Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

SGA Memo \#10
TO: SGA Distribution
FROM: E. S. Muller
DATE: June 4, 1965
SUBJECT: b-Vectors for Angle and Angle Rate Measurements in Arbitrary Coordinate System

This memo presents b-Vectors for angle and angle rate measurements taken in a measurement coordinate system (M-frame) and used to compute estimates of a state vector represented in a different system (e. g. platform frame-P frame).

The measurement gimbal system is that of the LEM rendezvous radar which tracks the CSM to obtain relative position (R) and velocity (V) of the CSM with respect to the LEM. The outer gimbal reads elevation angle (β) and the inner gimbal reads azimuth angle (θ). The geometry is illustrated in Fig. 1. The b-Vector for a given measurement is in general a 6 -dimensional vector which may be represented as

$$
\underline{b}=\left[\begin{array}{l}
\underline{b}_{0} \\
\underline{b}_{3}
\end{array}\right] \text { where } \underline{b}_{0}, \underline{b}_{3} \text { are } 3 \times 1 \text { column vectors }
$$

and which satisfies

$$
\delta \mathrm{Q}=\underline{\mathrm{b}}^{\mathrm{T}} \delta \underline{\mathrm{x}}
$$

where

$$
\delta \mathrm{Q}=\text { deviation in measured quantity }
$$

$$
\delta \underline{\mathrm{x}}=\left[\begin{array}{l}
\delta \underline{\mathrm{r}} \\
\delta \underline{\mathrm{~V}}
\end{array}\right]=\begin{aligned}
& 6 \text {-dimensional state deviation vector } \text { with } \\
& \text { coordinates in } \mathrm{P} \text {-frame. }
\end{aligned}
$$

The vector $\delta \underline{x}$ represents deviations in position and velocity of the vehicle containing the tracking unit (the LEM in this case).

The rotation matrix which transforms vectors with P frame coordinates to M-frame coordinates is $\mathcal{N}_{\mathrm{M}-\mathrm{m}}$. The three row vectors of this matrix are $\underline{m}_{0}, \underline{m}_{3}$, and \underline{m}_{6}, which are the three unit vectors representing the M-frame.

The b -Vectors corresponding to the two angle measurements (β, θ) and two angle rate measurements $(\dot{\beta}, \dot{\theta})$ are tabulated in Table I. All vectors are expressed in P -frame coordinates.

$$
\begin{aligned}
& \underline{A}=\left(\underline{R} \cdot \underline{m}_{0}\right) \underline{m}_{0}+\left(\underline{R} \cdot \underline{m}_{3}\right) \underline{m}_{3} \\
& A=|\underline{A}|, R=|\underline{R}|
\end{aligned}
$$

Fig. 1. Measurement frame geometry

	Table I	
Measurement	b-Vector (6×1)	
	${ }_{6}^{6}(3 \times 1)$	$\underline{b}_{1}(3 \times 1)$
Elevation angle (β)	$\left(\underline{\mathrm{R}} \times \underline{m}_{6}\right) / \mathrm{A}^{2}$	$\underline{0}$
Azimuth angle (θ)	$\left(\left(\underline{R} \times \underline{m}_{6}\right) \times \underline{R}\right) / R^{2} A$	$\underline{0}$
Elevation angle rate $(\dot{\beta})$	$\left(\underline{m}_{6} \times \underline{V}+2 \dot{\beta} \underline{\underline{A}}\right) / A^{2}$	$\left(\underline{\mathrm{R}} \times \underline{m}_{6}\right) / \mathrm{A}^{2}$
Azimuth angle rate ($\dot{\theta}$)	$\begin{gathered} 1 / R^{2} A\left[\underline{V} \times\left(\underline{R} \times \underline{m}_{6}\right)\right. \\ +\underline{P}_{6} \times(\underline{R} \times \underline{V}) \\ \left.+\dot{\theta}\left(R^{2} \underline{A}+2 A^{2} \underline{R}\right) / \mathrm{A}\right] \end{gathered}$	$\begin{aligned} & \left(\left(\underline{R} \times m_{6}\right) \times\right. \\ & \underline{R}) / R^{2} A^{2} \end{aligned}$

