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This memo presents the effect of correlated measurement 

errors on midcourse performance. In particular this study investi-

gates the effect of correlated measurement errors on earth to moon 

flight using the basic treatment for statistical simulation of space 

flight given by Dr. Battin. 

Part I presents the necessary theory. Part II investigates 

earth moon flights where we assume zero correlation between mea-

surement errors which is not correct. The results will then show how 

serious the assumption of uncorrelated measurement errors is on 

final uncertainties, deviations and total velocity required. 

Part I 

First we will present the equations which the spacecraft com-

puter will use with the assumed correlation factor. Then we will pre-

sent the equations resulting from using the true correlation factor. 

The deviation vector is seven dimensional 
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and the error vector is also seven dimensional 
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where 

an = an  an 

3n can be considered the error in the estimation 

surernent error and a n is the measurement error. Let 

dimensional vector with the first six terms zero and the 

random measurement error. 

of the mea- 

C n  be a seven 

last being the 

(A) Calculations Using Assumed Correlation Factor 

(1) Extrapolating E, X matrices 

The transition matrix for extrapolating the assumed seven 

dimensional covariance matrices of deviation and error is 

n, n-1 0 

(1) Pn, n-1 
0 	COR 

where COR = assumed correlation factor = 0 and in, n-1 = transition 

matrix of trajectory deviation equations. The two six dimensional zero 

vectors imply that the measurement errors and trajectory deviations 

are uncorrelated. The extrapolated correlation matrix of errors is 

computed from 

T 

En 	n, n-1 En-1 Pn, n-1 + Q 

where 
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zero 
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0 s n 

and Cn is the variance of the individual sextant measurement con-

sidered as a function of time. For studies in this report C
n
2  
 = constant. 

This is an approximation since Cn depends on distance of spacecraft 

from the near body. A more accurate model would be 

= VARA + VARD/R 2  

where VARA = constant variance and VARD could be the variance of 

the planet horizon and R is the distance of the spacecraft from the 

planet. 

The extrapolated correlation matrix of deviations is computed 

by 

* 

Xn Pn, n-1 Xn Pn, n-1 

(2) Velocity Correction 

At a velocity correction the E matrix is updated by 

E =E n 

where L is a 7 X 3 matrix 

n +LN LT 
n 

0 0 0 

0 0 0 
0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 0 0 
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and Nn = n nn (3 X 3) matrix where 77 n is the error in application of 

a velocity correction at time tn. For updating the covariance matrix 

of deviations we have 

I 	I  
Xn = (I + L Bn)  (Xn  - En)  ) (I + L Bn) + E

n + L Nn 

This is the same equation as 9. 4-16 in Dr. Battin's class notes, but 

L changes as above and B n  is now a (3 X 7) matrix 

* 
B

n 
= C

n 

where Cn is a function of the reference trajectory (see Dr. Battin's 

class notes). 

(3) Measurement 

At a measurement the E, X matrices are updated as follows 

-1 	' En =En-a n  Ebb —n n 

where 

a b T  E b n —n n —n 

and 
h 

0 

bn  

1 

0 

0 

and Xn  = Xn at a measurementh is a function of the measurement made. 



(B) Calculations Using True Correlation Factor 

In part A, the matrix E is not the true covariance matrix of 

the errors, but the ship's computer would erroneously call it that since 

it merely follows the formula for optimum smoothing. Part B deter-

mines the true E, X matrices and how they are updated for measure-

ments and velocity corrections. 

(1) Measurement 

The real error in the estimate is 

** A * 
—e n = (S x n  - S x n — (2) 

where 6 x = true deviation vector and 6x n
*  
 = estimate of deviation 

vector that the computer calculates. Now the extrapolated deviation 

vector that the computer calculates is 

A *' 	* 	A* 
6x n  = Pn, n-1 xn-1 

where Pn, n-1 is given by Eq. (1). 

6 4x*  = 6xA*t  +w
* 

6A - 6 A:')
—n . —n —n 	n  

where 

SA =b T 6x n —n —n 

A* 1 	T A* 1 	T * aA =b 6x =b P 	q* 
n —n —n —n n, n-1 n-1 

Substituting 5, 6 in 4 

(3)  

(4)  

(5)  

(6)  

6x n  = 6x *  +w
* 
 b 6x n  -b n  P —n

' 	
n 

(T 
 n 	 n, n-1 6 x  —n-1 

T * A  (7) 

Substituting 3 in 7 
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A* 	 A *I * 
—x n = Pn, n-1 6 —x n-1

+ w 
 —n 

T 	T * b(5x 	b P 	x —n —n —n n, n-1 —n-1 (8) 

Substituting 8 in 2 

** 	A * 	* ( T 	T 	A* 
—e n 	 x 	b 	 P 	(5x ) - 6

—x n 
= Pn, n-1 —n-1 +w  —n —n 6x  —n  -b  —n n, n-1 —n-1 

Now the true deviation vector must be 

—x n = Pn, n-1 —xn-1 + n  

to satisfy our assumed sextant model for the correlated measurement 

errors. 

= an-1 CORT + 

More will be said about the sextant model in Part II 

Pn, n-1 

0 

CORT 

where CORT = true correlation factor. 

Substituting 10 in 9 

—n 	(I - w*  b n —n —n n,- n-1 6 —n-1 

The true error vector at time t o-1 is 

** 	4* e 	= 6 x —n-1 	—n-1 - x n-1 (12) 

(9)  

(10)  



Substituting (12) in (11) 

**= I-w b * T\ P 	
** 	* T1' P * 	

P —n 	 e 	+
I
I - w b 	n n- -n —n 	n, n-1 —n-1 	—n —n ( 	 n, n-1 6 

n-1 

- 
 (I - w*  b 

	

t  —n —n —n 
	 (13) 

Equation (13) gives the true error in the estimate at time t o  in terms of 

the true deviation at time t o-1. All these quantities are known, so e n 

a measurement at time t n' true error in the estimate at time t o-1 and 
** 

the true error in the estimate at time t o can be determined. Now 

* 	*1 
—wn 

= a
n En b n 

where 

	

* 	T a 	= b E b n  —n n —n 

For compactness, let 

*  M = w b T  
—n —n 

D = I - M 

B = D (Pn, n-1 - Pn, n-1) 

A = D P
n, n-1 

Then (13) becomes 

** 	** 
—e n 	—e n-1 + B 6 x n-1 - D —n 

Let 

F = true covariance matrix of the error in the estimate 

S = true covariance matrix of the deviation 

Consequently using (13) 
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** **T 
Fn —n = e en  = A Fn-1 AT + B Sn-1 BT  + D Q D  — 

** 
e **T AT + A e 	x + B 6 x — n-1 —n-1 	 —n-1 	—n-1 

Since 

   

    

** T 
—e n-1 n = —xn-1 in = 0 . ( n assumed independent) 

1 1 
Sn = 6 x 6 x 	 6 = (P 	 + —n —n 	n, n-1 —

x 	+ n-1 1 11 \ Pn n-1 —x n- 	--n 

Sn = Pn, n-1 Sn-1 Pn, n-1 + Q 

where 

 

[00  

 

Q 

0 

  

The problem is to evaluate 

** 
x —n-1 —n-1 

which is the covariance matrix between the true error in the estimate 

and the true deviation. At launch, we assume 

A 
6 x = 0 = e = 6 x L 

e L = - 6x L  

** 
6xA  =0=e L  + S x L 

** 
eL = - 6 x L 

(14)  

T 

(15)  
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Consequently 

E L = F =X =S L L SL 

therefore, 

   

    

** 	 ** 	** T 
e 	6 x —e L (-fL L — 

) = -FL 

 Note that 16, 17 are true only at launch. Equations 16, 17 are the initial 

conditions which enable us to start a calculation. When we make a mea-

surement we must be able to evaluate 

* T 
G = e

L  6x L  

and also at a velocity correction which will be given later. Let 

** T 
K = 6 x

L  e L 
 = G 

°= T PT + B Sn-1 PT - D Q G 	 T  = Ae n-1  6 n = e n 
 ox 

 n 	—xn-1 

Gn = AGn-1 PT + BSn-1 PT - DQ 
	

(18) 

	

Kn n
T 

= G = P
T (KAT 

+ 	 DT 	
(19) 

Equations 14, 15, 18 and 19 are calculated at every measurement 

point. The same must be done at a velocity correction point. 

(2) Velocity Correction 

The F and S matrices are updated at velocity correction as in 

Section A 

(16)  

(17)  
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F = F + L N L n n 	n  

Sn = (I + L Bn) (Sn  - Fn) (I + L Bn)
T 
 + Fn + L Nn L

T 

We must also determine how to update G at a velocity correction. At a 

velocity correction 

6x= 6x + LB6x 
— — 	

A 
 —n 	n 

	

x = e (ox +LBax 	)
T 	

e ** Ox 'T ** 	T 	** 	► 	 A 

n 	n 

J. 
Since 

an 
was assumed independent and e 6 x n = 0 (See Section 9. 3 of 

— — 
Dr. Battin's class notes). Therefore G (after velocity correction) = G 

(before velocity correction) and G before a velocity correction is simply up-

dated with the true transition matrix 

Gn  = Gn  = Pn, n-1 Gn-1 
Pn, n-1 

(3) Extrapolating F, S matrices 

The F, S matrices are extrapolated as in Section A but using the 

true transition matrix 

Fn  = Pn, n-1 
F

n-1 
Pn, n-1 

+ Q 

S = P 	S P 
n 	n, n-1 n-1 n, n-1 
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Part II 

Application to Earth Moon Flight 

For earth to moon flight, the following assumptions were made: 

(1) X
L 

= E
L 

(2) The model assumed for correlated measurement errors is 

an = 	exp [ - X (t n-to
_ 1)1 + 

where correlation factor equals 

exp [ -X (tn-to _l)] 

and an' n are independent random variables, X a positive constant and 

equals zero. The first term on the right can be considered a drift 

term and the second term is the random error of the actual sextant 

observation. 

(3) T = to-tn-1 = constant = 1. 5 hrs. This number was selected 

as a first approximation since the flight time is 62. 5 hours and 38 mea-

surements were taken. 

(4) ( n 
2 	2  = constant = 10 seconds. As stated in Part I this is 

not exact since horizon uncertainty is a function of distance. 

(5) Uncertainty in altitude = . 96 miles 

Uncertainty in range = 1. 43 miles 

Uncertainty in track = . 37 miles 

Uncertainty in altitude = 7. 79 mph 

Uncertainty in range = 4. 43 mph 

Uncertainty in track = 5. 08 mph 

or 



1. 88 	. 34 	. 25 	0 	0 	0 	0 

.34 	.87 	.41 	0 	0 	0 	0 

.25 	.41 	.37 	0 	0 	0 	0 

	

0 	0 	26.14 	-13. 23 	-7.10 	0 E
L  = 
	0 

0 	0 	0 	-13. 23 	48. 42 	11.56 	0 

0 	0 	0 	-7. 10 	11. 56 	31. 79 	0 

0 	0 	0 	0 	0 	0 	0 

The zero in the last diagonal term implies that we have perfect 

knowledge of a L, the initial sextant bias. Therefore O L  is zero since 

g is the error in the estimation of measurement error. 

Existing programs using dimension six were utilized by adding 

subroutines whenever the dimension seven was used in the calculations. 

MAC is now capable of matrix operations up to dimension seven. 

The moon earth calculations were made for 38 measurements 

at fixed times with three velocity corrections at 8, 49 and 61. 6 hours. 

Six cases were investigated with true correlation factor equal to 0, 

. 25, . 50, . 75, . 85, 1. 0 and a zero assumed correlation factor. Figures 

1 to 5 presents the final uncertainties, deviations and velocity required 

as a function of the true correlation factor. 

The object of this study is to relate this data to actual sextants. 

This is accomplished by determining the correlation factor as a function 

of the steady state mean square drift of the sextant. First we obtain the 

steady state value of a 2  . Squaring an and averaging gives 

an
2 
 = an 

2 
-1 exp (-2 X AT) + 2 

n 
	2 

= constant and CORT = e
-X AT 

therefore 

2 
ant   

= a
n-1 

(CORT)
2 

+ g'
2 (20) 

The steady state value of an
2 is determined when n oo 

-12- 



2 = 
	

2 	2 
(CORT) 2 

aSS 	 SS 

or 

aSS 
-2 	  

1 - (CORT)
2 
	 (21) 

The steady state mean square drift component is determined as 

follows: 

2 
ad = 	(CORT)2 ant 

n 

2 	 2 
ad  = (CORT) 

SS 

Substitute (21) in (22) 

2 2 
(CORT)

2 

ad - 
1 - (CORT)

2 

Values of the mean square steady state drift a d
2 
 are assumed and 

the true correlation factors, CORT, are calculated. Figure 6 presents 

the true correlation factor as a function of sextant steady state mean square 

value of the drift component. 

In conclusion, the importance of correlated measurement errors is 

directly related to mean square steady state drift of the sextant. The MIT 

sextant is within the zero slope region of figures 1 to 5 and therefore 

correlated measurement errors are not important for the, MIT sextant. 

(22)  

(23)  
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