Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

SGA Memo #	10
TO:	SGA Distribution
FROM:	E. S. Muller
DATE:	June 4, 1965
SUBJECT:	b-Vectors for Angle and Angle Rate Measurements in Arbitrary Coordinate System

This memo presents b-Vectors for angle and angle rate measurements taken in a measurement coordinate system (M-frame) and used to compute estimates of a state vector represented in a different system (e.g. platform frame-P frame).

The measurement gimbal system is that of the LEM rendezvous radar which tracks the CSM to obtain relative position (<u>R</u>) and velocity (<u>V</u>) of the CSM with respect to the LEM. The outer gimbal reads elevation angle (β) and the inner gimbal reads azimuth angle (θ). The geometry is illustrated in Fig. 1. The b-Vector for a given measurement is in general a 6-dimensional vector which may be represented as

 $\underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{b}}_{0} \\ \underline{\mathbf{b}}_{3} \end{bmatrix} \text{ where } \underline{\mathbf{b}}_{0}, \ \underline{\mathbf{b}}_{3} \text{ are } 3 \ge 1 \text{ column vectors}$

and which satisfies

$$\delta Q = \underline{b}^{T} \delta \underline{x}$$

where

 δQ = deviation in measured quantity

 $\delta \underline{\mathbf{x}} = \begin{bmatrix} \delta \underline{\mathbf{r}} \\ \delta \underline{\mathbf{v}} \end{bmatrix} = \mathbf{6} \text{-dimensional state deviation vector with coordinates in P-frame.}$

The vector $\delta \underline{x}$ represents deviations in position and velocity of the vehicle containing the tracking unit (the LEM in this case).

The rotation matrix which transforms vectors with P frame coordinates to M-frame coordinates is $\mathring{\mathbb{M}}_{p-m}$. The three row vectors of this matrix are \underline{m}_0 , \underline{m}_3 , and \underline{m}_6 , which are the three unit vectors representing the M-frame. The b-Vectors corresponding to the two angle measurements (β, θ) and two angle rate measurements $(\dot{\beta}, \dot{\theta})$ are tabulated in Table I. All vectors are expressed in P-frame coordinates.

 $\underline{A} = (\underline{R} \cdot \underline{m}_{0}) \underline{m}_{0} + (\underline{R} \cdot \underline{m}_{3}) \underline{m}_{3}$ $A = |\underline{A}|, R = |\underline{R}|$

Fig. 1. Measurement frame geometry

	Table 1	
Measurement	b-Vector (6×1)
	$\frac{b_0}{3\times 1}$	\underline{b}_1 (3 × 1)
Elevation angle (β)	$(\underline{\mathbf{R}} \times \underline{\mathbf{m}}_6)/\mathbf{A}^2$	<u>0</u>
Azimuth angle (θ)	$((\underline{\mathbf{R}} \times \underline{\mathbf{m}}_{6}) \times \underline{\mathbf{R}})/\mathbf{R}^{2}\mathbf{A}$	α <u>Ο</u> α
Elevation angle rate $(\dot{\beta})$	$(\underline{m}_6 \times \underline{V} + 2\beta \underline{A})/A^2$	$(\underline{\mathbf{R}} \times \underline{\mathbf{m}}_6)/\mathbf{A}^2$
Azimuth angle rate $(\dot{\theta})$	$1/R^2A [\underline{V} \times (\underline{R} \times \underline{m}_6)]$	$((\underline{\mathbf{R}} \times \underline{\mathbf{m}}_6) \times$
	$+ \frac{P_{6} \times (\underline{R} \times \underline{V})}{+ \hat{\theta} (\underline{R}^{2} \underline{A} + 2\underline{A}^{2} \underline{R}) / A]}$	$\underline{\mathbf{R}}$)/ \mathbf{R}^2 A