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1. This memo answers two questions: 

1) How much track error results from no track position control? 

2) How much extra delta-v does it cost to have track position control? 

For lunar orbit insertion, the diagram of velocities is; 

inbound 
trajectory 

Figure 1 Vector Diagram  

where 

Vc = circular velocity 5335 ft. /sec. 

vh  = inbound hyperbolic velocity 8300 ft. /sec. 

g = velocity to be gained during insertion 

1N = unit vector perpendicular to desired plane 

The thrust acceleration vector is essentially along v g. We work first 

in a coordinate along v g  "w the x coordinate. We assume constant I a t  I for ease 

of operation. In these coordinates, the change in position in the x direction due 

to thrust acceleration is; 
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where T is the burning time — (320 secs. ) 

By referring to the vector diagram of Fig. 1, the final y position where 

y is along 17 N  is; 
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This equation permits the calculation of three important partial derivatives: 

1. Change in y due to late ignition. In this case the burn time T 

is invariant, but the absolute time of cut off increases. This 

influences the third term in Eq. 2„ and the partial is approximatly, 
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where 

2. Change in y due to unpredicted changes in thrust to mass ratio: 

Here make the substitution 

T= 17g  I /aT  

7 I = 3200 ft. /sec. 

aT  = 10 ft. /sec. 2  

then 
a y _ 	1

2 
sin 0+  vH sin a l vg  1 

a aT aT
2 2a

T
2 

3. Change in y due to changes in magnitude of inbound velocity. (This is 

easily accounted for by choice of ignition time since it known 

beforehand). 

a y = -T sin a 
a ICrH I 

 

We now turn to Ay lost in maneuvering to make up track dis-

placements. Using coordinates along vg  x and perpendicular 

to vg  ^ y, we proceed: 
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A near optimum track steering law, for track position control is; 

-= A+ Bt 
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yielding 
	 yF  = aT  (AT + BT 2 /2) + 	 8) 
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The appropriate boundary values to correct for a displacement yield. 
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for lunar deboost, we can use 

5.11 X 10 5 A + 5.45 X 10 7 B = yF 

3.2 X 10 3 A+ 5.11X 10 5  B= 0 

Inverting these equations yields A and B in terms of y F . 

A= 5. 89 X 10 -6 yF  

11) 

B = -3. 68 X 10 -8 yF  

Delta-v lost can be expressed by the approximate formula. 
cut-off 2 tt, 
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Returning to Fig. 1, we note that displacements of interest are along the I n 

 vector, since displacements in the desired plane are not of interest. We must 

therefore modify our calculations by the sine and cosine of the angle 0 . 
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Figure 2 Velocity Diagram 

An approximate relation between 0 and a,  is; 

8300 a  
- 8300-5235 	2 . 7a 

We now use A, B, (y F) to relate AvL  to yF, using T = 320 secs. 

AvL  = 1. 85 X 10 -6 
y F2 

3. Some typical numerical applications. 

For a 6 degree plane change at lunar orbit insertion, 

Table 1 

Thrust 
Perturbation 

Max distance out of 
plane if no track position 
control 

Av lost if track 
position control is 
used 

3% 
6% 
9% 

3900 ft. 
,7800 

11, 700 

. 306 ft. /sec. 
1.22 
2. 75 

For a 9 degree plane change at lunar orbit insertion, 

Table 2 

Thrust 
Perturbation 

Max distance out of 
plane if no track position 
constraint 

,Iv lost if track 
position control is 
used 

3% 
6% 
9% 

5900 ft. 
11, 800 
17, 700 

. 795 ft. /sec. 
3. 12 
6. 35 
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