Massachusetts Institute of Technology Instrumentation Laboratory
 Cambridge, Massachusetts

Space Guidance Analysis Memo \#8-65
TO: SGA Distribution
FROM: E. M. Copps, Jr.
DATE: May 3, 1965
SUBJECT: An Analysis of Control of Track Deviation During Lunar Deboost

1. This memo answers two questions:
1) How much track error results from no track position control?
2) How much extra delta-v does it cost to have track position control?

For lunar orbit insertion, the diagram of velocities is;

Figure 1 Vector Diagram
where
$\overline{\mathrm{v}}_{\mathrm{c}}=$ circular velocity $\sim 5335 \mathrm{ft} . / \mathrm{sec}$.
$\overline{\mathrm{v}}_{\mathrm{h}}=$ inbound hyperbolic velocity $\sim 8300 \mathrm{ft}$. /sec.
$\overline{\mathrm{v}}_{\mathrm{g}}=$ velocity to be gained during insertion
$\overline{1}_{\mathrm{N}}=$ unit vector perpendicular to desired plane
The thrust acceleration vector $\overline{\mathrm{X}}_{\mathrm{T}}$ is essentially along $\overline{\mathrm{v}}_{\mathrm{g}}$. We work first in a coordinate along $\bar{v}_{g} \leadsto$ the \mathbb{x} coordinate. We assume constant $\left|\bar{a}_{t}\right|$ for ease of operation. In these coordinates, the change in position in the \mathbf{x} direction due to thrust acceleration is;

$$
\Delta \mathrm{x}=\frac{\mathrm{a}_{\mathrm{T}} \mathrm{~T}^{2}}{2}
$$

where T is the burning time $\sim(320$ secs.)
By referring to the vector diagram of Fig. 1, the final y position where y is along $\overline{\mathrm{I}}_{\mathrm{N}}$ is;

$$
\mathrm{y}=\frac{\mathrm{a}_{\mathrm{T}} \mathrm{~T}^{2}}{2} \sin \theta-\mathbf{v}_{\mathrm{H}} \mathrm{~T} \sin \alpha+\mathrm{y}_{0}\left(\mathrm{t}_{\text {ignition }}\right)
$$

This equation permits the calculation of three important partial derivatives:

1. Change in y due to late ignition. In this case the burn time T is invariant, but the absolute time of cut off increases. This influences the third term in Eq. 2, , and the partial is approximatly,

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{t}_{\text {ignition }}}=-\mathrm{v}_{\mathrm{H}} \sin \alpha
$$

2. Change in y due to unpredicted changes in thrust to mass ratio:

Here make the substitution

$$
\mathrm{T}=\left|\overline{\mathrm{v}}_{\mathrm{g}}\right| / \mathrm{a}_{\mathrm{T}}
$$

where

$$
\begin{aligned}
\left|\bar{v}_{g}\right| & \cong 3200 \mathrm{ft} . / \mathrm{sec} \\
\mathrm{a}_{\mathrm{T}} & \cong 10 \mathrm{ft} . / \mathrm{sec}
\end{aligned}
$$

then

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{a}_{\mathrm{T}}}=-\frac{\left|\overline{\mathrm{v}}_{\mathrm{g}}\right|^{2}}{2 \mathrm{a}_{\mathrm{T}}{ }^{2}} \sin \theta+\frac{\mathrm{v}_{\mathrm{H}} \sin \alpha\left|\overline{\mathrm{v}}_{\mathrm{g}}\right|}{\mathrm{a}_{\mathrm{T}}{ }^{2}}
$$

3. Change in y due to changes in magnitude of inbound velocity. (This is easily accounted for by choice of ignition time since it known beforehand).

$$
\frac{\partial \mathrm{y}}{\partial \overline{\mathrm{v}}_{\mathrm{H}} T}=-\mathrm{T} \sin \alpha
$$

We now turn to Δv lost in maneuvering to make up track dis placements. Using coordinates along $\overline{\bar{v}}_{\mathbf{g}} \sim \mathbf{x}$ and perpendicular to $v_{g} \sim y$, we proceed:

A near optimum track steering law, for track position control is;

$$
\begin{gather*}
\psi=A+B t \\
\ddot{y}=a_{T}(A+B t)
\end{gather*}
$$

yielding

$$
\begin{gather*}
y_{F}=a_{T}\left(A T+B T^{2} / 2\right)+\dot{y}_{0} \\
y_{F}=a_{T}\left(A T^{2} / 2+B T^{3} / 6\right)+\dot{y}_{0} T+y_{0}
\end{gather*}
$$

The appropriate boundary values to correct for a displacement yield.

$$
\begin{align*}
& {\left[\frac{a_{T} T^{2}}{2}\right] A+\left[\frac{a_{T} T^{3}}{6}\right] B=y_{F}} \\
& {\left[a_{T} T^{T}\right]+\left[\frac{a_{T} T^{2}}{2}\right]^{B=0}}
\end{align*}
$$

for lunar deboost, we can use

$$
\begin{aligned}
& 5.11 \times 10^{5} \mathrm{~A}+5.45 \times 10^{7} \mathrm{~B}=\mathrm{y}_{\mathrm{F}} \\
& 3.2 \times 10^{3} \mathrm{~A}+5.11 \times 10^{5} \mathrm{~B}=0
\end{aligned}
$$

Inverting these equations yields A and B in terms of y_{F}.

$$
\begin{align*}
A & =5.89 \times 10^{-6} \mathrm{y}_{\mathrm{F}} \\
B & =-3.68 \times 10^{-8} \mathrm{y}_{\mathrm{F}}
\end{align*}
$$

Delta-v lost can be expressed by the approximate formula.

$$
\Delta v_{L}=\int_{\text {ignition }}^{\text {cut-off }} \frac{a_{T} \psi^{2}}{2} d t
$$

yielding

$$
\Delta v_{L}=\frac{{ }^{a} T}{2}\left(A^{2} T+\frac{B^{2} T^{3}}{3}+A B T^{2}\right)
$$

Returning to Fig. 1, we note that displacements of interest are along the $\overline{1}_{n}$ vector, since displacements in the desired plane are not of interest. We must therefore modify our calculations by the sine and cosine of the angle θ.

$$
\tan \theta=\theta=\frac{83000}{8300-523 j}
$$

Figure 2 Velocity Diagram
An approximate relation between θ and α is;

$$
\theta=\frac{8300 \alpha}{8300-5235}=2.7 \alpha
$$

We now use $A, B,\left(y_{F}\right)$ to relate Δv_{L} to y_{F}, using $T=320$ secs.

$$
\Delta \mathrm{v}_{\mathrm{L}}=1.85 \times 10^{-6} \mathrm{y}_{\mathrm{F}}^{2}
$$

3. Some typical numerical applications.

For a 6 degree plane change at lunar orbit insertion,

Table 1

Thrust Perturbation	Max distance out of plane if no track position control	Δv lost if track position control is used
3%	3900 ft.	$.306 \mathrm{ft} / \mathrm{sec}$.
6%	7800	1.22
9%	11,700	2.75

For a 9 degree plane change at lunar orbit insertion,
Table 2

Thrust Perturbation	Max distance out of plane if no track position constraint	Sv lost if track position control is used
3%	5900 ft.	$.795 \mathrm{ft} . / \mathrm{sec}$.
6%	11,800	3.12
9%	17,700	6.35

