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I. 	Introduction 

In the reference, a set of seven equations are given which are 

universal (applicable without change to the ellipse, the parabola, and the 

hyperbola), and by means of which the following conic problems may be 

solved: Kepler's Problem, Lambert's Problem, the Reentry Problem, 

the Time Theta Problem, and the Time-Radius Problem. The universal 

solution of all of these except Kepler's Problem requires the iterative de-

termination of the universal variable x from the equation: 

given the values of the other parameters. *  

This paper presents a set of explicit series solutions for x, given 

the same parameters as in the above equation, namely the semi-latus 

rectum and the reciprocal of the semi-major axis of the conic, the initial 

position distance and the initial flight path angle, and the transfer angle. 

A set of three non-iterative, but non-universal, solutions for x may be 
obtained, one for each type of conic section, but the elliptic and hyper-
bolic expressions become undefined as parabolic eccentricity is approached, 
causing computational problems, although x itself is theoretically well de-
fined. 
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III. 	Explicit Series for x  

cot 	- cot 
0 , (0 < 0 < 27r). Let W1  - 

NTT r0 /  

Each series of the set is universal and converges, and the rate of conver-

gence may be easily examined analytically. 

II. 	Notation (The notation agrees with that in the reference). 

r0 
	

initial position vector magnitude 

70 	initial flight path angle (measured from local vertical) 

semi-latus rectum of conic 

a 	= 	reciprocal of semi-major axis of conic (negative for 

hyperbolas) 

transfer angle = final true anomaly minus initial true 

anomaly 

AE = final eccentric anomaly minus initial eccentric anomaly 

(ellipse) 

AG = hyperbolic equivalent to AE 

universal variable - 
DE 

 for  ellipse, —
AG for hyperbola 

471 	 Nr-a 

Let W = + "Wn
2  

-1
+ a + Wn - 

1 (n > 2). 

Then, for each n > 3, 

x = 2
n 	1 a 	1 a2 	1  a

3 	
1 a4  - 

Wn 	
.8-

W  2
+ 5 W  4 	- 7 

W n 
6 + W g 	• ' • 
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The series for each n > 3 is universal and converges to x for 0 < 0 < 2r. 

In the cases where 9 is very nearly 0 0 or 360
o, there may be 

numerical difficulties in calculating W n  and using it in the series, and 

one should work directly in terms of its reciprocal, determining it by 

the following method: First the reciprocal of W 1  is computed by 

(sin 0) r0 hrp- 

1 + cos 0 - sin 9 cot 1/0  

Next, the intermediate quantities V n  should be calculated using the re-

cursion relation: 

1 
V = /V 	(

2 
+ a Vn 	n-1 	W 

)

2 4. Vn-1 
 

(n > 2) 

where V 1  = - 1. Then the reciprocal of W n is given by 

1 	1 
(W )/Vn. 

n 	1 

IV. Derivation 

The starting point for the derivation of the series solutions for x 

 are Eqs. (18a) and (19a) of the reference, namely: 

0 	.1-- 
2 cot = 	Na cot 	+ cot T

o 	
(elliptic) T p-  

cot 
-a = 	coth 	+ cot 70  (hyperbolic) 

\Fp- 	 2 
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Let 

cot 2- cot y 
0 

r /41; 

Then we have 

AE  W1 
cot 	- 	 (elliptic); coth AG - 	 (hyperbolic) 2 	NiT-i 	 2 

The half-angle formulas for the circular and hyperbolic contangent are: 

cot -1 
	

csc + cot = 	cot 2  + 1 + cot 
g 	+ cos 0  
2 	sin 0 

where the positive sign is taken if 0 is in the first or second quadrants, 

and the negative sign if 0 is in the third or fourth quadrants, and 

h 0  

	

coth Cf)  - 1 +inh 	csch + coth = + Vcoth 2  - 1+ coth 2 	
scos 
	-  

where the positive sign is taken if 0 is positive, and the negative sign if 

0 is negative. 

We assume  that 0 < 0 < 2r, which implies that 0 < AE < 2ir and that — — 	 — _ 
0 < AG. 

AE 
Substituting cot — and coth 2 

into the half-angle formulas, we 
2 

obtain 

W 1 
cot 	= + 	+ 1 + 

NTT 

coth 
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If we let W
n  = JW2 

+ a + Wn-1  then n-1 	 , 

W
2  AE 	 AG cot — - 	, coth 4 	Ng- 	4 	' 

and by substituting into the half-angle formulas to get the 8th, 16th, 32nd, 

etc., angles, we obtain 

AE Wn 	 Wn  AG 	 cot 	- 	, coth   • 
2n 	 2n 	- a 

	

It is to be noted that the positive sign on the radical in the half-angle 
AE 

	for- 

mulas is taken every time since —n is in the first or second quadrant for 

n > 1, and AG  is always positive.2 

2
n 

Now AE = x 47-x 'and AG = x 47:7 Thus, 

W 
x NI7 = 2n arccot 

n — (elliptic) 

W 
x 	

n 
- a = 2n  arccoth 	(hyperbolic) 

The inverse circular and hyperbolic cotangents have the expansions 

1 	1 	1 
arccot z= 

1 
 - 

3z
3 	

+..... 
 5z 	7z 

which converges for z > 1, and 

arccoth z= —
1 + - 1 +  1 	1 

z 3z
-3- 
 5z

5 
7z

7 

Nrcr-1 

which converges for z > 1. 
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Thus, using these expansions, 
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	 + 	(hyperbolic) 

which reduce to the single series: 

 

1 	a 	1 a2 1 a3 

	

1 
-3W  2

+ 
 5 

W  4 
	W n 	n 	n 

 

 

 

   

as was to be shown. 

V. 	Convergence Questions 

From the successive half-angle substitutions, we have already shown 

in the last section that for n > 1, 

W AE 	n 
cot 	- — and coth 	- 

2n  47 	2n  Nr:Te 

Thus the argument ( 	 

 

in the power series is given by: 

 

W n 

 

a 

 

E 	. .c case) 
2 

tan2 A  (elliptic  

   

2 Wn 
 

- tanh
2 AG (hyperbolic case) 

2n  
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Consequently, in the elliptic case, since 0 < AE < 27r, we prove by the 

ratio test that the series converge provided that 

2 AE tan —
n < 1 or 

n  --71. < or n > 3. 
2 	

4 

If AE is restricted to be less than 7r (or to be less than 7r/2), then the 

series also converges for n = 2 (or n = 1, respectively). However, n = 3 

is the first series for x which converges for all AE between 0 and 27r. 

In the hyperbolic case, we prove again by the ratio test that the 

series always converges for n> 1 for all AG, since the hyperbolic tangent 

is always less than one. 

A good idea of the rate of convergence of the series is also given 
2 by the expression for the argument (a/W

n ) of the power series: for all 

p, a, r0, -y0, and for all 0 between 0 and 27r, we have 

 

a 

 

< tan2 27r 
2
n 

2 

 
(elliptic) 

Wn2  

 

     

     

   

AGmax 
< tanh 

 

 

a 

 

(hyperbolic) 

   

2 
Wn 

 

  

2n  

      

where AGm 
 (an upper bound on AG) is determined from other consid-

erations. From these inequalities, one can see directly that a series 

with a larger value of n converges more rapidly than one with a smaller 

value of n. 

In the parabolic case,  a = 0, and the series converges in one term, 

provided Wn  # 0. To show that this is true, we begin by showing W 1  # 0. 

Now 
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cot (8/ 2)- cot y o  

W 1 - 	 from the definition. 

r0 /  

But p equals twice the pericenter radius and is thus non-zero. Now,for 

a parabola, the flight path angle at any point and the true anomaly of the 

point are related by the equation cot y = tan f/ 2. Thus 

0 	 0 	f
0 cot -2- cot yo  = cot 2-  tan -2- = 

f 1 	- f0 	f0 	cos f 
1
/ 2 

= cot ( 	) - tan 	- 2 	 2 	 f 0 	0 (sin -2-) (cos .-2-) 

using standard trigonometric identities. But 

cos f 1  / 2 

(sin P-2-) (cos f-(2)-) 

is zero if and only if f 1  equals 7r or - 7T, which cannot occur. Thus W 1  # 0 

for a parabola. Since a = 0, Wn = 2
n-1 

 W 1, and consequently Wn 
0 (n > 1) 

for a parabola. Thus, for a parabola, the series reduces to its first term: 

2n 2 
x — Wn W 1 

which agrees with the value obtained when x is calculated directly (cf. 

Eq. (20a) in the reference). 
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