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Section 4 of reference [11 discusses the possibility of varying 

the times of midcourse velocity corrections to minimize a function 

0, which involves the terminal deviation variances and a statistical 

measure of the EC . velocity change used for control. 

It is suggested that a0/at.
3 
 be calculated by changing t. to 

t. + At.
J 
 and recalculating the X(t) and E(t) histories. In such an 

approach At t  would have to be kept small to make the assumed 

linearization valid. But when At is small, the computation of the 

derivative inevitably involves taking differences of nearly-equal 

numbers, a procedure to be avoided if reasonable accuracy is to 

be attained, The following procedure allows direct computation of 

the derivative, 

A general performance criterion of this type is 

	

tr f. (X 	E (t.-)) = min. 

i=1 

where n -1 corrections are made and t
n is the final time. 

The basic problem is that of finding the partial derivatives 

ax (t.-) 	 aE (t.-) 

	

and 	 k < < n) 
at k 	 a t k 

We first derive the relations describing the propagation of 

perturbations in the variance matrices, 6 X (t) and 6 E (t), From 

(3-1) -  and (4-7), with A = Q = 0 and K = EH TR, -1  

Hyphenated equation numbers refer to reference [ 



•  X = XF
T 
 + FX 	 (1) 

• 
E = EF T 

+ FE - EHT R -1 HE 	 (2) 

Equation (1) is linear and the corresponding perturbation equation, 

from (4-29), has the solution 

6 X. 	= 11.+1, . 6 X. §. 	T. 	(i > 	 (3) 1+1- 	 1+ 1+1, 

Equation (2) is of the Riccati type, and its perturbed solution 

(see Appendix A) satisfies the equation 

1 	1 E. 	k T . E. 1  (5E. 	E.. I. 	.E. 6 E i+1- 
= 

1+1- i+1,1 1+ 	1+ 	1+ 1+1, 	1+1 

(i > k) 	(4) 

From Eq. (4-33), 

E.1+ 1E.  - + G.Q.G. 	 (4-33) 

where Q is the control implementation error covariance matrix, we see 

that 

6 E. = 6E. +G. 6 Q.G. 

where S Q. can be expressed in terms of S X. and 6 E. , or may be zero. 1- 
Combining this with Eq. (4) we can write 6 E i+.1 _ in the form 

6 E. 	= 
1+1- Nxij 6 X. Nxij  + 1-  eij 

E i_ Neij (5) 

The propagation of 6 X across a correction is derived by pertur-

bing Eq. (4-28) 

X. 	= X. 
1+ 	1- + G. 1 

B(X-E)B
T 

+Q G. + (X- E)B TGT  +GB(X - E)J 

1- 

(4-28) 

where B (derived by Battin) determines the correction B 6 cL 



T 6 Xi+ = 6 
X.1-1  +G..B. 6 X. B. G. 

T 

+ 6X. B.T 
 G.T  

+ G.B.6X. 
1- 1 1 	1 1 	1- 

-G.B.6 E. B.
T 

 G.
T 

 - 45 E. B.
T 

 G.
T  
 - G.B.6 E. +G.6 Q.G. (6) 

1 1 	1- 1 1 	1- 1 1 	1 1 	1- 	1 	1 1 

Combination of Eq, (3) with Eq. (6) gives an expression for 

. 	of the form 
X1+1- 

X. 	 .. 6 X. M 	 .. 6 E. M 
1+ 	x13 	1- xij 	eij 	1- 	eij 

3 

The above recurrence formulas Eq. (5) and (7) require, as 

initial conditions, the values of 6 E(t k+i-) and 6 X(t k+1 -.), where 

t
k 

is the correction time to be varied. By differentiating Eq, 

(4-28) with respect to time at t k  we can express ax (t k-E) /atk  in 

terms of the time derivatives, at (t
k

-), of the components of the 

right hand side. X (t k-) is obtained from Eq. (1), G from the 

original differential equations, E from Eq. (2), B from Battin's 

derivation of B, and Q from the (time-varying) statistical pro-

perties of the control implementation error v.. If Q is also a 

function of X and E, its derivative must be calculated accord-

ingly. We can thus write 

6 X (tk+) = Mk+  6 tk  

Now Eq. (3) must be altered, for i = k, because /)k+1, k changes 

as we vary tk. Hence 

=  (5 Xk+1- -k+1, k 
X

k+k+1, k 
+ 2 Ok

+1, k Xk+k+1, k 	
(9) 

Now the transition matrix may be written 

r 	r
l

(tk) 
k+1, k 	(tk+1 )  

(10) 

(7)  

(8)  



where 

P(t) = F r(t) 

Hence 

a 	,
k+1 k -

1 ° 	1 
k+1 k k k ( 	) d 	1  (t )=-r r r r 

a t k 	 d tk 

= - t,k+1, k F (t
k

) 

Hence, combining DT:J.(8), (9) and (11) we may write 

6 X (t k+1 -) = Mk+1  6 t
k 
	 (12) 

In similar fashion, by differentiating (4-33) we can express 

E (tk+) as 

6 E (tk+) = Nk+  S tk 	 (13) 

The relation between 6 E (t k+) and 6 E (tk+1-)  is derived in 

Appendix B, and allows us to write 

E (tk+r) = Nk+i  6 tk 	 (14) 

With Eqs. (12) and (14) and the recurrence formulas Eqs,(5) 

and (7) we can now evaluate the matrices M. and N i  (i > k+1) 

which enable us to write 

6 X (t i -) = M.1  6 t
k 	

(i > k) 	(15) 

6 E (t i -) = N
i 
 6 t

k 	
( 1 > k) 	(16) 

The matrices Mk 
and Nk 

are just the time derivatives of X 

and E at t
k' 

 as determined from Eqs. (1) and (2). 



Appendices 

The Perturbed Riccati Equation 

A.  Fixed Initial and Final Times. 

The solution of equation (2) is given by Kalman [2] as 

E = 
821 
	

E0 [011  + 0 12 12 01 -1 

	
(Al) 

E
0 
 and E here will represent values at the beginning and end of an interval 

between corrections, t.
1+ 

 and t. 
1+1- 

0 7_7 

is the transition matrix of 

x=-F 

• 
w = 

. 	The matrix 

Vw. 

0 11 	
0

12 

021 	022 

T 	T -1 
x+H R 	Hw 

Fw 

(A2)  

(A3)  

(A4)  

	

Obviously, 021  = 0 in this 	case and 0,1
42 

 = 	.. 011  is the transition 

matrix of the equation (A3), V1164oint to (A4), and can be shown to be 

T 

	

8 11 
	. 

	

11 	i+1, 1 

From Eq. (Al) we can deduce that, with 0 21  = 0, 

-1 
0 12 =E  022  -011 E 0 

By perturbing Eq. (Al) we find 

(A5)  

(A . 6) 

5 



With 0 21 = 0, this can be written, using Eq. (Al), 

which, together with Eq. (A6), gives 

6E-= [0 6E 
22 Oi 

- [02 + 

= {0 22  - E9 12 

- 1 

-T E01 SEA[E 0 1 4,-1 E] 
0 

(A7) 

E 	 (A8) 

(A9) SE = 

B. Variable Initial Time. 

We now consider the effect of varying the initial time on the Eq. (A9). 

We consider only the special case 0 21  = 0. E0  and E represent Ek+  and E k+i _ . 

Equation (Al) can be written 

[

E = -zE o 4
-T + 912E 

 (B1) 

and Eq. (A6) can be written 

-1 	-T -1 
0 12 

= E 	- 	E
o 

Hence, from Eq. (B1), 

SE = [S+E o + 	E 0  [1. T  + 0 12E 0 

-1 

- E[6-1. T  + 69 12E 0  + 9 12 6E 0 

6 E0  +46E0 E 1 +-1  

  

  

(B2) 

(B3) 



where, using Eq. (11), 

61 = - 1F
k

St
k  

The quantity 69 12  is determined by noting that the solution of Eqs. 

(A3) and (A4) can be expressed as 

w(t) 1(t, tk )w(tk ) ) 

x(t) =1
-T

(t, tk )  x(t ) + 	+ T(t, T)HT(r)R -1 (T)H(T)w(T) dr  — k 	• tk  

Since the last term represents 0 12 (t, tk )w(tk ), it follows that 

2  (t, tk ) = S 	T(t, 7-) HT(T) R -1 ( 7)11(T)1 ( T, tk )dT 	 (B8) 
tk 

(B4)  

(B5)  

(B6)  

(B7)  

from which 

a 	
I 	

-T T 1 

" 
	 0, 2 (tk+i , tk ) - - 	Hk  Rk  Hi _ + 
atk  

tk+ 1 

cl
T

(tk+1' T)HT(T)R 	
a 1 (r)Her) 	 1( tk)dT 

k 	 atk 

-T T -1 = - 1 Hk Rk Hk - (912(tk+1' tk ) Fk 

where we have made use of Eqs. (B4) and (B8) in evaluating the last term. 

Combining Eqs. (B2) - (B5), (B9) and (13), and simplifying, 

(B9) 
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