> Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo \# 48-64

TO: SGA Distribution
FROM: William Marscher
DATE: November 1, 1964
SUBJECT: Collection of Conic Equations

The purpose of this memo is to collect in one place a group of equations from SGA Memo \# 23-64 Rev. 1 which are useful in computing conic sections. The definition of variables is found at the end: of this memo.
I. Relating the true and eccentric anomaly differences and their parabolic and hyperbolic equivalents:
(1) $\cot \left(\frac{\theta}{2}\right)=\frac{{ }^{r_{0}}}{\sqrt{\mathrm{pa}}} \cot \left(\frac{\Delta \mathrm{E}}{2}\right)+\cot \left(\gamma_{0}\right)$
(2) $\cot \left(\frac{\theta}{2}\right)=\frac{2 r_{0}}{\sqrt{p} x}+\cot \left(\gamma_{0}\right)$
(3) $\cot \left(\frac{\theta}{2}\right)=\frac{\mathrm{r}_{0}}{\sqrt{-\mathrm{pa}}} \operatorname{coth}\left(\frac{\Delta \mathrm{G}}{2}\right)+\cot \left(\gamma_{0}\right)$
(4) $\cot \left(\frac{\theta}{2}\right)=\frac{r_{0}\left[1-\alpha x^{2} S\left(\alpha x^{2}\right)\right]}{\sqrt{\mathrm{p}} \times \mathrm{C}\left(\alpha \mathrm{x}^{2}\right)}+\cot \left(\gamma_{0}\right)$
(parabola)
(hyperbola)
(universal)
II. Relating time of flight to conic parameters and the eccentric anomaly differences (or equivalent):

(6) $\sqrt{\mu} \mathrm{t}=\frac{1}{2} \sqrt{\mathrm{p}} \cot \left(\gamma_{0}\right) \mathrm{x}^{2}+\frac{1}{6} \mathrm{x}^{3}+\mathrm{r}_{0} \mathrm{x}$ (parabola)
(7) $\sqrt{-\mu \alpha^{3}} \mathrm{t}=-\Delta \mathrm{G}+\sqrt{-\mathrm{p} \alpha} \cot \left(\gamma_{0}\right)(\cosh (\Delta \mathrm{G})-1)+\left(1-\mathrm{r}_{0} \alpha\right) \sinh (\Delta \mathrm{G})$ (hyperbola)
(8) $\sqrt{\mu} t=\sqrt{p} \cot \left(\gamma_{0}\right) \mathrm{x}^{2} \mathrm{C}\left(\alpha \mathrm{x}^{2}\right)+\left(1-r_{0} \alpha\right) \mathrm{x}^{3} \mathrm{~S}\left(\alpha \mathrm{x}^{2}\right)+\mathrm{r}_{0} \mathrm{x} \quad$ (universal)
III. Relating conic parameters and the true anomaly difference (all universal):
(9)

$$
\frac{p}{r_{0}}=\frac{1-\cos (\theta)}{\frac{r_{0}}{r_{1}}-\cos (\theta)+\sin (\theta) \cot \left(\gamma_{0}\right)} \quad \text { (polar equation) }
$$

(10) $\frac{r_{0}}{\mu} v_{0}^{2}=2-r_{0}{ }^{\alpha}$
(energy integral)
(11) $\quad r_{0}{ }^{\alpha}=2-\frac{p}{r_{0}}\left[1+\cot ^{2}\left(\gamma_{0}\right)\right]$

$$
\begin{equation*}
\cot \left(\frac{\theta}{2}\right)=\frac{\cot \left(\gamma_{0}\right)+\frac{r_{0}}{r_{1}} \cot \left(\gamma_{1}\right)}{\left(1-\frac{r_{0}}{r_{1}}\right)} \quad r_{0} \neq r_{1} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{p}{r_{0}}=\frac{2\left(\frac{r_{0}}{r_{1}}-1\right)}{\left(\frac{r_{0}}{r_{1}}\right)^{2}\left[1+\cot ^{2}\left(\gamma_{1}\right)\right]-\left[1+\cot ^{2}\left(\gamma_{0}\right)\right]} \tag{13}
\end{equation*}
$$

(14) $\sqrt{\mathrm{p} \mu} \cot (\gamma)=\overline{\mathrm{r}} \cdot \overline{\mathrm{V}}$
(15) $\quad \mathrm{v}_{\text {circum }}=\frac{\sqrt{\mathrm{p} \mu}}{\mathrm{r}}$
(16) $\mathrm{v}_{\text {radial }}=\frac{\sqrt{\mathrm{p} \mu}}{\mathrm{r}} \cot (\gamma)$
IV. Useful identity:
(17) $\cos (\phi)=\left[\frac{\cot ^{2}\left(\frac{\phi}{2}\right)-1}{\cot ^{2}\left(\frac{\phi}{2}\right)+1}\right]$

$$
\sin (\phi)=\operatorname{sign}\left(\cot \left(\frac{\phi}{2}\right)\right) \sqrt{1-\cos ^{2}(\phi)}
$$

V. Allowable Range of $\cot \left(\gamma_{0}\right)$ for Lambert Constraints $\left(r_{0}, r_{1}, \theta\right)$ and Reentry Constraints ($r_{0}, r_{1}, \cot \left(\gamma_{0}\right)$).
(a) Lambert $\left(\theta<180^{\circ}\right)$

$$
\mathrm{c}<\cot \left(\gamma_{0}\right)<(b+)
$$

where
$\mathrm{b}=\cot \left(\frac{\theta}{2}\right) \pm \sqrt{\frac{2 \frac{r_{0}}{r_{1}}}{1-\cos (\theta)}}$
The sign after b indicates the sign of the radical

$$
c=\frac{\cos (\theta)-\frac{r_{0}}{r_{1}}}{\sin (\theta)}
$$

for $\cot \left(\gamma_{0}\right)=b+, t=\infty, e=1$, a flight through infinity on a parabola.
for $\cot \left(\gamma_{0}\right)=c, t=0, e=\infty$, a direct straight line flight from r_{0} to r_{1}.

For the values of $\cot \left(\gamma_{0}\right)$ from $b+$ to c, the conic goes from the elliptic to the hyperbolic region. These two regions are divided by the parabola for which $\cot \left(\gamma_{0}\right)=\mathrm{b}-$.
(b) Lambert $\left(\theta>180^{\circ}\right)$

The same as the $\theta<180^{\circ}$ case except that $\mathrm{c}=-\infty$
for $\cot \left(\gamma_{0}\right)=-\infty, t=0, e>1$, a flight down r_{0} to the focus and up r_{1}.
(c) Reentry $\left(\frac{r_{0}}{r_{1}}>1\right)$

$$
g<\cot \left(\gamma_{0}\right)<d
$$

where

$$
\begin{aligned}
& d=\sqrt{\left[1+\cot ^{2}\left(\gamma_{0}\right)\right] \frac{r_{0}}{r_{1}}-1} \\
& g=-\sqrt{\left[1+\cot ^{2}\left(\gamma_{0}\right)\right]\left(\frac{r_{0}}{r_{1}}\right)^{2}-1}
\end{aligned}
$$

for $\cot \left(\gamma_{0}\right)=d, t=\infty, e=1$, a flight through infinity on a parabola,
for $\cot \left(\gamma_{0}\right)=g, t=0, e=\infty$, a direct straight line flight from r_{0} to r_{1}.

For the values of $\cot \left(\gamma_{0}\right)$ from d to g, the conic goes from the elliptic to the hyperbolic region. These two regions are divided by the parabola for which $\cot \left(\gamma_{0}\right)=-\mathrm{d}$.

$\mathrm{t} \quad=$ time of flight from $\overline{\mathrm{r}}_{0}$ to $\overline{\mathrm{r}}_{1}$
$\alpha \quad=\frac{1}{a}$ where $a=$ semimajor axis
$\mathrm{p} \quad=$ semi-latus rectum
$\mathbf{x} \quad=$ Herrick's variable, $\frac{\Delta \mathrm{E}}{\sqrt{\alpha}}$ ellipse, $\frac{\Delta \mathrm{G}}{\sqrt{-\alpha}}$ hyperbola
$S($ Aug $)=\frac{1}{3!}-\frac{A u g}{5!}+\frac{\text { Aug }^{2}}{7!}-\ldots$ (Satin's Transcendental function)
$C(A u g)=\frac{1}{2!}-\frac{A u g}{4!}+\frac{\text { Aug }^{2}}{6!}-\cdots \quad$ (Battin's Transcendental function)
$\mu \quad=$ gravitational constant
$r_{p} \quad=$ pericenter radius

For convenience the following nondimensional variables are defined:
$R=\quad r_{0} / r_{1}$
$x=x / \sqrt{r_{0}}$
$\mathrm{P}=\mathrm{p} / \mathrm{r}_{0}$
$T=\sqrt{\frac{\mu}{r_{0}^{3}}} \mathrm{t}$
$A=r_{0}{ }^{\alpha}$
$\mathrm{V}=\sqrt{\frac{\mathrm{r}_{0}}{\mu}} \mathrm{v}_{0}$

$\mathrm{t}=\quad$ time of flight from \bar{r}_{0} to \bar{r}_{1}
$\alpha \quad=\frac{1}{\mathrm{a}}$ where $\mathrm{a}=$ semimajor axis
$\mathrm{p} \quad=$ semi-latus rectum
$\mathrm{x} \quad=$ Herrick's variable, $\frac{\Delta \mathrm{E}}{\sqrt{\alpha}}$ ellipse, $\frac{\Delta \mathrm{G}}{\sqrt{-\alpha}}$ hyperbola
$S($ Aug $)=\frac{1}{3!}-\frac{A u g}{5!}+\frac{\text { Aug }^{2}}{7!}-\ldots$ (Battin's Transcendental function)
$C(A u g)=\frac{1}{2!}-\frac{A^{\prime} g}{4!}+\frac{\text { Aug }^{2}}{6!}-\ldots \quad$ (Satin's Transcendental function)
$\mu \quad=\quad$ gravitational constant
$r_{p} \quad=$ pericenter radius

For convenience the following nondimensional variables are defined:
$R=r_{0} / r_{1}$
$x=\quad x / \sqrt{r_{0}}$
$P=p / r_{0}$
$T=\sqrt{\frac{\mu}{r_{0}^{3}}} \mathrm{t}$
$A=r_{0}{ }^{\alpha}$
$V=\sqrt{\frac{r_{0}}{\mu}} v_{0}$

```
\(\Delta \mathrm{E} \quad=\) eccentric anomaly difference (ellipse)*
\(\Delta \mathrm{G} \quad=\) hyperbolic equivalent to \(\Delta \mathrm{E}^{*}\)
e \(\quad=\) eccentricity
f \(\quad=\) true anomaly (measured from pericenter)
\(\mathrm{v}_{\mathrm{r}} \quad=\) radial velocity
\(\mathrm{v}_{\mathrm{c}} \quad=\) circumferential velocity
\(\theta \quad=\) true anomaly difference \(\left(f_{1}-f_{0}\right)\)
h = angular momentum
```

