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1. Description of Navigation Procedure,  

This memo presents a method of using sextant sightings to 

unknown landmarks for navigating in a near orbit of a planet. One meas-

urement is considered to consist of two sightings to the same landmark. 

The position of the landmark (assumed constant for the moment) and the 

two points from which the sightings are made determine a plane. At one 

position between the two sighting points, the velocity vector of the space-

craft will be parallel to this plane. 

It will be shown below that this position is exactly midway 

between the two sighting points if the orbit is circular - regardless of the 

location of the landmark. In addition, the deviation of this position from 

the midpoint for an elliptic orbit will be derived. This deviation will be 

negligible in most cases, but a first order approximation is given which 

will be sufficient for all possible situations. 

Based on the above discussion, the following orbital navi-

gation procedure is suggested: 

At time t
0' let a sextant sighting be made to an unknown 

but recognizable landmark, and let u o  be the measured unit vector from 

the spacecraft to the landmark. Several seconds later, at time t 1 , as-

sume that a second sighting, 11 1 , to the same landmark is obtained. 

Let r 0 	0 and v be the position and velocity estimates —  
stored in the computer on board the spacecraft at time t 0 . The meas-

urement data is incorporated as follows: 



1. Integrate r 0  and v 
0  ahead to the two times t

1 and 

t2 	
1 

= (t0  + t 1  ) + St 
2 

	

to obtain r 1' 	2 	2° r and v 	The deviation St, if needed, is determined  
from rv and r 

0' 	0' 	1° 

2. Use, the position estimate r 1  to modify u 1  tp u 1  in 

order to compensate for the rotation of the planet. 

3. Calculate the unit normal to the plane of u 0  and u i 

 from 

n = UNIT(u0 	1 X u ) 

The six-dimensional geometry vector for the measurement is given by 

0 

0 

n 

4. The component of the velocity vector in the direction 

of n is the measured quantity, the measured value is zero, and the esti-

mated value is n - y 2 . Therefore, calculate the measured deviation 

from 

= - n • v — —2 

5. Update the estimates r 2  and v 2  and the W matrix at 

time t 2  in the usual manner. 

Extrapolation now proceeds from time t 2  

2. Computer Simulation.  

In order to determine the usefulness of the information 

obtained from the above orbital navigation procedure, the following two 

cases were considered: 

(1) 



1. An earth parking orbit prior to translunar injection of 

two and one half orbits or 3. 75 hours in length. It was assumed that three 

landmarks could be observed in both Africa and. North America during 
each of the two passes. Included in the simulation are the effects of 

venting, assumed to occur an average of nine times during the flight 

with a rectangularly distributed uncertainty having a maximum value of 

0. 7 ft/sec. 

2. A lunar parking orbit prior to LEM descent of three 

orbits or 6. 3 hours duration. Ten landmarks were observed at nine min-

ute intervals during the first half of each orbit. 

The table below shows the RMS terminal errors resulting 

from 25. Monte Carlo runs for each case. An RMS error of one minute 

was assumed in establishing each of the two sightings required for an 

obs ervation. 

In both cases, nearly perfect circular orbits were used as 

well as non-rotating planets. Elliptic orbits and rotating planets will not 

degrade the navigation provided proper compensation is included if re-

quired. 

The landmarks were selected in a convenient, but not op-

timum, manner. Thus, it is probably possible to improve upon the re-

sults shown. 

RMS Terminal Errors 

Position mi) Velocity (ft/sec) 

Alt. Range Track Alt. Range Track 

Earth Orbit 0. 9 2. 3 0. 9 13. 4 5. 6 6. 3 

Lunar Orbit 0. 3 0. 6 0. 9 1. 6 1. 8 1. 2 
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3. Circular Orbit.  

Let r 0  and r be the two points from which sightings to the 

landmark position are obtained. Consider an inertial -axis system which 

has its XY plane in the plane of r and r 
1 	 0 

and its X axis along r as shown 
 

in the figure. 

The position and velocity at time to  are given by 

(2) 

(3) 

If 0 is the angle between r and r , then the position at time t 1  is as 

follow s 

r 0  cos 0 1 

 r0  sin 0 r 1 = (4) 

4 

0 



Let the landmark be at the fixed arbitrary point 

   

= y 

z 
(5) 

  

   

The vectors from the two sighting points to the landmark are obtained 

from Eqs. (2), (4) and (5) 

= - r —0 

r 	-= 

x 

Y 

- r 0 I 

y 

r
0 
 cos 

r0  sin 

z 

0 

0 

(6) 

(7 ) 

A vector in the direction of the cross product of p 0  and p 1  is then given 

by 

sin 

1 - cos 0 

not important 

 

(8) 

 

It is desired to find the point r at angle 0 to r 0  such that 

the velocity v is normal to N. The velocity v has the following components: 

- vo  sin 0 

v9  cos 0 

0 

v = (9 ) 

Taking the dot product of Eq. (9) with Eq. (8) yields 



N vo ( -sin 8 sin ¢ + cos q  - cos 0 cos 0) 

= ve  [cos 4  - cos (0 - y5)} 

which equals zero if 

0 
2 

as was to be shown. 

4. Elliptic Orbit. 

Let the velocity at time t o  be given by 

V
0  = 
	

ye 
	 (10) 

0 

The position at time t 1  is as follows: 

r 1 = 

Differencing Eqs. (5) and (11) yields 

= 	- r — 	—1 

r 1 cos 19 

r i  sin 0 

0 

x-r i cos 8 

= 	y 	r 1  sin 0 

(11)  

(12)  

A vector normal to the plane of E 0  and E l  is then obtained from Eqs. (6) 

and (12). 
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sin 8 

r0 
 

rl 
- cos 8 

To determine the ratio r
0  /r 1  use Eqs. (B1. 46), (2), and 

(13) 

(10) to write 

p 

1 + (p/r 0  - 1) cos 8 - i\ p/p vR  sin 8 	 (14) 

Now, from Eq. (B1.34) and Eqs. (2) and (10) 

2 2 	2 rove     vo  

r0 2 
vc 

(15) 

where vc is the circular orbital speed. Using Eq. (15) in Eq. (14) yields 

2 r o 	 vR = cos - 	sin 0 + 2 - cos 8) (16) 

1 	 v8 

Then, substituting Eq. (16) into Eq. (13) gives 

sin 0 

v
R 	v22 

c N=' 	 sin 	+ 
vo 	v  

0 

- cos 0) 
	

(17) 

The velocity vector v at point r is obtained from Eq. (B1. 45) 

and Eqs. (2) and (10). Thus 

Equations referred to in this manner are from Battin, R. H., Astronautical 

 Guidance. 
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r0  

p 

2 
v

R  VC 

2 v t9 	vo  

2 
vc 

2 
V0 

= V (19) 1 

vR  
— ( 
p 

- cos 0) - 	- s in 0ji: 0  

- cos 0)v 0  j 	 (18) 

Using Eqs. (2), (10), and (15) in Eq. (18) gives 

Taking the dot product of Eqs. (17) and (19) yields 

v • N = 	[cos 	- cos (0 - 0) + a(1 - cos 0)] 
v2 

vo 
	 (20) 

where 

2 

a = R  sin 0 t - 
vc 

	

2 	- cos 0) 	 (21) 
v 0 0 

Let the value of &which makes Eq. (20) va.nish,be 

= 	+ 60 
	

(22) 
2 

Substituting Eq. (22) into Eq. (20) and setting the result equal to zero 

gives 



(24) tan —0 

4 

1 - cos 0 
— cos Scb 
2 

sin 60 =  a 	 (23) 
2 - a 	

sin — 
2 

Equation (22) is an exact expression for (SO. Since the angle 

9 itself is •  not large, the deviation SO is sufficiently small so that sin 60 

and cos SO may be replaced by kb and unity in Eq. (22). This approxima-

tion yields 

Equation (21) is a convenient expression for calculating a 

in an on-board computer since r 0  and v p  are immediately available. For 

the purposes of analysis, however, the following more convenient form of 

Eq. (21) is obtained using Eqs. (B1. 33), (B1. 34), and (B1. 39). 

cos f0  - cos (f0  + 9) 
a - e 

1 + e cos f 
0 

To determine the necessity of implementing the deviation 

(St, write Eq. (25) to first order in 0 as follows 

sin f 0  a = e0 
1 + e cos f 0 

Equation (26) has a maximum value given by 

e0  
aMAX 1\1 	2  

1 -e 

Substituting Eq. (27) into Eq. (24) yields 

(25) 

(2 6) 

(27) 
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avMAX 

a°MAX 
 

e0 2  

 

   

4(2 1\11 	e 2  - e0) 

as the maximum value of SO to first order in 0. For all possible cases, 

the denominator of Eq. (28) has a value greater than 7.9. Thus, 

ed 
 2 

M X 7. 
9 

Assuming a maximum angle between the measurement plane and the vertical 

of 45°, the maximum velocity error which results if 60 is ignored is given 

by 

e0
2 

SyMAX  
11 

where v is the magnitude of the velocity vector. Using 0. 05 and 0. 2 as the 

maximum values of 0 for earth orbit and lunar orbit respectively yields a 

velocity error bound in feet per second given by 

e for earth orbit 

20e for lunar orbit 

Although the errors displayed in Eq. (31) may not be negli-

gible for all possible orbits, the approximation 

1 2 
= —  

8 	v0  

can be shown to yield negligible errors. Hence, the time variation St in 

Eq. (1) can be calculated from 

R' 
v 

St= — 	(t 1  
8 vo  

or 

1 	r o • r i 	r • v o  
at = — arccos 

8 	 r r 0 1.‘ X v oi 

1 0 


