Massachusetts Institute of Technology
 Instrumentation Laboratory
 Cambridge, Massachusetts

Space Guidance Analysis Memo \#22

To:
From:
Date:
Subject:

SGA Distribution
James E. Potter
September 10, 1962
Calculation of the Roots of $u C(u)=A$

Let
$C(u)=\frac{1-\cos (\sqrt{u})}{u}$
for $\mathrm{u} \geq 0$. Then $0 \leq \mathrm{u} \mathrm{C}(\mathrm{u}) \leq 2$. Let A be a number between 0 and 2 and consider the roots of the equation

$$
u C(u)-A=0
$$

lying between 0 and π^{2}. If u_{0} is a root we have

$$
\cos \left(\sqrt{u_{0}}\right)=1-A
$$

Remark (a) u C (u) - $A=0$ has exactly one root between 0 and π^{2}.
The feasibility of calculating this root using the recursion formula

$$
u_{n+1}=\frac{A}{C\left(u_{n}\right)}
$$

will now be investigated.
Remark (b) Let v denote the root and let u_{0} be the initial guess at the root. If $0 \leq u_{0}<v$, then $u_{n+1}>u_{n}$ for every n and $u_{n} \rightarrow v$ as $n \rightarrow \infty$. Similarly, if $v<u_{0} \leq \pi^{2}$, then $u_{n+1}<u_{n}$ for each n and $u_{n} \rightarrow v$ as $\mathrm{n} \rightarrow \infty$.

Proof of Remark (b). We will start with two lemmas.
Lemma (1) u C (u) is (strictly) monotone increasing and C (u) is (strictly) monotone decreasing for $0 \leq u \leq \pi^{2}$. (Strict monotonicity means that if $u_{1}>u_{2}$ then $C\left(u_{1}\right)>C\left(u_{2}\right)$ and not: $C\left(u_{1}\right) \geq C\left(u_{2}\right)$; that is $C\left(u_{1}\right) \neq C\left(u_{2}\right)$.)

Proof of Lemma (1).

$$
u C(u)=1-\cos (\sqrt{u}) .
$$

Since $\cos (\sqrt{u})$ is monotone decreasing for $0 \leq u \leq \pi^{2}$, it follows that $u \mathrm{C}(\mathrm{u})$ is monotone increasing.
Let

$$
f(x)=\sin x-x \cos x
$$

then

$$
\begin{align*}
& f(0)=0 \tag{1}\\
& f^{\prime}(x)=x \sin x
\end{align*}
$$

and

$$
\begin{equation*}
f^{\prime}(x) \geq 0 \tag{2}
\end{equation*}
$$

for $0 \leq x \leq \pi$. From (1) and (2) it follows that

$$
\begin{equation*}
f(x) \geq 0 \tag{3}
\end{equation*}
$$

for $0 \leq x \leq \pi$.
Let

$$
g(x)=\frac{\sin x}{x}
$$

then

$$
\begin{align*}
& g(0)=1 \tag{4}\\
& g^{\prime}(x)=\frac{x \cos x-\sin x}{x^{2}}=-\frac{1}{x^{2}} f(x)
\end{align*}
$$

Therefore

$$
\begin{equation*}
g^{\prime}(x) \leq 0 \tag{5}
\end{equation*}
$$

for $0 \leq x \leq \pi$.
Furthermore

$$
\begin{equation*}
\mathrm{g}(\pi)=0 \tag{6}
\end{equation*}
$$

Therefore, from (4); (5) and (6) it follows that $g(x)$ is monotone decreasing for $0 \leq x \leq \pi$ and

$$
0 \leq g(x) \leq 1
$$

for x in this range, Finally,

$$
\begin{aligned}
\frac{1}{2}\left\{g\left(\frac{1}{2} \sqrt{u}\right)\right\}^{2} & =\frac{2 \sin ^{2}\left(\frac{1}{2} \sqrt{u}\right)}{u} \\
& =\frac{1-\cos (\sqrt{u})}{u} \\
& =C(u) .
\end{aligned}
$$

Since $g(x)$ is monotone decreasing and positive, it follows that $C(u)$ is monotone decreasing.
Lemma (2) If $0 \leq u_{n}<v$, then $u_{n}<u_{n+1}<v$.
Proof of Lemma (2). By Lemma (1) C (u) is monotone decreasing and

$$
C(v)<C\left(u_{n}\right) .
$$

Therefore

$$
A=v C(v)<v C\left(u_{n}\right)
$$

or

$$
u_{n+1}=\frac{A}{C\left(u_{n}\right)}<v
$$

Since (Lemma (1)) u C (u) is monotone increasing

$$
u_{n} C\left(u_{n}\right)<v C(v)=A
$$

and therefore

$$
u_{n}<\frac{A}{C\left(u_{n}\right)}=u_{n}+1
$$

Proof of remark continued. If $0 \leq u_{0}<v$, it follows by Lemma (2) and induction that the u_{n} 's form an increasing sequence bounded above by v. Therefore, the u_{n} 's approach a limit u_{∞}. Taking limits on both sides of the recursion formula

$$
u_{n+1}=\frac{A}{C\left(u_{n}\right)}
$$

we have
or

$$
u_{\infty}=\frac{A}{C\left(u_{\infty}\right)}
$$

Furthermore, since

$$
0 \leq u_{n}<\pi^{2}
$$

we have

$$
0 \leq u_{\infty} \leq \pi^{2}
$$

Since v is the only root of $u C(u)-A=0$ between 0 and $\pi^{2}, u_{\infty}=v$. This completes the proof of the first half of Remark (b). The proof of the second half follows the same lines.

Now consider the roots of the equation
$u C(u)-A=0$
when A is negative. We are interested in the roots lying between $-\infty$ and π^{2}. u C (u) is positive when u lies between 0 and π^{2} so any possible roots are negative. For u negative
$u C(u)=-\{\cosh (\sqrt{-u})-1\}$.
Let $B=-A$ and $w=-u$. Then equation (7) becomes
$w C(-w)=B$
or

$$
\cosh (\sqrt{\mathrm{w}})=\mathrm{B}+1
$$

Remark (c) For $A<0$, equation (7) has exactly one root and this root is negative.

The feasibility of calculating the root of equation (7) using the recursion formula

$$
u_{n+1}=\frac{A}{C\left(u_{n}\right)}
$$

for negative values of A will now be investigated. In order to have positive variables, the recursion formula will be rewritten in the form

$$
w_{n+1}=\frac{B}{C\left(-w_{n}\right)}
$$

Also let

$$
z=-v
$$

where v is the root of equation (7).
Remark (d) If $\mathrm{w}_{\mathrm{n}}<\mathrm{z}$, then $\mathrm{w}_{\mathrm{n}}+\mathrm{f}>\mathrm{z}$ and if $\mathrm{w}_{\mathrm{n}}>\mathrm{z}$, then $\mathrm{w}_{\mathrm{n}+1}<\mathrm{z}$. Thus the successive w_{n} 's oscillate about the root.

Proof of Remark (d). Using the power series expansion for the hyperbolic cosine we have

$$
C(-w)=\frac{\left(1+\frac{w}{2!}+\frac{w^{2}}{4!}+\ldots\right)-1}{w}
$$

$$
C(-w)=\frac{1}{2!}+\frac{w}{4!}+\frac{w^{2}}{6!}+\ldots
$$

Since w^{n} is strictly increasing, $\mathrm{C}(-\mathrm{w})$ is the sum of strictly increasing functions and is therefore strictly monotone increasing for positive w . Let

$$
F(w)=\frac{B}{C(-w)}
$$

Since C (-w) is strictly monotone increasing, F (w) is strictly monotone decreasing.
Furthermore

$$
\mathrm{w}_{\mathrm{n}+1} \rightleftharpoons \mathrm{~F}\left(\mathrm{w}_{\mathrm{n}}\right)
$$

and

$$
z=F(z)
$$

Assume that $\mathrm{w}_{\mathrm{n}}<\mathrm{z}$. Then, since $\mathrm{F}(\mathrm{w})$ is monotone decreasing,

$$
\mathrm{w}_{\mathrm{n}+1}=\mathrm{F}\left(\mathrm{w}_{\mathrm{n}}\right)>\mathrm{F}(\mathrm{z}) \stackrel{=}{=} \mathrm{z}
$$

or

$$
\mathrm{w}_{\mathrm{n}}+1>\mathrm{z}
$$

Similarly, if $w_{n}>z$,

$$
w_{n+1}=F\left(w_{n}\right)<F(z)=z
$$

or

$$
w_{n+1}<z
$$

Unlike the case when $A>0, w_{n}$ does not converge to z if $-A$ is too large. Let x_{0} be the positive nonzero root of the equation $\mathrm{x}=2 \tanh \mathrm{x}$
let

$$
z_{0}=4 x_{0}^{2}
$$

and let

$$
B_{0}=z_{0} C\left(-z_{0}\right)
$$

Remark (e) If $0<B<B_{0}$ and the initial guess W_{0} is sufficiently good, then $W_{n} \rightarrow z$ as $n \rightarrow \infty$. If $B>B_{0}$, then the u_{n} 's oscillate and do not approach a limit as $\mathrm{n} \rightarrow \infty$.
(To three decimal places:

$$
\begin{aligned}
x_{0} & =1.91 \\
z_{0} & =14.6 \\
B_{0} & =21,8
\end{aligned}
$$

For a given value of B it is not easy to tell whether an initial guess w_{0} is sufficiently good to insure convergence. By using the methods of the following proof and the mean value theorem it can be shown that if one makes the initial guess $w_{0}=z_{0}$ and B is less than B_{0}, then $w_{n} \rightarrow z_{\text {.) }}$)

Proof of Remark (e). Again let

$$
F(w)=\frac{B}{C(-w)}
$$

Then

$$
F(w)=\frac{B w}{\cosh (\sqrt{w})-1}
$$

Let

$$
G(w)=F^{\prime}(w)=B\left[\cosh (\sqrt{w})-1-\frac{\sqrt{w}}{2} \sinh \sqrt{w}\right] /[\cosh (\sqrt{w})-1]^{2}
$$

Since

$$
B=\cosh (\sqrt{z})-1
$$

we have

$$
\begin{equation*}
G(z)=-\frac{\sqrt{z}}{2} \quad \frac{\sinh (\sqrt{z})}{\cosh (\sqrt{z})-1}+1 \tag{8}
\end{equation*}
$$

It is necessary to determine the values of z for which $G(z)=-1$. By (8) this is the same as solving the equation

$$
\begin{equation*}
\frac{\sqrt{z}}{2} \frac{\sinh (\sqrt{z})}{\cosh (\sqrt{z})-1}=2 \tag{9}
\end{equation*}
$$

If z_{0} is a root of (9) we have

$$
\sqrt{z_{0}} \sinh \left(\sqrt{z_{0}}\right)=8\left(\cosh \left(\sqrt{z_{0}}\right)-1\right)
$$

Using the identities

$$
\cosh x-1=2 \sinh ^{2}\left(\frac{a}{2}\right)
$$

and

$$
\sinh a=2 \sinh \left(\frac{a}{2}\right) \cosh \left(\frac{a}{2}\right)
$$

we have

$$
\begin{equation*}
\sqrt{z_{0}}=4 \tanh \left(\frac{\sqrt{z_{0}}}{2}\right) \tag{10}
\end{equation*}
$$

Letting $z_{0}=4 x^{2},(10)$ becomes

$$
\begin{equation*}
x=2 \tanh x \tag{11}
\end{equation*}
$$

Since $G(0)=0$ and $G(z) \rightarrow-\infty$ as $z \rightarrow \infty, G(z)=-1$ for at least one value of z. By considering the graphs of $y=x$ and $y=2 \tanh x$ one can see that (11) has one positive root x_{0} as well as the root $x=0$. The root $x=0$ can be discarded since $G(0) \neq-1$. Since $\frac{\sqrt{Z_{0}}}{2}$ satisfies (11) for every root z_{0} of $G(z)=-1$ and x_{0} is the only acceptable root of (11), there must be exactly one root of $G(z)=-1$ and

$$
z_{0}=4 x_{0}^{2}
$$

As $G(z)=-1$ has only one root, it follows that

$$
G(z)>-1
$$

if $\mathrm{z}<\mathrm{z}_{0}$ and

$$
G(z)<-1
$$

if. $z>z_{0}$.

It will now be shown that, if $B>B_{0}$, then the $w_{n}{ }^{\prime}$'s do not converge as $n \rightarrow \infty$. Suppose that $\mathrm{w}_{\mathrm{n}} \rightarrow \mathrm{w}_{\infty}$ as $\mathrm{n} \rightarrow \infty$.

$$
w_{n+1}=\frac{B}{C\left(-w_{n}\right)}
$$

Taking limits

$$
\mathrm{w}_{\infty}=\frac{\mathrm{B}}{\mathrm{C}\left(-\mathrm{w}_{\infty}\right)}
$$

or

$$
\mathrm{w}_{\infty} \mathrm{C}\left(-\mathrm{w}_{\infty}\right)=\mathrm{B}
$$

Therefore $\mathrm{w}_{\infty}=$ z. Moreover

$$
w_{n+1}=F\left(w_{n}\right)
$$

and

$$
z=F(z)
$$

Combining the last two equations we have

$$
W_{n+1}-z=F\left(w_{n}\right)-F(z)
$$

Thus

$$
\begin{equation*}
\left|\frac{w_{n}+1-z}{w_{n}-z}\right|=\left|\frac{F\left(w_{n}\right)-F(z)}{w_{n}-z}\right| \tag{12}
\end{equation*}
$$

As $n \rightarrow \infty$

$$
\frac{F\left(w_{n}\right)-F(z)}{w_{n}-z} \rightarrow F^{\prime}(z)=G(z)
$$

Since $z>z_{0},|G(z)|>1$. Choose θ so that $1<\theta<|G(z)|$. Then for n greater than or equal to some number N,

$$
\left|\frac{F\left(w_{n}\right)-F(z)}{w_{n}-z}\right|>\theta
$$

By (12) it follows that

$$
\left.\frac{\mid w_{n}+1-z}{\mid w_{n}-z} \right\rvert\,>\theta
$$

for $\mathrm{n} \geq \mathrm{N}$. Therefore

$$
\left|w_{n}-z\right|>\left|w_{N}-z\right| \theta^{n-N}
$$

for $\mathrm{n} \geq \mathrm{N}$ and hence

$$
\left|w_{n}-z\right| \rightarrow \infty
$$

as $\mathrm{n} \rightarrow \infty$, since $\theta>1$. This contradicts the assumption that $\mathrm{w}_{\mathrm{n}} \rightarrow \mathrm{z}$ as $\mathrm{n} \rightarrow \infty$. The proof that $\mathrm{w}_{\mathrm{n}} \rightarrow \mathrm{z}$ as $\mathrm{n} \rightarrow \infty$ if $\mathrm{B}<\mathrm{B}_{0}$ is similar.

