Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo \#44
TO: SGA Distribution
FROM: Robert J Fitzgerald
DATE: May 67, 1963
SUBJECT: Optimization of Midcourse Correction Times

Section 4 of reference [1] discusses the possibility of varying the times of midcourse velocity corrections to minimize a function ϕ, which involves the terminal deviation variances and a statistical measure of the total velocity change used for control.

It is suggested that $\partial \phi / \partial t_{j}$ be calculated by changing t_{j} to $t_{j}+\Delta t_{j}$ and recalculating the $X(t)$ and $E(t)$ histories. In such an approach Δt_{j} would have to be kept small to make the assumed linearization valid. But when Δt is small, the computation of the derivative inevitably involves taking differences of nearly-equal numbers, a procedure to be avoided if reasonable accuracy is to be attained. The following procedure allows direct computation of the derivative.

A general performance criterion of this type is

$$
\phi=\sum_{i=1}^{n} \operatorname{tr} f_{i}\left(X\left(t_{i}-\right), E\left(t_{i}-\right)\right)=\min .
$$

where $n-1$ corrections are made and t_{n} is the final time.
The basic problem is that of finding the partial derivatives

$$
\frac{\partial X\left(t_{i}-\right)}{\partial t_{k}} \quad \text { and } \quad \frac{\partial E\left(t_{i}-\right)}{\partial t_{k}} \quad(k \leq i \leq n)
$$

We first derive the relations describing the propagation of perturbations in the variance matrices, $\delta X(t)$ and $\delta E(t)$. From $(3-1)^{*}$ and $(4-7)$, with $\Lambda=Q=0$ and $K=E H^{T}{ }^{-1}$:

[^0]\[

$$
\begin{align*}
& \stackrel{\bullet}{X}=X F^{T}+F X \tag{1}\\
& \stackrel{\bullet}{\mathrm{E}}=\mathrm{EF}{ }^{\mathrm{T}}+\mathrm{FE}-E H^{\mathrm{T}} \mathrm{R}^{-1} \mathrm{HE} \tag{2}
\end{align*}
$$
\]

Equation (1) is linear and the corresponding perturbation equation, from (4-29), has the solution

$$
\begin{equation*}
\delta X_{i+1-}=\Phi_{i+1, i} \delta X_{i+} \Phi_{i+1, i}^{T} \quad(i>k) \tag{3}
\end{equation*}
$$

Equation (2) is of the Riccati type, and its perturbed solution (see Appendix A) satisfies the equation

$$
\begin{align*}
& \delta \mathrm{E}_{\mathrm{i}+\mathbf{1}^{-}}=\left[\mathrm{E}_{\mathrm{i}+1-}{ }_{\mathrm{T}+1, \mathrm{i}}^{-\mathrm{T}} \mathrm{E}_{\mathrm{i}+}^{-1}\right] \delta \mathrm{E}_{\mathrm{i}+}\left[\mathrm{E}_{\mathrm{i}+}^{-1} \Phi_{\mathrm{i}+1, \mathrm{i}}^{-1} \mathrm{E}_{\mathrm{i}+1}\right] \\
& \text { (i }>\mathrm{k} \text {) } \tag{4}
\end{align*}
$$

From Eq. (4-33),

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}+}=\mathrm{E}_{\mathrm{i}-}+\mathrm{G}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}^{\mathrm{T}} \tag{4-33}
\end{equation*}
$$

where Q is the control implementation error covariance matrix, we see that

$$
\delta \mathrm{E}_{\mathrm{i}+}=\delta \mathrm{E}_{\mathrm{i}-}+\mathrm{G}_{\mathrm{i}} \delta \mathrm{Q}_{\mathbf{i}} \mathrm{G}_{\mathrm{i}}^{\mathrm{T}}
$$

where $\delta \mathrm{Q}_{\mathbf{i}}$ can be expressed in terms of $\delta \mathrm{X}_{\mathrm{i}-}$ and $\delta \mathrm{E}_{\mathrm{i}=}$, or may be zero. Combining this with Eq. (4) we can write $\delta \mathrm{E}_{\mathrm{i}+1 \text { - }}$ in the form

$$
\begin{equation*}
\delta E_{i+1-}=\sum_{j} N_{x i j} \delta X_{i-} N_{x i j}^{\prime}+\sum_{j} N_{e i j} \delta E_{i-} N_{e i j}^{\prime} \tag{5}
\end{equation*}
$$

The propagation of δX across a correction is derived by perturbing Eq. (4-28)

$$
\begin{equation*}
X_{i+}=X_{i-}+G_{i}\left[B(X-E) B^{T}+Q\right]_{i-} G_{i}^{T}+\left[(X-E) B^{T} G^{T}+G B(X-E)\right]_{i-} \tag{4-28}
\end{equation*}
$$

where B (derived by Battin) determines the correction $B \delta \hat{x}$.

$$
\begin{align*}
\delta X_{i+} & =\delta X_{i-}+G_{i} B_{i} \delta X_{i-} B_{i}^{T} G_{i}^{T} \\
& +\delta X_{i-} B_{i}^{T} G_{i}^{T}+G_{i} B_{i} \delta X_{i-} \\
& -G_{i} B_{i} \delta E_{i-} B_{i}^{T} G_{i}^{T}-\delta E_{i-} B_{i}^{T} G_{i}^{T}-G_{i} B_{i} \delta E_{i-}+G_{i} \delta Q_{i} G_{i}^{T} \tag{6}
\end{align*}
$$

Combination of Eq. (3) with Eq. (6) gives an expression for $\delta \mathrm{X}_{\mathrm{i}+1 \text { - }}$ of the form

$$
\begin{equation*}
\delta X_{i+1-}=\sum_{j} M_{x i j} \delta X_{i-} M_{x i j}^{\prime}-\sum_{j} M_{e i j} \delta E_{i-} M_{e i j}^{\prime} \tag{7}
\end{equation*}
$$

The above recurrence formulas Eq. (5) and (7) require, as initial conditions, the values of $\left.\delta E\left(t_{k+1}\right)^{-}\right)$and $\delta X\left(t_{k+1}-\right)$, where t_{k} is the correction time to be varied. By differentiating Eq. $(4-28)$ with respect to time at t_{k} we can express $\partial X\left(t_{k}{ }^{+}\right) / \partial t_{k}$ in terms of the time derivatives, at $\left(t_{k}-{ }^{-}\right)$, of the components of the right hand side. $\dot{X}\left(t_{k}{ }^{-}\right)$is obtained from Eq. (1), G from the original differential equations, E from Eq. (2), B from Battin's derivation of B, and Q from the (time-varying) statistical properties of the control implementation error v. If Q is also a function of X and E, its derivative must be calculated accordingly. We can thus write

$$
\begin{equation*}
\delta X\left(t_{k}^{+}\right)=M_{k+} \delta t_{k} \tag{8}
\end{equation*}
$$

Now Eq. (3) must be altered, for $i=k$, because $\Phi_{k+1, k}$ changes as we vary $t_{k^{*}}$ Hence

$$
\begin{equation*}
\delta \mathrm{X}_{\mathrm{k}+1-}=\Phi_{\mathrm{k}+1, \mathrm{k}} \delta \mathrm{X}_{\mathrm{k}+} \Phi_{\mathrm{k}+1, \mathrm{k}}^{\mathrm{T}}+2 \Phi_{\mathrm{k}+1, \mathrm{k}} \mathrm{X}_{\mathrm{k}+} \delta \Phi_{\mathrm{k}+1, \mathrm{k}}^{\mathrm{T}} \tag{9}
\end{equation*}
$$

Now the transition matrix may be written

$$
\begin{equation*}
\Phi_{k+1, k}=\Gamma\left(t_{k+1}\right) \Gamma^{-1}\left(t_{k}\right) \tag{10}
\end{equation*}
$$

where

$$
\dot{\Gamma}(\mathrm{t})=\mathrm{F} \Gamma(\mathrm{t})
$$

Hence

$$
\begin{align*}
\frac{\partial}{\partial t_{k}} \Phi_{k+1, k} & =\Gamma\left(t_{k+1}\right) \frac{d}{d t_{k}} \Gamma^{-1}\left(t_{k}\right)=-\Gamma_{k+1} \Gamma_{k}^{-1} \dot{\Gamma}_{k} \Gamma_{k}^{-1} \\
& =-\Phi_{k+1, k} F\left(t_{k}\right) \tag{11}
\end{align*}
$$

Hence, combining Eqs. (8), (9) and (11) we may write

$$
\begin{equation*}
\delta X\left(t_{k+1}\right)=M_{k+1} \delta t_{k} \tag{12}
\end{equation*}
$$

In similar fashion, by differentiating (4-33) we can express $\delta E\left(t_{k}+\right)$ as

$$
\begin{equation*}
\delta \mathrm{E}\left(\mathrm{t}_{\mathrm{k}}^{+}\right)=\mathrm{N}_{\mathrm{k}+} \delta \mathrm{t}_{\mathrm{k}} \tag{13}
\end{equation*}
$$

The relation between $\delta E\left(t_{k}+\right)$ and $\delta E\left(t_{k+1}-\right)$ is derived in Appendix B, and allows us to write

$$
\begin{equation*}
\delta \mathrm{E}\left(\mathrm{t}_{\mathrm{k}+1}-\right)=\mathrm{N}_{\mathrm{k}+1} \delta \mathrm{t}_{\mathrm{k}} \tag{14}
\end{equation*}
$$

With Eqs. (12) and (14) and the recurrence formulas Eqs(5) and (7) we can now evaluate the matrices M_{i} and $N_{i}(i>k+1)$ which enable us to write

$$
\begin{array}{ll}
\delta X\left(t_{i}-\right)=M_{i} \delta t_{k} & (i>k) \\
\delta E\left(t_{i}-\right)=N_{i} \delta t_{k} & (i>k) \tag{16}
\end{array}
$$

The matrices M_{k} and N_{k} are just the time derivatives of X and E at t_{k}, as determined from Eqs. (1) and (2).

Appendices

The Perturbed Riccati Equation

A. Fixed Initial and Final Times.

The solution of equation (2) is given by Kalman [2] as

$$
\begin{equation*}
\mathrm{E}=\left[\theta_{21}+\theta_{22} \mathrm{E}_{0}\right]\left[\theta_{11}+\theta_{12} \mathrm{E}_{0}\right]^{-1} \tag{A1}
\end{equation*}
$$

E_{0} and E here will represent values at the beginning and end of an interval between corrections, t_{i+} and t_{i+1-}. The matrix

$$
\theta=\left[\begin{array}{ll}
\theta_{11} & \theta_{12} \tag{A2}\\
\theta_{21} & \theta_{22}
\end{array}\right]
$$

is the transition matrix of

$$
\begin{align*}
& \underline{\dot{x}}=-\mathrm{F}^{\mathrm{T}} \underline{\mathrm{x}}+\mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1} \mathrm{H} \underline{\mathrm{w}} \tag{A3}\\
& \underline{\dot{w}}=\quad \mathrm{F}_{\underline{w}} \tag{A4}
\end{align*}
$$

Obviously, $\theta_{21}=0$ in this case and $\theta_{22}=\Phi_{i+1, i} . \quad \theta_{11}$ is the transition matrix of the equation (A3), noint to (A4), and can be shown to be

$$
\begin{equation*}
\theta_{11}=\Phi_{i+1, i}^{-T} \tag{A5}
\end{equation*}
$$

From Eq. (A1) we can deduce that, with $\theta_{21}=0$,

$$
\begin{equation*}
\theta_{12}=E^{-1} \theta_{22}-\theta_{11} E_{0}^{-1} \tag{A6}
\end{equation*}
$$

By perturbing Eq. (A1) we find

$$
\begin{align*}
\delta \mathrm{E}:= & {\left[\theta_{22} \delta \mathrm{E}_{0}\right]\left[\theta_{11}+\theta_{12} \mathrm{E}_{0}\right]^{-1} } \\
& -\left[\theta_{21}+\theta_{22} \mathrm{E}_{0}\right]\left[\theta_{11}+\theta_{12} \mathrm{E}_{0}\right]^{-1} \theta_{12} \delta \mathrm{E}_{0}\left[\theta_{11}+\theta_{12} \mathrm{E}_{0}\right]^{-1} \\
= & {\left[\theta_{22}-\mathrm{E}_{12}\right] \delta \mathrm{E}_{0}\left[\theta_{11}+\theta_{12} \mathrm{E}_{0}\right]^{-1} } \tag{A7}
\end{align*}
$$

With $\theta_{21}=0$, this can be written, using Eq. (A1),

$$
\begin{equation*}
\delta \mathrm{E}=\left[\theta_{22}-\mathrm{E} \theta_{12}\right] \delta \mathrm{E}_{0}\left[\theta_{22} \mathrm{E}_{0}\right]^{-1} \mathrm{E} \tag{A8}
\end{equation*}
$$

which, together with Eq. (A6), gives

$$
\begin{equation*}
\delta E=\left[E \Phi^{-T} E_{0}^{-1}\right] \delta E_{0}\left[E_{0}^{-1} \Phi^{-1} \mathrm{E}\right] \tag{A9}
\end{equation*}
$$

B. Variable Initial Time.

We now consider the effect of varying the initial time on the Eq. (A9). We consider only the special case $\theta_{21}=0 . \quad E_{0}$ and E represent E_{k+} and E_{k+1} - . Equation (A1) can be written

$$
\begin{equation*}
E=\Phi E_{0}\left[\Phi^{-T}+\theta_{12} E_{0}\right]^{-1} \tag{B1}
\end{equation*}
$$

and Eq. (A6) can be written

$$
\begin{equation*}
\theta_{12}=E^{-1} \Phi-\Phi^{-T} E_{0}^{-1} \tag{B2}
\end{equation*}
$$

Hence, from Eq. (B1),

$$
\begin{align*}
\delta \mathrm{E}= & {\left[\delta \Phi \mathrm{E}_{0}+\Phi \delta \mathrm{E}_{0}\right]\left[\Phi^{-\mathrm{T}}+\theta_{12} \mathrm{E}_{0}\right]^{-1} } \\
& -\mathrm{E}\left[\delta \Phi^{-\mathrm{T}}+\delta \theta_{12} \mathrm{E}_{0}+\theta_{12} \delta \mathrm{E}_{0}\right]\left[\Phi^{-\mathrm{T}}+\theta_{12} \mathrm{E}_{0}\right]^{-1} \\
= & {\left[\delta \Phi \mathrm{E}_{0}+\Phi \delta \mathrm{E}_{0}\right] \mathrm{E}_{0}^{-1} \Phi^{-1} \mathrm{E} } \\
& -\mathrm{E}\left[\delta \Phi^{-\mathrm{T}}+\delta \theta_{12^{2}} \mathrm{E}_{0}+\theta_{12} \delta \mathrm{E}_{0}\right] \mathrm{E}_{0}^{-1} \Phi^{-1} \mathrm{E} \tag{B3}
\end{align*}
$$

where, using Eq. (11),

$$
\begin{align*}
\delta \Phi & =-\Phi \mathrm{F}_{\mathrm{k}} \delta \mathrm{t}_{\mathrm{k}} \tag{B4}\\
\delta \Phi^{-\mathrm{T}} & =-\Phi^{-\mathrm{T}} \delta \Phi \mathrm{~T}_{\Phi}-\mathrm{T}=\Phi^{-\mathrm{T}_{\mathrm{F}}} \mathrm{~T}_{\mathrm{k}} \delta \mathrm{t}_{\mathrm{k}} \tag{B5}
\end{align*}
$$

The quantity $\delta \theta_{12}$ is determined by noting that the solution of Eqs. (A3) and (A4) can be expressed as

$$
\begin{align*}
& \underline{W}(t)=\Phi\left(t, t_{k}\right) \underline{w}\left(t_{k}\right) \tag{B6}\\
& \underline{x}(t)=\Phi^{-T}\left(t, t_{k}\right) \underline{x}\left(t_{k}\right)+\int_{t_{k}}^{t} \Phi^{-T}(t, \tau) H^{T}(\tau) R^{-1}(\tau) H(\tau) \underline{w}(\tau) d \tau \tag{B7}
\end{align*}
$$

Since the last term represents $\theta_{12}\left(t, t_{k}\right) \underline{W}\left(t_{k}\right)$, it follows that

$$
\begin{equation*}
\theta_{12}\left(\mathrm{t}, \mathrm{t}_{\mathrm{k}}\right)=\int_{\mathrm{t}_{\mathrm{k}}}^{\mathrm{t}} \Phi^{-\mathrm{T}}(\mathrm{t}, \tau) \mathrm{H}^{\mathrm{T}}(\tau) \mathrm{R}^{-1}(\tau) \mathrm{H}(\tau) \Phi\left(\tau, \mathrm{t}_{\mathrm{k}}\right) \mathrm{d} \tau \tag{B8}
\end{equation*}
$$

from which

$$
\begin{align*}
\frac{\partial}{\partial t_{k}} \theta_{12}\left(t_{k+1}, t_{k}\right) & \left.=-\Phi \Phi^{-T} H_{k}^{T} R_{k}^{-1} H_{k}+\int_{t_{k}}^{t_{k+1}^{T}} \Phi^{-1} t_{k+1}, \tau\right) H^{T}(\tau) R^{-1}(\tau) H(\tau) \frac{\partial}{\partial t_{k}} \Phi\left(\tau, t_{k}\right) \mathrm{d} \tau \\
& =-\Phi^{-T} \mathrm{H}_{k}^{T} R_{k}^{-1} H_{k}-\theta_{12}\left(t_{k+1}, t_{k}\right) \mathrm{F}_{k} \tag{B9}
\end{align*}
$$

where we have made use of Eqs. (B4) and (B8) in evaluating the last term. Combining Eqs. (B2) - (B5), (B9) and (13), and simplifying,

$$
\begin{equation*}
\delta \mathrm{E}=\mathrm{E} \Phi-\mathrm{T}\left[\mathrm{H}_{\mathrm{k}}^{\mathrm{T}} \mathrm{R}_{\mathrm{k}}^{-1} \mathrm{H}_{\mathrm{k}}+\mathrm{E}_{0}^{-1} \mathrm{~N}_{\mathrm{k}+} \mathrm{E}_{0}^{-1}-\mathrm{F}_{\mathrm{k}}^{\mathrm{T}} \mathrm{E}_{0}^{-1}-\mathrm{E}_{0}^{-1} \mathrm{~F}_{\mathrm{k}}\right] \Phi^{-1} \mathrm{E} \delta t_{\mathrm{k}} \tag{B10}
\end{equation*}
$$

References

[1] Denham, W.F., and Speyer, J. L., "Optimal Measurement and Velocity Correction Programs for Midcourse Guidance, " Raytheon report BR-2386, April 24, 1963.
[2] Kalman, R.E., and Bucy, R. S., "New Results in Linear Filtering and Prediction Theory, " ASME Journal of Basic Engineering, March 1961.

[^0]: *Hyphenated equation numbers refer to reference [1]

