below:
(1) G\&N ATTITUDE CONTROL MODE SELECT
(2) G\&N ENTRY MODE SELECT
(3) G\&N $\triangle V$ MODE SELECT
(4) +X TRANSLATION ON/OFF
(5) CM/SM SEPARATION COMMAND
(6) FDAI ALIGN

This signal brings the backup attitude reference system (BMAG's caged to AGCU) to a zero reference determined by the current vehicle attitude. When initiated, the signal will be continued for 10 seconds.
(7) T/C ANTENNA SWITCH

The requirement for AGC control of T/C antenna switching has been deleted. This AGC output relay is now a spare; however its arming is under the control of the MCP, subject to the original logic designed for the T/C ANTENNA SWITCH function. (Refer Figure 3-2.)
(8) .05 G INDICATION

G\&N will sense. 05G with the PIPA's, give this indication to the SCS (via the MCP) and the SCS system will inhibit pitch and yaw attitude control on the assumption that these axes will be stabilized by aerodynamic forces. Should the G\&N.05G indication not be received by the MCP/SCS this attitude control would not be inhibited, and if sufficient pitch and yaw attitude errors are generated, RCS fuel would be wasted throughout entry.

Fig. 3-2 Arming logic for G\&NMCP interface

The G\&N entry program will attempt to null the pitch and yaw error signals during entry based on its estimation of the pitch and yaw trim angles of attack. MIT estimates that the resulting pitch and yaw attitude errors will not exceed the deadbands in the SCS. Should this be incorrect RCS fuel loss will occur. The G\&N. 05G indication is not used within the re-entry program, however, so should this function be backed up by a redundant CM sensor no AGC confusion should result.

(9) GIMBAL MOTOR POWER ON/OFF

The AGC must terminate SPS GIMBAL MOTOR POWER in order to key the MCP to select the appropriate SPS motor gimbal trim inputs.
(10) SPARE

There is one spare relay with no assigned function.

(11) G\&N FAIL INDICATION

This signal is generated by the G\&N Failure Detection Module. This module is mounted at the rear of the main DSKY and is electrically interposed between the NAA harness to the DSKY and the DSKY itself. The module operation is described in detail in Section 3.6. Its operation with respect to the total G\&N Failure Monitor System is shown in Fig. 3-3.

3.2.3 Detailed Interface Operation

Certain additional facts are pertinent to the use and comprehension of the AGC/MCP interface:
(1) The AGC must not command more than one SCS mode simultaneously. This requires termination of each mode before commanding the next; 250 ms has been established as sufficient time interval between termination and selection.
(2) The response of the SCS system to the commands and/or indication signals of the AGC via the MCP are subject to the arming of these command/ indications by the MCP. The arming logic for the G\&N/MCP interface is as shown in Figure 3-2.
(3) In all cases the MCP initiates the SIVB/CSM Separation Sequence. For normal cases its action is keyed upon notification from the Saturn. I. U. For boost aborts the ground must command the MCP to start the sequence.

Fig. 3.3 G\&N FAILURE MONITOR SYSTEM

3.3 Ground Commands

3.3.1 Digital UPLINK to AGC

By means of the AGC UPLINK, the ground can insert data or instruct the AGC in the same manner normally performed by the crew using the DSKY Keyboard. The AGC will be programmed to accept the following UPLINK inputs:
(1) SPS Gimbal Motor Power On/Off
(2) Liftoff (backup to discrete input)
(3) SIVB/CSM Separation (backup to discrete input)
(4) FDAI Align
(5) Abort Indication (required for abort logic as described earlier)
(6) State Vector Update (provides ground capability to update navigation data in the AGC)
(7) TFF MIN Update (provides ground capability to update T_{ff} criteria)
(8) L/O Time Update (provides ground capability to update AGC version of GET by updating the AGC Clock and DTEPOCH)
(9) AGC Clock Alignment

Operational procedures governing the use of these Uplink inputs must be developed to ensure proper operation within program constraints.

All information received by the AGC from the Uplink is in the form of keyboard characters. Each character transmitted to the AGC is triply redundant. Thus, if C is the 5 -bit character code, then the 16 -bit message has the form:

$1 \mathrm{C} \overrightarrow{\mathrm{C}} \mathrm{C}$

where \bar{C} denotes the bit-by-bit complement of C. To these 16 bits of information the ground adds a 3 -bit code specifying which system aboard the spacecraft is to be the final recipient of the data and a 3 -bit code indicating which spacecraft should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5 -bit code for transmission). If the message is received and successfully decoded, the receiver onboard will send back an 8-bit "message accepted pulse" to the ground and shift the original 16 bits to the AGC ($1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$).

All uplink words given in this section are in the form transmitted from the uplink receiver to the AGC. Therefore they do not contain the vehicle or subsystem addresses added on by the ground facilities. For the purpose of this section, the following definitions hold.
(1) 1 uplink word $=1$ character
(2) 5 characters or uplink words = contents of one AGC register

3.3.2 SPS Gimbal Motor Power On/Off

To turn the SPS Gimbal Motors on or off the following message must be sent
Verb 75 Enter Refer to Table 3-1
where the X above is a 1 if the motors are to be turned on or a 2 if they are to be turned off.

3. 3. 3 Liftoff

To provide a backup to the liftoff discrete the following message must be sent
Verb 75 Enter
Refer to Table 3-1
3 Enter
for codes

3.3.4 SIVB/CSM Separation

To provide a backup to the SIVB/CSM separation discrete the following message should be sent

Verb 75 Enter	Refer to Table 3-1
4 Enter	for codes

3.3.5 FDAI Align

To start an FDAI ALIGN sequence (terminated by program after 10 sec) the following message must be sent
V 75 Enter
Refer to Table 3-1
5 Enter
for codes

3.3.6 Abort Indication

To send an abort message to the AGC, the following special binary code should be sent via the uplink

1100110110010011 Abort

3. 3. 7 State Vector Update

To begin a state vector update on flight 501 the AGC must be in either P14 or P24 and the following 4 words must be sent via the uplink

Verb 76 Enter Refer to Table 3-1 for codes
The AGC will then switch to P 27 with the resultant change in downlink list (see sec. 3.4).

In P27 the AGC will accept a complete ground navigation update in the format to be described.

The data itself will take the form of three (3) double-precision components of position, three (3) double-precision components of velocity, and double-precision time. The position and velocity components should be given in navigation ECI coordinates (see sec. 2. 3.1) and the time should be in the time of the "fix" referenced to AGC CLOCK ZERO. The data must be sent in the following sequence:

Octal
Identifier

1	XXXXX	(most sig. part of X position).	ENTER
2	XXXXX	(least sig. part of X position).	ENTER
3	XXXXX	(most sig. part of Y position).	ENTER
4	XXXXX	(least sig. part of Y position).	ENTER
5	XXXXX	(most sig. part of Z position)...	ENTER
6	XXXXX	(least sig, part of Z position)...	ENTER
7	XXXXX	(most sig. part of X velocity)...	ENTER
108	XXXXX	(least sig. part of X velocity)...	ENTER
118	XXXXX	(most sig. part of Y velocity)...	ENTER
128	XXXXX	(least sig. part of Y velocity)...	ENTER
138	XXXXX	(most sig. part of Z velocity)...	ENTER
148	XXXXX	(least sig. part of Z velocity)...	ENTER
15_{8}	XXXXX	(most sig. part of time from AGC clock zero)...............	ENTER
168	XXXXX	(least sig. part of time from AGC clock zero)...............	ENTER

where each "X" and "ENTER" above represents an uplink word. If, for some reason, the ground wishes to resend any 5 -uplink word group before the ENTER associated with that group has been transmitted, the "CLEAR" word should be sent and the 5 -word group retransmitted.

After the Enter associated with the least sig. part of time, the AGC will wait for the ground to verify the parameters received by the AGC. This verification can make use of the special update downlist (see Sec. 3.4). The AGC indicates that it is waiting for this verification by flashing 2102 in the Verb and Noun lights of the DSKY (2101 was flashed when the data were being entered).

The ground station now has the following three options.
(1) If the update has a lot of components in error, the ground may terminate the load with a verb 34 Enter (a V34E will terminate the load at any time during P27) and the AGC will go back to P14 or P24, depending upon which had been on at beginning of P27.
(2) If the update is correct in all components, the ground will command the AGC to accept the update with a Verb 33 Enter (a V33E sent before V21 N02 is displayed will be ignored by the AGC) and the AGC will go back to P14 or P24 after setting the UPDATFLG (this flag is reset by either the average-G or orbital integration program when the data are used or by the initiation of another V76 update).
(3) If only a few components are in error, the ground may change one component at a time by sending the octal identifier of the component to be changed followed by an Enter, ie, 16 Enter, for the least sig. part of time (the DSKY will display V21 N01 after the octal identifier is entered; an octal identifier not between 1 and 16_{8} will be ignored). The ground should then send the correct contents of that register followed by an Enter at which time the DSKY will again display V21 N02. This procedure may be repeated any number of times.
If a V76 update is attempted in any program other than P14 or P24, a "Check Fail" indication will be given and P27 will not be entered.

If the AGC receives an improperly coded word from the uplink receiver during the load (not $C \bar{C} C$), it will turn on bit 4 of OU'T 1 which is transmitted via Downlink (see Sec. 3. 4). When this occurs the ground station should send the following 3 uplink words:

Binary Uplink Word $(1 C \bar{C} C)$	Equivalent Character (C)
1000000000000000	(to clear uplink buffer)
1100100110110010	ERROR RESET
1111100000111110	CLEAR

The ground station should then begin loading with the first word of the 5 -word group it was sending when the alarm condition occurred.

If insufficient time remains, the AGC will change its program (out of P27) and proceed with the internally computed data.

The scale factors for AGC navigation updating are:

position	meters $/ 2^{24}$
velocity	(meters $/$ C.S.) $/ 2^{7}$
"fix" time	C.S. $/ 2^{28}$
(one C.S. $=0.01 \mathrm{sec}$)	

The AGC is a fixed-point machine with the point just to the left of the most significant bit.

The scaling indicated above will be sufficient to force the 3 components of position and the 3 components of velocity and time to numbers less than one.

To form the double-precision quantities ready for coding and transmission the scaled magnitudes of time and each component of position and velocity should be expressed as two binary words as follows:

2nd word $O \quad X \quad X$

$$
2^{-15} 2^{-16} 2^{-17} 2^{-18} 2^{-19} 2^{-20} 2^{-21} 2^{-22} 2^{-23} 2_{2}^{-24} 2_{2}-25_{2}-26_{2}-27_{2}-28
$$

Each X above represents a binary bit of the appropriate magnitude, the place value of which is indicated below the corresponding X. Once the magnitude of the component is accounted for in the above $28 \mathrm{X}^{\prime} \mathrm{s}$, the sign must be considered.

If the component is positive, the words remain as formed; if the component is negative, the "1's complement" of the 2 words is used (all 1's are replaced by 0 's and all 0 's by 1 's).

The first word is then transformed into a 5-character octal word. The first character is the octal equivalent of the first three bits, the second character is the octal equivalent of the next three bits, et cetera. This word is referred to as the "most significant part" of data in the text above. Similarly the second word is transformed into a 5 -character octal word which is the "least significant part" of data.

Each character must now be coded into a 16-bit uplink word for transmission. A table of the characters and their uplink-word is given in Table 3-1.

3.3.8 TFF MIN Update

To begin a TFF MIN update on flight 501 the AGC must be in either P14 or P24 and the UPDATFLG must be reset. The following 4 words must be sent via the uplink Verb 71 Enter (refer to Table 3-1 for codes). The AGC will then switch to P 27 with the resultant change in downlink lists (see Sec. 3.4).

The data must be sent in the following order

Octal Identifier			
1	XXXXX	(most sig. part of TFF MIN)	ENTER
2	XXXXX	(least sig. part of TFF MIN)	ENTER

where each "X" and "ENTER" above represents an uplink word. If, for some reason, the ground wishes to resend any 5 -uplink word group before the ENTER associated with that group has been transmitted, the "CLEAR" word should be sent and the 5 -word group retransmitted.

The procedure for verifying, terminating, or making single line changes is the same as the procedure described in detail in Sec. 3.3.7 for the V76 update except that only octal identifiers 1 and 2 are not ignored and the UPDATFLG is not set after Verb 33 Enter.

A "Check Fail" indication will be given and P27 will not be entered if a V71 update is attempted when the AGC is not in P14 or P24 or when the UPDATFLG is set. The scale factors and coding for TFF MIN are the same as for the state vector time given in Sec. 3. 3. 7.

3.3.9 L/O Time Update

To begin a L/O time update on flight 501, the AGC must be in either P14 or P24 and the UPDATFLG must be reset. The following 4 words must be sent via the uplink Verb 77 Enter (refer to Table 3-1 for codes). The AGC will then switch to P 27 with the resultant change in downlink lists (see Sec. 3-4).

The data must be sent in the following manner XXXXX Enter where the 5X's represent 5 octal characters which give centiseconds with a scale factor of 2^{-14}. The DSKY will display V21 N02 after the "Enter" is received and the procedure for verifying, terminating, or making single line changes is the same as the procedure described in Sec. 3.3.8 for the V71 update except that only an octal identifier of 1 is not ignored. The conditions producing a "Check Fail" indication are the same.

3. 3. 10 AGC Clock Align

To align the AGC clock two procedures are required. To set the AGC clock to a specific value, the following uplink words must be sent.

$$
\text { Verb } 21 \text { Noun } 16 \text { Enter (refer to Table 3-1 for codes) }
$$

This must be followed by \pm XXXXX ENTER where each X represents one decimal digit, properly coded, and the total number represents the time in C.S. that will be set into the AGC clock. If it is required to zero the clock, all the X's should be zeros.

Since there are uncertainties in time of transmission, etc., it is anticipated that a time increment may be needed. To increment the AGC clock, the following uplink words must be sent

$$
\text { Verb } 55 \text { Enter (refer to Table 3-1 for codes) }
$$

This must be followed by $\pm \mathrm{XXXXX}$ ENTER where the total number represents the time increment in C.S.

The AGC must have had the latitude, azimuth, and time DTEPOCH (described below) loaded as three double-precision quantities during erasable memory initialization. The AGC uses these quantities to generate the matrix which relates the reference inertial-coordinate system to the stable member coordinate system. To do this the reference system must be rotated thru the following angles in the order given below.
(1) About reference Y-axis thru latitude angle of local vertical.
(2) About reference Z-axis thru the angle equal to the earth's angular rate times (DTEPOCH + AGC clock reading at G. R. R.) ; the Z axis of the reference coordinate must be parallel to the earth's spin axis and TEPOCH must be the time that the local vertical vector passed thru the $+X+Z$ plane of the reference inertial system.
(3) About the local vertical vector (the SM desired X-axis) thru the azimuth angle (positive rotation is clockwise looking towards center of the earth).

The following restraints must be observed on the magnitudes of the times shown above.
(1) \mid DTEPOCH + AGC clock| at guidance reference release must be less than 2^{28} C.S. Since the AGC must use this time to determine the inertial platform coordinates at guidance reference release.

The AGC clock will be zeroed when it senses L/O and DTEPOCH will be changed accordingly.

TABLE 3-1

Character	Uplink Word
0	1100000111110000
1	1000011111000001
2	1000101110100010
3	1000111110000011
4	1001001101100100
5	1001011101000101
6	1001101100100110
7	1001111100000111
8	1010001011101000
9	1010011011001001
VERB	1100010111010001
NOUN	1111110000011111
ENTER	1111000001111100
ERROR RESET	1100100110110010
CLEAR	1111100000111110
KEY RELEASE	1110010011011001
+	1110100010111010
-	1110110010011011
ABORT	1100110110010011

NOTE: It is good operation procedure to end every uplink message with a KEY RELEASE.

3. 4 AGC Digital Downlink

The AGC digital downlink consists of 50 words/sec on the high rate and 10 words/ sec on the low rate. Each "word" contains 40 bits (a 16 -bit register transmitted twice and an 8-bit "word order code"). Since the high rate will be used exclusively for flight 501, all further discussion will use the 50 words/sec rate.

The 40 bits of the word are shown below.

where each X above represents a binary bit. The first 15 bits above carry the downlink information and the 16 th bit provides odd parity for the first 16 bits. The second 16 bits are an exact reproduction of the first 16. The last eight bits are known as the Word Order Code and are used to distinguish between data words and ID or marker words. All eight-word order code bits are the same (0 for data words, 1 for ID and marker words.)

The digital downlink format is controlled by an AGC program which loads the next word to be transmitted into register OUT4. This program is entered on an interrupt caused by an "endpulse" from the telemetry system.

Before giving details of the AGC downlink a few important points on the downlink should be reviewed. Most of the downlink words are actually the contents of erasable memory registers which are used during the normal computations in the AGC. There is no special buffer set aside for telemetry words because of erasable memory size restrictions. The programs that use these erasable registers have no set phase relationship with the downlink program and, therefore, data which take more than one downlink word to transmit (i.e. double precision words, vectors, etc.) may have words from two different computation cycles. Some of these data arrays are associated with "markers" as explained in the following paragraphs.

Most telemetered parameters have negative numbers represented in ones complement form (exceptions will noted in detailed parameter description to follow). The sign information is carried in bit 15 (1 for minus, 0 for plus) and, in general, the signs of the most and least significant portions will not agree. The procedure for obtaining the sign and magnitude of a double-precision word with sign disagreement is as follows.

The first bit of each word indicates the sign of that word (1 for minus, 0 for plus) and the next 14 bits give the magnitude (in ones complement for minus signs). With double-precision words, the most significant word and the least significant word may have different signs. If either of the words has a magnitude of 0 , the complement of that word should be used to force sign agreement. If neither word has a 0 magnitude, the following procedure should be followed. Examples are given for each case using words of 6 bits, 1 sign bit and 5 magnitude bits.

Case 1 Most Significant word sign bit equals 1
Least Significant word sign bit equals 0
Complement magnitude bits of most significant word and subtract magnitude bits of least significant word as in example below. The sign of the total quantity is minus
Most significant word equals 110011
Least significant word equals 001010

	01100	00000
Minus		01010
	$(01011$	$10110)$

Case 2 Most significant word sign bit equals 0 Least significant word sign bit equals 1
Complement magnitude bits of least significant word and subtract from most significant word as shown in example below. The sign of the total quantity is plus.
Most significant word equals 010011
Least significant word equals 101010

	10011	00000
		10101
Plus	(10010	01011)

The AGC is a fixed-point machine with the binary point assumed between hit 15 and bit 14. The scale factors included later in this section give the units divided by the proper number to cause the value of the parameter to be less than one. The bit weights for a double-precision word are:

Most Sig:

$$
\operatorname{Sign} \quad 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9} 2^{-10} 2^{-11} 2^{-12} 2^{-13} 2^{-14}
$$

Bit Number:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Least Sig:

$$
\text { Sign } 2^{-15} 2^{-16} 2^{-17} 2^{-18} 2^{-19} 2^{-20} 2^{-21} 2^{-22} 2^{-23} 2^{-24} 2^{-25} 2^{-26} 2^{-27} 2^{-28}
$$

The bit weights for a single-precision word are the same as those given for most sig. above.

The actual downlink formats are organized into 100 -word lists. Each list, therefore, requires 2 sec to complete on the high bit rate. The general format for AGC downlink lists is given in Fig. 3.3. The seven phases referred to correspond to phases of the downlink program for Mission 501. For Flight 501 there are only two lists, the nonupdate list, which is transmitted throughout the flight except for the period of time the AGC is in P27 because of a V71, V76, or V77 update (see sec. 3.3), and the update list, which is transmitted during the period mentioned above. A computer restart while transmitting the update list may cause a premature return to the non-update list. With the exception of restarts, the list switches are only made in phase 1 and, therefore, the switchover occurs only after the list has been completely cycled through. If no update is attempted, the update list will never be transmitted during Flight 501.

Marker words are used to identify when updating of certain data words has been accomplished. When a marker word is sent, bit 9 of OUT $1=1$, causing the word order code bits to be 1's. Marker words will not be transmitted during phases 1, 2 , or 5 .

There is a cell in the AGC's erasable memory called "TMMARKER". In phases 3 and 6, this cell is checked before a word is telemetered. If it is zero, then the normal word is sent. If it is non-zero, the contents of TMMARKER are added to 74000 , (making bits 15 through 121^{\prime} s), bit 9 of OUT $1=1$, and the quantity is placed in the telemetry output register of the computer (register OUT 4). The marker counter is decreased by 1. The setting of bit 9 of OUT 1-1 causes the word order code to be a 1 : if data words are transmitted, this bit is set to 0 . "TMMARKER" is set to zero after being sampled.

In phases 4 and 7, the process in the previous paragraph is performed unconditionally (i.e., regardless of whether the contents of TMMARKER are zero or not). Whenever a marker word is sent, the "marker count" is reduced by 1 ; since it is preset to 3 at the start of phase 3 and phase 6 , the proper synchronism of output words is maintained. When the counter reaches zero, phase 4 (or 7) is terminated. If the contents of TMMARKER are zero, the terminology "dummy marker" is employed: note that it is not necessarily true that only dummy markers are sent in phase 4 and phase 7 . In phase 3 and 6, the counter is not less than 0.

Only the least significant three bits of TMMARKER are set in the program. Bit 1 (called "Marker 1") is set to 1 after the PIP registers have been sampled and a new value for PIPTIME loaded. This action affects words 29-31 and words 78-79 of the nonupdate list. Marker 1 will be generated each 0.5 second before GRR is sensed, each 2.0 seconds between GRR and about 10.5 seconds after SPS1 cutoff, each 2.0 seconds between SPS2-30 seconds and splash, and each 2.5 seconds if an abort is encountered (reverting to 2.0 seconds when entry computations are started).

Phase No.	Word No.	Contents
1	1	ID WORD
2	$\begin{cases}2 \ldots 15 & \text { DSPTAB } \\ 16 \ldots 27 & \text { COMMON GROUP } \\ 3 & 28 \ldots(48+\mathrm{K})\end{cases}$	
4	$(49+\mathrm{K}) \ldots 51$	PART A \& K MARKERS
5	$52 \ldots 65$	DSPTAB
6	$66 \ldots(97+J)$	PART B \& J MARKERS
7	$(98+J) \ldots 100$	DUMMY MARKERS OR ACTUAL MARKERS

Fig. 3. 3 General AGC Downlink Format

Bit 2 (called "Marker 2 ") is set after position and velocity have been updated in the navigation computations. This action affects words 66-77 of the non-update list. Marker 2 will be generated each 2.0 seconds between GRR and the end of the local vertical phase, and each 2.0 seconds between SPS2-28 seconds and splash. It will be generuted each 2.5 seconds if an abort is encountered (reverting to 2.0 seconds when entry computations are started). Interrupts are inhibited by the program from affecting words 66-77 while they are being updated and Marker 2 generated (a similar statement applies to the other two markers). The events flagged by Marker 1 and Marker 2 occur fairly close together in the program. The Navigation computations are employed to assist in maintaining local vertical (hence Marker 2 lasts longer than Marker 1 after SPS1 cutoff).

Bit 3 (called "Marker 3 ") is set after the desired value(s) of the CDU angles have been determined. This action affects words 32-34 of the non-update list. It is set at the normal computation cycle rate of once per 2 seconds for entry and once per 2.5 seconds for abort. During entry, it is related to word 32 of the non-update list (words 33 and 34 are also changing, but are not flagged by Marker 3).

The contents of TMMARKER are modified independently by these three bits; consequently, more than one of the three might be 1 for the same downlink word. It is reset only when being sampled for downlink transmission. So, if a Marker takes place during a telemetry phase when no markers are being sent, it will be sent ${ }^{\text {a }}$ the next marker opportunity.

A list of the non-update format is given below. Word numbers which are followed by asterisks indicate the word may shift position due to marker words as explained in the preceeding paragraph.

15 bits individually assigned meanings as flags, give information on state of programs.
DATA WORD
time l (least
sig. Bits)
IN 0
IN 2
IN 3
OUT 1
STATE
T बะMDษTA
FLAGWRD 1
FLAGWRD 2
CDU X
CDU Y
CDU Z
.

$\begin{array}{ll}0 & 0 \\ 0 \\ 3 & 0\end{array}$ 00000
000

DATA WORD

WD/NO.

$\stackrel{*}{*}$

$\stackrel{*}{\sim}$

$\stackrel{*}{\circ} \stackrel{*}{\underset{m}{m}}$

W.O.C.
 Phase 3

W.O.C.	WD/NO.	DATA WORD	REMARKS
0	32 *	THETAD +0	AGC register which gives desired CDU X Angle
0	33*	THETAD +1	AGC register which gives desired CDU Y angle
0	34*	THETAD +2	AGC register which gives desired CDU Z angle
0	35*	$\begin{aligned} & \text { RRECT+0 } \\ & \text { (most sig. } \\ & \text { bits of Xpos) } \end{aligned}$	SPSl tailoff state vector component to be used in orbital integration program, this register is time shared.
0	$36 *$	RRECT+1 (least sig.bits of X pos.)	SPSl tailoff state vector component to be used in orbital integration program, this register is time shared.
0	$37 *$	RRECT+ 2 (most sig.bits of Y pos.)	SPSl tailoff state vector component to be used in orbital integration program this register is time shared.
0	38*	RRECT+3 (least sig. bits of Ypos.)	SPSL tailoff state vector component to be used in orbital integration program, this register is time shared.
0	39*	RRECT+4 (most sig. bits of Z pos.)	SPS1 tailoff state vector component to be used in orbital integration program, this, register is time shared.
0	40*	RRECT+5 (least sig. bits of Z pos.)	SPSl tailoff state vector component to be used in orbital integration program, this register is time shared.
0	41*	VRECT+0 (most sig. bits of X vel).	SPSI tailoff state vector component to be used in orbital integration program, this register is time shared.
0	42*	VRECT+1 (least sig. bits of X Vel.)	SPSl tailoff state vector component to be used in orbital integration program, this register is time shared.
0	43*	$\begin{aligned} & \text { VRECT+2 (most } \\ & \text { sig. bits } \\ & \text { of Y vel.) } \end{aligned}$	SPSl tailoff state vector component to be used in orbital integration program, this register is time shared.

DATA WORD
VRECT+3(least
sig. bits of
Y vel.)
VRECT+4(most
sig. bits of
Z vel).
VRECT+5(least
sig. bits of
Z vel).
TFF'most sig.
sig. bits)
TFF +l(least
sig, bits)
TM MARKER
TM MARKER
TM MARKER

$\stackrel{*}{n}$
$*$
6
6

$\stackrel{*}{*} \quad \stackrel{*}{\infty}$

$$
\begin{array}{lll}
\stackrel{*}{\sigma} & \stackrel{*}{0} & \stackrel{*}{*} \\
\underset{\sim}{n} & i & \vdots
\end{array}
$$

W.O.C.

0 00
$0 \quad 0$

REMARKS
No markers are sent. Because of
Phase 4, the "word number" is
valid. Displays
Displays Moding relays in DSKY
Moding relays in DSKY MCP relays

 sent (see discussion under Phase 3). The "marker counter" is set output of average G routine

 0_{0}°
8
8
3

: :

 00

$$
\begin{aligned}
& \text { DATA WORD } \\
& \hline \mathrm{R}_{\mathrm{N}}+2 \text { (most } \\
& \text { sig. bits) } \\
& \mathrm{R}_{\mathrm{N}}+3 \text { (least } \\
& \text { sig. bits) } \\
& \mathrm{R}_{\mathrm{N}}+4 \text { (least } \\
& \mathrm{sig}^{\prime} \text { bits } \\
& \mathrm{R}_{\mathrm{N}}+5 \text { (least } \\
& \text { sig. bits) } \\
& \mathrm{V}_{\mathrm{N}}+0 \text { (most } \\
& \text { sig. bits) } \\
& \mathrm{V}+1 \text { (least } \\
& \mathrm{N} \text { sig. bits) } \\
& \mathrm{V}_{\mathrm{N}}+2 \text { (most } \\
& \text { sig. bits) } \\
& \mathrm{V}_{\mathrm{N}}+3 \text { (least } \\
& \text { sig. bits) } \\
& \mathrm{V}_{\mathrm{N}}+4 \text { (most } \\
& \text { sig. bits) } \\
& \mathrm{V}+5 \text { (least } \\
& \mathrm{N} \\
& \text { sig. bits) } \\
& \text { PIPTIME (most } \\
& \text { sig. bits) } \\
& \text { PIPTIME +1 } \\
& \text { (least sig. } \\
& \text { bits) } \\
& \text { TIME } 2 \text { GR } \\
& \text { (most sig. bits) } \\
& \text { TIME } \\
& \text { (least sig. bits) } \\
&
\end{aligned}
$$

Output of average G routine
Output of average G routine
Jutput of average G routine
Output of average G routine Time that the PIP registers are read
and therefore the time corresponding
to position and velocity above during
average G task and time for VRECT and
RRECT after they are frozen 2 registers which contain the time
of gid. ref, release these registers
are time shared

are mime snatch
.

W.O.C.	WD/NO.	DATA WORD	REMARKS
0	93*	VAVEGON+3 (least sig. bits of Y vel.)	Velocity from orbital integration program to be used for SPS2 burn this register is time shared.
0	94*	VAVEGON+4 (most sig. bits of Z vel).	Velocity from orbital integration program to be used for SPS2 burn this register is time shared.
0	95*	VAVEGON+5 (least sig. bits of Z vel).	Velocity from orbital integration program to be used for SPS2 burn this register is time sharec.
0	96*	TAVEGON (most sig. bits)	Time that average G program $: .$. be activated for SPS2 burn this register is time shared.\#
0	97*	$\begin{aligned} & \text { TAVEGON+l (least } \\ & \text { sig. bits) } \end{aligned}$	Time that average G progran wili be activated for SPS2 burn this register is time shared.\#
Phase 7			In this phase the "marker counter" is checked (it was set in Phase 6 start), and "Dummy " marker words equal in number to the present value of the marker counter are sent (see discussion under Phase 4.
1	98*	TM MARKER	Dummy markers if actual markers have not occurred above
1	99*	TM MARKER	Dummy markers if actual markers have not occured above.
1	100*	TM MARKER	Dummy markers if actual markers have not occurred above.

In this phase "particular list A" (uplink format)

 Contents of 1 st 16 bits have set pattern of
1010101010101011 .
Indicates which component of update is presently
being loaded. 1st component of update buffer, cell used for
other purposes before update and will have some

2nd component of update buffer, cell used for other purposes before update and will have some initial value.

[^1] 4th component of update buffer, cell used for
other purposes before update and will have some
initial value.
5th component of update buffer, cell used fpr

DATA WORD 0
2
$\frac{2}{A}$
3
1
0
0
3
0
SPARE
STCNTR
STBUFF+0

		$\begin{aligned} & \text { p } \\ & \hline \\ & \text { 宸 } \\ & \stackrel{\sim}{6} \end{aligned}$

WD/NO.	DATA WORD
35\%	STBUFF+5
36*	STBUFF+6
37*	STBUFF+7
38*	STBUFF+8D
39\%	STBUFF+9D
40*	STBUFF+10D
41*	STBUFF+11D
42*	STBUFF+12D
43*	STBUFF+13D
44*	SPARE

W.O.C.
00
$0 \quad 0$

DATA WORD
SPARE
SPARE
UPOLDMD
UPDATE ID

TCUTOFF
TCUTOFF+1
RAVEGON+0
RAVEGON+1
RAVEGON+2
RAVEGON+ 3
RAVEGON+4
RAVEGON+5
VAVEGON+0 0
VAVEGON+1

REMARKS
Same comment as on preceding list.
Same comment as on preceding list.
Same comment as on prededing list.
Same comment as on preceding list.
Same comment as on preceding list.
Same comment as on preceding list.
Contents of 1 st 16 bits have set pattern of
1010101010101011 .
Indicates which component of update is presently 1st component of update buffer. and component of update buffer.

 - xəjғnq aұepdn jo quauoduos प78

 0
0
0
3 $\circ 0$ 0 \circ 0 0 0
0 0 \bigcirc 00 0 0 00
DATA WORD
STBUFF+10D
STBUFF+11D
STBUFF+12D
STBUFF+13D
WD/NO.
$94 *$
$95 *$
$96 *$
$97 *$
W. O. C.
0
0
0
0
More detailed information on the contents of the data words will be included in future revisions to this document.

3.5 Analog Data Telemetry and Recording

3.5.1 Types

The inflight information from $G \& N$ is of three types: PCM telemetry of the AGC DIGITAL DOWNLINK (PCMD*), PCM telemetry of low bandwidth G\&N measurement ($\mathrm{PCM}+, \mathrm{PCM}, \mathrm{PCME}{ }^{*}$), and on-board recording of high bandwidth G\&N measurements FQ-TR* . The first type, AGC DIGITAL DOWNLINK, is described in section 3.4. The last two types, although including information in discrete form, are considered to be analog data.

3.5.2 Authorization

The PCM telemetry of the low bandwidth measurements and the on-board recording of the high bandwidth measurements have been defined by NASA in (1) APOLLO CM/SM BLOCK I, OPERATIONAL BASELINE MASTER MEASUREMENT LIST No. 8 of 15 September 1965 and (2) APOLLO CM/SM BLOCK I R AND D BASELINE MASTER MEASUREMENT LIST No. 8 of 15 September 1965 and are as listed below.

3.5.3 PCM Telemetry

The G\&N PCM telemetry measurements are all classified OPERATIONAL. *

Identification	Function	Type	Sample Rate/Sec.
CG 0001 V	Computer Digital Data (DIGITAL DOWNLINK)	PCMD	50 (refer Sec. 3.4)
CG 1101 V	-28 VDC Supply	PCM +	1
CG 1110 V	2.5 VDC TM Bias	PCM +	1
CG 1503 X	+28 VDC IMU Operate	PCME	10
CG 1513 X	+28 VDC IMU Standby	PCME	10
CG 1523 X	+28 VDC AGC Operate	PCME	10
CG 1533 X	+28 VDC OPTICS Operate	PCME	10
CG 2110 V	IGA Torque Motor Input	PCM	10
CG 2112 V	IGA 1X Res Output, sine, in phase	PCM	10
CG 2113 V	IGA 1X Res Output, cos, in phase	PCM	10
CG 2117 V	IGA Servo Error, in phase	PCM	100
CG 2140 V	MGA Torque Motor Input	PCM	10
CG 2142 V	MGA 1X Resolver Output, sine, in phase	PCM	10
CG 2143 V	MGA 1X Resolver Output, cos, in phase	PCM	10
CG 2147 V	MGA Servo Error in phase	PCM	100

Identification	Function	Type	Sample Rate/Sec.
CG 2170 V	OGA Torque Motor Input	PCM	10
CG 2172 V	OGA 1X Resolver Output sine, in phase	PCM	10
CG 2173 V	OGA 1X Resolver Output, cos, in phase	PCM	10
CG 2177 V	OGA Servo Error, in phase	PCM	100
CG 2206 V	IGA CDU 1X Res. Error, in phase	PCM	10
CG 2236 V	MGA CDU 1X Res. Error, in phase	PCM	10
CG 2266 V	OGA CDU 1X Res. Error, in phase	PCM	10
CG 2300 T	PIPA Temp.	PCM +	1
CG 2301 T	IRIG Temp.	PCM +	1
CG 2302 C	IMU Heater Current	PCM +	1
CG 2303 C	IMU Blower Current	PCM +	1
CG 3104 V	SXT Trun MDA Input in phase	PCM	10
CG 3105 V	SXT Trun Tach Feedback, in phase	PCM	10
CG 3114 V	SXT Shaft MDA Input, in phase	PCM	10
CG 3115 V	SXT Shaft Tach Feedback, in phase	PCM	10
CG 3141 V	Trun CDU 16X Res. Error, in phase	PCM	10
CG 3211 V	Shaft CDU 16X Res. Error, in phase	PCM	10
CG 4300 T	AGC Temp.	PCM	1
CG 5000 X	PIPA FAIL	PCME	10
CG 5001 X	IMU FAIL	PCME	10
CG 5002 X	CDU FAIL	PCME	10
CG 5003 X	Gimbal Lock Light	PCME	10
CG 5005 X	G\&N Error Light(Err Detect)	PCME	10
CG 5006 X	IMU Temp. Light	PCME	10
CG 5007 X	Zero Encoder Light	PCME	10
CG 5008 X	IMU Delay Light	PCME	10
CG 5020 X	AGC Alarm \#1 (Program)	PCME	10
CG 5021 X	AGC Alarm \#2 (AGC Activity))PCME	10

Identification	Function	Type	Sample Rate/Sec.
CG 5022 X	AGC Alarm \#3	PCME	10
	(G\&N ERROR)		
CG 5023 X	AGC Alarm \#4	PCME	10
	(PROG CHK FAIL)		
CG 5024 X	AGC Alarm \#5 (Scaler FAIL)	PCME	10
CG 5025 X	AGC Alarm \#6 (Parity FAIL)	PCME	10
CG 5026 X	AGC Alarm \#7 (Counter	PCME	10
	FAIL)		
CG 5027 X	AGC Alarm \#8	PCME	10
	(Key Release)		
CG 5028 X	AGC Alarm \#9 (RUPT Lock)	PCME	10
CG 5029 X	AGC Alarm \#10 (TC Trap)	PCME	10
CG 5030 X	AGC Power Fail Light	PCME	10
CG 6000 P	IMU Pressure	PCM	1
CG 6020 T	PSA Temp, 1 Tray 3	PCM	1
CG 6021 T	PSA Temp, 2 Tray 2	PCM	1
CG 6022 T	PSA Temp, 3 Tray 4	PCM	1

3.5.4 Flight Qualification Tape Recorder (FQ-TR)
 There are no G\&N Flight Qualification Tape Recorder Measurements on

 Mission 501.3.5.5 Definitions

OPERATIONAL

FLIGHT QUALIFICATION

PCM

NAA defined as those measurements which will remain fixed for a block of vehicles fulfilling similar type missions. In the case of $G \& N$ however there are some differences between OPERATIONAL PCM on Mission 204 and other Block I G\&N missions.

NAA defined as those measurements required early in the flight program to qualify the vehicle for flight, after which they may no longer be needed.

Pulse code modulated analog measurements digitally coded into 8 bit words for operational telemetry.
$\mathrm{PCM}+$

PCME

FQ-TR

Flight critical PCM measurements, which would continue to be monitored if PCM system is operated in "slow format" mode (not anticipated on Mission 501.)

Special PCM measurements to monitor discrete events (i.e. on/off, open/close) using only 1 bit words.

Measurements recorded on flight qualification tape recorder.
3. $6 \quad G \& N$ Failure Detection Module The module is composed of two sections:
(1) ELECTRONICS SECTION - Monitors the T/M ALARM signal from the AGC to the NAV DSKY. This signal is under the control of the AGC UPLINK and DOWNLINK programs and is used to control the TELEMETRY ALARM light in the NAV DSKY. Superimposed on the AGC UPLINK and DOWNLINK program's control of the signal is control by the NIGHT WATCHMAN program. This program briefly complements the existing state of the signal and then restores its initial condition.

The ELECTRONICS SECTION of the G\&N Failure Detection Module monitors only the brief complement of the signal. If the complement is lacking for more than $1.6 \mathrm{sec}\binom{-0.6}{+1.6}$ the ELECTRONICS SECTION generates the NIGHT WATCHMAN's alarm, which is a contact closure to the MCP (the G\&N FAIL INDICATION), G\&N ERROR LIGHT, and the S/C TELEMETRY SYSTEM, ("G\&N ERROR," a TM discrete as distinguished from AGC Digital Downlink.) Should the complement pulse be restored the NIGHT WATCHMAN's alarm is removed.
(2) WIRING JUNCTION BOX
(a) Routes the NIGHT WATCHMAN's alarm to the NAA harness for the MCP, S/C TELEMETRY SYSTEM and the G\&N ERROR LIGHT in the CAUTION and WARNING PANEL.
(b) Routes all remaining wires of the DSKY interface directly through the module.

The logic of the generation of the G\&N FAIL INDICATION is thus under the control of the NIGHT WATCHMAN'S ALARM program. This program monitors G\&N activity in two phases completing a monitor cycle in 480 ms .

The first phase involves the examination of an error register (OLDERR). Should this register indicate an error present, the complement pulse would not be generated and a G\&N FAIL INDICATION would result. The error register will include the following error indications;
(1) The failure of an AGC RESTART sequence. This sequence is automatically done when the AGC's normal sequences have been momentarily interrupted by failures such as 'TC TRAP, PARITY FAIL or a momentary loss of PRIMARY POWER. The RESTART sequence will normally perform a limited recycle of the interrupted sequences restoring the initial conditions within milliseconds.
(2) The receipt by the AGC of an indication from the Inertial Subsystem error detection circuitry of an IMU FAIL or ACCEL FAIL. Each of these fail indications is a summation of several relevant analog parameters, any one of which will cause a fail indication if exceeding the following criteria.
(a) IMU FAIL

IG Servo Error - greater than 4.6 mr for $2.5 \pm 1 \mathrm{sec}$.
MG Servo Error - greater than 4.6 mr for $2.5 \pm 1 \mathrm{sec}$.
OG Servo Error - greater than 4.6 mr for $2.5 \pm 1 \mathrm{sec}$. $3200 \sim$ supply - decrease to 50% of normal level
$800 \sim$ wheel supply - decrease to 50% of normal level
The receipt of this fail indication is ignored by the AGC program when the G\&N system is in the Coarse Align Mode and during the 5 second interval following Coarse Align. In this mode (used only during pre-launch alignment for Mission 501) the servo errors normally exceed the criteria above.
(b) ACCEL FAIL

X PIPA Error - greater than .32 mr for $5 \pm 2 \mathrm{sec}$.
Y PIPA Error - greater than. 32 mr for $5 \pm 2 \mathrm{sec}$.
Z PIPA Error - greater than. 32 mr for $5 \pm 2 \mathrm{sec}$.
The receipt of this fail indication is ignored by the NIGHT WATCHMAN during the coasting phase.

The second phase exercises the AGC executive programs by a request for a new job (NEWJOB) via a periodic programmed interrupt (T4RUPT) with a high job priority (36 - the highest available with the exception of an alarm priority.) This new job examines bit 4 of register OUT 1 and complements it as described above. Should the executive routines or the interrupt processes be disabled (as, for instance, if an AGC program had become trapped in a loop) the NEWJOB request would not be honored, the complement pulse would not be generated, and a G\&N FAIL INDICATION would result.

The G\&N FAIL INDICATION can also be sent to the MCP via the Up Data Link (UDL) based upon ground assessment of tracking or telemetry data. Upon receipt of G\&N FAIL INDICATION the MCP immediately disables all mode commands from the AGC and commands the SCS system to SCS $\triangle V$ MODE. The attitude reference becomes the BMAGS/AGCU. The SCS system is now no longer responsive to any G\&N-originated attitude signals, attitude error signals, engine on-off commands (disabled by removal of ΔV mode), or AGC commands via the MCP.

The MCP can be reset to retransfer S / C control to $G \& N$; however, this command must come from the ground.

4. MISSION LOGIC AND TIMELINE

4.1 Operational Constraints

The $G \& N$ system, the MCP, and the ground command systems to the G\&N and the MCP must be operated within certain constraints both in normal and backup modes.

4.1.1 MCP Ground Commands

The following list details the MCP real-time commands (RTC's) planned for support of Mission 501. This list is restricted to commands to the Mission Control Programmer and is exclusive of commands to the SIVB and AGC Uplink commands:

RTC \#	02... 04	Fuel Cell Purge (cell\#1 - cell\#3)
etc.	05	Reset RTC 02-04
	10	Lifting Entry - Necessary for no-roll entry in the SCS entry mode
	11	Direct Thrust On - Turns on SPS engine; backup to onboard command in case of malfunction.
	12	Direct Thrust Off - Turns off SPS engine; backup to onboard command in case of malfunction.
	13	Reset RTC 10-12
	14	Direct rotation + pitch
	15	Direct rotation - pitch
	16	Direct rotation + yaw
	17	Direct rotation - yaw
	20	Direct rotation + roll
	21	Direct rotation - roll
	22	Direct Ullage
	23	Reset RTC 14-22
	24/32	SM Quad A Propellant Off/ On
	25/33	SM Quad B Propellant Off/On
	26/34	SM Quad C Propellant Off/ On
	27/35	SM Quad D Propellant Off/ On
	30/36	CM System A Propellant Off/On
	31/37	CM System B Propellant Off/ On
	40	Let Jettison Start-Backup to onboard command from SIVB

G\&N Failure - Backup to G\&N function $G \& N$ Failure Inhibit - Reset $G \& N$ failure Reset RTC 41-42
Roll Rate Gyro Backup-Switches roll BMAG to rate mode and uses this gyro for roll rate data Pitch Rate Gyro Backup - Switches pitch BMAG to rate mode and uses this gyro for pitch rate data
Yaw Rate Gyro Backup - Switches yaw BMAG to rate mode and uses this gyro for yaw data

FDAI align
Reset RTC 44-47
-Z Antenna ON
$+Z$ Antenna ON
G\&N Antenna Switching - Enable of G\&N command capability for Antenna switching
Roll A and C Channel Disable - Disables the automatic A and C RCS channels
Roll B and D Channel Disable - Disables the automatic B and D RCS roll channels
Pitch Channel Disable - Disables the automatic pitch RCS channels
Yaw Channel Disable - Disables the automatic yaw RCS channels
Reset RTC 54-57
CM/SM Separation - Backup to onbaord command from the G\&N

UDL S Band RCVR ON
UDL UHF RCVR ON
H_{2} \#2 Htr Fan
O_{2} \#2 Htr Fan
H_{2} \#1 Htr Fan
O_{2} \#1 Htr Fan
Reset RTC 64-67
Abort (Also Backup for SIVB/CSM Separation Start)
Reset RTC 73-77

Commands 14-17, 20-21, and 54-57 will be used to control S/C attitude in cases where the $G \& N$ is not operable.

Of these commands only six are intimately concerned with $G \& N$ operation; RTC 11, 12, 22, 41, 42 and 71.

RTC 11- Direct
Thrust
On:

RTC 12 - Direct
Thrust
Off

RTC 22 - Direct
Ullage:

RTC 41-G\&N
Failure:

AGC Engine On logic presently includes a monitor of ΔV to ensure engine ignition. This monitor continues for 20 sec after sensing no thrust during which time the ground might start the SPS engine. If suitable ΔV has not been sensed after 10 seconds the AGC would exit from thrust vector control and hold attitude until the free-fall interrupt occurs. Should the ground successfully start the engine within 10 sec the AGC will guide the burn normally. It must be assumed however that as the AGC Engine On command did not work correctly, AGC Engine Off will not either. The ground must therefore command a timely "Thrust Off" compatible with the AGC TVC calculation.

The ground may thus inhibit starting of or may stop the SPS thrust. Should AGC-controlled firing be inhibited or shutdown the ΔV monitor logic would after 20 seconds exit from thrust vector control and hold attitude until the free-fall interrupt occurs.

A backup command for ground use during a ground controlled burn in the $\operatorname{SCS} \Delta V$ mode. Its use during $G \& N$ controlled flight would inhibit $G \& N$ attitude control with the possibility of the G\&N being unaware of the loss.

This command is a ground backup for the G\&N originated command. All control of the vehicle by the $G \& N$ is thereby inhibited.

RTC 42-G\&N
Failure
Inhibit:

RTC 71- Abort

This command overrides the G\&N FAIL signal. Use of this command does not guarantee that the AGC will correctly resume control of the S / C.

This command initiates SIVB/CSM Separation in a boost abort. For appropriate AGC action, it must be accompanied by an abort command to the AGC via AGC Uplink.

The G\&N BACKUP ABORT command, previously a backup to RTC 71, has been deleted from the AGC/MCP interface (see para. 3. 2.2 section 10).

4.1.2 Backup Attitude Reference System

The backup attitude reference system is the SCS BMAGs in conjunction with AGCU. G\&N control of the CSM orientation is always done with consideration for the maintenance and accuracy of this system. As the SCS system is presently designed, the BMAGs operate as free gyros in the G\&N $\triangle V$ MODE; in other modes they are caged through the AGCU.

As the mechanical stops of the BMAG's are at $\pm 17^{\circ}$ it is apparent that, during boost (Monitor MODE) and attitude maneuvers (G\&N ATTITUDE CONTROL OR ENTRY MODES) both involving angular changes of over 17 , the BMAG'S must be caged. In the $G \& N \Delta V$ mode however, should attitude changes over 17° occur, integrity of the backup attitude system will be lost. Such changes are not anticipated in the nominal mission.

The rate limits of the backup attitude reference system in the caged mode are $5^{\circ} / \mathrm{sec}$ in Pitch and Yaw and $20^{\circ} / \mathrm{sec}$ in Roll. To preclude controlling the S / C rates beyond which the backup attitude reference system can maintain its reference, the $G \& N$ will limit its command rate to the CSM and CM.

4.1.3 External Data Requirements

G\&N requirements for external data fall into three categories:
a) Navigation Data via the Uplink

State Vector updates are required for successful G\&N control.
b) Radar Tracking Data for Post Flight Analysis

Tracking data requirements, to a degree of accuracy and completeness which would permit the most comprehensive determination of G\&N flight performance, are given in Table 4-1. Subsequent revisions of this plan will reflect more realistic requirements.
c) Radar Tracking Data for Real-Time Monitor of G\&N

This requirement is given by Table 4-2, which is derived from the total indication error expected in the position and velocity data telemetered to the ground via the AGC DOWNLINK.
4.2 501 AGC
NAME
Initialization
P01
Gyro Compassing
P02
Optical Verification
P03
Inertial Reference
P04

Pre LET-JET Boost Monitor

P11
*Post LET-JET
Boost Monitor
P14

ACTIVITY

Manual \rightarrow START P01

AGE or
\rightarrow START P02
UPLINK
MANUAL \rightarrow START p03
(does not interfere with P02)
$\begin{aligned} \text { GRR } \rightarrow & \text { START P04 } \\ & \text { TERMINATE GYRO COMPASSING } \\ & \text { START READING PIPAS } \\ & \text { COMPUTE REFSMAT } \\ & \text { TRANSFORM STATE VECTOR } \\ & \text { TOIMU CO-ORDINATES } \\ \downarrow & \text { START AVE G } \\ & \text { CALCULATE TAF }\end{aligned}$
$\mathrm{L} / \mathrm{O} \rightarrow$ START P11
If GRR ${ }^{\downarrow}$ not received Perform
P04 Function
COMMAND INU ATT. CONT. MODE
UPDATE TARGET VECTORS TO L/O TIME
Call P14 at $\mathrm{T}_{\mathrm{o}}+183 \mathrm{sec}$.
TORQUE CDU's to BOOST POLYNOMINALS
START ${ }^{\downarrow}$ P14 (called)
COMMAND IMU to
FINE ALIGN MODE
START COMPUTATION OF GIMBAL ANGLE RATES (TUMBLE MONITOR)

[^2]Uplink Abort COMMAND

SIVB/CSM SEP

 LOGICACTIVITY

UPLINK \rightarrow SET ABORT
FLAG

SIVB/CSM
SEP. DISC \rightarrow CMD + X TRANS ATT. CONT. MODE CMD GMP ON

SET BURN SW to
ARRST
2.5

TERM SCS G\&N
ATT. CONT. MODE
0.25 sec .

CMD SCS to G\&N
$\triangle V$ MODE
0.25 sec .

CMS ENG. ON

CONT MODE
CMD ENG. OFF
N -is ABORT SIGNAL SET?

Set BURN SW to SPS 1

Y
Set BURN SW to ABORT
CALC MAN U. to ABORT BURN ATT

NAME

SIVB/CSM SEP LOGIC (Cont.)

ACTIVITY

```
TERM. + X TRANS
SET T \(\mathrm{T}_{\mathrm{IGN}}=\mathrm{T}+94.3 \mathrm{sec}\)
```



```
CALC. MANU. to
```

SPS 1 ATT.

SPS 1 ATT.
89.5 sec (allowed)

TERM SCS G\&N
ATT. CONT. MODE
0.25 sec

CMD. SCS to G\&N
$\Delta \mathrm{V}$ MODE
0.25 sec

CMD. ENG. ON

Do ABORT BURN
STEERING
(Posigrade to
Alt. Recovery)

STEERING OR
T_{FF} INTRPT
EXITS TO
ENGINE OFF
ROUTINE
ROUTINE EXITS
TO ATT. HOLD
(P23)
from D Page 4-7

SPS1 PRE-THRUST
P31

NOTE: SPS1 IS A NO ULLAGE BURN

SPS1 BURN

Called by ENGINE ON Routine
 COLD SOAK (P21)

CSM COLD SOAK MANEUVER
P2 1

CALLED BY ENGINE OFF ROUTINE TERM. READING PIPAS

TALC. MAN. TO COLD SOAK

CALL MANEUVER TO COLD SOAK ATTITUDE

CALLED BY P21

CALL P25 AT T + X sec

NOTE: $\overline{\mathrm{R}}, \overline{\mathrm{V}}, \mathrm{T}$ UPDATE REQUIRED FOR MISSION SUCCESS

SPS2 IGNITION TIME DETERMINATION P25 (Cont.)

SPS2
P42

ENGINE OFF ROUTINE

MANEUVER TO
C/MSC Sep.

P62

Re-Entry
Maneuver

Call Att. Man. to Sep. Att

Kill Att Man.

Call CDU X Scaling Job
5 sec

CMD ISS to ENTRY MODE

RE-ENTRY MODE

Att.
T_{FF} IN TERRUPT LOGIC

NORMAL SEQUENCE OF EVENTS - MISSION 501 S/C / MISSION CONTROL PROGRAMMER / G\&N

* ABSOLUTE TIMES ARE ONLY APPROXIMATE SINCE THEY ARE TAKEN FROM THE PRELIMINARY

㮣	
\％	
$\stackrel{3}{3}$	
\％	－
\％	安
是	$\stackrel{5}{4}$
宸	
管	GaOw toyinos ganlilily

$\begin{aligned} & \hline 0 \\ & \text { Z } \\ & 0 \\ & \text { O} \end{aligned}$	
-	
$\begin{aligned} & \stackrel{Q}{Z} \\ & \hline \end{aligned}$	
E	
$\begin{aligned} & u \\ & \text { w } \\ & \text { Win } \end{aligned}$	
$\sum_{\text {胃 }}$	
$\begin{array}{ll} z \\ & z \\ 0 & z \\ 0 \\ 0 & 0 \\ & 0 \\ 0 \end{array}$	

旁	
\％	
\％	就
\％	
\％	
离	
害	

\qquad
GaOW SDS

[^3]GaOw sos

5. GUIDANCE EQUATIONS FOR CSM

5.1 Powered Flight Guidance Scheme

The guidance scheme for Mission 501 is the same as that planned for all Apollo CSM powered flights. It is based on the possibility of an analytical description of a required velocity ($\underline{v}_{\mathrm{r}}$) which is defined as the velocity required at the present position \underline{r}, in order to achieve the stated objective of a particular powered flight maneuver.

If \underline{v} is the present velocity, then the velocity to be gained (\underline{v}) is given by

$$
\begin{equation*}
\underline{v}_{\mathrm{g}}=\underline{v}_{\mathrm{r}}-\underline{\mathrm{v}} \tag{5-1}
\end{equation*}
$$

Differentiation of both sides yields

$$
\begin{align*}
\dot{\underline{v}}_{\mathrm{g}} & =\dot{\mathrm{v}}_{\mathrm{r}}-\dot{\dot{\mathrm{v}}} \tag{5-2}\\
& =\dot{\underline{v}}_{\mathrm{r}}-\underline{\mathrm{g}}-\underline{a}_{\mathrm{T}} \tag{5-3}\\
& =\underline{\mathrm{b}}-\underline{\mathrm{a}} \mathrm{~T} \tag{5-4}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{\mathrm{b}}=\underline{\dot{\mathrm{v}}}_{\mathrm{r}}-\underline{\mathrm{g}} \tag{5-5}
\end{equation*}
$$

and g is the gravitational acceleration.
The steering command is developed by formulating a desired thrust acceleration ($\underline{a}_{T_{\mathrm{D}}}$) as that which satisfies the equation

$$
\begin{equation*}
\underline{\mathrm{a}}_{\mathrm{T}_{\mathrm{D}}} \times \underline{\mathrm{v}}_{\mathrm{g}}=\mathrm{cb} \times \underline{\mathrm{v}}_{\mathrm{g}} \tag{5-6}
\end{equation*}
$$

where c is a constant scalar.
Hence a measure of the error between $\underline{a}_{T_{D}}$ and the actual acceleration \underline{a}_{T} is given by

$$
\begin{equation*}
\underline{\omega}_{c}=\frac{\underline{v}_{\mathrm{g}} \times \underline{\dot{m}}}{\left|\underline{\mathrm{v}}_{\mathrm{g}}\right||\underline{\mathrm{m}}|} \tag{5-7}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\dot{m}}=\mathrm{c} \underline{\mathrm{~b}}-\underline{\mathrm{a}} \mathrm{~T} \tag{5-8}
\end{equation*}
$$

It can be verified that $\underline{\omega}_{c}$ is also the axis about which the thrust vector should be rotated to null the error. Hence $\underline{\omega}_{c}$ is used in forming the steering command.

Once a required velocity $\underline{v}_{\mathrm{r}}$ is defined satisfactorily, the procedure for the generation of the error vector $\underline{\omega}_{c}$ is the same for all phases of powered flight. The equations for the required velocity for the various phases are described in the succeeding pages. Descriptions of the initial alignment procedure, ignition and cutoff logic and implementation in AGC are also included.

5.2 Nominal Mission

5.2.1 Required Velocity

The required velocity for the first and second burns of the nominal mission is defined as that velocity which will put the vehicle in an elliptical trajectory of predefined parameters (semi latus rectum p and eccentricity e). The values used are

First Burn

$$
\begin{array}{ll}
p=3.2849 \times 10^{7} \mathrm{ft} & p=4.1969 \times 10^{7} \mathrm{ft} \\
e=0.59588 & e=0.99913
\end{array}
$$

These numbers correspond to the trajectory described in Section 6. The value of c in $E q(5-6)$ is 1.0 .

The required velocity can be written as

$$
\begin{equation*}
\underline{v}_{r}=\underline{i}_{r} v_{r a d}+i_{H} v_{H} \tag{5-9}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{v}_{\mathrm{rad}}= \pm \underset{p}{\mu} e^{2}-\left(\frac{\mathrm{p}}{\mathrm{r}}-1\right)^{2} 1 / 2 \tag{5-10}\\
& \mathrm{v}_{\mathrm{H}}=+\frac{\mu \mathrm{p}}{\mathrm{r}^{2}} 1 / 2 \tag{5-11}\\
& \mathrm{p}=\mathrm{a}\left(1-\mathrm{e}^{2}\right) \tag{5-12}\\
& \underline{i} \mathrm{r}=\frac{\underline{r}}{\underline{r}} \tag{5-13}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{\underline{i}}_{\mathrm{H}}=\operatorname{UNIT}\left(\underline{i}_{N} \times \underline{i}_{\mathrm{r}}\right) \tag{5-14}
\end{equation*}
$$

The positive sign is used in Eq (5-10) for the radial velocity during first burn and the negative sign is used during second burn.

5.2.2 Yaw Steering

Plane control during the nominal mission is achieved by specifying the normal $\left(\underline{i}_{N}\right)$ to the required plane appearing in $\operatorname{Eq}(5-14)$. The required trajectory plane is defined to be the plane containing the present vector (r) and the landing site vector taken as point of drogue chute deployment at $24,000 \mathrm{ft}\left(\underline{\mathrm{r}}_{\mathrm{LS}} ; 31.03 \mathrm{~N}, 198.02 \mathrm{E}\right)$ at the nominal time $(31,140-\mathrm{sec})$ of landing and is given by

$$
\begin{equation*}
\underline{i}_{N}=\operatorname{UNIT}\left(\underline{r} \times \underline{r}_{L S}\right) \operatorname{Sign}\left(\underline{r} \times \underline{r}_{L S}\right) \cdot \underline{i}_{w} \tag{5-15}
\end{equation*}
$$

where ${\underset{\mathrm{i}}{\mathrm{w}}}$ is the earth's polar unit vector. At cutoff the vehicle velocity will be equal to \underline{v}_{r}, thereby ensuring the trajectory plane to be $\underline{\underline{i}}_{N}$ according to Eqs (5-9) and (5-14).

During the third and fourth burns, no computations are made for \underline{v}_{r}. The desired thrust direction is held fixed at the direction computed at the end of the second burn.

5.2.3 Engine Ignition

In the nominal mission, the engine is always ignited after a fixed interval of time from a previous event. The first burn is initiated 96.0 seconds after receipt of SIV-B/CSM separation signal, and the second burn 600 seconds after $T_{f f}$ falls below the criterion ($T_{f f}(\min)$.

5.2.4 Engine Cutoff

During all the burns a time to cutoff (T_{g}) is continuously being estimated from the equation

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}=\mathrm{k} \underline{\mathrm{v}}_{\mathrm{g}} \cdot \underline{\mathrm{~m}} /|\underline{\mathrm{m}}| \tag{5-16}
\end{equation*}
$$

where k is a factor that is a first approximation to the thrust acceleration increase over 4 sec for SPS1 and SPS2. The value(s) of k have not yet been determined. The accuracy of T_{g} increases as $\mathrm{T}_{\mathrm{g}} \rightarrow 0$, because as $\underline{v}_{\mathrm{g}} \rightarrow 0$, $\underline{b} \rightarrow 0$.

When T_{g} falls below the critical value of 4.0 seconds, the clock is set to turn off the engine T_{g} seconds later.

5.3 Aborts During Boost

The guidance equations for aborts during boosi have been designed to meet the following constraints that have been imposed on the spacecraft attitude.

The visual horizon is to be kept on a hairline on the forward window during the entire powered flight and this line should be independent of the time at which abort is initiated.

The window geometry indicates that this requires the thrust direction to be between 4° and 36° to the line of sight to the visual horizon. Within this limitation, the larger tha angle the greater is the interval of time before nominal SIV-B cutoff during which the capability exists to reach a particular recovery area in the event of an abort. Hence a thrust angle of 35° to the line of sight to the horizon is used (see Fig. 5.1).

5.3.1 Required Velocity

The definition of a required velocity, in the usual sense, consistent with the direction of thrust pre-specified as above, is not possible. Hence, a pseudo required velocity is defined for aborts which, when incorporated into the general steering scheme, will satisfy not only the constraint on the thrust direction but also permit recovery from a specified landing area.

Let $\underline{r} e$ be the entry position ($400,000 \mathrm{ft}$) corresponding to a free fall from the present position. Then we can write

$$
\begin{align*}
x & =\tan \frac{\theta_{f}}{2} \tag{5-17}\\
& =\frac{r_{e}-r}{r_{e} \cot \gamma+r \cot \gamma_{e}} \tag{5-18}
\end{align*}
$$

and

$$
\begin{align*}
& \sin \theta_{f}=\frac{2 x}{x^{2}+1} \tag{5-19}\\
& \cos \theta_{f}=\frac{1-x^{2}}{1+x^{2}} \tag{5-20}
\end{align*}
$$

where

$$
\begin{align*}
& \cot \gamma=\frac{\frac{v}{} \cdot \frac{\dot{i}}{\underline{v} \cdot \dot{I}_{H}}}{H^{\prime}} \tag{5-21}\\
& \cot \gamma_{e}=r / p\left[e^{2}-\left(\frac{p}{r_{e}}-1\right)^{2}\right]^{1 / 2} \tag{5-22}
\end{align*}
$$

Fig. 5-1 Window Geomerry

$$
\begin{align*}
& \underline{i}_{H}^{\prime}=\underline{i} p \times \underline{i} r \tag{5-23}\\
& \underline{i}_{p}=\operatorname{UNIT}(\underline{r} \times \underline{v}) \tag{5-24}
\end{align*}
$$

θ_{f} is the free-fall central angle to the entry point,
r_{e} is the radius at $400,000 \mathrm{ft}$ altitude,
γ_{e} is the flight path angle w.r.t the local vertical at entry
γ is the present flight path angle (w.r.t. vertical)
The entry-point is given by

$$
\begin{equation*}
\left.\underline{r}_{e}=r_{e} \underline{(i}_{r} \cos \theta_{f}+\underline{i}_{H^{\prime}} \sin \theta_{f}\right) \tag{5-25}
\end{equation*}
$$

If perigee is higher than r_{e}, \underline{r}_{e} does not exist.
Now let $\underline{\mathrm{r}}_{\mathrm{T}}$ be the desired landing site (target vector) at the nominal time. The target vector for aborts is the inertial position of $28.3^{\circ} \mathrm{N}$ and 340.5° E longitude at 1350 seconds from lift-off. This choice corresponds to minimum plance change for aborts at 681.075 seconds from the nominal boost trajectory. The normal (1_{N}) to the desired plane is defined in section 5.3.2.

The desired entry point ($\underline{r e d}$) is a function of the entry velocity and flight path angle. This vector is computed during each computational repetition as a function of the expected entry velocity and the inertial location of the nominal landing site.

If the engine were to be cut-off at the present time, the velocity at entry (v_{e}) will be (from the vis-viva integral)

$$
\begin{equation*}
\mathrm{v}_{\mathrm{e}}=\left[\mathrm{v}^{2}+2 \mu\left(\frac{1}{r_{\mathrm{e}}}-\frac{1}{\mathrm{r}}\right)\right]^{1 / 2} \tag{5-25a}
\end{equation*}
$$

Based on this velocity v_{e} an anticipated entry range (ϕ_{e}) is computed from an empirical formula

$$
\begin{equation*}
\phi_{e}=\frac{6076.15}{R_{e}}\left(-15064+0.64286 v_{e}+0 v_{e}^{2}\right) \tag{5-25b}
\end{equation*}
$$

if $\mathrm{v}_{\mathrm{e}}>24600 \mathrm{ft} / \mathrm{sec}$, and

$$
\begin{equation*}
\phi_{\mathrm{e}}=\frac{6076.15}{\mathrm{R}_{\mathrm{e}}}(750) \tag{5-25c}
\end{equation*}
$$

if $\mathrm{v}_{\mathrm{e}}<24600 \mathrm{ft} / \mathrm{sec}$.

[^4]The desired entry vector ($\underline{r}_{\text {ed }}$) is computed as

$$
\begin{equation*}
\left.\underline{r}_{e d}=r_{e} \underline{1}_{-r_{L S}} \cos \phi_{e}-\operatorname{UNIT}\left(\underline{1}_{\mathrm{N}} \times \underline{1}_{\mathrm{r}_{\mathrm{LS}}}\right) \sin \phi_{\mathrm{e}}\right) \tag{5-25d}
\end{equation*}
$$

At cut-off, $\underset{e d}{ }=\underline{r} e^{\text {and }}$ the actual entry velocity is v_{e}, satisfying the entry range equation.

The error d can be written as

$$
\begin{equation*}
\mathrm{d}=\underline{r}_{\mathrm{ed}}-\underline{r}_{e} \tag{-26}
\end{equation*}
$$

The rate of change of this error is computed by differencing \underline{r}_{e} as

$$
\begin{align*}
\dot{d} & =\frac{\Delta d}{\Delta t} \tag{5-27}\\
& =\left|\frac{r}{e_{n}}-\underline{r}_{n-1}\right| / \Delta t \tag{5-28}
\end{align*}
$$

where the subscript n denotes the nth computational repetition.
Observing that d / \dot{d} is a measure of the time to cutoff $\left(T_{g}\right)$, let the magnitude of \underline{v}_{g} be defined as

$$
\begin{equation*}
\underline{v}_{\mathrm{g}}=\frac{\mathrm{d}}{\mathrm{~d}} \quad \underline{\mathrm{a}}_{\mathrm{T}} \tag{5-29}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{v}_{g}=\frac{d}{\Delta d} \quad \Delta V \tag{5-30}
\end{equation*}
$$

where $\Delta \mathrm{v}$ is the velocity increment measured with the accelerometers in the interval Δt. This formulation of $\left|\frac{v}{g}\right|$ enables the cutoff Eq(5-16) to be used in terminating an abort burn.

Now consider Eq (6). Set $c=0$; then

$$
\begin{equation*}
\underline{\mathrm{a}}_{\mathrm{T}}^{\mathrm{D}} \text { } \times \underline{\mathrm{v}}_{\mathrm{g}}=0 \tag{5-31}
\end{equation*}
$$

If the direction of \underline{v}_{g} is chosen as the desired and known direction of \underline{a}_{T}, the specified constraint on the spacecraft attitude will be satisfied.

Figure 5-1 shows the geometry of the spacecraft window. The angle ϕ between the thrust and \underline{r} is given by

$$
\begin{equation*}
\phi=\theta+\sin ^{-1}\left(\frac{\mathrm{R}_{\mathrm{vh}}}{|\underline{\mathrm{r}}|}\right) \tag{5-32}
\end{equation*}
$$

where θ is the specified an gle $\left(35^{\circ}\right)$ to the horizon and R_{vh} is the radius to the visual horizon.

From Eq (5-32) and Eq (5-30) we can define $\underline{v}_{\mathrm{g}}$ as

$$
\begin{equation*}
\underline{v}_{g}=\frac{d}{\Delta d}|\underline{\Delta v}|\left(-\cos \phi \underline{i}_{r}+\sin \phi \dot{i}_{H^{\prime}}\right) \tag{5-33}
\end{equation*}
$$

5.3.2 Yaw and Roll Steering

The development of Eq (5-33) is based on $\underline{\underline{i}}_{\mathrm{r}}$ and $\underline{\underline{i}}_{\mathrm{H}}{ }^{\prime}$ which are both in the present trajectory plane according to Eq (5-23). However, normally a plane change will be required to reach the same landing site from different points of aborts on the boost trajectory.

Let the plane containing the present position r and the target vector (see Section 5.3.1) $\underline{\mathrm{r}}_{\mathrm{T}}$ be defined by

$$
\begin{equation*}
\underline{i}_{N}=\operatorname{UNIT}\left(\underline{r}^{\times} \underline{r}_{T}\right) \operatorname{Sign}\left(\underline{r} \times \underline{r}_{T}\right) \cdot \underline{\mathbf{i}}_{\mathrm{w}} \tag{5-34}
\end{equation*}
$$

The velocity increment along \underline{i}_{p} (normal to \underline{v}) to null the error between ${\underset{\sim}{i}}_{p}$ and ${\underset{\sim}{i}}_{N}$ is given by (see Fig. 5-2)

$$
\begin{equation*}
\left.\Delta v_{N}=|v| \underline{\underline{i}}_{p} \times \underline{i}_{N}\right) \cdot \underline{i}_{r} \tag{5-35}
\end{equation*}
$$

which is equivalent to

$$
\Delta v_{N}=|v|\left(-\underline{i} H^{\prime}\right) \cdot \underline{i}_{N}
$$

The acceleration along $\underset{\underline{i} p}{ }$ required to accomplish the plane change is given by

$$
\begin{equation*}
\underline{a}_{N}=\underline{i}_{p} \frac{\Delta v_{N}}{T_{g}+\delta} \tag{5-36}
\end{equation*}
$$

where δ is a small scalar (5 seconds). In order to prevent large yaw rate commands, a limit of $8 \mathrm{ft} / \mathrm{sec}^{2}$ is imposed on the magnitude of a_{N}.

Equation (5-33) can be now modified to include yaw steering, as

$$
\begin{equation*}
\underline{v}_{\mathrm{g}}=\underline{\mathrm{i}}_{\mathrm{T}} \frac{\mathrm{~d}}{\Delta \mathrm{~d}}|\Delta \mathrm{~V}| \tag{5-37}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{i}_{\mathrm{T}}=\operatorname{UNIT}\left[-\underline{\mathrm{i}}_{\mathrm{r}} \cos \phi+\operatorname{UNIT}\left(\underline{\mathrm{i}}_{\mathrm{H}^{\prime}} \mathrm{a}_{\mathrm{T}} \cos 20^{\circ}+\mathrm{a}_{\mathrm{n}}\right) \sin \phi\right] \tag{5-38}
\end{equation*}
$$

and a_{T} is the magnitude of the thrust acceleration, and the $\cos 20^{\circ}$ term compensates in part for the approximation of projecting the thrust vector onto the horizontal plane.

The required velocity is given by

$$
\begin{equation*}
\underline{v}_{r}=\underline{v}^{+} \underline{v}_{g} \tag{5-39}
\end{equation*}
$$

where \underline{v}_{g} is given by Eq(5-37). With the required velocity so computed and with $c=0$, the same steering ($\mathrm{Eq} 5-6$) as for the nominal mission is used.

The rate command resulting from the required velocity $\underline{v}_{\mathrm{r}}$ has only pitch and yaw components. However, the vehicle must be rolled such that the pitch axis is in the horizontal plane (see Fig. 5-2). This is achieved by generating a roll command ($\underline{\omega}_{R}$) proportional to the cross product of the desired pitch-axis vector, unit ($\underline{r} \times \underline{i}$ roll), with the actual pitch axis unit vector, $\underline{i}_{\text {pitch }}$.

$$
\underline{\omega}_{R}=K_{\text {roll }}\left[\underline{i}_{\text {roll }} \cdot\left(\underline{i}_{\text {pitch }} \times \text { UNIT }\left[\underline{r}^{\times} \underline{i}_{\text {roll }}\right]\right) \underline{i}_{\text {roll }}\right](5-39 a)
$$

where $K_{\text {roll }}=0.05$ for 501 .
The roll rate command is added to the rate command generated from Eq (5-7).

Fig. 5-2 Computation of \underline{a}_{n} and $\underline{\underline{i}}_{t}$

5.3.3 Engine Cutoff

When T_{g} falls below 4.0 secs, the clock is set to turn off the engine T_{g} seconds later under normal area control. However, the engine will be turned off if any one of the following violations ha: occurred before $\mathrm{T}_{\mathrm{g}}<4.0$ secs.
a) Free-fall time to $400,000 \mathrm{ft}^{*}$ is below 200 seconds
b) ${\underset{r e}{e}}$ is beyond \underline{r}_{T}. That is,

$$
\begin{equation*}
\underline{\mathbf{r}} \cdot \underline{\mathbf{r}}_{\mathrm{e}}<\underline{\mathbf{r}} \cdot \underline{\mathbf{r}}_{\mathbf{T}} \tag{5-40}
\end{equation*}
$$

c) If term in square brackets in Eq. (5-22) is negative, (i.e. if $\cot ^{2} \gamma_{e}$ is negative).
d) If the free-fall angle θ_{f} exceeds 53.13° (i. e. if x in Eq. (5-17) exceeds $1 / 2$).

5.4 AGC Computations

Since the information about the thrust acceleration comes from the accelerometers in the form of velocity increments (Δv), the cemputations in the AGC are in terms of increments of velocity rather than instantaneous acceleration. The repetetive guidance computations are shown in the form of a block diagram in Fig. 5-3. The computational blocks are common to all powered flight maneuvers except the computation of \underline{v}_{r} described in the preceeding sections.

5.4.1 Average g Equations

The vector position and velocity are updated in each computational cycle with a set of equations based on the average gravitational acceleration written as

$$
\begin{gather*}
\underline{r}_{n}=\underline{r}_{n-1}+\Delta t\left(\underline{v}_{n-1}+\underline{g}_{n-1} \frac{\Delta t}{2}+\frac{\Delta v}{2}\right) \tag{5-46}\\
\underline{g}_{n}=\frac{-\mu}{r_{n}^{2}}\left[\left[1+\left(\frac{r_{e}}{r_{n}}\right)^{2} J\left(1-5 \sin ^{2} \phi\right)\right] \underline{i}_{r_{n}}+\left(\frac{r_{e}}{r_{n}}\right)^{2} \quad 2 J \sin \phi \underline{i}_{w}\right](5-47) \tag{5-47}
\end{gather*}
$$

[^5]

5-12
and

$$
\begin{equation*}
\underline{v}_{n}=\underline{v}_{n-1}+\frac{\left(g_{n-1}+g_{n}\right)}{2} \Delta t+\Delta \underline{v} \tag{5-48}
\end{equation*}
$$

where the subscript n denotes the nth computational repetition.
$J=1.62346 \times 10^{-3}$, the first gravitation harmonic coefficient. $\sin \phi=\sin$ (Geocentric Latitude)

$$
=\underline{i}_{\mathrm{i}}^{\mathrm{n}} .
$$

5.4.2 Steering Command

The vector \underline{b} was defined in Eq. (5.5) as

$$
\begin{equation*}
\underline{\mathrm{b}}=\dot{\underline{v}}_{-\mathrm{r}}-\underline{\mathrm{g}} \tag{5-5}
\end{equation*}
$$

In the AGC (as shown in Fig. 5-3), the increment (byt) is computed as

$$
\begin{equation*}
\underline{\mathrm{b}} \Delta \mathrm{t} \cong \underline{\underline{\underline{ }}} \underline{\mathrm{v}} \mathrm{r}-\mathrm{g} \Delta \mathrm{t} \tag{5-49}
\end{equation*}
$$

Then the steering command in Eq.(5-7) can be written as

$$
\begin{equation*}
\underline{\Delta \theta}_{c}=\frac{\underline{v}_{g} \times \Delta \mathrm{m}}{\left|\underline{v}_{\mathrm{g}} \| \Delta \mathrm{m}\right|} \Delta t \tag{5-50}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{\Delta \theta} \mathrm{c}=\underline{\omega}_{\mathrm{c}} \Delta \mathrm{t} \tag{5-51}\\
& \underline{\Delta \mathrm{~m}}=\mathrm{c} \underline{\mathrm{~b}} \Delta \mathrm{t}-\underline{\mathrm{v}} \tag{5-52}
\end{align*}
$$

Before being output to the attitude control system, the steer law command is modified as follows:

$$
\underline{\Delta \theta}_{\text {out }}=\mathrm{K}_{1} \Delta \theta_{c}+\mathrm{K}_{2} \Sigma \underline{\Delta \theta}_{c}
$$

For $501 K_{1}=1 / 8, K_{2}=1 / 100$, and the second term is limited in magnitude to 1°.

5.4.3 Orbital Integration Equations

Position and velocity during the free-fall phases of the mission are calculated by a direct numerical integration of the equations of motion. Since the disturbing accelerations are small the technique of differential acceleration due to Encke is mechanized in the AGC, as described in MIT Report R-467. The Compleat Sunrise.

5.5 Initial Thrust Alignment

Before the engine is ignited for any particular maneuver, the vehicle should be oriented so that on ignition the thrust is in the desired direction at
that point. Since the time of ionition is known beforehand, the position and velocity at ignition can be computed prior to the arrival of the vehicle at that point. By integrating over Δt seconds from that point, the vectors v_{-g} and bdt ran be computed as shown in Fig. 5-3.

The desired thrust direction can be now calculated (prior to arrival at the ignition point) as

$$
\begin{equation*}
\underline{i}_{T}=\operatorname{UNIT}\left[\underline{q}+\left(a_{T}^{2}-|\underline{q}|^{2}\right)^{1 / 2} \underline{i}_{\mathrm{g}}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
{\underset{\mathrm{i}}{\mathrm{~g}}}=\text { UNIT }\left(\underline{-v}_{\mathrm{g}}\right) \tag{5-54}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\mathrm{q}}=\mathrm{cb}-\left(\underline{\mathrm{i}}_{\mathrm{g}} \cdot \mathrm{cb}\right) \underline{i}_{\mathrm{g}} \tag{5-55}
\end{equation*}
$$

and a_{T} is an estimate of the magnitude of the thrust accelcration.
Once i_{T} is computed from Eq. (5-53), the vehicle is oriented prior to arrival at the ignition point such that the thrust axis is along $\underline{i}^{\prime} \Gamma$, and the pitch axis is along the desired pitch axis vector, UNIT ($\underline{r} \times 1_{\text {roll }}$) i. e. a wings-level, $z(y a w)$ - axis ur roll attitude, using the general attitude maneuver program described in 5.6 .

5. 6 Attitude Maneuvers

5.6.1 Technique

The technique of computing large attitude maneuver sequences with the Block I G\&N System depends on the geometry of Fig. 5-4 and 5-5.

Briefly:

1. A pure spacecraft roll (rotation about ${\underset{X}{X C}}$) will force $\underline{X}_{N B}$ to describe a cone of half angle 33° about $\underline{X}_{\mathrm{SC}}$ (See Fig. 5-4).
2. Gimbal lock is arbitrarily defined to occur when the outer gimbal axis (OGA, X_{NB}) cuts into a cone of half angle 30° about the inner gimbal axis (IGA, $Y_{S M}$). This condition results in a middle gimbal angle exceeding 60° (See Fig. 5-5).
Because the 33° cone can enclose the 30° cone, it is possible to attain any attitude of the $S / C X$-axis by specifying the appropriate vehicle roll attitude that avoids gimbal lock.

Maneuvers are performed as combinations of pure S / C roll sequences and S / C pitch/yaw sequences. An attempt is always made to achieve the desired orientation of the S/C X-axis with a planar pitch/yaw rotation from the present orientation. If $X_{N B}$ were to cut into the lock area during this maneuver, the sequence is recomputed to include a roll to reposition $X_{N B}$ before the pitch/yaw maneuver.

A final roll is always made to attain the desired final roll attitudr.

Figure 5-4

Figure 5-5

Figure 5-6

Under some extreme conditions it is not possible to avoid gimbal lock with a roll, pitch/yaw, roll sequerice. In these cascs it becomes necessary to perform more than one pitch/yaw sequence, with attendant additional roll sequences.

5.6.2 Method of Analysis

S/C attitudes are specified with unit vectors. Maneuvers are defined by vector cross-products, and therefore normally follow the shortest rout.. Let

$$
\begin{aligned}
& \underline{X}_{\mathrm{SC}} \quad=\text { present } \mathrm{S} / \mathrm{C} \text { roll axis } \\
& \underline{\mathrm{X}}_{\mathrm{SCD}} \quad=\operatorname{desired} \mathrm{S} / \mathrm{C} \text { roll axis }
\end{aligned}
$$

Plane of pitch/yaw maneuver is defined by

$$
\begin{equation*}
\underline{\mathrm{W}}_{\mathrm{C}}=\text { unit }\left(\underline{\mathrm{X}}_{\mathrm{SC}} \times \underline{\mathrm{X}}_{\mathrm{SCD}}\right) \tag{5-56}
\end{equation*}
$$

This plane is closest to Y_{SM} at "max point" M_{p} (Fig. 5-6) defined by vector

$$
\begin{equation*}
\left.\left.\underline{M}_{p}=\operatorname{UNIT}\left(\underline{W}_{C} \times \underline{Y}_{S M}\right) \times \underline{W}_{C}\right)\right) \tag{5-57}
\end{equation*}
$$

If angle $\alpha \geqslant 63^{\circ}$ (i.e. $33^{\circ}+30^{\circ}$), then gimbal lock is impossible, and the planned pitch/yaw can be done without an initial roll. If $\alpha<63^{\circ}$ the 33° cone will cut or enclose the 30°, and certain roll attitudes will become illegal, depending on the direction of motion, as demonstrated by the heavy arcs of Figs. 5-7 through 5-11. The circles are the intersections of the 30° and 33° cones with the unit sphere.

It is now necessary to examine the conditions at each end of the trajectory to determine the correct roll attitude to be used.

If $\underline{X}_{S C}$ were to pass through a max point on the way to the desired attitude, the condition of Fig. 5-7 pertains. That portion of the arc on the 33° circle which allows acceptable positions of $\underline{X}_{N B}$ is marked by a "normal" begin limit NB, and a "normal" end limit NE. These are referenced from the positive trajectory direction by positive rotations NBL and NEL about \underline{M}_{p}. The trajectory of Fig. 5-8 demonstrates the existence of two acceptable arcs $\mathrm{NB}_{1} \quad \mathrm{NE}_{1}$ and $\mathrm{NB}_{2} \mathrm{NE}_{2}$, defined by four normal limit angles $\mathrm{NBL}_{1}, \mathrm{NEL}_{1}, \mathrm{NBL}_{2}$ and NEL_{2}.

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-12

$$
\begin{equation*}
N(B, E) L= \pm 180^{\circ} \pm 90^{\circ}+\text { OKA } \tag{5-58}
\end{equation*}
$$

where

$$
\begin{equation*}
O K A=\cos ^{-1}\left(\tan \left(30^{\circ}-c\right) / \tan 33^{\circ}\right) \tag{5-59}
\end{equation*}
$$

and c is the angle between $\underline{\mathrm{M}}_{\mathrm{p}}$ and $\underline{\mathrm{Y}}_{\mathrm{SM}}$ (See Fig. 5-7).
The signs in Eq. $(5-58)$ are determined by the geometry of the maneuver.

For motion of $\underline{X}_{S C}$ through a max point the normal limits clearly define regions on the 33° circle where $\underline{X}_{N B}$ is acceptable.

For the condition where the trajectory does not pass through a given max point, but either end of the trajectory lies close to the max point, other limit points can be used to define the acceptable portions of the arc. Figure 5-9 depicts a final desired position $\underline{X}_{S C D}$ for which the 30° and 33° circles intersect. The heavy portions of the arc are unacceptable regions for $\underline{X}_{\mathrm{NB}}$.

To define the arc, two "end" limits are specified as the intersections of the 30° and 33° circles. Using the direction of motion as a reference line and the convention of positive rotation about $\underline{X}_{\mathrm{SCD}}$ the two "end" limit angles in Fig. 5-9 are given by:

$$
\begin{align*}
& B L=A R-S A \tag{5-60}\\
& E L=A R+S A \tag{5-61}
\end{align*}
$$

where $A R$ is measured to a line from $X_{S C D}$ pointing away from $Y_{S M}$, SA is always positive, and angles may exceed 2π.

For the condition of Fig. 5-9, Bis acceptable as a limit. E is not acceptable because during the maneuver it will cross the forbidden area inside the 30° circle. E is said to be a "shaded" limit, and this end of the arc must be defined by the normal limit NE, whose locus is the tangent to the 30° circle.

Other end conditions can result in both limits being "shaded", so that the "normal" limits must be used to define the acceptable arc (See Fig. 5-10), or in neither limit being shaded (See Fig. 5-11), so that both can be used to define the arc.

Figures 5-9, 5-10, and 5-11 can be used to describe conditions at the beginning of the trajectory by replacing $\underline{X}_{\mathrm{SCD}}$ with $\underline{X}_{\mathrm{SC}}$ and reversing the direction of motion.

To determine the roll attitude necessary for a given maneuver the following steps are taken:

1) Determine if trajectory includes a max point. If it does, compute and save the normal limit angles.
2) Determine if either end of the trajectory is within 63° of $\pm \underline{Y}_{S M}$ (i.e. do 30° and 33° cones intersect the beginning or the end of the trajectory?)
If the results of steps (1) and (2) are both "no", the planned pitch/yaw maneuver can be made without an initial roll, and steps (3) through (10) can be skipped.
3) If step (2) yields a "yes", determine if the beginning of the trajectory is within 63° of $\pm \underline{Y}_{S M}$. If it is not, skip to step (5). If it is, determine whether $\underline{X}_{S C}$ will move toward or away from the max point, If towards, the max point has already been determined in step (1) and its ncrmal limits saved. If away from, compute the end limits for the beginning of the trajectory. (If the result of step (1) was "no", motion of $\underline{X}_{S C}$ towards a max point is a special case. Since $\underline{X}_{S C D}$ is closer to gimbal lock than ${\underset{X}{X C}}$, its limits will include those associated with $\underline{X}_{S C}$, and steps (3) and (4) may be omitted).
4) Determine if either of the end limits computed in step (3) is "shaded" or not. If shading exists, replace either or both end limits with the corresponding normal limits, and save the results.
5) If step (2) yielded a "yes", determine if the end of the trajectory is near a max point. If it is, determine whether this max point is on the trajectory (i.e. if it has already been covered in step (1)). If not, compute the end limits for the end of the trajectory.
6) Repeat step (4) for the end limits of step (5).
7) Combine the limit angles computed in steps (1) through (6) and determine those portions of the 33° circle that are acceptable throughout the trajectory.
At this point the 33° circle can be mapped out for acceptable and nonacceptable arcs. This has been done for a random example in Fig. 5-12. Acceptable portions of the circle as determined by steps (1) through (6) are the arcs $B_{1} E_{1}$ and $B_{2} E_{2}$. Only these portions where acceptable arcs overlap are allowed for $\underline{X}_{N B}$, i. e. arcs $B_{1} E_{2}$ and $B_{2} E_{1}$.
8) Determine if the initial roll attitude is such that the position of $\underline{X}_{\text {NB }}$ on the 33° circle is acceptable. If it is, no initial roll is needed. If it is not, specify a desired $\underline{X}_{\mathrm{NB}}$ position midway on an overlapping region.
9) Define a roll maneuver ϕ so that $\underline{X}_{\mathrm{NB}}$ will move around the 33° cone the shorter way to its desired position. (See Fig. 5-11). 10) Check if the roll maneuver of step (9) forces $X_{N B}$ to move into the 30° cone around $\underline{Y}_{S M}$. If it does, reverse the direction of the roll and cause $\underline{X}_{N B}$ to move the longer way around the 33° cone. 11) Following the completion of the roll maneuver, perform the pitch/yaw maneuver defined in direction by Eq. (5-56) and in magnitude by

$$
\theta=\left\{\begin{array}{llll}
\sin ^{-1} & \left(\mid \underline{\underline{x}}_{\mathrm{SC}}\right. & \times & \left.\underline{x}_{\mathrm{SCD}} \mid\right) \tag{5-62}\\
\cos ^{-1} & \left(\mid \underline{x}_{\mathrm{SC}}\right. & \cdot & \left.\underline{x}_{\mathrm{SCD}} \mid\right)
\end{array}\right\}
$$

If the results of step (7) indicate that there are no overlapping acceptable arcs, the planned single pitch/yaw maneuver cannot be done. In this case the maneuver is "split" into two equal co-planar pitch/yaw maneuvers. $\underline{X}_{N B}$ is rolled mid-way into the acceptable region associated with the start of the trajectory and half the pitch/yaw is performed. At the start of the second half of the trajectory, the required roll attitudes are re-evaluated from scratch as if the remainder of the pitch/yaw were a fresh maneuver.

For the case where the required pitch/yaw maneuver is greater than 179° Eqs. $(5-56) \&(5-62)$ are not used to define the trajectory, since \underline{W}_{C} becomes indeterminate in direction. A more convenient choice is made:

$$
\begin{equation*}
\underline{W}_{C}=\operatorname{UNIT}\left(\underline{X}_{S C} \times\left(\underline{X}_{S C} \times \underline{Y}_{S M}\right)\right) \tag{5-63}
\end{equation*}
$$

This ensures the greatest angle between $\underline{Y}_{S M}$ and the trajectory plane, minimizing the need for initial roll maneuvers.

5.6.3 Mochanization

The attitude mancuver computations in the $A G C$ are performed by two distinct routincs. The first, CALCMANU, analyses the maneuver and generates the sequences of submancuvers as described in Section 5.6.2. It requires as input the desired orientation of the spacncraft in the form of three unit vectors, $\underline{X}, \underline{Y}, \underline{Z}_{S C D}$ (along the roll, pitch, yaw axes) expressed in stable member coordinates. The output is a unit vector determining the axis of rotation, $W_{C}(E q .(5-56))$, the magnitude of the rotation about this axis, θ (Eq. (5-62)), and a switch setting indicating a roll or a pitch/yaw maneuver.

The second routine, DOMANU, processes these outputs and generates CDU commands to drive the vehicle in the specified manner. For AS- 501 spacecraft angular rates are limited in command to $4^{\circ} / \mathrm{sec}$ in pitch/yaw and $7.2^{\circ} / \mathrm{sec}$ in roll for CSM maneuvers, and $4^{\circ} / \mathrm{sec}$ and $15^{\circ} / \mathrm{sec}$, respectively, for CM maneuvers. The general expression for a vehicle rate is:

$$
\begin{equation*}
\frac{d!}{d t}=(4,7.2,15) \quad \underline{W}_{C} \tag{5-64}
\end{equation*}
$$

Maneuver commands are computed at fixed intervals. Rate equations are therefore expressed in incremental form:

$$
\begin{align*}
\underline{\Delta \theta} & =\Delta \mathrm{t}(4,7.2,15) \quad \underline{\mathrm{W}} \mathrm{C} \tag{5-65}\\
& =\mathrm{k} \underline{\mathrm{~W}} \mathrm{C}
\end{align*}
$$

The quantity k is the magnitude of the output command at each iteration. The command stays at this level until:

$$
\begin{equation*}
\theta-\Sigma k \leqslant k \tag{5-66}
\end{equation*}
$$

i. e, until the maneuver rotation is less than k degrees from completion. The final increment is then $\theta-\Sigma \mathrm{k}$ degrees. The vector $\Delta \theta$ expressed in slible member coordinates, is resolved into gimbal (CDU) coordinates, as follows:

$$
\begin{align*}
& \Delta A_{o g}=\Delta \theta_{x}-\cos A_{o g} \tan A_{m g} \Delta \theta_{y}+\sin A_{o g} \tan A_{m g} \Delta \theta_{z} \\
& \Delta A_{i g}=\cos A_{o g} \sec A_{m g} \Delta \theta_{y}-\sin A_{o g} \sec A_{m g} \Delta \theta_{z} \tag{5-67}\\
& \Delta A_{m g}=\sin A_{o g} \Delta \theta_{y}+\cos A_{o g} \Delta \theta_{z}
\end{align*}
$$

where a positive gimbal angle increment represents a clockwise rotation of a gimbal about the positive direction of its axis. (See Fig. 5-5 for definition of gimbal axes.)

From the above it can be seen that a maneuver is treated as a constant rate for a fixed time. No attempt is made to modify commands with the inverse responses of either the CDU's or the spacecraft. In order to accomodate the resulting lag in the response of the system, a five-second "settling.' period is inserted after each maneuver to allow the spacecraft to settle into the desired orientation. During this 5-second period the program returns to the routine CALCMANU to check that the maneuver was satisfactorily performed, and to provide DOMANU with initial conditions for the next maneuver in sequence.

Due to the noncommutativity of finite angles, the expressions in Eqs. (5-67) may, for large maneuvers at the higher rates, result in a deviation of the commanded spacecraft axes from the desired trajectory plane. CALCMANU always checks whether $\underline{X}_{S C}$ and $\underline{X}_{S C D}$ are greater than 3 degrees apart. If they are, a "corrective" pitch/yaw maneuver is demanded to bring them into coincidence. DOMANU performs this correction, and eventually returns to CALCMANU. If, finally, the test shows the separation to be less than 3 degrees, CALCMANU computes the exact desired set of gimbal angles and "snaps" the CDU's to these values. The final values are a set of euler angles, θ, ψ, ϕ extracted from the matrix identity:

$$
\left.\begin{array}{|cccc}
\cos 33 & 0 & \sin 33 \\
0 & 1 & 0 \tag{5-68}\\
\sin 33 & 0 & \cos 33
\end{array}\right)\left(\begin{array}{lll}
\cos \phi \cos \psi & -\sin \psi & \cos \psi \\
-\cos \theta \sin \psi \cos \phi & \cos \psi \cos \phi & \begin{array}{c}
\sin \theta \sin \psi \cos \phi \\
+\sin \theta \sin \phi
\end{array} \\
\begin{array}{l}
\cos \theta \sin \phi
\end{array} \\
+\sin \theta \cos \phi
\end{array}\right)
$$

5.7 Time of Free-Fall to Entry

The time of free-fall from any position \underline{r} to the entry interface altitude is given by

$$
\begin{equation*}
\mathrm{t}_{\mathrm{f}}=\sqrt{\frac{\mathrm{a}^{3}}{\mu}}\left[\Delta \mathrm{E}-\Delta \mathrm{S}_{\mathrm{E}}\right] \tag{5-69}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta E=2 \tan ^{-1}\left(\frac{\Delta S_{E}}{2-\frac{r}{a}-\frac{r_{e}}{a}}\right) \tag{5-70}\\
& \Delta S_{E}=-\left[\frac{r_{e}}{a}\left(2-\frac{r_{e}}{a}\right)-p / a\right]^{1 / 2}-\frac{\underline{v} \cdot \underline{r}}{\sqrt{a \mu}} \tag{5-71}\\
& p=\frac{(\underline{r} \times \underline{v})^{\cdot}(\underline{r} \times \underline{v})}{\mu} \tag{5-72}\\
& a=\left(\frac{-}{2}-\frac{\underline{v} \cdot \underline{v}}{\mu}\right)^{-1} \tag{5-73}
\end{align*}
$$

\underline{v} is the velocity at \underline{r} and r_{e} is the entry interface radius.

5. 8 Entry Guidance

Included in this section is a set of flow charts that describe the logic and equations that control the entry vehicle. The value and definition of constants is given in Section 6. A thorough description is provided in MIT Report R-532 (Vol 1) Reentry Guidance for Apollo.

Fig. 5-13. Computer Logic

Fig. 5-14 "Average-g" Navigation

Fig. 5-15 Targeting

Fig. 5-16 Initial Roll

Fig. 5-17 Criterion for Up- or Down-Lift

Fig. 5-18 Huntest

Fig. 5-19 Range Prediction

Fig. 5-20 Upcontrol

Fig. 5-21 Constant Drag Control

Fig. 5-22 Ballistic Phase

ATTITUDE CONTROL PHASE

Calculates commanded gimbal angles (OGC, MGC, IGC) by computing desired orientation of Nav Base with respect to relative velocity vector.

```
ÜVA = UNIT (\overline{V}-KWE ŪZ * UNIT (\overline{R}))
ŪYA = UNIT (\overline{UVA *\overline{R}})
UNNA = UNIT (\overline{UYA * U}VA)
ÜBY = ŪYA COS (ROLLC) + ŪNA SIN (ROLLC)
ŪBX = -UNIT (ŪBY * ÜVA) SIN (13) - ŪVA COS (13)
U}BZ=\overline{U}BX*\overline{U}B
```

Call CALGTA with (ŪBX, ŪBY, ŪBZ) Return with (OGC, IGC, MGC).

Fig. 5-23

Fig. 5-24 Final Phase

$$
5-36
$$

Fig. 5-25 G-limiter

Fig. 5-26 Lateral Logic

$$
\left.\right)
$$

	$\begin{aligned} & \text { I } \\ & \stackrel{y y}{2} \\ & \hline \end{aligned}$						
$\underset{\sim}{\underset{\sim}{x}}$	$\begin{aligned} & \underset{O}{\circ} \\ & \underset{\mathrm{~N}}{2} \end{aligned}$	\sum		$\stackrel{a}{2}$	$\underset{\sim}{\underset{\sim}{w}}$	2	
0	*	*	-				

COMPUTER NAME
= TENTRY
= THETAH
$=$ VSOUARE
= WIE (DTEAROT)

5-28a Computer Variables (cont'd)

$\stackrel{0}{9}$

EXIRA COMPUTER ERASABLE LOCATIONS NOT SHOWN ON FLOW CHARTS

VARIABLE	DESCRIPTION MA)	maximum value
C100	SCALED RECIPROCAL OF DO	
GOTOADOR	ADDRESS SELECTED BY SEOUENCER	
XPIPBUF	BUFFER TO STORE x PIPA COUNTS	
YPIPBUF	BUFFER TO STORE Y PIPA COUNTS	
ZPIPBUF	BUFFER TO STORE 2 PIPA COUNTS	
PIPCTR	COUNTS PASSES THRU PIPA READ ROUTINE	
$J J$	INDEX IN FINAL PHASE TABLE LOOK-UP	
M1	INDEX IN FINAL PHASE TABLE LOOK-UP	
GRAD	INTERPOLATION FACTOR IN FINAL PHASE	
FX	DRANGE/D L/O = F3	2700 NM
$F X+1$	AREF	805 FPSS
$F X+2$	RTOGO	2700 NM
$F x+3$	RDOTREF	VSAT/4
$F X+4$	DRANGE/D RDOY $=F 2$	$21600 / 2 V S$ NM/FPS
$F X+5$	DRANGE/D DRAG = F1	2700/805 NM/FPSS
UNITV	UNIT V VECTOR	2
UNITR	UNIT R VECTOR	2
TEM1B	TEMPORARY LOCATION	
SWITCHES		
GONEPAST	INDICATES OVERSHOOT OF TARGET	
RELVELSW	RELATIVE VELUCITY SWITCH	
EGSW	FINAL PHASE SWITCH	
HUNTIND	INITIAL PASS THRU HUNTEST	
HIND	INDICATES ITERATION IN HUNTEST	
I NRLSW	INDICATES INIT ROLL ATTITUOE SET	

Fig. 5-28b Computer Variables (cont'd)

Fig. 5-29 Constants, Gains and Conversion Factors

CONVERSION FACTCRS AND SCALING CONSTANTS

ANGLE IN RAD TO NV
NOWINAL G VALUE FCR SCALING
ATNOSPERE SCALE HEIGHT GRAVITY HARNCNIC COEFFICIENT EกUATORIAL EAOTH RATE
EARTH GRAVITATICNAL CCNSTANT
EARTH RACIUS EARTH RACIUS
SATELLITE VELCCITY AT RE
EARTH RATE

ATK
GS
HS
J
KWE
MUE
RE
VSAT
WIE

6. MISSION AND VEHICLE DATA

6.1 Scope

Section 6 is a summary of all Flight 501 mission and vehicle data that have an impact on AGC programming. Data have been collected under the following headings:

Section 6.2 Mission Data. Establishes the outlines of the mission in terms of trajectories, profiles, etc. Includes performance figures for Saturn boost phase inasmuch as they affect conditions pertaining at take-over of control by G\&N system.

Section 6.3 Memory Data. Contains all mission- and vehicle-dependent data that are, in one form or another, written directly into the memory of the AGC. In a wired-memory computer, such as the AGC, the very limited erasable section is intended primarily for storage of computational variables. An attempt has been made to consign those mission parameters that do not change during flight to the fixed section of the memory.

Section 6.4 Vehicle Data. Contains information that will mainly affect simulations and rope verification and will not, with only one or two exceptions, appear directly in the AGC program.

Section 6.5 Physical Constants. These definitions will be used in AGC programs and verification work.

Numerical data are presented in the most convenient and widely accepted units. The AGC is, however, programmed in the metric set of kilogram, meter, and centisecond $\left(10^{-2} \mathrm{sec}\right)$. Conversion to other sets of units is done by use of the factors defined in Section 6.5.2.

Points on the surface of the earth are defined in terms of geodetic latitude and longitude, referred to the Fischer ellipsoid of 1960 , and of geocentric radius.

It is pointed out that not all items of numerical data included in this section are to be found in the memory explicitly as defined. They are often rescaled, changed in units, or combined with other data for storage in the most convenient and/or economical fashion.
6.2 Mission Data
6.2.1 Mission Trajectories
"AS-501 Spacecraft Reference Trajectory"
TRW Systems 3902-H002-RC000 1 November 1965
Nominal Mission Profile
Major Events During Mission
See Fig. 6. 1 and Fig. 6.2
See Table 6. 1
Nominal Saturn Boost Profile
See Figs. 6.3 and 6.4
6.2.2 Nominal SIVB Separation Attitude Conditions

Roll rate

$$
0^{\circ} / \mathrm{sec}
$$

Pitch rate
$0^{\circ} / \mathrm{sec}$
Yaw rate
$0^{\circ} / \mathrm{sec}$
6.2.3 3σ Dispersions from Nominal Attitude at SIVB Separation
x-axis attitude dispersion
2°
y-axis attitude dispersion
2°
z -axis attitude dispersion
2°
Roll rate residual
$0.2^{\circ} / \mathrm{sec}$
Pitch rate residual
$0.2^{\circ} / \mathrm{sec}$
Yaw rate residual
$0.2^{\circ} / \mathrm{sec}$

6.2.4 SIVB Engine-Off Transient

Vacuum Thrust Decay not available
Tail-Off Impulse
not available

Figure 6-1. Ground Track

6-4
Majo

Event	Time from Liftoff (hr/min/sec)	Altitude (ft)	Geodetic Latitude (deg)	Longitude (deg)	Inertial Velocity (fps)	Inertial Flight Path Angle (deg)	Inertial Azimuth Angle (deg)
Liftoff	0/0/0	-16, 021	28.648 N	80.635 W	1,340	0.0	90.0
$\operatorname{Max} \mathrm{Q}$	0/1/12						
SIC Cutoff	0/2/28.85	175,914	28.871 N	79.846 W	8,845	19.678	75.324
LET JET	0/3/03.85	269, 751	29.078 N	79.088 W	9, 340	15.127	75.541
SII Cutoff	0/8/30.69	584, 290	31.687 N	66.126 W	22, 170	1.047	81.286
SIVB Cutoff \# 1	0/11/21.08	607,609	32.709 N	54.173 W	25,574	0.001	87.931
$\begin{aligned} & \text { SIVB Ign } \\ & \# 2 \end{aligned}$	$3 / 11 / 27.05$	642, 742	31.909 N	81.753 W	25,573	0.016	97.852
SIVB Cutoff \# 2	3/17/07.28	1,937,072	27.412 N	56.769 W	30, 653	15.544	103.427
CSM Sep	3/47/07.28	22, 065,637	3.29 S	3.781 E	19, 030	34.425	120.010
Apogee	5/35/42.57	54,669, 128	28.486 S	39.056 E	8,928	0.0	100.771
Update	7/28/27.8						
SPS Ign	7/48/27.8	5,339,370	2.412 N	121.712 E	27, 919	-23.028	59.93
SPS Cutoff	7/53/2.56	2, 265, 769	11.56 N	136.904 E	34, 836	-17.929	61.925
CM/SM Sep	7/54/2.56	1,663,178	13.912 N	141.239 E	35, 299	-15.409	62.932
$\begin{aligned} & \text { Entry } \\ & (400,000 \mathrm{ft}) \end{aligned}$	7/57/02.67	400, 000	20.927 N	156.263 E	36,333	-7.13	67.67
Splash	8/17/41.96	0.0	30.232 N	158.359 W	1,320	-1.137	90.003
$\begin{aligned} & \text { Entry } \\ & 400,000 \mathrm{ft} \\ & \text { (No SPS) } \\ & \hline \end{aligned}$	7/58/04	400, 000	21.138 N	156.562 E	32,067	-9. 20	67.87
Splash (No SPS)	8/09/56	0.0	24.668 N	166.431 E	---	---	

[^6] 20,925, 739 feet. From insertion to splash, altitude is measured above the reference elipsoid.
These data are for a single SPS burn trajectory, since the trajectory with two SPS burns is not yet available.

Figure 6-3. Saturn V Ascent to Orbit/Altitude, Latitude, and Longitude

Figure 6-4. Saturn V Ascent to Orbit/Inertial Velocity, Flight Path Angle, and Azimuth

6.3 Memory Data

6.3.1 Prelaunch

	Memory Type	Value
Launch Pad \#39A: Latitude	F	$28^{\circ} 38^{\prime} 50.92^{\prime \prime} \mathrm{N}$
Longitude	F	$80^{\circ} 38^{\prime} 8.07^{\prime \prime} \mathrm{W}$
Altitude of G\&N	F	Not available
above ellipsoid		
Inertial reference plane (IMU) azimuth	F	Not available
Optical target 1		
Azimuth	F	Not available
Elevation	F	Not available
Optical target 2		
Azimuth	F	Not available
Elevation	F	Not available
Latitude of local vertical at launch pad	F	Not available

6.3.2 Saturn Boost

Value
(Interval: Lift-off-LET jettison - assumed complete

Interval: Lift-off to start of roll maneuver

Interval: Duration of roll maneuver
(Interval: $\begin{aligned} & \text { Lift-off to start of } \\ & \text { Pitch maneuver }\end{aligned}$
Interval: Duration of Pitch Maneuver

Roll maneuver: Rotation about inertial vertical
Roll maneuver rate (constant)

E

E

E

E

E
$183.0 \mathrm{sec})$
12.0 sec

Not available
Not available)
Not available

Not available

Not available

| Pitch polynomial ${ }^{1}$ coefficient A_{0} | E | Not available |
| ---: | :--- | :--- | :--- |
| A_{1} | E | Not available |
| A_{2} | E | Not available |
| A_{3} | E | Not available |
| A_{4} | E | Not available |
| A_{5} | E | Not available |
| A_{6} | E | Not available |

Note 1. Form of pitch polynomial is:

$$
\theta=\sum_{n=0}^{6} A_{n} t^{n}
$$

where $\theta=$ angle between inertial horizontal at launch and vehicle X -axis, in degrees
$t=$ Time in secs $(t=0$ at 10 secs after Lift-off)

6.3.3 Attitude Maneuvers

Memory Type

Value
Limit: commanded S/C angular rate:

Roll (CSM)
Roll (CM only)
Pitch, Yaw (CSM, CM)
Interval between attitude updates F
Interval for stabilization after F maneuver
$7.2^{\circ} / \mathrm{sec}$
$15^{\circ} / \mathrm{sec}$
$4^{\circ} / \mathrm{sec}$
0.5 sec
5.0 sec

6.3.3.1 Cold-Soak Attitude

The desired cold soak attitude of the CSM is defined for the AGC via four angles in erasable memory. The angles are (1) RA, apparent right ascension of the sun; (2) D, declination of the sun; (3) A_{z}, Azimuth about the solar vector; (4) ψ, orientation of the solar vector in the CSM X - Z plane.

The defining rotations are shown in Figures 6-5 through 6-7.
The angles RA and D define the solar vector in ECI co-ordinates and are extracted for any day from the American Ephemeris and Nautical Almanac.

The angles A_{z} and ψ define the orientation of the CSM with respect to the solar vector and will be selected in accordance with gimbal lock and communications constraints.

The four angles are a function of the launch time.
RA Right Ascension--available for particular date from American Ephemeris and Nautical Almanac. This angle is measured as positive rotation about polar axis.

D Declination--also available from Almanac. This angle is measured as a negative rotation about the Y -axis.
$A_{z} \quad$ Azimuth--selected to satisfy gimbal lock and communication constraints. This angle is measured as a negative rotation about the sun vector.
$\psi \quad$ Psi - also to satisfy mission constraints. This angle is measured as a negative rotation about the $Y_{s / c}$ axis.

	Memory Type	Value
Right Ascension	E	not yet determined
Declination	E	not yet determined
Azimuth	E	not yet determined
Psi	E	not yet determined

- $\left(x_{0}, y_{0}, z_{0}\right)$ DEFINE ECI COORDINATES
$\left(x_{1}, y_{1}, z_{1}\right)$ RESULTS FROM ROTATION OF RA ABOUT z_{0} $\left(X_{2}, r_{2}, z_{2}\right)$ RESULTS FROM ROTATION OF D ABOUT - y_{1}

Fig. 6-5
6-10

$\left(X_{3}, Y_{3}, Z_{3}\right)$ RESULTS FROM ROTATING OF A_{Z} ABOUT - X_{2}

Fig. 6-6

$\left(X_{4}, Y_{4}, Z_{4}\right)$ RESULTS FROM ROTATION OF ψ ABOUT $-Y_{3}$

Fig. 6-7

	Memory Type	Value
CSM c.g. displacement in X-Y plane*	F	Not determined
CSM c.g. displacement in $\mathrm{X}-\mathrm{Z}$ plane*	F	Not determined
Minimum ΔV criterion for thrust monitor	F	$1 \mathrm{ft} / \mathrm{s} / \mathrm{s}$
Interval for thrust monitor	F	20 sec
Interval between steering updates	F	2 sec
Steer law gain (K_{1})	F	0.125
Steer law integrator loop gain (K_{2})	F	0.010
Integrator saturation limit	F	1. 0°
Steer law coefficient (c)	F	1.0
Maximum interval: freeze CDU's to engine off command:	F	Not determined
Interval: between SCS mode change commands	F	0.25 sec
Interval: Gimbal motor power on to Engine start	F	12.0 sec
Interval: Engine off to Gimbal motor power off	F	7.0 sec
Interval: Engine off to $\Delta \mathrm{V}$ mode off	F	10.5 sec
Maximum interval: Receipt of SIVB/CSM separation signal to receipt of uplink abort	F	1.7 sec
Interval: mean effective SPS tailoff duration	F	0.39 sec
SPS Burn aim point criteria:		
First SPS Burn semilatus rectum(p) eccentricity (e)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 3.28465 \times 10^{7} \mathrm{ft} \\ & 0.59473 \end{aligned}$
Second SPS Burn semilatus rectum (p) eccentricity (e)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 4.19693 \times 10^{7} \mathrm{ft} \\ & 0.99913 \end{aligned}$

[^7]
6.3.5 Entry (Normal Mission)

	Symbol	Memory Type	Value
CSM attitude for CM/SM separation			
X -axis above the velocity vector		F	60°
(Y -axis along momentum vector ($\mathrm{R} \times \mathrm{V}$), Z -axis above velocity vec可)			
CM Pacific pre-entry attitude:			
X -avis above velocity vector by:		F	$157.24{ }^{\text {o }}$
(Y-axis opposite momentum vect ($\mathrm{R} \times \mathrm{V}$), Z-axis above velocity vector. A lift vector up attitude)			
Trim angle of attack		F	$22.76{ }^{\circ}$
Interval: CM/SM separation to start of maneuver		F	20 sec
Pacific recovery point:			
Latitude:		E	$30.232{ }^{\circ} \mathrm{N}$
Longitude:		E	$158.359^{\circ} \mathrm{W}$
Entry Constants and Gains			
Factor in ALP computation	C 1	F	1. 25
Constd gain on drag	C16	F	. 01
Constd gain on RDOT	C17	F	. 001
Bias vel. for final phase start	C18	F	500 fps
Minimum const drag	C19	F	130 fpss
Max drag for down-lift	C20	F	175 fpss
Factor in AHOOK computation	CHOOK	F	25
Factor in GAMMAL computation	CH1	F	75
Max const drag	DOMAX	F	175 fpss
Computation cycle time interval	DT	F	2 sec
Maximum acceleration	GMAX	F	322 fpss ($10 \mathrm{~g}-\mathrm{s}$)
Drag to roll up if down initially (= KAT)	KAFIX	F	64.4 fpss
Optimized upcontrol gain	KB1	F	3.4
Optimized upcontrol gain	KB2	F	. 0034
Increment on Q7 to detect end of Kepler phase	KDMIN	F	0.5 fpss
Lateral switch gain	KLAT	F	. 0125
Time of flight constant	KTETA	F	1000
Max L/D (Min actual vehicle L/D)	LAD	F	3

	$\text { Symbol } \begin{gathered} \text { Memory } \\ \text { Type } \\ \hline \end{gathered}$		Value
LAD $\cos (15 \mathrm{deg})$	L/ DCMINR	F	2895
Upcontrol L/D	LEWD	F	2
Final Phase L/D	LOD	F	18
Final phase range - 23500 Q3	Q2	F	-1002 nm
Final phase DRange/D V	Q3	F	$0.07 \mathrm{~nm} / \mathrm{fps}$
Final phase DRange/D GAMMA	Q5	F	$7050 \mathrm{~nm} / \mathrm{rad}$
Final phase initial flight path angle	Q6	F	0.0349 rad
Min drag for upcontrol	Q7F	F	6 fpss
Minimum VL	VLMIN	F	18000 fps
Velocity to switch to relative vel	VMIN	F	VSAT/2
RDOT to start into HUNTEST	VRCONTRL	F	700 fps
Max value of VCORR	VCORLIM	F	1000 fps
Tolerance to stop range iteration	25 NM	F	25 nm
Lateral switch bias term	LATBIAS	F	0.4 nm
Velocity to stop steering	VQUIT	F	1000 fps
Initial Attitude gain	K44	F	236
Velocity to start final phase on INITENTRY	VFINAL	F	25,000 fps
Entry Conversion Factors and Scaling	Constants		
Angle in RAD to NM	ATK	F	$3437.7468 \mathrm{~nm} / \mathrm{rad}$
Nominal G value for scaling	GS	F	32.2 fpss
Atmospheric Scale height	HS	F	28,500 ft
Earth radius	RE	F	21, 202, 900 ft
Satellite velocity at RE	VSAT	F	25, 766.1973 fps
Earth Rate	W	F	$\begin{array}{r} 72.9211504 \times 10^{-6} \\ \mathrm{rac} / \mathrm{sec} \end{array}$
Earth Equatorial Rate	KWE	F	1546.70168 fps

6.4.1 CSM Data

Spacecraft Launch Configuration
Mass Properties Data at Launch
Mass Properties Data of Expendable Items
Center of Gravity X-location vs. usable propellant weight
Center of Gravity Y-location vs. usable propellant weight
Center of Gravity Z-location vs. usable propellant weight
Roll Moment of Inertia $I_{x x}$ vs. usable propellant weight Pitch Moment of Inertia I yy vs. usable propellant weight Yaw Moment of Inertia $I_{z z}$ vs. usable propellant weight Product of Inertia $I_{x y}$ vs. usable propellant weight
Product of Inertia $I_{x z}$ vs. usable propellant weight
Product of Inertia $I_{y z}$ vs. usable propellant weight
RCS Thruster Moment Arm
Fuel Equivalent Slosh Mass
Oxidizer Equivalent Slosh Mass
Fuel Mass C. G. X-location
Oxidizer Mass C. G. X-location
Fuel Mass Natural Frequency
Oxidizer Mass Natural Frequency
Fuel Mass Damping Ratio
Oxidizer Mass Damping Ratio
6.4.2 SPS Engine Data

Mass*
Inertia ($I Y=I Z=I R$) $*$
Hinge to c.g. radius*
Maximum start and shutdown Transients
Mean thrust-off impulse
Displacement, thrust vector from engine gimbal axes intersection
Misalignment, thrust vector from engine mount plane normal
SPS Engine Performance

See Figure 6.8
See Table 6. 2
Not available
See Figure 6.9
See Figure 6.10
See Figure 6.11
See Figure 6.12
See Figure 6.13
See Figure 6.14
See Figure 6.15
See Figure 6.16
See Figure 6.17
7. 1 feet

Not available

See Figure 6.18
8,400 lb-sec
<0.125 inch
<0.5 degrees
See Table 6.3

[^8]

Figure 6.8 CSM Reference Dimensions
Table 6-2. CSM 017 Spacecraft Mass Properties Summary at Launch--Mission 501

Item		$\begin{gathered} \text { Center of Gravity } \\ \text { (inches) } \end{gathered}$			$\underset{\left(\text { slug-ft }{ }^{2}\right)}{\text { Momertia }}$			$\begin{gathered} \text { Product of Inertia } \\ \left(\mathrm{slug}-\mathrm{ft}^{2}\right) \end{gathered}$		
	(lb)	X	Y	Z	I_{xx}	$\mathrm{I}_{\text {yy }}$	I_{zz}	I_{xy}	I_{Xz}	I_{yz}
Command Module	11,000.0	1043.3	-0.2	6.3	4,949.9	4,364.8	4,057.6	15.2	278.7	30.5
Service Moduleless prop.	10,200.0	909.6	0.8	-1.3	6,618.0	10,619.0	10,377. 0	286.6	-502.0	-609.2
SLA attachment ring	62.0	837.1	0.0	-1.8	93.0	48.0	46.0	-	-	-
CSM - less propellant	21,262.0	978.6	0.3	2.6	11,729, 0	26,737.0	26,090.0	-61.0	525.0	-588.0
SM propellant	28,000.0									
CSM - with propellant	49,262.0									
Launch Escape Subsystem	8,200.0	1298. 4	0.0	0.0	571.0	21,482.0	21,484.0	-0. 1	72.4	20.9
Adapter	3,738.0	643.4	0.7	-2.4	9,338.0	12,566.0	12,289.0	6.1	-74.4	-10.6
LEM Simulated Article	32,000.0									
NOTES: (1) Centers of gravity are in the Apollo Spacecraft Reference System										

Table 6.3 Apollo CSM Propulsion Performance Summary

	Vacuum	Vacuum	Vacuum	
	Specific	Thrust	Propellant	Nozzle
	Impulse	Per Engine	Flow Rate Expansion	
	I_{sp}	F	Per Engine	Ratio
	(sec)	(lb)	$\dot{\omega}$	$(\mathrm{lb} / \mathrm{sec})$
	$\epsilon=\mathrm{A}_{\mathrm{e}} / \mathrm{A}_{\mathrm{t}}$			
SPS (steady state)	$311.2 \pm 2.1(3 \sigma)$	$21,400 \pm 400(3 \sigma)$	68.766	$62.5 / 1$

NOTE: The SPS propellant loading presented in Table 6.2 is available as usable propellant plus retained propellant and performance reserves. Three hundred and fifty pounds of propellant will be retained in the propellant retention devices as unusable propellant. Performance reserves should be based on 3σ tolerances presented above. Loading tolerances, M / R tolerances, residuals and trapped propellant are accounted for in the SM inert weight.

Fig. 6-9 Center of Gravity X-location vs. Usable Propellant Weight

Fig. 6-10 Center of Gravity Y-location vs. Usable Propellant Weight

Fig. 6-11 Center of Gravity Z-location vs. Usable Propellant Weight

Fig. 6-12 I_{XX} Roll Moment of Inertia vs. Usable Propellant Weight

Fig. 6-13 I_{YY} Pitch Moment of Inertia vs. Usable Propellant Weight

Fig. 6-14 $I_{Z Z}$ Yaw Moment of Inertial vs. Usable Propellant Weight

Fig. 6-15 I_{XY} Product of Inertia vs. Usable Propellant Weight

Fig. 6-16 I_{XZ} Product of Inertia vs. Usable Propellant Weight

Fig. 6-17 $I_{\text {YZ }}$ Product of Inertia vs. Usable Propellant Weight

[^9]
Figure 6-7. TVC Autopilot Block Diagram
6.4.4 RCS Autopilot Data

			Att. Con		TVC	Pre-			
Configuration: see Fig. 6.20			Roll, Pitch,	Yaw	Roll	Roll, Pit	ch, Yaw	Roll	Pitch, Yaw
Attitude error deadband	D	Degrees	0		0	4.0		4.0	---(1)
Attitude error gain	GA	Deg/sec per deg	1. 0		1.0	0. 2		0. 2	---(1)
Rate command limiter	E	Deg/sec	---(2)		---(2)) 1.9^{3}	0.74	1. 9^{3}	---(1)
Rate Gain	GR	n. d.	1.0		1.0	0.1			
Fioll-to-yaw coupling angle A	ALPHA	Degrees	---		---	--			
Filter gain	K	Deg/sec	---		---	---			
Filter Time constant	${ }^{\top} \mathrm{f}$	sec	-		---	---			
Switch Deadband	A	Deg/sec	0.2		0. 2	0. 2			
	B	Deg/sec	A-0.007		A-0.007	A-0.007			

NOTES

1. Pitch, yaw attitude error channels open-circuited during entry.
2. Effective attitude rate limit set by saturation of electronics at approximately 9. $3^{\circ} / \mathrm{sec}$. Commanded
rates will be limited to $4^{\circ} / \mathrm{sec}$ (pitch, yaw), $7.2^{\circ} / \mathrm{sec}$ (CSM-roll), $15^{\circ} / \mathrm{sec}$ (CM only-roll).
3. Effective attitude rate limit (roll): $17^{\circ} / \mathrm{sec}$
4. Effective attitude rate limit (pitch, yaw): $5^{\circ} / \mathrm{sec}$

Fig. 6. 20 RCS Autopilot Block Diagram.

6.4.5 RCS Reaction Jet Data

Item Units \quad SM Value \quad CM

Configuration

Nominal vacuum thrust	lb	See Table 6.5	See Table 6.4
Specific impulse (steady)	sec	See Table 6.5	See Table 6.4
Minimum impulse	lb-sec	See Table 6.5	See Table 6.4
Thrust rise lag	millisec	<12.5	<13.0
Thrust rise time constant	millisec	2.0 (exp)	2.0 (linear)
Duration, minimum impulse electrical signal	millisec	18.0 ± 4.0	18.0 ± 4.0
Engine cant angle	deg	10.0	

Table 6.4. Command Module Reaction Control System Performance
Summary

M/RCS
Vacuum
Specific
Impulse
$I_{s p}$
(sec)
Vacuum
Thrust
Per Engine
F
(lb)
$93.3 \pm 3.45(3 \sigma)$
$274 \pm 9.9(3 \sigma)$
(steady state)

NOTE: The CM/RCS minimum impulse is $1.5 \pm .5(3 \sigma) \mathrm{lb}-\mathrm{sec}$ per engine. CM/RCS propellant capacity is 270 pounds of which 225 pounds are available for maneuvering and performance reserves.
M / R tolerances, loading tolerances, residual and trapped fuel are accounted for in the unusable propellant.

Table 6.5 Apollo CSM Reaction Control System Performance Summary

Vacuum	Vacuum	Vacuum	
Specific	Thrust	Propellant	Nozzle
Impulse	Per Engine	Flow Rate	Expansion
$I_{s p}$	F	Per Engine	Ratio
(sec)	(lb)	$\dot{\omega}(l \mathrm{lb} / \mathrm{sec})$	$\epsilon=A_{e} / A_{t}$

SM/RCS (steady state) *
$\begin{gathered}280+10(3 \sigma) \\ -4\end{gathered} \quad 100 \pm 2.5(3 \sigma)$
0.357
40.0/1

SM/RCS (steady state) $* *$
275 ± 7 (3 σ)
$100 \pm 2.5(3 \sigma)$
0.364
40.0/1

* Data applicable for burns $\leqq 5 \mathrm{sec}$.
** Data applicable for burns > 5 sec .
The minimum impulse provided by the $\mathrm{SM} / \mathrm{RCS}$ is $0.75 \pm 0.15(3 \sigma) \mathrm{lb}-\mathrm{sec}$ per engine.

The SM/RCS propellant capacity is 838 pounds of which 790 pounds are availavle for maneuvering and performance reserves. M / R tolerances, loading tolerances, re sidual and trapped fuel are accounted for in the unusable propellant.

6.4.6 CM Data

Control Weight

Principal inertia (I_{xx})
Principal inertia (y)
Principal inertia (I_{zz})
Product of inertias (I_{xy})
Product of inertias (I_{yz})
Product of inertias (I_{xz})
CG X-location
CG Y-location
CG Z-location
Aerodynamic reference area
Aerodynamic reference diameter
Aerodynamic coefficients
Variation of coefficients with Mach number
$11,000 \mathrm{lb}$
4949.9 slug-ft ${ }^{2}$
4364.8 slug- ft^{2}
4057.6 slug-ft ${ }^{2}$
15.2 slug- ft^{2}
30.5 slug-ft ${ }^{2}$
278.7 slug-ft ${ }^{2}$

1043 . 3 inch
-0.2 inch
6.3 inches
129.35 square feet
154.0 inches
see: Table 6.6
see: Fig. 6.21 and 6.22

Table 6.6. Apollo Command Module Aerodynamic Coefficients at Trim Angle of Attack Versus Mach Number for the Command Module with Protuberances

Mach Number	$\alpha *$ Trim (deg)	$\mathrm{C}_{\mathrm{L}_{\text {Trim }}}$	$\mathrm{C}_{\mathrm{D}_{\text {Trim }}}$	$\mathrm{L}_{(\mathrm{deg})}$
0.4	168.14	0.2435	0.8642	(deg)
0.7	165.78	0.2149	0.9501	0.2817
0.9	161.45	0.3076	1.0485	0.2262
1.1	156.47	0.4530	1.1885	0.2933
1.2	155.05	0.4924	1.2156	0.3812
1.35	154.27	0.5395	1.2820	0.4051
1.65	153.66	0.5410	1.2791	0.4208
2.0	153.38	0.5248	1.2748	0.4230
2.4	153.97	0.4993	1.2355	0.4117
3.0	155.04	0.4871	1.2117	0.4041
5.0	157.24	0.4269	1.2280	0.4020
25.0	157.24	0.4269	1.2280	0.3477

*Measured from + X-axis

NOTES: (1) Coefficients are for a moment center located at:

$$
X_{c g}=1,043.3 \text { in. } ; Y_{c g}=-0.2 \text { in. } ; \mathrm{Z}_{\mathrm{cg}}=6.3 \mathrm{in} .
$$

(2) Heat shield cant $=0.465$ degree
(3) Coefficient accuracies are:

$$
\mathrm{L} / \mathrm{D}_{\text {Trim }}= \pm 0.03 ; \mathrm{C}_{\mathrm{L}_{\text {Trim }}}= \pm 0.025 ; \mathrm{C}_{\mathrm{D}_{\text {Trim }}}= \pm 0.04
$$

where: C_{L} is normal to the air velocity vector, positive in the upward direction and C_{D} is tangent to and directed opposite to the air velocity vector.

Figure 6.2l Command Module Aerodynamic Trim Angle of Attack

Figure 6.22 Command Module Aerodynamic Trim Lift and Drag Coefficients
6.5 Physical constants

6.5.1 Geophysical constants

	Symbol	Value
Earth's gravitation constant	MUE	$3.986032233 \times 10^{14}$
		meters $^{3} / \mathrm{sec}^{2}$
Gravity potential harmonic coeff.	J	1.62345×10^{-3}
	H	-0.575×10^{-5}
	D	0.7875×10^{-5}
Earth's mean equatorial radius	RE	6.378165×10^{6} meters
Earth's sidereal rate	WIE	$7.29211505 \times 10^{-5}$
		radians/sec
Reference ellipsoid		Fischer, 1960

Symbol
MUE

H
D
RE WIE

6.5.2 Conversion Factors

International feet to meters
Pounds to newtons
Slugs to kilograms
Nautical miles to kilometers
Statute miles to kilometers
Slugs to pounds (g)

Value
3.986 032233×10^{14} meters ${ }^{3} / \mathrm{sec}^{2}$
1.62345×10^{-3}
-0.575×10^{-5}
0.7875×10^{-5}
6.378165×10^{6} meters
7. 29211505×10^{-5}
radians/sec
Fischer, 1960

Multiply by
0.3048
4.448221530
14.593902680

1. 852
1.609344000
$32.174048000 \mathrm{ft} / \mathrm{s} / \mathrm{s}$

7. G \& N ERROR ANALYSIS

7.1 Introduction

The results of a revised $G \& N$ error study for the 501 mission are presented herein. Primarily, this study considered the effects of IMU component uncertainties on actual trajectory uncertainties for three cases. These are:
a) Navigational update 20 minutes before injection burn ignition (2nd S IV B burn). Referred to as update 1A in tables.
b) Navigational update 5 minutes before injection burn ignition. Referred to as update 1B in tables.
c) Navigational update 20 minutes before 2 nd SPS burn ignition (30 minutes before spacecraft reaches $400,000-\mathrm{ft}$ altitude on the coast ellipse). Referred to as update 2 in tables.

Simulation of the state vector or navigational R, V updates included the effects of tracking uncertainties. Updating does not apply to the IMU Stable Member alignment, since the SM is not realigned during the 501 flight.

The no-updating case was not considered in this error study, although it had been covered in the preliminary report issued in January 1966. Further, the conditions attending the first two cases above differ somewhat from those for the preliminary report. These conditions are described in some detail in section 7. 3.

This study did not consider the effects of Saturn guidance errors or boost trajectory perturbations on errors at SIVB cutoff.

The error studies assumed a prelaunch Stable Member orientation as shown in Fig. 7.1. That is, X_{SM} is up along the local vertical at launch instant, while $Z_{S M}$ is horizontal down-range at the nominal azimuth. This orientation is different from that assumed for the preliminary error study, where $X_{S M}$ was horizontal downrange and $Z_{S M}$ was vertical down at launch instant.

Block 1 IMU uncertainties were assumed for these studies. These were the same as those assumed for the preliminary study with two important exceptions, an accelerometer bias uncertainty of $0.4 \mathrm{~cm} / \mathrm{sec}^{2}$ and an accelerometer scale factor uncertainty of 150 PPM were used for the present report, whereas the smaller uncertainties of $0.2 \mathrm{~cm} / \mathrm{sec}^{2}$ and 100 PPM , respectively, had been used in the earlier report.

7. 2 Significant Results of Error Study

The most important data required from the studies were the effects of IMU uncertainties for the three update cases on:

1) Computed free-fall time of flight to 400,000 -foot altitude,

Fig. 7.1 Coordinate Axes for 501 Launch Configuration
2) Flight path angle uncertainty at reentry $\operatorname{start}(400,000$-foot altitude),
3) CEP at reentry end.

Table 7.1 gives these data in summary form. All uncertainties are due to the combined effect of 1σ Block I IMU uncertainties and 1σ tracking update uncertainties.

TABLE 7.1

SUMMARY

			date Timin	
		20 mins	5 mins	20 mins
Uncertainty		before	before	before
Variable	Event	Injection	Injection	2nd SPS
		Ignition	Ignition	Ignition
			(Upd. 1B)	(Upd. 2)
	Injection burn cutoff	131 sec	98 sec	
Uncertainty in computed	1 st SPS burn cutoff	178 sec		
Free-fall	1st SPS burn cutorf	178 sec	168 sec	
Time of Flight to $400,000-\mathrm{ft}$	20 mins before 2nd SPS burn ignition	183 sec	172 sec	0.15 sec
	10 mins before 2nd SPS burn ignition	188 sec	177 sec	0.17 sec
Flight Path Angle				
Uncertainty, (U) γ_{AA}	$(400,000 \mathrm{ft} \text {. alt. })$	(32.6 mr)	49.8 mr	2.1 mr
CEP	Reentry End (25,000 ft. alt.)	444 nm	405 nm	7.7 nm

The reader should see Section 7.7 (and Fig. 7.2) on the definition used for flight path angle uncertainty. Data given here are for $(U) \gamma_{A A}$. The uncertainty figure for Update 1 A case is parenthesized, since it represents an incomplete rss because the perturbed trajectory due to $A C B Z$ has a perigee higher than the $400,000-\mathrm{ft}$ altitude, making it impossible to compute (U) $\gamma_{A A}$ for this particular IMU uncertainty.

7. 3 Navigational Update Conditions and Uncertainties

For the preliminary error studies it had been assumed that the AGC would not receive acceleration information from the accelerometers during free-fall periods. Accelerometer bias would then have no effect on AGC inputs. However, since then the decision has been made to use AGC programming similar to that for the 202 mission. For the 202 mission the AGC was left sensitive to accelerometer outputs from SIVB cutoff to 1 st SPS burn ignition. Correspondingly, for the 501 mission the AGC will now receive acceleration data from the accelerometers from 1 st SIVB cutoff through the entire parking orbit and from 2nd SIVB burn (injection burn) cutoff for 30 minutes free fall to 1 st SPS burn ignition. The AGC will have the accelerometer biases as inputs during those two free-fall periods.

Leaving the AGC sensitive to accelerometer bias during the extended parking orbit results in large uncertainties in position and velocity by the time of injection burn ignition. Because of this, a navigational update before injection burn ignition is now provided for.

Two updating times before injection burn ignition, one 20 minutes before and the other 5 minutes before, were used in the error studies. At update times the uncertainties in position and velocity were reduced to those represented by the tracking update uncertainties.

There will also be provision for a 2nd navigational update. This will take place 20 minutes before the 2 nd SPS burn ignition (or approximately 30 minutes freefall away from 400,000-ft altitude). This is also the important time for AGC computation of the free-fall time of flight to this altitude. Another time that free-fall time is computed is 10 minutes before 2nd SPS burn ignition. For both times, if the 2nd navigational update has been made, the computed free-fall time of flight will be affected only by tracking update uncertainties.

The navigational updates would be performed on the basis of orbit computations made using observations by the MSFN (Manned Space Flight Network). The tracking-station-computed position and velocity vectors would be subject to uncertainties because of noise and bias in tracking measurements.

In this IMU error study, simulation of tracking update uncertainties was based on data available in MSC Internal Note No. 66-FM-46, "Error Analysis of MSFN Tracking Data for AS-501" by P.T. Pixley and M. L. Alexander. Tracking uncertainty covariance matrices for times just before injection burn ignition and the 2nd SPS burn ignition were available in this report. The one-sigma position and velocity uncertainties for the three update times relative to local vertical axes were as follows:

	Position Uncertainty (in nautical miles)		Velocity Uncertainty (in ft/sec)			
	Alt.	Track	Range	Alt.	Track	Range
20 min before Inject. Burn Ignit.	0.12	0.05	0.39	2.7	0.6	0.5
5 min before Inject. Burn Ignit.	0.10	0.04	0.41	2.6	0.6	0.4
20 min before 2nd SPS Ignit.	0.02	0.07	0.08	0.3	0.6	0.1

In the error tables, after updating time, the uncertainties include the effects of both navigational update and IMU uncertainties.

7.4 Error Table Description

At the end of this section error tables are given summarizing the results of these studies.

Table 7.2 summarizes the RSS flight uncertainties caused by one sigma Block I IMU component uncertainties at important times during the mission for the three update cases previously described. Abbreviations for these cases are as follows:

Table 7.2 Summary of 501 Flight Uncertainties

Event	Update	RSS Position Uncert. (n . miles)			RSS Velocity Uncert. (ft/sec)			Flight Path Angle Uncert. (U) $\gamma_{\text {AI }}$ (mr)	Azim. Uncert. ${ }^{(U)} A_{Z}$ (mr)	$\begin{aligned} & (U) T_{\mathrm{ff}} \\ & (\mathrm{sec}) \end{aligned}$
		Alt.	Track	Range	Alt.	Track	Range			
Earth Launch	None	0	0	0	0	0	0	0	2.4	----
SIV B Cutoff	None	0.95	3.51	0.40	18.8	54.3	5.8	0.73	2.1	----
20 min before Injection Ignition	1A Now	0.12	0.05	0.39	2.7	0.6	0.5	0.11	0.02	----
5 min before Injection Ignition	1B Now	0.10	0.04	0.41	2.6	0.6	0.4	0.11	0.02	----
Injection Ignition	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 1.90 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.11 \end{aligned}$	1.65 0.41	25.8 4.9	$\begin{array}{r} 11.0 \\ 3.9 \end{array}$	$\begin{array}{r} 14.2 \\ 3.9 \end{array}$	$\begin{aligned} & 0.91 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	-..-
Injection Cutoff	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	3.28 0.54	1.98 0.66	3.07 0.74	41.6 15.1	29.5 28.4	$\begin{aligned} & 26.1 \\ & 17.3 \end{aligned}$	1.11 0.47	1.0 0.2	$\begin{array}{r} 131 \\ 98 \\ \hline \end{array}$
SPS1 Cutoff	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 15.7 \\ & 10.3 \end{aligned}$	$\begin{array}{r} 8.9 \\ 8.4 \end{array}$	$\begin{array}{r}24.0 \\ 9.4 \\ \hline\end{array}$	87.8 57.7	21.4 25.6	$\begin{aligned} & 66.0 \\ & 35.9 \end{aligned}$	$\begin{aligned} & 3.31 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.7 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 178 \\ \hline 168 \\ \hline \end{array}$
20 min before SPS2 Ignition	$\begin{aligned} & 1 \mathrm{~A} \\ & { }_{2}^{1 \mathrm{~B}} \end{aligned}$	$\begin{aligned} & 342.1 \\ & 312.8 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.1 \\ & 0.07 \end{aligned}$	$\begin{gathered} 471.0 \\ 412.0 \\ 0.08 \end{gathered}$	$\begin{aligned} & 1,429 \\ & 1,270 \\ & 0.34 \end{aligned}$	$\begin{gathered} 17.6 \\ 24.3 \\ 0.56 \end{gathered}$	$\begin{gathered} 92.8 \\ 88.5 \\ 0.13 \end{gathered}$	$\begin{aligned} & 14.8 \\ & 10.2 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.5 \\ & 0.03 \end{aligned}$	$\begin{array}{\|l\|} \hline 183 \\ 172 \\ 0.15 \\ \hline \end{array}$
10 min before SPS2 Ignition	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{gathered} 358.7 \\ 329.1 \\ 0.03 \end{gathered}$	$\begin{aligned} & 4.6 \\ & 4.1 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 579.9 \\ & 514.4 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 2,138 \\ & 1,912 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 24.3 \\ & 0.55 \end{aligned}$	$\begin{gathered} 96.0 \\ 89.3 \\ 0.13 \\ \hline \end{gathered}$	$\begin{aligned} & 30.1 \\ & 22.1 \\ & 0.003 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.2 \\ & 0.03 \end{aligned}$	$\begin{array}{\|l} 188 \\ 177 \\ 0.17 \\ \hline \end{array}$
SPS2 Ignition	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & 310.5 \\ & 286.8 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.7 \\ & 0.10 \end{aligned}$	$\begin{gathered} 748.4 \\ 673.0 \\ \quad 0.09 \\ \hline \end{gathered}$	$\begin{aligned} & 3,485 \\ & 3,136 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 22.0 \\ & 0.45 \end{aligned}$	$\begin{gathered} 131.6 \\ 137.9 \\ 0.12 \\ \hline \end{gathered}$	$\begin{aligned} & 63.6 \\ & 49.4 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.9 \\ & 0.02 \end{aligned}$	-----
Reentry Start (at $400,000 \mathrm{ft}$)	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{array}{r} 82.6 \\ 80.0 \\ 1.3 \end{array}$	$\begin{aligned} & 3.8 \\ & 4.1 \\ & 1.4 \end{aligned}$	$\begin{array}{r} 906.2 \\ 822.9 \\ 0.3 \end{array}$	$\begin{gathered} 4,835 \\ 4,372 \\ 23 \end{gathered}$	$\begin{aligned} & 40.8 \\ & 40.5 \\ & 22.5 \end{aligned}$	$\begin{array}{r} 182.2 \\ 193.3 \\ 3.8 \end{array}$	$\begin{gathered} (32.6)^{*+} \\ 49.7^{*} \\ 2.1^{*} \\ \hline \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 0.6 \end{aligned}$	CEP nm
Reentry End (at $24,000 \mathrm{ft}$)	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{array}{r} 149.3 \\ 140.0 \\ 8.4 \end{array}$	$\begin{aligned} & 22.1 \\ & 21.2 \\ & 11.0 \end{aligned}$	$\begin{array}{r} 728.6 \\ 667.2 \\ 2.1 \end{array}$	---	---	---	---	--- ---	$\begin{aligned} & 444 \\ & 405 \\ & 7.7 \end{aligned}$

${ }^{*}$ Data given at reentry start are for $(\mathrm{U}) \gamma_{A A}$ and not $(U) \gamma_{A I}$. See Section 7.7.
$\dagger_{\text {For }}$ update 1A case the perturbed trajectory due to ACBZ has a perigee higher than 400,000 - ft altitude. The figure of 32.6 mr for (U) $\gamma_{A A}$ is RSS for all other uncertainties except ACBZ.

Update 1A: Update 20 mins. before injection burn ignition.
Update 1B: Update 5 mins. before injection burn ignition.
Update 2 : Update 20 mins. before 2 nd SPS burn ignition.
In Table 7.2 the rss uncertainty in free-fall time-of-flight to $400,000-\mathrm{ft}$ altitude is also given where applicable.

Tables 7.3 through 7.9 are detailed error tables showing how the individual IMU uncertainties contribute to the overall position and velocity uncertainties for three critical times during the 501 flight. These times are: 1) SPS1 cutoff, 2) 20 minutes before 2nd SPS burn ignition, and 3) Reentry start (at 400,000-ft altitude). Separate tables are given for the various update cases.

Tables 7.10 through 7.13 are detailed error tables that show the effect of IMU uncertainties on uncertainty in computed free-fall time of flight (T_{ff}) to $400,000-\mathrm{ft}$ altitude for two critical times during the 501 flight. These times are: 1) SPS1 cutoff, and 2) 20 min before 2 nd SPS burn ignition. Separate tables are given for the various update cases, and for both positive and negative IMU uncertainties. In those tables "'RSS" stands for RSS of $T_{f f}$ uncertainties with positive IMU uncertainties while "RSN" stands for RSS with negative IMU uncertainties.

Tables 7.14 through 7.16 are detailed error tables showing the effect of IMU uncertainties in flight path angle uncertainty at reentry start for the three update cases. The reader should refer to Sect. 7. 7 for flight path angle uncertainty definitions.

Finally, Table 7.17 gives data on IMU Stable Member misalignments and drifts throughout the flight.

7.5 IMU Errors and Uncertainties

The AGC will be able to provide compensation for the measured average values of the following IMU component errors:

1) accelerometer bias error,
2) accelerometer scale factor error,
3) gyro bias drift,
4) gyro input axis acceleration sensitive drift, and
5) gyro spin reference axis acceleration sensitive drift.

Since the average IMU errors will be compensated by means of AGC programs during prelaunch and in flight, it is the actual unpredictable deviations from the measured average errors that constitute the IMU component uncertainties.

The Block I IMU error uncertainties (see also MEI No. 1015000-Part I) for the present error studies are as follows:

Block I One-Sigma IMU Error Uncertainties

	Input Axis			
Accelerometer bias (ACB)	X	Y	Z	Units
Accelerometer scale factor (SFE)	0.40	0.40	0.40	$\mathrm{~cm} / \mathrm{sec}^{2}$
Accelerometer nonlinearity (NC)	150	150	150	PPM
Gyro bias drift (BD)	10	10	10	$\mu \mathrm{~g} / \mathrm{g}^{2}$
Gyro input axis accel. sens. drift (ADIA)	8	8	2	meru
Gyro spin axis accel. sens. drift (ADSRA)	5	5	5	$\mathrm{meru} / \mathrm{g}$
Gyro acceleration squared sens. drift	0.3	0.3	0.3	$\mathrm{meru} / \mathrm{g}$
Accelerometer I. A. misalignments				$\mathrm{meru} / \mathrm{g}^{2}$
Non-orthogonality X to Z	0.14	-	-	mr
Non-orthogonality X to Y	0.14	-	-	mr
Y about X SM	-	0.10	-	mr
Gyro I. A. misalignment				
About SRA	0.50	0.50	0.50	mr
About OA	0.50	0.50	0.50	mr

It is important to note that some IMU uncertainties affect both the pre-launch alignment of the Stable Member and the in-flight computation of position and velocity. These include: accelerometer bias, gyro bias drift, and IA and SRA acceleration sensitive drift. Since pre-launch and in-flight IMU uncertainties are assumed correlated, their effects are summed in the error computation.

The Stable Member azimuth alignment uncertainty is affected primarily by the effect of Z and Y gyro drift rate uncertainty on the gyro-compassing loop during prelaunch alignment. Table 7.14 shows that the overall rss azimuth alignment uncertainty due to all gyro drift uncertainties is 2.35 milliradians.

7. 6 Stable Member Orientation

The orientation of the IMU Stable Member axes ($\mathrm{X}_{\mathrm{SM}}, \mathrm{Y}_{\mathrm{SM}}, \mathrm{Z}_{\mathrm{SM}}$) relative to launch inertial axes (X_{I}, Y_{I}, Z_{I}) are shown in Fig. 7.1. The X, Y, Z accelerometer and gyro input axes are colinear with corresponding Stable Member axes. The launch inertial axis Z_{I}, is in the horizontal plane of launch instant and oriented at the nominal launch azimuth of 72° from north. The $X_{I}-Z_{I}$ plane will be the initial pitch plane as well as initial reference trajectory plane.

The Stable Member is not realigned during flight. Note that the SM orientation shown in Fig. 7.1 is different from that assumed for the preliminary error studies where $X_{S M}$ was aligned parallel to Z_{I} and $Z_{S M}$ was parallel to $-X_{I}$.

7. 7 Flight Path Angle and Altitude Rate Uncertainty Definitions

Fig. 7.2 defines the three flight path angle uncertainties, (U) $\gamma_{A I}$, (U) $\gamma_{\text {AIN }}$ and (U) $\gamma_{A A}$. Data for (U) $\gamma_{A A}$ are given only for reentry start (at $400,000-\mathrm{ft}$ altitude) in the summary tables, 7.1 and 7.2 , since the flight path angle uncertainty with the spacecraft actually at $400,000-\mathrm{ft}$ altitude is the desired parameter. For all other times during the 501, flight data are given for (U) γ_{Ar}.

As the range angle uncertainty, (U) Rge/R, increases (as it will for prolonged, non-updated orbital missions, since (U) Rge is unbounded), the uncertainty, (U) $\gamma_{\text {AIN }}$, will increase correspondingly, since $\gamma_{\text {AIN }}$ is measured relative to the nominal horizontal axis. The uncertainty, (U) $\gamma_{A I}$, is the more useful figure. In the previous report data had, however, been given only for ($\left.{ }^{(}\right)^{\prime} \gamma_{\text {AIN }}$. In this report data are given for (U) $\gamma_{A I}$, with the exception of reentry start where the data are for (U) $\gamma_{A A}$.

Data in all error tables for RSS position and velocity uncertainties are given relative to nominal local vertical axes (see Fig. 7.2). These data may be used to compute (U) $\gamma_{\text {AIN }}$. Unless appropriate transformations are made, (U) $\gamma_{A I}$ can not be computed from the above data.

7. 8 Error Computation Procedure

Position and velocity uncertainties given in the tables were computed as follows. Approximate error equations were derived for the effect of each IMU component error on trajectory position and velocity. The assumptions were: 1) that the errors were small relative to the parameters being measured, and 2) that the IMU component errors were statistically independent of each other, The error equations took into account the effect of the IMU errors on gravity vector computation. The computations program incorporating the error equations require nominal trajectory acceleration and position vectors (relative to fixed inertial axes) as inputs at discrete time intervals. The nominal trajectory itself was generated in a separate program. At significant events, such as SIVB cutoff, detailed error printouts were made giving the position and velocity uncertainties due to each IMU uncertainty relative to nominal local vertical axes.

The uncertainties in computed free-fall time of flight were calculated by perturbing the equation for $T_{f f}$ (see IL-SFA Memo No. 28-65 by R. Bairnsfather) with the position and velocity uncertainties due to each IMU component uncertainty.

Fig. 7-2 Flight Path Angles
 VELUCITY UIVCERTAIATIES IN FT/SEC
(KLL. TONUM. AXES) FANGE
ZANGE σ
σ
σ
\vdots
7
0.
0.
0.
0

 $N=0$
∞
NA
0
0
0
0 \sim
0
0
0
0
0
\sim $\begin{array}{lll}m 0 & n j & m \\ 0 & 0 \\ m & 0 & \infty \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

 $\begin{array}{ll}\text { a } & \overrightarrow{2} \\ 0 & \vec{\sigma} \\ 0 & 0 \\ \operatorname{nin} & 0 \\ \Omega & \Omega\end{array}$ $\overrightarrow{-}$
0
0
0 1 : 1.1 11 TC NUM.
TRACK
1.475 1.475
0.015 0.048
$0.0<1$
 0.107
\qquad ©O. $\begin{array}{ccc}0 & -1 & 30 \\ 0 & 0 \\ 0 & 0 & 4 \\ 00 & 0 & 0 \\ 0 & 0 & 0\end{array}$

 1 1 | N |
| :---: |
| |
| |
| 0 |
| 0 |
| 0 | 111 11 \qquad

 1.254
5.985
4.730 3.230
 n
0
0
0
0
0
0
0 0
0
0
0
0
0 $m o v$
0
0
N
0
0
0
$=1$
 13.226
17.871
 ∞
\sim
\sim
\sim
\sim 9
9
 $\underset{\sim}{n}$
$\underset{\sim}{i}$
 ftET POSITION UNCLKTAINTIES IN POSITION UNCLKTAINTIES AXES) AUUUI LAUNCH INERIIAL AXEJ $\begin{array}{rrr}738.3 & -\quad 6183.2 \\ 770.9 & 76.3\end{array}$ 76.3
19.1
80.8 80.8
179.3
1206.2 0.3
5162.1
5162.1 130.4
36881.7
37012.3
 8695.3
2184.2 6028.9
10985.5 $\begin{array}{ll}0 n & m \\ 0 n & 0 \\ 0 & n \\ n & n\end{array}$ 18555.3
0521.0
12034.3

 87.744
87.144 $\stackrel{\rightharpoonup}{0}$
∞
∞
∞
∞ 11 11 1 1. 11 1 111 111 1 11 1都 REL.) 298.6 688.8 246.4
1196.9
18.8 0.0
93968.9
93968.9 1557.6
19.5
1577.1 2582.0
106174.1
108756.2

 1 ' ' ! 26701.5 646.8
27408.5 9802.2
414.2
503.3 54152.5
8.912 6.913 445491.5
23.944 23.963 Ove SIGIA
UNLERTAINTY

$x=\frac{n}{2} \sum_{2}^{2}$
30
0
0
0
0 , $-$ 23.0
0.0 2030.1
7041.1
5011.5 5241.3
91109.6
85804.3 8.8 29.1 1090.4
2758.0
3848.4 5257.2
21784.8
27042.1 16180.2
3488.4 . 3953.7
3890.6 $75305 \cdot 3$ 15.607 UNCEKT.
SUURCE
INITIAL S.l.
$X I$
$Y I$
$Z I$
ZLI $\begin{array}{lll}\text { ACCELYY } & 0.141 & \mathrm{NH} \\ \text { MXTOY } & 0.141 & \mathrm{AK}\end{array}$ $\begin{array}{lll}\text { MXTOZ } & 0.141 & \mathrm{lik} \\ \text { MYABTX } & 0.100 & \mathrm{hk}\end{array}$ ACCEL.GIAS
ACEXINIT ACBXINIT $0.400 \mathrm{CM} / \mathrm{S} . \mathrm{SQ}$
ACBYINIT
ACBYFLGT $0.400 \mathrm{CM} / 5.50$
ACBYCOM3
 BDYINIT BUYFLGT Z.U MERU
BDYCOME BUZINIT
BUZFLGT $\angle . J$ MEKU BUZFLGT $\angle \cdot J$ MERU
BDZCUMB
 $\begin{array}{ll}\text { AUSAYCJME } & 5.0 \text { MERU/G } \\ \text { AUIAZCJMB } & 8.0 \\ \text { MERJ/G }\end{array}$

 Table 7.4 RMS Uncertainties at lst SPS Burn Cutoff (Update lB)
PUSIIIUN AINU VELUCITY UNCERTAIVIAES ALUIVG LOLAL VEKTICAL AXES AT IIME FROM LCH. = 3 HR.48 MIN.47•280 SEC (13727. 281 SEC) VELUCITY UNCEKTAIHTIES IN FT/SEC
२ANGE $a 寸$
$\alpha=$
0
0
-0
-0 0.04 0.
0.
0. 8
8
0 0.000
15.273
15.273

 8.654
1.185
7.468 ∞m
∞
\cdots
\cdots
mo 35.865
35.865
35.887 n
∞
∞
n
n POSITIUN UNGEHTAINTIES IN FEE
(REL. TJ INOM. AXES) PEET
RANGE 4287.0 TRACK
1.475
1.475
0.015
0.048

0.021
0.042
0.286 0.000 2.420
2.420
 \hat{n}
0
0
0
0
0 0
-
0
0 0.024
 0
0

j
j
0
0
0
0 N
N
O.
NO 0
N
N
\cdots n
∞
∞
0
0 ∞
\sim
\sim
\sim $8 m$
Mo
No 0.083
0.546 25.641
25.641 n
\vdots
0
n
n
n

 1 1. 111

 -1 NCERTAINTIES
REL. TO NOM. AXE
TRACK 1.254
5.221
3.966
 $\stackrel{1}{\circ}$
$\stackrel{n}{n}$
\cdots
\cdots
n $-\quad 41.980$
$-\quad 0.093$ $\begin{array}{ccc}1 & \\ n & 0 & \\ 0 & 0 & m \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}$

 1 1 N都

Table 7.6 RMS Uncertainties at 20 mins. before 2nd SPS Ignition (Update lB)
POSITION AND VELOCIIY UNCERTAIVTIES ALONG LOCAL VERTICAL AXES AT TIME FROM LCH. $=7$ HK. 28 MIN. 27.800 SEC (26907.802 SEC,

Table 7.7 RMS Uncertainties at Reentry Start (Update 1A)
 FT/SEC
2ATJGE
4.657
2.395
1.004

2.375
5.004
0.540
0.000 $14 . .265$ 6.826
20.227
13.401 16.287
82.182
35.894 0.451
4.498 $\sim \infty$
$0 \sim n$
00
00
 6.549
58.544
75.094 $0 \sim$
$N O$
\sim
\sim
0
0
0
\sim
\sim

 VELUCITY UNCEKTAIIVILES IN
 TKACK 5.291
0.080
0.046 0.051
0.178 0.000
2.481
2.481 0.316
6.847
6.530
0.548
0.972
0.423 0.016
0.120 $3 n$
03
0.
 7.441
3.418
10.800 22.904
1.188
21.715 an
D
\sim
0

0 | -1 | |
| :--- | :--- |
| | |
| 0 | 0 | 0

0
0
0
0 $-$ ALT.
$-\quad 158.176$ 53.326

24.974
116.429
14.360

000 000 00 000 00 00 0

∞
n
i
i
$i n$
$i n$
i
 374.665
3602.898
3288.231
 $\overrightarrow{+}$
すn
No
n

 0
0
0
0
0
0 684.622
$-\quad 662.174$
$-\quad 1346.796$ $n m$
\sim
\sim
\sim
\sim
\sim
\sim
\sim
\sim 0
0
i
0
1

\qquad 66691.0
02912.4 13412.4
16414.0 0.0
$-\quad 3036720.1$
-3030120.1 181449.1
584342.8
402893.6

 00
$-1 n$
~ 0
~ 0
n
n $n 0$
nin
\cdots
\cdots
 00
$0 n$
00
0
0
n
n 0
n
n
n
n
0
0
0
0
\sim
n 710963.0
758645.7
1529608.8
 5504180.1 900.201
 3.9
31.3
350.4
0.0
622.3
622.3
136.2
21431.7
21568.0 125.9
1480.2
1360.3
0.2 125.9
1480.2
1360.3
0.2 01
 0.0
Nin
no mN
$\underset{\sim}{n}$
$\underset{\sim}{n}$ 574.7
7752.1
 23316.4 n
n
\vdots
\dot{n}
i 1440.7 958.0
1374.0 1 1
 41404.2
330158.7
 986.6
15542.9 275.5
881.4 4512.4
53327.6 53327.0
57840.0 21750.2
167448.0 18920. 66958.7
73803.4 73003.4
140762.1 24612.3
31826.1 n
0
0
0
5
3
3
i 02.534 RSS UNCERT. (V.WI. AIND FT/SEC)
Table 7.8 RMS Uncertainties at Reentry Start (Update 1B)
POSITION ANO VELUCITY UNGERTAIVTIES ALONG LOCAL VERTICAL AXES AT IIME FROM LCH. $=7$ HK.57 MIN. 2.670 SEC (28622.672 SEC)

VELOCITY UNCERTAINTIES IN FT/SEC

ALT. TRACK RANGE
4.657
2.395
1.004
2.375
5.004
0.540
0.000
168.713
$0 \sim$
No
0
0∞
0
\square
0
0
\sim
N
∞
0
∞
∞

\uparrow
0
0
0
0

∞
0
m
n
\rightarrow
n N N
N
in
$\rightarrow-$
 $\stackrel{y}{2}$
0
0
0
0

0 | ∞ |
| :---: |
| No |
| |
| |
| \sim | $\begin{array}{ll}N & 0 \\ 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ \sim & 0\end{array}$ $\overrightarrow{7}$

$\stackrel{y}{7}$
\sim
 193.182
193.182
o
n
n
$\underset{\sim}{n}$
\cdots \square ALT. $\overrightarrow{2} 0$
\sim
No
nio 0.051 0.051
0.178
1.033 0.000
0.252
0.252
0.316
4.438
4.755
 0.016
0.120 $-1 n$
00
00
00 1.543
28.893
30.437 7.441
3.418
10.860 22.904
1.188
21.715 8.289
0.472
0.291 40.462
40.462 40.464
POSITION AND VELOCITY UNCERIAIVTIES ALUNG LOCAL VERTICAL AXES AT TIME FRCM LCH．$=7$ HK． 57 MIN． 2.670 SEC（ 28622.672 SEC）

\qquad

 3.772 $\stackrel{\bullet}{\stackrel{0}{i}}$
 22.454 VELOCITY UNCEKT 0.288 － $1 \cdot 1$ 111宫 ！ 0.020
0.049
0.789
0.062
0.000 8が ∞
$\underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{m} \underset{m}{m}$
0
 11 ALT．
0.288 0.383
0.020
－ PUSITION UNCERTAINTIES IN FEET
（KEL．TO NOM．AXES） RANGE
14.1
10.7
0.6
1.2
19.0
8.1
0.0
104.4
104.4
4.3
62.6
66.9 $\underset{\sim}{\sim}$ $\stackrel{+N}{\circ \stackrel{0}{n}} \underset{\sim}{n}$ が～ $\begin{array}{r}\because 0 \\ +0.0 \\ \hdashline-0\end{array}$ $\stackrel{\infty}{\infty}$ ？ $\stackrel{\circ}{2}$ に 607.3
0.264 0.286 ALI．TRACK
BOUT LAUNCH INERTIAL AXES 1. 1 ． 1.650
0.016
0.121
0.000
0.004
0.084
 n
0
0
0
\sim
 1.249
1.404
0.154 $F O O$
F N
NO 23.256 $\stackrel{\circ}{0}$
N
N

 $\begin{array}{lll}\text { MXIOR } & 0.141 & \text { MR } \\ \text { MXTOZ } & 0.141 & \text { MR } \\ \text { MYABTX } & 0.100 & \text { MR }\end{array}$ ACBXINIT $\begin{array}{ll}\text { ACEXFLGT } & 0.400 \mathrm{CM} / 5.50 \\ \text { ACBXCOM3 }\end{array}$ ACBYINIT
ACBYFLGT
$0.400 ~ C M / 5.50 ~$ ACBYINIT
ACBYFLGT
ACBYCOMZ 20.6
1310.2
1330.9 72.0
72.5
0.4
0.6 0.6
14.2 0 250.3
7075.9 $\stackrel{H}{\square}$ $\underset{\sim}{\sim}$守 ？ $\stackrel{+}{\stackrel{+}{m}} \underset{\sim}{m}$ 70.7
31.5 8780.5
1.445 1.449 － 1！！ 11 $0 n$ 0.0
137.0
137.0 1
$0:$
$0:$ 111 111 ， 11 ， － 1
Table 7．10 RMS Computed T_{ff} Uncertainties at lst SPS Burn Cutoff（Update 1A）

UNCERTAIVTIES IN	time of	Flight Com	MPJIATIUN	FOR POS	ITIVE E	5 ISEC							
MLMXI－ 5.428	MZTOX	1.925	ACEXI	0.000	ACBYI－	6.081	ACBZI	14.453	3 SFEX－	0.133	NCXX	0.279	9 SEC．
MLMYI－ 1.939	MZTOY	4.292	ACBXF	107.373	ACBYF	19.383	ACB2F－	123.547	SFEY－	0.190	NCYY	0.194	SEC．
MLMZI－ 0.709	MYABTZ	0.726	ACEXT	107.539	ACBYT	13.476	ACBZT．	109.082	SFEZ－	5.381	NCZ2	0.133	3 SEC．
BDXI－ 1.638	GDYI－	7.892	B021－	$24 \cdot 245$	ADIAXT－	8.745	ADSAX－	0.038	ADIXX	0.109			
BDXF－ 19.156	BDYF－	59.774	B02F－	25.408	ADSAYT	11.309	ADIAY	1.038	ADSYY－	0.487	RSS	177.220	SEC．
BDXT－ 20.600	BDYT－	67.430	B $¢ C T$－	49.407	ADIAZT－	7.601	ADSAZ	0.488	ADIZZ－	0.105	RSN	78.971	
UNCERTAIVTIES IN	TIME of	FLIGHt COM	MPJTATION	FOR NEG	ATIVE ERR	RS（SEC							
MLMXI 5.805	MZTOX	2.295	ACBXI	0.000	ACBYI	6.081	ACBZI	14.453	3 SFEX	0.503	NCXX	0.091	1 SEC．
MLMYI 2.309	mZTOY	4.664	ACBXF	107.373	ACBYF	19.383	ACBZF－	123.547	7 SFEY	0.560	NCYY	0.175	5 SEC．
MLMZI 1.079	MYABTZ－	0.355	ACBXT－	105.736	ACBYT	12.976	ACBZT	112.718	SFEL	5.755	NCZZ	0.503	3 SEC．
BDXI－ 1.638	BDY1－	7.892	BOZI－	24.245	ADIAXT	9.133	ADSAX	0.408	ADIXX	0.260			
BDXF－ 19.156	BDYF－	59.774	BUZF－	25.408	ADSAYT－	10.928	ADIAY－	0.668	ADSYY	0.857	RSS	177.220	SEC．
BDXT 21.071	BDYT	68.222	BUZT	50.088	ADIAZT	7.977	ADSAZ－	0.118	ADIZ2	0.475	RSN	178．971	SEC．

－כJS $622^{\circ} \mathrm{C}$ XXJN EET＊O

¢ ${ }_{\text {U }}^{0}$	芯	以U	U
のさm		－n	
Nam	± 0	ONO	± 0
－0ं	0 \％	がo	∞
	N－		－0
	\cdots		9
$\times>N$			
$\times>\mathrm{N}$		\times	
	n发	勺UN	
z 2	$\underset{\sim}{\sim}$	zzz	$\propto \times$
m○－	－人n	mon	
mom	0∞	은	5
	\rightarrow	\cdots	
00 in	000	00	0

Table 7．11 RMS Computed T_{ff} Uncertainties at lst SPS Burn Cutoff（Update lB） 14.453 SFEX－
57.408 SFEY－ 0.038 ADIXX
1.038 ADSYY－ 0
 $-N$
$-N$
$0-1$
0
0
0
0
0
0
0
 8.745 ADSAX
11.309 ADIAY
7.601 ADSAZ

$\begin{array}{cccc}L I G T T \\ \text { COMPJTATION FOR NEGATIVE ERRORS（SECS）} \\ 2.295 & \text { ACBXI } & 0.000 \text { ACBYI } & 6.081 \text { ACBZI }\end{array}$ 6.0810 ACBZF $=$
1.078 ACBZT
9.133 ADSAX
10.928 ADIAY－
7.977 ADSAZ品× MZTOY － $\stackrel{1}{4}$

 | $8 \overbrace{}^{\circ} ๑^{\circ} \mathrm{S}-I X W 7 W$ |
| :--- | :--- | $\begin{array}{ll}602^{\circ} \circ & -I Z W 7 W \\ 6 E 6^{\circ} 1 & -I X W 7 W\end{array}$

BDXI－$\quad 1.638$ $\begin{array}{ll}\text { BDXF－} & 19.150 \\ \text { BDXT } & 20.600\end{array}$
 $\begin{array}{ll}60 \varepsilon^{\circ} 2 & \text { IAW7W } \\ 508^{\circ} \mathrm{G} & \text { IXW7W }\end{array}$
 ML．MYI
MLMZI BDXI－
BDXF－
RMS Computed $\mathrm{ff}^{\mathrm{ff}}$

\footnotetext{
Table 7．13 RMS Computed T_{ff} Uncertainties at 20 mins．before 2nd SPS Ignition（Update 1B）

UNCERTA	Vties in	TIME OF	FLlght com	JTATIO	FOR POS	ACBYI	（15EC							
MLMXI－	5.299	MZTCX－	1.852	ACBXI	0.000	ACBYI	6．021	${ }_{\text {ACBZ }}$		SFEX－			3.347	SEC．
MLMYI－	1.866	MZZTOY	4.195	ACBXF	164.397	ACBYF	17.962	ACBZF－	47.625 36.459	SFEY－	0.122 5.257	NCYY	0.065	SEC．
MLMZI－	0.641	MYAETZ	2.795	ACBXT	164.776	ACBYT	11.838	ACBZT－	36.459	SFEZ－	5.257		0.065	SEC．
BDXI－	1.632	BDYI－	7.762	BU2I－	23.008	AUIAXT－	8.517	ADSAX	0.029	ADIXX	0.177			
BDXF－	18.385	BDYF－	53.890	Bご2F－	24.352	ADSAYT	11.591	ADIAY	1.108	ADSY		RSS	186.838	SEC．
BDXT－	19.641	BDYT－	59．510	BDCT－	44.754	ADIAZT－	7.442	ADSAL	0.556	ADIZ2－	0.037	RSN	154.665	
UNCERTA	IVTles IN	TIME OF	FLIG4t COM	PJIATIO	FOR NEG	ATIVE Ez	（5EC							
MLMXI	5.945	MZTOX	2.373	ACBXI	0.000	ACBYI－	6.021	ACBZI	14.801	SFEX	0.572		0.158	SEC．
MLMYI	2.387	mZTOY	4.770	ACEXF	164.397	ACBYF	17.962	ACBZF－	47.625	SFEY	0.628	NCYY	0.243	SEC．
MLMZI	1.150	MYABTZ－	3.288	ACBXT－	107.428	ACBYT	10.868	ACBZT	50.391	SFEZ	5.890		J． 571	SEC．
BDXI－	1.632	BOYI－	7.762	Buで1－	23.008	ADIAXT	9.378	ADSAX	0.477	ADIXX	0.328			
BDXF－	18.385	BUYF－	53.890	BUZ2F－	24.352	ADSAYT－	10.670	ADIAY－	0.600	ADSYY	0.926	RSS	186.838	SEC．
BDXT	22.076	GOYT	76.432	BUZT	54.927	ALIAZT	8.153	ADSAZ－	0.050	ADIzZ	0.543	RSN	154.665	SEC．

Table 7.14 RMS Flight Path Angle Uncertainties at Reentry Start (Update IA)

Table 7. 15 RMS Flight Path Angle Uncertainties at Reentry Start (Update 1B)

UNCERTAIVTI	S in	FLIGHT P	PATH. AVGLE	Relative	TO ACTUA	AL AXES AT	NOMINAL	TIME	(EG1) (U)	Yal				
MLMXI	4.060	MZTOX	1.459	ACBXI	0.000	ACBYI	4.214	ACBLI-	9.961	SFEX	0.202	NCXX-	J. 064	MR.
MLMYI	1.415	MZTOY	3.129	$4 \mathrm{CBXF}=$	83.625	ACBYF	11.984	ACBZF	46.868	SFEY	0.262	NCYY-	J.006	MR.
MLMZ I	0.618	$\mathrm{MY}^{\text {A }}$ BTZ-	- 0.379	$4 \mathrm{CB}_{\text {B }}$ T-	83.625	$A C_{B Y}{ }^{\text {P }}$ -	7.831	$A C_{B Z}{ }^{\text {P }}$	36.561	SFEL	3.953	NCZZ	5.227	MR.
BUXI	1.182	BUYI	5.715	3021	17.691	AOIAX1	6.470	AUSAX	0.161	ADIXX	0.054			
BDXF	13.906	BDYF	42.724	$30<5$	17.766	ADSAYT-	7.672	ADIAY -	0.584	ADSYY	0.466	RSS	111.519	MR.
BDXT	15.104	BUYT	48.616	$30<T$	35.722	ADIAZT	5.397	ADSAZ-	0.208	ADI2Z	0.200	RSS	5.389	DEG.
UNCERTAIVT	les Iid	FLIGHT P	PATH AVGLE	Relative	TO ACTUAL	AL AXES AT	UESIRED	ALTIT	UDE (EG2)	(U) $\gamma_{\text {AA }}$				
MLMXI	1.237	M $2 T O X$	J. 315	$A C B \times 1$	0.000	ACUYI	0.967	ACB2I-	1.796	SFEX ${ }^{\text {a }}$	0.011	NCXX-	0.012	MR
MLMYI	0.342	MZTOY	J. 773	ACBXF	30.512	ACBYF -	1.934	ACBLF	34.139	SFEY	0.061	NCYY-	0.001	MR.
MLMZI	0.131	MYAETZ-	- 0.092	ACBXT	30.512	ACBYT	1.443	ACBZ T	26.261	SFEL	1.110	incle	5.063	MR。
BUX1	0.343	BUYI	1.788	3UZ1	6.621	AUSAXT	2.051	ADSAX	0.046	ADIXX	0.015			
BDXF	4.822	BDYF	19.330	$50<r$	5.246	AUSAYT-	1.469	ADIAY-	0.128	ADSYY	0.106	RSS	47.720	
BDXT	5.341	BuYT	23.733	\triangle -	15.281	ADIALT	1.265	ADSAZ-	0.042	ADI $\angle 2$	0.042	RSS	2.848	DEG.

$\frac{\alpha}{\Sigma} \frac{\alpha}{\Sigma} \frac{\alpha}{\Sigma}$	全岂	$\frac{\alpha}{\Sigma} \frac{\dot{\alpha}}{\Sigma} \frac{\dot{\alpha}}{\Sigma}$
	$\begin{gathered} m \\ \infty \\ \infty \\ 0 \\ 0 \\ 0 \\ \\ \hline \end{gathered}$	

0.000 NCXX
0.000 NCYY
0.011 NCLZ－
0.000
0.003 RSS
0.000 RSS

0.001 NCXX
0.000 iNCYY
0.004 NCZZ－
0.000
0.011 RSS
0.000 RSS 0.000 RSS
Table 7．16 RMS Flight Path Angle Uncertainties at Reentry Start（Update 2）
PATH AVGLE RELATIVE TO ACTUAL AXES AT NOMINAL TIME（EGI）（UłYAI
0.000 ADIXX
0.011 ADSYY
0.000 ADIZZ

 0.004 ACBZI－
0.009 ACBZF 0.013 ADSAX＿
UESIREU ALTITUDE
.012 ACBLF x
\times
6
0
0
4
0
0
5
0
0
0 1
2
4
4
5
0
4
4
2
0
0
0
0
0 ACTUAL AXES AT 0.000 ACBYI 0.114 ADIAXT－
0.127 AUSAYI 0.127 AUIAZT

$$
\begin{aligned}
& 0.000 \text { ACESYI } \\
& 0.119 \text { ACBYF - } \\
& 0.119 \text { ACEYT - } \\
& 0.037 \text { AUIAXT- } \\
& 0.040 \text { AUSAYT- } \\
& 0.003 \text { AUIAZT }
\end{aligned}
$$

은

$00 Z F$
JUZ
$\begin{array}{lrlr}\text { UNCERTAIVTIES IN } & \text { FLIGHT PATH } & \text { AVGLE } \\ \text { MLMXI－} & 0.008 & \text { MZTOX } & 0.001 \\ \text { MLMYI } & 0.009 & \text { MZTOY } & 5.022 \\ \text { MLMZI } & 0.000 & \text { MYABTZ－} & 5.001 \\ & & & \\ \text { BDXI－} & 0.002 & \text { BDYI－} & 0.012 \\ \text { BDXF－} & 0.071 & \text { BDYF } & 0.665 \\ \text { BUXT－} & 0.073 & \text { BUYT } & 0.653\end{array}$
3701 HLVd
H1甘d 1HOI7」

\qquad
$\begin{array}{ll} & 5.022 \\ & \text { ACEXF } \\ & 5.001\end{array}$ ACBXT

0
0
0
0

UNCERTAIVTIES IN	
MLMXI－	0.008
MLMYI	0.009
MLMZI	0.000
BDXI－	0.002
BDXF－	0.071
BOXT－	0.073
UNCERTAIVTIES 1 N	
MLMXI－	0.026
MLMYI	0.030
MLMZI	0.001
BUXI－	0.007
BDXF－	0.218
BDXT－	0.225

Table 7.17 Stable Member Drift Angles and Misalignments

Event	Misalignment About Launch Inertial Axes (millirad)			Misalignment About Local Vertical Axes (millirad)		
	X_{I}	Y_{I}	Z_{I}	Alt.	Track	Range
RSS initial S. M. misalignment at earth launch	2.35	0.41	0.41	---	-	----
Stable Member RSS Drift Angles						
At SIVB cutoff	0.21	0.30	0.47	0.28	0.30	0.43
At injection burn cutoff	1.74	1.77	1.83	1.82	1. 77	1.76
At 1 st SPS burn cutoff	2.02	2.04	2.10	2.05	2.04	2.06
20 mins before 2nd SPS burn ignition	3.93	3.95	3.97	3.97	3.95	3.93
At 2nd SPS burn ignition	4.11	4.12	4.15	4.13	4.12	4.13
At reentry start (400, 000 ft)	4.18	4.20	4.24	4.18	4.20	4.24
Overall RSS Stable Member Misalignments						
At SIVB cutoff	2.41	0.51	0.62	2.19	0.51	1.18
At injection burn cutoff	2.97	1.82	1.88	2.14	1.84	2.78
At 1st SPS burn cutoff	3.14	2.08	2.14	2.73	2.10	2.63
20 mins before 2 nd SPS burn ignition	4.61	3.97	4.00	4.00	3.98	4. 60
At 2nd SPS burn ignition	4.76	4.14	4.17	4.46	4.15	4.48
At reentry start (400, 000 ft)	4.83	4.22	4.26	4.81	4.23	4.26

8. G\&N PERFORMANCE ANALYSIS

This section not available at this time.

DISTRIBUTION LIST

Internal

R. Alonso
R. Arrufo (MIT/FOD)
R. Baker
R. Battin
L. Berman
P. Bowditch
D. Bowler
R. Boyd
G. Cherry
E. Copps
R. Crisp
J. Dahlen (5)
E. Duggan
J. Dunbar
J. B. Feldman
S. Felix
P. Felleman
J. Flanders (MIT/ARM) (3)
J. Fleming (4)
F. Grant
A. Green

Eldon Hall
Edward Hall
T. Hemker (MIT/NAA)
E. Hickey
D. Hoag
A. Hopkins
F. Houston
E. Hume

L, B. Johnson
M. Johnston
A. Kosmala
A. Koso
M. Kramer
A. Laats
L. Larson
R. Larson (AC/MIT)
S. Laquidara (MIT/FOD) (3)
J. Lawrence (MIT/GAEC) (3)
T.J. Lawton (10)
T. M. Lawton (MIT/MSC) (3)
G. Levine
D. Lickly
H. Little
W. Marscher
F. Martin
G. Mayo
R. McKern
J. McNeil
H. McOuat (AC/MIT) (5)

James Miller (10)
John Miller
R. Morth
C. Muntz
J. Nevins
J. Nugent
E. Olsson
R. Ragan
J. Rhode
M. Sapuppo
W. Schmidt (MIT/FOD)
R. Scholten
E. Schwarm
N. Sears
J. Shillingford
W. Beaton (MIT/AC)
J. Sitomer
B. Sokappa
M. Sullivan
J. Suomala
W. Templeman
R. Therrien
W. Toth
M. Trageser
R. Weatherbee
L. Wilk
R. Woodbury
W. Wrigley

Apollo Library (20)
MIT/IL Library (6)

External

P. Ebersole (NASA/MSC
W. Rhine (NASA/RASPO)
T. Heueremann (GAEC/MIT)

AC Electronics
Kollsman
Raytheon
Major W. Delaney (AFSC/MIT)

Resident Apollo Spacecraft Program Office North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
FO: National Aeronautics and Space Administration, MSC
Florida Operations, Box MS
Cocoa Beach, Florida 32931
Attn: Mr. B. P. Brown
HDQ: NASA Headquarters
600 Independence Ave., SW
Washington 25, D. C. 20546
Attn: MAP-2
AMES: \quad National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California
Attn: Library
LEWIS: National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio
Attn: Library
FRC: National Aeronautics and Space Administration Flight Research Center Edwards AFB, California
Attn: Research Library
LRC: National Aeronautics and Space Administration
Langley Research Center
Langley AFB, Virginia
Attn: Mr. A. T. Mattson
GSFC: National Aeronautics and Space Administration Goddard Space Flight Center
Greenbelt, Maryland
Attn: Manned Flight Support Office Code 512
Attn: Paul Pashby Code 554
MSFC: National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama
Attn: R-SA
L. Richards

External (Cont'd)

ERC:	National Aeronautics and Space Administration Electronics Research Center 575 Technology Square Cambridge, Massachusetts Attn: R. Hayes/A. Colella	(1)
GAEC:	Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York Attn: Mr. A. Whitaker	(10)
NAA:	North American Aviation, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California Attn: Mr. R. Berry ($40+1 \mathrm{R}$) Mr. L. Hogan (10) Mr. R. Frimtzis (2)	$(52+1 \mathrm{R})$
GAEC RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Grumman Aircraft Engineering Corporation Bethpage, L. I. New York	(1)
AC RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept. 32-31 AC Electronics Division of General Motors Milwaukee 1, Wisconsin Attn: Mr. W. Swingle	
WSMR:	National Aeronautics and Space Administration Post Officer Drawer MM Las Cruces, New Mexico Attn: BW44	(2)
MSC:	National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Control Group (PA2) Houston 1, Texas 77058	$\begin{aligned} & (110+1 R) \\ & 85+1 R) \end{aligned}$
	Attn: Mr. A. Cohen ASPO	(1)
	Mr. J.P. Loftus ASPO	(1)
	Mr. T. F. Gibson MPAD	(1)
	Mr. L. Dunseith MPAD	(1)
	Mr. J.P. Mayer MPAD	(1)
	Mr. H. W. Tindall MPAD	(1)
	Mr. C. R. Huss MPAD	(1)
	Mr. R. L. Schweichert Astronaut Office	ce (1)
	Mr. P. C. Shaffer FCD	(1)
	Mr. G. Meyer FCD	(1)
	Mr. J. Tomberlin FCD	(1)
	Mr. J. Hodge FCD	(1)
	Mr. C. C. Craft FOD	(1)
	Mr. R. Rose FOD	(1)
	Dr. J. Shea ASPO	(1)
	Dr. R. Lanzkron ASPO	(1)
	Dr. R. C. Duncan G\&CD	(1)
	Mr. T. Chambers EG25	(1)
	Mr. K. Cox EG23	(1)
	Mr. J. Funk EG22	(1)
	Mr. H. Croyts EG43	(1)
	Mr. G. Rice EG43	(1)
	G\&C Division Office EG	(1)
	Mr. R. Nobles MPAD	(1)
	Mr. W. Bennet MPAD	(1)

Mr. H. Peterson(1)Bureau of Naval Weaponsc/o Raytheon CompanyFoundry AvenueWaltham, MassachusettsQueens Material Quality Section(1)c/o Kollsman Instrument Corp.Building A 80-08 45th AvenueElmhurst, New York 11373Attn: Mr. S. Schwartz
Mr. H. Anschuetz(1)USAF Contract Management DistrictAC Electronics of General MotorsMilwaukee, Wisconsin 53201(3)(3)
BELLCOMLink Div. of GPIHillcrestBinghamton, New York
Attn: Mr. Fred Martikan

[^0]: *Note: Not required for Mission 501.

[^1]: 3rd component of update buffer, cell used for

[^2]: $\because \mathrm{MIT} / \mathrm{IL}$ will provide update capability (P27) during post LET-JET boost monitor (P14) at specified time intervals. The allowed update will be $\overline{\mathrm{R}}, \overline{\mathrm{V}}, \mathrm{T}$ which are required for Mission success.

[^3]: HGON N8Dく

[^4]: * It should be noted that Eq. (5-25b) does not take into account the entry flight path angle. The coefficients are precomputed on the basis of the nominal trajectory and hence the flight path angle is implied in Eq. (5-25b).

[^5]: *280, 000 ft . in case of aborts during boost phase.

[^6]: Notes: Altitude from liftoff to parking orbit insertion is measured above an earth having a mean radius of

[^7]: * Separate values needed for each SPS burn

[^8]: * Mod II actuator model not available

[^9]: * Mod II actuator model not available

