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I. Summary 

This memo describes a quasi-linear technique for identifying unknown 

coefficients in a set of linear differential equations, The work was motivated 

by some recent interest in obtaining certain parameters of the CSM/ LEM 

combination and this memo deals primarily with this example; the method, 

however, is generally applicable. The basic technique is to linearize the non-

linear equations which result when a state vector is augmented with the un-

known parameters. A Kalman type filter is then used with these linearized 

equations to minimize the uncertainty in the state variables. 

IL The Equation of Motion  

The example to be considered here will be that of a flexible vehicle driven 

in rotation by a set of reaction jets. The model used will consider only the 

rigid body mode plus the first bending mode. Experience has shown that these 

are far more important for the CSM/ LEM combination than the higher bending 

modes and slosh modes. 

Rigid body rotation is described by 

where 
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The motion of the first normalized bending displacement, q 1, is des-

cribed by: 

2 
ml 4- 2m1 w l 41 + ml 	ql - u a 1 (RCS) = 0 

where ml,l,col are the normalized mass, damping ratio, and natural fre-

quency of the first bending mode. 

These equations can be written in vector form by make the definitions: 
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III. State Augmentation 

Now assume that none of the coefficients in Eq. (1) are known well enough 

to be useful. This is the worst case — if any of the coefficients are considered 

known the resulting filter equations can be simplified by reduction of the dimen-

sion of the state. 

Augment the state by defining a new vector x such that: 
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If, for this memo, we consider the coefficients of Eq. (1) to be constants 

then the new state equation can be written in the form: 

Note the nonlinear character of this equation caused by products of state 

variables. 

IV. Linearization 

For convenience write Eq. (2) in the form: 

• x = F x (3)  

The corresponding estimate of x, X, is described by 

4% 	A A 
x = F x (4)  

Now define the difference between x and its estimate as  

(5)  

Similarly with the matrix F: 

SF = F - F 	 (6) 
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= (F + OF') 6x + n 

It may be verified that the result of these operations is: 
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Substituting Eq. (5) and (6) into Eq. (3) gives: 

A 
X + 	(F+ SF) (x + 6x) 

Expanding, neglecting second order terms, and subtracting Eq. (4) gives: 

=F6 x+ 6F x (7) 

A 
By assuming F and x known and constant over any given sample period we 

may rewrite Eq. (7) as: 

= (F + F T ) 6x 	 (8) 

If, in addition, the applied control magnitude, u, is considered to be the 

sum of the commanded magnitude u and additive noise with mean zero such 

that 

u= u + Su 

then Eq. (8) becomes 

or in condensed form 

= G Sx + n 
	

(10) 

Equation (10) is a linear, constant coefficient perturbation equation over 

any given sample period. Its coefficients change from sample period to sample 
A 

period as x changes. 



V. The Filter Equations  

This section will merely summarize the computation steps required by 

the filter. The procedure is an application of the linear recursive filter 

theory which is well documented elsewhere. 

The following definitions are used in the expression of the filter equa-

tions: 

(t, t 0) = state transition matrix associated with Eq. (3). (See 
Appendix for details) . 

, (t, t 0 ) 	state transition matrix associated with Eq. (10). (See 
Appendix for details). 

N = 	nT  = covariance of noise 

E = covariance matrix 

2 
cy= variance of measurement noise 

m = actual measurement taken 

denotes parameter before incorporation of measurement 

= denotes estimate 

t0 , 	
two timest 1 > to (The absence of a prime indicates the 
measurement has been incorporated.) 

For this example the following additional vector is necessary: 

, 0, 61 (xA  ), 0 , 0, 0, 0, 

where 0-1  (xA  ) = normalized slope of the first bending mode at the IMU station. 

The sequence of calculations is then: 

1. Extrapolate the state: 

1 = go 
1'  t 0  ) X(t 0  ) 

2. Extrapolate the covariance matrix: 

1\14. , t) dt 



3. Compute the scalar a(t 1 ) 

a(t
1
) = h T 

E'(t 1  ) h + a
-2 

4. Compute the weighting vector 

w(t1) = E' (t1)h /a(t 1 ) 

5. Incorporate the measurement: 

X( 	= 	+ w(t1) [m(t1) - h T  Xr(t )] 

6. Update the covariance matrix: 

E(t1) = E 1 (t 1) - a(t ) w(t 1) w T(t1 ) 

7. Update the state transition matrices .1 t 1, t 0) and iIi(t , 	by evalu- 

ating them for the new value of x(
1  ). 

VI. Simulation Results 

A MAC language computer program has been written to evaluate the use 

of these equations. The initial results show that the method does indeed work 

and could be used for ground based parameter identification, Major simpli-

fications (which may be possible for specific applications) would be necessary 

for airborne operation. 

Figures lthrough 5 illustrate some preliminary results. No attempt has 

been madethus far to improve these results -- they are merely initial runs. 

All have noise on both the measurement and control and have a basic sample 

period of 50 milliseconds. The nominal control u (t) is a constant for all runs. 

VII. Conclusions 

This technique can be used to identify some of the important parameters 

needed in the design of the CSM autopilot. While much more work is nec-

essary to adapt it for an AGC size computer it could be used as it is to analyze 

test flight data. Using the entire recursive procedure recursively on a set of 

recorded gimbal angle measurements should yield good estimates of the para-

meters discussed here. The procedure could be adapted, if necessary, to the 

identification of other parameters, or to finding time varying parameters. 



Fig. 1 Estimate of moment of inertia. 
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Fig. 2 Rigid body angle estimate initially in error. m l  
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Fig. 4 Estimate of bending slope to mass ratio. 
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Fag. 5 Estimate of bending frequency. 



Appendix 

State Transition Matrix Elements 

The state transition matrices involved in the filter equations are some-

what complex. They are listed here for reference. 

The following notation is used: 
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Then if Oil  = the i th row j th column element of it.(t v  to). 

The matrix elements are: 
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The remainder of the elements depend upon the discriminant: 

If D is negative 
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Any elements of either state transition matrix which has not been de-

fined above is zero. 
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