3420.5-27
REVISION 2

APOLLO GUIDANCE PROGRAM SYMBOLIC LISTING
INFORMATION FOR BLOCK 2

NAS 9-8166 20 NOVEMBER 19469

Prepared for
MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

WORKING PAPER

ABSTRACT

The information presenﬁed in this document on the mechanization
of current Block 2 Apollo guidance computer programs is intended for
use only as an aid to the understanding of guidance program symbolic
listings for both the Command Module and the Lunar Module. The material
which is included is oriented towards permitting a user to understand
the computations being performed by the program, and to follow the logic
associated with the control of a complete guidance program assembly.
With the aid of the information in this document, it should be possible
to become proficient in determining from a program symbolic listing just
what computations are being carried out. This document, however, is
insufficient to permit a user, without access to supplemental material,
to write a reliable program for the guidance computer.

This document supersedes the Revision 1 issue of 3420.5-27
(dated 27 June 1968), and includes the updating information that is
summarized in Appendix B. Major sections of the document are devoted
to computer hardware information, machine language instructions, the
format and features of the assembly program, the interpretive language,
and program performance control. To facilitate-using the document for
reference, appendices contain a review of computer concepts, a summary
of computer inputs and outputs, and alphabetical listings of machine
and interpretive operations, registers and tags, and terms.

This document was produced in order to fill the need for a comp-
ilation of this material for use by those interested in reviewing a
guidance program symbolic listing for Block 2. A number of assumptions
had to be made concerning the opsrating characteristics of the hardware
and the intended application of the software, and therefore this document
must never be used as definitive information on the guidance computer
hardware or programs. If such information should be required, the G&N
contractor is the proper source for it, not this document. Since this
document has not been approved by NASA, it should never be cited as

a reference in official NASA documentation.

IT

ILL

Iv

CONTENTS

INTRODUCTION |,

Notation

CCMPUTER HARDWARE INFORMATION . .

ITA
I1B
I11C
11D
I1TE
ITF
11G
ITH

TTd

General Data
Address Allocation
Hardware Registers
Special Erasable Cells
Input/Output Channels .
Fixed Memory Mechanization . .
Arithmetic and Overflow .
Interrupts
Counter Interrupts .
Program Interrupts

Display System

FORMAT OF GUIDANCE PROGRAM SYMBOLIC LISTING

Page Layout .

Card Layout .

Symbol Reference Information
Information at Start of Listing .
Erasable Memory Information .
Fixed Memory Information
Information at End of Listing .

Program Changes .

MACHINE LANGUAGE INSTRUCTIONS

IVA
IVB
Ive
VD

General Principles
Regular Orders
Extended Orders .

Machine Language Examples .

SPECTAL ASSEMBLER OPERATIONS .

VA

Equivalent Machine Language Instructions

Page

. I-1
. I-2

. LI
. ITA-I
. IIB-1
15 2
. IID-1
. ITE-1
. IIF-1
. IIG-1
. IIH-1
. IIH-1
. IIH-4
. IIJ-1

. 1II-1
. IIT-3
. ITTI-7
L ITT-11
. I1I-13
. ITI-16
. IIT-17
. IIT-19
. III-23

. IVA-1
. IVA-1
. IVB-1
. IVC-1
. 1VD-1

. VA-1
. VA-1

VI

VIT

VB Representation of Numbers
Decimal Numbers
Octal Numbers

VC Representation of Addresses .

INTERFRETIVE LANGUAGE

.VIA General Principles

VIB Interpretive Language Operations
Scalar Computation Operations
Vector Computation Operations
Shifting Operations
Transmission Operations

Control Operations .

Index Register Oriented Operations .

Logical Bit Operations
VIC Addresses and Interpreter Control .

Overall Interpreter Control

Interpreter Address Determination .

Interpreter Storage Orders .

Interpreter Transfer to Operation

VID Relative Addresses, Push—down List, and .

VAC Areas
VIE Interpretive Language Examples

PROGRAM PERFORMANCE CONTROL
VIIA Waitlist System for Tasks .

Waitlist System Tables . . .
VIIB Executive System for Jobs .

Contents of Job Register Sets
VIIC Mechanization of Restart Gapability .

VIID Standard Program Subroutines
APPENDICES

Review of Computer Concepts
Number Systems
Arithmetic and Overflow .
Orders and Addresses

Page

. VB-1
. VB-1
. VB-3
. Vo-1

. VIA-1
. VIA-1
. VIB-1
. VIB-3
. VIB-15
. VIB-26
. VIB-35
. VIB-41
. VIB-46
. VIB-50
. VIC-1
. VIC-2
. VIC-4
. VIC-6
. VIC-8
. VID-1

. VIE-1

. VII-1

. VITA-1
. VIIA-8
. VIIB-1
. VIIB-12
. VIIC-1
. VIID-1

. A1
il
« AT
. A-9

Scaling .

Software Difficulties .

B Changes Made for Revision 2
Hardware
Software * ,

Interpretive Language .
C Summary of Computer Inputs and Qutputs .

D ALPHABETICAL LISTINGS N B
Machine Language and Other Assembler Codes
Interpretive Language Instructions

Registers, Program Steps, and Storage .
References

Alphabetical Listing of Terms .

vii

Page

. A-10

A-16

T INTRODUCTION

Under the auspices of TRW Systems MTCP task A-201 ("Support of
Apollo Guidance Document Review," J. Garman and J.E. Williams, FS5,
task monitors), information on certain of the hardware and software
aspects of an Apollo Bleck 2 primary guidance system program symbolic
listing has been assembled into this document. The purpose of this
effort was to facilitate the review of Block'2 guidance program symbolic
listings by those unfamiliar with the Apollo guidance computer program
listing format. This document is Revision 2 of an earlier document on
the same subject (originally published on 10 January 1967, with Revision
1 published on 27 June 1968), and completely supersedes these previous
documents. Appendix B summarizes some of the significant changes made
since the Revision 1 issue.

Several different sources of information were used during the

preparation of this document, including:
1. A program assembly listing bearing the heading print:

GAP: ASSEMBLE REVISION 072 OF AGC PROGRAM COMANCHE
BY NASA 2021113-071 18:53 OCT. 17,1969

"COMANCHE" is the term used for the COLOSSUS (manned CSM earth/
lunar capability) 2x series of programs: this version is intended
for use on Apollo 13, and is also referred to as COLOSSUS 2D.

2. A program assembly listing bearing the heading print:

GAP: ASSEMBLE REVISION 130 OF AGC PROGRAM LUMINARY
BY NASA 2021112-081 18:29 NOV. 4,1969

"LUMINARY" is the term used for the manned IM earth/lunar
capability programs: this version is intended for use on
Apollo 13, and is also referred to as TUMINARY 1C.

3. Raytheon Apollo Guidance Computer Information Series publications,
used for much of the hardware information. Two separate
documents were employed, one identified as "Issue 30, Block II
Apollo Guidance Computer Subsystem, FR-2-130", updated 25
February 1966; the other was "Issue 32, Block II Machine
Instructions, FR-2-132", updated 25 March 1966.

L. MSC IM G&C Data Book, Revision 2, dated 15 July 1967.

"Apollo Operations Handbook for CSM, Volume 2 for Apollo 12, CSM
108 and Subsequent,' dated 10 October 1969.

6. AGCL Memo #9, "Block II Instructions," revised 1 June 1967.

7. A GAP assembly program listing dated 17 May 1968.

8. A number of other miscellaneous sources of information, such as

other program listings, G&N contractor documentaticn, etec.

It should be clearly understood that the information in this document
was derived from program symbolic listings, and hence cannot be considered
to be an "independent source", particularly when matters such as signal
polarities and channel bit assignments are considered. In addition,
changes to some of the material presented in this document may well
take place in the future (such as the addition of a "rate-aided optics"
capability to the CSM), so that where applicable information should be
checked against mission-peculiar data prepared based on a specific

program assembly.

The material on the following pages should under no circumstances

be employed as a definitive description of the guidance hardware or
portions of the guidance software. Such information, including that
necessary to write (as contrasted with read) guidance computer programs,

should be provided only by the G&N contractor through the appropriate
MSC chamnels.

Notation

The notation employed in this document is intended to be consistent
with that employed in the previous two issues, as well as with documents
which have been produced on the AS-202, AS-204, IM-1, Sundisk, and
Colossus programmed guidance equations. For convenience, some of this
specialized notation is summarized below (specialized notation is also
defined in individual sections to which it applies, such as Section IVA

for machine language order codes).

1. Unless otherwise specified, information applies to both the
Command Module (CM) and Lunar Module (IM) computers. These
abbreviations are used when it is necessary to cite hardware
or software differences between the two systems.

2. Unless otherwise specified, material which is provided is
intended to be consistent with sources #1 and #2 on page I-1.
Material applicable to earlier programs, but no longer valid,
is cited only when of historical or potential future application.

.
o

10.

18

12.

. Bits are numbered from #15 (the sign bit) and #14 (the most

significant magnitude bit) down to bit #1 (the least significant
bit of the 15-bit computer word).

. A quantity in capital letters, unless an operation code,

generally means the contents of a cell with that tag. The
capital letter E, with subscripts of quantities in capital
letters, is reserved to mean "the contents of the cell or
cells whose tags are in the subscript." Hence , for
example, would be the contents of the cell whose address is
stored in cell TS. TS alone, of course, would be the contents

‘of the cell with tag TS.

A quantity in quotation marks indicates that its address is

of interest rather than the contents of that address. No
quotation marks are used, however, unless the quantity corres-
ponds to a tagged program step: transfers in Section VIB to
other interpretive operations are indicated without quotation
marks.

Logical branches in the software are indicated by "If"
statements, with subsequent equation information indented to
indicate the extent of the computations performed should the
"If'" condition be satisfied.

Unless otherwise specified, numbers are given in decimal.
The subscript 8 signifies an octal number and the subscript
2 signifies a binary number. Where conventional reference
to quantities (such as channel numbers) considers them to be
octal, however, the subscript has been omitted.

The equation X = ABCD +2 means that X is set to the contents

of the address with tag "ABCD" plus 2; X = ABCD+2, however,
omitting the space before the sign, means that the cell address
used 1s the cell two memory locations beyond "ABCD", If
variables are used as subscripts, however, the first meaning
always applies.

. Perform "X3ZXX" means transfer to the routine starting at

"X and retain return address information (to permit
return after completion of the routine); Proceed to "XXXX",
however, merely means transfer to routine starting at "XXX".

The scale factor of a quantity is the power of two by which
the number in the computer (considered as a fraction in the
range between -1 and +1) must be multiplied to obtain its true
value. The scale factor is frequently shown as Bxx, to
signify binary as opposed to decimal exponent information.

See Appendix A for more details.

The equation: "Set AA = BB and BB = AA" means to exchange the
contents of the cells with addresses "AA" and '"BB!,

The subscripts dp, tp, ve, x,¥, and z mean double precision,
triple precision, vector, and vector x-z compconents respectively.

. The equation B = (b,, b.) means form a double precision number

B with most signifiZant half b, and least significant half b..

i 2
The equation A = (al, a,, a3) means form a vector from the
indicated components. °

-
N

16.

LT

18.

9.

20,

A task (short sequence of computations based upon scme time or
event criterion) may be entered into a list for subsequent
performance in yy seconds (see Section VIIA). The notation
for this i1s: Call "XXXX" in yy seconds, where "XOUX'" is the
starting address of the waitlist task.

A job (computation that is not a task) may be entered into a
list for performance when its priority is high enough (see
Section VIIB). The notation for this is: Establish X",

A bit is "set' when its value is made a binary one, and is
"cleared" or ''reset'' when its value is made a binary zero.
"Set" 1s also used to mean "force bit value to be as specified".

In some cases an address may be determined from the combination
of a bank register and a quantity giving an address within the
bank (see Section IIB). In such cases, the bank setting is
sometimes shown explicitly and the address in the bank used as
described in #4 above.

The operation sgn X causes the quantity it affects to be
complemented if X is negative (same as multiplication by
the quantity X /[X|).

Where reasonably apparent from the context, explicit scaling
is not shown in the equations (and can be assumed to be
proper). For example, MPAC, = MPAC, + MPAC+2 is frequently
used for rounding to double“Brecisioﬁ? MPAC+2 is added to
itself and carries propagated.

In some cases, loading of registers (such as memory-control
cells) that comprise fewer than the 15 bits of the normal
computer word length is indicated as if the loading were
accomplished by a mask-type procedure, in order to demonstrate
the function of individual bits in a word. If hardware design
changes were to occur, of course, the indicated masking would
no longer be applicable.

1T COMPUTER HARDWARE INFORMATION

IIA General Data

The Apollo Block 2 primary guidance computer may be classified as
a general-purpose parallel operation binary computer. Various details
of its hardware; necessary for proper interpretation of its programs,
are given in Section II on the following pages. These details may be

summarized to be:

Number System: Fractional binary, with negative numbers generally
in ones complement form. Numbers in arithmetic unit operated

on in parallel. Angle information is in twos complement form.

Word Length: Sign and 14 magnitude bits of information. Words
stored in memory have a sixteenth bit for parity purposes;
in the arithmetic unit, the sixteenth bit is used for over-
flow detection. A limited number of double precision operations
are included in the order code.

Error Detection: Odd parity for all cells read from memory.

Erasable Memory: Random access coincident-current ferrite core,
destructive readout. Total capacity is 2040 cells, of which
12 are allocated to special functions and 29 to counters.
There are 760 cells which are uniquely addressable (including
the special function and counter cells); the remaining 1280
cells are addressed (in modules of 256) with erasable memory

benk register.

Fixed Memory: Random access core rope, non-destructive readout.
Total capacity is 36,864 cells, of which 2048 are uniquely
addressable; 22,528 addressed (in modules of 1024) with
fixed memory bank register; and 12,288 addressed with both

fixed memory bank register and an additional register.

TTA-1

Instruction Format: Three to six bits for operation code, remaining

bits for address.

Hardware Registers: Total of 26 may be addressed, of which four
are associated with arithmetic unit; four with memory control;
ten with computer outputs (channels); and 8 with computer

inputs (channels).

Operation Codes: 15 regular machine-language.

19 "extended" machine-language (requires 2 orders).
"special machine-language (hardware functions),
shift-register cells for bit shifts.

"involuntary'" for counter operations.

S B

"involuntary" for program interrupts (one can be
programmed) .

5 '"peripheral" for test equipment interface.

Interrupts: 29 for counter control.

11 for program control.

Speed: 23..4 microseconds for single precision addition-type orders.
46.9 microseconds for multiplication (net).

82.0 microseconds for division (net).

Hardware: About 70 pounds weight.
About one cubic foot volume,

About 100 watts power in operation, 10 watts in standby.

The basic source of all timing for the computer is an oscillator
which operates at a frequency of 2.048 mc. The output is divided by two
to obtain the computer logic-control-pulse rate of 1.024 mc (or a period
of 0.9765625 microseconds). A set of computer logic-control-pulses
that occur simultaneously is termed an "action': 12 acticns make up

-

(usually) a "subinstruction", which takes place in 11.71875 microseconds.

Since this is the time for a complete memory cycle, the time interval is

1142

called a "Msmory Cycle Time!, or "MCT"., All instructions take an
integral number of MCT's to perform.

The computer clock output of 1.024 mc is applied to a ring counter,
which gives an output after dividing by ten at 102.4 ke, This signal
_ is applied to a 33-stage binary counter, whose various output frequencies
(3200 pps, 100 pps, 0.78125 pps, etc.), both in phase and out of phase,
are used to provide various timing signals for computer functions. In
addition, the most significant 28 stages of this counter are available
as input channels O3 and 04, and can be used to permit restoration of the
computer erasable memory record of time since launch after a period of
low power (standby) operation.

An odd parity bit, making the sum of binary ones in the memory cell,
ineluding itself, an odd value, is included with all fixed memory cells,
ana is generated when erasable memory cellé are loaded, Readout of a
memory cell is accompanied by an automatic check for the validity of the
parity bit, and a hardware restart is generated if the parity bit is
determined to be inconsistent with the word. Because of this parity
check, the existence of an odd number of errors (1, 3, 5, etc.) in
the information read from memory can be detected, including cases where

all 16 bits are zero or one.

I1A-3

IIB Address Allocation

The character of the address allocation problem in the computer can
be described by first considering the hardware which would be necessary
to be able to use any instruction with any address. Excluding the
special-purpose channel instructions, there are 27 instructioné in the
computer machine language repertoire, would would require five bits
for representation (25 = 32). There are also 38,912 addressable cells
in the computer (36,864 fixed memory, 2040 erasable memory, and 8
non-channel hardware registers), requiring 16 bits for representation
(216 = 65,536). This would give a total requirement for 21 bits in
the instruction word length, or six bits more than the actual hard—
ware instruction word length of 15 bits (plus the 1éth odd-parity bit),

In order to obtain the necessary hardware (and software) effect of
the '"missing" bits at a minimum penalty, the following special design
features are found in the computer logic:

1. Instructions which are used comparatively infrequently (such as

multiply and divide) require two lines of coding, with the first

line setting an "extended-order" flip-flop (which is reset after
the order is performed).

2. Several instructions can be used with only one type of memory:
most transfer orders, for example, can refer only to addresses
in fixed memory, and instructions which load a memory cell can
refer only to addresses in erasable memory. In addition, the
computer digital (as contrasted with analog-type pulse input/
output) input/output information is handled through '"channels”,
which can be addressed only by a =s;acial group of instructions

intended solely for that purpose,

3. The erasable memory cells are divided into eight "banks' of
256 cells each, with banks 0-2 ("unswitched erasable") addressable
directly (bank O includes the 8 non-channel hardware registers),
and the remaining banks, 3-7, selected with the aid of a three-
bit "EBANK" register (cell 00038). These non—uniquely addressed
banks are referred to as. "switched erasable': the cell within the
bank, of course, is determined by the address portion of the '

instruction word.

L. The fixed memory cells are also divided into "banks', but these
have a capacity of 1024 cells each. Two of the banks, 02 and
03, are addressable directly, and hence are known as "fixed-
fixed" memory. Of the remaining 34 banks, 22 are selected with
the aid of a five-bit "FBANK" register (cell 00048), and
comprise banks 00, Ol, and O4-27 (by convention, banks are
considered to be octal quantities), and are "variable-fixed" memory.
The other 12 banks in fixed memory, banks 30-43, are considered
to be "superbanks', since their selection also depends on the
setting of chammel 7 (SUPERBNK). The three bits of this channel
can be considered an '"extension" to the FBANK capacity (hence
the channel is sometimes referred to as "F EXT"), with a setting
of 0-3 selecting superbank 53 (banks 30-37) and a setting of 4
selecting superbank S4 (banks 40-43). The other 4 banks for
superbank 4, plus those for superbanks 5-7, are not presently
included in the computer hardware. The cell within the superbank,
of course, is determined by the FBANK setting and by the

address portion of the instruction word.

The logical design of the computer includes a twelve-bit memory
address register ("S-register") which, together with suitable EBANK or
FBANK and SUPERBNK information if necessary, is used to specify memory
cell locations within the computer. The S-register is not necessarily
loaded with bits 12-1 of the instruction word, however, since some

instructions use these bits to help determine the operation code.

IIB-2

Computer Memory Address Allocation

HTrueM
Address S-register EBANK FBANK SUPERBNK
00000~ 00000007 S _—— —_
00007 or

1400-1407 0
00010~ 0010-0060 —— — —_
00060 or .

1410-1460 0
00061~ 0061-0377 _— —iss nec
00377 or

14611777 0
00L00—- 0LOO-0777 N — s
oo777 or

1400-1777 1
01000~ 1000-1377 — —cis o
01377 or

1,00-1777 2
01400- 1L00-1777 3 —_ o
01777
02000- 14001777 L s —_—
02377
02400~ 1400-1777 5-7 - —_
Q3777
OLO00- LO00-5777 e p—— s
o5777 or

2000-3777 — 02 —
06000- 6000-7777 SN N —
o7777 or

2000-3777 — 03 =
10000- 2000-3777 —— 0001 —
13777
20000~ 20003777 —_— QL4227 —_—
67777
70000~ 20003777 ——— 3027 <3
107777
110000~ 2000-3777 — AE2 i
117777

ITB-3

Function

Non-channel hardware cells.

Special Erasable cells.

Bank O of Unswitched Erasable.

Bank 1 of Unswitched Erasable.

Bank 2 of Unswitched Erasable.

Bank 3 of Switched Erasable.

Bank L of Switched Erasable.

Banks 5-7 of Switched Erasable

Bank 02 of Fixed-fixed Memory.

Bank 03 of Fixed-fixed Memcry.

Banks 00-01 of Variable-fixed.,
(Cell conversion 00000-03777)

Banks 04-27 of Variable-fixed.
(Cell conversion 10000-57777)

Superbank S3, banks 30-37.
(Cell conversion 60000-77777)

Superbank S., banks LO-L3 .
(Cell conversion 100000-
107777)

The addresses in the computer are allocated as shown on the previous
page (21l numerical quantities are given in octal). As can be seen from
the table, the following general rules apply for selection of cells

within the computer:

1. If bits 12-11 of the S-register are both zero (S-register in the
range 0000-1777), then the erasable memory (or non-channel hardware
cells) is read. If, however, one or both of these bits are one

(S-register in range 2000-7777), then the fixed memory is read.

2. The contents of EBANK influence the address which is selscted
if bits 12-11 of the S-register are both zero and bits 10-9 are
both one (S-register in range 1400-1777, giving erasable memory
bank selection capability of 256 cells).

3. The contents of FBANK influence the address which is selected
if bit 12 of the S-register is zero and bit 11 is one (S-register
in range 2000-3777, giving fixed memory bank selection capability
of 102l cells). | |

.. The contents of SUPERBNK influence the address which is

selected if the most significant two bits of FBANK are both
one (FBANK in range 30-37) and if S-register is in range
2000-3777. Note that values of SUPERBNK between O and 3

will all select banks 30-37, contrary to analogous options
for EBANK and FBANK (which have non-redundant cell selection).

The gquantity listed on the previous page as the "true' address is
used for assembler purﬁoses (to specify the absolute starting address
for a set of computations). In order to convert an erasable memory
""true" address to hardware cell contents, the following process can
be used:

S-register = 1L00, + bits 8-1 of "true" address

EBANK = bits 11-9 of "true" address

The "true" address is the one specified when external inputs that require
specification of absolute cell location are required (such as for certain
uplink sequences and for address-to-be-specified inputs to the display
systeﬁ). For programming convenience, the three bits of EBANK are
connected to bits 11-9 of the. computer hardware accumulator.

In order to convert a fixed memory "true' address to hardware cell
contents, first subtract lOOOO8 if the "true'" address is above that value:
the result of such a subtraction, identified as '"cell conversion', is shown
in the Function column of the table. Starting with this "fixed" address,
the following process can then be used to determine address selection
parameters:

S-register = 20008 + bits 10-1 of '"fixed" address

SUPERBNK = bits 16-14 of "fixed" address (values of 0-3 the same
- for hardware)

FBANK = bits 15-11 of "fixed" address for SUPERBNK £3

= 308 + bits 13-11 of "fixed" address for SUPERBNK > 3

For, programming convenience, the five bits of FBANK are connected to

bits 15-11 of the computer hardware accumulator. In addition, the cell
BBANK (address 0006) has both FBANK (bits 15-11) and EBANK (in bits 3-1)
connected to it, and hence can be used to sample or load both bank registers,
provided the loading information is in the proper format. SUPERBNK is
connected to bits 7-5 of the computer hardware accumulator, but it muét

be loaded by a channel crder (note, however, that the bits for SUPERBNK

are compatible with the assigned bits in BBANK, permitting one 15-bit

computer word to have suitably formatted information for all three quantitias)‘

1B-5

IIC Hardware Registers

There are eight non-channel hardware cells in the guidance
computer, with addresses 00008 - 00078. These cells are described

below (see Section IIE for the computer channels).

Address Symbol . Function

OOOO8 A Accumulator. Most instructions refer to, or modify,
the contents of A. See Section IV.

OOOl8 L L register, or Low Order Accumulator. Used to contain

the least significant half of double precision words
for those operations which use, or generate, such
words, and to contain the remainder after division.
Cell also forms chamnel 01, permitting channel
operations to be used for bit manipulation purposes,
when symbol conventionally is LCHAN. Cell frequently

used for temporary storage purposes.within a computation.

OOO28 Q Q register, or Return Address Register. Loaded with
the value of the program count (cell 00058) of the
step following a TC (transfer control, see Section
IVB) instruction, thus retaining return-address

. information. Cell also forms channel 02, permitting
channel operations to be used for bit manipulation
purposes, when symbol conventionally is QCHAN, Cell
frequently used for temporary storage purpeoses within
a computation.

00038 EBANK Erasable Memory Bank Selector, consisting only of
bits 11-9 (which are also connected to bits 3-1
of cell 00068). Contents used to specify which

bank of 256 erasable memory cells (bits 8-1 of S-—

register) is to be selected for S-register in the

range 1&008 - 17778. See Section IIB.

Address Symbol
OOOL;8 FBANK
00058 Vo
00068 BBANK
OGO’?8 —

Function

Fixed Memory Bank Selector, consisting only of

bits 15-11 (which are also connected to bits 15-11
of cell 09068). Contents used to specify which bank
of 1024 fixed memory cells (bits 10-1 of S-register)
is to be selected for S-register in the range

20008 - 377?8. See Section IIB.

Z register, or Program Counter. Contains address of
the next step, and for most instructions it is in-
cremented by 1 under hardware control. Can be loaded
directly by program (pseudo-operations DTCB and

DTCF) in order to accomplish a transfer of program
control. Incrementing takes place as part of term-
ination of previous instruction (so that direct loading
of register 00028 from Z for a TC order achieves the
desired effect).

Both Banks, a cell which may be used if reference
for reading or writing to both EBANK and FBANK is
desired. The three bits (11-9) of EBANK are
connected to bits 3-1 of BBANK, while the five bits
(15-11) of FBANK are connected to bits 15-11 of
BBANK. The SUPERBNK bits (7-5) are not comnected

to BBANK, but instead must be processed by a separate
channel instruction (referencing chammel 7).

Address which may be used as a source of OOOOOB for
clearing instructions (such as the pseudo-operations
ZL and ZQ). No physical register corresponds to this
address, so that "locading' of the address has no
effect, and hence can be used to achieve desired
program performance (such as modification of the A
register via the TS order, Section IVB). An attempt
to read an unwired fixed memory cell to obtain O

would give a hardware restart due to parity failure.

IID Specizl Erasable Cells

The first 41 cells of the erasable memory (locations 00108 = 00608)

are nominally allocated to special functions, with the last 29 (starting

at location 002A8) being used for counter purposes and the first 12 for

other specialized purposes (although some function as normal erasable

memory cells). In addition, cell 00678 serves a special hardware function

in monitoring for a program loop and initiating a hardware restart if

one is detected.

Address Symbol
OOlO8 ARUPT
00118 ILRUPT
00128 QRUPT
00138 SAMPTIME
OOlLS

These cells and their functions are described below.

Function

Normal erasable memory cell used by convention to
contain the contents of the accumulator (A register)
after program interrupts #L - #10 (see Section IIH)
acted upon, and used to restore these contents before

resuming the interrupted computation.

Normal erasable memory cell used by convention to
contain the contents of the L register after program
interrupts #1 - #10 acted upon, and used to restore
these contents before resuming the interrupted

computation.

Normzl erasable memory cell used by convention to
contain the contents of the Q register (if these
conﬁents would be modified during the computations
associated with the interrupt) after program interrupts
#1 - #10 acted upon, and used to restore these contents
before resuming the interrupted computation (if, of
course, QRUPT loaded).

Normal erasable memory cells used to retain the value of
cells OOZL,8 - 00258 when certain program steps are
performed (e.g. steps for program interrupts #5 - #7),

for subsequent possible display.

I11D-1

Address Symbol
90158 ZRUPT
00168 BANKRUPT
00178 BRUPT
00208 CYR

Function

Cell used to contain the value of the program counter
(Z register) when a program interrupt acted upon, Tt
is usually loaded and restored to Z by hardware means

3

although it can also be sensed and stored by software.

Normal erasable memory cell used by convention to
contain the contents of BBANK (if these contents
would be modified during the computations associated
with the interrupt) after program interrupts #1 -
#10 acted upon, and used to restore these contents
before resuming the interrupted computation (if, of
course, BANKRUPT loaded). For those interrupts
changing SUPERBNK, BANKRUPT also used to retain the
SUPERBNK of the interrupted computation, thus

requiring special restoration coding.

Cell used to contain the value of the nonaddressable
"B-register" (buffer register, used to contain the
next instruction) when a program interrupt is acted
upon. It is normally loaded and restored to B by
hardware means, although it can also be sensed and

stored by software. Loading the cell with a certain
program (Z register) count and then executing a RESUME

will cause program to start at indicated step, since

the TC (transfer control) order has operation code = 0.

Cycle right register. When the contents of the csll
are written into, either as part of the original
loading or as a result of most sensing operations
(such as CA, Clear Add), they are shifted right one
place in a cyclic fashion: bit 15 becomes bit Ay
bit 14 becomes bit 13, ... bit 2 becomes bit 1, and
bit 1 becomes bit 15. The unshifted value (except
as it is shifted from a previous loading) is the

one sensed. Shifting does not take place for the
MASK, MP (Multiply), or DV {Dirida) orders. See

Section IV.

Iib-2

Address Symbol Function

00218 SR Shift right register. When the contents of the cell
are written into, either as part of the original
loading or as a result of most sensing operations,
they are shifted right one place in a non-cyclic
fashion: bit 15 becomes bit 15 and bit 14, 'bit 14
becomes bit 13, ... bit 2 becomes bit 1, and bit 1
is lost. The unshifted value (except as it is
shifted from a previous loading) is the one sensed.
Shifting does not take place for the MASK, MP, or

DV orders. See Section IV.

00228 CYL Cycle left register. When the contents of the cell
are written into, either as part of the original
loading or as a result of most sensing operations,
they are shifted left one place in a cyclic fashion:
bit 1 becomes bit 2, bit 2 becomes bit 3, ... bit
14 becomes bit 15, and bit 15 becomes bit 1. The
unshifted value (except as it is shifted from a
previous loading) is the one sensed. Shifting does
not take place for the MASK, MP, or DV orders. See
Section IV. The effect of a shift left in a non-
cyclic fashion (except for bit 15) can be achieved
by addition of accumulator to itself the proper number

of times.

00238 EDOP Edit operand register. When the contents of the cell
are written into, either as part of the original loading
or as a result of most sensing operations, bits 14-8 |
are loaded into bits 7-1 respectively, and bits 15 and
14-8 are set O. The unshifted value {except as it
is shifted from a previous loading) is the one sensed.
Shifting does not take place for the MASK, MP, or
DV orders. See Section IV. The right shift of 7 places
for the selected bits is used for interpreter and verb/

noun pattern editing requirements.

IID-3

Address Symbol
OOZLL8 TIMEZ
00258 TIMEL
0026 TIME3
0027 TIMEL

Cell used as the most significant half of the
computer '"clock", preset and sensed under program
control. It is incremented by +1 when cell 00258
overflows. TIME2 overflows every 745 hours (i.e.
31 days 1 hour), 39 minutes, 14.56 seconds, and is
conventionally reset when liftoff is deduced so as

to indicate mission elapsed time.

Cell used as the least significant half of the

computer 'clock", preset and sensed under program
control. It is incremented by +1 each 0.0l second
(i.e. each centi-second). When the cell overflows
(each 163.8L seconds), TIME2 is incremented by +1.
See Section IIE for phasing with respect to Channel

04 time information.

Cell used to generate (when overflow takes place)
program interrupt #3 (conventionally used for
"waitlist' tasks, see Section IIH). Preset to
appropriate value under program control (i.e.

olh _ required delay in centi-seconds), and
incremented by +1 each 0.0l second. BSee Section
VIIA for computations assoclated with determining

proper settings.

Cell used to generate (when overflow takes place)
program interrupt #4 (conventionally used for
periodic "TLRUPT" input/output functions, see
Section ITH). Preset to appropriate value under
program control (i.e. B - required delay in
centi-seconds), and incremented by +1 each C.0l
second. Incrementing phased so as to take place

0.0075 second after the TIME3 increment.

IID-4

Address Symbol

00308 TIMES

00318 TIMES

00328 CDUX
88338 CDUY
3A8 CDUZ

00358(CM) CDUT

Funiction

Cell used to generate (when overflow takes place)
program interrupt #2 (conventionally used for
computations associated with the digital autopilots,
see Section IIH). Preset to appropriate value under
Zlh\

program control (i.e. - required delay in.centi-

seconds), and incremented by +1 each 0.0l second.

Cell used to generate (after has been decremented to
-0) program interrupt #1 (conventionally used for
timing of RCS5 jet commands in output channels 05 and
06 from the digital autopilots, see Section ITH).
Preset to appropriate value under program control
(i.e. required delay in units of ok centi-seconds),
and decremented by 1 each 0.000625 second (i.e. at

a 1600 pps rate) provided bit 15 of channel 13 is 1.
When the counter reaches a value of -0, the next
DINC pulse causes bit 15 of channel 13 to be set

O and the program interrupt to be generated.

Cells accumulating the output pulses from the three
CDU's (Coupling Data Units) associated with the IMU
(Inertial Measurement Unit), to provide information
on the IMU gimbal angles (and hence on spacecraft
attitude). Cells preset and sensed under program
control, providing anglé information in twos
complement form, scale factor B-1 revolutions. One

15

pulse, therefore, is 2 revolutions, equivalent to

39.55078125 arc sec (about 0.01098633°).

Cell accumulating the output pulses from the CM optics
trunnion CDU, to provide information on optics trumnion
angle. Cell preset ar’ :sensed under program control,
with optics zeroing (bit 1 of channel 12) giving a
setting of 617&08 (about -19.7754° in twos complement)

fer the cell. BScale factor B-3 revolutions, with data

in twos complement. Zeroing points about 32¢ 31 23.100

S

Svmbol

00358(LM) CDUT

00368(GM) CDUS

00368(LM) CDUS

00374
00404
00414

PIPAX
PIPAY
PIPAZ

Function

»

Cell accumulating the output pulses from the IM
rendezvous radar trunnion CDU, to provide information

on rendezvous radar trumnmiocn angle. Cell preset and
sensed under program control, with radar CDU zeroing
(bit 1 of channel 12) giving a setting of O for the

cell (due to software), and also inﬁibiting ¢ell inere-

ments. Scale factor B-1 revolutions, in twos complement.

Cell accumulating the output pulses from the CM optics
shaft CDU, to provide information on optics shaft
angle. Cell preset and sensed under program control,
with optics zeroing (bit 1 of chamnel 12) giving a
setting of O for the cell. Scale factor B-1

revolutions, with data in twos complement.

Cell accumulating the output pulses from the IM
rendezvous radar shaft CDU, to provide information

on rendezvous radar shaft angle. Cell preset and
sensed under program control, with radar CDU zeroing
(bit 1 of channel 12) giving a setting of O for the
cell (due to software), and also inhibiting cell incre-

ments. Scale factor B-1l revolutions, in twos complement.

Cells accumulating the output pulses from the three
PIPA's (Pulsed Integrating Pendulous Accelercmeters)
associated with the IMU, to provide information on
sensed velocity increments in IMU coordinates. Cells
preset and sensed under program control, providing
information with scale factor Bl4 counts. Nominal

CM scale factor is 5.85 cm/sec per count; nominal IM
scale factor 1.00 cm/sec per count. When the software
resets the cells, the accelerometer electronics is
not affected, so that fractional counts accumulated

there would not be disturbed.

IID-6

Address Symbol

OMQBWM)EMGX
0043 8(GM) BMAGY
OOA@S(CM) BMAGZ

ooaza(m) Q-RHCCTR
OOABB(IM) P-RHCCTR
OOMS(IM) R-RHCCTR

PPN

Function

Not used. Originally intended to provide an accumu-
lation of angle increment data from the Gyro Display
Coupler of the Spacecraft Control System BMAG's

(Body Mounted Attitude Gyros), to serve as a backup
source of attitude information in the event of IMU
failure, Inputs to cells enabled if bit & of channel

13 is set. Cells preset and sensed under program

control.

Cells accumulating the ocutput pulses from the RHC
(Rotational Hand Controller) pitch, yaw, and roll
axes respectively, used if the RHC is employed as

a rate commanding device. If RHC used as a minimum
impulse or landing peint designator device, however,
bits 6-1 of channel 31 used instead to determine the
status of the controller. Inputs to counters enabled
if bit 8 of channel 13 is set, and counters must be
reset to O under program control. Bit 9 of channel
13 is used to cause a readecut of the RHC analog-to-
digital converters to be started, and then becomes
reset. DSeparate sign and magnitude information is
received from the converter, with magnitude provided
by width of a dc pulse (which gates a 3200 pps signal

to the counter for digital conversion). Full-scale

- deflection (into soft stops) of RHC provides an input

count of 42, scale factor Bli counts, with corres-
ponding value of rate command determined by software,
Software does not enable counting unless bit 15 of
channel 31 indicates that RHC is out of detent (giving
a minimum control capability of about 10% of full
scale). Also known in IM as "ACA" (for "Attitude
Controller Assembly'').

IID-7

FTunction

Cell into “which serial binary data is shifted from
the uplink receiver (after completion of the checks
by the receiver for satisfactory message format) one
bit at a time under hardware control. The overflow
of this cell (implemented by having the first of the
;6 bits sent to the computer be a binary one) causes
program interrupt #7 (see Section IIH). Cell must
be reset to O by software to permit next word to be
processed properly. Software performs additional
checks on the 15-bit word read from the cell: bits
>-1 are checked to be the same as bits 15-11, and
the same as the complement of bits 10-6, before
processing the input further (using the five-bit
codes listed in Section IIJ, the same as for DSKY
inputs). If failure of the software check is
encountered, all subsequent inputs are rejected by
the software until an error reset pattern (228) is
received via the uplink (not DSKY),

No inputs to the cell are made if bit 6 of channel
13 is 1, nor if either of the spacecraft switches
(the CM has two) are set to block uplink inputs

(ef. bit 10 of channel 33). In addition, an incoming
bit is rejected if a 6400 pps signal has not occurred
since the previous bit was accepted, and bit 11 of
channel 33 (a flip-flop) is set to be sensed as a
binary O to indicate such a rejection. GChecks for
too rapid an uplink rate made only if bit 5 of
chammel 13 is O and if switches set to accept uplink.
Bit 5 of channel 13 can be set 1 to select output of
"crosslink' hardware (cf. cell 005?8) instead of the
uplink receiver for cell OOABB input, but this
capability is not used. The spacecraft switches
cannot be set to block crosslink inputs from cell
OOQ58, although the same monitoring for too fast an

input rate is magde.

IID-8

Address

Symbol

RNRAD

Function

Cell into which VHF range data (for CM) or landing
radar data (velocity and altitude) and rendezvous
radar data (range and range rate) for IM is shifted
under control of bits 4-1 of channel 13. The
rendezvous radar angle data is in cells 00358 =

00368. The source and type of data is selected by
bits 3-1 of channel 13, and when bit 4 of channel 13
becomes 1 the readout process is started, being
terminated 90-100 ms later by the generation of
program interrupt #9 and the resetting of bit J of
channel 13. All 15 bits loaded are magnitude bits.
When the first 100 pps signal after bit 4 of channel
13 becomes 1 occurs, a 3200 pps pulse train is gen-
erated on an appropriate computer output line (depend-
ing on the selection made by bits 3-1 of channel 13).
This pulse train, which lasts for about 80 ms, is used
by the radar to gate the selected data into a radar
counter. About 5 ms after the termination of this
pulse train, 15 sync pulses (on a separate line from
the data gating pulses) are sent, again at a 3200 DpS
rate, to shift data from the counter to cell OOAéS.
Improper shifting results if these sync pulses are not
of the proper waveform (due to a channel 13 loading
command, for example). After the last sync pulse (or
10 ms after the end of the measurement pulse train),
program interrupt #9 is generated.

For the CM, the least increment on the quantity loaded
into cell 0046, is about 0.01 nm (18.52 meters). For
the IM, the landing radar measurement is made for about
80.001 ms, with a 153.5 kc bias on rates (bias count of
12288.2), and least increments of ahout -0.6440, 1.212,
and 0.8668 fps/bit for x-z velocities. On the low range
IR scale (cf. bit 9 of channel 33), least increment is
about 1.079 feet/bit (high range 5.000 times bigger).
For rendezvous radar, range on low scale (cf. bit 3 of

channel 323) about 9.38 feet/bit; high range 2.000 times

bigger. Range rate (counts for 80 ms) bias frequency is
212.5 ke (17000 bias count), and scale -0.6278 fps/bit.

S)

TT1i=9
7

Address Symbol Function

OO!;.'?8 GYROCMD Cell which is loaded with the magnitude of the required
IMU gyro torquing command, scale factor Blh, units
counts (one count is 2 F pevelution on abonk 0.61798096
arc seconds). Output pulses are generated at a 3200
pps rate, with power supply for them enabled by bit
6 of channel 14 and the sign and axis of the gyro to
be torqued specified by bits 9-7 of channel 1L.

When bit 10 of chamnel 14 is set, the pulses are
started (and GYROCMD decremented appropriately).
When GYROCMD reaches zero, the pulses are terminated
and bit 10 of channel 14 reset.

OOSO8 CDUXCMD Cells loaded with vzlues to be transmitted to IMU
00514 COITOID g t Informati ted .
00528 CDUZCMD error counters. ormation gated out of cells

if bits 15-13 (respectively) of channel 14 are set,
and error counters loaded if bit 6 of channel 12

is set. .These "error countefs“ should be considered
as being in large measure independent of the "CDU"
information in cells 00328 = OOBAS, and essentially
serve the purpose of digital-to-anzlog converters.
The error counters saturate at a count of 6008 (or
384 counts), and are incremented at a 3200 pps rat
for a count determined by their respective CDUiCMD
cell.

If bit 4 of channel 12 is set, the error counter data
is used for coarse align of the IMU (and the count

in the error counter decremented in magnitude as the
IMU alignment proceeds). The error counters associated
with all 3 cells are reset 0 if bit 6 of channel 12
is reset to O, The scale factor of the cells for

IMU coarse ‘align is Bl revolutions (so that one pulse
corresponds to 2*13 revolutions or about 158.2 arc
seconds).

See next page for additional CM~only and IM-only uses.

I1D-10

Address Symbol

0050, (CM
0051 (CM)
00528(GM)

0050
0051
0052

(IM)
(LM)
(1)

8
8
8

00538(CM) CDUTCMD
OOSLS(CM) CDUSCMD

Function

See previous page for items common to CM and IM uses.
If bit 9 of channel 12 is set, error counter output
(converted to dc) is used for rcll, pitch, and yaw
control of the Saturnm.

Error counter output also used for roll, pitch, and yaw

attitude error displays respectively on FDAI (Flight

Director Attitude Indicator). Software loads cells with
data scaled Bl revolutions (saturated error counter = 16.875°
except for roll during boost and entry, when scale factor

is B3 revolutions (saturation = 67.5° for 384 counts into
error counter). Actual display scale determined by space-
craft FDAI SCALE switch (which is not sensed by software):
for ERR scale at "5", full scale is 5° for Bl rev. scaling;
for "50/15", full scale is 50° in roll for B3 scaling

(12.5% for Bl scaling), and 15° in pitch/yaw (Bl scaling).

See previous page for items common to CM and IM uses.

Error counter output also used for IM P, Q, ‘and R

axes (yaw, pitch, and roll respectively) attitude "error"
needles on FDAI: note that in IM vehicle rotation about
thrust vector is "yaw'" (in CSM it is "roll"). Software
controls whether cells loaded with attitude error information
(scaled BO in units of 1800°) or vehicle rate information
(scaled BO in units of 450°/sec). For attitude error
display, needles pin at about 5 1/16°; for rate display,
they pin at about 1 17/64°. These figures correspond

to 46 least increments in the error counters.

Cells loaded with values to be transmitted to optics CDU erro:
counters. Information gated cut of cells if bits 12-11
respectively of channel 14 are set, and error counters loaded
if bit 2 of chamnel 12 is set {(counters set O if bit 2 = 0).
Used dﬁring optics position drive operation to drive the
optics trunnion (scale B-1 rev.) and shaft (scale Bl rev.)
respectively. Drive of optics inhibited if bit 11 of chamnel

12 is set 1. May also be used for rate drive of optics on

| subsequent flights (see mission documentation). The cells

'are also used for control of SPS engine (see nsxt page).

ITD-11

Address Svmbol

0053, (CM) TVCYAW

OOSAé(CM) TVCPITCH

0053
0054

8
8

(IM) CDUTCMD
(IM) CDUSCMD

‘i

unction

Cells loaded with values to be transmitted to "optics”
error counters for use in controlling the position of the
SPS (Service Propulsion System) engine gimbals. Same
cells used to drive optics (see previous page), but the
automatic optics drive can be disabled by setting bit 11
of channel 12 {(although optics could still drift unless
mode specified to be optics zeroing). Information is
gated out of cells if bits 12-11 respectively of channel
14 are set, and error counters loaded if bit 2 of channel
12 is set (counters set O if bit 2 = 0).

Cutput of error counters, converted to de¢, is sent to

SPS engine yaw and pitch servos if bit 8 of channel 12

is set (which also inhibits the position feedback to the
error counters used when commanding optics positioning).
The error counter saturates at 6008 (384 counts), or
about 9.10, and is loaded at a 3200 pps rate. One count
for SPS driving corresponds to 85.41 arc seconds (or
0.0237250),.giving sbout a2.1h96ﬁ pulses/degree or |
388.7104° (about 1.07975111 revolutions) per o pulses.

Cells loaded with values to be transmitted to rendez-
vous radar error counters for use in controlling the
position of the rendezvous radar antenna when its
position 1s being controlled by software (when antemma
sufficiently close to proper direction, the radar
system controls its position provided bit 14 of charnel
12 is 1). Information gated out of cells if bits
12-11 respectively of channel 14 are set, and error
counters loaded if bit 2 of channel 12 is set (error
counter reset to O if bit 2 of channel 12 is reset

to 0). GCells used to control radar trumnion and shaft
drives respectively, with a saturated error counter
(384 pulses) corresponding to a drive rate of about
lOO/second: position error signal corrected by program

for desired dynamic response.

JID-22

Address Symbol

00534(IM) (cont)
0051y (124)

OOSSS(CM)

00558(LM) THRUST

00568

Function

If bit 8 of channel 12 is set, the error counter
outputs (converted to dc) are used to provide
lateral and forward velocity information respectively

to an analog display, scaled about 0.5571 fps/bit.

Not used.

Cell used to provide engine throttle commands for
the descent engine, giving output pulses at a 3200
pps rate when bit 4 of channel 14 is set, of a
polarity determined by the polarity of 00558. Cell
decremented as pulses are sent, and bit 4 of channel
1/, is reset O when cell contents have been reduced
to 0. Actual throttle command to engine is sum of
counter contents (counter incremented by outputs of
cell 00558) and the position of manual throttle. The
counter driven by the pulses controlled by cell 00558
is reset O when the descent engine is disarmed, and
has a saturation level greater than the number of

pulses required for full throttle setting. One
pulse corresponds to roughly 2.8 pounds of thrust (see

mission documentation for specific value).

Not used. riginally intended to provide entry
moniteoring system velocity information for CM

(tag EMSD) and a IM monitor function (LEMONM).
Cell gives output pulses at a 3200 pps rate when
bit 5 of chamnel 14 is set 1, of a polarity deter-
mined by the polarity of cell 00568. The cell is
decremented in magnitude as pulses are sent, and
bit 5 of chamnel 14 is reset O when the cell

contents have been reduced to O.

IID-13

Address Symbol

OOS?B(CM) LOCATARM

[~

Ve "’f p

L ¥

OOS?S(LM) OUTLINK

OOéOS(CM) BANKATRM

H

OOéOS(LM) ALT™M

Function

Cell used for storage of alarm source information
(using cell as a normal erasable mumory celt; rather
than emplqylng the counter feature described for IM).

See m1551on documentation for details.

Not used. Originally intended for use to provide a
"crosslink" capability for serial binary data to
cell OOA58 of ancther computer (if bit 5 of channel
13 of that computer is set). After loading 00578
with the proper data, setting of bit 1 of channel 14
to 1 causes the data to be sent at a 3200 pps rate:
first a binary 1 is sent, then the 15 bits in cell
00578 (most significant bit first). Bit 1 of channel
1L is reset when the first binary 1 (satisfying

the format requirement for program interrupt #7) is
generated, which is (1/6.4) ms after the first 200
pps signal following the setting of bit 1 of channel
14.

Cell used for storage of alarm source information
(using cell as a normal erasaﬁl@'mumory cell, rather
than employlng +he counter feature descrlbﬂd for IM).

See mission documunbatlon for details-

Cell used to provide altitude and altitude rate
information to analog display. Data provided in serial
binary form, with bit 2 of channel 14 set to 1 if
altitude rate information is supplied (scaled at 0.5
fps/bit), and reset to O if altitude information is
supplied (scaled about 2.345 ft/bit). After loading
OOéO8 with the proper data, setting of bit 3 of

channel 14 causes the data to be sent at a 3200 pps
rate: first a binary 1 is sent, then the 15 bits of
cell 00608 (most significant bit first). Bit 3

reset with same timing as bit 1 for cell 0057 -

Address

Symbol

00678

NEWJCB

Function

Cell used in control of job sequencing (see Section
VITB). Fach time it is sampled, a flip-flop set by

a signal with a 1.28-second period is reset. If the
flip-flop is set when another 1.28-second period

signal (0.64 seconds out of phase with the first) occurs,
a ''might watchman" fault (see Section IIH), causing a
hardware restart, is produced. Hence maximum allowable

interval between samples ranges from 0.64 to 1.92 second.

ITE Input/Output Channels

Binary-level inputs and outputs from the computer, including control
signals for portions of the computer hardware, are handed through
interfacing hardware called '"chamnels". Analog-type pulse input/output,
on the other hand, is mechénized through the special purpose erasable
memory cells with their associated counter interrupts, as discussed in
Section IID and ITH. One of these specilal purposs cells (OOA?S), for
example, is used to contain the magnitude of the required gyro torquing
pulse output, while appropriate bits in one of the output channels (bits
9-7 of channel 14) specify not only the sign of the required pulses, but
also the gyro axis to which they are to be applied.

Of the twenty channels which are defined, three different types may
be identified:

1. Ten output channels, numbered 05, 06, 07, 10, 11, 12, 13, 14,
3L, and 35. The first 8 can be both loaded and sensed under
program control, but channels 34 and 35 can be loaded only (they

are used to provide telemetry output from the computer).

2. Eight input channels, numbered 03, O4, 15, 16, 30, 31, 32, and
33. All eight can be sensed under program control. Bits 15-11
of channel 33 are flip-flop inputs, which can be set to a binary
1 (logic 0) under program control by a "loading" type command
{(instructions WAND, WOR, or WRITE in Section IVC).

3. Two computer registers, numbered Ol and 02, corresponding to the
L register and Q register respectively of Section IIC. These
registers are included as "channels' to permit use of the bit
manipulation capabilities of the seven channel instructions

(see Section IVC) in the computer order code.

IIE-1

Chamnels are conventionally referenced by their octal channel
number (the number appearing in the address portion of the appropriste
channel instruction). To permit references to each channel to be
flagged by the assembly program (see Section III), howsver, the program
coding generally uses a symbolic reference tag for each channel, as
shown in the "mnemonic" column on the following pages.

In order to sense and/or load the input/ouuput channels, only the
seven extended-order (see Section IVC) channel instructions may be
used: RAND, READ, ROR, RXOR, WAND, WOR, and WRITE. These instructions
cannot be used with other computer registers (except, of course, L and
Q which are also "defined" to be channels).

The bit assignments given on the following pages are those of the
quantities associated with the hardware. Several (such as CM/SM
separation) may not beractually sensed by the program for compuﬁation
control (as contrasted with e.g. telemetry) purposes, and therefore
reliable equation information should be consulted to determine which
bits serve a purpose in a given cocmputer program configuration.

As part of a hardware restart (signsl produced by hardware, see page
IIH-9), all output channel bits (except those of channel 07) are reset zero.
Conseguently, the software must restore the appropriate bits (such zs IMJ
control and engine-on information) as necessary. In addition, the channel
loading commands (WAND, WOR, and WRITE) zero all bits of the channel briefly
(about # microsecond), and some spacecraft hardware is sensitive to this bLrief
zeroing, such as the radar systems in the IM, so specizl software techniques
are required to avoid loading the chamnel (#13) while shift pulses are being

generated (otherwise, a single shift pulse could appear as two pulses).

ITE-2

Chamnel Mnemonic Bits

01

02

03

04

LCHAN 151
QCHAN 15-1

HISCALAR 14-1

LOSCALAR 14-1

Function

Computer L register (address 00018 in Section

TIC).

Computer Q register (address 00024 in Section
1IC).

Most significant 14 bits from 33-stage binary
counter driven by 102.4 kc signal from computer
oscillator (see Section ITA). Counter keeps
running when computer placed in low-power
(standby) mode of operation, and hence data

in counter can be used to restore the proper
value of the computer clock (cells 00248 - 00254
in Section IID) after a period of standby
operation. Scale factor for channel 03 data

is B23 in units of centi-seconds, so least
significant bit is 5.12 seconds and channel
informatidn overflows every 23 hours, 18 minutes),

6.08 seconds (about 23.3 hours).

Next most significant 14 bits from 33-stage
binary counter associated with channel 03.
Scale factor for channel 04 data is B9 in
units of centi-seconds, so least significant
bit is (1/3200) second and channel information
overflows (and propagates to channel 03) every
5.12 seconds. Time information in channel OL
is 0.005 seconds out of phase (i.e. i centi-
second) with cell 00254 in Section IID, so
that the lsast significant 5 bits of channel
O4 are 204 during the first (1/3200) second
interval after cell 0025, (TIME1) has been
incremented by +1., TIMEl, in turn, is 5 ms
ocut of phase with the 100 pps signal used for
control of the radar (see cell OOQéS in Section

TTR
B

IIE-3

Channel Mnemonic DBits
05 CHANS 8-1
FYJETS
06 CHAN6 8-1
ROLLJETS
o7 SUPERBNK 7-5
10 OUTO 15-1
11 DSAIMOUT
15

Function

=

RCS (Reaction Control System) jet controls:

see next two pages.

RCS (Reaction Control System) jet controls:

see next two pages.

. Superbank (sometimes called F EXT) register,

used to select the appropriate fixed memory bank
for FBANK wvalues of 308 or more. Channel not reset

if get a hardware restart. See Section IIB.

Register used to transmit latching-relay driving
information to the display system (see Section
I1J). Bits 15-12 are set to the row number

{018 - :u+8) of the relays to be changed, and bits
11-1 contain the required settings for the relays
in the selected row. Since the relays are bi-
stable devices, the OUTO setting need be left for
only 0.02 second. After a period of 0.02 second
in which the channel bits are all reset, a setting
for another row of relays can be specified (hence
to change all 11 rows that control the DSKY digit/
sign displays requires O.4L seconds). Row 178 has
been used for mission programmer functions on
unmanned flights (e.g. IM-1), when the OUTO setting

was retained for 0.03 seconds.

Register whose individual bits are used for
engine on/off control and to drive individual
indicators of the display system (see Section
Tid).

Not assigned.

14 (CM) Not assigned.

Channel 5 Channel &

Service Module ECS Jets

Bit® Jet Quad Reaction Bit Jet Quad Reaction
8 6/B, B X —Yaw 8 1,/c2 C +Y ~Roll
7 7/B3 B - X AYaw ‘ 7 15/CL C -¥ +Roll
6 8/, D -X —Yaw 6 16/A2 A -Y -Roll
5 5/D3 D +X +Yaw 5 13/A1 A 4+Y +4Roll
L 2/a, A +X -Pitch 4L 10/D2 D +Z -Roll
3 3/A3 A -X +Pitch 3 11/D1 p -Z +Roll
2 L/cL G ~X ~Pitch 2 12/B2 B -Z -Roll
1 1/c3 ¢C +X +Pitch ; 1 9/Bl B +7 +Roll

Command Module RCS Jets

Bit dJet System Control Bit Jet System Control
8 6/26 B ~Yaw
7 7/25 B +Yaw
6 8/16 A ~Yaw
5 5/15 A +Yaw
L 2/, A ~-Pitch L 10/22 B -Roll
3 3/23 B +Pitch 3 11/21 B +Roll
2 4/2, B -Pitch 2 12/12 4 -Roll
1 1/13 A +Pitch 1 9/11 +Roll

"Heaction" means direction of spacecraft motion when the Jjet fires.

"Control" means direction of spacecraft motion used in software for
that jet.

+X direction is same direction as SPS engine thrust (roll axis positive
about this axis in right-hand rule sense).

Quads in order B, C, D, A starting at the +Y (pitch) axis and going
clockwise (looking forward, i.e. along +X). Control axes offset from
spacecraft axes by a rotation of -7.25° (measured from spacecraft to
control axes about +X axis).

See spacecraft hardware documentation for ions of individual Jets.

Lunar Module RCS Jets

Bit Jet Cluster System Translation Rotation Failure Bit (ch. 32)
' Channel 5
8 14 1D B +X 2, +R; +U 5
7 13 1U A X Q, -R; -U 6
6 10 2D A +X -Q, +R; 1V 8
5 9 2 U B =X HQ, -R; -V 7
b 6 3D B +X -Q, -R; -U L
3 5 30U A =i Q, +R; U 2
2 2 L D A +X H, -R; -V 1
i & b B X Q, +R; +V 3
Channel 6
8 16 153 B +Y 7 5
7 L L3 A =Y +P 1
6 8 385 A =Y -P 2
5 12 25 B +Y +P 7
I, 11 2F A +7 P 8
3 15 1F A -z +P 6
2 3 LT B 7 P 3

[
=5
W
]

B +Z +P 4

nPranslation" and "Rotation" mean direction of spacecraft motion when
jet fires.

+X is through the upper docklng tunnel (+P rotations about ths axis in
right-hand rule sense, for "yaw" "), i.e. in direction of APS/DPS thrust.

+7 is through the forward tunnel (+R rotations about this axis in "roll").

+Y completes right-hand set (+Q rotations about this axis in '"pitch").

In the software, rotation control for chamnel 5 is criented about the U, V
axis system, where +U is through cluster 4, between +Z and +Y, and +V is
through cluster 1, between +Z and ~Y. The actual software outputs

SCIVU are about
(non-orthogonal) U', V' axes (dELlHEd so as to avoid cross-coupling effects,

and restricted by sof*wa“ﬁ to be reasonably close (e.g. 15°) to U, axes
Clusters are nudbﬂred clockwise starting at <2 (1nox1ng along fh)i with Jets
pointed up (U), down (D), fore-aft (F), or tc the side (S).

See spacecraft hardware documentation for locations of individual jJets.

IIE-6

Channel Mnemonic Bits

11(cont)

Function

14(IM) Engine Off signal to engine sequencer for descent

13(CM)

13(1M)

il

10

and ascent engine. If bits 14-13 = 002, the
engine remains in its previous state (on or
off), but if the vehicle stages with the bits
equal to 002, tbe ascent engine would not
light. If the descent engine sees the bits
equal to 112, it likewise remains in previous
state; the ascent engine, however, turns on.
The 002 condition, however, should be avoided

when the engine is armed.

SPS (Service Propulsion System) engine turn-on

signal (set O to turn engine off).

Engine On signeal to engine sequencer for descent

and ascent engine. See bit 14 of channel 11.
Not assigned.

Not assigned. Used in IM-1 program for telemetry
purposes as a status indicator of program per-

formance.

Caution Reset signal. It resets the flip-flop
holding the Restart light (see Section IIJ)

of the display system in the energized state.

Test Connector Outbit (Connector A52 pin 813).
Can be used as an indicator for hybrid simulator
test purposes that Average-G (two-second navi-
gation cycle using accelerometer outputs) is

running, if suitably set by software.

£

Not assigned.

Channel Mnemonic

Bits

11(cont)

7

Function

Bit that energizes the Operator Error {(see Section
I1J) of the display system. It is set to 1 if an
impropér operator entfy to the keyboard or uplink
detected by the software, and it causes the
Operator Error light to be flashed.

Bit tha£ energizes the Flash (see Section IIJ) of
the display system, that causes the verb and noun
register indicators to be flashed on and off

(not noticeable unless they are non-blank, of
course), Used by the software to signify that

an operator response or action is needed.

Bit that energizes the Key Release (see Section
II1J) of the display system. It is set to 1 if
the software of the internal display system
users is inhibited from using the display system
because of operator use. The bit causes the

Key Release light to be flashed.

Bit that energizes the Temperature Caution
light (see Section IIJ) of the display system.
This light is &lso connected to bit 15 of channel

30.

Bit that energizes the Uplink Activity light

(see Section IIJ) of the display system, set

by software when program interrupt #7 (see
Section IIH) is processed, and reset likewise

by the software (at termination of uplink
sequence, etc.). Can also be used for informing
crew of other situations when uplink information
not being received (such as, for CM, the need for

an attitude maneuver): see equation documentation.

Channel Mnemonic Bits Function

11(cont) 2 Bit that energizes the Computer Activity light
(see Section IIJ) of the display system. It
is set by the software if the executive system
(Section VIIB) has an active job being
performed (i.e. something besides the dummy
job routine). The bit remains at its previous
value ﬁhen a task (such as the one initiated

by program interrupt #8 for telemetry) is done.

1 Bit that energizes the ISS (inertial subsystem)
Warning light, a red light on the caution and
warning panel of the spacecraft, if IMU, IMU
CDU, or PIPA fail indications are significant
in terms of mission phase (as determined by the
software). Bit can be used on unmamned flights
to generate a PGNCS (primary guidance, navigation,

and control system) failure indication.

12 CHANIZ2 Register whose individual bits are used to drive

miscellaneous navigation and spacecraft hardware.

15 ISS turn-on delay complete. Bit set by software

nominally 90 seconds after receipt of ISS power-

on signal, bit };:pfxfhannel 30, and reset to

/ zZero nominallyi}?iggféeconds later. Used to delay

the closing of the stabilization loops of the

af;/d_\ IMU gimbals (to permit the gyro wheels to reach
operating speed) and also to delay torquing of
the accelerometers. Bit energizes a latching
relay which energizes the IS5 twrn-on relay,
removing the signal from bit 14 of chammel 30,
Same effect achieved by IMU Cage button, bit
11 of channel 30.

14(CM) S4B Cutoff command. Command provided via a relay
in the DSKY to the Saturn Instrumentation Unit. The
relay contact closure is not functional unless
CMC control of Saturn is enabled (and hence software

may cleose 1t unconditionally, see eguation documentation)

IIE-9

Channel Mnemonic Bits Function

12(cont) 14(IM) Enable rendezvous radar lock-on. Command provided
via a relay in the DSKY to enable automatic
angle tracking by the rendezvous radar when
software determines that antenna position (from
cells 00158 - 00368) is sufficiently close to

the predlctnd position of the other vehicle.

13(CM) S4B Injection Sequence start. Command provided
via a relay in the DSKY to Saturn Instrumentation
Unit if backup generation of the signal (which

starts the Saturn "Time Base 6") is required.

13(IM) Landing radar position command. Command provided
via a relay in the DSKY to change landing radar
antenna position from position #1 (descent, see
bit 6 of channel 33) to position #2 (hover, see
bit 7 of chamnel 33). For the IGC command to have
an effect, the landing untennz switch must be in

MAUTO" (its other positions are "DESC" and "HOVER").

12(CM) Not assigned.

12(IM) Descent engine negative roll gimbal trim. Nominal
trim rate about O.2O/sec and magnitude of trim
determined by length of time that signal left at
a binary 1. DPS5 engine trim gimbal actuator
driven in such a way as to be rotated in a
positive right hand sense about the positive

roll (+Z) axis, for -R acceleration.

11(CM) Disengage optics DAC (digital to analog converter).

N

Can be used to disconnect optics CDU DAC from
shaft and trunnion motor drive amplifiers, if
zeroing of optics desired by software with optics
in computer mode. Can alsc be set by software
(see equation documentation) prior to use of the
optics DAC for SPS gimbal drive purposes (see cells

0053,-0054, in Section IID).
(= (=)

-

IIE-10

Channel Mnemonic

Bits

12(cont)

11(1M)

10(CcM)

10(1M)

9(CcM)

9(12)

Function

Descent engine pesitive roll gimbal trim.
Nominal trim rate about 0.2°/sec, and magnitude
of trim determined by length of time that signal
left at a binary 1. DPS engine trim gimbal
actuator driven in such a way as to be rotated
in.a negative right hand sense about the

positive roll (+Z) axis, for +R acceleration.

Zero optics. Function performed also by setting

spacecraft "Optics Zero" switch to "ZERQ".

Descent engine negative pitch gimbal trim.
Nominal trim rate about 0.2°/sec, and magnitude
of trim determined by length of time that signal
left at a binary 1. DPS engine trim gimbal
actuator driven in such a way as to be rotated
in a positive right hand sense about the

positive pitch (+Y) axis, for -Q acceleration.

S4B takeover enable. Connects the dc output
of the IMU CDU error counters (loaded from
cells 0050, - 00528, see Section IID) to the
Saturn Instrumentation Unit. Used to permit
attitude control of Saturn through the guidance
computer (which does not necessarily mean the
engine sequencing and on/off control of bits

14-13 of this channel, of course).

Descent engine positive pitch gimbal trim,
Nominal trim rate about 0.2°/sec, and magnitude
of trim determined by length of time that signal
left at a binary 1. DPS engine trim gimbal
actuator driven in such a way as to be rotated
in a negative right hand sense about the

positive pitch (+Y) axis, for +Q acceleration,

ITE=11

Channel Mnemonic Bits Function

12(cont) g(CM) TVG (thrust vector control) enable. Connects
‘ the dc output of the optics CDU error counters
(loaded from cells 00538 - OOSAB, see Section

IID) to the SPS (service propulsion system)

gimbal servo amplifiers.

B(Lﬁ) Display inertial data. Connects the dc output
of the rendezvous radar CDU error counters
(loaded from cells OO538 - OOSAB, see Section
IID) to a spacecraft analog display to provide
lateral and forward velocity information. Bit
set by software (provided proper computations
are being performed) when bit 6 of channel 30

indicates that such a display is desired.

7 Not assigned. Originally intended for use as
engine on command (done now by bits 14-13 of
channel 11).

6 Enable IMU CDU error counters. The error counters
are reset to O if this bit is O, and are loaded

from cells 00508 - 00528 (see Section IID).

5 Zero IMU CDU's. Can be used to force the CDU
hardware to a zero value, whereupon zeroing of
cells O0328 - OOBA8 and then reset of this bit
will permit these cells to reflect the IMU
gimbal angle information. This bit alone does
not cause movement of the stable member: this is
done at IMU turn-on or by an IMU cage command

(bit 11 of channel 30), or by coarse aligning.

L Enable coarse align of IMU. Connects IMU CDU
error counters to cause IMU coarse alignment
(angle change information loaded into cells
OOSO8 - 00528, and bit 6 of this channel must
be 1).

Channel Mnemonic

Rits

12(cont)

13

CHAN13

2(cM)

2(1M)

1(cMm)

15

Function

Not used. 1In CM, assignsd Lu enable star
tracker (no longer in vehicle), and in IM

assigned to indicate low scale for horizontal

velocity output.

Enable optics CDU error counters. The error
counters are reset to O if this bit is 0, and
are loaded from cells 00538 = OOSA8 (used also
for yaw and pitch SPS control).

Enable rendezvous radar CDU error counters.
The error counters are reset to 0 if this bit

is O, and are loaded from cells 00538 - OOBAS.

Zero optics CDU's. Can be used to force the
optics CDU hardware to a zero value, whereupon
setting of cells 00358 - 00368 and then reset
of this bit will permit these cells to reflect
the optics angle information.

Zero rendezvous radar CDU's. Similar function to
bit 1(CM), but for rendezvous radar rather than
optics. To avoid an excessive number of counter
interrupts which can occur if RR mode not set to
LGC, software sets this bit 1 if the mode not IGC.

Register whose bits are used to control
miscellaneous navigation system functions (some

bits sensitive to write commands, see page IIE-2).

Bit set to 1 to permit cell 00318 (TIMES) to
be decremented by 1 each 0.000625 second (i.e.
1600 times a second). When cell has been
reduced to -0, the next DINC pulse causes bit
to be reset to 0 and program interrupt #1 to

be produced (see Section IIH).

]

ITE-13

Chanmel Mnemonic Bits Funection

i

13(cont) 14 Bit set to 1 to cause trap 32 to be reset. This
input trap circuit is set when program interrupt
#10 is generated in response to a signal fed to

bits 10-1 of channel 32 (see Section ITH).

13 ‘Bit set to 1 to cause trap 31B to be reset. This
input trap circuit is set when program interrupt
#10 is generated in response to a signal fed to
bits 12-7 of channel 31 (see Section IIH).

12 Bit set to 1 to cause trap 31A to be reset. This
input trap circuit is set when program interrupt
#10 is generated in response to a signal fed to
bits 6-1 of channel 31 (see Section IIH).

L1 Bit set to 1 to permit relay in computer power
supply to put computer in Standby (low-power)
opefation when the PRO key (formerly the v
"Standby'" key) on the DSKY is pressed. The
bit is set by the software when preparations
for standby operation completed, including
retention of the computer clock, and it is

reset by the software after clock restored.

10 Bit set to 1 to test the DSKY lights and relays
not otherwise accessible to the software. It
energizes the Restart light, the Standby light,
and the Computer Warning light (via a "warning
filter").

9(CM) Not assigned.

9(IM) Bit set to 1 to initiate readout of analog-to-

digital converters associated with the displace-

ITE-14

i

Channel Mnemonic

Bits

13(cont)

8

3-1(cM)

3-1(1M)

Function

Bit set to 1 to enable inputs to cells 00428 -
OOkl (see Section IID) for IM rotational hand

controller rate-command input and for (unused)
CM BMAG input.

Bit used as the word order code bit (first bit
in the LO-bit downlink sequence sent from computer
for digital data) for telemetry, in order to

flag certain words in the list.

Bit set to 1 to block all inputs to INLINK
(cell 00458, see Section IID).

Bit set to 1 to comnect (unused) crosslink
input instead of uplink receiver to cell
OOAS8 (see Section IID).

Bit set to 1 to initiate transmission of radar
information to computer. Bit is reset to O
when program interrupt #9 is generated (see
Section IID for timing sequence associated
with loading of cell 001;68)0

Bits set to 0012 in order to specify that range
information from VHF range system is to be
provided to computer in cell 00468 (see Section

IID) after bit 4 of channel 13 is set 1.

Bits assigned control functions for sampling of
rendezvous radar (RR) if bit 3 is O and of
landing radar (IR) if bit 3 is 1, to establish
information fed to cell OOLLE)8 when bit 4 of
channel 13 is set. For RR, bits 2-1 are set

to 012 for range data and 10, for range rate

2
data., For IR, bits 2-1 are set to 002, C1

21
and 102 for x-z velocities respectivel

A
i1y, ana

LO Ll, for range (altitude) information.

IIE-15

Channel Mnemonic

Bits

1k

CHAN1L

15

13

11

10

Function

Register whose bits are used to control the
computer counter cells (CDU, gyro, and space-

craft functions) described in Section IID.

Bit set to 1 to cause output pulses (at a
3200 pps rate) to be generated from CDUXCMD,
cell 00508. When cell counted down to O, bit
is reset (at the next DINC, see Section IIH),
thereby stopping the pulses. Error counter is
loaded if bit 6 of channel 12 is 1.

Bit set to 1 to cause output pulses to be
generated from CDUYCMD, cell 00518: see bit
15 of channel 14.

Bit set to 1 to cause output pulses to be
generated from CDUZCMD, cell 00528: see bit
15 of channel 14.

Bit set to 1 to cause output pulses (at a
3200 pps rate) to be generated from cell
00538 (CDUTCMD or TVCYAW). When the cell hes
been counted down to O, bit is reset (at the
next DINC, see Section ITH), thereby stopping
the pulses. FError counter is loaded if bit

2 of channel 12 is 1.

Bit set to 1 to cause output pulses to be

generated from cell 005k (CDUSCMD or TVCPITCH):
see bit 12 of channel 1J4.

Bit set to 1 to specify "gyro activity': it causes
the pulse train whose magnitwvde is in cell OOL?B
(GYROCMD) to be sent with polarity and destination
specified by bits 9-7 of this channel, if bit 6

of this chamnel is 1. Bit reset 0 after proper

pulses sent (cell reduced to O and the next DINGC).

I1E-16

Channel Mnemonic

Bits

14(eont)

8-7

4,(CM)

4(1M)

Function

Bit set to 1 to specify a negative-polarity
gyro torquing output from GYROCMD (cell 00478).
Other pulse-type outputs from the computer have
the polarity indicated by the polarity of the

information in the counter cell itself.

Bits used to specify the axis for gyro compen-
sation information from GYROCMD, Conventional
output sequence is inner (Y), middle (Z), and

outer (X) for torquing, with the following bit

configurations:

Bits 8-7 Torgue Output
OO2 None
Ol2 X-axis Gyro
102 Y-axis Gyro
112 Z-axis Gyro

Bit set to 1 to enable the power supply that
produces the torguing pulses used to torque
gyros (in a manner determined by bits 7-10
of this chammel and cell O047,). Software
generally leaves bit at 1 after the first
gyro torquing is performed (reset to O when

certain initialization functions performed).

Not used. Bit set to 1 to initiate commands

from data in cell 00568 (see Section IID).
Not used (initiates commands from cell 00558).

Bit set to 1 to cause output pulses to be
generated from cell 00558 (THRUST) for use in
controlling the position of the descent engine
throttle (see Section IID). When cell has been
reduced to -0, the next DINC pulse causes this

bit to be reset to O.

harmel Mnemonic Bits Function

14{cont) 3(CM) Not used (initiates commands from cell 0060

¢ 8}.

3(IM) Bit set to 1 to initiate shifting of data from
cell 00608 (ALTM) to spacecraft indicator for
altitude (bit 2 of this channel = 0) or altitude
rate (bit 2 of this chamnel = 1) information.
Bit reset to O Just after start of data shift
(see Section IID).

2(CM) Not used.

2(IM) Bit set to 1 to indicate that altitude rate
information is being shifted from cell 00608;

if is 0, altitude information is being shifted.

1 Not used. Bit set to 1 to initiate shifting of
data from cell 0057, (see Section IID).

15 MNKEYIN =~ 5-1 Key code input from keyboard of DSKY (see Section
11J), sensed by the program when program interrupt
#5 (see Section ITH) is acted upon. For the
CM (which has two DSKY's), channel 15 is
associated with the DSKY located on the main

display console.

16 NAVKEYIN 7-1 Optics mark information and lower egquipment bay
(or "navigation panel"”) DSKY inputs for CM; optics
mark information and rate-of-descent control for
IM. Sensed by the program when program interrupt

#6 (see Section IIH) is acted upon.
7(CM) Optics mark reject signal if 1.

7(IM) Bit set to 1 if an increase in the rate of descent
is desired by crew (i.e. a lower thrust). Generated
fﬁ by moving rate-of—descent switch in the -X direction
Y v (i.e. towards engine). Effect of switch and scaling
(e.g. 1 fps per "click") controlled by software: see

equation documentation.

IIE-18

Chamnel Mnemonic

Bits

16(cont)

17-27

30

CHAN3O

6(CM)

6(1M)

5-1(CM)

5(1M)

4,(1M)

3(1M)

2-1(1M)

Function
Optics mark signal if 1.

Bit set to 1 if a decrease in the rate of

descent is desired by crew (i.e. a higher

thrust). Generated by moving rate-of-descent

switch in +X direction (i.e. away from
engine). Processed by software similarly to bit
7(1M).

Lower equipment bay (or "navigation panel")
DSKY key code input (see Section IIJ).

Optics mark reject signal if 1.

Optics Y-axis mark signal for AOT (alignment
optical telescope) if 1,

Optics X-axis mark signal for AOT if 1.

Not assigned.

Channels not assigned. Some tentatively
allocated for control of additional memory
capacity that has been considered for CM
(an Auxiliary Core Memory addressed with
SUPERBNK settings of 5 and 6).

Register whose bits are used to supply
miscellaneous input information for the program.
All bits are inverted as sensed by the program,
so that a value of binary O means that the

indicated signal is present.

Bit sensed as O if the stable member temperature
is within its design limits. Software sets bit
4 of chammel 11 to 1 if this bit becomes 1. The
light controlled by bit 4 of channel 11 is also

connected directly to this bit 15 of channe

TIE~-19

Bits

13

1:

10(CM)

10(1M)

Function

Bit scnoed as O if the inertial subsystem has
been turned on or commanded to be turned on.

Bit 15 of channel 12 is set to 1 by the software
about 90 seconds after this bit sensed as O

(if checks passed), resetting this bit to 1.

Bit sensed as O if an IMU fail indication has
been generated within the IMU hardware (due e.g.
to excessive servo errors or degradation of
3200 cps or 800 cps supply). Software controls
setting of bit 1 (ISS Warning) of channel 11
based on this input bit and the IMU mode.

Bit sensed as O if an IMU CDU fail indication
has been generated within the IMU CDU hardware
(due e.g. to excessive errors or low voltage).
Software controls setting of bit 1 (ISS Warning)
of chamnel 11 based on this input bit and the
MU mode.

Bit sensed as O if the "IMU Cage" switch is set
by crew to drive all the IMU gimbal angles to zero.
The command is also sent directly to the IMU

control hardware, and can bs used as an emergency
technique for recovering a tumbling IMU. The

preferred method, however, is to remcve power.

Bit sensed as C i1 the 'Launch Vshicle Guidance"
switch is sst by crew to the "CMC" (as opposed
to "IU") position, indi~ating that control of the

Saturn vehicle has been given to the computer.

Bit sensed as O if the '"Guidance Control" switch
is set by crew to the "PGNS" (as opposed to
"AGS'', for Abort Guidance Section) position,
indicating that control of the vehicle has been

given to the computer.

Channel Mnemonic Bits Function

30(cont) 9 Bit sensed as O if the IMU is turned on and

operating with no malfunctions.
g Not assigned.

7(CM) Bit sensed as O if an optics CDU fail indication
produced (due e.g. to excessive errors or low
voltage). Software controls setting of bit 8
of row 1&8 (TRACKER light, see Section IIJ)

based on this input bit and optics mode.

7(IM) Bit sensed as O if a rendezvous radar CDU fail
indication produced (due e.g. to excessive errors
or low voltage). Software controls setting of
bit 8 of row g (TRACKER 1light, see Section

IIJ) based on this input bit and radar selection.

6(CM) Bit sensed as O if GRR (guidance reference release)
signal generated by S4B Instrumentation Unit,
indicating that this action has occurred or has
been commanded to occur. Software uses bit 5
rather than this bit to halt pre-launch compu-
tations (with backup of a DSKY verb).

6(IM) Bit sensed as O if a display of inertial data
from the computer is desired by the crew, by setting
the "Mode Select" switch to the "PGNS" position
(as Opbosed to "LDG RADAR" or "AGS"). When the
appropriate information has been loaded by the

software, bit 8 of channel 12 is set to 1.
5(CM) Bit sensed as O if liftoff signal generated by

S4B Instrumentation Unit, indicating that 1ift-

off has taken place. Software uses this bit

to halt pre-launch computations (with backup

of a DSKY verb).

ITE-21

Channel Mnemcnic Bits Function

30(cont) 5(IM) Bit sensed as O if computer given control of
descent engine throttle by the crew, by setting
the "Throttle Control" switch to "AUTO" (as
opposed to '"MAN'") position. In the "AUTQ"
position, computer throttle commands frem cell
00554 (THRUST, see Section IID) are.summed with
the manual throttle commands; in the 'MAN" position,
with bit = 1, the computer commands no longer
control the throttle setting.

L(CM) Bit sensed as O if the SLB separation (or
abort) signal is received. Software does not
use the bit.

L(IM) Bit sensed as O if the crew has produced an
"Abort Stage" command (with a spacecraft
pushbutton switch), indicating that an abort
using the ascent engine is required (space-
craft hardware causes descent engine to be

staged).

3 Bit sensed as O when preparations for use of the
appropriate engine have been completed. Software
doesneot-use-the bit. For CM, it indicates that
a "AV Thrust" switch has been set to "NORMAL";
for IM, that the '"Engine Armed" switch has been
set to "ASC" or "DSC".

2(CM) Bit sensed as O when CM/SM separation has taken
place. The bit is generated by the CM/SM
reaction jet control transfer unit, but is not

used by the software.

2(IM) Bit sensed as O to indicate that the descent

stage is attached ("Stage Verify"): a value of

1IR=22

Channel Mnemonic

Bits Function

30(cont)

31

CHAN31

14 (CM)

1(CM) Bit sensed as O if "Ullage Thrust Present”
signal received from S4B Instrumentation

Unit. Bit not sensed by software.

1(IM) Bit sensed as O if the crew has produced an
"Abort" command (with a spacecraft pushbutton
switch), indicating than an abort using the
descent engine is required. When the descent
engine propellants are nearly expended, the
crew could then initiate the "Abort Stage"
command (bit 4 of this channel).

Register whose bits are associated with the
attitude controller, translational controller,
and spacecraft attitude control. All bits are
inverted as sensed by the program, so that a
value of binary O means that the indicated

signal is present.

15(CM) Bit sensed as O if the computer is in control

of the spacecraft. The bit becomes a binary 1

if the IMU is turned off, if the THC (translation

hand controller) is twisted in the clockwise

direction, or if the "Spacecraft Control" switch

is placed in the "SCS" (spacecraft control system)

as opposed to the "CMC" position.

15(1M) Bit sensed as O if ACA (attitude controlier

assembly) is out of detent. Control also referred

to as RHC (rotational hand controller), see IM
cells OOL28—OOAAS in Section IID.

Bit sensed as O if the three-position ""CMC Mode"
switch is set by crew to "FREE". Software fires
RCS jets only in response to controller inputs

(as with other manual inputs, bit ignored by

software unless RCS DAP is running).

Chamnel Mnemonic Bits Fune

31(cont) 14(IM) Bit sensed as Q if the "PONS Mode Control" swilch
is set to "AUTO", indicating that the software has
complete authority for control of spacecraft (if
bit 10 of channel 30 = 0).

13(CM) Bit sensed as O if the three-position "CMC Mode"

switch is set by crew to "HOLD", indicating that.
attitude hold is desired. If bits 14-13 = 112,

this means that the third position of the switch,
"AUTO", is selected (software has complete authority

for control of spacecraft if bits 15-13 = 0112).

13(IM) Bit sensed as O if the "PGNS Mode Control" switch
is set to "ATT HOLD", indicating to the software
that attitude hold is desired. If the switch is

set to "OFF", then bits 14-13 = 112.

12 Bit sensed as O if £ranslation in the -Z
direction commanded by THC (translation hand

controller). In IM is "TTCA" (thrust/translation
controller assembly).

11 Bit sensed as O if translation in +7 direction

commanded by THC.

10 Bit sensed as O if translation in -Y direction
commanded by THC.

9 Bit sensed as O if translation in +Y direction

commanded by THC.

8 Bit sensed as O if translation in -X direction

commanded by THC.

7 Bit sensed as O if translation in +X direction

commanded by THC.

Channel Mnemonic

Bits

31{cont)

6(CM)

6(1M)

5(CM)

5(1)

2(cMm)

2(1M)

Function

Bit sensed as O if rotation commanded in negative

roll direction by RHC (rotational hand controller).

Bit sensed as O if ACA (attitude controller
assembly) is deflected in negative roll direction.
If software set to use controller for minimum
impulse purposes, then a rotation in the desired
direction produced. Otherwise, controller used

as a rate command device, with input to cells
OOAZB—OOAAS. During portion of lunar descent,
software senses bit for use as a landing point
designation change, giving a '"negative azimuth"

offset (new site is to left as viewed by crew).

Bit sensed as O if rotation commanded in positive
roll direction by RHC.

Bit sensed as O if ACA deflected in positive N
roll direction (see bit 6(IM) discussion). For
landing point designation, input gives a "positive
azimuth'" offset (new site is to right as viewed

by crew).

Bit sensed as O if rotation commanded in negative

yaw direction by RHC.

Bit sensed as O if ACA deflected in negative yaw

direction (see bit 6(IM) discussion).

Bit sensed as O if rotation commanded in positive

yaw direction by RHC.

Bit sensed as O if ACA deflected in positive yaw

direction (see bit 6(IM) discussion).

Bit sensed as O if rotation commanded in negative
pitch direction by REC.

Bit sensed as O if ACA deflected in negative pitch

direction (see bit A(IM) discussion). For landin

point designation, input gives a "negative elevation'

offset (new site beyond the present site).

ITE-25

Channel Mnemonic Bits Function

31(cont) 1(CM) Bit sensed as O if rotation commanded in positive

pitch direction by RHC.

1(IM) Bit sensed as O if ACA deflected in positive pitch
direction (see bit 6(IM) discussion). For landing
point designation, input gives a "positive elevation"
offset (new site short of ‘the present site).

32 CHAN32 Register whose bits are used for miscellaneous
inputs from the spacecraft. All bits are inverted
as sensed by the program, so that a valus of

binary O means that the indicated signal is present.
15 Not assigned.

14 Bit sensed as O if the PRO (proceed) key on the
DSKY is depressed (see Section ILJ). This key
was formerly labeled "STBY'" (and also serves that
function if bit 11 of channel 13 is 1). Software
can cause‘a logical "Proceed" function to be
performed when a binary 1 to binary O transition

of the bit is sensed by a check done every 0.12 sec.
43 Not assigned.

12 Not assigned.

11(CM) Bit sensed as O if the "AV CG" switch set by crew
to the "IM/CSM' (as opposed to "CSM") position.

The software uses a DSKY input for vehicle status.

11(IM) Not assigned.
10(CM) Not assigned.

10(IM) Bit sensed as O if the descent engine gimbal
failure monitor detects an apparent gimbal fail
in the pitch or roll gimbal trim system. The

software does not use the bit (but takes zction

based on bit 9 of this channel instead).

ITE-26

Channel Mnemcnic Bits Function

32(cont) 9(CM) Not assigned.

9(TM) Rit sensed as O if the "Fngine Gimbal" switch set
by crew to "OFF" (as opposed to "ENABLE") position,
indicatingmihat the descent engine gimbal drive
system has been disabled. If bit O, software does
not attempt to use bits 12-9 of channel 12 to

control the position of the descent engine gimbal.
8(CM) Not assigned.

8(IM) Bit sensed as O if System A Quad 2 RCS jets shut
off (RCS jets 10 and 11).

7(CM) Not assigned.

7(IM) Bit sensed as O if System B Quad 2 RCS jets shut
off (RCS jets 9 and 12).

6(CM) Bit sensed as O if negative roll commanded by

minimum impulse controller,

6(IM) Bit sensed as O if System A Quad 1 RCS jets shut
off (RCS jets 13 and 15).

5(CM) Bit sensed as O if positive roll commanded by

minimum impulse controller.

5(1M) Bit sensed as O if System B Quad 1 RCS jets shut
off (RCS jets 14 and 16).

4(CM) Bit sensed as O if negative yaw commanded by

minimum impulse controller.

L(IM) Bit sensed as O if System B Quad 3 RGCS jets shut
off (RCS jets 6 and 7)

ITE-27

Chamnel Mnemonic

Bits

32(cont)

33

CHAN33

3(CH)

3(1M)

2(cM)

2(IM)

1(cM)

1(IM)

15

14

Function

Bit sensed as O if positive yaw commanded by

minimum impulse controller.

Bit sensed as O if System B Quad 4 RCS jets shut
off (RCS jets 1 and 3).

Bit sensed as O if negative pitch commanded by

minimum impulse controller.

Bit sensed as O if System A Quad 3 RCS jets shut
off (RCS jets 5 and 8).

Bit sensed as O if positive pitch commanded by

minimum impulse controller.

Bit sensed as O if System A Quad 4 RCS jets shut
off (RCS jets 2 and 4).

Register whose bits are used for various hardware
status data. All bits are inverted as sensed

by the program, so that a value of binary O

means that the indicated signal is present.

Bits 15-11 of this channel are flip~-flop inputs,

which retain a "set" state (binary O as sensed)

until reset by a "loading" type command (orders

WAND, WOR, or WRITE in Section IVC) or hardware restart.

Flip-flop input sensed as 0 if the computer
oscillator has stopped. Can be reset by a

channel loading command.,

Flip-flop input sensed as O if a "computer warning"
indication produced (e.g. restart, counter fail,
voltage fail in standby, scaler double or fail,
prime power fail, or alarm test by bit 10 of
channel 13). Can be reset by a channel loading
command .

ITE-28

Chamnmel Mnemonic Bits Function

33(cont) 13 Flip-flop input sensed as O if a PIPA fail
indication generated by PIPA (accelerometer)
electronics due to improper pulses from a
PIPA. Software controls setting of bit 1
(ISS Warning) of chamnel 11 based on this input
bit and the use being made of PIPA outputs. .

Can be reset by a chamnel loading command.

12 Flip-flop input sensed as O if a telemetry end
pulse occurs too soon after the previous pulse:
these pulses cause program interrupt #8 to be
generated, see Section IIH. The pulses are
considered to be '"too fast'" if a 100 pps pulse
has not occurred since the previous end pulse

was received. Can be reset by a channel load.

11 Flip-flop input sensed as O if an input bit to
cell 00458 (INLINK, see Section IID) is rejected
due to an excessive bit rate. Rejection takes
place if a 6400 pps pulse has not occurred since
the previous input bit was received. Can be

reset by a channel loading command.

10(CM) Bit sensed as O unless both the "CM Up Telemetry"
switch (on the main display console) and the
"Up Telemetry" switch (in the lower equipment
bay) are each set to "ACCEPT" (as opposed to
"BLOCK"). Bit not used by software, but it must
be a binary 1 for inputs from the uplink receiver

to be gated into cell OOL5, (INLINK, see Section
1ID).

10(IM) Not assigned (would be expected to read a binary
1). Similar blocking function to that for CM

could be obtained by setting spacecraft switch to

-

S

®
H

;

f link for voice backup (or by manually setting

bit 6 of channel 13 to 1).

1TE~-29

Channel Mnemonic

Bits

33(cont)

9(CM)

9(1M)

8(CcM)

8(1M)

7(CM)

7(1M)

6(CM)

6(1M)

5(CM)

Function
Not assigned.

Bit sensed as O if landing radar range ("altitude")
on low scale (controlled by landing radar system
and changed at an altitude of about 2500 feet).
Least increment of range information decreased

by a factor of 5.000 when switch to low scale

(see cell 00468, RNRAD, in Section IID).

Not assigned.

Bit sensed as O if all three landing radar
velocity trackers have locked on, a necessary
criterion for landing radar velocities to be

valid.

Not assigned. Formerly used with star tracker to

indicate star present.

Bit sensed as O if power applied to landing radar
and the antenna is in '"position 2" (used for
hovering). Antenna can be commanded from pesition
1 to position 2 by bit 13 of channel 12.

Not assigned. Formerly used with star tracker to

indicate star tracker on.

Bit sensed as 0 if power applied to landing radar
and the antenna is in "position 1" (used for descent

prior to hovering, see bit 7(IM) of this channel).

@

Bit sensed as O if the "Optics Mode'" switch in the
lower equipment bay is set to "CMC" and the "Optics
Zero" switch there is set to "OFF". A binary O
indicates that the optics can be driven via cells
00538—00548 (see Section IID) unless inhibited e.g.
by setting bit 11 of chamnel 12 to 1.

ITE-30

Channel Mnemonic

Bits

33(cont)

5(1M)

4(cM)

4(IM)

3(CM)
3(1M)

2(cM)

2(1M)

Function

Bit sensed as 0 if the landing radar range
tracker and two rear velocity-beam trackers
have locked on, a necessary criterion for
landing radar range ("altitude") data to be

valid.

Bit sensed as O if the "Optics Zero" switch in
the lower equipment bay is set to "ZERO" (as
opposed to "OFF"), regardless of the position of
the "Optics Mode'" switch there. If bits 5-4 =7112,
this indicates that the "Optics Zero'" switch is set
"OFF" and the "Optics Mode" switch is set to '"MAN"
(for manual positioning of optics).

Bit sensed as 0 if the rendezvous radar range
tracker and frequency tracker are locked on,

a necessary criterion for rendezvous radar

range and range rate data to be valid.

Not assigned.

Bit sensed as O if rendezvous radar is on the

low range scale. Internzl range counter in radar
is 18 bits in length, and if most significant 3
bits are O then bits 15-1 are sent to cell OOhéa,
and this bit is set 0; otherwise, bits 18-4 are
sent. Hence least increment decreased by a
factor of 8.000 when switch to low scale, and
switch occurs at 9.38 (215 - 1) feet, or at

about 50.584 nm,

Bit sensed as O if VHF range data considered OK.

Bit sensed as O if rendezvous radar power is on

and the rendezvous radar mode switch is in the

"LGC" (as opposed to "SLEW" or "AUTO TRACK") position,
meaning that CDUs driven from an IGC power supply

and control of the antemna position can be accom-

i
N
=
D
oN
-
n
fab)
g}
D
il
0
)
L
)

IIE-31

Channel Mnemonic Bits Function

33(cont) s Not assigned.

3L DNTM1 15-1 Register used to contain the first word of a pair
telemetered periodically. Loading of a new pair
is performed by software when program interrupt
#8 (see Section IIH).is processed. Channel
contents cannot be sensed by a channel sensing
instruction (will give zero). See Section ITH

for format of output.

35 DNTM2 15-1 Register used to contain the second word of a
pair telemetered periodically. Loaded by soft-
ware when program interrupt #8 (see Section
ITH) is processed: channel 34 is loaded also
at this time. See Section IIH for format of
output. Channel contents cannot be sensed
by a channel sensing instruction (will give

zero),

ITE-32

ITF Fixed Memory Mechanization

The fixed memory is implemented by a collection of 3072 magnetic
cores, each of which is suitably threaded or bypassed by 208 wires (192
sense lines, 14 inhibit lines, 1 set line, and 1 reset line). A given
core is used to determine the information from two addresses in each of
six consecutive banks, or a total of 12 addresses (12 x 3072 = 36,86L).
Readout of the contents of a given address is accomplished by appropriate
hardware address decoding logic causing a particular core to be set
(magnetized in a certain direction) and then reset. The changing magnetic
field during the reset induces a voltage in the sense lines that are
threaded through the core (like an ordinary transformer), but not in the
sense lines that bypass the core. Additional hardware address decoding
logic selects the output of a set of 16 sense lines (called a strand: there
are 12 strands associated with each core, one for each address associated
with the core, giving the 16 x 12 = 192 sense lines with a core). These
16 sense lines have the contents of the indicated address represented by
the presence (binary 1) or absence (binary O) of an induced voltage: as
discussed in Section ITA, the 16 bits associated with a given address
reflect 15 "information" bits and an odd parity bit to make the total
number of binary ones in the 16-bit word an odd number.

Although a detailed knowledge of the logical design of the memory
is not required to review the program, some knowledge of its mechanization
is desirable for proper evaluation of the impact of program changes upon
the hardware. As discussed in Section IIB, the fixed memory is divided
into a collection of 36 banks, each of which contains 1024 cells (giving
the fixed-memory capacity of 36 x 1024 = 36,864 cells). Banks 02 and 03

can be addressed independently of the FBANK register, and banks 00 - 27

ITF-1

are addressed independently of tﬁe contents of SUPERBNK (channel 07).
Banks 30 - 37 are addressed for SUPERBNK contents of 3 or less (using
FBANK in range 30 - 37), and the remaining banks 4O - L3 are addressed
for SUPERBNK contents of 4 (using FBANK in range 30 - 33). It is
conventional to use the fixed memory bank number (in octal, of course)
to identify individual banks, and this convention is followed below,
without further reference to the method whereby the bank number is determined
from the contents of the S-register, FBANK, and SUPERBNK registers.

The allocation of the contents of individual banks to computer
hardware is reasonably straightforward, but can best be explained after
a digression to review the mechanical design of the fixed memory:

1. The fixed memory consists of three "rope assemblies', called
"RM, "S", and ""T". Each rope assembly in turn contains two
"modules": Bl and B2 are in rope assembly R; B3 and B4 are in
rope assembly S; and B5 and B6 are in rope assembly T.

2. BEach module has two ''sides", each of which is divided into two
lareas" (giving 4 areas per module). Each side has a common

"set" line.

3. An area contains 128 cores (hence a module has 4 x 128 = 512
cores, and the 6 modules total 6 x 512 = 3072 cores). Each

of the cores in an areaz is threaded by the same '"reset! line.

Iy, Each core is associated with a set of "inhibit" lines and with
12 strands (which, as mentioned previously, consist of 16 wires
each for the 15 "information" bits and the odd parity bit).

There is a total of 14 inhibit lines associated with each core.

The selection of a particular word stored in fixed memory is
accomplished as described on the following pages. Computer hardware
documentation should be consulted for details of timing etc. not

coveraed here.

IIF-2

1) The rope assembly and module in that assembly are selected by the

value of the bank number:

Banks 00 - 05 select rope R, module Bl.
Banks 06 - 13 select rope R, module B2.
Banks 14 - 21 select rope S, module B3.
Banks 22 - 27 select rope S, module BlL.
Banks 30 - 35 select rope T, module B5.
Banks 36 - 43 select rope T, module Bb.

Hence each module has 6 banks, with the 6 modules giving the computer
capacity of 36 banks.

2) One core (out of 128) in each of the four areas of the selected
module is chosen by means of bits 7-1 of the S-register, whose one
and zero outputs are connected to a total of 14 inhibit lines so
threaded that all except one core in the area will receive an inhibit
current (note that o7 = 128).

3) A current pulse through the set line associated with one side of the
selected module is produced. Because of the inhibit action of item 2,
only two cores (one in each of the two areas on the selected side of the
selected module) will become set. The side which is pulsed is selected
by bit 9 of the S-register, which drives "side A" if zero and 'side B"

if one.

L) The strand (one out of 12) within the selected module is chosen by a
suitable combination of bank number and S-register information. The
strand (in range 1-12, a decimal number) is given by:

2 x (bank number modulo 6) + (bit 10 of S-register) + 1
The "modulo 6" operation is performed upon the decimal equivalent of the
bank number: it yields a result of O for the first bank in each module
and a result of 5 for the last bank (see #1 above). Address 07,3143
(FBANK = 07, S-register = 31438) would be strand 4 (of module B2), since
the modulo operation yields 1 and bit 10 of S-register = 1.

ITF-3

5) A current pulse through the reset line associated with one area of
the selected module is produced. The area (one of 4 in the module) is
selected by bits 9-8 of the S-register, thus resetting one of the two
cores set in #3 above, and inducing a voltage into the sense lines that

are threaded through the core.

6) The output of the strand selected in #4 above is sensed to obtain
the required contents of the specified memory cell.

Another term associated with the fixed memory is "paragraph'. The
paragraph is an octal number giving a kind of "serial number" for the
information in fixed memory. Each paragraph consists of 256 words, and
the paragraph number is computed as follows:

4 x (bank number) + (bits 9-8 of S-register) + F

F

= 0 for fixed-fixed memory
208 for wvariable-fixed memory.

Hence address 07,3143 would be in paragraph 4 x 7 + 10, + 20, = 56

2 g g-

In addition to the check of the readout of each cell which is provided
by the parity bit, individual banks in the fixed memory can be checked
by means of a memory-cell summing routine which is included in the
computer self-check portion of the fixed memory. This routine sums the
contents of the addresses in each bank, halting when the last cell is
reached that has been wired, and either checks that the magnitude of
the sum is equal to the bank number or provides a display of the sum for
manual review, depending upon the original manual inputs that initiated
the check. The routine starts with the first cell in the bank and sums
successive cells until two consecutive cells with contents equal to their

addresses are found (or the last cell in the bank is read). If the cell

contents equal its address, this is a one-step loop: two such cells in sequence

ITF-4

would not serve a functional program purpose (one such cell, of course,
might be preceded by an index order so that transfer to a different
cell would actually be performed). The summing routine halts after
including in the sum the cell following the two consecutive cells with
contents equal to their addresses (or after the final cell in the bank
is reaéhed). . h

The usual method for ending the wired cells in a bank (for the
summing routines to work, no gaps in wired cells within a given bank can
be permitted) is with two transfer-control (TC) orders to the present
step (giving address contents equal to address, since the octal operation
code for TC is 0), followed by a "checksum" (or "bugger word" as it is
called by the G&N contractor). This checksum is computed by the assembly
program, and it is formed so as to make‘the sum of the complete bank
(including that cell) equal in magnitude to the bank number. The assembler
operation BNKSUM is used to generate the required (up to 2) transfer-
control orders at the end of the bank (the octal bank number is in the
address field of the BNKSUM order), followed by the checksum word. This
operation can be placed at any point in the assembly, and has the capability
of omitting the generafion of the transfer-control orders (indicated by
"NO NEED" in the cell contents field) if the bank is full of functional
orders. In addition, the number of words left (computed as 1023 minus the
number of functional orders) in the bank is printed to the left of the
cell contents field: cell 1024, of course, must contain the check sum. Ef
no words are left, the statement "NO WORDS LEFT" is printed. A separate
fixed memory constant is used to specify within the summing routine what
the last baﬁk entering the sum is to be, in the form of "BBCON¥*" (an

operation which sets the octal cell contents to the proper value in

TIF-5

The algorithm used to compute the sum of each bank consists of the
following machine language instructions, whose individual performances
are described in Section IVB. The symbol CELL represents the contents
of successive fixed-memory cells, read in sequence of increasing S-
register contents, and SUM is the value of the sum (set zero at the

start of each bank):

cA CELL (clear add)

AD SUM (add)

i) SUM (store, skip next order if overflow and set
A =1 sgn SUM)

CA Zero

AD SUM

TS SUM

Considering the quantities to have scale factor Bll, the algorithm

may be described as:

SUM = SUM + CELL
If |SUM| > 16384:
SUM = SUM - 16383 sgn SUM
The check sum word is formed by the assembler in such a way as to give it
the smaller of its two possible magnitudes: if the sum of the cells prior

to the word is positive, for example, the word is formed so as to yield

the positive bank number. Bank 00, of course, would have a sum of -0.

I1F-6

IIG Arithmetic and Overflow

Although most of the mechanization details of the arithmetic unit
are not of interest from az programming viewpoint, some of its features
are instructive for analysis of program performance. The adding-type
arithmetic unit (ignoring some special-purpose provisions) makes use
of ones complement arithmetic when operating with most computer
instructions. Because of this, the quantity "zero" has two possible
representations: 000008 and 777778, which are designated as +0 and -O
respectively. Except for some special cases involving two zero-
magnitude operands (including (+0) + (+0) and (+0) - (-0)), the
"zero" that results from addition or subtraction will be a negative
ZEero.

Although most of the machine language orders (described in detail
in Section IV) make use of the computer hardware arithmetic registers
(A, L, or Q) for arithmetic manipulations, three instructions (AUG, DIM,
and INCR) are included for changing the contents of an erasable memory
cell (by £ 1) without affecting the information in the arithmetic
registers. This feature is included in the computer logical design because
of the necessity for processing the counter interrupts described in
Section IIH without the execution time penalty that would be required to
save and then restore the arithmetic registers. To achieve this
capability, the adder in the arithmetic unit is not functionally composed
of addressable arithmetic registers: instead, a set of input gates is
used to provide binary levels corresponding to the operands, and output
levels corresponding to the answer may be gated to the appropriate

destination as desired. Most data transfers in the computer hardware

11G-1

take place by gating various registers to "write amplifier! inputs, and
ier outputs are gated to the necessary destinations. Because
of this design, it is unnecessary, for example, to go through the

adder to load the A register (accumulator, see Section IIC).

In addition to the ones complement arlthmetlc operations 1ncluded
1n.uhe order code, there is also a special instruction (MSU) which may
be used to form the ones complement difference of two twos complement
numbers: such numbers generally would be obtained from CDU angle data,
so that 215, rather than (215 - 1), different numbers can be represented,
a hardware convenience for representing points on a circle. The MSU
order is performed in the arithmetic unit by forcing an end-around carry‘
and by setting 52 == Sl (see below) at the completion of the operation.
If the second operand is OOOOOS, this process converts the first
operand from twos complement to ones complement; if the two operands are
equal, the result is +O (another exception to the rule that -0 results
from most computer arithmetic operations that yield a "zero" answer).

When a word is read out of the memory into one of the arithmetic
registers (A, L, or Q), bits 14-1 (the magnitude information) are
placed in their corresponding bit positions of the register.- Bit 15 wf
the memory word (the sign bit) is placed in both sign positions (identi-
fied for the A register as 52 and Sl’ where carries from bit 14
propagate to Slrand from Sl to 82) of the register. The 82 bit is
considered as "the" sign bit (for program control instructions sensing
the sign of A), and in general is the bit stored in memory for sign
information. The adder of the arithmetic unit, however, is connected
to S1 and 52 separately, so that arithmetic operations can effectively

make use of a 16-bit word. The full 16 bits can be used for *ransfers

I1G-2

of data between the A and Q registers, but the Sl bit is lost in transfers
between the L and A registers (such as XCH L with overflow in A).

Under normal conditions, the Sl and S, bits will be equal. After

2
an addition or subtraction operation in which overflow took place, how-
ever, the bits will be unequal. It should be evident that bit Sl has
the overflow information that wouldlhave been prOpagate& to the next
most significant magnitude bit (if the word length of the computer were
bigger), and advantage of this fact is taken in the TS (Transmit to

Storage, see Section IVB) order code instruction. To avoid improper

answers, S5, should egual S

1 5 before division or multiplication operations

are performed; for addition and subtraction, however, the 5. bit is

i
effectively another magnitude bit and can be used as such: £ + % +

=

% (computed in that order) will give an answer of (3/4), provided of
course that the sum of the first three terms is not stored by a TS order.
Storage of the accumulator contents into memory causes the overflow
bit (in the quantity stored) to be lost, since the 16-bit memory word has
an odd parity bit instead of the overflow bit. If the TS instfuction is
used, presence of an overflow (established by the fact that S, # 82) will
cause the next instruction to be skipped and the least significant bit of
the accumulator to be set to T 1, as described in Section IVB. A
similar setting is employed for the DAS instruction. Since Sl, as
described previously, has the features of an additional magnitude bit,
it is used in place of 52 for the storage of certain counter-incrementing
orders that require twos complement arithmetic (and the MSU order), as
well as those counter orders requiring the assembly of a serial stream
of input bits.

The computer order code includes four instructions that make use

I1G-3

directly of double precision operands: DAS, DCA, DCS, and DXCH. The
interpretive language described in Secticn VI permits portions of the
computer program to be written almost as if the whole computer had
nothing but double precision operations, however. The double precision
machine language orders operate on the.least significant half of the
double precision word first, using the computer L register. The address_
associated with the order is then decremented by one and the most
significant half of the word processed. Hence DXCH L, for example, starts
by putting L in Q and Q in L, and then puts A in L and the (new) L in A,
giving the net effect of putting A in L, L in Q, and Q in A.

There is no hardware requirement that sign agreement exist between
the two halves of the double precision words: they are treated essentially
as independent single precision quantities unless there is need to propagate
a carry (or borrow) from the least significant half. The DV (divide)
order employs a double precision dividend (in A,L) and forces sign agreement
by hardware means before initiating the division sequence.

The assembly program increments the address of the symbol provided
for a double precision order so as to read the least significant half
first (as described above). Consequently, the symbol provided with the
double precision order (either an absolute or a symbolic address) must
be that of the most significant half of the word, and naturally the last
cell in a switched memory bank cannot be considered the '"most significant
half" for such orders.

A detailed description of the hardware algorithms employed for
multiplication and division can be found in the appropriate hardware
documentation, and therefore is.not included here. To minimize
execution time, these algorithms are fairly elaborate. See Appendix A

for more details on addition and overflow.

ITH Interrupts

There are lwo distinct types of interrupts incorporated in the
computer logical design: counter interrupts and program interrupts.
Since they are quite different, separate sub-sections are devoted to
"each below.

Since the counter interrupts represent one hardware approach
(others could have been selected, although probably with the need for
additional hardware) to the mechanization of computer inputs driven by
external signals, their existence for most programming purposes can be
ignored. Program interrupts, on the other hand, perform an integral
portion of the program control logic: consequently, it is conventional
that the term "interrupt", unless otherwise specified, refers to these

program interrupts.

Counter Interrupts

The 29 counter interrupts in the computer are associated with the
29 erasable memory cells (OO2&8 - 00608, see Section IID) that may contain
counter-type information. Seven "involuntary" (i.e. not under computer
program control) counter instructions are associated with these counters,
and can be performed when an appropriate counter interrupt is received.
In some cases, a counter interrupt can select different involuntary
instructions to be performed, deﬁending on the nature of the external
signal (such as positive or negative changes to the value of a counter)
or the value of the gquantity in the counter (positive or negative output
pulses). The seven involuntary instructions, and the cells to which

they apply, are given on the following pages.

I18-1

[

. DINC, applying to cell 00318(TIM36) and cells 0OL7

. PINC, applying to cells 00244 - 0030, (TIMEi, i = 1-5) and cells

& = 90568
(GYROCMD, CDU error counter drives, THRUST, and not used).

I the contents of the cell are positive non-zero, they are
decremented by 1 and positive output pulses are provided; if

the contents are negative non-zero, the contents are incremented
by 1 (i.e. magnitude decreased by 1) and negative output pulses
are provided. Output pilses must be enabled from 00L7, - 0056, by bit
of channel 14 (10, 15-11, 4, and 5 respectively), which is reset
to O when the counter contents are equal to -0 and another

DINC pulse is generated (-0 is the result of a DINC to a cell
equal to +1 or -1). Consequently, zeroing of cells by program
means must load -0, not +0. Use of DINC with cell 00318 is
enabled by bit 15 of channel 13, although the cell's output
pulses are not used: instead, its decrement to -0 causes

program interrupt #1 to be generated at the next DINC (and the
enabling bit to be reset).

. MCDU, applying to cells 00324 - 00368 (input CDU angles from

IMU and optics/rendezvous radar). This instruction subtracts

1 (in twos complement) from the contents of the cell.

. MINC, applying to cells 00378 - OOAAS (accelerometer inputs and

RHC/unused BMAG analog inputs). This instruction subtracts 1

in ones complement) from the contents of the cell.

- PCDU, applying to cells 0032, - 0036, (input CDU angles from
g 8

MU and optics/rendezvous radar). This instruction adds 1

(in twos complement) to the contents of the cell.

00374 - OOALS (accelerometer inputs and RHC/unused BMAG analog
inputs). This instruction adds 1 (in ones complement) to the

contents of the cell.

. SHANC, applying to cells 0045, - 00468 (INLINK and RNRAD). This

instruction shifts the contents of the cell left by one place,

and then adds 1 (it is used for a binary one of a serial bit stream).

7. SHINC, applying to cells 00454 - 0046, (INLINK and RNRAD) and
to cells 0057, - 00608 {(unmsed OUTLINK and ALTM). This _
instruction shifts the contents of the cell left by one place
(iL is used for a binary zero of a serial bit stream or to

generate a serial output bit stream from the cell overflow bit).

A counter interrupt request can be generated (in general) at any
time. All requests are retained by the hardware until the end of the
current computer instruction. At that time, provided that the next
instruction is not a special-purpose TC order (EXTEND, INHINT, or RELINT),
the request is honored. This means, for example, that a double precision
computer instruction (such as DCA) can be used to sample the values of
cells OOZL;8 - 00258 (the computer clock) without concern that a counter
interrupt will cause the two halves to be inconsistent due to an overflow
of cell 0025, (see Section IID).

Satisfaction of a counter interrupt takes one MCT (memory cycle
time of about 11.7 microseconds) per request (due to the need to read
the counter from memory, modify it, and store it back). Priority for
satlsfaction of the requests is based upon the value of the counter's
address (OOZA8 has the highest priority and 00608 has the lowest), but
all requests are satisfied before the next program instruction is
started. See Section VII for the sequence with which the computer
hardware performs its various_functions.

Counter interrupts are not under computer program control (once
the appropriate control bits, in some cases, have been set), cannot be
inhibited by the program, and in fact can only be determined by the
software to have occurred by sampling the cell in question. It is
sometimes necessary (such as when the accelerometer cells are sampled)

to sample and reset a counter without losing any counts: the machine-

ITH-3

language order XCH (Exchange) can be used for this purpose, since this
order exchanges the contents of the A register and the cell specified
by the address field of the order. In othcr instences, it is necessary
to change the value of an output-generating counter cell (such as the
cell used to generate gyro torquing pulses) while it may be controlling.
output pulse generation. In this case, the machine-language order

ADS (Add and Store) can be used.

Program Interrupts

Eleven program interrupts are incorporated into the computer
design. Most interrupts (provided certain conditions are satisfied)
cause the performance of the program to be suspended, the contents of
certain registers to be saved (some by hardware means, some by software),
and the next instruction to be executed be the one at a special address
(different for each interrupt) in order to start the "task'.

The interrupt is mechanized through the involuntary instruction
RUPT, which takes 3 MCT to perform. If necessary, it can also be
programmed as EDRUPT, an extended order, using the following sequence:

CA start address desired, in ADRES form

TC bank 3 address (i.e. in fixed-fixed, form 7xxx8)

BNK3 EXTEND (BNK3 is address to which TC is done, form 7m8)
EDRUPT BNK3

This sequence causes the hardware to initiate computations at the ADRES

address contained in the accumulator, with various hardwarawilip—flops

set as they would be for a "normal" hardware-induced program interrupt

(FBANK setting is that from which the BNK3 step was entered). In either

case, resumption of the program is triggered by the special-purpose

ITH-4

instruction RESUME (triggered by an INDEX order for cell 00178, see

Section VA), taking 2 MCT to perform. The mnemonic stems from the

phrase "Ed Smally's interrupt instruction'.

The individual interrupts, with their titles, starting addresses,

causes,

1

and functions are:

. T6RUPT, starting address AOOAB, generated by the next DINC after

TIME6 (cell 0031, see Section IID) has been reduced to -O.
Conventionally used to control the timing of RCS jet commands in

output channels 05 and 06 (by suitable software).

. T5RUPT, starting address AOIOS, generated by overflow of TIMES

(cell 00308, see Section IID). Conventionally used to control
cycling of computations associated with the digital autopilots

(jet timing conventionally controlled by program interrupt #1).

. T3RUPT, starting address 401&8, generated by overflow of TIME3

(cell 00268, see Section IID). Conventionally used to control

performance of 'waitlist" tasks (see Section VIIA).

. TLRUPT, starting address AO208, generated by overflow of TIMEL

(cell 00278, see Section IID). Conventionally used to control
cycling of periodic input/output functions (such as driving of
DSKY digits, see Section IIJ).

. KEYRUPT1, starting address 402&8, generated by depression of a

key on the DSKY keyboard (main panel DSKY for CM). Input trap
circuit reset when key is released. Used by software to

initiate processing of keyboard input from channel 15.

. KEYRUPT2, starting address 40308, generated for CM by depression

of a key on lower equipment bay (or '"navigation panel") DSKY or
depression of optics mark or mark reject button. For IM, it
is generated by depression of a mark or mark reject button or
by rate-of-descent switch offset. Input trap circuit reset when
key or button released, or rate-of-descent switch returned to
middle (neutral) position. Used by software to start channel 14

processing.

I1H-5

7. UPRUPT, starting addresé &OBAS, generated by overflow of cell
00458 (INLINK, see Section IID) due to shifting of the first
binary 1 (in the 16-bit word sent to the computer) out of the
cell. Used by software to start processing of information in
INLINK (including its reset). If the checks are passed, the
same computational job is established as that for program
interrupts #5 and #6 if a DSKY input is involved.

8. DOWNRUPT, starting address AOAOS, generated by an end pulse
from the telemetry system. The basic telemetry format consists
of eight-bit data words transmitted at a rate depending on the
setting of spacecraft switches. At the "high bit rate" (51.2
kbps), 5 of the 128 words in each frame are allocated to computer
digital data (giving 40 bits), thus permitting 50 of the LO-bit
computer words to be sent per second. Computer words are loaded
for downlink transmission in channels 34 and 35 (plus bit 7 of
channel 13 for "word order code' information). The LO bits
are transmitted in the following sequence:

a) Bit #1 is the word order code bit.

b) Bits #2 - #16 are bits 15-1 (sign first) of channel 34.
¢) Bit #17 is an odd parity bit for channel 34 data.

d) Bits #18 - #32 are bits 15-1 (sien first) of channel 35.
e) Bit #33 is an odd parity bit for chamnel 35 data.

f) Bits #34 - #,0 are the same as bits #2 - #8 (i.e. bits”
15-9 of channel 34).

After the final bit, the end pulse from the telemetry system is
received, generating the interrupt (request). At the high bit

rate, the program has about 19.2 ms in which to respond to the
interrupt and load new data into channels 34-35 before the
transmission is started again. Garbled downlink data, of course,
would result if loading not accomplished (ground resynchronization
could be accomplished when the word order code bit flagged data).

The "low bit rate" in the OM is 1.6 kbps (200 eight-bit words per
second), in which 50 of the 200 words are the digital data (giving
an end-pulse rate of one every 0.1 second rather than the rate of

one every 0.02 second at the high bit rate). In the IM, no I1GC data
is transmitted at low bit rate (hence AGS initialization, for example,
must be accomplished at high bit rate). If bit 12 of channel 33 is a

binary O, this indicates that a telemetry end pulse was rejected.
vy Y, d

-
i
jaw)
!
O~

9

10.

ddis

RADAR RUPT, starting address AOQLB, generated by completion of
the shifting of radar data into cell ooueg (RNRAD). The time
delay between the setting of bit 4 of channel 13 and the
generation of the interrupt is 90-100 ms (see Section IID). Used

by software to start processing of information in RNRAD.

HAND CONTROL RUPT, starting address AO508, generated by the
setting of interrupt traps 31A, 31B, or 32. These traps are
reset by bits 12-14 of channel 13 respectively, and are required
because of the duration of the input signals (which otherwise
could produce multiple program interrupts). Trap 314 is
associated with bits 6-1 of channel 31 (rotational hand controller
deflections); trap 31B is associated with bits 12-7 of chammel

31 (translation hand controller inputs); and trap 32 is
associated with bits 10-1 of channel 32 (CM minimum impulse
controller and IM thruster fail and descent engine gimbal fail
inputs). A signal fed into the indicated bit positions causes
the indicated trap to be set. In the CM software, this program
interrupt is not used, since sampling of the input signals
involved is done sufficiently often as a consequence of the
normal digital autopilot cycling. In the LM software, a similar
argument applies (the digital autopilot cycling and logic performs
functions equivalent to those originally intended by the hardware
design), so that only trap 31A is employed in order to monitor
for hand controller deflections associated with the landing

point designation (see bits 6, 5, 2, and 1 of channel 31, Section
I118).

GOPROG, starting address AOOOS, caused by an internally generated
hardware signal in response to various hardware difficulties.
A "hardware restart" is produced, as described in more detail

below,.

IIH-~7

Program interrupts #1 - #10 have the following common features:

a) Their first few steps store A in ARUPT, L in IRUPT, and transfer
control to a routine that performs the nececeary computations

(after saving Q and/or BBANK and/or SUPERBNK if necessary).

b) They initiate the performance of a task, at the conclusion of
which (after restoration of A, L, and any other cells necessary)
the operation RESUME (see Section VA) causes the program to
start again from where it was interrupted, provided of course

that another program interrupt is not waiting to be processed.

¢) Their priority for initiation is the order in which they were
listed above (#1 is the highest and #10 is the lowest). Once
a program interrupt has had its processing started, however,
it will continue on to completion: the "priority" is significant

only in determining which interrupt should be processed first.

d) They will not be acted upon (processed), but instead will be
retained for future action, if any of the following criteria -

are satisfied:
1. The current machine language order is not yet complete,

2. An "extended" machine language order is about to be
performed (see Section IV), since information retained
when interrupt processing is started does not include
the "extended order code" bit.

3. An accumulator overflow (sse Section IIG) condition
exists, since information retained when interrupt
processing is started does not include the overflow
bit. Other overflows (e.g. Q register) are not protected.

4. The INHINT/RELINT flip-flop (see Section VA) is set
to inhibit program interrupts, meaning that interrupts
not desired by programmer (permitting flagword bits to
be changed, downlink state vectors to be consistent,
etc.).

5. A program interrupt (even one of lower priority) is
already being processed.

6. A special-purpose TC order (EXTEND, INHINT, or RELINT)
is the next instruction to be executed.

For a summary of the sequence in which the computer hardware {and

software) performs its various functions, see Section VII.

ITH-8

Program interrupt #11 (somstimes referred to as interrupt #0)
differs in a number of respects from the others. It does not result
in "normal" resumption of the program (instead, a "restart" is performed,
see Section VIIC); it takes absolute priority over other program interrupts;
it cannot be inhibited; and it can even "interrupt an interrupt". As
part of its genération, a special ﬁvoluntary interrupt ‘instruction is
produced, causing a master clear signal ("GOJAM") to be generated by the
hardware. Program interrupt #11, which is also termed a "hardware
restart" (to distinguish it from similar functions that can be done solely
by software), can be triggered by the following:

1. Indication of power failure on the prime 28-volt supply (below
about 22.6 volts), the 14~volt supply (below 12.5 volts or above
16 volts) or the 4-volt supply (below 3.65 volts or above L.b
volts).

2. Detection of a computer oscillator failure.

3. Detection of a large program loop ("night watchman"), revealed
by failure to address erasable memory cell 0067, (NEWJOB, see
Section IID) in a period ranging from 0.64 to 1.92 seconds.

L. Detection of a transfer control failure ("TC trap"), revealed
by having a TC or TCF (see Section IV) order in effect for a
period of from 5 to 15 ms (or a counter interrupt), or if no
TC or TCF order is executed in this same time interval, The
software can cause a hardware restart by this means, through

a TC order to the present step.

5. Detection of a parity failure on a word read from fixed or
erasable memory (applies to all addresses.of value 00108 or
above). A failure would be revealed if an even number of

binary ones were in the word (see Section ITA).

O~

. Detection of a program interrupt failure ("RUPT lock"), revealed
if a program interrupt is continuously in effect for a pericd of
from 140 ms to 300 ms, or if no program interrupt takes place in

this same interval.

7. Recovery from "standby" operation. This is analogous to item
#2 above, since standby operation removes power from the monitor
circuit, causing the hardware to consider standby an "oscillator
fail" condition, even though the oscillator keeps on rumming
(so that time information can be obtained from channels O3 and
04, see Section IIE).

Peripheral Equipment Orders

There are five interrupt-type instructions which may be originated
from computer peripheral equipment, i.e. the CTS (Computer Test Set)
or PAC (Program Analyzer Console). Although these instructions are not
used when the computer is in a flight environment, there are listed

here in the interests of completeness:

1. FEICH. 2 MCT. Display contents of specified address.

2. INOTLD. 1 MCT. Load specified chammel.

3. INOTRD. l‘MCT. Read specified channel and display it.

L. STORE. 2 MCT. Store data in specified cell. Should not be
confused with interpretive language order

having the same mmemonic.

5, TCSAJ. 2 MCT. Transfer control to specified address.

ITH-10

I1J Display Systen

Most of the outputs from the computer for display purposes are

transmitted through channel 10, which is assigned the mnemonic "OUTO",
Bits 15-12 of this register define a particular row of relays (which

are of the latching type) to be driven, while the remaining eleven bits
épecify the new settings for these relays: Since the relays are bistable
devices, retaining either a binary O or a binary 1 state until changed,
register OUTO need retain the specification of the contents of a row

for only 0.02 seconds (which also helps minimize power consumption and
heat buildup), following which the channel is zeroed for 0.02 seconds
before another row is specified. Under certain conditions (see equation
documentation for details), the software allows a new row setting to be
specified every 0.04 seconds, permitting a complete change of the eleven

rows controlling the DSKY numerical and sign displays in less than

% second.

Relay rows 1-11 (selected by having bits 15-12 of OUTO equal to
018—138 respectively) are used to drive the digit and sign displays on
the DSKY (display and keyboard assembly), while relay row 12 (bits
15-12 of OUTO equal to 148) is used to drive some of the indicators on
the DSKY (most of the other indicators are driven from channel 11 bits,
see Section IIE). The displays and indicators which are energized consist
of three banks (R1, R2, and R3 registers) of five digits and a sign; three
banks (noun, verb, and program or mode) of two digits each; 9(CM) or 11(IM)
indicators on the DSKY (two others are driven by separate hardware); and
a request for an operator action (FLASH, which causes the verb and noun

displays to blink on for 0.6/ seconds, then off for 0.64 seconds).

Numbers are specified for display on the DSKY by a total of five
bits, while sign and indicator information require one bit each. The

individual bits of the first eleven rows have the following meanings:

Row Bit 11 Bits 10-6 Bits 5-1
o1 R3S R3DL R3D5
02 +R3S R3D2 R3D3
03 R2D5 R3D1
oL _R2S R2D3 R2DL
05 +R2S R2D1 R2D2
06 _R1S RIDL RID5
07 +R1S R1D2 R1D3
10 R1D1
11 ND1 ND2
12 VD1 D2
13 MD1 MD2

In this table, the row numbers are cited in octal (as loaded into bit
positions 15-12 of OUTO), and "D" means digit, with D1 the most signif-
icant and D5 (or D2) the least significant. R1 - R3 refer to the three
display registers, each with sign ("S"), while UNT, MV and "M" refer
to the noun, verb, and mode (or program) two-digit registers respectively.
The pattern of the digit displayed on the DSKY panel is specified
by the five bits assigned to the character, according to the table on
the following page. In this table, the five biﬁs of the pattern are
identified as B5 through Bl respectively. The prime in the formula for
a particular display segment designates a complement. A numerical
entry in the table means that the display segment indicated at the left

is energized for the display of that digit.

11J-2

Display Display: Blank ¢ 1 2 3 L 5 6 7 8
Segment Formula Octal Pattern: 00 25 03 31 33 17 36 34, 23 135
Top B5 0 3 % & T 8
Middle BL 3 6 8
Left Upper B3 0 L 6 g
Right Upper Bl) 0O 1 3 I 7 8
Left Lower B2'(Bl + B5) f - O 2 8
Right Lower B2 + B2' B3 0 1 3 L 7 8
Bottom B5 (B3 + BL4) 0 2 3 6 8

Most keys on the DSKY are used to generate a five-bit code which
appears in bits 5-1 of channel 15 (and, for CM, channel 16 in the case of
the DSKY in the lower equipment bay). The same codes are used for the

corresponding characters when transmitted via uplink means to cell 00458

(INLINK, see Section IID). The individual key codes are:

Key Code
0 208
1-9 01,

112
Verb 218
Noun 378
+ 328
== 338
Clear 368
(CLR)

Key Release
(XEY REL) 31,4

Enter 3&8
(ENTR)

Error Reset
(RSET) 224

Function
Digit zero.

Digits one through nine (code corresponds to the
decimal value).

Indicates that up to the next two digits specify
verb code, indicating "action desired".

Indicates that up to the next two digits specify
noun code, indicating "action recipient'.

Indicates that up to the next five digits specify
a positive data number (loaded into Ri register).

Indicates that up to the next five digits specify
a negative data number (loaded into Ri register).

Causes Ri register to be cleared (if software
checks passed satisfactorily).

Indicates to software that operator is releasing
display system for internal control of display.

Indicates to software that either execution of
the verb/noun direction should be performed or
that data that has been keyed into an Ri
register is complete.

Indicates to software that various error
indicators (and internal alarm-code cells) are

to be reset. Turns off Restart light by hardware
means. Uplink (but pot DSKY input) also resets
software bit that set after failure of check of
INLINK input (see cell 0045, in Section IID).

IIJ-3

In addition to these key codes, the PRO button is also on the D3KY, and
causes bit 14 of channel 32 to be O when it is depressed (see Section
ITE). If bit 11 of channel 13 is set, this button also used to put
computer into standby (lower-power consumption) mode if pressed for
0.64 - 1.92 seconds, and to return it to normal operation when pressed

again for the same interval.

The various bits of relay row 1A8 have the following significance:

Bit Light Function
LL Not assigned.
10 Not assigned.
9 PROG Set by program to indicate that a program check
has failed.
8 TRACKER For CM, set by software to indicate an optics

CDU fail; for IM, set by software to indicate
a radar malfunction. See mission documentation.

-~

Not assigned (has been used for test purposes).

6 GIMBAL Set by software to indicate approach of middle
LOCK gimbal angle to a "lock" condition (such as an
angle in excess of 70°).
5 ALT(IM-only) Set by software (or flashed) to indicate data

difficulty with landing radar altitude. Not
connected in CM.

L NO ATT Set by software to indicate that inertial
subsystem not suitable as an attitude reference
(because it is off, caged, or in coarse align).

3 VEL(IM-only) Set by software (or flashed) to indicate data
difficulty with landing radar velocity. Not

connected in CM.
o : miw L“w
re B/ =) et assigned.

Ry

P ke Not assigned.

i~
The STBY light is energized by the computer hardware if the
computer is in the standby mode of operation, while the RESTART light
is energized if a computer restart (program interrupt #11, see Section
IIH) is encountered. For testing purposes, both lights:'¢an be energized
by bit 10 of channel 13. The RESTART light can be turned off by the
Error Reset key or by bit 10 of channel 11.

The various lights on the DSKY panel, and the source from which

they are driven, are summarized in schematic form on the next page.

ITd-4

UPLINK ch. 11

ACTY bit 3

white

NO ATT row lh8
bit 4

white

STBY hardware

white

KEY REL ch. 11
bit 5
white (flashes)

OPR ERR ch. 11
bit 7

white (flashes)

P

L. Sp{/ Wt >

TEMP ch. 11
bit 4

yellow

GIMBAL row 14
LOCK bit 6
yellow

8

PROG row 1&8
bit 9

yellow

RESTART hardware

yellow

TRACKER row l&s
bit 8
yellow

ALT(IM) row Ly
bit 5
yellow

VEL(IM) row Ly
bit 3
yellow

verb

VD1l VD2

R1S

R25

R3S

prog
MD1 MD2

noun

ND1 ND2

R1D1 R1D2 R1D3 R1D4 R1D5

R2D1 R2D2 R2D3 R2D/ R2D5

R3D1 R3D2 R3D3 R3DL R3D5

TEMP also connected to channel 30 bit 15 (so light comes on if computer

is in standby).

Verb and Noun flash: ch. 11 bit 6.

STBY and RESTART also energized by ch. 13 bit 10,

Al1]1 digits on DSKY display (and sign) driven from rows 018 - 138, as

shown on page IIJ-2.

The COMP ACTY and the digit (and sign) display are electroluminescent
displays, while the remaining indicator lights are incandescent.

The keyboard layout is as follows:

8 9 CIR
5 6 PRO

KEY
2 3 REL

ITT TFORMAT OF GUIDANCE PROGRAM SYMBOLIC LISTING

This section describes the format of a program symbolic listing
as reflected by typical programs, based on the currently used assembly
program. New features and capabilities can be expected to be added to
this program, however, so it should be realized that items may be encountered
in a listing which are not described below. In addition, in the past the
printer character sets used by MSC and the G&N contractor have had some
differences (the G&N contractor's "?", for example, has been printed as
" oor "&'" in MSC listings, and some G&N contractor symbols are not
printed at all in MSC listings, such as an apostrophe in line printer
outputs). Symbols may also appear differently (a colon as an apostrophe,

for example).

The assembler (referred to also as the assembly program) is quite
flexible in its capabilities, and unusually tolerant in the variety of
formats, such as spaces between digits of a number, that it will accept.
A "symbol" consists of from one to eight characters (with certain
restrictions), and is equated to a unique octal cell address by one of
the following means:

a) Specification as the tag associated with a quantity stored in

that octal cell location.

b) Specification as a tag equated (by the "BEQUALS" or "=" pseudo-
operations) to some other quantity, which may be another tag or

an absolute address.
A symbol must be eight characters or less in length, and cannot consist
of an integer, an integer prebeded by a plus or minus sign, or an
integer followed by the letter D. Aside framqthege.restrictions,
however, the symbols which may be selected are quite varied, as suggested

by the following symbols selected at random from a sample program.

I11-1

0.00167 16/324,00 A BITS6&15 DV—+,+

11DEC 1SEC+1 A+B BUF+ s B
11DEC. +-ZERO ACOS=0 D--SC ~TANZ2.5
13-11,1 (1-X),QR A(X) DLOADs NXTTé=P

For proper performance of the assembler, of course, symbol definitions

must be unique, so that only one octal cell location corresponds to the
given symbol. The assembler distinguishes between the letter O ana the
number O.

Quantities not satisfying the format restrictions for a "symbol"
are used for other purposes by the assembler. An unsigned integer in
the address field (frequently found in interpretive language coding)
without an operand indication (OCT, DEC, etc.) is considered as an octal
absolute address (equivalent to an octal integer for values below
100004, as discussed in Section IIB). If the integer is followed by
the letter "D", it is treated as a decimal number. Hence both n3gn
and "30D" would be loaded in the memory as 000368. The quantity
"20000" (with no operand indication) would be loaded in the memory as
100008 in view of its definition as an address: for such numbers, it
is conventional (and desirable) to specify explicitly the operand
information. The "D" is optional with "8" or ''g!,

A blank in the address field is considered to mean the address of
the step itself, and a signed integer (such as "+2" or "-3") would be
translated relative to the step's own address (two steps beyond or
three steps earlier respectively). As mentioned previously, signed
integers are not allowable symbols, so they sometimes are used in
association with the relative addresses as a form of program 'remark':

they have no effect on the performance of the assembly program.

ITI-2

A symbol followed by a space and then a signed integer is treated
by the assembler as if the value of the integer modified the octal
instruction (operation code and address). If the integer is of
sufficient size, it will cause modification of the operation code, thus
giving compatibility with the hardware INDEX order described in Section
lIV. As with other iﬁtegers in the addreés field, the signed integer
is considered to be octal unless followed by the letter '"D" (for decimal).
It should be noted that a space must be left between the symbol and the
signed integer, or else the net combination would be considered as another
symbol (as indicated by the symbol "1SEC+1" given on the previous page).
If it is desired to have the assembled address information be negative (for
use with INDEX, for example), this can be accomplished by the artifice
of using "O - n'" there, since merely "- n" would be considered as a
relative address.

The address-field form (symbol * integer) is the only type of
address-field modification conventionally allowed by the assembler.
The effect of adding two symbols (or subtracting them), however, can
be achieved by appropriate use of the address operations "=PLUS" and
"=MINUS", which are described in Section VC. Repeated use of these
operations, of course, can achieve the effect of multiplication of

a symbol's octal equivalent by an integer.

Page Layout

Fach page of the program listing has 120 columns of available space
for the printing of program information, and a maximum of 56 output lines

per page (of which the first four, including two blanks, are for header data).

The location and information which is printed is established by the
nature of the original input to the assembler, as explained in more
detail below.

The top line on each page contains a program identification which
is specified when the run is made. The assembler identification (e.g.
"GAP:") éppears in print colﬁmns 1-4, followed by.the assembler actioﬁ
(such as "assemble") and the revision number, name, and "author" of
the program being assembled. On the right-hand side of the page, the
time when the run was made appears (hours:minutes) for identification,
followed by the date on which the run was made. Print columns 112-115
contain "PAGE", and columns 117-120 contain the master page number
(starts at 1, right justified with leading zeros suppressed) used
throughout the assembly to identify locations in the listing. An
additional piece of information included in the top line (before the
PAGE print), if applicable, is the Subroutine name and revision (see
Information at Start of Listing below).

The second line is blank, and the third is used to supply the
"log" identification information. In order to permit different people
to work on different areas of the program while minimizing their need
for clese synchronization during the development of these areas, the
assembler information is divided into a number of separate segments
("log sections"), each of which may be modified individually through
specification of the appropriate sequence number (line identification)
within that particular segment. Each segment is assigned a title,
which appears on the left-hand side of this second line of prinﬁing.

The printing of the title of the log section generally starts in print

ITT-4

column 9, and in addition an "L" (for "log card'") appears in print
column 1. On the right-hand side of this line appears the '"USER's

PAGE NO. =xxx", where xxx is restarted at 1 at the beginning of each
log section (leading zeros again suppressed). This is followed

in print columns 111-112 by Ei, giving the most recent erasable memory
bank specification. The Ei identification is nulled (printing EO) at
the start of each log section, and can be used by the assembler to check
for possibly illegal memory references (see EBANK= below). The last
piece of information in this line is Si, which appears in print columns
114-115. This gives the most recent SUPERBNK setting specification

(see SBANK= below), and can be used to generate BBCON values.

Next comes another blank line, completing the four lines allocated

for header data. The remaining lines (up to 54) on the page contain the
program information. For each line of this information, print columns
2-7 contain a "sequence number", which is restarted at the begimming
of each log section and which increases monotonically (when left
justified) throughout that segment. This number is normally incremented
by +1 in print column 5, and is used to specify the location of changes
when making modifications to a log section. For example, the numbers:

0009

0010

00101

00103

001031

001032

00104

0011

could appear in sequence on successive lines of coding. An assembler

ITT-5

bility exists to cause the sequence numbers within a log section to

{

i,

ca

's

be redefined so as to count up uniformly in the counting position (column

5), but this option is not necessarily employed when a new listing is made.

Print column 1 is blank for most lines of coding. If it is blank,
card columns 9-80 are printed as print columns 49-120, and the remaining
print columns are filled with address, address content, and symbol
reference information as described in more detail below. Print column
1 can also contain certain letters, which result in assembler operation
as follows:

"A" signifies an "aligned remark card", which does not produce any
binary memory information. Card columns 9-80 are printed in
the same print positions as for a normal card (i.e. 49-120),
and are generally used to provide additional comments that
could not be fitted onto the same card as the original program
step being described. ' ‘

"L signifies a '"log card", used to specify the segment of the
program (and appearing on the second printed line of the page,

as described above).

"P" signifies 'page', and causes a printer page-eject signal before
it is printed (making the "P" line the first line of program
information, or fifth line on the page). Otherwise, the

"P" is treated the same way as an "R" card.

"R" signifies '"remark", and does not produce any binary memory
information. Card columns 9-80 are printed in print columns
9-80. Print colums 81-120 may be filled by the information
on another card, if that card has a "9" punched in colum 8

(and is in the proper sequence-number order).

I11-6

Print column 8 contains a flag (such as "#") if the card on that

print line was changed in the most recent modification of the Subroutine.

Card Lavout

Aithough the assignmenf of functions to thé individual columns‘of
the cards that are input to the assembler is not of direct concern unless
cards must be punched, the card format serves as a methodical explanation
of some of the features of the assembler, and also can be useful in
reviewing lists of program changes that might be provided in the form

of a listing of input cards to the assembler.

Colum 1 is used for specification of the type of input: blank for
a normal input, and otherwise A, L, P, or R as reviewed above.
If a change to a log section is provided, "=LOG" appears in
columns 1-4 to identify the subsequent information on the card

as a log identification.
Columns 2-7 contain the left-justified sequence number.

Colum 8 is used to contain printer control information, with
values of O-7 providing the same number of line spacings after
the current line is printed (a blank is treated the same as
a 1); a value of 8 causing a page eject after the current
line is printed; and a value of 9 causing (with R in column 1)
the card information in columns 9-48 to be printed in print
columns 81-120 with no space since the previous card. If a
"9" appears, of course, the sequence number for the card would
not appear in the final printout (although it would appear in
a list of card changes, naturally).

I1r-7

+

Colums 9-16 contain the tag of the cell, if any. The information
in the tag must observe the constraints on allowable "symbols',
since the purpose of the tag is to permit reference to the
cell by symbolic means. As pointed out above, a '"tag" such as
42" is essentially a comment, and is ignored by the assembler

if it appears in this card field, which is the "location field".

Column 17 may contain a minus sign, in which case the memory
information resulting from the remainder of the card will be

complemented before being stored.

Columns 18-23 contain the operation code, making use of the
appropriate mnemonics assigned to machine-language or
interpretive-language orders (Sections IV and VI respectively),
or the appropriate assembler pseudo-operations (Section V).

In addition to these, however, the following assembler control
operations (which do not generate binary memory information)

may also be usgd:

BANK: Set location counter (assembler counter used to
determine the assignment of binary memory information
to absolute machine addresses) equal to the first
unassigned cell in the variable-fixed memory bank
specified by the two-digit octal fixed bank number in
the address field. If the address field is blank,
perform a similar function using the bank of the
present location counter setting (generally follows
a SETLOC instruction). Cells are assigned in ascending
sequence starting from the beginmning of each bank, but
location counter changes to a different bank must be
by an explicit assembler control operation. BANK orders
referencing a cell in S3 or 54 cause the Si printout

(see SBANK= below) to be changed.

BLOCK: Same functicn as BANK, but conventionally used for
fixed-fixed memory banks (02 and 03). "Blocks" 00 and
01 are erasable memory, OL4 is FBANK 00, etc. (cf.
Section IIB). A blank BANK card can be used success-—

fully with fixed-fixed memory banks, however.

I11-8

COUNT: Initiate a count of the number of fixed memory cells,
terminating when the next COUNT card is reached, for
printout in a table at the end of the listing. The number
of cells counted is associated with the tag in thé
address field (and the previous count, if any, and
current total is provided on the printout). The operation
COUNT*, if the tag is suitably flagged (e.g. "$$/xcx"),
will replace the "3" with the current fixed memory bank
nurber (as if "$$" had originally been punched in that
fashion). See Information at End of Listing.

EBANK=: Set the erasable memory bank portion of the following
address pseudo-operation (BBCON, 2CADR, etc., see Section
VC) to the erasable memory bank number of the tag in
the address field (or to the number in the address field).
If the EBANK= is not followed immediately by such an
address pseudo-operation, an assembler cell is set to
the same value, for use in monitoring machine language
references to the erasable memory . Thislmnnitoring is
reset at the beginning of each log section. The bank
being monitored (if any) as of the last line on the
previous page of the listing appears in print columns

111-112 (e.g. "E3") of the third line (header log data).

EQUALS (or =): Translate the quantity in the tag field of
the card in the same manner as the quahtity in the address
field of the card (which need not have preceded the EQUALS
and which may be an absolute address as well as a symbol).
If the address field is blank, the address corresponding
to the present value of the location counter (e.g. one
greater than the last filled address) is assigned to
the tag in the tag field. A distinction sometimes observed
in the software is to use VBEQUALS" to indicate either
a relationship to a previous address ('chaining" of
address assignments, useful for erasable memory) or a
time-sharing of cells (between thrusting programs and
entry guidance, for example); "=", on the other hand,

indicates different tags for the same quantity.

ITI-9

ERASE: Allocate erasable memory cells in accordance with
the material in the address fisld. If the address field
is blank, one cell is allocated (and location counter
advanced); if it is a signed integer (e.g. "+5"), then
an additional number of cells (in this example, a total
of six, sufficient for a double precision vector) are
allocated as specified by this integer. If an unsigned
(octal) integer is in the address field, on the other
hand, then that absolute erasable memory cell (in ECADR
format, see Section VC) is assigned to the tag in the
tag field. Allocation of a set of cells can be
accomplished in this fashion by ERASE xxx - yyy,

where xxx is starting address and yyy the final address.

MEMORY: Allocate memory of the type indicated by location
field (functions similarly to ERASE).

SBANK=: Set an assembler control cell to indicate the
use of the superbank (i.e. setting of SUPERBNK, chamnnel
07) given by the address field. This setting (in a
manner similar to EBANK=, except it is not reset
at the start of each log section) appears in print
columns 114-115 (e.g. "S3") of the third line (header
log data). Address constants such as BBCON and
2CADR (see Section VC), if reference to a cell in
S3 or S4 is made (cf. Section IIB), will place the
proper SUPERBNK bit setting in bits 7-5; if reference
t0 bank numbers of 27 or less is made, however, these
bits will be set to either the most recent SBANK=
statement or the last BAMK pseudo-operation (whichever
was the last to occur). The software is generally
arranged so that reference to 53 is made wherever
possible. The 5i information on the third line, of

course, is also changed by the BANK pseudo-operation.

SETLOC: Set location counter to value specified by address
field of card, which may be a True Address (see Section
IIB) or a symbol. Frequently followed by a BANK card
with a blank address field, to facilitate changes to
memory bank allocations of the coding (see Information

I11-10

at Start of Listing). ILOC means the same as SETLOC.
SUBRO: Include in the assembly the Subroutine identified

by the symbol in the address field: see Information at

Start of Listing below.
Column 24 is blank.

Columns 25-40 comprise the normal address field. For machine-
language instructions, it may consist of a symbol or a symbol
T an integer (with a space before the sign). A blank means

the address of the present step, so that an address of "+2" would

mean an address two steps beyond the current step. For

interpretive-language orders, the address field contains

information as described in Section VI. Values of constants and

addresses, of course, appear in the address field too.

The information in the address field should end at or prior to

card column 40. If the required information is too lengthy to

complete in 16 card columns, the number of card columns

allocated to the address field may be increased by punching an

asterisk following the last character (changing "2DEC" to

"2DECH*", for example) of the operation field and another

asterisk after the last character of the address information.

An asterisk may also be used to obtain special assembler

program performance (as mentioned above with COUNT and as also

mentioned in Section IIF), or to indicate indexing in the

interpretive language (see Section VI).

Columns 41-80 (unless used with the address-field extension
technique described for columns 25-40) are used for comments
information: the contents of these columns, of course, would
not affect the binary information generated by the assembler

for the computer memory.

Symbol Reference Information

In the analysis of the performance of the software, it is

frequently valuable to be able tc identify quickly and reliably all

IT7-11

references to a given tag. Information permitting this to be done is

included in print columns 9-26 for those lines of coding with a tag in

the address field (for the operations such as 20ADR that generate two

lines of coding, the reference information is provided with the first

1lin

e). The symbol reference information, which is generated for the

various assembler control operations as well as for cards that generate

binary memory information, has the following print format:

Columns 9-11 contain "REF" (for the serial number of the reference
to the tag).

Columns 13-15 contain the serial number of the reference to the
tag (starting from the beginning of the listing), with the
least significant digit in column 15 and with leading zeros

suppressed.

Columns 18-21 contain "LAST" (for the previous time in the
listing that the symbol was referenced), provided that
columns 13-15 do not contain 1 (if they do, meaning that
this is the first reference encountered, the printing of

NLAST" is suppressed).

Columns 23-26 contain the master page number (i.e. the one on
the top line of the page) where the previous reference

(if any) to the symbol was made.

It should be understood that the symbol reference information

applies to the symbol in the address field, not to the symbol in the

tag field. In order to identify references to the symbol in the tag

field, the information printed in the Symbol Table Listing at the end

of the program printout may be used (see Information at End of Listing

below).

I11-12

Information at Start of IListing

The first log section of the listing is conventionally titled
"Assembly and Operation Information'". This log section generally
consists solely of remarks information, and hence no binary memory
loading information is generated from this segment. Therefore,
although the log section is intended to be a convenient source of
rapid reference information on the program, it should be clearly
understood that this information has no direct effect on the binary
memory information. Consequently, unless conscientious management
control procedures are enforced the material in this log section can
deviate from the actual performance of the software (an observation
that applies to all "comments" in the listing, of course). The
information generally included in this first log section includes:

A table of Log Sections, giving the various Subroutines in the

software and the log sections that comprise them.

A Verb List, giving the various verbs (see Section IIJ) in the

software and their numerical codes.

A Noun List, giving the various nouns (see Section IIJ) in the
software, their numerical codes, their scaling for the display,

and information on their scaling constants.

An Alarm Code list, giving the patterns in the software and their

significance.

Checklist and Option Codes, giving the patterns generated by the
software to request certain operator actions or decisions, and

the significance of each pattern.
It is emphasized once again that this log section is made up solely of

remarks cards, and need not be consistent with the actual binary memory

information.

ITT-13

The second log section of the listing is conventionally titled
"Tags for Relative SETLOC and Blank BANK Cards". This log section is
used to assign various portions of the software to different fixed
memory banks. Thils is accomplished by having the software coding itself
written so as to specify the assembler location counter value by means
of a SETLOC card referencing a tag in this log section, followed by a
blank BANK card (see Card Layout above), causing the subsequent binary
memory information to be placed in the fixed memory bank dictated by
this second log section. The function of this log section, therefore,
is to associate a set of tags with appropriate fixed memory banks; it
allows absolute memory assignments in the software to be changed
(for suitably fine~grained SETLOC and blank BANK cards) without changing
the log section in which the software itself appears. This technique
also allows scme Subroutine information to be identical in different
programs, with necessary memory allocation differences handled in
this second log section rather than within the individual log sections
of the Subroutine. The only binary information generated by this
second log section of the listing is conventionally the memory check-
sum information, since the BNKSUM operands (see Section IIF) for the
different banks are conventionally placed here. In addition to fixed
memory bank assignments, some fixed memory tag equivalences can appear
in this second log section, as well as some erasable memory bank
assignments and tag equivalences reflecting vehicle-peculiar computations.

Following this second log section may be additional log sections
for special purposes (such as bank-peculiar constants). The final
log section in the front of the program, however, is conventionally

titled "Subroutine Calls". During coding, it is convenient to have

TTT-14

the various elements of the software grouped into functions at a higher
level than the individual log section. This grouping is accomplished
by segmenting the soﬁtware into groups called "Subroutines" (with a
capital "S": if the word appears with a lower-case "s', it has the
standard Webster's 1965 definition of "specific instruction(s) whereby
a digital computer is guided to perform a precisely defined mathematical
or logical operation"). Subroutines are assigned individual names
(which are not tags within the Subroutine itsglf), and software
modifications are made on a Subroutine basis (by, of course, specifying
log sections to be changed within the Subroutine). The listing flags
the last modification(s) made to the Subroutine as described earlier,

and an accounting is kept of the serial number of the Subroutine

revision (printed with the Subroutine name on line 1 of each page of
the Subroutine in the listing).

Subroutines are included in the assembly listing by means of
SUBRO cards (see Card Layout above), whose address field is the
name of the Subroutine. Each Subroutine, of course, must be compatible
with the others as far as memory usage, tag conflict, etc. are concerned
(there is no constraint on tag references between Subroutines, nor is
there any requirement for special assembler inputs to define such
tags). During the course of program development, the SUBRO log
section is the final one associated with the complete program,
and hence at the end of this log section there is a printout to
this effect (such as "¢ END OF MAIN PROGRAM #ae) | The place for

the Subroutine name on line 1 of early pages of the assembly is

filled with "(MAIN)", indicating that no Subroutine is being printed
on this part of the listing.

After the program reaches a certain stage in its development,
however, it can be desirable to restrict modifications to those which
are generated with referemes to the complete program, rather than
merely to an individual Subroutine. This can be accomplished by suitable
assembler control cards, which cause the insertion of an "R'" (for
Remark) in column 1 of each SUBRO card, thus retaining them in the
listing for reference. After this is accomplished, the place for the
Subroutine name in line 1 on all pages of the listing is filled with

"(MAIN)". This process is known as a "freeze" of Subroutines.

Erasable Memory Information

The next log section in the listing (which can also comprise a
Subroutine) is conventionally titled "Erasable Assignments', and
gives most of the erasable meﬁory and special register tag assignments
to absolute addresses (for convenience, the channel tag assignments
also are included). Many tags are assigned octal equivalent addresses
by the EQUALS or "='" assembler control operation (see Card Layout
above), and in these cases the corresponding S-registér contents appear
in print columns 33-36. If EBANK is 3 or more for the address (see
Section IIB), the quantity "Ei,"(where i is the EBANK number) appears
in print columns 30-32.

Other tags are assigned octal equivalent addresses by the ERASE
assembler control operation (see Card Layout gbove), and these have

the first address of the "block" (even if only one cell) in print

colums 30-36 and the second in print columms 39-45. As for the
assigmment of tags by the FEQUALS or "=" operation, the "Ei," is
suppressed for EBANK values of O, 1, or 2 (so the address appears
in print columns 33-36 and 42-45 only).

The convention is sometimes followed that comments concerning the
erasable memory cell use are made in the comments field of the card,
such as "B(2)" if two cells are required for the quantity and it is
referenced in 'basic' (i.e. machine language) coding so that its use
is EBANK sensitive; "I(6)" if six cells are required and it is referenced
only in "interpretive' coding (so use not EBANK sensitive); "PL(1)" if
the quantity is part of a "pad load", needing only i cell; etc. As is
true of all comments in the listing, however, there is no guarantee that
this information necessarily reflects the current status of the software.
Other aspects of the listing of erasable memory information (formats,
allowable symbols, symbol reference information, etc.) have already been

covered.

Fixed Memory Information

Specification of the contents of the fixed memory is the major
purpose of the remaining log sections of the listing. The format of
the octal information (most of the other portions of this listing have
already been described) is as follows:

1. An odd parity bit (to make the sum of the binary ones in the
16-bit memory word, including this bit, an odd value) is given
in print position 46 for all words to be loaded into the memory.
The only allowable values, of coﬁrse, that can appear'in this

print column are O and 1.

ITI-17

~

2. For words loaded into the memory, print positions 33-36 give
the contents of the S-register. If the cell address is in
variable-fixed memory, the memory bank is in positions 30-31,
and & comma appears in print position 32. Words in fixed-fixed
memory (banks 02 and 03) have print positions 30-32 blank (and
S-register contents in range 4000, - 77774, cf. Section IIB).

3. For machine language instructions whose operation code is
specified completely by bits 15-13 (e.g. those operations which
can have addresses in both erasable and fixed memory, see
Section IV), the single octal digit of the operation code is in
print position 39 and the four octal digits of the operation

address are in positions L1-44.

L. For machine language instructions requiring portions of the
most significant digit of the (nominal) S-register portion for
their specification, and which reference the erasable memory
(or a channel), print positions 39-40 contain the two octal
digits of the operation and positions 42-4/ contain the three
octal digits that remain for the address. If the most
significant bit of the allowed ten-bit address is a binary 1,
the operation code is an odd number (except for the channel
operations of Section IVC, only the most significant two bits
of the nominal S-register information are used for operation
information), and in addition an apostrophe (which may appear
as some other character for different print chains) appears in
position 41 to emphasize the presence of a binary 1 from the

address information in the operation-code octal digits.

5. For address information, constants, and interpretive instructions
the five octal digits to be loaded into the memory are printed

in print positions LO-4/.

6. Addresses generated by assembler functions (BANK, BLOCK, EBANK=,"
EQUALS, "=", SBANK=, or SETLOC) appear in print positions 30-
36 (the full address equivalent of the symbol is given, even
though only a portion is functional). Since no binary memory

information is generated, no parity bit is printed.

IT1-18

Information at End of Listing

After the final log section of the program, there are several
valuable reference tables which give useful information on the program.
The first of these is a "Symbol Table Listing", which gives all symbols
defined in the program as arranged in the order '"sorted" by the assembler

(i.e. in order of increasing EBCDIC representation):

Note that, as mentioned previously,
some of these characters may appear
differently on different print chains
(or may not be printed at all).

SRR 4

W N]

Il

A-7
0-9

Given after each symbol is the address (bank register, then S-register:
erasable banks of 3 or more are designated by Ei, while those less than

3 can be identified by their S-register contents, less than 1400 To

8)'
the right of the address is given the "health'" of the definition, which
is blank unless it is defined by BEQUALS (or "="), in which case an "="

appears, or if some other difficulty was encountered such as poorly

or multiply defined symbols (suitably indicated per table at bottom of
each page). To the right of the "health" is given the page number on

which the symbol was defined, which of course is the '"master" page number
appearing on the first line of each page. If the symbol is referenced

on several different pages of the program, the next three columns on

the page give the total number of references to the symbol, the page

number of the first reference, and the page number of the final

I1I-19

reference. If the symbol is only referenced on one page, the page number
of the "final" reference is blank, while if it is not referenced at all

these three columns are blank. Three symbol columns appear on each page.

If there were undefined symbols detected during the assembly, the
table following the "Symbol Table Listing' is the "Undefined Symbol
Table Listing', which gives the undefined symbols in the listing, with
their "health" (e.g. "UN" for undefined) and the same type of reference
information as for the previcus table. No address or page number of
definition, of course, appears in this table. If there were no undefined
symbols, then the printing of this table is suppressed.

Next comes the "Unreferenced Symbol Listing', which lists only
those symbols from the "Symbol Table Listing'' that are not referenced
in the program: this table repeats the information from the first 4
columns (symbol, address, health, and page of definition) of the "Symbol

Table Listing". Four symbol columns appear on each page.

Next comes an "Erasable & Eguals Cross-Reference Table', which
lists all erasable memory tags in the order of increasing erasable
memory address: the octal equivalent address is actually used, so that
Tlagword bits and channel mnemonic assignments also appear. Tags
‘assigned to the same octal equivalent address are listed in the order
in which they were defined within the assembly (i.e. in order of increasing
page number), except those symbols which are equated to the same octal
value on the same page of the listing are provided instead in alphabetical
order for that page. At the end of the erasable memory tags, those
fixed memory tags which are defined by "=" (or FQUALS) éssembler
operations are shown. Five columns of addresses are given on a page,

with each address followed by the page number and associated symbol.

I71-20

The next table at the end of the listing provides a summary of
the addresses assigned ('Reserved") and spare ("Available'), in the
form of a '"Memory Type & Availability Display", arranged with erasable
memory first, followed by fixed-fixed memory and then variable-fixed
memory. Figures deduced from this table would differ slightly from
numbers obtained from BNKSUM (see Section IIF), since this table includes
the two TC orders as ''reserved". In addition, this table recognizes
erasable memory as ''reserved" only by the ERASE assembler operation,

so memory cell assignments by 'chained" EQUALS cards are not reflected.

Following this table, there is a table which provides information
on the number of fixed memory cells that are expended for various
functions within the program. Information to make up this table is
provided by the COUNT and COUNT* (see Card Layout) cards within the
listing. The table lists in order the address-field information
associated with the COUNT and COUNT:* cards (except that the COUNT:¢
"bank to be specified" information has instead the actual octal fixed
memory number inserted): these frequently take the form nn /XXX,
where nn is the fixed memory bank number and XXXX is some convenient
mnemonic (normzl printing occurs, however, if a COUNT card specified
an nmn different from that in which the steps involved actually are

located). With the address-field information is given the number of

references (including both COUNT and COUNT that results in same "tag"),
the first and last pages of the final assembly accumulation of cell counts
for that "tag", with the number counted then ("LAST xxx TO yyy: zz");
the total counted for that tag (the same as thé final accumulation of

cell counts if REF = 1) and finally the cumulative count of cells used

since the beginning of the table: the final entry in this last column

111-21

in the table, therefore, would give the number of fixed memory cells
assigned in the complete program, since provision is made for a 'blank"
count. tag. If more than one reference to a given "tag" occurs,

the page number given for the first page of the final accumulation can
be checked: on that page will be found (to the left of the COUNT or
COUNT* print) the serial number of the reference to the "tag", the
previous "span" of counting for that "tag", the number found then,

and the number total to that point for the '"tag". The count information
which is supplied, of course, is only as valid as the original placement
of the COUNT and COUNT¥* cards within the listing, and should be used
with caution as an indicator of how many steps would be "saved", for

example, if a function with a familiar mmemonic were to be deleted.

After this table comes a list of the "Paragraphs Generated for this
Assembly; Address Limits and the Manufacturing Location Code are Shown
for Each." The hardware-oriented information presented in this table
is given in Section IIF.

Next comes an octal listing of the contents of each Paragraph
(256 cells) in the program. Constants and interpretive operations
are flagged by "C:" and "I:" respectively before the cell contents
(which shows the odd parity bit to the right of the rest of the memory
word, separated by a space). The check sum word (the final cell that is
wired in the bank) is flagged by '"CKSM" before the cell. The checksum
is computed by the assembler prior to printing each memory bank, using the
same algorithm as described in Section IIF (including stopping when two
TC orders to the present step are found). Unwired cells in the memory
are flagged by the character "@" (which may appear differently due to
other printing hardware), while those cells whose contents were not

uniquely defined are suitably flagged.

ITT-22

After the octal listing comes a table which provides for each
assigned fixed memory cell the page number in the listing on which the
contents of that cell are specified (except for the check sum word
itself, see Section IIF, in each bank). This is followed by a list of
the Subroutines (if any) that are included in the program, along with
their revision numbers.

Finally, there is an indication of whether or not the assembly was
satisfactory. If it was, meaning that the assembler program detected no
deficiencies, an indication (e.g. "The assembly was good and manufacturable.
No lines were cussed.'") is provided. If deficiencies ('cussed lines") were
detected, the number of these is provided, together with the page number
of the first page and last page where faults were noted. Within the
listing, each fault is accompanied by information on the reason for
flagging as a fault, its serial number, and the page number of the previous
fault (unless the previous one is on the same page). Pages I11-25 to III-28
give a list of the fault messages appearing in one version of the assembly
program, arranged in order of increasing hexadecimal (base 16) serial
number of the message (printed to the far right of the line on which
the fault message appears in the listing). Also indicated is whether the
fault is considered 'fatal" (if so, the assembly is considered "unmanu-

facturable").

Program Changes

Program changes are specified by providing the modification
information segregated by individual log sections which are to be
modified. The locations of the modifications are specified by the

sequence number punched on the card, as described earlier. Deletions

can be accomplished by the pseudo—operation DELETE, with the option
of adding "THRU yyyy'" to delete the cards (i.e. lines) with sequence
numbers ranging from that of the DELETE through yyyy inclusive.

For an extensive insertion, the requirement for punching the sequence
number on every card may be avoided by the pseudo-operation INSERT
(with BEGIN in the ‘tag field, assigned a suitable sequence number); the
end of the insertion is again indicated by INSERT, this time yith END
in the tag field. Alternatively, "WITH nnmn", rather than a blank, can
be provided in the address field of the BEGIN INSERT, in which case the
first sequence number of the inserted coding will be that specified. In
either case, all subsequent sequence numbers (up through the end of the
log section) will be modified so as to count up in the standard "counting
position" of these numbers (which allows four digits, i.e. print column 5).
If it is merely desired to modify the sequence numbers, this can be
accomplished by the CARDNS pseudo-operation.

A capability exists to print revision informstion by individual
Subroutine, reflecting the card inputs which were made to generate the
various versions. For such a listing, the first word in the top line
is "PRINT*" (as opposed to "ASSEMBLE" for the normal program listing),
and instead of the overall program ﬁame, the name of the Subroutine is
included in the top line (if the overall program name is given, the
changes made to the material at the front of the listing, identified by
"(MAIN)" on the first line of the program, are supplied). The second
printed line for such listings gives the "author" and "date" (preceded
by the control characters "./"). A similar listing is generated when
the original modification is inserted, and has the first word in the
top line as "MODIFY" (or "CREATE", if a new Subroutine being generated).

These have "GOOD UPDATE" printed at the bottom if update successful.

ITI-24

Yault Messages Gensrated by Assembler

Serial Fatal Message
| Card Format
0l Queer information in column 17
02 Queer informafion in column 24

o Erasable Problems
03 x EBANK/SBANK illegal except with BBCON & 2CADR
o4 EBANK conflict with one-shot declaration

Polish Opcode Problems

05 Brased region should not cross E-banks

06 x Polish words require blanks in columns 1, 17, & 2i
o7 x Previous Polish equation not concluded properly

08 3% Polish push-up requires negative word here

09 Polish address expected here

OA bd Asterisk illegal on this opcode

0B X Interpretive instruction not expected

0C X Rt-opcode's mode-in disagrees with mode-out setting
oD X Lft-opcode's mode-in disagrees with mode-out setting
0E Address has no associated Polish opcode

OF % Polish address(es) missing prior to this op pair
10 x Location symbol.improper on STADR'ed store word

11 574 Store opcode must be next after "STADR"

12 x Push-up illegal before store opcode without "STADR"
13 Address words cross over bank or VAC area boundary
14 x Interpretive address word out of sequence

15 x Address field should contain a Polish operator

16 36 First Polish operator illegally indexed

17 X Interpreter opcode requires indexed address here
18 b'd Interpreter opcode did not call for indexing

19 X Second Polish operator illegally indexed

14, X Can not handle neg addresses with indexing here

Serial

Fatal

1B

H B Y

20
21

22
23
2L
25
26
27
28
29

b

P

T T T AT B T B

Message

Numeric Constant Problems

More than 1L octal digits in octal constant
More than 10 digits in decimal constant
Fractional part lost by truncation

Range error in constant field

Inexact decimal-to-binary conversion
Double precision constant should not cross banks

No "D" in decims]l number

Merge Controcl Problems

Subroutine name not recognized

Multiple calls in one program or subroutine

Card ignored because it makes memory table too long
Card ignored because it's too late in the deck
Conflict with earlier head specification

Card number out of sequence

No match found for second card number

First card number not less than second

No match found for card number or acceptor text

General Address Field Problems

Blank address field expected

W " is undefined

" " was undefined in passl

B '" should be symbolic

& " was nearly defined by equals

3 " was nearly defined by equals in passl
1 " given multiple definitions

L " multiply defined including by equals
" " multiply defined including nearly by ='s
' given oversize definition

" " associated with conflict

" " associated with multiple errors
associated with wrong memory type

L " is in miscellaneous trouble

I11-26

Serial

Fatal

99
34
3B
3C
3D
3E
3F
40

41
L2
43

L5
L6

L7

EREERELG R

"

MoMooW M

CO I T O

M

Message

Address is inapprepriate for opecde

Address is in bank 00 (filled in with bank number)
Address depends on unknown location

Irregular but acceptable address

Address field is meaningless

Addr.must be basic single-precision constant or inst
Range error in value of address

Indexing is illegal here

Opcode Field Problems

Illegal or mis-spelled operation field
This instruction should be indexed

This instruction should be extended
This instruction should not be extended

Predefinition Problems

I " shouldn't have been predefined

Attempt to predefine location symbol failed

Location Field Problems

Illegal location field format
Location field should be blank
Location is in wrong type of memory
Numeric location field is illegal here
Oversized or ill-defined location
Conflict in use of this location

1 "won't fit in symbol table

No such bank or block number in this machine

This bank or block is full

Leftover Problems

" " is indefinably leftover

Leftover won't fit in memory

Improper leftover location field format

1T-27

Serigl Fatal Message

More Cusses

53 Queer information in colum 1

54 Address field arithmetic not allowsd here

55 Address constant not expected hers

56 Address constant expected here

57 Count table full. Address field ignored.

58 : 4 BBEANK type constants reqguire preceding EBANK=

59 One shot SBANK= above was not needed

5A Address 00,0000 (filled in with address)

5B "STADR" unnecessary

5C Assembler finds error but has no specific cuss for it
5D % Address is in super bank O (filled in with bank)

ITT-28

IV MACHINE TANGUAGE INSTRUCTICNS

IVA General Principles

There are 34 machine-language operation codes which may be performed
under program control (the operation EDRUPT is conventionally excluded
from the list of operation codes, and is discussed in Section IIH rather
than here). Use of special addresses with certain of these instructions
permits an additional four special functions (EXTEND, INHINT, RELINT,
and RESUME, see Section VA) to be performed, and use of addresses
00208 - 00238 permits shifting operations to be performed, as described
inVSection 1ID. Of the 34 instructions, 15 may be classified as
"regular' orders and the remaining 19 as "extended" (or "extra code'")
orders. The extended orders must be written as two lines of coding
(occupying two fixed memory cells, cf. Section IIB), with the first
line setting a special bit in the instruction register (by the EXTEND
operation: the bit is normally reset after the instruction is performed)
and the seéond line giving the order itself. Without the EXTEND, the
second line would be interpreted as a regular order.

Only a few of the instructions can be used with operands in both
erasable and fixed memory, since most of them achieve an effective
extension of the operation code bits by using the most significant two
bits of the 12 bits nominally assigned to the S-register. The seven
channel instructions (see Section IIE), however, use the most significant
three bits of the nominal S-register information to determine the
operation to be performed.

The following two sections list the operation codes in alphabetical

sequence, with Section IVB giving the regular orders and Section IVC

IVA-1

giving the extended orders. The symbols‘A, L, and Q refer to the
arithmetic registers defined in Section IIC, while quotation marks
around a symbol signify that the value of the address is of interest,
rather than the information stored in that address. The following

special symbols are also used:

E means an address in the range (S—register) OOOO8 17778, i.e.

a hardware register or an erasable memory cell.

F means an address in the range (S-register) 2OOO8

T177gs 1.e.

a cell in fixed memory.

H means a channel (see Section IIE).

K means an address in the range (S-register) OOOO8

7777, i.e.
a hardware register, an erasable memory cell, or a cell in

fixed memory.

N means the address of the step now being performed (i.e. the

one containing the operation code being described).
The term '"erasable memory'" is used in Sections IVB and IVC to
signify either an erasable memory cell or a hardware register.

The value shown in the "Operation" column is the operation code
that appears in the program listing: if two values appear, the choice
between them depends on the value of the address, as discussed in
Section III. A parenthetical 1 is used with the orders in Section IVC
to emphasize the need for having the extended-order flip-flop set by
the EXTEND operation.

The tableron the following page summarizes the machine language
ofders by operation vélue, separated into‘the "regular orders”‘and the

"extended orders''.

IVAE-2

Machine lLanguage Orders

Regular Orders

0

Address
Address
Address

10-11
12-17
20-21
22-23
24-25
26-27

3
L

50-51
Address

52-53

5k~55

56-57

6
7

CS

INDEX

17 = RESUME
DXCH

TS

XCH

AD

MASK

IVA-3

Extended Orders

00
0l
0z
03
OL
05
06
07
10-11
12-17

20-21
22-23
24-25
26-27

60-61
62-67

READ
WRITE
RAND
WAND
ROR
WOR
RXCOR
EDRUPT

DV
BZF

MU

QXCH
AUG
DIM

DCA
DCS
INDEX

SU
BZMF

IVB Regular Orders

Mnemonic Operation

AD VKM 6
ADS "EM 26
27
CA VK" 3
ccs "EM 10
14

Performance

Add. Two MCT (23.L4 microsec). Address can be
in erasable or fixed memory.

A=A+K
If "K' = "A", this doubles the contents of the
accumulator.

If "E" = 20, - 238’ K modified as described in
Section IIB.

Add and Store. Two MCT (23.4 microsec).
Address can be in erasable memory only.

A=A+E
E=A

If "E" = 20, - 23,, the value stored in "E"
modified as described in Section IID.

Clear and Add. Two MCT (23.4 microsec).
Address can be in erasable or fixed memory.

A=K

If "K" = 20, - 238, K modified as described
in Section IID.

Count, Compare, and Skip. Two MCT (23.4

microsec). Address can be in erasable
memory only.

Load A with |E| - 1, limited 2 +0, and skip
O(E>0), 1 (E=40), 2 (E< -0), or 3
(E = -0) steps. Overflow bit can be sensed.

If E is positive non-zero (in range 000018 -
37777g):

A=E-1 (ifE=1, A =+0)
Proceed to '"N" + 1 (the next step)
If E is +0 (OOOOOB):
A =40 ‘ ‘
Proceed to '"N" + 2 (skipping one step)

IVB-1

Mnemonic Operatiocn ’ Performance

oS ey If E is negative non-zero (in range 77?76
(cont) AOOOO ¥

h-1-% (if E = -1, A = +0)

Proceed to "N'" + 3 (skipping two steps)
If Eis -0 (777774):

A =+0

Proceed to '"N" + L (skipping three steps)

If "g" = 20, - 238, E modified as described in

Section L
Cs ' A Clear and Subtract. Two MCT (23.4 microsec).
Address can be in erasable or fixed memory.
A=-K
If "K" = "A", this complements the accumulator.
If "K' = 20, - 238, K modified as described in
Section II
DAS "EM 20 Double Precision Add and Store. Three MCT
21 (35.2 microsec). Address can be in erasable
memory only.
= +
Edp Edp (4, L)
Ii‘ HEH ?é HAH or HLH:
L =+0
If ngEn 7é AT .

A = +0 if no overflow

A =1 sgn A if overflow

If "E" = "A", this doubles the double precision
number in (A, L).

If "E" = - 23 g E modified as described in
Section IIB also true if "E" 41 does.

DXCH "“E" 52 Double Precision Exchange. Three MCT (35.2
53 microsec). Address can be in erasable memory
only. . .
) = = . 1 t ..L Lc

Set hdp (A, L) and (A, L) Edp Overflow lost in
if "EY = "Z", see DTCB in Section VA.

If "E" ="L", A ends up in L, L ends up in Q, and

Q ends up in A (see Section IIG).

Tf UEN = - 23,4, or if "E" +]1 does, modification
takes placé as déscribed in Section IID.

IvB-2

Mnemonic Operation 7 Performance

INCR U“EM 24 Increment. Two MCT (23.L4 microsec). Address
25 can be in erasable memory only.
=K+ 1 (if E was -1, result is -0)
If "E" = 20, - 238, E modified as described in
Section IID.
Unless "E'" = "A" A not affected.

If "E" = 0025, - 0030, and overflow occurs,
action takes place as described in Section
IID when such overflow occurs.

INDEX "E! 50 Index using Erasable. Two MCT (23.4 microsec).
51 Address can be in erasable memory only.

If "E" = 17,, see Section VA (RESUME) .

Otherwise, add E to the contents of '""N'" +1 and
use the resulting instruction as the next one
to be performed. The order code can be changed
(including bit 15, the '"sign"), but overflow
will not cause an extended order, nor will
overflow change bit 15 of the original operand.

If HEN = 20, = 238, E modified as described in

Section IID.
LXCH "E" 22 ' Exchange L Register. Two MCT (23.4 microsec).
23 Address can be in erasable memory only.

Set E=1 and L = E. Overflow lost in loading L.

If "E" = 20, - 23,, the wvalue stored in "E"
modified as described in Section IID.

MASK "K" 7 Mask. Two MCT (23.4 microsec). Address can
be in erasable or fixed memory.

Replace A with the logical "and" of A and K:
where the corresponding bits of both A and X
are 1, a2 1 is placed in that bit position of
A; where the corresponding bits of A and K
have at,least one binary O, a O is placed in
that bit position of A.

K is not disturbed.

IVE-3

Mnemonic Operation
TC "K" 0]
TCE WEY 12—

17
TS "E! 50

b5
XCH vEM 56

5

Performance

Transfer Control. One MCT (11.7 microsec).
Address can be in erasable or fixed memory.

If "K" =3, L, or 6, see Section VA (RELINT,
INHINT, and EXTEND respectively).

Otherwise, set Q = Z and take the step at "K"
as the next instruction (proceeding from

that point). If "K" is outside the range
1400, - 3777,, the next instruction is unique;
otherwise, it is determined by EBANK, FBANK,
and/or SUPERBNK (see Section IIB). The
information in BBANK 1s not affected by this
instruction, and Q is loaded with "N" + 1
(S-register portion).

Transfer Control to Fixed Memory. One MCT
(11.7 microsec). Address can be in fixed
memory only.

Take the step at "F" as the next instruction
(proceeding from that point). See TC for
discussion of effect of FBANK and/or
SUPERBHK ,

Q is not disturbed.

Transmit to Storage. Two MCT (23.4 microsec).
Address can be in erasable memory only.

E=A
If "E" = "A", skip next instruction if overflow.
If "EM £ ngn,

A =1 sgn A if overflow, and skip next
instruction

If no overflow, A left alone and next
instruction is performed.

If "E" = 20, - 23,, the value stored in "E"
modified as described in Section IID.

Exchange. Two MCT (23.4 microsec).
Address can be in erasable memory only.

Set E=A and A = E

If "g" = 20, - 23,, the value stored in "E"
modified as descrPibed in Section IID.

IVB-4

TVC TFExtended Orders

The execution times given below for the extended orders includes

the one MCT (11.7 microsec) for the EXTEND operation.

Mnemonic Operation : Performance

EXTEND Augment Magnitude. Three MCT (35.2 microsec).

AUG "EM (1)2k Address can be in erasable memory only.
(1)25

E=E+1sgnE (40 is plus, -0 is minus).

If "E" = 20, - 238’ E modified as described in
Section IIB.

Unless "E" = "A"] A not affected.
If "E" = 0025, - 0030, and overflow occurs,

action takes place as described in Section
ITD when such overflow occurs.

EXTEND Branch on Zero to Fixed. Two MCT (23..4 micro-
BZF "N (1)1~ sec) if branch, and three MCT (35.2 microsec)
{1)17 if do not branch. Address can be in fixed

memory only.

If A =71 0 (including overflow information):

Take step at "F" as the next instruction,
proceeding from that point.

Otherwise, perform instruction at "N" +1,

See TC for discussion of effect of FBANK and/or

SUPERBNK .
EXTEND
BZMF UF" (1)62- Branch on Zero or Minus to Fixed. Two MCT
(1)67 (23.4 microsec) if branch, and three MCT

(35.2 microsec) if do not branch. Address
can be in fixed memory only.

If A =71 0 or negative (including overflow
information):

Take step at "F'" as the next instruction,
proceeding from that point.

Otherwise, perform instruction at "N" +1.

See TC for discussion of effect of FBANK and/or
SUPERBNK .

IVC-1

Mnemonic Operation Performance

EXTEND
DCA "KM (1)3 Double Precision Clear and Add. Four MGT
(4L6.9 micrgsec). Address can be in erasable
or fixed memory.
(&4, L) = de. Overflow lost in L.
If "K'" = 20, - 238, or if "K" +1 does, modifica-
tion takes place as described in Section IID.

If YK = "L" Q is loaded into L and A.

EXTEND

DCS "KM ()4 Double Precision Clear and Subtract. Four
MCT (46.9 microsec). Address can be in
erasable or fixed memory,

(4, L)

il

- K. . Overflow lost in L.
dp

If ”K”.=V“A”, this complements (A, L).

If "K" =20, - 23,, or if "K" +1 does, modifica-
tion takes place as described in Section IID.

EXTEND Diminish Magnitude. Three MCT (35.2 microsec).
DIM "E" (1)26 Address can be in erasable memory only,
(1)27
If & =71 0, E not modified (unless "E" = 204 -
23g).

Otherwise, E=E -1 sgn E (If|El=1, -O—»E)

If "E" = 20, - 238, E modified as described
in Section TID.

Unless "E" = "A", A not affected.

EXTEND Divide. Seven MCT (82.0 microsec). Address
DV "E" (1)10 can be in erasable memory only.
(1)11
' Divide (A, L) by E, and leave quotient in A
and remainder in L,

Improper results obtained if "E" = "L' or if
any operand has overflow bit set (including L).
Sign agreement of (A, L) need not exist before
the division is performed. ‘

IfTFE=10, A ="1TMX (377774 or 40000,)

E is not disturbed (unless "E'" = VA", in which
case sign is reversed if A is positive),

IVCe-2

Mnemonic Operation Performance

EXTEND See Section ITH.

EDRUPT "F" (1)07

EXTEND Index and Extend. Three MCT (35.2 microsec).
INDEX "K" (1)5 Address can be in erasasble or fixed memory.

Add K to the contents of "N'" +1 and use the
resulting extended-order instruction as the
next one to be performed: note that the
EXTEND propagates through this INDEX order
to affect the following order alsc. Otherwise,
performance like INDEX (order code can be

changed, etc.), except that address 0017, # RESUME.

If "K" = - 238’ K modified as described in
Section IIE
EXTEND Multiply. Four MCT (46.9 microsec). Address
MP "K" ()7 can be in erasable or fixed memory.

Multiply A by K, leaving the most significant
half of the product in A and the least signifi-
cant half of the product in L. The signs of
A and L agree.

Improper results obtained if either operand
has overflow bit set.

A zero-magnitude product will be +0 unless
the original contents of A were T O and K was
non-zero and of the opposite sign to 4,

K is not disturbed (unless "K" = "A" or "L"),
EXTEND Modular Subtract. Three MCT (35.2 microsec).
MSU “EM (1)20 Address can be in erasable memory only.

(1)21
Replace A by the signed ones complement
difference (A - E), where both A and E

operands are treated as twos complement
numbers.

The twos complement difference is formed, and
the result decremented by 1 if the sign is
minus (indicating that the difference angle,
for B-1 revolutions scaling, is at least
180°).

If E = +0, effect is to convert A to ones
complement; if "E" = "A", +0 left in A, as
is also true if E.= A, The 5, bit is set
to S, (see Section IIG), so nd overflow
after the operation would be observed.

IVC-3

Mnemonic Operation

EXTEND

I{SU I'\EH

(cont)

EXTEND

QXCH "E" (1)22
(1)23

EXTEND

RAND "H" (1)o2

EXTEND

READ "H" (1)00

EXTEND

ROR "H" (1)oL

EXTEND

RXOR "H" (1)06

Performance

If "E" = 20, - 238, E modified as described in
Section IIB.

Exchange Q Register. Three MCT (35.2 microsec).
Address can be in erasable memory only.

Set E=Q and Q = E.

If "E" = 20, - 23,4, the value stored in "E"
modified 25 descFibed in Section IID.

Read Masked Channel., Three MCT (35.2 microsec).
Address can be a channel only, except that 34
and 35 give a O result.

Replace A with the logical "and" of A and H:
see discussion with MASK instruction.

Read Channel. Three MCT (35.2 microsec).
Address can be a channel only, except that 34
and 35 give a O result.

Set A = H.

Read ORed Channel. Three MCT (35.2 microsec).
Address can be a channel only, except that

34 and 35 give a O result when sensed, leaving
A undisturbed.

Replace A with the logical "“or" of A and H:
where the corresponding bits of both A and H
are 0, a O is placed in that bit position of
A; where the corresponding bits of A and H
have at least one binary 1, a 1 is placed in
that bit position of A.

Read Exclusive-ORed Channel. Three MCT (35.2
microsec). Address can be a channel only,
except that 34 and 35 give a O result when
sensed, leaving A undisturbed.

Replace A with the logical "exclusive or' of
A and H: where the corresponding bits of A
and H are different, a 1 is placed in that
bit position of A; where the corresponding
bits of A and H are the same (binary 1 or 0),
a 0 is placed in that bit position of A.
Gives effect of a bit-by-bit "add without
carries',

Mnemonic Operation

EXTEND

SU MEM (1)60
(1)61

EXTEND

WAND '"'H (1)03

EXTEND

WOR "H" (1)05

EXTEND

WRITE "H" (1)01

Performance

Subtract. Three MCT (35.2 microsec). Address
can be in erasable memory only.

A=4A-~-FE

If VBN = 20, = 238’ E modified as described in
Section IID.

Write Masked Channel. Three MCT (35.2 microsec).
Address can be a chamnel only. If "H" = 34, or
358, zero is loaded into these channels and A.
If"H" = 33,, order performs as described for
loading A, and bits 15-11 (flip-flops) of
this channel are reset (to binary 1 as sensed).
For other read-type chamnels, loading has

no effect. In loading channel, all bits set
zero briefly. See Section IIE.

Replace A with the logical "and" of A and
H (see discussion with MASK instruction), and
then write A into H.

Write ORed Channel. Three MCT (35.2 microsec).
Address can be a channel only. See discussion
with WAND for chennels 33-35 and read/write
channels: if "H" = 3&8 or 358, A left alone.

Replace A with the logical "or'" of A and H

(see discussion with ROR instruction), and
then write A into H.

Write Channel. Three MCT (35.2 microsec).
Address can be a channel only. See discussion
with WAND for channel 33 and read/write channels.

Write A into H.

IvCc-5

IVD Machine Language Examples

The following examples of machine language coding have been
fabricated to illustrate some of the basic principles of the different
machine language instructions, rather than necessarily to illustrate
efficient coding techniques or to perform meaningful calculations. The
notation VAR is used for '"variable'" (quantity in erasable memory) and
CON for "constant" (quantity in fixed memory). Transfer orders go to
STEP, the tag for a program step (likewise assumed to be in fixed
memory, either in the same bank as the coding which transfers to it or
in fixed-fixed memory). Unless otherwise stated, it is assumed that
the numbers entering the computations are scaled so that there is no

risk of overflow.

1. VAR = VAR + CON

CA VAR

AD CON

TS VAR
or

CA CON

ADS VAR

2. VAR = VAR - CON

C3 CON
ADS VAR
or
CA CON
EXTEND
SU . VAR SU ofdér is for erasable‘memory only.
cs A Complements accumulator (same as COM).
¥CH VAR Does not skip next order if overflow.

vD-1

3. VAR = CON - 1

CS
INCR
CS
TS

CA
EXTEND
DIM
TS

CON

VAR

CON

VAR

CON

VAR

CON

A

VAR

(CON positive non-zero integer)

CCS order is for erasable memory only,

Transfer to here is impossible since CON was
positive non-zero. These cells could be used
tc store constants, or transfer to error routine.

If desired to set VAR = VAR -1, could do
EXTEND DIM VAR directly.

L. VAR = |VAR| - 1, limited>-+0

CCS
TS
TS
TS
TS5

CCS
TCF
ICF
TCF
STEP TS

VAR
VAR
VAR
VAR
VAR

VAR
STEP
STEP
STEP
VAR

If positive non-zero originally, to here.
If +0 originally, to here,
If negative non-zero originally, to here.

If -0 originally, to here.

This same as NOOP.

IVD-2

5. VAR = VAR + 1 sgn VAR If VAR is zero magnitude, consider positive.

CA VAR Note that EXTEND AUG VAR cannot be used since
AUG gives -1 if E = -0.
EXTEND
BZF STEFL Branch on +0 or -0.
EXTEND Must be repeated.
BZMF STEP2
STEP1 AD ONE To here also if was positive non-zero. ONE is
a constant, OOOOlB.
TCF STEP3
STEP2 CS A
AD ONE
CS A Net effect same as A - 1.
STEP3 TS VAR
or
CCS VAR
AD ONE Cancel subtraction of 1 by CCS.
TCF STEP
AD THREE Constant, wvalue 000038, added if original
number negative.
CS A A now is VAR - 2 if original VAR negative non-
zero or -0 if original VAR was -0.
STEP AD ONE
TS VAR

6. Set cells VAR through VAR+1l to zero

CA ELEVEN Constant, value 11.
STEP TS TEMP Temporary storage cell, for indexing/counting.
CA 7 Absolute address 000078 (see Section IIC).
INDEX TEMP First time makes next order TS VAR+11l, then
TS VAR+10, etc.
TS VAR
CCS TEMP Will perform total of 12 iterations.
"TCF STEP ‘Decremented value of TEMP in A, ready for storing.

CA
STEP LXCH
INDEX
LXCH
cCS
TCF

CA
STEP TS
EXTEND
DCA
INDEX

DXCH
EXTEND
DIM
CCS

TC

-2
=
&

I

+

CA
XCH
AD
IXCH
C5
IXCH

IXCH

CA
EXTEND

XCH
AD

ELEVEN
7

A

VAR

A
STEP

TEN
TEMP

DPZERO

VAR

TEMP
TEMP
STEP

Same as ZL.

Constant, value 10,

Double precision zero.

First time through makes next order DXCH VAR+10
(causing VAR+10 and VAR+1l to be zeroed), next
time DXCH VAR+8, etec.

IF TEMP = 0O, has no effect.

TEMP counted down by two's (10,8,6,4,2,0).

VAR (shifted right two places)

VAR
SR
A
A
SR
SR

VAR

Shift right register, cell 0021, (Section IID).
Same as DOUBLE.

Sensing operation causes another shift.

Puts SR register original contents back,
and puts VAR shifted right 2 places in L.

(if desire to round quantity)

VAR

BIT13
L
A

Constant, value 10000
Could zlso do IXCH A.

Doubles number obtained from L (which is the
least significant half of product). If result
overflows, rounding is reguired.

g

TS

TCF

ADS
1XCH

7 Need to check for overflow and change contents
of A (see Section IIC).

2 This step not performed if overflow obtained;
it causes the next step to be skipped.

L A has £ 1 (from TS order), i.e. "overflow" data.

The CYR register (address 0020,) could have been used only
if it was known that bits 1 ang 2 of VAR were the same as
the sign bit: CYR is primarily intended for logical
manipulations rather than arithmetic computations.

8. VAR = 4 VAR (shifted left two places)

CA
AD
AD
TS

CA
TS
CA
CA
TS5

CA
LXCH
EXTEND

DV
TS

CA
EXTEND
MP

LXCH

VAR
VAR
A Same as DOUBLE,
VAR

VAR
CYL Cycle left register, cell 00228.

CYL Dummy sensing operation to force another shift.
CYL
VAR

VAR

7 Same as ZL (needed since division uses A and L).

BIT13E Constant, 100008, previously set into erasable,
VAR

VAR

BIT3 Constant, OOOOQB, causing movement of VAR right
' by 12 places. '

VAR

IVD-5

9 VAde = VARd + CONdp
EXTEND
DCA CCON
DAS VAR
or
EXTEND
DCS MCON If constant stored as complement of true value.
DAS VAR
or
EXTEND
DCS CoN
EXTEND Must be repeated.
DCS A Same as DCOM.
DAS VAR
or
CA VAR +1 least significant half,
AD CON +1
TS VAR +1 If overflow, next order skipped and overflow
data left in A.
CA 7 Zero,
AD VAR
AD CON
XCH VAR Avoids skip if overflow.

10. Transfer to STEP if bit 9 or 10 of VAR = 1, otherwise proceed

CA 9OR10 Constant, 01400.
MASK VAR
ccs A
TCF STEP
or
CA VAR If do QXCH VAR, value of VAR destroyed.
EXTEND
QXCH A Could also have done TS Q.
CA 90R10
EXTEND
RAND QCHAN Same as Q.

IVD-6

cCS A

TCF STEP
or

CA VAR

EXTEND

WRITE LCHAN

CA 90R10

EXTEND

WAND LCHAN

EXTEND

READ LCHAN

gos A

TCF STEP

CCS Q would not work here, since RAND leaves
answer in A.

Same as L.

Must be repeated.
(Redundant since L already in A from WAND)-

11. Transfer to STEP if bits 7-1 of VAR are all 1, otherwise proceed

Cs VAR

MASK LOW7

EXTEND

BZF STEP
or

CA VAR

MASK LOW?

EXTEND

AUG A

TS EDOP

CCS EDOP

TC STEP
or

IXCH 7

CA VAR

EXTEND

WOR LCHAN

CA LOW7

EXTEND

ROR LCHAN

Gives complement of VAR in A.
Constant, 0017?8.

Leaves bit 8 = 1 if low 7 bits all 1.
Edit operand register, cell 00238.
Will be 00001, if low 7 bits were all 1.

8
Same as ZL.

Since was zero at start, same as WRITE.

Bits 7-1 of A remain at 1.

EXTEND

RXOR LCHAN Any bits set 1 by ROR set to zero again in A,
' as are those bits of 7-1 in A that are 1 in L:
ROR could have left some of bits 15-8 at 1.

EXTEND
BZF STEP

12. VAR = CON - VAR, with ones complement difference of single precision
twos complement vectors being formed.

CA TWO Constant, wvalue 000028.
STEP TS TEMP For counting and indexing.
INDEX A
CA CON
EXTEND
INDEX TEMP The EXTEND '"carries through'" to the MSU: note

that instructions must appear in this sequence
or the INDEX would change the EXTEND to a
transfer order (see Section VA).

M5U VAR
INDEX TEMP
TS VAR
CCs TEMP
TCF STEP

13. Save routine's return address (in Q register% then perform a
subroutine starting at STEP to add quantity at calling address +1
to VAR, and then return to calling address +2.

EXTEND
QXCE TEMP
TC STEP TCF would not work, since it does not load Q.
DEC boowd Constant to be added.
EXTEND
QXCH TEMP Restore Q register.
— (proceed)
STEP INDEX Q
oA o0 " Obtain value of constant.
ADS VAR
INDEX Q
TC 1 Return to (address in Q) +1, or calling address +2.

Ivp-8

14. If bit 5 of FLAGWRD3 = 1, set VAR = CON1; if it is O, set VAR = CONZ2.

CA
MASK
CCS
EXTEND
DCA

TS

FIAGWRD3
BITS
A

CON1

VAR

Constant, value 000208-

Skipped if bit 5 = O.

If EXTEND not done, becomes CA CON2 (CON1 and CON2
stored in consecutive memory cells), since assembler
increments address so that least significant half

of double precision operand taken first.

15. VAR = VAR - CON, limited > O (CON > 0)

CS
AD
AD
TS
CS

ADS

CON
VAR
POSMAX
VAR
VAR

VAR

Constant, value 377778-

This line skipped if VAR - CON 2 O000l,, so
that addition of 377778 forced overflow {(and
left A = 000018).

If overflowed above, A = 00001, which, for the
word length, cancels out the POSMAX addition.
If did not overflow, VAR = VAR - VAR, which = O.

IVD-9

V__SPECIAL ASSEMBLER OPERATIONS

VA Equivalent Machine Language Instructions

The assembler has the capability of recognizing several operation
codes in addition to the '"standard" ones listed in Section IV. Most
of these additional codes are alternate mnemonics which happened to be
considered useful by the G&N contractor, rather than a reflection of
supplemental hardware capability. Four of the codes, however, do
represent special hardware performance (EXTEND, INHINT, RELINT, and
RESUME).

Some of the additional mnemonics which may be encountered in the
listing are given below. The octal information generated by the
assembler for these additional mmnemonics is identical to that which
would be produced for the coding in the '"equivalent! column; Use of
these additional codes, of course, is not a requirement when generating
coding. Functions performed for mnemonics other than those listed can
be determined from the octal codes given in Section IV. In the tabulation

below, the symbol "--" means 'mot provided" (true of addresses for many

of the operation codes), and "E", "F", and "K" are defined in Section IVA.

Additional . Egquivalent

Operation Octal

Mnemonic Information Function

CAE "EM CA "EM Clear and Add from Erasable. In the listing,
CAE is shown as 30 xxx or 31'xxx (CA is
3 Xxxx).

CAF npn CA "FY Clear and Add from Fixed.

oM - - CS m"an ‘Complement accumulator contents.

EXTEND EXTEND Double Precision Complement (i.e. (A, L)).

DCOM -—- DCS "A"

© VAL

Additional
Operation
Mnemonic

DDOUBL —-
DOUBLE —-

DTCB —

DTCF —-

EXTEND —-

INHINT —-

MSK 'ITKH
NDX HKII or IIEH

NOOP —-

OVSK —-

Equivalent
Octal
Information
D‘Als !Iﬁ_ll

AD HAIL

DXCH nz"

DXCH "FBANK"

TC 00068

TC OOOL,.8

I,,IAS:K IIKH

Function
Doutle Precision Double (i.e. double (&, L)).
Double accumulator contents.

Exchange BBANK with L register and Z register
with accumuiator. Serves as a '"double
precision transfer order!, with the additional
feature of retaining in (A, 1) return

address information. See 2CADR in Section VC.

Exchange Z register with L register and
FBANK with accumulator. Serves as another
type of '"double precision transfer order",
differing from DTCB in that EBANK data is
not changed or retained. See 2FCADR in
Section VC.

Cause an extended order (see Secticn IVC)
to be performed as the next step, by
setting the extended order flip-flop in
the instruction register (flip-flop
would be reset after the instruction
performed, unless the next instruction is
INDEX, see Section IVGC). Note that this
is not the usual significance of the

TC order, but no capability is lost

since 00068 is BBANK address.

Cause a flip-flop to be set that results
in having program interrupts inhibited
(no effect if generated during a program
interrupt, see Section ITH). Note that
this is not the usual significance of
the TC order, but no capability is lost
since OOOL;8 is FBANK address.

Alternate notation.

INDEX "K' or "E" Alternate notation.

TCF +1 (fixed)

No operation: program takes next order

CA "A" (erasable) in sequence without disturbing regis-

TS HAII

ters.

Overflow skip: skip next instruction if
accumulator overflow is present, but leaves
accumulator contents undisturbed. If it
is desired &lso to set accumulator, this
can be done by TS 7 (see Section IIC).

VA-2

Additional Equivelent
Operation Octal
Mnemonic Information Function

RELINT — TC 00038 Cause a flip-flop to be reset that results
in having program interrupts released
(i.e. enabled) again: it resets the flip-
flop that is set by the INHINT command.
Note that this is not the usual signifi-
~cance of the TC order, but no capability-
is lost since 00038 is EBANK address.

RESUME —- INDEX "BRUPT" Trigger‘the performance of the instruction
hardware sequence that causes the program

performance to be resumed after the
computations required to satisfy a program
interrupt have been completed (see Section
ITH). The Z register is loaded with ZRUPT
(cell 0015,), and BRUPT (cell 0017.) is
taken as the next order. Note thaé this

is not the normal significance of the INDEX
order, but no capability is lost since

BRUPT is intended, in general, for hardware
rather than software loading (see Section IID).

RETURN —- TC "Q" Return from a subroutine entered by a TC
order (provided FBANK and SUPERBNK are
proper and no additional TC commands, or
other loadings of Q, took place).

EXTEND EXTEND Square the contents of the accumilator.
SQUARE —- MP MAM '

TCAA — TS MFEH Transfer Control to Address in A.

TER, VKW TC "K" Alternate notation (Transfer Control setting
up Return).

X1Q — TG " IM Execute instructions in L and Q. The Q register,
of course, would be loaded with return address
information by the TC, so effect is merely to
execute the order in L and then return.

XATQ —- TG 1AN Execute instructions in A, L, and Q. See X1Q,
except here would execute orders in A and L:
if A = 00006,, then contents of L would be
an extended order.

ZL —- LXCH 0007, ° Zero L register (see Section IIC for 'cell
OOO?B'information).

EXTEND EXTEND Zero Q register.
72Q — QXCH 00078

0-7 Considered to be TC, CCS, DAS, CA, CS, INDEX, AD, MASK
respectively.

VA3

VB Representation of Numbers

The value of numbers (generally considered to be "constants')
processed by the assembler may be specified in several different ways.
This section is concefned with representations of decimal and octal
numbers, as well as special combinations (such as the display system
verb and noun information), while Section VC is devoted to a discussion

of various address representation methods.

Decimal Numbers

Single precision decimal numbers (those to be stored in one cell
of 14 magnitude bits and a sign bit) are specified by the operation
DEC. Double precision decimal numbers are stored in two consecutive
memory cells, each with 14 magnitude bits and the same sign bit
(negative numbers are stored in ones complement form in £he software,
unless otherwise specified), and are specified by the operation 2DEC.
The value of the constant may be specified in several different ways:

a) As a simple decimal quantity less than 1 (egs ".2")e In
this case, it is converted to a binary number with scale factor

BO (see Appendix A), so that the most significant magnitude
bit corresponds to 2_1, the next bit 2'2, etc.

b) As a simple decimal integer (e.g. '"200" or "200."). In this
case, it is converted to a binary number so scaled that the
least significant bit of the constant (whether single or
double precision) corresponds to the value of "1'". This
means that for single precision the binary number has a
scale factor Bl) and for double precision the binary number
has a scale factor B28.

VB-1

c) As a decimal quantity (integer or fraction, with or without a
fractional part) together with an indicated binary scale
factor (e.g. "200 B-9" or ".1 B2"). In this case, it is
converted to a binary number with scale factor given by the
complement of the quantity following the '"B": this would
provide a scale factor of B9 and B-2 for the two examples
cited. It should be evident that "200 B-14" (single precision)
or "200 B-28" (double precision) give the same result as the
numbers without specification of the scale factor explicitly.
If the quantity processed as described would overflow, however,

then the conversion process of "d'" instead is used.

d) As a decimal quantity with an indicated scale factor that would
cause overflow if processed in accordance with '¢" above. In
this case, the number is converted to a binary number with
scale factor B (14 - S') for single precision and B (28 - S')
for double precision. Hence single precision "200 B5" would
result in the same number as "200 B-9". The B5 representation
is convenient in some applications in which the "basic!
scaling or computations are done in integer arithmetic, so that
a scaling up by 5 places is conveniently input to the assembler
as a "B5".

Decimal exponents are specified by an E followed by the exponent
value: .32 E2 (or .32 E 2 or .32 E+2) causes the same result as a
simple 32. Plus signs may optionally be omitted, but minus signs must
be specified. As mentioned previously, a minus sign before the value
of the number causes it to be converted in ones complement form. Both
decimal and binary exponents, of course, may be associated with the
same number., If no decimal indication of the value of the number is

supplied,’ then it is assumed that the value is 1 ‘(hence "B-5" and

".1E1 B-5", for example, produce the same binary information).

VB-2

Several special—ﬁurpose assembler operations are included in order
to facilitate the generation of binary cell contents. The operation
VN (which can also be written as NV, although VN is preferred because
verb digits must precede noun digits) is available to specify a verb
and noun combination for the display system (see Section IIJ) which
presently uses decimal verbs and nouns, each in range 00 - 99 (although
not necessarily all of the possible patterns are assigned). The VN
operation causes the last two digits of the number in the address field
to be converted to binary and assigned to bits 7-1 of the memory word
(the noun); the preceding two digits are also converted to binary, and
assigned to bits 14-8 of the memory word (the verb). The number
specified, of course, in the address field with this operation should
not exceed 9999.

Another special operation is MM, which achieves the same effect
as DEC in converting the address field information to binary information.
This operation is sometimes used when program numbers (also referred
to as "major modes", see Section IIJ) are specified, and hence the

number in the address field should not exceed 99.

Qctal Numbers

Single precision octal numbers are specified by the operation
OCT or OCTAL, which perform the same function. The quantity specified
may have leading zeros suppressed: 23, 023, and 00023 will all be stored
as the same memory cell contents. A sign may be included if desired,
« in which case the usual ones complement. for a negative number is formed:

OCT -37 becomes 7?7408 in the memory. Fractional octal numbers

(such as 12.3B3) may also be provided, with the scale factor indicating
a left shift required: the example, therefore, would be stored in memory
as 0O1238"
Double precision octal numbers can be written either as two
consecutive single precision cells (via OCT), or by the operation 20CT,
in which case all the digits in both halves of the word must be included
in the input. The operation 20CTAL is treated the sames as 20CT.
Particularly in the interpretive language, it may appear unnecessary
to specify explicitly the OCT for octal numbers. As has been mentioned
previously, however, such quantities are considered as addresses by the
assembler (in "true address" form, see Section IIB). For values less
than 100008, the true and memory information would be the same; above
that value, however, 10000, is subtracted from the input (so that
20000, for example, would be loaded into the memory as 10000). It is
good practice to specify explicitly the assembler operation which is

desired.

VB-4

4

T

Representation of Addresses

The value of addresses formed as separate quantities in the listing

can use the following operations (BNKSUM is discussed in Section IIF).

iDNADR (i = 1-6): Special-format word used for construction of

telemstry downlist, where i is the number of consecutive pzairs
of «zells to be sent (hence to send a double precision vector,
i =3). Bits 14-12 of the memory word are set to (i - 1),
while bits 11-1 give the ECADR form of the address (see below)
for the first word to be sent (its most significant half).

2BCADR: Same as 2Z2CADR.

2CADR: Double precision CADR (complete address), occupying two

consecutive cells in the memory. The first cell is the S-register
portion of the address (bits 15-13 would be O, see Section IIB),
while the second is the same information as described below

for BBCON. Both cells, of course, apply to the symbol in the
address field, and because of the BBCON format, an EBANK=

card (see Card Layout in Section III) must precede the

2CADR. Address information in this form can be used with

DTCB (see Section VA). |

2FCADR: Double precision CADR (complete address) for fixed-memory

portion only, occupying two consecutive cells in the memory.
The first cell is the same information as described below for
BBCON (except bits 3-1 are O and no EBANK= is required), and
the second in the S-register portion of the address (bits 15-13
would be O, see Section IIB). Address information in this
form can be used with DTCF (see Section VA).

=MINUS: Specilal-purpose assembly operation used to define the

address‘(octal equivalent) of the tag in the tag field to be
equal to the address of the tag in the address field minus the
current value of the location counter (see Section III): this

may be used to achieve the effect of subtraction of two addresses

VC-1

in the following sequence. Assume NUM is to be set to the
value of "BBB" minus "AAA" (the ending and starting addresses

of a table, for example). This can be done by:

SETIOC AAA

TEM =MINUS BEB Note that this gives "BBB" - "AAA",
SETLOC (tag in bank where NUM is to be stored)
BANE -« {Blank BANK card, see Section III)

NUM ADRES TEM

The last line is the only one that generates binary memory

information.

=PLUS: Special-purpose assembly operation used to define the
address (octal egquivalent) of the tag in the tag field to be
equal to the address of the tag in the address field plus the
current value of the location counter. See =MINUS: successive
applications of =PLUS can achieve the effect of multiplication
of an address by an integer, for such applications as generating

flagword-bit identifications.

ADRES: Address of information in address field, generally in 12-bit
S-register format (will be full 15 bits, however,. if address
in address field artificially generated by e.g. =PLUS and =MINUS
operations). Assembler can check that the tag in the address field
is in the same fixed memory bank as the operand (or in the same

erasable bank as that being monitored by the assembler).

BBCON: Address of information in address field in BBANK format,
with bits 15-11 giving the FBANK portion and bits 3-1 giving
the EBANK portion (as specified by a required EBANK= card
immediately preceding the BBCON). In addition, bits 7-5
contain the required setting for SUPERBNK (for addresses in
S3 and S4), or reflects the last S3 or S4L BANK card or
SBANK= card,’ whichever was most recent: see SBANK= of Card
Layout in Section IIT, The operand "BBCON*'"', with a blank
address field, is used for a special purpose (see page IIF-5).

VC-2

CADR: "Complete Address'' information for a fixed memory cell,
a single precision quantity (that excludes, therefore,
SUPERBNK information). Bits 15-11 of the cell correspond
to the FBANK setting and bits 10-1 to the least significant
10 bits of the S-register. The CADR operation is used with
the appropriate program service routines to give an effective
15-bit addressing capability. Conversion between the five
octal digits of the CADR information and the address information
as printed in the listing may be accomplished as follows:
a) Divide the most significant 2 octal digits by 2 (shift

the binary information right one place), and discard
the remainder. This gives the FBANK setting.

b) If the second octal digit of the CADR information is
even, the S-register contents are 2xxx, where xoxx
are the last 3 digits of the CADR information; if
the second octal digit is odd, the S-register
contents are 3xxx.

DNCHAN: Special-format word used for construction of telemetry
downlist. Bits 14-12 are all binary 1, while bits 5-1 give
the channel number (the first of the pair that is sent).

DNPTR: Special-format word used for construction of telemetry
downlist. Bits 14-12 are set to 1102, and bits 11-1 are set
to the address (in ADRES format, but this is sufficient
since the list is in variable-fixed memory) of the next "sub-
list" to be sent.

ECADR: "Erasable Complete Address" information for an erasable
memory cell, a single precision quantity. Bits 11-9 correspond
the EBANK number and bits 8-1 to the appropriate S-register con-
tents for the cell (provided that bits 10 and 9 of the S-register
are both one, see Section IIB). Hence the EBANK can be fourd
from bits 11-9, and the S-register setting is 11'.;.008 + bits 8-1.

FCADR: "Fixed Complete Address" information. The quantity is
the same as that resulting from CADR.

GENADR: Address of information in address field. The quantity is
the same as that resulting from ADRES. The assembler, however,
makes no check on the consistency between the EBANK/FBANK of the
quantity in the address field and the GENADR operand itself.

REMADR: Address of information in address field. The guantity is
the same as that resulting from ADRES. The assembler, however,
checks that the EBANK/FBANK of the quantity whose tag is in the
address field is in a different bank ("remote") from that which
is checked for ADRES.

VC—-4

VI TINTERPRETIVE LANGUAGE

VIA General Principles

In addition to the machine language instructions given in Section
IV, the software may also be provided in an "interpretive language',
which permits mission-peculiar memory requirements to be reduced, and
in many cases sharply reduces the coding labor which is necessary to
implement the required software functions. Although the properties of
the interpretive language could, in principle, be implemented in
hardware, this would have created a considerably more complex computer
design with its attendant power, volume, weight, and reliability
penalties. The penalty paid for the interpretive language use is
execution time: the double precision add (DAS) machine language order
of Section IVB takes about 35 microseconds to be executed, for example,
while the analogous interpretive language order (DAD) has been estimated
to take about 660 microseconds (but it is more powerful in that the bank
restrictions are not as strict when it is used). For most of the "guidance
oriented" computations (such as orbital integration), this increase in
execution time is not disadvantageous when weighed against the reduced
memory requirements which result, but in other cases (such as most of
the digital autopilot calculations) the execution time penalty camnot be
tolerated, and therefore these computations are performed using machine
language coding in spite of the increased memory requirements which
may result.

Transition from machine language to interﬁretive language is
accomplished by performing the instruction TC "INTPRET", which causes

the computer hardware to start performing computations at "INTPRET"

VIA-1

(conventionally a cell in fixed-fixed memory bank 03). This step is
the beginning of a program in fixed memory referred to as an "interpreter",
which processes the information starting at the cell following the one
transferring to "INTPRET". This processing continues until an
interpretive language instruction is sensed (BOVB, EXIT, or RTB) which
causes return to machine language execution at the appropriate point in
the software: it should be realized, of course, that the hardware itself
is incapable of performing anything but machine language operations.
While the software interpreter 3is in operation, it processes the
information in the software (which must, of course, be provided in the
proper formst for compatibility with the interpreter) as if this
information was a list of parameter—word-constants comprised of
instruction-word and address-word items: hence the name "list-—
processing interpreter". Although the net software effect can
generally be realistically approximated by considering that the
interpretive language operations are being '"performed" by the hardware,
tﬁe actﬁal technique whereby‘the software interpfeter processes the
list of parameter-word constants should be understood.

Computations in the interpretive language are written with one
line of operation code information, followed by the necessary address
paramsters for the operations (if any are required) and then the next
line of bperation code information. For example, consider the following
equation (the notation B,1 means that address involved is modified by
an index register quantity)f

sin ™t (+ B,1)%

C

B,1 =

VIA-2

This could be written din the interpretive language as follows:

DLOAD DAD*
H
B,1
D3Q ASTN
DDV ABS
c
STORE B,1

This achieves the same effect as the following coding that is

written in a more conventional general-purpose computer form:

DLOAD H Double precision accumulator load

DADe* B,1 Add from address B modified by index
register #1

DSQ -— Square accumulator contents

ASTN -- Take arc sine of accumulator contents

DDV C Double precision divide

ABS -— Form absolute value

STORE B,1 Store in the same address as the one from

which operand originally obtained.
This "conventional" mechanization, although perhaps somewhat easier to
follow, would have the disadvantage of incompatibility with the computer
hardware word length of 15 bits, thus restricting unduly the addresses
which could be obtained (see Section IIR).

Most operations in the interpretive language are seven bits in
length, meaning that two of them can be stored in a single 15-bit
fixed memory word (plus, of course, the odd parity bit). For these
operations, the first operation code is stored in bits 7-1 and the
second (if any) in bits 14-8. For convenience in processing by the
software interpreter, the information actually stored is formed as
follows:

1. Determine the first operation code, increment it by +1,

and place it in bits 7-1 of the word.

2. Determine the second operaticn code (which is zero if no

IL_J

- o 5+ A1
erement it by +1

[
j
[
@)

3
48}
3
m
ct
e
5

operation is required),

reguired, and place it in bits 14-8 of the word.

3. Complement the result from items 1 and 2 (thus making the
word negative) to form the binary information stored in
memory.

Several operations {including logical bit checks and some shifts) require
supplemental information beyond that contained in the seven bits in order
to determine what operation is to be performed. In such cases, the
assembler automatically includes the necessary information in the address
parameter. Some operations (such as absclute value of a scalar or
length of a vector) are distinguished within the interpreter software

by the value of a special cell within the Job Register Set (see Section
VIIB): this cell, MODE, is set to +1 if triple precision (TP) operations
are performed, to +0 if double precision (DP) operations are performed,
and to -1 if vector (VC) operations are performed. The value of MODE

is also used to establish the number of words to be stored by a storage
order (of 15 bits each) and the type of operand required by operations
using both vectors and scalars (VXSC and V/SC).

The four storage instructions (STCALL, STODL, STORE, and STOVL)
form an exception to the storage format described above. Unless
preceded by the STADR operation, these storage instructions are loaded
in the memory as positive numbers, with bits 14-12 containing the type
of command required (including index information), and bits 11-1
containing the erasable memory address where the information is to be
stored.‘ The STADR operatioﬁ causes the storage instruction to be loéded
by the assembler in complement form (for use with push-down information

as described later).

VIA-L

Provision for two index registers is included in the interpretive
language. These single precision registers are stored in the Job VAGC
area (see Section VID) and have notations X1 and X2. They may be used
to modify most operand addresses (except transfer orders) if desired,
and several interpretive languagé instructions are available to load
and modify these registers (which, of course, are erasasble memory cells
rather than hardware flip-flops). In common with some general-purpose
computers (such as IBM 7090 series machines), the index register contents
are subtracted from the base address to find the net address to be used.

The seven-bit operation code for most operations in the interpretive
language is divided into a two-bit "prefix! specifying the operation
category and a five-bit operation selection code. The prefix
information is stored in bits 2-1 or 9-8 of the quantity stored in
memory, and hence could also be labeled "suffix information'": since
the two bits are the first to be processed in decoding the operation,
howeﬁer, the "prefix'' terminology is employed. The prefixes are
assigned the following significance:

002 signifies a Unary Operation
Ol, signifies an Indexable Operation (index not used)

102 signifies a Miscellaneous Operation
11, signifies an Indexable Operation (index used)

Because of certain similarities between operations of the same prefix,
it is convenient to summarize the Interpretive language software
capabilities using the same divisions, and this is done on the

following pages. .

Indexable Operations are those which, with one exception (SETPD)
may specify an index register to modify the address-word paramster
Specification of an index register is indicated by an asterisk after

the operation code. Three operations in this category (CCALL, CGOTO,

et
=
@

and SSP) require two address-word parameters an others reguire one.
Most operations (2ll except CCAIL, CGOTO, MKV, NORM, SETFD, SLOAD,

SSP, VXM, and general shifts) will take information properly from the
push-down list (see Section VID) if necessary. The operations included
in this prefix category include scalar and vector addition (both double
and triple precision scalars); scalar and vector subtraction and

backwards subtraction (address contents from accumulator and accumulator
from address contents respectively); single, double, triple, and vector
accumulator loading; rounded and unrounded multiplication; vector

dot and cross products; scalar times vector and divided into vector;
generel shifts (vector or scalar, right or left, rounded or unrounded);
vector projection; vector times matrix and matrix times vector; the 'sign"
operation (effect of multiplying by x/|x|); computation of a cell
containing a transfer address as the sum of two other quantities (with
and without return address information retained); storage of information
in push-down list combined with vector or double precision accumilator
load; normalization (shift left to make magnitude of number at least i
and store number of shifts); storage of a single precision constant;
setting of push-down list pointer to a specific value; and scalar
division and backwards division (accumulator by address contents and

address contents by accumulator respectively).

Miscellsneous OUperations are those which do not affect the accumulator.

With the exception of the logical bit operations that can cause a trans-
fer, all operations in this category require one address-word parameter
(and will not obtain information from the push-dowm list). No asterisk

is used for those operations in this category that affect an index
register: instead, these orders have the form AXT,1 or AXT,2 for
operations affecting index register #1 or #2 respectively. The operations
included in this prefix category include those for performing a subroutine
in machine language and allowing return to interpreter software (thus

effectively expanding the interpretive language operations); transferring

)
i1
=
|
(@0

if the accumulator is positive, zero, negative, if most significant part
is zero, if overflow (to either interpretive or machines languzsge), or
ditional transfer; storing return address information; performing a
number of manipulations with logical bits (setting them individually

to zero, one, complement, or leave alone), while with the same order
causing either no transfer to take place or transfer if the previous
value of ihe bit was a binary zero, a binary one, or either; and
performing a variety of operations with either of the two index
registers, including setting them equal to true or complemented addresses
or address contents, incrementing them by an address, adding or subtract-
ing address contents from them, storing them in an address with or without
loading the previous contents of that address in the index register, and
transferring with index register decremented by corresponding 'step"

register if resulting index register contents still positive.

Unary Operations are those which require no address-word parameter,

and most of them operate on information elready in the accumilator.
The operations included in this prefix category include those for
taking the sine, cosine, sin“l, and cos™l of the accumulator contents;
square of vector and scalar; square root; complement of vector and
scalar; absolute values of vector (i.e. length) and scalar; rounding
to double precision; formation of a unit vector; vector definition
from components; storage of accumulator in push-down list; transfer
making use of return address information; returning to machine language;
and causing operands to be taken from push-down list before a storage
order. In addition, a variety of "short shift" orders (scalars from
1-4 places, left or right, rounded or unrounded; vectors from 1-8
places, left or right, rounded on right shifts) are also included

with operations in this prefix category.

The "accumulator" used in the interpreter software is actually
a set of seven cells with identification MPAC (for "multi-purpose
accumulator'), located in the Job Register Set (see Section VIIR).

Double precision words are stored in the first two cells (MPACHO and

VIA-T7

MPAC+1), while triple precision words occupy these cells as well as
MPAC+2. Vectors have the x component in MPACH0 and MPAC+1l; the y
component in MPAC43 and MPAC+L; and the z compoment in MPAG+5

and MPAC+6 (MPACt2 is irrelevant in this case). Hence the first

two cells in MPAC can be either a complete double precision word, the
most significant two-thirds of a triple precision word, or the x
component of a vector, depending on the particular computation in
progress at the time. Use is made of the previously discussed MODE
cell in those cases (such as storage commands) where it is necessary
to identify the type of information present in MPAC.

Interpretation of address-word parameters depends on the operation
involved to establish whether this quantity should be considered as an
operand address, an address to which transfer is made, an integer (number)
to be used directly, or a parameter giving supplemental information on
the operation to be performed (such as the number of shifts and their
type). The first.address used by Indexable Operations is incremented
by +1 before being loaded into the memory, but other address—word
parameters are stored directly. This first address for Indexable
Operations is restricted to 14 bits, since the 15th bit is used to
indicate index register #2 (the whole parameter is stored in
complemented form) if 1. Because of this, Indexable Operations are
restricted to referencing operands with the same valué for bit 15 of
FBANK: a program step in bank 23 cannot reference a constant in bank
14, for example (if the value of the constant is needed by both "high"
and "low" banks, it nmst be stored twice w1th1n the Dofuware) In

addition, the interpreter software does not modify SUPERBNK, so that

VIA-8

+

coding within 53 (see-Section,IIB), for example, can make no references
at all (either Indexable Operations or Miscellaneous Operations) to
information within S4. Addresses below LOOO8 (addresses are stored in
ECADR or FCADR form, see Section VC) are considered to be in erasable
memory, and those below 00558 are assumed to be relative addresses

(see Section VID). Addresses between 00558 and 00778 should be avoided,
gince these too are sometimes interpreted as relative addresses, even
though the VAC area size is insufficient to have this interpretation be
proper.

The following list of generaligations concerning the performance
of the interpreter software has been assembled to give an over-all
view of some aspects of interpreter software, and to indicate some of
the features of this software which may not otherwise be apparent. -~

1. The quantity -0 is considered a positive number ("Branch if
Positive", for example, will take the branch if the accumulator

contents are -0), as well as being of zero magnitude.

2. Sign agreement of various portions of multiple-precision

words is generally not forced except if overflow is suspected.

3. Direct reference to input counter and other special erasable
memory cells (see Section IID) cannot be made by interpretive
language instructions: instead, a return to machine language
must be done if it is necessary to sample these cells, since
addresses in this range are considered to be in the VAC area
(Section VID).

L. Although direct reference to interpretive registers generally
will yield the proper results, execution time can be saved

by using special orders if available (e.g. DSQ rather than
DMP).

VIA-9

. Although operations are’provided with different mnemonics for
scalars and vectors, they frequently are the sames octal
operation code, with the proper manipulation established

by the current value of MODE. Hence an "absolute value of

scalar" order, if MODE indicates a vector, will produce the
length of the vector rather than the magnitude of the x com-

ponent: the assembler, however, could indicate an error.

. Since the same MPAC cells are used for vector and scalar

computations, they must be specifically loaded and saved: the
vector will not remain undisturbed if scalar computations
are performed (although the y and z components may remain

untouched).

- A number of the normal computer hardware registers (including
the shifting registers) are used by the interpreter, and hence
must not be expected to retain their values if the interpretive
language is entered: by the same token, any task that may
interrupt a job must ensure that the contents of these registers

are not lost.

- A special cell (OVFIND) is "set" (to a value of T 1, although
the sign is not significant) if overflow is encountered in
addition, subtraction, division, shifting, vector operations
(cross and dot products, projection, squaring, multiplication
by a matrix, unit vector, division by a scalar), and rounding.
The OVFIND cell (part of the Job Register Set information

when a job not active, see Section VIIB) is set O at the start
of a job, and reset by a branch on overflow (BOV and BOVB) order
or by specific setting e.g. by an SSP order. In many cases, if
an overflow after manipulating the most significant part of

the answer is encountered, sign agreement of the answer is
forced to ensure that the overflow is "genuine", and OVFIND is
not set unless this sign-agreement forcing demonstrated that

a true overflow condition indeed exists.

VIA-10

9.

10

i

13.

For scalar division, the accumulator is left at T MAX if
overflow is encountered, and this feature can be used to obtain
an automatic limiting of quotients in applications such as the
computation of sin™t or cos'l'arguments. In most other cases,
however, the resulting numerical answer usually will be a

poor representation of the answer, since the overflow bit is

generally lost.

Varisbles in different banks of erassble wmemory can He used,
since the interpreter software automatically switches these
banks. When return from the interpretive language to machine
language, EBANK will be left at its value when the interpreter

was originally entered.

Constants in either the low (below bank 20) or high (above
bank 21) part of fixed memory can be referenced by Indexable
Operations, but only by programs stored in the same half of

the memory. Program transfers, however, can be made freely.

. The interpreter software performs no modifications of

SUPERBNK, and therefore coding in banks 30-37 cannot reference
information in banks 40-43 (and SUPERBNK must be set properly

if e.g. coding in bank 25 references S3 or S information).

Banks 00, 01, 20, and 21 of fixed memory cannot be referenced
by Indexable Operations, since the address would be interpreted
as erasable memory, nor can banks 00 and Ol be entered by
transfer orders (same reason, so address would be considered
to be indirect).

. Some instructions will not interface properly with the push-

down list, and these are noted in Section VIB with the command

in question.

VIA-11

15.

16.

17.

i8.

15

20.

Several instructions (noted in Section VIB) regquire opsrands
in erasable memory, and in general will malfunction if an

attempt is made to reference an operand in fixed MEmory.

The number of shifts specified in the general shift orders
must not be excessive (i.e. beyond those necessary to remove
information from.MPAC), or improper results could be obtained.
The same restriction applies to the resulting shift amount if

an index—register modification to the shift count is employed.

The STADR instruction, which complements the following store
command to permit operands to be obtained from the push-down
list, must be the final order before the store command in
question, since STADR performénce involves decoding the store
command itself.

Transfers which retain return address information (CALL and

CCALL, since STCALL satisfies the format constraint automatically)
should be the final instruction in a sequence, so that return

to the cell following the transfer-address information will
produce a proper operation code. The EXIT command should be
similarly located.

If it is desired to withdraw quantities from the push—down
list and then transfer control, this will be done properly
only if the transfer address is in the high portion of fixed
memory (so that it will be negative) or, if RVQ is used, if
the next binary memory information is negative.

If it is desired to store a triple precision result, the value
f the MODE cell must be proper. Although the multiply order
(DMP) leaves a triple precision product, and the TAD order adds
a triple precision operand, neither order sets MODE for triple
precision (instead, a TLOAD must be done Oor a special-purpose
setting of MODE accomplished).

VIia-12

VIB Interpretive Language Operations

For convenience in presentation, the 124 mmemonics (excluding
alternate mnemonics for the same operation) available for use with the
interpreter software have been divided intc seven groups. These
groups, with the mnemonics in each (excluding the alternates) are:

Scalar Computation Operations: ABS, ACOS, ASIN, BDDV, BDSU, COS,

DAD, DCOMP, DDV, DMP, DMPR, DSQ, DSU, ROUND, SIGN, SIN,
SQRT, TAD.

Vector Computation Operations: ABVAL, BVSU, DOT, MXV, UNIT, VAD,
VCOMP, VDEF, VPROJ, VSQ, VSU, VXM, VXSC, VXV, V/sC.

Shifting Operations: NORM, SL, SL1-SL4, SIR, SL1R-SL4R, SR,
SR1-SR4, SRR, SR1R-SR4R, VSL, VSL1-VSL8, VSR, VSR1-VSR8.

Transmission Operations: DLOAD, ITA, PDDL, PDVL, PUSH, SETPD,
SLOAD, SSP, STADR, STCALL, STODL, STORE, STOVL, TLOAD, VIOAD.

Control Operations: BHIZ, BMN, BOV, BOVB, BPL, BZE, CALL, CCAILL,
CGOTO, EXIT, GOTO, RTB, RVQ.

Index Register Oriented Operations: AXC, AXT, INCR, IXA, IXC,
SXA, TIX, XAD, XCHX, XSU.

Logical Bit Operations: BOFCIR, BOFF, BOFINV, BOFSET, BON, BONCIR,
BONINV, BONSET, CLEAR, CLRGO, INVERT, INVGO, SET, SETGO.
For each operation, the standard mmemonic and the mnemonic for
specification of an index register (if applicable) are given, together
with the corresponding seven-bit octal order (one octal digit, in range

0-3, for prefix and two octal digits, in range 00 - 37, for operation).

VIB-1

The first line of the description of each order contains an abbreviated
description of the order's function (frequently the full expression
corresponding to the abbreviation of the mnemonic). Additional lines
contain an expanded description of the performance of the order, and
then the detailed formulation of the order's mechanization in the
interpreter software. In some cases, "logically equivalent" formulations
are presented in the interests of clarity: reference should be made to

the symbolic listing for information on the actual coding formulation.

ViB-2

Scalar Computation Cperations

Symbeol Order : Performance
ABS 0 26 Absolute Value of Scalar.
No Address Replace MPAth with absolute value of MPACtp'

If MODE = VC, proceed to ABVAL instruction
If M‘PACtp < -0:
MPAC, = - MPAC

tp tp
Proceed to "DANZIG"

ACOS 0 12 Arc Cosine. ARCCOS may also be used as symbol.

No Address Replace MPAC dp with arc cosine of MPAC dp* Input scaling
is assumed Bl, and output is in units of revolutions with

scale factor BO, in range O to +% (i.e. 0° to 180°).

X = MPAC
tp
Perform "ARCCOM" ‘
MPAC b, = TS (MPAC+2 not necessarily meaningful)
Proceed to "DANZIG"

ARCCOM (Routine used by ACOS and ASIN)

rix| = o:
TS = 0.25
Return

8, =X

¥ = 7}

If X» (L+212 =1.000244), or if X> (1 + 2713 =

1.000122) with least significant half of X negative:

Perform "ALARM" (pattern 13018) CM only

Perform "ALARM1" (pattern 1301, TS = (LOC, BANKSET))
. . IM only
If X > 1:
Set TS =0 {TSl positive) or TS = % (TS1 negative)

Return

Symbel Order

ACOS (cont)

ARCCOS

ARCSIN

Performance
5 .

S = (1 - X)§ Square root performed via '"SQRTSUB" (see
SQRT order), with subsequent right shift
rounded. Scale factor Bl when enter
"SQRTSURBY .

— m 5 i 3 L

TS = TS (Kaso tEK, X TK KaDB Xé *’Kasu X

A 7
i KasS PR e A Kas? £
If T51_< 0:
TS =% - TS
Return
Constant True Value V2 1T x Value
Kaso 0.35355 3385 1.57079 6302
Kasl -0.04830 17006 -0.21459 8801
KasZ 0.02002 73085 0.08897 8987
KasB -0.01129 31863 -0,05017 4305
Kash 0.00695 311612 0.03089 1881
Kas5 -0.0038L, 617957 -0.01708 8126
Kasé 0.00150 1297736 0.00667 0090
Kas? -0.00028 416033 -0.00126 2491

The numbers in the last column agree closely with the
Hastings values quoted on page 81 of "Handbook of
Mathematical Functions," National Bureau of Standards
Applied Mathematical Series #55.

All constants are stored with scale factor B-I in
as5 has scale factor B-5). The
V2" factor is required because (1-X) was scaled at

the program (e.g. K

Bl when its square root taken.
Same as ACOS (alternate mnemonic).

Same as ASIN (alternate mnemonic).

VIB-4

Symbol Order - Performance

ASTN 0 10 Arc Sine. ARCSIN may also be used as symbol.

No Address Replace MPACdp with arc sine of MPACdp. Input scaling
is assumed Bl, and output is in units of revolutions with

scale factor BO, in range -% to +& (i.e. -90° to +90°).

X= MPACtp

Perform "ARCCOM" (see ACOS)

MPACdp =+ - TS (MPAC+2 not necessarily meaningful)
Proceed to "DANZIG"

BDDV 122 Backwards Double Precision Divide.

BDDV#* 3 22 Replace MPAC, with quotient of quantity at specified

dp
address divided by MPACdp. Set OVFIND if overflow, and

leave MPACdp with special patterns in that case.

Num = B yhpwp

dp
Den = MPAC
dp
Proceed to "DIVCOM!

DIVCOM (Routine used by BDDV and DDV)

If |DemtO| = 00001:
Force sign agreement of Den
If DerrtO = O:
Force sign agreement of Num
If NumtO # O:
MPACdp = +MAX sgn (NumtO/Dentl) (O is positive)
Set OVFIND
Proceed to "DANZIG"
Shift Num and Den left 14 places (Numtl into NumtO etec.)
If DentO = O:
MPACdﬁ = +MAX sgn (NumtO) ° (0 is positive) °
Set OVFIND
Proceed to "DANZIG"

VIB-5

Symbol Order

BDDV (cont)

Performance

If Num = O:
MPAC, = Num
dp
Proceed to "DANZIG"

Determine proper sign of quotient and store in DVSIGN
(set to -0 if gquotient negative, otherwise T 1},

Num = |Num|
Den = [Den|
If Dent0 - Numt0 -1 O0:
Force sign agreement of Den and Num
If Dent0 - NumtO < O:
MPACdp = +MAX sgn (quotient, from DVSIGN data)
Set OVFIND
Proceed to "DANZIG"
If Dent0 = NumtO:
If Dentl - Numtl £ O:
MPACdp = +MAX sgn (quotient, from DVSIGN data)
Set OVFIND
Proceed to "DANZIG"
Perform the division of Num by Den, using the algorithm
steps below, and store the result in MPACdpg
MPAC+2 = 0 '
Proceed to "DANZIG"

The algorithm employed to perform the division makes use
of the following sequence of activity (DVSIGN set with
data on quotient sign before enter algorithm).

1. Normalize Den by shifting it left one place at a time
until overflow is sensed: the overflowing shift is not
employed. Then shift Num left the same number of places
(because of previous overflow checks, Num will not
overflow here, nor will the number of shifts required
exceed 13).

2. For notational convenience, let:
Num = A + 274 B
Den = C + 2 4 p

Where A, B, C, and D each 15 bit numbers (including
sign), and both A and C are positive. Algorithm
involves egsentially multiplication of Num and Den
by (C - 2714 D) and neglecting high-order terms.

VIB-6

Svmbol Order

BDDV (cont)

Performance

3. If A=2¢C:
MPACHO = +MAX
TS =B-D+C
Proceed to step #8
L. Divide (using hardware divide order, DV, of Section

IVC) Num, by C, storing quotient in MPACHO and
remainde?Pin MPAG+].

5. TS = MPACHl - (MPAC+0) D

6. If |Ts|>1.0: (i.e. overflows: "1" as used below
TS = TG — G is one least increment).

MPACHO = MPACHO + 1
Proceed to step #7

If TS = O:
MPAC+L = TS
Proceed to step #9
If TS <€0:
MPACHO = MPACHO - 1
TS =TS + C

Proceed to step #8
7. If TS -C>0:

TS =TS - C

MPACHO = MPAGHO + 1

8. Divide (using hardware divide order, DV, with L-register
set to 0) TS by C, storing quotient in MPAC+1.

9. If quotient should be negative (from DVSIGN data),
complement the contents of MPACdp.

Using the notation of #2 above, the manipulation may be
summarized as follows (deleting overflow checks):

Num _ Num | -14 [Remainder — (Num/C) D:]
Den C C

As mentioned in step #2, this effectively reflects a
multiplication of Nu%,and Den by (C - 27+ D) and
a neglect of most 27 8 terms.

VIB-7

COS 0 06

No Address

Performance

Backwards Double Precision Subtract.

Replace MPACdp by (quantity at specified address) - MPACdp.
Set OVFIND if overflow.

- MPAC

: = E
MPACH 5 = EinpruD i dp
If most significant half overflows:
MPACdp = MPACdp + 228 sgn MPAC+0 (forces sign agree-

ment and corrects
answer if not an
Set OVFIND overflow case).

Proceed to "DANZIG"

If above computation overflows:

Cosine. COSINE may also be used as symbol.

Replace MPACdp with cosine of MPAC Input value scaling

dp’
is assumed BO in units of revolutions, and output is

with scale factor Bl.

-, A
x= % IMPAC dpl
Perform "'SICOM"

MPAC. =TS (MPAC+2 also loaded, not necessarily with
dp S o S "
significant bits).

Proceed to "DANZIGM

SICOM (Routine used by COS and SIN)

Ir (x> 3, x=
Ir {xI>1, x=

x =X, rescaled to scale factor B-1 revolutions (Bl in /2 units)

9 7 7

sgn £ - X

VI (o

sgn X - X

TS = KSnl b'd +-Ksn3 x? + Ksn5 b Ksn? x' + Ksn9 x
Return
Constant Scaling Stored Value True Value x (2/‘{'7'_)::L
fom B2 0.39269 90796 0.99999 9995
KsnB BO ~0.64596 37111 -0.16666 6567
KSHS B-2 0.31875 8717 0.00833 3025
KSH? B-L -0.07478 0249 -0.00019 807L
Ksn9 B-6 0.00969 4988 0.00000 2603

Per program comments, constants from a Hastings series.
"Scaling" column quoted for x in (T/2) units.

VIB-8

Symbol Order
COSINE

DAD 1 34
DAD* 3 34
DCOMP O 20
No Address
DDV 121
DDV 3 21
DMP 136
DMP¢ 3 36

Performance
Same as COS (alternate mnemonic).
Double Precision Add.

Replace MPACd
Set OVFIND if overflow.

5 by (quantity at specified address) + MPACdp.

= +
Gaa EADDRWde MERCan
If most significant half overflows:
MPAGy) = MPACy + 2°® sgn MPAGHO (see mote with BDSU)

If above computation overflows:
Set OVFIND
Proceed to '"DANZIG"

MPA

Double Precision Complement.

Replace MPACtp with complement of MPACtp.
If MODE = VC, proceed to VCOMP instruction
MPAC, = - MPAC

tp tp
Proceed to "DANZIG!

Double Precision Divide.

Replace MPAde with guotient of MPACdp divided by
quantity at specified address. Set OVFIND if overflow,
and leave MPAde with special patterns in that case.

Num = MPAC

dp
Den = B, nnpun
dp

Proceed to "DIVCOM" (see BDDV)

Double Precision Multiply.

Replace MPACtp with product of MPACdp and quantity at

specified address.

VIiB-$

Symbol Order

DMP (cont)

Performance

AMAT, = MPAG
dp

BMBL = B, e
dp

Perform "MULCOM"
Proceed to "DANZIG"

MULCOM (Routine used by DMP, DMPR, etc.)

DMFR 120
DMPR* 3 20
DSQ 0 14

No Address

Note 1. AMAL = AM + 2% a1,
Note 2. BMBL = BM + 2 14 BL

Note 3. The hardware multiply order (MP, Section IVC)
gives a double precision answer, using single
precision operands.

TS = most significant half of (AL x BL)

MPAC, | = (AM x BM) +2 Y M x B + AL x EM)

+ 2728 15 (carries propagate, no overflows)

Return

Double Precision Multiply and Round.

Replace MPACdp with product of MPACdp and quantity at
specified address, rounded to double precision. Set
OVFIND if overflow.

AMAT, = MPAC

dp
BBL = E) horwn
dp

Perform "MULCOM" (see DMP)
MODE = DP
MPACtp = MPACtp + MPAC+2 (carries propagate)
If most significant part overflows:
Set OVFIND
MPAC+2 = O

Proceed to "DANZIG"

Double Precision Square Operation.

Replace MPACtp by the square of MPACdp.

Symbol Order Performance

DSQ (cont) TS = most significant half of (MPAC+l x MPAC+1)
MPAC, = (MPACHO x MPACHO) + 2‘1‘* (2 (MPACHO xMPAC-%—l})

tp
o e TS (see notes with "MULCOM", DMP)

Proceed to "DANZIG!

DSU 1 32 Double Precision Subtract.

DSU* 3 32 Replace MPACdp by MPACdp - (quantity at specified address).
Set OVFIND if overflow,

MPAC, = MPAC, - EADDRWDdP

If most significant half overflows:
MPAC; | = MPACy | + %% son MPAGH) (s86 site ith BDSU)
If above computation overflows:
Set OVFIND

Proceed to "DANZIG"

ROUND O 14 Round to Double Precision.

No Address . Replace MPACdP with rounded version of MPACtp, setting
OVFIND if overflow.

MODE = DP
MPACtp = MPACtp + MPACt2 (carries propagate)
If most significant part overflows:

Set, OVFIND
MPAC+2 = O
Proceed to "DANZIG"

SIGN 1 02 Sign Function.

SIGN®* 3 02 If quantity at specified address (which may be in fixed
or erasable memory) is negative non-zero, complement

contents of MPAC (scalar or vector).

VIB-11

Symbol Order Performance

SIGN (cont) If > -0, proceed to "DANZIG"

“ADDRWD. ®
dp

If MODE = VC:
MPAC = - MPAC
Ve ve
Proceed to "DANZIGM
MPAC, = - MPAC
. tp

tp
Proceed to "DANZIG"

SIN 0 04 Sine. SINE may zlso be used as symbol.

Neo Address Replace MPACdp with sine of MPACdp. Input value scaling
is assumed BO in units of revolutions, and output is

with scale factor Bl.

X = MPACdp
Perform "SICOM" (see COS)

MPAC, =TS (MPAC+2 also loaded, not necessarily with
dp R "
significant bits).

Proceed to '"DANZIG"

SQRT 0 02 Square Root Function.

No Address 7 Replace MPACtp with sguare root of MPACtp (most significant
non-zero bits only), with scale factor one-half the scale

factor of the original number.

Perform "SQRTSUB"

If MPTEMP = O, proceed to "DANZIG"
MPAC+2 = O

Shift MPACtp right MPTEMP places
Proceed to "DANZIG"

SQRTSUB (Routine used by SQRT, UNIT, etc.)

MPTEMP = 0 ° (gives number of shifts for output)
If lmmctﬂ = 0:

MPAC,) = +0

MPTEMP = 14

Return

vIB-12

Symbol Order Performance

SQRT (cont) ~If MPAC, < o,
Proceed to "POODOO" (pattern 213028) CM only
Proceed to "POODOC1" (pattern 213024, TS = (1ocC, Eﬁl\“ﬁ?”
it MPACtp < 0: —
MPACdp =)

If MPACHO was non-zero, MPTEMP = O; Return
If MPACH]l was non-zero, MPTEMP = 7; MPAC+2 = O;

Return.
MPAC+2 = 0
MPTEMP = 14
Return

If MPACHO = O:
Shift MPAC, 1left 14 places

tp
MPAC+2 = 0
MPTEMP = 7
If MPAC+0 = O: (i.e. original MPAC+1)
Shift MPAC tp left 14 places
MPAC+2 = O
MPTEMP = 14

If MPACHO € £:

Shift MPACtp left 2 places

MPTEMP = MPTEMP + 1

Repeat check against %
If MPACHO > %:

TS, = 0.588l, (MPACH+O) + 0.4192 (single precision)
If MPACHO < 3: - TS, scaled Bl

TS, = 0.832% (MPAC+0) + 0.2974 (single precision)
8, = : (MPAC+O%)/ TS, + % TS, (single precisionglzr
TS = % MPAC dp 3
MPACdp =4 TS, (right shift 1, result double precision)
TS, = single-precision quotient from TS I TS, (using

hardware divide order, DV)

TS3 = remainder from division to compute TSZ’ single prec.
TS

A

=14 A
MPACdp MPACdp T52 + 2 TSA (carrles propagate)

If above addition overflows, set MPAde = +MAX

TS3 / S, (single precision, L-register zeroed)

Return

VIB-13

Symbol Order Performance

TAD 101l Triple Precision Add.
TAD* 3 01 Replace MPACtp by (quantity at specified address, triple
precision) +'MPACtp. Set OVFIND if overflow.
= _ +
MPAQ@; ‘EKDDRWDtp MPACtp
If most significant part overflows:

MPAC, = MPAC., + 228 sgn MPACHO Note that MPAC+2

“p dp left alone; see
If above computation overflows: nots with Bhsd.
Set OVFIND

Proceed to "DANZIGM

VIB-14

Vector Computation Operations

Symbol Order Performance

ABVAL 0 26 Absolute Value (length) of Vector.

No Address Load into MPACtp the length of MPACvc (same scaling as
MPACVC). ‘Leave in LVSQUARE the square of this length.

Set QVFIND if overflow.

If MODE # VC, proceed to ABS instruction

Tstp = MPACX? + MPACy? (DSQ routine forms squares)
If most significant part overflows:
Set OVFIND
2 .
MPAth = Tstp + MPACZ (DSQ routine forms square)

If most significant part overflows:

MPAC, = MPAC; ~ + 228 sgn MPAC+O (see note with
P P BDSU)
If above computation overflows:
Set OVFIND
LVSQUARE = MPAC, (Relative Addresses 34D-35D, see
P Section VID)

MODE = DP

Proceed to-SQRT instruction to form square root of

MPACtp and then exit to "DANZIG'. Length of vector,

left in MPACdp, has same scale factor as original

MPAC_ .
ve

BVSU 1 26 Backwards Vector Subtract.

BVSU* 3 26 Replace MPACVC by (vector at specified address) - MPACVC

Set, OVFIND if overflow.

Perform the following for i =y, z, x:
MPACi = EADDRWDi - MPACi
If most significant half overflows:

MPAC, = MPAC, + 228 sgn MPACHO, (see note

with BDSU)
If zbove computation overflows:

Set OVFIND
Proceed to "DANZIG"

VIB-15

Symbol Order . Performance

DOT 1 27 Dot Product of Vectors.

DOT* 3 27 Load into MPACtp the dot product of MPACVC and (vector
at specified address). Set OVFIND if overflow.

AVEC = MPAC
ve
BVEC = EADDRWD
ve
Perform "DOTCOM"
MODE = DP

Proceed to "DANZIG"

DOTCOM (Routine used by DOT, MXV, etc.)

AMATL = AVECX

BMBL = BVECX

Perform "MULCOM" (see DMP)

BUFtp = MPACtp

IMAL = AVEC}r

BMEL = BVECy

Perform "MULCOM" (see DMP)

BUFtp = BUFtp + MPACtp

If most significant part overflows:
Set OVFIND

AMAL = AVECZ

EMBL = BVECZ

Perform '"MULCOM" (see DMP)

MPACtp = MPACtp -+ BUFtp

If most significant part overflows:
MPACdp = MPACdP 4 228 sgn MPACt+0 (see note with

BDSU)
If above computation overflows:
Set OVFIND
Return

Symbol Order

MXV

MKV

113

313

Performance
Matrix Times Vector.

Use the matrix stored with double precision components

(3 x 3) at the specified address to premultiply the vector
in MPACVC, and leave the result in MPACVC. Set OVFIND

if overflow. Matrix is stored with first element at

EADDRWDdP’ and successive elements of first row, then
second row, then third row in consecutive cells after

the first element. Computation forms x component of
result as dot product of first row and the vector;

v component of result as dot product of second row
and the vector; and z component of result as dot
product of third row and the vector. Instruction will

not push up properly.

VBUF = MPAC
vC
AVEC = VBUF
vC
BVEC = E,pnpyp
vC
Perform "DOTCCOM" (see DOT)
BUF = MPAC,
x dp
AVEC = VBUF_ .
vC
BUEC = EADDRWD+6VC
Perform "DOTCOM" (see DOT)
BUF = MPAC
v dp
AVEC = VBUF
vC
BVEG. = EADDRWD+12VC

Perform "DOTCOM" (see DOT)
BUF = MPAC
2z dp
MPAC = BUF
ve ve
Proceed to "DANZIG"

VIB-17

Symbol Order

UNIT 0 24

No Address

Performance
Form a Unit Vector.

Replace MPAGVC with a unit vector corresponding to
MPAGVC, and with scale factor Bl. Leave in LVSQUARE
the square of the original vector length, and in LV
the vector length (same scale factor as original
MPASVC). Set OVFIND if overflow.

Force sign agreement of each component of MPACVC
VBUF =:MPACv

TStp = MPAC_ +—MPAcy? (DSQ routine forms squares)
If most significant part overflows:

Set flag indicating overflow

2 ;
= + a
MPACtp Tstp MPACZ (DSQ routine forms square)
If most significant part overflows:
MPACdp = MPACdp + 228 sgn MPACHO (see note with

BDSU)
If above computation overflows:

Set flag indicating overflow
If flag set indicating overflow above:
Set OVFIND
MZPAC}C = f MAX (sign not significant)
Proceed to "DANZIG!

LVSQUARE = MPAC, (Relative Addresses 34D-35D, see
p Section VID)

Perform "SQRTSUB" (see SQRT)

If MPACHO = O: (i.e. input to "SQRTSUB" was O)
LV =0 (Relative Addresses 36D-37D)
Set OVFIND

MPAC_ = * MAX (sign not significant)
Proceed to "DANZIG"

o MPTEMP v s (Relative Addresses 36D-37D.

W =
9P MPTEMP computed in MSQRTSUB')

If MPTEMP = O:
Shift each component of VBUF right 1 place

Symbol Order

UNIT (cont)
VAD 1 24
VAD® 3 24
VCOMP 0 20
No Address

" VDEF 0 22
No Address

Performance

If MPTEMP # O:
Shift each component of VBUF left (MPTEMP -1) places
(unit vector scaling Bl)
TS = MPACy (still normalized from "SQRTSUB")

Divide each component of VBUF by TS, setting DVSIGN to
sign of VBUF component and using algorithm of "DIVCOM"
(see BDDV), starting at step #4 (after making Num
positive).

MPACVC = vector results from previous line
Proceed to "DANZIG"

Vector Add.

Replace MPAC_ by (vector at specified address) + MPAC_ .
Set OVFIND if overflow.

Perform the following for i =y, 2z, X:

MPAC:i = EADDRWDi h MPAC;.L

If most significant half overflows:

MPAC; = MPAC, + 228 sgn MPACHO, (see note

with BDSU)
If above computation overflows: .

Set OVFIND
Proceed to "DANZIG"

Vector Complement.

Replace MPAC_ with the complement of MPAC_ .
ve vC

If MODE # VC, proceed to DCOMP instruction
MPAC__ = - MPAC

Ve vC
Proceed to ''DANZIG"

Vector Define,

Load MPAC__ with information in MPACdp (x component),
top two cells in push-down list (y component), and second

from top pair of cells in push-down list (= component) .

VIB-19

Symbol Order Performance

VDEF (cont) MPACX = MPACdp (these are the same pair of cells)
MPACY‘erPUSHLOC~2d (see Section VID)
MPAC =E p
z PUSHLOC—QdD

PUSHLOC = PUSHIOC - 4
MODE = VC
Proveed to "DANZIG!

VPROJ 1 31 Vector Projection on New Vector.

VPROJ* 3 31 Replace MPACVC with the dot product of MPAGVC and
(vector at specified address) times (vector at specified
address). Set OVFIND if overflow. Scale factors add.

AVEC = MPAC
ve
BVEC = Eypipwn
ve
Perform "DOTCOM" (see DOT)
MODE = DP

Proceed to VXSC instruction to complete manipulation and
then exit to "DANZIG'".

vsQ 0 30 Vector Square Operation.

No Address load into MPACtp the square of the length of the vector

in MPACVC, with scale factor twice that of the vector.
Set OVFIND if overflow.

TStp = MPACX? + MPACY2 (DSQ routine forms squares)
If most significant part overflows:
Set OVFIND
MPAG, =TS, + MPAC ° (DSQ routine forms square)
tp tp Z -
If most significant part overflows:
MPAC, = MPAC, + 2 o MEAT Pese tube R
E B BDSU)
If above computation overflows:
Set OVFIND
MODE = DP

Proceed to "DANZIG!

VIB-20

Symbol Order) Performance
vsU 1 25 Vector Subtract.

VSU* 3 25 Replace MPAC__ by MPAC__ - (vector at specified address).
Set OVFIND if overflow.

Perform the following for i =7y, z, x:
MPAC. = MPAC, - E
i 1.

ADDRWDi
If most significant half overflows:
MPAC, = MPAC, + 228 sgn MPACHO, (see note
with BDSU)
If above computation overflows:
Set OVFIND
Proceed to "DANZIG"
VXM 116 Vector Times Matrix.
VX 3 16 Use the matrix stored with double precision components

(3 x 3) at the specified address to postmultiply the
vector in MPACVC, and leave the result in MPACVC. Set
OVFIND if overflow. Matrix is stored with first element
at EADDRWD ,» and successive elements of first row, then
second row,pthen third row in consecutive cells after
the first element. Computation forms x component of
result as dot product of first column and the vector;

vy component of result as dot product of second column
and the vector; and z component of result as dot product
of third column and the vector. Effect is equivalent

to premultiplication of the vector by the transpose

of the given matrix (ef. MXV). Instruction will not

push up properly.

VBUF = MPAC
ve
AVEC = VBUF
: Ve .
BVEC = (Byprewp. » Eanprup+6 , “ADDRWD+12)
dp dp : dp
Perform "DOTCOM" (see DOT)
BUF = MPAC
= d dp

VIB-21

Symbol Order Performance

VXM (cont) AVEC = VBUF

BVEC = (B porwp+2. * EaDDRuD:e. °
dp dp

Perform "DOTCOM" (see DOT)

kel

ADDRWD+lAdp)

BUF_ = MPAC
v dp
AVEG = VBUF
vC
BVEC = (E B

3 E ! 3)
ADDRWD+4dp ADDRWDflOdp ADDRWD+16dp
Perform "DOTCOM" (see DOT)
BUF = MPAC
Z dp
MPAC___ = BUF
ve

ve
Proceed to "DANZIG"

VXSC 103 Vector Times Scalar.

VISC* 3 03 Multiply a vector times a scalar and store the result
in MPACVC. If have been computing with vectors, the
quantity at the specified address is considered a scalar;
if have been computing with scalars, the quantity at
the specified address is considered a vector. Rounding

is performed for each component, and OVFIND set if

ovefflow.
If MODE = VC:
VBUF = MPAC
e
BMBL = E; ihewp i
If MODE # VC:
VBUF = E) hewD
Ve
EMBL = MPAC,
D
AMAL = VBUF_

Perform "MULCOM" (see DMP)
TS, =‘MPACtp + MPAC+2 (carries propagate)
If most significant part overflows:

Set OVFIND

ViB-22

Symbol Order Performance

VXSC (cont) AMAL = VBUFY
Perform "MULCOM" (see DMP)
TSy ::MPACtp + MPAC+2 (carries propagate)
If most significant part overflows:
Set OVFIND
AMAT, = VBUFZ
Perform "MULCOM" (see DMP)
TS, = MPACtp + MPACt+2 (carries propagate)
If most significant part overflows:
Set OVFIND
MPACVC = TSvc
MODE = VC
Proceed to "DANZIG"

VXV 1 30 Vector Cross Product.

VX 3 30 Replace MPAC_ . with (MPACVC) #* (vector at specified
address). Set OVFIND if overflow.

(M, M_, M) = MPAC__

(Ax’ Ay’ Az) - EADDRWDVC
A11 multiplications done with "MULCOM" (see DMP)
TS =M A - M A
z X'y ¥y X
If most significant part overflows:
TS, =TS, + 228 sgn TSHO, (see note with BDSU)
If above computation overflows:
Set OVFIND
TS, =M A - M A
v Z X x &
If most significant part overflows:
IS, = TS+ B o TS0 (see mote with EDSU)
If above computation overflows:

Set OVFIND

VIB-23

Symbol Order Performance

VXV (cont) S =M A - M A
X y Z z ¥
If mest significant part overflows:
TS, = TS, + 228 sgn TS0, (see note with BDSU)
If above computaticn overflows:
Set OVFIND
MPAC._ =TS

ve ve
Proceed to "DANZIG"

V/sc 1 07 Vector Divided by Scalar.

V/SC* 3 07 Divide a vector by a scalar and store the result in
MPACVC. If have been computing with vectors, the
quantity at the specified address is considered a scalar;
if have been computing with scalars, the quantity at the
specified address is considered a vector. Set OVFIND if

overflow.

If MODE = VC:

BUF, =E
dp ~ “ADDRWD

If MODE # VC:
BUF, = MPAC,
dp d
MPAC_ =K
vC

p
ADDRWD
ve

MCDE = VG
Force sign agreement of each component of MPACVC
Force sign agreement of BUde
If BUF+O = O:
Shift MPACVC left 14 places
If any component of MPACVC overflows:
MPAC_ = T MAX (sign not significant)
Set OVFIND
Proceed to JDANZIG”

Symbol Order

V/SC (cont)

Performance

If BUFdD = 0:
zvmbx =T MAX (sign not significant)
Set OVFIND
Proceed to '"DANZIG"
If ‘BUF dp‘$mgnitude of any component of MPAC_ :
MPAC, = +MAX sgn (overflowing division)
Set OVFIND
Proceed to "DANZIG"
Divide each component of MPACVC by BUde, setting
DVSIGN to proper value and using algorithm of
"DIVCOM" (see BDDV), starting at step‘#l (with

Den = BUde, of course).
MPACVC = vector results from previous line

Proceed to "DANZIG"

VIB-25

Shifting Operations

A1l general shift instructions (SL, SIR, SR, SRR, VSL, and VSR) use
the same octal order (1 23), with the distinction between them made
by bits 10-9 of the address-word parameter, and by the value of MODE.
The format of the address-word parameter is as follows:

Bit A5« D

Bit 14: 1

Bits 13-11: O

Bit 10: 1 for rounded shifts, O for unrounded ones (always
O for vector shifts)

Bit 9: 1 for right shift, O for left shift
Bit 8: 1 (as a "pseudo-sign bit" for indexed shifts)
Bits 7-1: Amount of shift

If index register 2 is specified, the complete word is complemented ;
as stored in memory, of course, one is added to the quantity (as

discussed in Section VIA for all Indexable Operations).

Symbol Order Performance

NORM 1 17 Normalize. SLC may also be used as symbol.,

NORM* 3 17 Force sign agreement of MPAC and then shift left

. tp’
until most significant magnitude bit is different from
the sign bit. Store the negative of the number of
shifts performed in the address specified (single

precision). Order will not push up properly.

S =0
Force sign agreement of MPACtp (unless magnitude 0)
If MPAC = Q:

tp

Bppmwp = C
sp

Proceed to "DANZIG"
If MPACH+O + MPACH0 overflows:

Sgpprup__ ~ 7 T8
sp
Proceed to "DANZIG"
MPACtp = MPACtp + MPACtp (i.e. left shift of 1 place)
TS =TS + 1

Proceed to fourth line of NORM (recheck for overflow)

VIB-26

Symbol Order Performance

SL 1 23 Scalar Shift Left.
Sige 3 23 Shift MPAth left by appropriate number of places speéified
- 1 i 1t 1 e i
iddrega by address-word parameter., If shift amount .s negative,
bit 10-9= shift right by the corresponding number of places. Set
002 OVFIND if overflow.
If bits 7-1 of ADDRWD = O, proceed to "DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1
If bit 8 of ADDRWD = O:
MPTEMP = 126 - MPTEMP
Proceed to fourth line of SR instruction
(Number of shifts effectively stored
as 128 + count in bits 8-1; if SL*
causes number to be negative, then
MPTEMP set to (number of right
shifts -1), and SR performed)
If MODE = VC, proceed to VSL instruction
_ Shift MPACtp left by (MPTEMP +1) places, by performing:
= +
MPACtp MPACtp MPACtp repeatedly
If most significant part overflows: (for any shift)
Set OVFIND
Continue shifting
Proceed to "DANZIG"
SL1 0 05 Short Scalar Shift Left.
SL2 0 15
S13 0 25 Shift MPAC left by the number of places specified by
SL, 035 P
the operation code. Set OVFIND if overflow.
No Address

If MCDE = VC, proceed to VSLi instruction

Shift MPAC, left by the appropriate number of places,
t
by performlgg:
MPACtp = MPACtp . MPACtp repeatedly
If most significant part overflows: ({(for any shift)
~ Set OVFIND
Continue shifting

Proceed to "DANZIG!

VIB-27

Symbol OCrder Performance

S1C Same as NORM (alternate memenic).
SLR 123 Scalar Shift Left and Round.
SLR* 3 23 Shift MPAC*p left by appropriate number of places

Address specified by address-word parameter. If shift amount is
bit 10-9=

10 negative, shift right by the corresponding number of
2

places. Round MPACtp to double precision after shifting.
Set OVFIND if overflow.

If bits 7-1 of ADDRWD = O:

MODE = DP
MPACtp £ MPAth + MPACt+2 (carries propagate)
If most significant part overflows:
Set OVFIND
MPAC+2 = O

Proceed to "DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1
If bit 8 of ADDRWD = O:

MPTEMP = 126 - MPTEMP

Proceed to fourth line of SRR instruction

(Cf. SL discussion)

If MODE = VC, proceed to VSL instruction
Shift MPACtp left by (MPTEMP +1) places, by performing:

MPACtp = MPACtp + MPACtp repeatedly
If most significant part overflows: (for any shift)
Set CVFIND
Continue shifting
MODE = DP
MPACtp = MPACtp + MPACH2 (carries propagate)
If most significant part overflows:
Set OVFINb ‘
MPAC+2 = 0O

Proceed to "DANZIG"

VIB-28

Symbol Order

SL1R 0 01
SL2R 011
SL3R 021
SLLR 0 31
No Address
SR 123
SR 3 23
Address
bit 10-9=
012

Performance

Short Scalar Shift Left and Round.

Shift MPACtp left by the number of places specified by
the operation code. Round MPACtp to double precision

after shifting. Set OVFIND if overflow.

1f MODE = VC, proceed to VSLi instruction

Shift MPACt left by the appropriate number of places,
by performlﬁg:

MPACtp = MPACtp +-MPACtp repeatedly
If most significant part overflows: (for any shift)
Set OVFIND
Continue shifting
MODE = DP
MPACtp = MPACtp + MPAC+2 (carries propagate)
If most significant part overflows:
Set OVFIND
MPAC+2 = O

Proceed to "DANZIG"

Scalar Shift Right.

Shift MPACtp right by appropriate number of places
specified by address-word parameter. If shift amount is
negative, shift left by the corresponding number of

places. Set OVFIND if overflow (only on left shift).

If bits 7-1 of ADDRWD = O, proceed to '"DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1
If bit & of ADDRWD = O:
MPTEMP = - (MPTEMP - 126) (O result is +, for

coding)
Proceed to fourth line of SL instruction

"(of. SL discussion)‘
If MODE = VC, proceed to VSR instruction

VIB-29

Symbol Order Performance

SR (cont) Shift MPACtp right by (MPTEMP +1) places, by multiplying
by appropriate negative power of 2 (shifts in excess of
13 are zccomplished by movement of the components of
MPACtp as complete words, until the remaining number

of ghifts is less than 14)

Proceed to "DANZIG"

SR1 0 07 Short Scalar Shift Right.
SR2 0 17
SR3 0 27 Shift MPAC, right by the number of places specified by
SEL 0 37 tp
the operation code.
No Address
If MODE = VC, proceed to VSRi instruction
Shift MPACtp right by the appropriate number of places,
by multiplying by appropriate negative power of 2
Proceed to "DANZIG"
ShR 123 Scalar Shift Right and Round.
SRR 3 23 Shift MPACtp right by apprdpriate number of places

P —— specified by address-word parameter. If shift amount is
bit 10-9= negative, shift left by the corresponding number of
112 places. Round MPACtD to double precision after shifting.

Set OVFIND if overflow.

If bits 7-1 of ADDRWD = O:

MODE = DP
MPACtp = MPACtp + MPAC+2 (carries propagate)
If most significant part overflows:
Set OVFIND
MPAC+2 = O

Proceed to "DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1

VIB-30

Symbol Order

SRR (cont)
SR1R 0 03
SR2R 0 13
SR3R 0 23
SRL4R 0 33

No Address.
VSL 1 23
VSL# 3 23
Address
bit 10-9=

OO2

Performance

If bit 8 of ADDEWD = O:
MPTEMP = - (MPTEMP -~ 126) (0 result is +, for
Proceed to fourth line of SIR instructio%Oding)
(Cf. SL discussion)
If MODE = VC, proceed to VSR instruction
Shift MPACtp right by (MPTEMP +1) places, by multiplying
by appropriate negative power of 2 (shifts in excess of
13 are accomplished by movement of the components of
MPACtp as complete words, until the remaining number of
shifts is less than 14)
MPACtp = MPACtp + MPACt2 (carries propagate, no overflow)
MODE = DP
MPAC+2 = O

Proceed to "DANZIG"

Short Scalar Shift Right and Round.

Shift MPACtp right by the number of places specified by

the operation code. Round MPACtp to double precision

after shifting.

If MODE = VC, proceed to VSRi instruction
Shift MPACtp right by the appropriate number of places,
by multiplying by the appropriate negative power of 2

MPACtp = MPACtp + MPAC+2 (carries propagate, no overflow)
MODE = DP
MPAC+2 = O

Proceed to "DANZIG"

Vector Shift left.

Shift each component of MPACvc left by appropriate number
of places specified by address-word parameter. If shift
amount is negative, shift right by the corresponding

number of places. Set OVFIND if overflow.

VIB-31

Symbol Order Performance

VSL (cont) If bits 7-1 of ADDRWD = O, proceed to "DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1
If bit 8 of ADDRWD = O:
MPTEMP = 126 - MPTEMP
Proceed Lo fourth line of VSR instruction
(Cf. SL discussion)
If MODE # VC, proceed to SL instruction
Shift MPAC__ left by (MPTEMP +1) places, by performing:
MPACvc = MPACVC + MPAGvc repeatedly
If most significant part overfIOWS:'(any'compongn?
MPAC, = MPAC, + 228 i MPACHO, (siiygiiift)
If above computation overflows: with BDSU)
Set OVFIND

b

Continue shifting
Proceed to VDANZIG"

VSL1 O 01 Short Vector Shift Left.
VsL2 0 Q5

VSL3 O 11 Shift each component of MPACvc left by the number of
: : places specified by the operation code. Set OVFIND if
VéLS O 55 overflow.
No Address
If MODE # VC:
If shifts odd, proceed to SLiR instruction
If shifts even, proceed to SLi instruction

Shift MPACWC left by the appropriate number of places,
by performirig: ,

MPAC___ = MPAC + MPAC__ repeatedly
ve ve ve
If most significant part overflows: (any component ,
MPAC, = MPAC, + 2°° sgn MPAGto, 2 Shift)
i i i (see note
If above computation overflows: with BDSU)
Set OVFIND ‘
Continue shifting

Proceed to "DANZIG"

VIR-72D

Symbol Order Performance

VSR 1 2

(¥S)

Vector Shift Right.

VSR* 3 23 Shift each component of MPACVC right by appropriate number

of places specified by address-word parameter, and then

Address
bit 10-9= round. If shift amount is negative, shift left by the
012 corresponding number of places. Set OVFIND if cverflow

(only if left shift).

If bits 7-1 of ADDRWD = O, proceed to "DANZIG"
MPTEMP = (bits 7-1 of ADDRWD) - 1
If bit & of ADDRWD = O:
MPTEMP = - (MPTEMP - 126) (0O result is +, for
Proceed to fourth line of VSL instructioﬁOding)
(Cf. SL discussion)
If MODE # VC, proceed to SR instruction
If MPTEMP 3, 13:
MPTEMP = MPTEMP - 13

Shift each component of MPAC o right 14 places and
round to double precision

If MPTEMP = O, proceed to "DANZIG"
If MPTEMP Y 14: '

MPTEMP = MPTEMP - 1.4 and proceed to 3rd previous
line (shift MPAC_ again)

MPTEMP = MPTEMF - 1
Shift MPAC_ right by (MPTEMP +1) places, by multiplying
by appropriate power of 2, and round each component to
double precision (each component treated as a triple-
precision number with least significant third initially 0).
For a right shift of 15 or 29 places, rounding could give

a one-bit error in the answer.

Proceed to "DANZIG"

VSR1 003 Short Vector Shift Right.
VSR2 0 07
VSR3 0 13 Shift each component of MPACvc right by the number of

: . places specified by the operation code, then round.
VSR8 0 37
No Address

VIB-33

Symbol Order

VSRi (cont)

Performance

If MODE # VC:

If shifts odd, proceed to SRiR instruction

If shifts even, proceed to SRi instruction
Shift MPACVC right by the appropriate number of places,
by multiplying by appropriate power of 2, and round each

component to double precision (cf. VSR)

Proceed to "DANZIG"

Symbol Order

DLOAD

DLOAD*

ITA

1 06

3 06

< 33

No Indexing

PDDL

PDDL#

112

312

Transmission Operations

Performance
Double Precision Load.

Load MPAde with double precision quantity at specified

address.
MPAC =K
dp ADDRWde
MPAC+2 = O
MODE = DP

Proceed to "DANZIG!

Interpretive Transfer Address to Storage. STQ may also
be used as symbol.
Load specified address with QPRET (which is loaded with

return address information by e.g. a CALL order).
Instruction does not work properly if address in

fixed memory.

Perform "15ADRERS" (see Section VIC)
EPOLISHS = QPRET (Relative Address 42D, see Section VID)

Proceed to "DANZIG"

Store in Push-down List and Double Precision Load.

Store MPAGC (double precision, triple precision, or vector)
in push-down list (see Section VID) and load MPACdp with
quantity at specified address. If no address is given,
MPACdp loaded from push—down list, and MPAC stored in
same push-down list locations.

Set EPUSHLOC = MPACdp and MPACdp = EADDRWD
. dp . dp
If MODE = DP:
MPACH+2 = 0O

PUSHLOC = PUSHLOC +2
Proceed to "DANZIG"

VIB-3

Symbol Order

PDDL (cont)

PDVL

PDVL#

1 14
3 1

Performancs

If MODE = TP:
MODE = DF
E AR -
PUSHLOCH2
MPAC+2 = Q
. PUSHLOC = PUSHLOC +3
¢~ Proceed to "DANZIG!
MODE = DP

= 4. V o
EPUSHLOG+2dD MPAC, (note that MPAC, | same as MPAC)

EPUSHLOC+4dp = MPAC,

MPAC+2 = 0O
PUSHLOC = PUSHLOC +6
Proceed to "DANZIG!

Store in Push-down IList and Vector Load.

Store MPAC (double precision, triple precision, or vector)
in push-down list (see Section VID) and load MPAC with
quantity at specified address. If no address is given,
MPACVc loaded from push-down list, and MPAC stored in

same push-down list locations.

=60 EPUSHLOCdp = MBAC, emd YWERC, = EADDRWde

(note that MPAC, same
cells as MPACX§P

If MODE = DP:
PUSHLOC = PUSHLOC +2

MERG,, = EADDRWD+2dp
e EADDRWD+Adp
MODE = VG

Proceed to "DANZIG!

VIBE-36

Symbol Order Performance

PDVL (cont) If MODE = TP:

MPAC = E
y CADDRWDH2,

MPAC =E
2 CADDRWD+hg

Epysuroce = MPACH:
PUSHLOC = PUSHLOC 43
MODE = VC

Proceed to "DANZIG"
= MPAC and MPAC
¥y y

I

B DDRWD+2
dp

E
ADDRWD+4dp

Set Episnrocee

Set EPUSHLOC+A = MPACZ and MPACZ =

PUSHLOC = PUSHLOC +6
Proceed to "DANZIGM

PUSH 0 36 Store in Push-down List.

No Address Store MPAC (double precision, triple precision, or
vector) in push-down list (see Section VID) and leave
MPAC loaded.

- — MPAC
EPUSHLOCdp dp

If MODE = DP:
PUSHLOC = PUSHLOC +2
Proceed to "DANZIG"
If MODE = TP:
Bonantogss = MER0HR
PUSHLOC = PUSHLOC +3
Proceed to "DANZIG"

MPACy (note that MPAGd same cells

Boushroc+2 a5 MPAC)

Bousuroc, = MPAC,
PUSHLOC = PUSHLOC +6

Proceed to "DANZIG!

VIB-37

Symbol Order

SETPD 1 37

No Indexing

SLOAD 1 10
SLOAD* 3 10
SSP 111
SSP¥ 3 11
Two Address
Words

STADR O 32

No Address

‘g

Periormance

2t Push-down List Address.

w

Set PUSHLOC (see Section VID) to value of address-word
P

arameter information.

PUSHLOC = ADDRWD (FIXLOC already added as part of
generation of ADDRWD value)

Proceed to second line of "DANZIG"

Single Precision Load.
Load MPACSP with single precision quantity at specified
address (setting O the other two components of MPACtp)‘

Instruction will not push up properly.

MPACHO = EADDRWD
sSp

MPAC+1 = O

MPAC+2 = O

MODE = DP

Proceed to "DANZIG"

Store Single Precision Constant.

Set the single precision cell whose address is given by
the first address-word parameter to the value (number)
of the second address-word parameter. The second
address~-word pasrameter 1s a constant used directly.

Instruction will not push up properly.

10C = 10C +1

Evoorwp ~ Proc (?Qads quantity at address 10OC
SP 5P into E)

Proceed to "DANZIG"

Cause Push—ﬁp on Store Address.

Complement the next line of coding and treat it as a
storage command (the assembler performs a compensating

complement). This causes the normally positive stora

vy
B
2

command with which STADR employed to be negative, fo

operands to be taken from push-down list (see Section VID

ViB-38

Symbol Order

STADR (cont)

STCALL -——-

No Indexing

STODL =—-

STODL* ~—-

STORE = ——-

STOVL — ~—-

STOVI# —~m

Performance

FBANK = bits 15-11 of BANKSET
I0C = 1OC +1

TS = - (B oo) (positive value of store command)
s

Proceed to "DOSTORE" (to process storage command),
Section VIC.

Store and do a CALL Instruction.

Store MPAC (double precision, triple precision, or vector)
in specified address and do a CALL instruction. Neither

address can be indexed.
See "DOSTORE" (Section VIC) for mechanization.

Store and do a DLOAD Instruction.

Store MPAC (double precision, triple precision, or vector)
in specified address (which cannot be indexed) and do a
DLOAD instruction (which can be indexed via STODIL*).

See "DOSTORE" (Section VIC) for mechanization.

Store in Address.

Store MPAC (double precision, triple precision, or vector)
in specified address (which can be indexed), and leave
MPAC loaded.

See '"DOSTORE" (Section VIC) for mechanization.

Store and do a VLOAD Instruction.

Store MPAC (double precision, triple precision, or vector)
in specified address (which cannot be indexed), and do a

VIOAD instruction (which can be indexed via STOVL*).

See "DOSTORE" (Section VIC) for mechanization.

VIB-39

Symbol Order Performance

STQ Same as ITA (alternate mnemonic, Store QPRET).

TLOAD 1 05 Triple Precision Load.

TLOAD* 3 05 Load MPACtp with triple precision quantity at specified
acdress.

MERD,., = EADDRWDtp

MODE = TP
Proceed to "DANZIG"

VILOAD 1 00 Vector Load.

VLOAD* 3 00 Load MPACVC with vector quantity at specified address.

MPAC, . = B\ pprup
VC

MODE = VC
Proceed to "DANZIG"

Vib~40

"Control Operations

Symbol Order Performance

BHT

™~

2 31 Branch if High-order Zero.

No Indexing If magnitude of MPACHO = 0, transfer to specified address.

If MPACHO =T O:
Proceed to GOTO instruction
Proceed to "DANZIG"

BMN 2 27 Branch if Minus.

No Indexing 1f MPACtp negative non-zero, transfer to specified address.

If MPAC, < -O:

Proceed to GOTO instruction
Proceed to "DANZIG"

BOV 2 37 Branch on Overflow.

No Indexing If OVFIND set (i.e. non-zero), reset it (to O) and

transfer to specified address.

If OVFIND # O:

OVFIND = O

Proceed to GOTO instruction
Proceed to "DANZIG"

BOVB 2 36 Branch on Overflow to Basic.

No Indexing If OVFIND set (i.e. non-zero), reset it (to 0) and
transfer to specified address expecting machine-

language orders (rather than the interpretive-language
orders of BOV).

If OVFIND # O:

OVFIND = O

Proceed to RTB instruction
Proceed to "DANZIG"

VIB-L1

Symbol Order

BPL 2 26

No Indexing

BZE 2 2L

No Indexing

CALL 2 32

No Indexing

CAIRB

Performance
Branch if Positive.

Ir MPACtp is zero or positive, transfer to specified

address.

It MPACtp. >, 0t
Proceed to GOTO instruction

Proceed to "DANZIG"

Branch if Zero.

If magnitude of MPACtp = 0, transfer to specified

address.

If MPAC, = = O:
tp
Proceed to GOTO instruction
Proceed to "DANZIG"

Transfer with Return Address. CALRB is used as symbol

if return is accomplished in machine-language (to

_ suppress assembler alarm).

Transfer to specified address, leaving return address
in QPRET (Relative Address 42D, see Section VID). QFRET
format satisfactory for use by BANKCALL etq (i.e. in FCADR

form, see Section VC).

QPRET = (bits 15-11 of BANKSET) + (LOC + 1 - 2000

Proceed to GOTO instruction

g)

Same as CALL (alternate mnemonic, Call with Return in
Basic, to suppress assembler alarm).

Symbol Order

CCALL 1 15

CCALL¥* 3 15

Two Address
Words

CCLRB

CGOTO 1 04
CGOTO* 3 04
Two Address
Words

Performance

Computed CALL., CCIRB used if return in machine language.

Transfer to a step whose address is selected from an
address table in fixed memory, leaving return address

in QPRET (Relative Address 42D, see Section VID). The
address table entry is selected from the contents of the
cell specified by the first address-word parameter and
the value (number) of the second address-word parameter.
The second address-word parameter would be expescted to
contain the base address of the address table, with the
cell specified by the first address-word parameter
giving the increment to this base address. Note that
this "composed" address 1s used to find the cell where
the required transfer address is stored: it is not the
address to which control is transferred. Hence the
order is an "indexed indirect transfer', rather than

an "indexed transfer', order: use of X1 or X2 is limited
to determining memory location of first address.

Instruction will not push up properly.

LOC = LOC +1

TS = By pppuD + E o (second term is quantity at
sp sp address 1OC)

FBANK = bits 15-11 of TS
TS = (bits 10-1 of TS) + 2000
POLISH = ETS

8

Proceed to CALL instruction

Same as CCALL (alternate mnemonic, Computed CALL with
Return in Basic, to suppress assembler alarm).

Computed GOTO.

Transfer to a step whose address is selected from an
address table in fixed memory. Except for the fact
that QPRET not set, performance same as CCALL (see

above).

VIB-43

Symbol Order Performance

CGOTO (cont) TS = B DDRWD P Biooa
sp sp

FBANK = bits 15-11 of TS
TS = (bits 10-1 of TS) + 2000
POLISH = E

TS
Proceed to GOTO instruction

8

EXTT 0 00 Exit from Interpreter.

No Address Return to machine-language coding, starting at address

following the last one used in interpretive language.

EBANK = BANKSET
Proceed to address specified by FBANK and (LOC +1)

GOTO 2 25 Transfer Control.

No Indexing Transfer to specified address. Except for the fact that
QFRET is not set, performance same as CALL (the coding
for GOTO serves as a common control-transfer sequence),
If specified address is in erasable, the contents of
that address are used as the transfer address. If these
contents are also an erasable address, it is treated the
same way, etc. (until an address in fixed memory is
obtained).

If bits 15-12 of POLISH # O:
BBANK = BANKSET
FBANK = bits 15-11 of POLISH
10C = (bits 10-1 of POLISH) + 2000
Proceed to third line of "INTPRET"
If POLISHC 55,:
POLISH =

8

EFIXLOC + POLISH
Proceed to GOTO instruction (repeat checks again)

EBANK = bits 11-9 of POLISH
TS = (bits 8-1 of POLISH) + 14008
POLISH = Eoe

Proceed to GOTO instruction (repeat checks again)

VIB-L4

Symbol Order

ITCQ

RTB 2 30

No Indexing

RVQ 0 34

No Address

Performance

Same as RVQ (alternate mnemonic, Interpretive Transfer
Control via QPRET).

Return to Basic.

Return to machine-language (i.e. "basic") orders starting

at specified address. Differs from EXIT in that a trans-
fer address is specified. OCan return via Q register

or via "DANZIG".

Proceed to address specified in CAIR format by POLISH
(using "SWCALL" routine, with return address set to

cause transfer to "DANZIG")

Return Via QPRET. ITCQ may also be used as symbol.

Transfer to address specified by contents of QPRET
(Relative Address 42D, see Section VID). Can be used

to return from a subroutine entered via a CALL, CCALL, or
STCALL instruction, provided that other CALL-type
instructions not given after subroutine entered.

QPRET can refer to fixed memory only.

BANK = BANKSET
FBANK = bits 15-11 of QPRET

10C = (bits 10-1 of QFRET) + 2000,
Proceed to third line of "INTPRET!

VIB-45

Index Register Ofiented Operations

Symbol Order Performance

AXC;1 2 03 Address to Index Complemented.

AXC,2 2 02 Load single precision index register X1 or X2 with the

complement of the value (number) of the address-word

paramatgr_
If AXC,1:
X1 = - POLISH
' If AXC,2:
X2 = - POLISH -

Proceed to "DANZIG!

AXT,1 2 01 Address to Index True.

AXT,2 2 00 Load single precision index register X1 or X2 with the

value (number) of the address-word parameter.

If AXT,1:

X1 = POLISH
If AXT,2:

X2 = POLISH

Proceed to "DANZIGY

INCR,1 2 15 Increment Index by Address.

INCR,2 2 14 Increment single precision index register ¥1 or X2 with
the value (number) of the address-word parameter, ignoring
overflow. A machine language order has same mnemonic.

If INCR,1:
X1 =X1 + POLISH (modulo 2lh)
If INCR,2: ‘
X2 = X2 + POLISH (modulo 21“)
Proceed to "DANZIG"

VIB-46

Symbol Order
IXA,1 2 05
IXA,2 2 04
IXC,1 2 07
1IXGC,2 2 06
S¥A, 1 2 11
SXA,2 2 10

Performance
Load Index from Address.

Load single precision index register X1 or X2 with the
contents of the erasable memory cell whose address is
given by address-word parameter. Instruction does not
work properly if address in fixed memory.

Perform "15ADRERS" (see Section VIC)

If IXA,1:
X1 = Bpyr1an
If IXA,2:
X2 =E

POLISH
Proceed to "DANZIG"

Load Index from Complement of Address.

Load single precision index register X1 or X2 with the
complement of the contents of the erasable memory cell
whose address is given by address-word parameter.
Instruction does not work properly if address in
Tixed memory.

Perform "15ADRERS" (see Section VIC)

If 1XC,1:
X1 = - Bpgp1ay
If 1XC,2:
X2 = - Bpor1sy

Proceed to "DANZIG"

Store Index in Address.

Store single precision index register X1 or X2 in the
erasable memory cell whose address is given by address-
word parameter. Instruction does not work properly if

address in fixed memory (an erasable memory cell would

be modified anyhow).

Symbol Order

SXA,d

25 o |

T1%,2

XAD,1

XAD,2

(cont)

2 17

2 16

2 21

2 20

Performance

Perform "15ADRERS" (see Section VIC)

If SKA,1:
Eporsy = %1
If SXA,2:
Eoorzsy ~— %2

Proceed to "DANZIG"

Transfer on Index.

If the specified index register minus the corresponding
step register is positive, set index register to the
difference and transfer to the specified address. The
step registers are Relative Addresses 4OD and 41D (see
Section VID), and can be set by an SSP instruction.
Overflow is ignored when index register updated.

If TIE,]:
TS = X1 - 51
If TS> O:
X1 =TS (modulo 214)
Proceed to GOTO instruction
If TIX,2:
TS = X2 - 82
If Ts5> O:

X2 = TS (modulo 2-H)
Proceed to GOTO instruction
Proceed to "DANZIG"

Add to Index from Address.

Add to the single precision index register X1 or X2 the
contents of the erasable memory cell whose address is
given by address-word parameter. Instruction does not
work properly if address in fixed memory. Overflow is

ignored.

VIB-48

Symbol Order Performance

XAD,i (cont) Perform "15ADRERS" (see Section VIC)

If XAD,1:
X1=X1+ L (modulo 214)

If XAD,2:
_ 14
X2 =X2 + EPOLISH (modulo 27 °)

Proceed to "DANZIG!

XCHX,1 2 13 Exchange Contents of Index and Address.

XCHX,2 2 12 Exchange the contents of the single precision index
register X1 or X2 with the contents of the erasable
memory cell whose address is given by address-word
parameter. Instruction does not work properly if

address in fixed memory (erasable memory cell set anyhow)

Perform "15ADRERS" (see Section VIC)
If XCHX,1:

Set X1 = Epy yoy and Bpyp ooy = X1
If XCHX,2:

Set X2 = Epgprgy a0 Bpgrqoy = K2
Proceed to "DANZIG!

X5U,1 2 23 Subtract Address from Index.

X3U,2 2 22 Subtract from the single precision index fegister X3 or
X2 the contents of the erasable memory cell whose
address is given by address-word parameter. Instrucﬁion
does not work properly if address in fixed memory.

Overflow is ignored.

Perform "15ADRERS" (see Section VIC)

If XSU,1: ;
_ _ 14
X1 =X1 EPOLISH (modulo 27%)
If XSU,2:
- _ 14
2 =X2 EPOLISH (modulo 27°F)

Proceed to "DANZIG"

VIB-4L9

Logical Ei£ Operations

A1l logical bit operations use the same octal order (2 34) with the
distinction between them being made by bits 8-5 of the first address-
word parameter (given below as the '"Code"): these bits are set suitsbly
by the assembler. The following parameters are common to -all the

logical bit operations:

SWBIT: bit specified by bits 4-1 of POLISH. Bit 15 to bit 1
respectively are selected for bits 4-1 equal to 00 - 168,
and all bits (bit 15 through bit 1) are selected for bits
4-1 of POLISH equal to 17,4 (not used). Setting of bits
accompanied with suitable inhibiting of interrupts as

necessary.

SWWORD: word selected by bits 14-9 of POLISH. The word selected
has address "STATE" + 2~° x these bits, so that if bit 10 were
a binary 1 and bits 14-11 and 9 were O, the word with address
"STATE" +2 would be selected. "STATE" is the address of the
first of a series of flag-bit words stored in erasable

memory, and conventionally is assigned address OO?AS.

Symbol Code Performance
BOF Same as BOFF (alternate mnemonic).
BOFCILR 12 Clear Bit and Transfer if Bit Was Off.

Two Address Set SWBIT in SWWORD to zero. If this bit was already

Il
W zero, transfer to specified address.

TS = SWWORD
Set SWBIT of SWWORD = O
If SWBIT of TS = O:
FBANK = BANKSET
POLISH = ELOC+1
Proceed to GOTO instruction
10C = IOC +1
Proceed to '"DANZIG"

VIB-50

Symbol Code

BOFF 16

Two Address
Words

BOFINV 06

Two Address
Words

BOFSET 02

Two Address
Words

Performance

Transfer if Bit Is Off. BOF may also be used as symbol.

If SWBIT in SWWORD is gzero, transfer to specified
5 pe

address.

If SWBIT of SWWORD = O:
FBANK = BANKSET

POLISH = ELOG+1
Proceed to GOTO instruction

IOC = 10C +1
Proceed to "DANZIG"

Invert Bit and Transfer if Bit Was Off.

Complement SWBIT in SWWORD.

zero, transfer to specified address.

If this bit was previously

TS = SWWORD
Complement SWBIT in SWWORD
If SWBIT of TS = O:
FBANK = BANKSET
POLISH = ElDC+l
Proceed to GOTO instruction
10C = IOC +1
Proceed to "DANZIG"

Set Bit and Transfer if Bit Was Off.

Set SWBIT in SWWORD to one. If this bit was previously

zero, transfer to specified address.

TS = SWWORD

Set SWBIT of SWWORD = 1

If SWBIT of TS = O:
FBANK = BANKSET

POLISH = ELOC+1
Proceed to GOTO instruction

VIB-51

Symbol Code Performance

BOFSET (cont) 1OC = LOC +1
Proceed to "DANZIGY

BON 14 Transfer if Bit Is Om.

Two Address If SWBIT in SWWORD is one, transfer to specified address.
Words
If SWBIT of SWWORD = 1:
FBANK = BANKSET
POLISH = ELOC+1
Proceed to GOTO instruction
10C = 1OC +1
Proceed to "DANZIG"

BONCLR 10 Clear Eit and Transfer if Bit Was On.

Two Address Set SWBIT in SWWORD to zero. If this bit was previously

Ll one, transfer to specified address.

TS = SWWORD

Set SWBIT of SWWORD = O

If SWBIT of TS = 1:
FBANK = BANKSET

POLISH = ELOC+1
Proceed to GOTO instruction

LOC = LOC +1
Proceed to "DANZIG"

BONINV Q4 Invert Bit and Transfer if Bit Was On.

Two Address Complement SWBIT in SWWORD. If this bit was previously

Words one, transfer to specified address.

TS = SWWORD
Complement SWBIT in SWWORD

\J1
o

VIB-

Symbol Code Performance

BONINV (cont) If SWBIT of TS = 1:
FBANK = BANKSET

POLISH = Ej 5,

Proceed to GOTO instruction
10C = 10C +1
Proceed to "DANZIG"

BONSET 00 Set Bit and Transfer if Bit Was On.

Two Address TS = SWWORD

Worda Set SWBIT of SWWORD = 1
If SWBIT of TS = 1:
FBANK = BANKSET
POLISH = ELOC+1
Proceed to GOTO instruction
I10C = 10C +1
Proceed to "DANZIG"
CLEAR 13 Clear Bit. CIR may also be used as symbol.
Set SWBIT in SWWORD to zero.
Set SWBIT of SWWORD = O
Proceed to '"DANZIG"
CIR Same as CLEAR (alternate mnemonic).
CIRGO 11 Clear Bit and Transfer.

Two Address Set SWEIT in SWWORD to zero and transfer to specified

T,
Words address.

Set SWBIT in SWWORD = O
FBANK = BANKSET

POLISH = ELOC+1

Proceed to GOTO instruction

TNV Same as INVERT (alternate mnemonic).

VIE=33

Svmbol Code Performance

INVERT 07 Invert Bit. INV may also be used as symbol.

Complement SWBIT in SWWORD.

Complement SWBIT of SWWORD
Froceed to "DANZIG!

INVGO 05 Invert Bit and Transfer.

Two Address Complement SWBIT in SWWORD and transfer to specified

Words address.

Complement SWBIT of SWWORD
FBANK = BANKSET

POLISH = ELOC*I
Proceed to GOTO instruction

SET 03 Set Bit.

Set SWBIT in SWWORD to zero.

Set SWBIT of SWWORD = 1
Proceed to "DANZIG!

SETGO 0L Set Bit and Transfer.

Two Address Set SWBIT in SWWORD to one and transfer to specified

Words address.

Set SWBIT of SWWORD = 1
FBANK = BANKSET

POLISH = ELOC+1
Proceed to GOTO instruction

‘Interpretation of Code

Bit Value Bits 43 Bits 2-1
00 Set bit. Transfer if bit was on.
012 Invert bit. Transfer unconditionally.
102 Clear bit. Transfer if bit was off.
llg Leave bit alone. Do not transfer.

VIB-54

VIC Addresses and Interpreter Contrcl

Although the bulk of the interpreter performance capabilities 1is
embodied in the various instructions in its repertoire, an understanding
of the methods by which addresses are defermined and the interpreter
control légic is implemented can also be useful. Many of the spscial
features of the interpreter are due to these two areas, and if their
mechanization is well understood, then the need for exhaustive (and
sometimes puzzling) lists of special cases can be eliminated.

For presentation convenience, this section has been divided into
the following categories:

Overall Interpreter Control

Interpreter Address Determination

Interpreter Storage Orders

Interpreter Transfer to Operation
In a few cases, it may be noticed that there seems to be redundancy
between the logic éhown in this sectioﬁ and that shown for £he individual
instructions. This is usually due to the fact that the individual
instructions in Section VIB are presented as self-contained computations,
even though the actual program mechanization is not necessarily designed
in this manner. For example, separate mnemonics are assigned to vector
and scalar shifts, although both use the same octal codes. Consequently,
it was necessary in Section VIB to show checks for vector vs. scalar
computations within each shift description, although the actual interpreter
software makes these checks in order to determine what operatien was

specified originally.

VIC-1

Overall Interpreter Control

INTPRET To enter interpretive language coding operation, the
program performs the instruction TC "INTPRET" (an
address in fixed-fixed memory bank 03).

Release interrupts

1LOC = Q (FBANK and LOC now have address after the TC "INTPRET")
BANKSET = BBANK (includes EBANK retention)

INTBT15 = bit 15 of BBANK (distinguish between low and high banks)
EDOP = O

Proceed to '"NEWOPS"

DANZIG Most instructions (including RTB orders) end by giving
contrcl to the start of "DANZIG".
BBANK = BANKSET
If EDOP 2> O:
CYR = (EDOP - 1), cycled right 1 place
Shift EDOP right 7 places (making it zero)
Proceed to "OPJUMP"
If NEWJOB > O:
Proceed to "CHANG2" (see Section VIIB)
I0C = LOC +1
Proceed to "NEWOFS!

NEWOPS

TS = ELOC (address also specified by FBANK contents)
If TS»> O:

Proceed to "DOSTORE"
I1f TS = 0, error
TS = {Ts} - 1, limited 3+0
EDOP ='bits 14-8 of TS, shifted right 7 places
CYR = bits 7-1 of TS, cycled right 1 place
Proceed to "OFJUMP"

VIC-2

opJUMP

If CYR = 0, proceed to EXIT instruction
If bit 15 of CYR = O:

Cycle CYR right 1 place and proceed to "OPJUMP2'

(prefix was O or 2 for transfer)

Cycle CY¥R right 1 place
If bit 15 of CYR = 1:

Proceed to "INDEX" (prefix was 3)
Proceed to '"DIRADRES" (prefix was 1)

OPJUMP2
If bit 15 of CYR = O: -

Cycle CYR right 1 place and proceed to "OPJUMP3" (prefix was
O if transfer)
Cycle CYIR right 1 place

LOC = 1OC +1

POLISH = ELOC (address also specified by FBANK contents)
FBANK =1 (i.e. bit 11 set)

Proceed to "MISCJUMP"

0PJUMP3
FBANK = O
If bit 15 of CYR = O:
Proceed to "UNAJUMP" (operation code was even if transfer)
If MODE = VC, proceed to appropriate short vector shift (VSLi or VSRi)
Proceed to appropriate short scalar shift (SLi, SLiR, SRi, or SRiR)

ViCt-3

Interpreter Address Determination

DIRADRES Entered from "OPJUMP" if prefix is 1, and from "DOSTORE"
if a non-indexed loading operation is specified.

T8 = - (ELOC+1) (address also specified by FBANK contents)
If T5>» O:
Proceed to "PUSHUP" (next word is negative, meaning operation)
ADDRWD = TS| - 1 (error if TS = 0)
I10C = 10C +1
If ADDRWD < 554:
ADDRWD = ADDRWD + FIXLOC (Cf. Section VID)
Proceed to "INDJUMP"
1 ADDRWD\(3?7?8:
Proceed to "GEADDR"

TS = ADDRWD + INTBT15 (INTBT15 saved in "INTPRET")
FBANK = bits 15-11 of TS

ADDRWD = bits 10-1 of (ADDRWD - 37778) + 17778 (can't use last
cell in bank)

Proceed to "INDJUMP"

INDEX Entered from "OPJUMP" if prefix is 3, and from "DOSTORE"
if an indexed loading operation is specified.
1LOC == 1OC +1
TS = - (ELOC} (address also specified by FBANK contents)
ADDRWD = (Ts| - 1
If bits 15-12 of ADDRWD # O:
ADDRWD = ADDRWD + INTBT15
If Ts< O

ADDRWD = ADDRWD - X1 modulo 2lb’

(hLOC was positive)

I T8 > 0

ADDRWD = ADDRWD - X2 modulo 21A (ELOC was negative)
If ADDRWD & 77:

ADDRWD = ADDRWD + FIXLOC

Proceed to "INDJUMP"
If ADDRWD.E 37774

Proceed to "GEADDR" (different step, but same function)

VIC-4

FBANK = bits 15-11 of ADDRWD
ADDRWD = (bits 10-1 of ADDRWD) + 2000
Proceed to "INDJUMP'

8

PUSHUP Entered from "DIRADRES"Y

If operation code (see "INDJUMP") 3'208:
PUSHLOC = PUSHLOC -~ i (i = 2,3,6 for MODE = DP, TP, VC)
If operation code is VXSC, V/SC, MXV, or NORM:
PUSHLOC = PUSHLOC - j (j= 6,6,2 for MODE = DP, TP, VC)
(should not be used for MXV,NORM)
If operation code is TAD, TLOAD, SSP, or CCALL:

PUSHLOC = PUSHLOC - 3 (should not be used for SSP or CCALL)
If operation code is SIGN, DLOAD, PDDL, or VXM:

PUSHLOC = PUSHLOC - 2 (should not be used for VXM)
If operation code is VLOAD, CGOTO, SLOAD, or PDVL:

PUSHLOC = PUSHLOC - 6 (should not be used for CGOTO,SLOAD)

ADDEWD = PUSHLOC
Proceed to "INDJUMP"

GEADDR Entered from "DIRADRES" and "INDEX" if non-VAG E-memory ref.

EBANK = bits 11-9 of ADDRWD
ADDRWD = (bits 8-1 of ADDRWD) + 1AOO8
roceed to "INDJUMP"

15ADRERS Entered from ITA and index-register operations requiring
an E-memory address.

If POLISHKL 558:
POLISH = POLISH + FIX1OC
Return

EBANK = bits 11-9 of POLISH

POLISH = (bits 8-1 of POLISH) + 1400, (note that this not usual
POLISH information)

Return

Interpreter Storase Orders

DOSTORE Entered from "NEWOPS'" if operation word positive, and at end
of STADR order.
ADDRWD = TS - 1
TS = (bits 14-12 of ADDRWD), shifted right 11 places
ADDRWD = bits 11-1 of ADDRWD

Proceed as indicated in table below (X is address for store order)

TS Instruction Performance

STCORE X Perform "STORE'"; Proceed to "DANZIG"
1 STORE X,1 Perform "STORE,1"; Proceed to "DANZIG"
2 STCRE X,2 Perform "STORE,2"; Proceed to "DANZIG"
3 STODL X Perform "STORE"; Proceed to "DODLOAD"
L STODL* X Perform "STORE"; Proceed to " DODLOAD*""
5 STOVL X Perform "STORE"; Proceed to "DOVILOAD"
6 STOVL# X Perform "STORE"; Proceed té "DOVLOADs"
7 STCALL X Perform "STCRE"

CYR = OOOlBé (CALL order)
Proceed to third line of "OPJUMP2!

STORE, 1

ADDRWD = ADDRWD - X1 (modulo 21L)

Proceed to "STCRE"

STORE, 2

ADDRWD = ADDRWD - X2 (modulo 2lh)
Proceed to "STORE'"

VIC-6

STORE

If ADDRWD 2 554

EBANK = bits 11-9 of ADDRWD

ADDRWD = (bits 8-1 of ADDRWD) + 1400,
If ADDRWD < 554: :

ADDRWD = ADDRWD + FIXLOC
If MODE = DP:

E = MPAC
ADDRWD, dp

Return
If MODE = TP:

B\ pDRWD o = WEAGe

Return
If MODE = VC:

Eypprwp ~ MPAC,.
Ve

Return

DODLOAD

CYR = 200068 (DLOAD order)
Proceed to "DIRADRES"

DODLOAD:*

CYIR = 600068 (DLOAD* order)
Proceed to "INDEX!

DOVLOAD
CYR = 200004 (VLOAD order)
Proceed to "DIRADRES"

DOVLOAD*

CYR = 600008 (VLOAD* order)
Proceed to "INDEX"

Interpreter Transfer to Operation

INDJUMP Entered from "DIRADRES', "INDEX", "GEADDR", or "PUSHUP'" for
Indexable Operations (those with prefix of 1 or 3).

Proceed to routine specified by bits 5-1 of CYR (i.e. the order

bits alone, since prefix bits already removed) :

Octal

Digit o Orders

00-03 VLOAD; TAD; SIGN; VXSC

0L-07 CGOTO; TLOAD; DLOAD; V/SC

10-13 SLOAD; SSP; PDDL; MXV

14-17 PDVL; CCALL; VXM; NORM

20-23 DMPR; DDV; BDDV; (SL, SLR, SR, SRR, VSL, VSR)
24-27 VAD; VSU; BVSU; DOT

3033 VXV; VPROJ; DSU; BDSU

34-37 DAD; (spare); DMP; SETPD

MISCJUMP Entered from "OPJUMP2" for Miscellaneous Operations (those
with prefix of 2), with FBANK =

Proceed to routine specified by bits 4-1 of CYR (i.e. the most
significant 4 bits of order code, since CYR contains original

instruction cycled right 3 places):

Octal Shifted

Digit Digits Orders

00-03 00-07 AXT; AXC; IXA; ILXC

0407 10-17 SXA; XCHX; INCR; TIX

10-13 20-27 XAD; XSU; BZE/GOTO; BPL/BMN

=17 30-37 RTB/BHIZ; CALL/ITA; (all Logical Bit Operatlons)/

(spare); BOVB/BOV

The shifted value is odd if index register #1 is specified
or if the operation following the slash mark is selected,
and otherwise is even. The shifted value is the cne

given in Section VIBE.

UNAJUMP Entered from "OPJUMP3'" if the prefix is O (Unary Operation)
and the five-bit operation code is even, with FBANK = O.

Proceed to routine specified by bits 4-1 of CIR (i.e. the most
significant L bits of order code, since CYR contains original

instruction cycled right 3 places):

Octal Shifted

Digit Digits Orders
00 00 EXIT (detected in "OPJUMP')
01-03 02-06 SQRT; SIN; COS
0L~07 10-16 ASTIN; ACOS; DSQ; ROUND
10-13 20-26 (DCOMP, VCOMP); VDEF; UNIT; (ABS, ABVAL)
1417 30-36 VSQ; STADR; RVQ; PUSH

The shifted value is the one given in the order code
description, and is egqual to twice the octal digit
(i.e. an even number). 0dd values are detected in

NOPJUMP3" and used for short shifts.

USPRCADR Entered from machine-language coding to access interpretive
language computations (such as divide or trig functions)
that must be accessed by changing FBANK. Calling address +1
contains FCADR of desired coding. Incoming values of (4, L)
retained.

EDOP = 2008 shifted right 7 places (leaves 00001,, the EXIT code,
1 3 3 1" 11
BANKSET = BBANK becoming O in "DANZIG'")

FBANK = (bits 15-11 of EQ)
TS = (bits 10-1 of EQ) + 20004
Proceed to address specified by TS (and FBANK)

VID Relestive Addresses, Push-down List, and VAC Areas

In addition to the instructions for performing multiple-precision
and véctor computations, the interpreter software can also make special
use of a set of L3 erasable memory cells which can be assigned to a job
when it is-established (see Section VIIB). For historical reasons (in
the Block 1 software design, the vector accumulator was located there),
this set of cells is conventionally called a "VAC area'": there are five
such areas allocated in the erasable memory, each with a control
cell (VACLlUSE, VACZ2USE, ...VAC5USE) preceding the first cell of the
corresponding area. When the associated VAC area is assigned, the
VACiUSE cell is set O (assignment is when the job is established, in
general); otherwise, the control cell contains its own address (hence
VAC3USE +1 provides the starting address of the third VAC area, for
example). As shown in Section VIIB, when a VAC area is assigned to
a job the starting address of the VAC area is placed in bits 9-1 of
the job's PRIORITY cell; wﬁen a job is first established, the job's
PUSHLOC cell is also set to this same VAC area starting address.

As part of the standard set of initial conditions (e.g. at computer turn-
on), each VACiUSE cell is set to its own address.

When a job is active, the starting address of the selected VAC
area is contained in FIXIOC. If the convention were adopted (as it
is) that all addresses below some value in the interpretive language
programs were to be with respect to the address contained in FIXTOC,
then a relative addressing capability would be achieved (i.e. addresses
would not indicate absolute memory cells, but instead a cell which
bears a certain relationship to the address in FIXLOC, which for five
VAC areas would mean one of five absolute erasable memory cells). As

discussed in Section IID, addresses of 60Q and below in the memory are

assigned either to hardware registers or special-purpose applications,
and therefore by convention can be excluded from direct reference in
the interpretive language (instead, a return to machine language,
perhaps via an RTB order, must be made). Since each VAC area is only
43 cells in capacity, only relative addresses in the range O - 528
(42D) inclusive are meaningful, however. For programming convenience,
the absolute address below which FIXLOC is added is variously considered
to be 558 and 1008: the additional excluded cells are assigned functions
of such a nature that interpretive language reference to them would
not be appropriate.

By convention, certain of the cells in the upper portion of each
VAC area are assigned to particular quantities. It is customary in the
listing to see references to these cells either by a special mnemonic
or by the number of decimal locations they are located above the

address in FIXIOC (i.e. the relative decimal address):

Relative :
Address True Address Mnemonic Function
3ILD-35D FIXLOC +34D-35D LVSQUARE Square of length of vector after

ABVAL and UNIT orders, scale
factor twice that of vsctor.

36D-37D FIX10C +36D-37D LV Length of vector after UNIT,
same scale factor as that
of (original) vector.

38D FIXLOC +38D X1 Index register #1 (Section VIA).

39D FIXIOC +39D 35 Index register #2 (Section VIA).

40D FIX1.0C +40D S1 Step register #1 (see TIX order).
41D FIX10C +41D E2 Step register #2 (see TIX order).
" 42D FIX1.0C +42D QPRET Return address information after

CALL, CCAIL, and STCALL orders;
sensed by RUQ and ITA orders.

A NOVAC job sets program cells
such that QFRET storage location
is in MPAC+6 (see Section VIIB).

ViD-2

If these functions are not required, of course, their cells may be
used for utility storage purposes, as can any of the other cells in
the VAC area. As mentioned before, the cells can be used either by
direct specification of their relative address or by assignment of
a tag to have the appropriate octal equivalence.

Tn addition to the explicit specification of relative addresses
in the VAC area, a provision is also included in the interpreter
software to allow addresses in the VAC area to be "implied" by the
coding, thus eliminating the need for address-word parameters for
these quantities and reducing the amount of fixed memory which is
required. The major control parameter for these implied-address
uses of the VAC areas is the PUSHLOC cell (part of the Job Register
Set, see Section VIIB): this cell is initialized to the same value
as FIXLOC when the job is established, and it may be set to some
other value (which should be less than FIXLOC +43D, of course) by
using the SETPD order. PUSHLOC is also incremented positively or
negatively as determined by the nature of the computation.

Three orders are used to store information in the VAC area in
cells determined by PUSHLOC: PDDL (store in push—down list and
perform a double precision load), PDVL (store in push-down list and
perform a vector load), and PUSH (store in push-down list). Each of
these operations stores the appropriate number of 15-bit words deter-
mined by the current computational value of MODE. Each time a quantity
is stored into the VAC area by one of these operatlons the contents
of PUSHLOC are incremented by the appropriate amount (2, 3, or 6 for
double precision, triple precision, and vector storages respectively),
so that PUSHLOC contains the address of the cell which should be loaded

next.

VID-3

Withdrawal of information from the VAC area cells determined by
PUSHLOC takes place properly only for certain Indexable Operations (see
Section VIA), as controlled by the "PUSHUP" routine described on page
VIC-5, These withdrawals of information are accomplished by decrementing
PUSHLOC by the appropriate amount (2, 3, or 6 for double precision,
triple precision, and vector removals respectively) and storing the
resulting value of PUSHLOC in ADDRWD for use as the operand address.
If desired, the contents of the MPAC set and the push-down list can be
exchanged (by the PDDL or PDVL orders) merely by omitting the address
following the orders. The STADR instruction is used if it is desired
to obtain operands from the push-down list before a store order: the
STADR instruction causes the assembler to place the store order in
the memory as a negative quantity, thus causing it to appesar to the
program logic as a normal operation (rather than as an address), so
as to cause gperands to be taken from the VAC area.

If desired, it may be useful to think of PUSHLOC as a "pointer"
which specifies the cell in the VAC area that is to be loaded next
by an operation that inserts information into the push-down list.
Storage of information by such an operation causes the pointer to be
advanced so as to reflect the address of a cell further down within
the VAC area (a cell with a higher address can be regarded as being
"lower" for a ranking of cells in ascending sequence), and hence
"pushes down" the pointer. Conversely, when information is withdrawn,
the pointer moves to a cell with a lower address (or one "higher" on
the ranking), and hence "pushes up" the pointer. 't should be
evident that there is no physical movement of cell contents "up" and
"down", but merely a change in the contents of PUSHLOC. This process

gives the push-down list a "last in, first out" characteristic.

VID-L

The VAC area and the "push-down list!, of course, are the same
43-cell erasable memory segment, and references to individual cells
within this segment can be either by the various operations making
use of the push-down list properties or by explicit use of relative
addresses (values in range O - 42D). There is no magnitude check
made in the interpreter software before changes to PUSHLOC are caused,
so the program must be written to keep PUSHLOC in the proper 0-42D
range of relative addresses, remembering that cells 34D-42D are also
assigned to particular quantities. Movement of PUSHLOC does not
cause the contents of VAC area cells to be destroyed, so these cells
could still be sensed by using their relative addresses after PUSHLOC
has caused them to be read out. The conventional programming practice,
however, is to use the relative address for all except the final
reference to the quantity (and use the push-down list capability for

this final reference).

VID-5

VIE Interpretive Language Examples

The folliowing examples of interpretive language coding have been
fabricated to illustrate some of the principles of the different orders
available with the interpretive language, rather than necessarily to
illustrate efficient coding techniques or perform meaningful calculations.

Except where noted, scaling considerations have been ignored.
1. VAR =D / (HB+ 3NVAR') H's address modified by index register #2

DLOAD* DMPR

H,2
B
PDDL SQRT Store first term in push-down list
VAR
SR1 DAD DAD takes operand from push-down list
BDDV
D
STORE VAR

2. VAR =D + FC - H° B; VARL = cos™+ (\VAR\/ (2° sin VAR)) Magnitude
of arc cosine argument limited to 1; leave
VAR1 in push-down list.

DLOAD DSQ
H
DMP PDDL
B
C
DMP DAD
F
D
DSU STADR * STADR forces DSU to get operand from push-
down list
STORE VAR
ABS SHR
5 Divide numerator by 25

VIE-1

PDDL

BDDV

ACOS

3. VAR =

TLOAD

TAD

TAD

PDDL

BDSU

BDDV
BOVE

STORE

2

10

SIN

VAR

SR1 Right shift 1 to scale o argument Bl;
BDDV operation incorporates limiting as
part of algorithm (see Section VIB)

PUSH Leave VARL in push-down list

(H-B+C)/ (pos (D - sinvl E)) If overflow, do not
load VAR, and transfer
to STEP (machine
language coding). H,
B, C triple precision,
all positive.

DCOMP DCOMP works for triple precision too

B

BOV

H

+1 Just resets OVFIND

SIR

C

10D Without the "D", would be 104 (decimal 8)
ASTN

CoSs
Cannot be on same line as BDDV (push—down list)

STEP
VAR

L. VAR = Z component of: D unit (4B, O, - C) sgn E

DLCOAD

PDDL

DMP

DCOMP

C

PDDL Z component into push-down list first, then Y
ZERODP Constant, double precision O

H

VDEF X component, in MPACdp for VDEF operation

B

UNIT VXSG MPAC now a vector, hence operand scalar

=

SIGN DIOAD

E

MPAC +5 Z component
STORE VAR

5. Transfer double precision quantities at X, Y, Z (6 consecutive cells)
to PD+18, PD+20, PD+22 (push—down cells),

SETPD VLOAD

18D
X
PUSH
or
SSP AXT,1
51 Location of store address before what is put
2 into it
6
STEP DLOAD
Z 45, 1 Index registers use subtractive algorithm
STORE 18D +6,1
TIH,1
STEP

6. Compute single precision the value of H =17 + B - C - 5 — H without
permanently changing any erasable memory cell (except H and

interpreter ones) or using MPAC.

XCHX,2 IXC,2 Save previous X2
H
X2 Complement contents
INCR,2 INCR,2
17D
DEC -5 Without DEC would be address of first line

XAD,2 XSU,2

VIE-3

. H

XCHX, 2

= 2 B/C.

DLOAD

SL1R

STORE
SET

' CLEAR

DLOAD

BDDV

STORE
BMN

. CLRGO

<«

If H'3 -0, set bit 23 (of flagword assignments) to 1
and transfer to STEPl; otherwise, set bit to O and
transfer to STEPZ2.

DDV
B
C

The round is not functional since DDV leaves
MPAC+2 = 0O

BPL
23D
STEP1
GOTO
23D
STEP2

SRIR

SETGO
+3
23D
STEP1

23D
STEP2

VIE-L

STEP!

STEP!

STORE
BMN

BOFINV

BOFF

DIOAD

SL1
STORE
BMN

BONSET

BONCLR

BON
STEP!
23D
STEP1

23D
STEP1
BONINV
23D
STEP2
23D
STEP2

DDV

H
BOFSET
STEP!
23D
STEP1

23D
STEP1
BOFCLR
23D
STEP2
23D
STEP2

Bit already set to 1

Will transfer since know bit was O

Will transfer since know bit was 1

Will transfer since bit was 1

g. VECT = gl (EREFSMA.ﬂ VECT + VECT1 - % VECT2 - i VECT3 @mﬂ)
VLOAD MXV
VECT
REFSMMAT
VAD VSL1 The 4 factor handled by shifts
VECT1
Vsu VSR1
VECTZ2
PDVL M
VECT3
MTBY |
VSL BVSU BVSU operand from push-down list
11D
VSR
10D
STORE VECT
9. If](_H_ - B) B - (_Q)2> 0, go to STEP1 (in basic); if zero, go to
STEP2; otherwise, set VECT = unit(H * B) x
(C - -B)/VH*B| and leave interpreter,
VIOAD VFROJ
H
B,
ABVAL PIVL
C
V3Q BDSU
BZE BMN
STEP2
STEP!
RTB Can be used to return to basic (machine
language) at an address without return to
: interpreter,
STEP1
STEP' VLOAD VXV
H
B

VIE-6

UNIT

VCOMP

VXS0

V/sC

STORE
EXIT

10. Divide

DLOAD

SR1R
PDDL
- BDDV
ROUND
TLOAD

SETFD

SXA,2

SLOAD

512

PIVL

B

DOT

G
MPAC has scalar, hence operand from push-down
list is vector

36D Left with magnitude by UNIT operation

VECT

by B', scaling each to minimize errors.

NORM

X1
INCR,1

NORM

X2
D3Q
DSQ
Sets MODE to TP, for the store
MPAC '
PUSH

S8P
3 Addresses in VAC area

L Set to O

D3U
h s

1XA,1
MPAC

VIE-7

TLOAD SLi*
o

L,1 Shift either right or left to give (assumed
desired) new scaling

STORE ANSWR

1l 32 = lOOOO8 - Xl. If X2 =0, proceed to STEP; otherwise, set bits
7-1 of FLAGWRD1 = 1 and set X2 = =4370.

AXT,2 XSU,2

20000 Could also have used OCT 10000 (see Section VB)
X1l
DLOAD BHIZ
b5
STEP
RTB AXC,2
SETFIG
DEC 4970
SETFIG INHINT
cs FLAGWRD1
MASK LOW7 (constant, octal 00177)

ADS FLAGWRD1 (bits that O in FLAGWRD1 now set 1; bits
that were 1 are left alone)
RELINT

TC Q) RTB leaves Q set so that return to "DANZIG!

12. H =B/C; J =BC; K = g2 VECTL - VECT2; transfer to STEPO,
STEP1, STEP2, or STEP3 depending on whether
'le.th (K single precision) is 0,1,2, or 3.

DLOAD DDV
B
e
STODL H
B
DMP

VIE-8

STOVL d

VECT1
DOT SR K considered only a control quantity, hence
VECT2 not stored
12D
ABS CGOTO
MPAC
CONST
CONST CADR STEPQO Computations at these steps not shown
CATR STEPL
CADR STEPZ
CADR STEP3

13. Within a subroutine (entrance to which is not shown), set H = B
and perform subroutine starting at STEP. This subroutine computes
VAR =H+ ¢ (82), where f (B2) is computed by subroutines starting
at STEPl, STEP2, or STEP3 depending on values of cell CONTL
(possible values 1, 2, and 3 respsctively). If CONTL odd, comple-
ment bit 17 of the flagword assignments.

STQ DLOAD
31 Used for temporary storage
B
STCALL H
STEP
GOTO Return to original calling routine
S1

STEP ITA DLOAD Loading repeated since MPAC might not be
proper for other users of subroutine

52
B
DSQ CCALL
CONTL
CONST - 1
DAD CALL
H

52 Return to calling routine

VIE-9

CONST CADR
CADR
CADR

STEP1 DSU

RVQ

STEP2 DSU

STEP3 DsSU

STEFPL
STEF2
STEP3

INVERT

17D

RWQ

INVGO

17D
QFRET

Since QPRET is in erasable, INVGO logic will
cause transfer to address in QPRET

VIE-10

VII PROGRAM PERFORMANCE CONTROL

The guidance computer is basically capable of performing only

one computation at a time: the proper performance of the guidance
system in a flight enviromment, therefore, requires a carefully
integrated combination of hardware and software design so that the
computaticns may be sequenced to meet the demands of the flight.
This means that the computer must be responsive to external stimuli
(originated either by the crew or by the spacecraft hardware), and
must also provide output signals of the proper characteristics for
use by other spacecraft systems.

Once the computer arithmetic unit starts executing a machine
language instruction, it will continue to execute that instruction
until it is completed. The next function performed by the arithmetic
unit depends on the character of the computations being performed, as
well as on the nature of the signals which may have occurred while the
instruction was being executed. These functions, in order of decreasing
priority, are:

1. Process counter interrupts (Section ITH). These affect cells

00248 = 00608, with the lower cell addresses being processed

before the higher ones. All counter interrupts, however, are

processed before proceeding te the next function.

2. Initiate computations associated with a restart (program
interrupt #11, Section IIH) if such computations are required,
The software must periodically update the '"phase information"

covered in Section VIIC so the restart will be successful.

VEE=3.

. If the previous machine language instruction was part of a
task (program interrupts #1 - #10, Section ITH), continue
with the next program step in sequence. This is done sven if

a program interrupt of higher priority has been generated,

since the program interrupt priority ranking is for the

purposes of starting the appropriate processing only. The

fact that another program interrupt has been generated,

of course, is retained by the hardware and will cause appropriate

program action at a later time.

. If action on program interrupts is blocked (by setting of the
interrupt inhibit flip-flop or other means, see Section ITH),

continue with the next program step in sequence.

. If a program interrupt has been received, suspend the present
computations and start those pertinent to the task associated
with the program interrupt. If several program interrupts
are waiting to be processed, perform the one with the highest
priority (Section IIH: priority is order of numbering of the
interrupt for program interrupts #1 - #10). Once the
processing is started, it is continued to completion, even
though a higher priority interrupt may have subsequently
been generated. The present value of the program counter

is saved by hardware means, while other addressable registers
must be saved by program means. The interrupts which are
produced include those whose timing is specified by the
software in order to perform time-dependent computations via

the waitlist system (see Section VIIA).

. By software means, a task can cause the performance of a job

to be suspended for a longer interval than that required to do

the task itself: this is distinguished from the function of

#8 below in that the "check for hlgher prigrity" 4s (din concept)
done as part of the task performance, with the foregone conclusion
that the new computation will be initiated. One term for this
function is "jask", since to other jobs it has the over-riding

"priority" of a task; to other tasks, however, it is a "job",

VII-2

since it can be suspended in favor of 'normal" tasks (such as
telemetry interrupts). The software must preserve and restore
properly the necessary special-purpose erasable memory cells,

and the implementation involwves use of the EDRUPT order described

in Section ITH. The Jask does not use the executive system.

. Continue with the next program step in sequence.

Periodically, the program while executing any Jjob must check for
a computation of higher job priority (cf. #6 above). If one
is waiting, the computations of the present job are suspended
and the one of higher priority started. Certzin erasable
memory cells (the Job Register Set and, if assigned, VAC

area, see Section VIIB and Section VID) from the suspended job
are retained. The program must be written so as to avoid
undesirable interactions between different jobs due either

to sequences of computation or time-sharing of erasable
memory cells. There is no 1limit on the length of time

or amount of computation required by a particular job,

contrary to the case with tasks.

If no jobs or tasks are.to be performed, the program continues
in an idling loop ("dummy job'", Section VIIB) while waiting
for program interrupts to require tasks to be performed.

The tasks, in turn, could establish functional jobs. There

is no "stop'" command in the computer order code (a one-step

loop is a fault condition).

VITA Waitlist System for Tasks

Time-dependent tasks in the guidance program can be implemented
by means of a "waitlist" system, for which the program specifies the
starting address of the task computations and the time delay (from
the present time) that should elapse before these computations are
entered. The time delay is specified in units of centi-seconds
(0.01 seconds, the least increment of cell 00268, TIME3 in Section

IID). The general calling sequence for the waitlist entries is:

CA - vy (yy is time delay in centi-seconds)
TC WATITLIST (in fixed-fixed memory)

2CADR XXX (XXX is starting address)

If the waitlist task to be called is in the same fixed memory bank, the
BBCON part of the 2CADR can be omitted, thus saving a fixed memory cell,

by using the following calling sequence:

CA N
TC TWIDDLE (in fixed-fixed memory)
ADRES XX

In order to delay the performance of a waitlist-initiated task for
an additional psriod of time, transfer can be made to "VARDELAY"
(required delay in accumulator) or "FIXDELAY" (required delay in
calling address +1, returns to calling address +2 after expiration
of the delay). Finally, for one long time interval, entrance to
"TONGCALL" can be made with (A, L) containing the double precision
time delay required before the task is started, again in units

of centi-seconds. Waitlist-initiated tasks are terminated by
transfer to '"TASKOVER'", and can be removed from the waitlist by

entrance to "KILLTASK" (IM onlwv).

The following constraints and limitations on the use of the

-
—1
=1
L]
jiy
}-
=
§1]

of the specified time delay (yy above) must be
positive non-zero. Negative or zero values generally cause
a software restart to occur ("POODOO" or '"POODOO1"). The

lower 1imit on the time delay, therefore, is 1 centi-second.

2. By convention, the wvalue of yy is restricted to a maximm
of 162.5 seconds, although slightly larger values could be
accommodated, for direct entrances to "WAITLIST". Larger
values of yy are handled (one task at a time) by the
"LONGCALL" routine, which uses the waitlist system logic to
count down the specified time in increments of 81.92 seconds.
The fifteen-bit wordlength of the computer gives a ''hard"
limit for "WAITLIST" entrances of 163.83 seconds (TIME3
would not be set to intervals bigger than 81.93 seconds due

to the "dummy task" discussed later).

3. With no timing constraints, up to seven tasks can be handled
in the waitlist system simultaneously ('handled" means
"gqueued": once an interrupt for a task has been acted upon,
its place in the queue is vacated). As can be seen from the
equations on the following pages, if a new task cannot be
accommodated in the queue a software restart ("BAILOUT' or
"BATLOUT1") is caused. Under certain conditions, an eighth

(and even a ninth) task can be accommodated in the queue.

L. More than one task can be scheduled for initiation at the same
TIME3 overflow point, in which case the tasks would be performed
in the order in which they were originally scheduled (i.e. the
first task scheduled for the time would be the first one
performed, etc.). If too much time is consumed in the conduct
of tasks, however, a hardware restart (program interrupt #11,
Section ITIH) would be caused due to the hardware "RUPT lock"
check.

5. Tasks scheduled by a job (such as the countdown to send an
engine—-off command based on a guidance time-to-go) measure the
time delay (yy) from the most recent occurrence of the counter
interrupt that triggers the incremenﬁing of TIMEZ. Consequently,
the task would be started roughly 0-10 milliseconds before the
value indicated by yy. Tasks scheduled by waitlist tasks, of
course, such as the periodic accelerometer sampling, measure
the time delay from the TIME3 increment that last took place,
and hence such self-perpetuating tasks can be recycled

indefinitely.

The equations given below describe the computations performed by

the various program routines associated with the waitlist system.

WAITLIST Entered with desired time delay before start of task
in A (accumulator), scale factor Blh in units of centi-
seconds, and with the 2CADR (see Section VC) of the task
in the two cells following the TC "WAITLIST". Return
is to the cell following the 2CADR.

Inhibit interrupts

Ir AL 0: CM only
| Proceed to "POODOO" (pattern 212Ou8)

WAITEXIT = Q

DELT = A (Value of input time, Bl centi-seconds)

WAITADHdp = B s TTEXTT (The 2CADR information of task starting
d address)

Proceed to '"WAITZ"
TWIDDLE Entered with desired time delay before start of task
in A, and with the ADRES (see Section VC) of the tasX

in the cell following the TC “IWIDDLE . Return 1is
to the cell following the ADRES.

Inhibit interrupts

Q-4 -1
TS, = BBANK + SUPERBNK (or'ed into bits 7-5)
Inhibit interrupts (redundant, to use common coding)
If AL O CM only
Proceed to "POODOQ" (pattern 212048)
WAITEXIT - Q
DETH - &
WAITADder (EWAITEXITal’ T52) (the +1 compensates for the Q -1)

Proceed to '"WAITZY

VIIA-3

FIXDETAY Entered with required amount of delay (Bl4 centi-
s=conds) in calling address +1; returns to calling
address +2 after completion of the delay.

A=E, (Required amount of delay)
Q=Q+

Proceed to "VARDELAY™"

VARDELAY Entered with required amount of delay (Bl4 centi-

seconds) in A; returns to calling address +1 after
completlon of the delay.

?.-’“3 L}J -l »d'b-.._v)Af\

wAITADde (Q, BBANK + SUPERBMK (or'ed into bits 7-5))
WAITEXIT = "TASKOVER" - 2 .
DELT = A (Required amount of delay)

Proceed to "WAIT2"

WAIT2
If DELT & O: UL _only .
Proceed to "POODOOL" (pattern 2120ky, TS = (WAITEXIT, BBANK))
If TIME3 > 128: (interrupt not yet taken place for
~ 1638), - TIME3 time presently being delayed)
If TIME3 = 128:
T1 =1 (improper performance)
If TIME3 < 128:
Tl = - TIME3
TS = DELT - T1 + 1 (T1 is time interval between 'now" and
when present task #1 was supposed to be
performed)
If TS > O:
TS =TS - 1 + 1LST1 (Sets to DELT - T2 -+1)
Proceed to "WTLST5" (DELT > T1)

Set TS = TIME3 and TIME3 = (8192 - DELT) + 8192 modulo 2

Move all LST1 entries down one place (LST1+i = LST1+i-1, for i
from 7 down to 1)

LST1+0 = DELT - (1638L - TS)
Move all LST2 entries down one place (LST2+1dp = LST2+i—2dp, for
i from 16 down to 2 in decrements of 2)

LST2+0, = WAITADR
dp dp

If previous LST2+16 (before movement) # "SVCT3": (Displaced task
not dummy task)
Proceed to "BATILOUT" (pattern 31203,) CM only ey
Proceed to "BAILOUTL" (pattern 31203,, TS = (WAITEXIT, BEANK))
IM only
Proceed to address specified by WAITEXIT +2 (and BBANK as used in
: IM-only- alarms)

WTL3T5
I=0 (Index to count cycles and select cells)
I=I+1
If 1I=8:
If TS>» O: (time too big)
Proceed to "BAILOUT" (pattern 31203,) CM only caller's
Proceed to "BAILOUT1" (pattern 312038, TS = (WA%EFiif’ BBANK))
If Ts> O:
TS = TS + LST1+I -1
Proceed to second line of "WTLST5"
LST1+I-1 = LST1+I-1 - TS + 1 (Notation means e.g. LST1+3 if
I=24) :
If T4 é6:
Move LST1 entries from LST1+I to LST1+7 down by one place
If1L£7:

LST1+I = TS
Move LSTzdp entries from LST2+21dp to LST2+16dp down one place
18T2+2T1 = WAITADR ,
dp dp

Proceed to top line of this page

LONGCALL Entered with desired time delay before start of task
as a double precision number in (A, L), scale factor
B28 in units of centi-seconds, and with the 2CADR of
the task in the two cells following the TC "LONGCALLY.
Return is to the cell following the 2CADR. Only one
task at a time can use "LONGCALL'.

LONGTIMEdp = (A, L)

LONGCADR, | = E (2CADR of task to be called)
p ap |
LONGEXIpo = (Q +2, BBANK) (i.e. return address) w
-3 Y P IO P 57
If LONGTIM:Edp _/—’:_ O: M Only_’_ N N »

Proceed to '"POODOO1" (pattern 2120"*8’ TS = LONGE){Ipo)
Proceed to "LONGCYCL"

VITA-5

LONGCYCL

IONGTIME, = LONGTIMEAP - 8192
W

2

+3

If LONGTIME, > O:
o
Call "LONGCYCL'" in £1.92 seconds
T] .

TI£ LONGﬁlMdeqg 0

LONGTIME ., = LONGTIME + 8152

dp dp

Call "GETRADR! in IONGTIME centi-seconds
Set 1S = LONGEXIpo and LONGEXIT = "TASKOVER"
Proceed to address specified by TS

GETCADR

Proceed to address specified by LONGCADde

SVCT Entered nominally each 81.93 seconds (to "service TIME3",
since the hardware incrementing of the clock cannot
be terminated by software means), and known as the
"dummy task'.

Check for flight-program requirements for functions performed with
the 81.93-second period (conventionally used for free-flight gyro
bias computation). See mission documentation.

Proceed to "TASKOVER"
T3RUPT Entered when program interrupt #3 (see Section ITH) is
' acted upon. (A, L) already loaded in (ARUPT, LRUPT)
befcre "T3RUPT" is entered.
BANKRUPT = BBANK + SUPERBNK (or'ed into bits 7-5)
QRUPT = Q

Move LST1 information up by one place, putting -8192 intoc
1ST1+7 and setting TS = LST1+0

TS = TIME3 + TS + 16383
RUPTAGN = -0
If TS2 16384:
TS = TS - 16384
RUPTAGN = 1
TIME3 = TS (coding done so that no TIME3 increments lost)
Mo%e 1ST2 informatioﬁ up by one place, pﬁtting "SVCT3" in

dp
3 s 1L3T2+0
LST2+16dp and setting TSdp dp

SUPERBNK = bits 7-5 of TS+l

Proceed to address specified by TS (most significant half is
S-register data, least significant Phalf is BBANK information;
SUPERBNK already loaded)

VIIA-6

TASKOVER Entered to terminate the performance of a
under waitlist control (the End of task f

task initiated
unction),

If RUPTAGN = 1:
Proceed to third line of "T3RUPT" (movement of LST1)

SUPERBNK = bits 7-5 of BANKRUPT
Proceed ‘to "RESUME'

RESUME Fntered to terminate the performance of a non-waitlist
task that has saved Q in QRUPT, etc. (as well as from
"TASKOVER").
Q = QRUPT

Proceed to "NOQRSM"

NOQRSM

BBANK = BANKRUPT (note that SUPERBNK restored only by " TASKOVER")
Proceed to "NOQBRSM"

NOQBRSM

(A, L) = (ARUPT, LRUPT)
Release interrupts

Execute RESUME pseudo-operation (see Section VA)

KILLTASK Entered with CAUR of task to be removed from waitlist in
calling address +1; returns to calling address +2. Routine
is IM only.

Inhibit interrupts

TS, = (bits 10-1 of EQ) + 20004 (i.e. S-register format)
TS, = (bits 15-11 of EQ) (i.e. FBANK information)
=0
If 1ST2; = TSy:
If (bits 15-11 of LST21+1) = TS,
IST2I - "TASKOVER" (in fixed-fixed, hence sufficient)
Return
T 1 - 16:
Return
IT=242

Proceed to fifth line of "KILLTASK"

VITA-Y

Most of the notation employed for the waitlist system computations
on the previous pages is either that of hardware registers (defined

in Section II) or is defined by the equations in which the guantities
are employed. The. two tables defined by LSTI+C through LSTI+7 and
LST2+Odp through LST2+16dp, however, merit further explanation.

As discussed in Section IID, cell 00268 (TIME3) is incremented by
+1 each 0.0l second (each centi-second or 10 milliseconds) in response
tp a signal from the computer hardware oscillator countdown chain.
When TIME3 reaches a value of 377778 (or 16383 decimal), the next
pulse will cause the clock to overflow, leaving a value of 000008
in the cell and generating program interrupt #3 (see Section IIH).
When this interrupt is acted upon, the software causes "T3RUPT" to
be entered. Conseguently, a setting of TIME3 to:

1638L - (time interval in units of centi-seconds)
will cause program‘interrupt #3 to occur in (time interval) centi-
seconds. A setting of TIME3 to 377?58, or 16381 decimal, for example,
would cause overflow of TIME3 when the third increment pulse is
received, or in three centi-seconds.

In order to achieve conveniently the required performance of the
waitlist system (which, except for the TIME3 clock, is completely a
software package), the tasks to be performed are stored sequentially
in the order in which they must be performed (in the LST2 table in
the form of 2CADR addresses of the task starting points). The .required

time information associated with these tasks is stored in the form of

time intervals between the successive tasks (rather than as the absolute

VITA-8

times when these tasks should be initiated). Consequently, when task
#1 is initiated, the time before the next task (next required generation
of program interrupt #3) is used to set TIME3, and the lists of times
(1LST1) and task addresses (LST2) are moved to different erasable memory
cells (literally "pushed up"), so that the previous '"task #2" becomes
the new 'task #1", etc.

Using Tl to indicate the required time of performance of task #1
(in the same units as T, the present time, and with the same origin),

the values of the various cells associated with the waitlist system are:

i

TIME3 = 16384 - (T1 - Tnow) if program interrupt for task #1 not

yet generated

il

- (T1L-T w) if program interrupt for task #1 already
generated.

A breakpoint of 128 is used to decide which value is stored
in TIME3 (if TIME3 exceeds 128, it is the first; if less than
128, the second). Since the ”SVCTB“ dummy task is entered
every 81.93 seconds, the value of T1 - T would not be
expected (in general) to exceed this rigips.

LST1+0 = - (T2 - T1) +1 The +1 is for software conven-
LST141 = - (T3 - T2) +1 ience, and helps in two ways:
o a) Since 16383 is the largest

LST1+2 = - (T4 - T3) +1 number read from memory into
LST1+3 = - (T5 - T4) +1 the accumulator, it permits

o _ , TIME3 to be set to (16383 +
LTIk (T6 - T5) 2 LST1+0) to get overflow in
LST1+5 = - (T7 - T6) +1 (T2 - T1) centi-seconds.
1ST1+6 = - (T8 - T7) +1 b) New tasks are inserted using
IST1+7 = - (T9 - T8) +1 a CCS order, whose decrement is

cancelled by the +1.

Tnitial conditions for all entries in LST1 (set e.g. by a
"fresh start" performed under operator control at computer
turn-on) are a setting of -8192, corresponding to an interval
of 81.93 seconds.

LST2+Odp = 2CADR Task #1 in LST2+0 and LST2+1
LST2+2dp = 2CADR Task #2 in LST2+2 and LSTZ+3
LST2+hdp = 2CADR Task #3 in LST2+4 and LST2+5
LST2+6dp = 2CADR Task #L in LST2+6 and LST2+7

VITA-9Q

13T2+8 = 2CADR Task #5 in LST2+8 and LSTZ+9

LST2+1%§P = 2CADR Task #6 in LST2+10 and LST2+11
LSTZ—‘:rlE i 2CADR Task #7 in LST2412 and LST2+13
LST2+14 ap = 2CADR Task #8 in LST2+14 and LST2+15
LSTR+16 i = 2CADR Task #9 in LST2+16 and LST2+17

Initial conditions for all entries in LST2 (set e.g. by
a "fresh start" performed under operator control at
computer turn—ong are a setting of 2CADR for "SVCI3",
the dummy task.

When a new task is inserted into the waitlist system, its value
of DELT is compared against (TI - Tnow)’ with I from 1 to 9 (sequentially),
If no task presently in the waitlist system has a longer wait (i.e.
will be performed later) than the new task, a software restart is
caused. If there are six "active' tasks in the waitlist system,
there will be three entries of the "dummy task' (since at all times
there must be an entry into all items of both lists). Since the
dummy task entries must be separated by 81.93 seconds (because the
dummy task is only inserted in this fashion), the last dummy task must
be waiting at least 163.86 seconds, which of course i1s larger than the
maximum possible single precision DELT of 163.83 seconds (21L -1
centi-seconds). Hence a seventh active task can always be accommodated
in the waitlist system, and for suitably small time intervals between
tasks an eighth and even a ninth task will be accepted.

When the waitlist system software has determined the proper place
in the table of LST1 times for the new task, it is inserted there
(before the first task that must wait longer than the new task), and
the appropriate adjustments made to the two time difference; affected
by the new task, Later entries in the LST1 table afe ""pushed down',
and a corresponding insertion and push down is made in the L3T2 table.

If the task that is "bumped" from the bottom of the LST2 table is not

VITA-10

the dummy task, meaniné that a functicnally required computation ié being
discarded, then the software restart is caused.
When a task is performed under control of the waitlist system,
the entries in both the LST1 and LST2 tables are pushed up to replace
the vacancy, and the dummy task (with an associated time delay of
81.93 seconds entered into LST1) is entered at the bottom of both
lists. The push up and push down for the LST1 and LST2 tables of
the waitlist system is an actual movement of cell contents, as
contrasted with merely a change in an address indicator (ef. Section

VID).

VIIA-11

VIIB Executive System for Jobs

Jobs are performed under the overall jurisdiction of what is
called an "executive" system. Jobs are interrupted to perform tasks
when a program interrupt is received (see Section ITH), and the job's
performance is generally resumed upon completion of the effort required
to satisfy the program interrupt. Consequently, if the computer is not
in the "interrupt mode" (performing a task) or doing a jask, it can by
definition be considered doing a job (or dummy job). Uses of the interpretive
language (Section VI) must be by jobs, since the necessary registers
for the interpreter are not saved in special buffer cells when a task
is started; aside from this restriction, however, it is usually impossible
to determine from isolated coding whether the coding is associated with
a Jjob or a task, and in fact some subroutines in the program are used
with both.

The distinction between a job and a task as far as suspension
of a job's performance is concerned should be well understood:

A job can be interrupted for a task by hardware means (unless
such interrupts are explicitly inhibited) after any machine-

language program step.

A job can be interrupted for another j'ob only by a specific
check made in the program (of cell 00678, NEWJOB). If this
cell is not checked sufficiently often, program interrupt #11
is generated (see Section IIH).

Because of this distinction, tasks must save all hardware registers

(A, L, Q, etc.) which they may affect and restore them before resuming

the interrupted computations; Jjobs do not have this requirement. The

"jask" mentioned in item #6 of Section VII must also observe this

VIiIB-1

restriction, since it is "a task to other jobs; a job to other tasks'",

The relative significance (in terms of how soon the computation
should be completed) of a job is specified by its "priority", a five-bit
quantity ranging between Olg (minimum) and 374 (maximum) that is specified
at the time the job is "established" (entered into the executive system
for performance when its priority is sufficient). A job can also cause
its own priority to be changed. The "priority'" assigned to different
computations controls the allocation of computer computational capacity
among several different functions that may be required in the same time
period: for example, processing of DSKY keyboard inputs is conventionally
assigned a priority of 308 (since it should be completed before another
key is pressed); the computations associated‘with the twc-second powered-
flight navigation and guidance cycle conventionally have a priority of
208; and the computations to obtained a new velocity-required vector for
rendezvous guidence computations (via a Lambert routine) have been
assigned a priority of 108. Should a special display computation be
desired, this has been assigned a priority of 058 (so it will not interfere
with the "in-line" computations).

When the performance of a job is terminated, the job remaining
that has the highest priority will be performed next (if there are no
other jobs, then a dummy job routine, discussed later, is entered to
await tasks or jobs). Performance of a job can be suspended (to await
a DSKY input, for example) by setting its priority negative: this action
is termed "putting the job to sleep”. Whenrthe appropriate action has
been accompliéhed, the job is ”awékened”. No undesiréble conflicts

take place if two jobs with the same priority are in the executive

system at the same time, since both will be done before jobs of lower
priority, although the sequence in which the two jobs will be psricrme
cannot necessarily be uniquely determined prior to flight. Once jobs
of short duration (such as the processing of a keyboard input) are
started, they run to completion (subject, of course, to interruption
by tasks); jobs of longer duration check cell 006’78 (NEWJOB) periodically
for a job of higher priority (the cell is set positive non-zero if one
is waiting). Conventionally, NEWJOB is checked only by the "DANZIG"
routine of the interpretive language (see Section VIC), with other job
changes made as a consequence of explicit entrance to the executive
system routines (to change job priority, terminate a job, put a job to
sleep/awaken it, etc.), or by the dummy job routine with its optional

computer self-check activities, Some special-purpose test programs also

perform checks of the NEWJOB cell, as do other portions of the coding when

checks are necessary for proper sequencing (such as restart or display logic).
When a job is established, it is assigned cne of the seven(CM) or eight

(LM) Job Register Sets diSCUSséd later in this section, each of which consists

of 12 erasable memory cells. If all of these Job Register Sets have

been allocated already (to either active or "dormant'", i.e. sleeping,

jobs), then a software restart is caused. In addition, a job when

established can also be assigned a VAC area (see Section VID), one of

five groups of 43 cells used for storage of some interpretive language

specilal-purpose cells and for the "push—-down list' of that language.

If all the VAC areas have .been allocated already, a software restart

is caused. A VAC area can also be assigned by another job when

i
!

cie Ten . . . A
it is running for some other storage purpose (one is conventionally used, -

= T
VLY

for example, to retain optics mark information). If no VAC area is

specified when the job is established, the software information that

VIIB-3

normally would be set tc the starting address of the selected VAC area

see Section VID) is set so that the
/

(used for return address information

interpretive language QPRET cell

retention) would be placed in

MPAC+6 of the Job Register Set: this permits a limited use of the
interpretive language to be made by jobs without tying up a whole VAC
area. -

Jobs can be established either by tasks or by other jébs. The two

most frequently used sequences are:

CA vy (Priority, in bits 14-10)

0 FINDVAC (Assigns a VAC area)

2CADR X (Job starting address)
and

CA VY

7e NOVAC (No VAC area assigned)

2CADR XX

A third method, for a VAC. area, is to enter "SPVAC" with the priority
information stored in NEWPRIO and with the 2CADR of the starting
address in (A, L). To put a job to sleep, the job itself must transfer
to "JOBSLEEP" with the accumulator containing the CADR of the job's
starting address when it is awakened (SUPERBNK must be the same as that
of job at present); the job is awakened by transferring to "JOBWAKE!
with the accumulator containing the same CADR, Priority changing is
accomplished by entering "PRIOCHNG" with bits 14-10 of the accumulator
containing the desired new priority for the job. Finally, to terminate
the perfarmance of a job trangfer is made to ”ENDéFJOB”.

As mentioned previously, tasks teke precedence over jobs, since

(in general) a task is capable of interrupting a job after any machine-

VIIB-)

language program step. Jobs, in turn, are performed in a sequence as
generally determined by their relative priorities. If no tasks and
no jobs are to be performed, a routine known as the 'dummy job" is
performed: this routine starts by turning off the Computer Activity
light (bit 2 of channel 11), and then checks to see if pesrformance
of the computer self-check routine is required. If it is not required
(and periodically if computer self-check functions have been specified),
the NEWJOB.cell is checked for an indication of a job, and if one is
found the Computer Activity light is turned back on. 1If no job is
indicated, the routine rechecks for specification of the computer
self-check functions, and the loop is repeated. Since this "dummy
job" routine does not have its own Job Register Set, it is not actually
a Jjob, but instead a subroutine of the executive system: it is convenient,
however, to refer to it as a "job".

The equations given below describe the computations performed by
the various program routines associated with the executive system: ignoring
the program interrupt #11 initiation by NEWJOB, this system is completely

a software package. Priority information for a job is conventionally

| Foa
obtained from cells "PRIO1" through "PRIO37'", tags associated with / ijL**
fixed-fixed memory having the necessary bit configuration (in bits 5wm1/;j

14-10, with remaining bits 0).

FINDVAC Entered with priority information in A, to assign a
VAC area as the job is established.

Inhibit interrupts
NEWFRIO = A

NEWLOCd = EQ (The 2CADR information on job starting
p dp address)

VIIB-5

5 (in order) for the first

Scan VACIUSE cells = g 1=
ositi non-zerc. 4if none found:

fro
one that is po e

Vi

Proceed to "BAILOUT" (pattern 31201,) CM only

Proceed to "BAILOUT1" (pattern 312 g I8 = (Q, FBANK of caller))
IM only '
NEWPRIO = NEWPRIO + VACIUSE + 1

VACIUSE 0
Proceed to "NOVAC2"

NOVAC Entered with priority information in A, to establish a
job that does not require a VAC area (when established).

Inhibit interrupts

NEWFRIO = A + ("MPAC+6" - 42) (causes QPRET to be MPAC+6 when
job is running)
NEWLOC, = EQ (The 2CADR information on job starting
p dp address)

Proceed to '"NOVAC2"

SPVAC Entered with NEWPRIO set to priority information and
with(A, L) set to 2CADR of starting address. Causes a
VAC area to be assigned.

Q=Q 2
NEWLOC = (A, L)
Proc Ped to fourth line of "FINDVAC" (the VACIUSE scan)

NOVAC2

Scan PRIORITY_ cells (in order) from I = 0 to I = 6(CM) or 7(IM) for
the first one that is -0. If none found:

Proceed to "BAILOUT" (pattern 312028) CM only

Proceed to "BAILOUT1" (pattern 312028, TS = (Q, FBANK of caller))
IM only

LOCCTR = 12 T
PRIORITYI = NEWPRIO
PUSHLOC, = bits 9-1 of NEWPRIO

"Ir LOGGTR> o:
Proceed to "SETLOC"
QVFIND = O
FIXI0C = PUSHLOC

Proceed to "SPECTEST!

SPECTEST

If NEWJOB # -0:
Proceed to "SETLOG"
NEWJOB = +0
(Loc, BANKSET)O = NEWLOCdp
Proceed to address specified by Q +2 (Return to routine that

entered executive system)

SETLOC

(1oC, BANKSET)I = NEWLOde

TS = NEWJOB / 12
If NEWPRIO - PRIORITY o > O:
NEWJOB = LOCCTR (Same priority job without VAC area
is "lower" than with VAC area)

Proceed to address specified by Q +2

CHANG1 Entered when a non-interpreter job senses that NEWJOB
is non-zero.
TS1 =Q
ng = BBANK
Proceed to '"CHANJOB"
CHANG2 Entered when interpreter (in "DANZIG", Section VIC)
senses that NEWJOB is non-zero.
TSl = - 10C (Negative means interpreter entrance)
T82 = BANKSET

Prcceed to "CHANJOB"

CHANJOB

Inhibit interrupts

TS, = TS, + SUPERBNK (or'ed into bits 7-5)

I = NEWJOB / 12

Set (LOC, BANKSET). = (LOC, BANKéET) and (10C, BANKSET). - (TS TS
0 I I L 2

SUPERBNK = bits 7-5 of BANKSETO

VIIB-7

W

et MPAC+i. = MPAC+i_ and MPAC+iT = MPAGH+i (i = 0-6)

@] I 1

Set M,-VDEO :-MODEI and MODEI = MODEO
If OVFIND # O

PUSHLOCO = - ?USHLOCO
OVFIND =0
Set PUSHLOGO = PUSHLOCI and PUSHLOCI = PUSHLOGO
Set PRIOHITYO = PRIORITYI and PRIORITYI = PRIORITYO
FIXIOC = bits 9-1 of PRIORITYO
If PUSHLOCO < 0:

PUSHLOCO = - PUSHLOC0

OVFIND = 1
NEWJOB = +0
Release interrupts
If 1LOC, > O:

0]
Proceed to address specified by (LOC, BANKSET)O

L0C, = 1 - 10C, (From interpreter, now set to original

a 10C +1)
BBANK = BANKSETO

Proceed to third line of "INTPRET" (Section VIC)

JOBSLEEP Entered to put a job "to sleep", with A set to CADR of
desired starting address when job is awakened (serves
also as identification of job when "JOBWAKE" entered).

LOCO = A
Inhibit interrupts
PRIORITY, = - PRIORITY

0 0]

BANKSET, = bits 7-1 of BBANK + SUPERBNK (or'ed into bits 7-5)
BUF+1 = -0 '

Proceed to "EJSCAN"
JOBWAKE Entered to "awaken" job put to sleep by '"JOBSLEEP",
Inhibit interrupts

NEWLOC = A (Has CADR of job, used as identification)
R=Q-2

Scan PRIORITYI cells (in order) from I = 0 to I = 6{CM) or 7(IM) for

ontents <0 and for LOGI = NEWLOC: the first one found terminates

@]

the scan. If none found:
LOCCTIR = -1
Proceed to address specified by Q +2
LOCCTR = 12 1
NEWFRIO = - PRICRITY
PRIORITYI = NEWFRIC
TS, = (bits 10-1 of NEWLOC) + 2000
TS, = (bits 15-11 of NEWLOC) + BANKSET

I

I

NEWLOCdp = (TSl, TS

If LOCCTR = O:
Proceed to "SPECTEST"

Proceed to "SETLOC!

2)

PRIOCHNG Entered to change the priority of a job, with A set to
the desired new priority.

Inhibit interrupts

NEWPRIO = A

BANKSET , = BBANK

LOC, = Q

BUF+0 = +0

PRIORITY y = NEWFRIO + (bits 9-1 of PRIORITYO)
BUF+1 = - PRIORITY

0
Proceed to "EJSCAN"

ENDOFJOB Entered to terminate the performance of a job and release
the memory areas allocated.
Inhibit interrupts
BUF+1 = -0
TS = bits 9-1 of PRIORITYO
If TS - ("MPAC+6" - 42) > O:
TS =I5 ~ 1

EfS = T5 (Releases VAC area)

PRIORITYO = -0
Proceed to "EJSCAN"

ViIB-9

EJSCAN
I=0
IL=1+1
If PRIORITYI > 0:
BUF+2 = PRIORITY. -1 (the 1 is least significant bit of

1 cell, not of bits 14-10 that zare
the actual job priority)

If BUF+2 + BUF+l > O:
BUF+l = - BUF+2
BUF+0 = 12 T
If I£5(CM) or 6(IM):
Proceed to second line of "EJSCAN"
If BUF+1 = -0:
Proceed to "DUMMYJOB'"

If BUFHO = 10: (Priority change, present job still
the highest priority)

NEWJOB = +0
Proceed to address specified by (10GC, BANKSET)O
NEWJOB = BUF+O
ey = g
TS, = BANKSET,
Proceed to "CHANJOBY

DUMMY JOB Entered (as a routine in the executive system, not as
a true "job") if no active jobs available.
NEWJOB = -0

Release interrupts
Set bit 2 (Computer Activity) of channel 11 = O
Proceed to "ADVAN"
ADVAN Entered from computer self-check routine (part of "idle
loop") to check for availability of a functional job.
If NEWJOB = -0:

Proceed to address specified by SELFRET and BBCON of "SELFCHK"
(computer self-check routine; SELFRET
initialized as part of standard
initial conditions)

VIIB-10

If NEWJOB = +0:
Set bit 2 (Computer Activity) of channel 11 =1
SUPERBNK = bits 7-5 of BANKSET
BBANK = BANKSETO
Proceed to address specified by LOC, (and BBANK)
Trhibit interrupts
If NEWJOB = +0:

0

Release interrupts
Set bit 2 (Computer Activity) of channel 11 =1
SUPERBNK - bits 7-5 of BANKSET

BBANK = BANKSETO

Proceed to address specified by LOC, (and BBANK)
Set bit 2 (Computer Activity) of channel 11 =1
(TSl, TSz) = (1LOC, BANKSET)O

0

Proceed to third line of '"CHANJOB"

VIIB-11

Contents of Job Register Sets

When a job is established, it is assigned one of 7(CM) or &(1M)
available Job Register Sets, each of which is comprised of 12 erasable
celis: When a job is active, its Job Register Set occupies the first
group of Job Register Set cells, sc that the various tags assigned to
the 12 cells can be referenced without use of the INDEX order (contrary,
for example, to the assignment of VAC areas discussed in Section VID).
The individuzl cells in a Job Register Set are assigned the following
functions:

Tag Contents if Job Active Contents if Not Active

1, MPAC+O Most significant part of multi- Same as Active.

purpose accumulator (scalar) or
vector x component in interpreter;

otherwise a storage cell.

DD

. MPAC!1 HNext most significanl parlt of Same as Active,
multi-purpose accumulator (scalar)
or least significant half of
vector x component in interpreter;

otherwise a storage cell.

3. MPAC+2 least significant part of multi- Same as Active.
purpose accumulator (scalar) in
interpreter; otherwise a storags
cell,

L. MPACt3 Most significant half of vector y Same as Active.
component in interpreter; otherwise

a storage cell.

5. MPAC+L4 Least significant half of vector Same as Active.
y component in interpreter; otherwise

a storage cell.

VIIB-12

o
g
;;;
3

t
U

7. MPAC+6

8. MODE

9. 10C

10. BANKSET

11. PUSHLOC

12. PRIORITY

Contents if Job Active

a storage cell.

Least significant half of vector

z component in interpreter; ctherwise

a storage cell.

Identification of type of computating

being done in interpreter; otherwise

a storage cell. Tt is +1 for TP

(triple precision), +0 for DP (double

precision), and -1 for VC (vectors).

Address information for operand in
interpreter; otherwise an unsaved

storage cell.

BBANK associated with LOC in
interpreter; otherwise an unsaved

storage cell.

Address of next cell to be loaded
in push—down list if interpreter;

otherwise & storage cell.

Bits 14-10 contain priority of job;
bits 9-1 contain FIXLOC (starting‘
address of VAC area if assigned,
otherwise "MPAC+6" - 42). Cell is
complemented if job "put to sleep'.

VIIB-13

Contents if Not Active

r 4+ =
Same as Active.

Same as Active.

Same as Active.

If wvia "CHANGZ2", the
complement of Active
contents; otherwise has
S-register information
where Jjob should be
initiated (CADR if “JOBSLEEP").

BBANK value associlated
with LOC (and SUPERBNK);
EBANK and SUPERBNK if
from "JOBSLEEP".

If OVFIND # 0, set to
- PUSHLOC; if is O, same

contents as Active.

A value
of -0 means that the Job

Same as Active.

Register Set is available
(set as part of initial
cunditions e.g. at computer

turn-on).

As is evident from this table, most of the cells in the Job
Register Set are oriented towards the interpreter, and can be used for
other functions by a Job which has no need for the interpreter language.
By using LOCCTIR as an indexing parameter after esteblishing a job, it
is possible to load the MPAC cells, for example, with information
pertinent to the job that has been established (a similar function can
be performed after a job is awakened).

The Job Register Set for the currently active Jjob (if there is one,
of course) is always stored in the first Job Register Set, as mentioned
previously. A job when established is assigned a group of cells comprising
such a set, and this group is moved as an ensemble by the '"CHANJOB"
routine. The 12 cells of the set remain together, but their absolute
erasable memory cells can vary (although when the job is active it always
has its set in the first location). Job Register Sets are moved by
XCH (or DXCH) operations, so no separate set of buffer cells or dup—
lication of the cells of the currently active job is necessary. Since
the currently active job is always in the first location, the software
can refer to e.g. MPAC+2 directly (this cell is shown in this section

as MPAC+2, to avoid confusion with the inactive sets).
When a job is established, the only specific initial conditions
which are set are Qords 9-12 above. Since word 11 is set positive,
this gives an initial condition of O for OVFIND. No special setting
of words 1-8 is performed, so they will contain residual information
from the previous Job employing these cells, As part of the standard
set of initial conditions (e g. at computer turn on), each PRIORLTY

cell is set to -0 (and each VACiUSE cell, as mentioned in Section VID,

is set to its own address).

VIiIB-14

VIIC Mechanization of Restart Capability

When program interrupt #11 (see Section IIH) is generated, a

Uq

hardware restart is initiated, This program interrupt could be triggered
by the software itself, as well as by various hardware-detected problems.
In addition, a *"'software restart" (similar computations) can be done if
appropriate. Although the details of the computations done when a
restart occurs are better left to mission-peculiar information, the
general philosophy behind the restart scheme employed is reviewed in

this section,

A hardware restart can be generated at literally any location in
the program (it cannot be inhibited by program means), and it could be
due to hardware difficulties (such as a parity failure on a cell read
from memory) as well as to some software-detected difficulty (such as
too many tasks in the waitlist system, causing '"software restart"
activity). The responsibility of the restart logic in the software is
to attempt to get the program running again with (hopefully) a minimum
of disturbance to the mission. This requires that, fundamentally, the
appropriate tasks be called at the end of the correct time intervals
(from a suitable base time), and that the appropriate jobs be re-
established with the proper pricrities. In some cases, the proper
starting addresses for the jobs and/or tasks should not be at their
beginning, but instead at some intermediate location or even at a
special location entered only if a restart is encountered (such as a
‘restart while the accelerometers are being sensed and reset).

In order to accomplish the required restart functions, the various
activities performed by the program software in essentially independent

computations are divided into '"restart groups', of which there is provision

VIIC-1

in the restart software for z maximum of six. One group, for example,
might be concerned with the periodic powered-flight navigation cycling;
another with orbital integration (perhaps required with powered-flight
to determine relative CSM/IM information); a third with the timing of
events leading to engine ignition; a fourth with generation of a time
display on the DSKY; a fifth with computation of required-velocity
information for a rendezvous ('Lambert") maneuver; and a sixth with
a special computation performed shortly before engine ignition (to
estimate the length of the burn). All six of these functions could be
part of the complete program's computational load (as jobs or tasks) at
one time (and be in various stages of completion), and consequently they
could be associated with separate restart groups. Not al]l computational
activity in the program is restart protected in this fashion: if a
restart occurs while data are being loaded via the DSKY, for example,
the loading sequence would have to be initiated again at its beginning.
A restart "group', therefore, can. generally be considered to be
associated with a particular functional software activity. Each group,
in turn, is conventionally divided into a number of '"phases" indicating
Just where the computations should be re-initiated in the event of a
restart. The phase information for a given group is retained in both
true and complemented form in the erasable memory (giving a total of
12 cells for the six pairs of cells associated with the six restart
groups). When the restart software is entered, a check is made that
all six pairs of cells have the proper internal complement relationship.
If they do not, it is.concluded that insufficient information is available
to permit a satisfactory resumption of computations, and the attempt to

perform the restart is abandoned (in favor of a 'fresh start' that leaves

ViIC-2

the guidance system in eésentially an "idling" configuration). The
complement relationship could be destroyed if the erasable memory
was modified by whatever caused the restart action (such as a power
transient), or if the restart occurred during certain portions of the
programg that change the restart phase information.

If the restart software concludes that adeguate phase information
is available (as evidenced by agreement of the complement relationship
for the six pairs of phase data), the "RESTARTS" routine can be entered
for each restart group that is "active" (a group is made "inactive" by
setting the phase of that group to 0, indicating that it is not restart
protecting any of the computations). This "RESTARTS" routine, depending
on the value of the phase associated with that group, can cause jobs to
be established (with or without VAC areas) and/or waitlist tasks to be
called at appropriate times (via "LONGCALL" or the normal "WAITLIST"
routines). The value of the phase information also determines whether
one or two such Jobs and/or tasks are to be re-initiated, and in
addition whether the parameters associated with the re-initiation are
to be obtained from fixed or erasable memory.

Phase values are stored in both true and complemented form, and it
is conventional to refer to the phase by the "true'" value: since negative
phase values are not implemented in the logic, this means that all
"true" phase values are positive. These phase values are stored in
erasable memory cells with the tags PHASEl, PHASE2, ... PHASE6 (the
complemented ones are in -PHASEl, -PHASE2, ... ~-PHASE6). Given on the
following pages are the meanings of the various phase values as stored
in the memory (values other than those mentioned should not normally

exist).

1. A phase value of OOOOO8 (+0) means that the restart group is

M3 qb st (24
1nactliv

(it 1s not restart protecting any computations).

@

2. A phase value of 000018 means that a special display-interface-
routines job is to be established to cause the last software-
generated DSKY display to be restored (only one group should have

this phase valme}. The job is given a VAC area (priority 1hg) .

3. An odd phase value in the range OOOO38 - 001778 causes a fixed-
memory single restart: the necessary restart data is obtained from
a fixed memory table for either a task, a job, or "LONGCALL",

4. An even phase value in the range 000028 - 001768 causes a fixed-

memory double restart: the necessary restart data is obtained from
two successive three-entry fixed memory table quantities, either
or both of which can be for a task or a job (one can be for
"LONGCALL", since only one "LONGCALL" user can exist at a given

time).

5. A phase value of GQX018 (X in range 4-7) causes an erasable—
memory single restart of a waitlist task. Time information is
given in PHSPRDTi and address information in PHSNAMEi (where i

is group).

6. A phase value of OOXO28 (X in range 4-~7) causes an erasable-
memory single restart of a job. Priority information is given
in PHSPRDTi and address information in PHSNAMEi (where i is
group).

7. A phase value of OO,XOZ;8 (X in range 4-7) causes an erasable-
memory single restart of a "LONGCALL" task. Time information is
given in PHSPRDTi and address information in PHSNAMEi (where i

is group).

8. A phase value of 010018 causes an erasable-memory single

H

estart of a job and also a restart of the special display-
interface-routines job to restore the last DSKY display: this

is a combination of #2 and #6 above.

VIIC-L

9. A phase value iﬁ the range 010028 - 017778 causes an erasable-
memory single restart of a Job and also a fixed-memory single

If the phase value is odd, this is a combination of #3
and #6 above; if it is even, however, only the first of the two
entries in fixed memory for the "double restart'" of #L4 is started
(plus the erasable restart of #6 above). Only bits 7-1 are used

for the fixed memory restart phase information.

The value of the phase for a particular restart group, inﬁerpreted
as described above, is used to select an appropriate table entry in
fixed and/or erasable memory. The table entries, which are separated
by groups (and with even restart phase information for fixed memory
stored before odd phase information of phase 3 or above, so memory
capacity is not wasted if there are more fixed memory tables of one

type than the other), each consist of three cells, which have the following

significance:
bell Fixed-Memory Table Frasahle-Memory Table Use
1 PRDTTAB PHSPRDTi Priority/time
: : Information
2 CADRTAB PHSNAME1 GENADR data
BBCON data

The polarity with which information is stored in the tables 1s used
to determine whether the table information pertains to a job, a
waitlist task, or a "LONGCALL" task, and in addition to determine
which of several available options for defining the re-initiation
parameters is to be employed. These characteristics are summarized
below:
A job is identified by the fact that cell #2 ig positive (bit

15 of the cell is 0). The job is established with the 2CADR

information specified by cells #2 and #3, and with priority

given by the absolute value of cell #1. If cell #1 is

positive, "FINDVAC'" is used (VAC area assigned); if it is

negative, "NOVAC" is used (no VAC area assigned).

VIIC-5

A waitlist task is identified by the fact that cell #2 and #3 are

both stored in complement form (bit 15 of cell #2 and bit 10 of
cell #3 are both 1). The task is called with the starting
address specified by the complement of (cell #2, cell #3), and

with a time delay determined as follows:

a) If cell #1 is positive, the time delay is specified by
the value of that cell, measured from the time when
TBASEL was last set to - TIMEl (cell 00258, see Section
IID). There is a TBASEi (i = 1 - 6) for each group.

b) If cell #1 is -0 (777778), the time delay is the minimum

allowed by the waitlist system logic, namely 0.01 second.

c) If cell #1 is negative non-zero, the time delay is
specified by the contents of the cell whose GENADR
address complement is in cell #1, with these contents
interpreted as for (a). The fixed or erasable memory
bank information (if necessary) to determine this cell
is the same as that specified by the complement of
cell #3.

A 'LONGCALL" task is identified by the fact that cell #2 is in
complement form (bit 15 = 1) and cell #3 is not in complement
form (i.e. bit 10 = 0). The starting address of the task is
specified by (- cell #2, cell #3). The GENADR of the double
precision cell containing the required time delay (measured
from the time when LONGBASEdp last set to (TIME2, TIMEl)) is
specified by cell #1. The fixed or erasable memory bank

information (if necessary) to determine this cell is the
same as that specified by cell #3. Cell #1 negative for

erasable memory table information, positive for fixed memory.

d

The '"base'" times of TBASEL (i =1 - 6) and LONGBASE p must be
set under progfam control to be conéistent with the task restart
information time—delay values. If the indicated time delay Between when
"RESTARTS" is performed and when the task is desired is less than 1

centi-second, including negative values, the '"delay" is set to 1 centi-sec.

During the course of the computations, it is necessary to update
the phase value associated with the appropriate group. This can be
done directly by loading new phase information into the appropriate
group's phase cells (-PHASEi for a given group is in an erasable
memory cell immediately before PHASEiL for that group), or it can be
accomplisheé through use of one of several available phase-changing
subroutines. The simplest of these is "NEWPHASE", which has the
following calling sequence (CM only):

CA ppp (or otherwise load A with positive phase)

TC NEWPHASE
OCT g (group number)

This will cause what is conventionally referred to as '"phase g.ppp"
to be set (conventionally used for fixed-memory table data), such as
phase 2.11 for g = 2 and ppp = 118, since phase table information
for fixed memory is conventionally numbered in octal. Erasable
memory phase information, to avoid confusion with fixed memory,
should not be referred to in this fashion: instead, a notation
such as "phase 2. " for such restart settings is sometimes used.
1f "NEWPHASE" is entered with a negative accumulator, the phase
that is set will be the complement of A, and in addition the group's
TBASEiL will be set to - TIMEl (for use in defining the time when
a waitlist task should be initiated).

The most commonly used phase-changing subroutine is "PHASCHNG',
which has a variety of options depending on the details of the
calling sequence. The géneral form is: Q

TC PHASCHNG

OCT NS N4 N3 N2 Nl

(possibly additional lines)

VEIG~T

The 15 bits of the word following the TC "PHASCHNG" are used to identify

o3

the nature of the restart that is desired: these restarts are convention-
ally known as "Type A" (fixed-memory table only), "Type B" (fixed and
erasable tables), and "Type C" (erasable-memory table only). The

format of the word for-ibese ‘three types is:

Type N, N, N, N, Ny
A TLO OO0OP PPP PPP GGG
B TL1 DAP PPP PPP GGG
o TLO 1AD xxx CJW GGG

x means ignored, O means binary O, 1 means binary 1

A = 0 if address for restart is return address from "PHASCHNG" .

if address specified by '"PHASCHNG" calling sequence.

if J or W are 1.
if a "LONGCALL" restart task is to be done.

Il

(@]
[
HO HO HO

if priority/time information already in PHSPRDTi.
if priority/time information in "PHASCHNG" calling sequence.

G's give the restart group number.

=0 if C or W are 1.
1 if a Jjob restart to be done.

0 if LONGBASEd is to be left zlone.
= 1 if LONGBASEdg is to be set to (TIME2, TIME1).

are phase number (for fixed memory restart table data).

if TBASEi is to be left alocne.
if TBASEi is to be set to - TIMEL.

if C or J are 1.
if a "WAITLIST" restart teask is to be done.

v i) <&
! W
G e

The table information on the following pages summarizes the various
restart options available by use of the "PHASCHNG" routine. Since in

all cases the most significant two bits for the parameter control settings
of TBASEi (values of L4-7) and LbNGBASEdp (values of‘2,3,6,7), the value ‘
of N5 has merely been indicated as "odd'" or '"even". Similarly, since

N1 always specifies the restart group, it is not included either.

Viic-8

=

0

Even

Even

Even

E"_]‘e n

Even

Even

lF‘Z

O

L&

(I:J
-1

0-7

0-7

1%

®)
=1

Meaning

Set the restart group indicated by N
the phase indicated by Nh - Nz. Set time

base per N, if specified.

5

Store a waitlist restart in erasable
memory, using information in PHSPRDT1

for time and return address from "PHASCHNGY
as starting address. OSet time base per

N5 if specified. N3 ignored.

Store a job restart in erasable memory,
using information in PHSPRDT1 for priority
and return address from "PHASCHNG" as
starting address. Set time base per N5

if specified. N3 ignored.

Store a "LONGCALL" task restart in erasable
memory, using information in PHSPRDTi for
time and return address from "PHASCHNG"

as starting address. OSet time base per

N5 if specified. N, ignored.

3

Store a waitlist restart in erasable
memory, using information in cell following
N5 - Nl for time and return address from
"PHASCHNG" for starting address. Set

time base per N, if specified. N, ignored.

> 3

Store a job restart in erasable memory,
using information in cell following

N5 - Nl for priority and return address
from "PHASCHNG" for starting address.

Set time base per N, if specified. N

> &

ignored.

VIIC-9

T

8.

13,

i

N

Even

Even

Even

Even

Even

O-¢

0-7

0-7

Meaning

Store a "LONGCALL" task restiart in erasable
memory, using information in cell following

Nq - Nl for time and return address from

"PHASCHNG" for starting address. Set

time base per N, if specified. N

5 3

ignored.

Store a waitlist restart in erasable
memory, using information in PHSPRDTi
for time and the two cells following
N. - N, as the 2CADR of the starting

5 1
address. Set time base per N, if

>
specified. I\I3 ignored.

Store a job restart in erasable memory,
using information in PHSPRDTi for
priority and the two cells fcllowing

N, - Nl as the 2CADR of the starting

5
address. Set time base per N5 if

specified. N3 ignored.

Store a "LONGCALL" task restart in erasable
memory, using information in PHSPRDTi for

time and the two cells following N5 - Nl

as the 2C0ADR of the starting address.

Set time base per N_ if specified. N

5 3

ignored.

Store a waitlist restart in erasable
memory, using information in cell following
N5 - Nl for time and the two subsequent
cells as the 2CADR of the starting address.

Set time base per N, if specified. N

5 3

ignored.

13.

1L.

15.

N N N
2 L)
Even 7 0-7
Even 7 o-7

Odd 0,1 0O-7

Odd 2,3 0-7

%

[3®]

Meaning

Stor

[&1]

a Jjob restart in erasable memory,
using information in cell following N5 -
Nl for priority and the two subsequent

cells as the 2CADR of the starting address.

Set time base per N_. if specified. N

5 2

ignored.

Store a "LONGCALL" task restart in

erasable memory, using information in cell

following N, - N, for time and the two

VIIC-11

1
subsequent cells as the 2CADR of the
starting address. ©5et time base per NS

if specified. N, ignored.

3

Set the group indicated by N. to the

phase indicated byI\TLL - N, (ising only
the least significant bit of Nh), to
control a fixed memory table restart.
In addition, store a job restart in
erasable memory, using information in
PHSPRDTi for priority and return
address from "PHASCHNG'" as starting
address. Set time base per N5 il
specified.

Set the group indicated by Nl to the
phase indicated by Nh - N, (using only
the least significant bit of NQ)’ to
control a fixed memory table restart.
In addition, stcre a job restart in
erasable memory, using the information in
PHSPRDTi for priority and the two cells
following N_. - N, as the 2CADR of the

5 1
starting address. Set time base per N

5
if specified.

N Meaning

16. 0dd Ly5 o-7 0-7 Set the group indicated by NL to the phase

indicated by N, - N2 (using only the least

significant bit of Nh)’ to control a fixed
memery table restart. In addition, store
a job restart in erasable memory, using
information in the cell following NS - Nl
for priority and return address from
"PHASCHNG" as starting address. Set

time base per N_. if specified.

5

17. 0dd 6,7 0-7 0-7 Set group indicated by Nl to the phase
indicated by N4 - N, (using only the

least significant bit of Nh)’ to control

a fixed memory table restart. In addition,
store a job restart in erasable memory,
using information in the cell following

N5 - Nl for priority and the two
subsequent cells as the 2CADR of the
starting address. Set time base per

N, if sﬁecified, |

5

The third phase-changing subroutine is "2PHSCHNG', which has

the following general form of calling sequence:

TC 2PHSCHNG

OCT M5 Mh M3 M2 Mi

OCT N5 Nh N3 N2 Nl

The word represented by M5 - M1 follows the format of a "Type A"

phase change discussed for "PHASCHNG'", except that M_ is only

5
examined for values of O and 4 (to determine if TBASEi should be set).
The N5 - N.I word is treated the same as the corresponding word

discussed for "PHASCHNG", including capability to set LONGBASEdD.

VIIC-12

The equations given below describe the computations performsd by
the various program routines associated with the mechanization of
restarts.

NEWPHASE Entered with A set to desired phase, and cell following
TC "NEWPHASE" set to group to be changed. Routine CM only.

Inhibit interrupts

TS, = A
TS, = K,
If 15, € -0

TS, = |T5|

TBASEiTS = - TIME1l
2

Set (-PHASEi, PHASEi)TS = (- TS,, TSl) and (A, L) = (-PHASEi, PHASEi)TS

2 (i = 1-6 for T52 = 1-6) 2

Release interrupts

Proceed to address specified by Q +1

2PHSCHNG

Inhibit interrupts

IS = E@

Q=Q+1

TEMPG2 = bits 3-1 of TS

TEMPP2 = (bits 13-4 of TS), shifted right 3 places
TEMPSW2 —= bit 15 of TS (negative if 1)
Proceed to third line of "PHASCHNG'

PHSCHNGA Entered with argument in A. Routine LM only.
Inhibit interrupts
TEMPSW2 - 1
TS A

Proceed to fifth line of "PHASCHNG"

PHASCHNG

Inhibit interrupts
TEMPSW2 = 1

VIIC~13

Q=Q +1
TEMPG = bits 3-1 of 15
TEMPP = (bits 13-4 of TS), shifted right 3 places
If bits 13-12 of TS # 00,
Proceed to "ONECORTWO!
PHASEZL = TEMPP

TEMPG
Proceed to "BELOWL"

BELOWL
If TEMPSW2 £ O:

(-PHASEi, PHASEL) = (- TEMPP2, TEMPP2) (i = 1-6 for

TR TEMPG2 = 1-6)

IF TEMPSW2 < O:

TBASEiTEMPG2 = - TIME1
If bit 15 of TS = 1:
TBASE}'.TEMPG = - TIMEl
If bit 14 of TS = 1:

LONGBASEdp = (TIME2, TIME1)

-PHASEiTEMPG = -~ TEMPP

Release interrupts

Proceed to address specified by Q

ONECRTWO

If bits 13-12 of TS = OL,:
If bit 7 of TEMPP = 1: (i.e. bit 10 of original input)
TEMPPR = Ey
Q=Q +1
If bit 7 of TEMFP = O:
TEMPPR = PHSPRDTijpym

If bits 13-12 of TS = 102:
TEMPFPR = PHSPRDTlTEMPG

If bits 13-12 of TS = 11.:

X
TEMPPR = E
Q

Q=Q+

VIIC~14

1f bit & of TEMPP = 1: (i.e. bit 11 of original input)
TEMPNM =

=

e~

g
=k
Q=Q +2
If bit 8 of TEMPP = O:
TEMPNM = (Q, BBANK + SUPERBNK (or'ed into bits 7-5))
PHASEi g = TEMPP
PHSPRDTiqmme = TEMPPR
PHSNAMEL oo e = TEMPNM dp

Proceed to "BELOWL"

RESTARTS Entered from mission program performed when restart
generated after it is concluded that valid phase
information is available. TPHS contains the phase
information and TGRP the corresponding restart group.

TEMPSWCH = "PHSPART2"

GOLOC+2 = Return address (to routine from which "RESTARTS"
entered)

If bits 10-9 of TPHS # 002, proceed to "ITSAVAR"
Proceed to "GETPARTZ2"

GETPARTZ2
1f TPHS = 1:
Establish job to re-generate displays (cf. #2, page VIIC-4)
Return to routine from which "RESTARTS" entered
If bit 1 of TPHS = 1: (an odd number)

GOLOC+2 = Return address (to routine from which "RESTARTS"
entered)

POINTER - index to locate table entry (from TPHS and TGRP)
Proceed to "CONTBLZ2"
GOLOC+2 = TEMPSWCH
POINTER = index to locate table entry (from TPHS and TGRP)
Proceed to '"CONTBLZ'

I

1l

CONTBLZ2

(GOLOC, GOLOC+1) = CADRTAB (CADRTAB is start of fixed-
POINTER N
dp memory restart table data

for addresses)

VIIC-15

If GOLOCY O:

m = TYTVTITIA T laalul g L L £ 3 —MemOTT
IS = PEDLLABPOINTER (PRDTTAB is start of ﬁ_+KEd‘mE‘C Y

restart table data for priority/
If TS> O: time information)

Establish a job with a VAC area and with 2CADR starting
address given by (GOLOC, GOLOC+1l) and priority of TS

Proceed to address specified by GOLOG+2

If 7S£ 0:
Establish a job without a VAC area, with 2CADR starting
address given by (GOLOC, GOLOC+1) and priority of (- TS)

Proceed to address specified by GOLOC+2

GOLOC = - GOLOC
If bit 10 of GOLOC+1 = 1:
GOLOCHL = - GOLOC+1

TS = PRDTTABPOINTER

Proceed to "TIMETEST"

IS = PRDTTABPOINTER

Proceed to "ITSLGCL1"

ITSLGCLL1
= 3 + L 2
LONGTIME ETS, GOLOCHL (BBANK setting from GOLOC+1l, S-register
dp from TS)
LONGTIME = LONGTIME - (TIME2, TIME1l) + LONGBASE

dp
If LONGTIME, < O:
dp

Call task with starting address GOLOGd in 0.0l second (via
P p
normal waitlist)

Proceed to address specified by GOLOC+2

Call task with starting address GOLOC in LONGTIMEd centi-sec (via
"LONGCALL" routine) dp P

Proceed to address specified by GOLOC+H2

PHSPARTZ2
POINTER = POINTER +3 (Get next table entry for even restarts)
GOLOC+2 = Return address (to routine from which "RESTARTS"
entered)

Proceed tc "CONTELZ"

VIIC-16

Call task with starting address GOLOCdp in 0.01 second
Proceed to address specified by GOLOC+2

If TS < O:
I8 = = T8
TS = ETS, GOLOCHL (BBAMK setting from GOLOC+1, S-register
from TS)
TS, = TIMEL - (- TBASElTGRP)
If TSy < 0: _
'I‘Sl = 16384 + TSl (now has elapsed time since TBASEi set)

TS = TS - TS;, limited 2 1 centi-second
Call task with starting address GOIDCdp in TS centi-seconds
Proceed to address specified by GOLOC+2

ITSAVAR

IF bit 10 of 4PHS = 13 (i.e. a "Type B" setting)
TEMPSWCH = Return address (to routine from which "RESTARTS"
entered)

GOLOC+2 = "GETPART2"
TPHS = bits 7-1 of TPHS

GOLOCdp = PHSNAME:LTGRP

TS = PHSPRDTiTGRP

If TS > O:

Establish a job with a VAC area and with Z2CADR starting
address given by (GOLOC, GOLOC+l) and priority of TS

Proceed to address specified by GOLOG+2
If TS £ 0:

Establish a job without a VAC area, with 2CADR starting
address given by (GOLOC, GOLOC+1l), and priority of (- TS)

Proceed to address specified by GOLOC+2
GOLOC, = PHSNAME1L
dp

TGRP
TS = (bits 3-1 of TPHS) ~ 2
If TS > O:

A8 =~ PHSPRDTlTGRP

Proceed to "ITSLGCL1"

VIIC-17

If TS > O:

Establish a job with a VAC area and with 2CADR starting
address given by (GOLOC, GOLOC+1) and priority of TS

Proceed to address specified by GOLOCH2
If TS £ O

Establish a job without a VAC area, with 2CADR starting
address given by (GOLOC, GOLOC+l), and priority of (- TS)

Proceed to address specified by GOLOC+2
TS = ’f’HSl:'RDT:_TGRP

Proceed to "TIMETESTY

VIID Standard Program Subroutines

There are a number of standard program subroutines, not discussed

elsewhere in this document, which may be encountered during the course

of a review of a symbolic listing. Those which perform a standardized

function (such as facilitating communication between memory banks) are

listed below, together with a brief explanation of their functions.

For other subroutines, and for more details on some of the ones listed

below, reference should be made to appropriate mission-oriented program

information.
Tag Function
ATARM Entered if a "minor" (recoverable, in general) problem is

ATARMI

BAILOUT

BAILCUTL1

BANKCALL

encountered by the software, such as improper input data.
Causes Program Alarm light (see Section IIJ) to be energized
and the storage of alarm pattern (contained generally in

cell following TC "ALARM'"); in some cases (depending on the
mission software design) an automatic display is subsequently

initiated.

IM-only routine, entrance to "ALARM" allowing zddress infor-
mation on what triggered the alarm (as opposed to why the

-alarm routine was entered) to be retained.

Entered for a software restart due to a software problem that is
expected to be recoverable, such as overflow of job register
sets. Causes an etfect similar to a haraware restart (see mission

documentation for details).

IM-only routine, entrance to "BAILOUT" allowing address infor-

mation on what triggered the software restart to be retained.

Entered with FCADR of desired destination in calling address +1,
and with (A, L) used as a communication cell (if desired) with
routine whose address is the FCADR. Overflow bit of A would

be lost, and subroutine does not change SUPERBNK, nor should

it be used with a task. The routine which is entered via

VIID-1

Tag

BANKCALL
(cont)

BANK JUMP

CCSHOLE

CHECKMM

CURTATHS

DELAYJOB

DMPNSUB

Function

"BANKCALL" can do a TC “SWRETURN" or TC "Q" (if no TC orders
in routine itself) to get back to originating program. Only
one "BANKCALIL" or "SWCALL" can be used at a given time if

return address information must be saved.

Entered with FCADR of destination in A. No return address

information is retained, nor is SUPERBNK changed.

A special entrance to the "POODOO" routine when no alarm pattern
is specified: it transfers to that subroutine with pattern
211038. Tag usually used for '"illegal" CCS transfer points:

(see Section IVB) or other steps which should not be entered.

Entered with a value of MODREG (mode or program register
number) in calling address +1. Returns to calling address
+2 if present MODREG value not that specified, and to

calling address +3 if present value same as that specified.

Entered if a hardware interface difficulty (such as attempting
to pulse torque IMU gyros with IMU in coarse align) encountered.
Generates a special alarm code pattern and returns (on un-
manned flights such as IM-1, causes computations to be idled
instead).

Entered by a job with A set to desired delay (Bl4 centi-
seconds) before job resumed. Puts job to sleep and sets up

a waitlist call to awaken it after suitable interval. Up to
four (CM) or three (IM) jobs can be accommodated at one time:

if more than the limit are attempted, a BAILOUT software restart
(pattern 3110&8) is generated. Due to mechanization, cannot be

used for jobs running in erasable memory.

Entered with MPAC, a fraction (scale factor BO) and A an

dp
integer (scale factor Bl4). Returns to calling address +1

with MPAC, = (A, L) = product of MPAC., and A, scale

dp dp
factor BO (i.e. with contents of MPACdp normally increased,
such as moved left 2 places if A was OOOOAB). Overflow

information is lost.

VIiID-2

Tag

DOWNFLAG

DPAGREE

GENTRAN

IBNKCALL

ISWCALL

ISWRETRN

LOADTIME

Function

Routine in fixed-fixed memory that sets the flag bit given in

—~

calling address +1 to zero and then returns (after releasing
interrupts) to calling address +2. Flag identification given
symbolically, with bit 15 of STATE (or FLAGWRDO) equivalent

to O, bit 15 of FLAGWRD1 equivalent to 15, etc., so routine must
divide by 15 to determine the word (with remainder giving the
bit within word). Note that this differs from the interpretive

language scheme for identifying bits (page VIB-50).

Routine entered to force double precision sign agreement (MPAC+2
is set zero) for MPAC.

Routine entered to cause a transfer of consecutive cells (which

must be in the same fixed or erasable memory bank) irom one part
of memory to the other. Transfer done with interrupts inhibited
(and they are not released before return). Accumulator set when
enter with one less than the number of single precision cells to
be moved; calling address +1 has ADRES of first cell of ."source"
data; calling address +2 has ADRES of first cell of "destination"

for the data; and return is to calling address +3.

Interrupt analog of ”BANKCALL”, which can be‘used during an
interrupt or with interrupts inhibited. Same format and
restrictions (on "IBNKCALL" and "ISWCALL") as indicated for
"BANKCALL". Return is via "ISWRETEN" or Q.

Interrupt analog of "SWCALL", which can be used during an
interrupt or with interrupts inhibited. Same format and
restrictions (on "IBNKCALL" and "ISWCALL") as indicated
for "SWCALL". Return is via "ISWRETRN'" or Q.

Exit designation from a routine entered via "IBNKCALL"
or "ISWCALL", causing return to original program with

(A, L) preserved from the routine.

Routine used by an RTB order (in_interpretive language) to load

the computer clock (TIME2, TIMEl) into MPACdp

JIID-3

Tag

MAKECADR

NORMUNIT

AS
:"!‘9 ‘

NORMUNX1

-~

v

POLY

- PO0ODOO

POODCOL

POSTJUMP

Function

Entered to form an address in FCADR format (and leave it in
A) of return address information to be used by "SWRETURN':
it is formed from S-register information in BUFZ and FBANK
information in BUF2+1.

Routine used by an RTB order (in interpretive language) to
shift all components of a vector left 13 places if the most
significant halves of all components (after forcing sign
agreement) are zero. This helps avoid numerical problems with

the interpretive language UNIT order (which is then entered).

Special entrance to NORMUNIT that leaves interpretive index
register X1 with the number of shifts performed (zero or +13).

Entered to evaluate a polynomial of the form.An'Xn +A 4 o
o 2k AO’ and returns with answer in MPACd . When enter
subroutine, MPACdp = X (argument); calling address +1 = (n - 1);
calling address +2dp = AO; calling address +hdp = Al; etc.
Return is to calling address +(2 n + L): n, of course, is

the order of the polynomial.

Entered for a software restart due to a software problem that is
not expected to be recoveratle, such as an attempt to take the
square root of a negative number. if powered-flight computations
not being done, all restart groups are set zero (see mission

documentation for details). Cf. "BAILOUT" description.

IM-only routine, entrance to "POODOO" allowing address infor-

mation on what triggered the software restart to be retained.

Entered with FCADR of desired destination in calling address
+1, and with (A, L) used as a commnication cell with routine
whose address is the FCADR (if desired). No return address

information is retained (in contrast to "BANKGALL").

VIID-L

Tag

POWRS

=

RS

SGNAGREE

SHORTMP

SIGNMPAC

SPCOS

SPSIN

Function

Entered to evaluate a polynomial of the same form as for
"POLY", and returns to calling address +1 with answer in
MPACdp. When enter subroutine, MPACdp = X (argument);
A="A"-3; and L = (n - 1). Coefficients stored in

increasing order (A first, then Ay, etc.) as for "POLY",

(0]
with the address of the coefficient of Xn, decremented by
3 (for coding convenience), in accumulator when enter

"POWRSERS" .

Routine used by an RTB order to force sign agreement of

MPACtp. It enters "TPAGREE" and then transfers to "DANZIG".

Entered with MPACtp a fraction (scale factor BO) and A a
single precision fraction (likewise scale factor BO).
Return is to calling address +1 with product of MPACtp
and A in MPACtp (and with (A, L) = 0). Differs from
"DMPNSUB'" in that MPAC contents would be moved right

here, and are moved left there.

Routine entered (generally by an RTB order) to set MPACdp

~equal to +MAX (for original MPACH+O >- +0) or -MAX (for the

original MPAC+0 X -0). MPAC+2 set zero and return is
through "DANZIG'".

Entered with A set to desired cosine argument, scale
factor B-1 in units of revolutions; returns to calling
address +1 with A equal to cosine of angle, scale factor
BO, in range T 1. Incoming argument is incremented by
900 (with suitable limiting) and the "SPSIN" expansion

then used.

Entered with A set to desired sine argument, scale
factor B-1 in units of revolutions; returns to calling
add}ess +1l with A equal to sine of angle, scale factor
BO, in range T 1. After reducing angle to range T 900,
the following expansion is used (coefficients provided
for X in units of radians):

3

ANS = 0.999925X - 0.165951X" + 0.007608X5

ViID-5

Tag

SUPDACAL

SUPDXCHZ

SUFPERSW

¢ ,,
i g 1 b

SWCALL

SWRETURN

TPAGREE

TPMODE

UPFLAG

Function

Entered with FCADR of desired address in A, and with required
SUPERBNK bits in bits 7-5 of L. Returns to calling address
+1 with A set to contents of cell whose address information

was in (&, L).

Entered with (A, L) set to the 2CADR of destination address.
Loads SUPERBNK with bits 7-5 of L, then loads BBANK with L
and does a TC to address that is in A. Differs from the
pseudo-operation DICB (see Section VA) in that SUPERBNK

set.

Entered with desired setting for SUPERBNK in bits 7-5 of A.
Loads SUPERBNK and returns.

Entered with FCADR of desired destination in A, but otherwise
the same as "BANKCALL" (including same return to "SWRETURN").

Exit designation from routine entered via "BANKCALL" or
"SWCALL'". Causes return to original program with (A, L)

preserved from the routine.

Entered to force sign agreement for MPACtp, with MPACLp left
W)
at +0 if was initially T O. Returns to calling address +1
with A set to +1, 40, or -1 (scale factor Bli) for MPAC*p
U

positive, zero, or negative respectively.

Routine entered by an RTB order to set interpretive language
MODE cell to indicate triple precision (i.e. to +1) to cause

subsequent storage order, for example, to be triple precision.

Routine in fixed-fixed memory that sets the flag bit given in
calling address +1 to one and then returns (after releasing
interrupts) to calling address +2. See "DOWNFLAG".

APPENDIX A

Review of Computer Concepts

Familiarity with some of the general principles of digital computer
design is necessary in order to permit a meaningful analysis to be
conducted of the performance of a program. There is currently available
a large variety of textbooks that review these principles in considerable
detail, and in addition several "Study Guides" have been published to
provide tutorial information directly applicable to the guidance computer.
This appencdix is not intended to perform the function served by those
books, but instead to summarize briefly some of the more salient computer

principles of value in reviewing the program listing.

Number Systems

The traditional decimal number system, in which each digit has a
weight (going from right to left) of ten times the weight of .:'Lts
neighbor, is usually unsuited from hardware considerations for direct
implementation in a digital computer hardware design. Instead, a binary
number system is employed, in which each digit has a weight (again
going from right to left) of two times that of its neighbor. This has
an acvantage over a decimal machine in that the valuve of a binary
digit (or "bit") can be represented by only two states of same physical
hardware device (such as a relay) or the performance of some piece of
hardware (such as the switching of a ferrite core when subjected to a
certain sequence of driving currents, but not to another sequence).
Rather than create new symbols for the two possible values of a bit,
they are designated "zero" and "one".

Although occasionally useful when the condition of distinct guantities

A-]

(such as program logic control flags) is of interest, reliable manual
handling of quantities expressed in binary, if they involve more than

a few bits, is usually quite difficult. ConSequently, bits are
conventionally grouped in sets of three to form Yoctal" numbers, which,
as the name suggests, ‘have ‘a weight (from right to left) of eight times
the weight of their neighbors. The grouping is generally started from
the least significant end, although for the guidance computer, since it
has an information word length of 15 bits, grouping from the most
significant end (with the sign taken as the first bit) would give the
same result.

Conversion between cdecimal and octal numbers can be done most
conveniently if the octal number involved is defined to be an integer:
any necessary conversion to other than integral values can be done by
suitable manipulations upon the decimal number. The octal guantity
should also be positive (sign representations will be discussed later).
If the ocfal number is positive and an integer, the conversion of a
decimal mumber DEC to an octal number involving 1l magnitude bits (i.e.
the word length of the guidance computer) permits a maximum value of DEC
of 16383, HRepresenting the octal number as (ah a3 a, &y ao), the
conversion (in either direction) between octal and decimal requires
solution of the following eguation:

DEC = Bhah + 83

.b096 ah + B12 a3 + N a, + 8 a; + 24

If the octal number is known,(ah has a maximum value of 3 to satisfy the
1limit given for DEC), then the conversion formula is obvious; if the

decimal number is known, successive division of DEC by 8 will yield

remainders which +ill be the values of a9 81 ete.

Tables may be used to advantage in the conversion between octal and
decimal, and an abbreviated one is presented on the following page. To use
this table, add the value found for the weight of 3 (below) to the weight

given by the table for (33 a2), and in turn add this to the value of

6 ap + ag.
ay, Weight
0 000GC0
1 0L096
2 08192
3 12268
L-7 illegal (gives DEC exceeding 16383)

Alsc given on the next page is a table of the powers of two: it is convenient
to remember that 210 is about 103 and 22° is about 106. For completeness,

the following table of octal-to-binary conversion is supplied:

Octal Binagz

000
001
010
011
100
101
110
i1

O\ EFwWw N O

A computer must, of course, be able to represent numbers which are
negative. A separate bit (the "sign bit") is used to retain the sign
information, and conventionally it is zero for a positive number and one
for a negative number. Although the sign bit is used to distinguish
betvéen positive and negative numbers, it is convenient from a hardware
stancpoint to modify the magnitude bits of the number when it is negative,

rather than using a "sign-plus-magnitude" representation.

A-3

a

382

00
o1
02
03
Ol
05
06
07

10
il
12

13

1

15
16
i1

Weight

Octzl-Decimal Conversion Table

a

a

32
0000 20
006} 21
0128 22
0192 23
0256 24
0320 2
036L 28
oLL8 27
0512 30
0576 31
0840 32
0704 33
0768 3L
0832 35
0896 36
0960 37
Exponent
0511233’h!5
6
7
8
g
10
11
12
13
1l
15
16
17
18
19
20
21
22
23
2l
25
26
27
28

Weight

1024
1088
1152
1216
1280
13LL
1408
14,72

1536
1600
1664
1728
1792
1856
1920
158)

Powers of Two

Value of 2Exponent

aBa2 Weight
Lo 20L8
L1 2112
L2 2176
L3 22L0
L 230L
L5 2368
L6 aL32
L7 2L96
50 2560
ol 262,
52 2688
53 2752
SL 2816
55 2880
56 29kl
57 3008

A-L

1

2

1, 2314:8:16:32

6l
128
256
512

1 o2k

2 oL8
L 096
8 192
16 38
32 768

65 536
131 072
262 1k
52l 288

1 oL8 576

2 097 162
L 194 304
8 388 608
16 777 216

33 554 L32

67 108 86l
3y 217 728
68 L35 L56

3072
3136
3200
3264
3328
3392
3L56
3520

358L
36L8
3712
3776
38L0
3904
3968
1032

The formulation of negative numbers used in most computations in

representation. In this representation, negative numbers of a given
magnitude are found by subtracting each octal digit of the positive value
from sevem {which, of course, is equivalent to complementing each bit).
Hence if it is desired to complement a complete number, this may be done
by inverting each bit, a function conveniently realized in hardware by
reading out the other side of a flip-flop (i.e. the side giving the
complement, rather than true, value of the input number).

As sugpested by the technique for converting to ones complement
(subtracting each digit from seven), the ones complement representation
has the feature that two possible representations of zero exist: 00000

6
and T7777.. The first is conventionally called "plus zero", while the

8

second is "minus zero" (see Section IIG). The interpretive language does
not distinguish between them, nor does the "Eranch on Zero to Fixed" (BZF)
machine language instruction. The ¥Count, Compare, and Skip" (CCS,
Section IVE) order, however, does distinguish between +0 and -0, ané
therefore it is important to understand the distinction between the two
zeros. ilost orders giving a zero result from non-zero operands will
produce a =0, but there are several exceptions (see Section IIG and
Section IV), including the cecrementing property of the CCS order itself,

Since ones complement has two representations of zere, this means
that the 15-bit computer word length can only express (215 - 1) different
numbers. This distinction (32767 instead of 32768 numbers) turns out to
be significant when hardvware representations of angle data are considered,

such as the CDU angles in the guidance system, and therefore another

formulation of negative numbers, called "twos complement", is employed

A-5

for angle information. To convert a negative ones complement number to
twos complement, merely add 1 to the least significant octal digit .-“ﬁd
allow the carries to propagate (hence the ones complememt -0, 171,
becomes OOOGOS). Positive numbers, of course, are the same in either
system. ZXFor-example, the positive representation of decimal 26 would be
328; the ones complement representation (for -26, assuming six bits for
sign and magnitucde) would be hSB (hSB + 328 = 7?8); and the twos complement
representation of -26 would be h68.

Another way of thinking of the twos complement numbers used in the
computer is as 15-bit signless integers. With this viewpoint, angles
are always positive, and for a least increment of 2‘1S revolution may

be summarized as follows:

o° 00000,
1,50 10000,
90° 20000,

180° Loooo,
270°(~-90°) 600004

315°(-45°) 70000,

3609 = 0° 000008

A special computer instruction (¥SU, see Section IIG and Section IVC)
is available to form the ones complement difference of two twos complement
numbers (if the second operand is zero, this is a convenient technique
for converting a twos complement numpcr to ones complemeqt).

As mentioned previously, the sign bit in the guidance computer is
considerecd to be to the left of the most significant magnitude bit:
consequently, values of ah of L-7 would mean the number is negative, and

should be complemenied before attempting to use the tables.

A-6

Arithmetic and Overflow

The guidance computer performs its arithmetic (multiplication and
division, for example) as if it was a fractional machine, with the "binary
point" between bit 15 (the sign) and bit 1l (the most significant
magnitudenéit). If the number were 200008 (bit 1 a 1 and the rest zero),
the magnitude would be % in this fractional machine representation (the
"true value" of the number, however, wouléd be determined from its scale
factor, as discussed later). Addition is performed in the standard ones
complement manner, with an "end-around carry" generated from the sign

position (see alsoc Section IIG). Tor example:

00015 (decimal 13)
+00021 (decimal 17)
00036 (decimal 30)

00015 (decimal 13)
+77756 (decimal -17, ones complement)
3 (decimal -)) Note that 6 + § = Ly = 138
77762 (decimal -13)
+00021 (decimal 17)
(1700003

1 (end-arcund carry)

TO00L

77762 (decimal -13)
+ 77756 (decimal -17)

1)777L0
1 (end-around carry)
TT7LY (decimal -30)

00015 (decimal 13)
+ 77762 (decimal -13)

17777 (-0)
I (-0) ‘
+0001 (decimal 13)
{1)0001
i (end-around carry)
0001 (decimal 13)

A-7

To accomplish twos complement arithmetic, the end-around carry
is suppressed, so that 7???78 + 00001g = OOOOG8 (and the other relation-
ships are alsc proper). Although complementing in the twos complement
system 1s more difficult, arithmetic operations are easier, since no
end-around carry is required (a useful feature for serial machines,
which operate serially upon the bits of a word, instead of upon all
the bits at once as in a parallel machine such as the guidance computer),
Overflow takes place when the result of an operation is too big
for the word length. This fact is detected in the guidance computer by
having two "signs" when a word is processed in the arithmetic unit
(see Section IIG). The two sign bits are normally equal, and the most
significant sign position is generally the one that is retained (unless
twos complement computations are desired).
With this additional sign bit, computations under non-overflow
conditions, of course, proceed as described previously:
1 77762
+0 00021
(1)0700003
5ok

If overflow takes place, however, the effect is different:
0 20000 (08192)
+0 30000 (12288)
0 50000 ("zoL80")
Here the two sign bits are unequal, indicating overflow. The most sig-
nificant sign bit plus bits 1L-1 give 100005 (LOS6), the correct answer
if the overflow information (21’-L = 1638l: note that 1638l + L096 = 20L460)

can be propagated to a more significant part of the word. Such propagation

is performed automatically by the.computer hardware (the DAS order,

Section IVB) for double precision computations, and can also be programmed
with single precision operands through the special features of the

TS order, Section IVB. If overflow is not encountered, however, the

two halves of a double precision word are treated independently (hence,
obviously, they have independent signs which need not be the same). This
setting of overflow information takes place only on addition and sub-

traction (which is merely the addition of the complememt of the word):

overflow in division results in an improper answer.

Crders and Addresses

In order to be usable for the solution of problems, a digital
computer must have the ability to perform a certain fundamental set of
functions, through suitable combinations of the instructions that make
up its "order code" (the built-in hardware operations performed in
direct response to program steps read from memory). Hore "efficient"
coding.(in terms of execution time or memory storage requirements) can
be performed if the order code permmits a variety of operations to be
performed by separate instructions, however. The Block 1 guidance
computer had 11 machine language orders while the Block 2 computer has
about three times that number, yet both machines, ignoring execution
time and memory constraints, are capzble of performing the same
calculations. The interpretive language (Section VI) provides a good
illustration of the "new" functions which may be performed (over 100
orders in the interpretive language are available) uesing the machine
language orders which are provided by the computer hardware.

Most order code operations require the specification not only of

" the order (“do what"), but also the operand involved ("o what")., The

.

::_-.
O

information concerning the operand is provided by the "address! part
of the instruction, which may specify the cell location of a variable
or the program step to which a transfer is required. In the guidance
computer, the operation "Clear and Add" is assigned the operation code
of 3. Hence the instruction

3 123k
would be interpreted by the hardware as “Clear and Add" (the 3) the
quantity located in address 123&8. The instruction

6 1245
(6 is Add) would add the contents of cell 12h58 to the contents of the
accumulator. It should be evident that the guantities 123&8 and 12h58
themselves do not enter the accumulator: instead, the quantities located

at these addresses are used.

Scaligg

As mentioned in the discussion on arithmetie, the guidance computer
performs its arithmetic as if it was a fractional machine, meaning that
all mpumbers in the machine are fractions lying in the interval between

-1 and +1, so located in a single precision word that 4 is 20000 The

g
lwoary of built-in floating point is not available in the guidance
computer, although a few computations essentially are performed in this
fashion in the interpretive language (by suitable programming). Since
built-in floating point is not available, the responsibility is upon the
program (and.therefore programmer) to be aware of the.maximum value of

a quantity (to ensure that the computer number does not exceed 1) and

its least significance.

One technique for avoiding overflow (computer number exceeding 1)

is to assign suitable units to a quantity so that its range is the same
as that of the numbers in the machine (i.e. -1 to +1). For example,
angles whose trigonometic functions are of interest might be expressed
in units of “"revolutions" (360°), so that 3 would be 180° and - % would
be - 900. This technique is employed for angle information in the
interpretive language (see ACOS, ASIN, COS, and SIN in Section VIB).
Although suitable definition of units to provide a quantity in

the proper value range (-1 to +1) in principle could be applied to all
variables in the program, in practice this would rapidly become unwieldy
and subject to errors. Consequently, it is conventional to allow
quantities to keep their "normal" units and dynamic ranges when their
computations in the program are being analyzed, and to express the
comversion between these "normal" units and the computer number (in
the range -1 to +1) by associating with each quantity a "scale factor".
The scale factor for a quantity is defined as follows:

The scale factor is the power of two by which the number

in the computer must be multiplied to obtain its true

value. The scale factor is frequently shown as "BExx",

to signify binary as oppesed to decimal exponent

information,
Uince "shifting" operations (moving bits right or left in a register)
can be performed conveniently, the advantages of selecting the scale
factor as a power of two are evident: if a number is moved two places to
the right in a register, its scale factor is increased by two.

From the definition of "scale factor' given above, it should be

evident that angle information (expressed in units of revolutions, as
discussed above) would have a scale factor BO, since the computer number

would have to be multiplied by 20, or 1, to find the “true value". There

is frequent need in the program to consider quantities to be integers,

A-11

giving the least significant bit of the accumilator a weight of 1 (such

as for accelerometer counter outputs, in units of counts). Since the

computer number weight for this bit is 2'lh, this means that the computer

number would have to be multiplied by 21h to convert from the computer

value to the True value, and therefore the scale factor for such integers

is BlL. Note that the table conversion process given earlier would

provide directly the decimal value of a number with scale factor Bll:

in general, however, the integer which results from the table process

would have to be divided by 21k - scale factor t5 fing the true value,
Double precision numbers, especially in interpreter (Section VI)

calculations, can be handled in a manner icdentical to that for single

precision, since the weights for the most significant half are those

for a single precision number, and the weights for the least significant

half are 21l times the corresponding bit positions of a single precision

number. A double precision integer, therefore, would have a scale factor

of B28, and could represent magnitudes up to (228 - 1), or 268,435,155,

The fact that the scale factor is (almost) the maximum possible value of

the number follows from its definition (computer numbers are 211 fractions),

and is frequently useful in reviewing the perfomance of a program.
Conversion of a double precision octal number to decimal can proceed

as if the two halves are independent single precision numbers, which indeed

is generally the case. After conversion to an integer, the most significant

half should be multiplied by 1638l (211) and added to the least significant

half (which may not be of the same sign), and the result then divided

228 - scale factor .

by to find the true value. It is sometimes useful to

use the fact that the least significant bit of a single precision number

bas a weight of 25¢ale factor - 1k gs.f. - 28

; for double precision it is

A2

Computations involving numbers with various scale factors proceed
within the computer arithmetic unit without any knowledge of what these
scale factors are (since no built-in floating point is available), and
therefore it is necessary to write (or analyze) the program in order to
ﬁetermine.Eﬁﬁumaniphiations which are being performed. Since scale
factors are merely exponents, they follow the normal rules for the
handling of exponents by arithmetic operations:

1. Addition and Subtraction leave unchanged.

2. Multiplication adds exponents and scale factors.

. Division subtracts exponents and scale factors.

3
i. Squaring doubles exponents and scale factors.

n
-

Extracting square rcot halves exponents and scale factors.

o~
.

Shifting left n places is the same as multiplying by 22 (in the
sense that it is the same basic value of the number that must
remain) and therefore reduces the scale factor by n.

7. Shifting right n places increments the scale factor by n.

Assume B has a scale factor Ell; and X has scale factor EB-10:

C =K B leaves C with a scale factor Bl
D= C2 leaves D with a scale factor B8
L = B, shifted left 5 places, leaves E with scale factor B9

F = (D+ E) cannot immediately be analyzed. Gives effect of
F=2D +E, scale factor B9, or F =D + % E, scale
factor B8 (or other permutations, of course). Decision as
to which is performed might be resolved by G&N contractor
equation documentation, if available.

= \F /& suggests strongly that F has an even scale factor(e.g.
B8), and gives a scale factor for G of I, - (-10) = Blh. If
other evidence (such as DSKY display) were available to
suggest that G was an integer (single precision), confidence
in the validity of the analysis would be enhanced.

(@]

Tc assist in the analysis of the scaling of a program, there is almost

nothing which is more valuable than a reasconable valid cdefinition of what

A-13

the pregram "should" bé doing. Such information might be provided by
G&N contractor equation documentation or flow charts, missicn-oriented
program documentation, information in the program comments field (not
necessarily consistent with the coding), etc. If the program version
has been released for fabrication into memory rcpes, it is reasonable
tc assume that the coding performs a valid function. A knowledge of
some of the "standard" scale factors, particularly for the interpretive
language, can also prove useful. Some of these scale factors, with
the associated "standard" units, that may be encountered include the
following:

1. Angles in the interpreter generally are in revolutions, scale
factor BO. Incoming IMU CDU angles are in revolutions with
scale factor B-1 (in twos complement). See Section IID for
information on scaling of other input counters.

2. It is usually possible to consider inputs and outputs of the
computer to be scaled as integers (Bl4 in units of "counts",
for example).

3. Angular rate information in digital autopilots frequently
represents an angle change per computing interval (such as
0.1 second). It will generally be found more convenient
to retain the standard angle units of revolutions, with the
time unit suitably defined, rather than generating a "new"
unit (i.e. consider rates to be scaled B-3 in units of
revolutions/deci-second instead of BO in units of 450%/sec).

4. Position information can have various scale factors depending
on dynamic range requirements. Units in most computations are
meters (although early programs sometimes used kilometers). In
orbital integration, position data scaling generally B29 meters
for earth-centered and B27 meters for moon-centered computations.
A standard value of B29 meters appears in most other places,
except that B24 meters has been used in IM during ascent and
descent computations.

U

. Velocity information likewise can have various scale factors
depending on dynamic range requirements. Units in most comp-
utations are‘meters/centi—second‘(although early programs in
orbital integration used special units). In orbital integration,
velocity data scaling generally B7 meters/centi-second for
earth-centered and B5 meters/centi-second for moon-centered
computations. A standard valus of B7 meters/centi—second
appears in most other places, except that parts of the IM
descen§ coding use other scaling (such as BlO meters/centi-
second).

A-14

6. Time information almost always is in units of centi-seconds,
since this 1s the standard least increment of the computer
clock (0.01 second). Single precision times, therelfore, have
scale factor.Blj and double precision ones B28 (information to
be loaded into TIME6, however, is scaled B1O).

. Trigonometric functions (sines and cosines) as used in the
interpretive language have scale factor Bl. The single-
precision routines in the program, however, derive these
functions with scale factor BO.

-~

8. Unit vectors have a standard scale factor of Bl (note that a
scale factor of BO would risk overflow in forming a unit vector
if two of its components were 0), although other scalings,
particularly for erasable memory constants, may also occur.

Individual pdrtions of the program, however, may have particular
units for quantities that are not subject to the above generalizations.
The entry guidance program, for example, conventionally scales acceleration
BO in units of 805 fp52 (25 x 32.2 = 805) and velocity Bl in units of
25766.1973 fps (the circular satellite velocity 300,000!' above the one-
time standard earth radius of 2.09029E7 feet.).

Conventional scaling equivalents that are used in the program include

the following:

1 foot = 0.3048 (exact) meters
1 nautical mile = 1852 (exact) meters
1 pound = 0.45359237 (exact) kilograms
1 newton-meter = 1,355817948 foot—pound
1 kilogram~meter2 = 1.3558179,8 slug—foot2
Standard gravity = 9.80665 (exact) meters/second2 (earth)
Standard pad radius= 6 373 338 meters
1) = 3.14159265

Software Difficulties

During the course of the development of flight software, several
software difficulties have become evident as sources of coding deficiencies.
The lists given below are intended to be summaries of such difficulties,
rather than be summaries of the software features covered elsewhere in this

.
document. Excluded from the lists are those which are in the category of

design troubles (such as multiple loaders of an autopilot deadband), as well

as those items which reflect logic troubles with software service routines.

General and Machine Language

1. Constants must be checked carefully. The assembler, rather than a
desk calculator, should be use to incorporate binary scale factors. The
conversion factors should be applied carefully (see page A-15): the value
of 77 is not (22/7), the number of meters in a foot (12/39.37), nor the
number of meters in a nautical mile 1853.25. The proper units on the
constant must also be observed (revolutions rather than radians for most
angles, for example).

2. Implementation of restart logic is a considerable source of potential
difficulty. Considerable checking is required to insure that the logic that
is supplied is proper. Checking should not be restricted to the existing
phase-change entrances, but should also consider if other areas of the coding
need protection that presently are lacking it.

3. Changes should be made carefully, and only after the existing
mechanization is thoroughly understood. Restart logic, for example, has been
seriously compromised due to ill-advised changes whose only Jjustification
mey have been the saving of a few program steps.

4. Time sharing of erasable memory is necessary because of the limited
size of the memory. A number of difficulties have arisen because of un-
expected 'sneak paths" through the coding that resulted in attempts to use
some cell after it had been written over with another quantity. A complete
understanding of how a cell is used within one routine should be obtained
before an attempt is made to use it for another purpose (the impact upon
the required telemstered information should also be considered).

5. Changes in basic coding design should be implemented only after
‘a thorough review of all the consequences. The addition of a "software
restart" capability, for example, led to a number of difficulties with the
autopilots that had been avoided when a hardware restart was forced.

=
|

bt

(I~

6. The use of relative addresses, while convenient during coding,
has led to erronecus program transfers, especially if program changes
are subseqguently made.

7. There are several routines which inhibit and/or release interrupts,
and hence caution must be observed if it is desired to protect a batch of
coding from interrupts that some subroutine (such as a flag-bit changing
routine) has not released interrupts.

8. Proper erasable memory bank settings for 2CADR addresses, such as
those in restart tables, have been a source of difficulty. Pending an

upgrading of the assembly program, it is necessary to check this information
manually.

9. It must always be remembered that interpretive language Jjobs can
be interrupted for a separate job of higher priority, and all Jobs can be
interrupted for tasks. Consequently, any use of an erasable memory cell
between jobs, or between a task and a job, must be done with extreme
caution, Difficulties may only arise for a particular phasing of input
information (such as crew DSKY manipulations), and hence methodical
validation of the coding is a formidable effort.

10. Transitions in operating configuration (such as between one auto-
pilot and another) must be handled carefully, both for the normal case and
in the presence of restarts, in order to avoid undesirable interactions.

11. Residual flagword bit settings have been a source of difficulty
in program operation, particularly in the presence of a restart or a non-
nominal crew exit from a program. The obvious solution, of course, is a
methodical reset of the bits in a master initialization routine that is
performed prior to entry to a new program.

12. In a program loop that can last for 5 ms or more, it is necessary
to ensure the presence of a TC or TCF order in order to avoid a hardware
restart, even though the order itself may not be functional (and loop
control exercised by a BZMF instruction, for example).

13. Symbolic references to flagword bits can be convenient, but checks
must be made that the bit does not correspond to the sign bit of the word
(bit 15) before determining the appropriate branching order (such as CCS)
that should be used.

14. The possibility of hardware failures, and their effects on the
input bits read from channels, should be considered in the coding (as well

as being documented in precise detail in the software documentation, of
course).

15. Residual SUPERBNK settings when using fixed memory banks 30-43
should be checked (for example, entrance to an alarm roubine from banks
4O-43 should not be followed by performance of a routine in banks 30-37
without ensuring that SUPERBNK no longer set to L).

16. Interrupts are inhibited by hardware means only in the case of
overflow in the accumuwlator. If coding is done to cause overflow in other
registers (such as Q), then this coding must ensure that interrupts zare
inhibited zppropriately.

17. The executive system assumes that the job reflected in Job
Register Set zero is the one currently active. Consequently, after a
software/hardware restart (that initializes all Job Register Set cells
to indicate that they are available), establishment of a single job
foliowed by an entrance to a display interface routine will cause thzt
job to be lost (since the job that is put to sleep is not the "current"
one, but instead the one that was established).

18. During a periodic display generation cycle (such as when the
accelerometers are being read for guidance), a DSKY display response
which is intended to generate another display may be ineffective (since
the periodic display would occur again and destroy the single-shot display).

19. The logic of the display interface routines gives a quite power-
ful display capability, but its restrictions and features must be well
understood. Displays of different display priorities cannot be inter-
mixed, and the fact that a response was a 'data enter'" camnot be deter-
mined from the return address to which the interface routine transfers
(due to interruption by a higher priority display or by a restart).

Interpretive Language

1. Since NEWJOB is checked within the interpreter, special
techniques (such as a priority change or particular coding) must be
used if desire to sample a set. of cells which may be modified by a
higher priority job (such as DSKY activity or periodic powered flight
navigation).

2. The UNIT operation can give numerical difficulties for vectors
with several leading zeros in each component (the magnitude of the
vector for division is only computed in triple precision), causing the
resulting vector magnitude to exceed 1.0000. One solution is to execute
the UNIT instruction twice. If there are too many leading zeros, of
course, the vector cannot be formed, and the result (scaled Bl) is
approximately (2, O, 0).

3. In using the push-down list within a coding loop, care must be
taken that all paths through the loop give a consistent setting when the
loop is entered again (or else a SETPD order must be used). This includes
such special exits as those due to overflow, for example.

4. Triple precision computations can be done (including the TAD order)
without setting the MODE cell (which controls the subsequent storage
commands) correspondingly.

5. Although it is possible to load MPAC cells in machine language
as well as interpretive language, care must be used in combining the
two types of coding to ensure that MODE and the low-order parts of MPAC
contain the information which is desired.

6. If it is desired to read counter cells (or load them), it is
necessary to return to machine language. Attempts to reference these
cells in the interpretive language generally will yield a VAC area
reference instead.

7. Overflow due to a left shift is a "modulo" operation, and hence
checks against a limit should be done before, not after, such a shift.

8. The SIGN cperation treats zero as a positive number. Hence if
shift a negative quantity that is a power of two such as to cause overflow
(Losing the bit), the SIGN operation cannot be used on what remains
in order to give the proper result.

G. Although some computations have different scaling for earth-
centered and moon-centered computations, others require a consistent
scaling regardless of the coordinate origin.

10. In generating a program patch, a CALL/RVQ sequence, even though

only one entrance to the patch is made, can save a memory cell over a
GOTO/GOTO sequence.

APPENDIX B

Changes Made for Revision 2

This appendix gives an sbbreviated comparison between this revision
rp g e

and Revision 1 of this document. It is intended that most of the changes

made for this revision be included in the list, rather than the additions

or deletions that have occurred.

Hardware

The hardware design of the Block 2 computer, of course, was

completed several years ago. Nevertheless, the following modifications

are reflected in the earlier sections of this revision:

ITD

Section

1.

2.

B

Delay information for radar inputs (OOA68).
Scale ratio between low and high landing radar scale (OOAéS).

Scaling for throttle output (00558).

B

Section IIRK

1

2.

=W

Channel 07 exempt from hardware restart.

Channel bits reset during a loading command.

. Channel 10 loading period increased.

. Channel 31 bits 14-13 apply to FGNS Mode Control switch, for IM.

5. Channel 33 flip-flops reset by a hardware restart.

. Channel 33 bit 9 landing radar scale ratio.
. Channel 33 bits 5-4 (CM) reflect separate spacecraft switches.

. Channel 33 bit 2 (IM) indicates that RR CDUs have supply voltage

phased suitably with LGC voltage.

B-~-1

Section IIH

1. Low bit rate telemetry in IM does not transmit IGC digital data.

o
+

. Delay interval before radar interrupt changed.

3. No interrupts (counter/program) before special-purpose TC orders.
Section IId

1. Chammel 30 loading period increased.

2. ALIT and VEL lights added to DSKY for' IM.

Software

The support software has changed in only minor ways (the next

section reviews the interpretive language).

Section IID

1. The OPTi tags are no longer used in IM for RR CDUs.
2. FDAI error needles in IM can display wvehicle rates.

3, Cells 00578-00608 used in CM for alarm source information.

Section IIE

1. Software uses different axes in IM for RCS control.
2. Uplink activity light used in CM for attitude maneuver message.
. Channel 12 bit 15 delay now 10.24 seconds.

Channel 12 bit 11 set before TVC in CM.

= w

\n

. Chamnel 12 bit 1 set 1 if RR not in IGC mode.

o~

. RR/IR performance sensitive to channel 13 loads.

7. Software logic added to check validity of PRO key entry.

Section 11X

1. Line skipping descriptions added and made more explicit.

2. Additional options for listings of changes available.

B-2

Section VITA

1. Software abort (pattern 2120&8) added for negative or zero waitlist
calling argument.

2. Waitlist overflow alarm pattern and routine interface modified.

Section VIIB

1. IM has additicnal Job Register Set.

2. Executive area overflow alarm pztterns and routine interface
modified.

3. NEWJOB checked in additional locations.

Section VIIC

1. "NEWPHASE" routine restricted to CM only.

2. "PHSCHNGA" routine added to IM only.

Section VIID

1. The "ABORT" and "DATACALL" routines have been deleted from coding.
2. "DELAYJOB". can accommodate 4 jobs in CM, 3 in IM.

3. Several additional routines added.

Interpretive Language

1. Arc cosine/arc sine no longer causes software restart.
2. Scaling units for sine/cosine routine clarified.

3. Square root software restart alarm pattern and routine interface
modified.

L. "USEPRET" routine deleted from coding.

B-3

APPENDIX C

Summary of Computer Inputs and Outputs

This Appendix summarizes the computer inputs and outputs by the

following functional areas:

_ogom @ "9 H OO QW

Computer Information

. Crew Input Quantities
. Display Quantities

External Input Signals
IMU Quantities

Optics Quantities

. Radar Quantities
. Telemetry Quantities
. Uplink Quantities

. Vehicle Control Quantities

More details on the particular quantities involved can be found in the

sections on Special Erasable Cells (Section IID), Input/Output Channels

(Section IIE), and Display System (Section IIJ).

A Computer Information
1. Time Information

a) Computer clock: cells 002L, — 0025,.

b) Clock used to maintain account of time in standby:
channels 03 and 04.

¢) Clock for control of waitlist tasks: cell 00268’ program
interrupt #3.

d) Clock for control of periodic input/output: cell 00278,

f)

program interrupt #4.

Clock for digital autopilot computations: cell 00308,
program interrupt #2.

Clock for control of RCS jet firings: cell 0031,, program
interrupt #1. Cell countdown enabled when bit ~15 of
channel 13 = 1.

2. Memory Control

a)

b)

c)

Erasable memory bank: cell 00038.
Fixed memory bank: cell OOOAS.

Superbank control: channel 07.

d) Fixed and erasable bank set/sense: cell 00068‘
e) Program counter: cell 0005, .
f) Return address information: cell 00028,
g) Program loop check: cell 00678.
3. Accumulator and L register: cells 00008 and 00018.

L. Interrupt traps (program interrupt #10) reset: channel 13,
bits 14-12.

. Standby enable: channel 13, bit 11.
. Alarm test: channel 13, bit 10.
. Oscillator stop alarm: chamnel 33, bit 15.

. Computer warning alarm: channel 33, bit 14.

W o ~2 O~ W

. Test conmnection output: channel 11, bit 9.
Crew Input Quantities

1. DSKY Keyboard (program interrupts #5 and #6)
a) Main panel DSKY keyboard: channel 15, bits 5-1.

b) Navigation (LEB) panel DSKY keyboard, CM only: channel
16, bits 5-1.

c) Proceed key: channel 32, bit 14.

h

. Rotational hand controller binary outputs: channel 31, bits 6-1.

3. Rotational hand controller analog outputs (IM only): cells
0042, - OOAAS. Input to cells enabled by channel 13, bit &;
digital-to-analog conversion initiated by channel 15, bat: 9,

4. Translation hand controller binary ocutputs: channel 31, bits
12-7.

5. Minimum impulse controller binary outputs, CM only: channel 32,
bits 6-1. IM uses B.2 with suitable software settings.

6. Rate of descent control, IM only: channel 16, bits 7-6. Release
of switch to neutral position resets trap for interrupt #6.

7. Engine armed (ready for ignition): channel 30, bit 3.
8. Spacecraft control modes
a) Computer in control, CM only: channel 31, bit 15.
b) Computer in control, IM only: channel 30, bit 10.

c) Attitude controller out of detent, IM only: channel 31,
bit 15.

d) Attitude hold mode: channel 31, bit 13,
e) Free mode, CM only: channel 31, bit 14.
f) Automatic mode, IM only: channel 31, bit 14.

C~2

9. Abort command, IM only: channel 30, bit 1.
10. Abort Stage command, IM only: channel 30, bit 4.

11. IM attached to CM, CM only: channel 32, bit 11.

12. Landing point designator, IM only: chamnel 31, bits 6,5,2,1.
Display Quantities

1. DSKY panel display drive: channel 10, bits 15-1.
a) Row lhg has following assignments:
PROG light bit 9
TRACKER light bit 8
GIMBAL LOCK light bit 6
ALT light (IM only) bit 5
NO ATT 1light bit L4
VEL light (IM only) bit 3
b) IM mission programmer (unmanned flights): row 174.
Caution reset signal (for Restart light): channel 11, bit 10.
. Operator error light: channel 11, bit 7.
. Key Release light: channel 11, bit 5.
. Verb/Noun Flash: channel 11, bit 6.

woE WD

. Temperature Caution light: channel 11, bit 4; channel 30, bit 15.
. Computer Activity light: channel 11, bit 2.
. 135 Warning light: channel 11, bit 1.

v o~ O

. FDAT zttitude error needles: cells 0050, - 00528’ if channel
14 bits 15-13 and channel 12 bit 6 are set.

10. Special display of inertial data, IM only:
a) Display request: channel 30, bit 6.

b) Lateral and forward velocity: cells 0053, - 0054,, if
channel 14 bits 12-11 and channel 12 bits 8 and é set.

¢) Altitude and altitude rate: cell 0060, if channel 14 bit 3
is set. Channel 14 bit 2 is set if altitude rate; otherwise
is altitude.

External Input Signals (CM only)

. Guidance Reference Release: channel 30, bit 6.
. Liftoff: channel 30, bit 5.

SLB Separation: chammel 30, bit 4.

Ullage (of S4B): chamnel 30, bit 1.

CM/SM Separation: channel 30, bit 2.

O S U N

c-3

F

IMU Quantities

-

. CDU angles: ¢ells 00328 - OOBLS.
2. Accelerometer cutputs: cells 00378 - GOAlga

~

3. Coarse Align
a) Mode specified: channel 12, bit 4.

b) Angle changes: Cells 0050, - 0052
15-13 and channel 12 bit 6 set.

L, Turn-on request: chamnel 30, bit 14.

g’ if channel 14 bits

5. Turn-on delay {90 seconds) complete: channel 12, bit 15.
6. Gyro Torquing

a) Power supply: channel 14, bit 6.

b) Number of pulses: cell 00474

c) Sign and axis: channel 14, bits 9-7.

d) Enable cell 00478 output: channel 14, bit 10.
7. Status Information

a) Turned on and operating: channel 30, bit 9.

b) Temperature in limits: channel 30, bit 15.

¢) IMU fail signal: channel 30, bit 13.

d) IMU CDU fail signal: channel 30, bit 12.

e) PIPA fail signal: chamnel 33, bit 13.
8, IMU cage command (crew switch): charmel 30, bit 11.

9. Enable IMU error counters: channel 12, bit 6 (driven from
cells 00504 - 00528).

10. Zero IMU CDU's: channel 12, bit 5.

Optics Quantities

1. Optics for M only
a) Mark: channel 16, bit 6.
b) Mark reject: channel 16, bit 7.
c) Computer control of optics: channel 33, bit 5.
d) Optics in zero optics mode: channel 33, bit 4.
e) Command to zero optics: channel 12, bit 10.
f) Disengage optics DAC: channel 12, bit 11,

g) Enable optics error counters: channel 12, bit 2 (driven
from cells 00538 - 00548),

h) Zero optics CDU's: channel 12, bit 1.

C-4

i) Optics CDU failure: chamnel 30, bit 7.
j) Optics angle measurement (CDU's): cells

k) Optics drive information: cells 0053, -
14 bits 12-11 and channel 12 bhit 2 sét.

2. Optics for IM only
a) X-axis mark: channel 16, bit 3.
b) Y-axis mark: channel 16, bit 4.
c) Mark reject: channel 16, bit 5.

Radar Quantities

1. Digital input data (except angles): cell 00L6 , with selection
of source by channel 13, bits 3-1. Data gating initiated by
chammel 13, bit 4; elapse of time delay after setting bit 4
causes program interrupt #9.

2. VHF range data good, CM only: channel 33, bit 2.
3. landing Radar information, IM only
a) Command antenna to position #2: channel 12, bit 13.
b) Antenna in position #1 (descent): channel 33, bit 6.
c¢) Antenna in position #2 (hover): channel 33, bit 7.
d) Tracker locked on: channel 33, bit 5.
e) Velocity information valid: channel 33, bit 8.
f) Altitude information on low scale: channel 33, bit 9.
L. Rendezvous Radar information, IM only
a) Power on and mode switch to computer: channel 33, bit 2.
b) Locked on: channel 33, bit 4.
c) Angle information (CDU's): cells 00358 - 00368.

d) Pointing commands for antenma: cells 0053 —Owﬂyzﬁ
cmellubﬁsl&llmﬁCMmmIIZbﬁ;ésﬁu

e) Range information on low scale: channel 33, bit 3.
f) Radar CDU failure: channel 30, bit 7.

g) Enable radar CDU error counters: channel 12, bit 2
(driven from cells 06538 - 00548).

h) Zero radar CDU's: channel 12, bit 1.
i) Enable radar lockon: channel 12, bit 14.

G~3

Telemetry Quantities

1. Data output: chammels 34-35 (load when program interrupt #8).
<. Word order code: channel 13, bit 7.
3. Downlink rate too high: charmel 33, bit 12.

Uplink Quantities

1. Data input: cell OOA58 (overflow generates program interrupt #7).
2. Bit rate too high: channel 33, bit 11.
3. Spacecraft switches set to inhibit: channel 33, bit 10.
. Uplink activity light: channel 11, bit 3.
5. Block inputs to cell 00&58: channel 13, bit 6 (bit 5 for
uplink only).

Vehicle Control Quantities

1. RCS Jets
a) Jet turn-on: channels 05 and 06 (bits 8-1),
b) Jet failure, IM only: channel 32, bits 8-1.
2. Saturn control, CM only
a) Control of Saturn to computer: chammel 30, bit 10,
b) Injection Sequence Start: channel 12, bit 13.
¢) S4B Cutoff: channel 12, bit 14,
4) Steering commands to Saturn: channel 12, bit 9.

e) Steering command data: cells 00504 - 00528’ if channel 14
bits 15-13 and channel 12 bit & sét,

3. SPS contrel, CM only
a) Engine on: channel 11, bit 13.

b) Steering command data: cells 00534 - O054g, if channel 14
bits 12-11 and channel 12 bit 2 se&t.

c) Steering commands to SPS engine: chamnel 12, bit 8.
Stage Verify, IM only: channel 30, bit 2.
. Engine on/off, IM only: channel 11 bits 13 and 14.

. Descent engine throttle control, IM only

B

o~

a) Computer given control of throttle: chammel 30, bit 5.
b) Throttle command: cell 00558, gated if channel 14 bit L set,
7. Descent engine gimbal trim control, IM only

a) Roll and pitch trim: channel 12, bits 12-11 and 10-9.

b) Gimbal drive amplifiers turned off: channel 32, bit 9.

c) Gimbal drive indicated malfunction: channel 32, bit 10.

_ APPENDIX D
ALPHABETTCAL LISTINGS

Machine Language and
Other Assembler Codes

Symbol See Papge Function
0-7 VA-3 Machine operation codes
iDNADR - VC-1 Telemetry downlist data
(1 =1-6)
2BCADR VC-1 Same as 2CADR
2CADR VC-1 Double precision address, first half ADRES
‘ format and second half BBCON format
2DEC VB-1 Double precision decimal number
2FCADR VC-1 Double precision address for fixed memory bank
loading
20CT VB-4 Double precision octal number
20CTAL VB-4 Same as 20CT
=MINUS VC-1 Address computation function
=PLUS VC-2 Address computation function
AD IVB-1 Add
ADRES VC-2 Address information (usually 12-bit S-register)
ADS IVB-1 Add and Store
AUG IvCc-1 Augment Magnitude
BANK I11-8 Set location counter in assembly program to

first unassigned cell in indicated bank

BBCON VC-2 BBANK setting corresponding to given symbol
and preceding EBANK= specification, plus
SUPERBNK information '

BLOCK I11-8 Set location counter in assembly program to
first unassigned cell in specified fixed-fixed
bank

BNKSUM ITF-5 Generate coding for terminating indicated fixed
memory bank

BZF IvCc-1 Branch on Zero to Fixed

BZMF IvC-1 Branch on Zero or Minus to Fixed

CA IVB-1 Clear and Add

CADR VC-3 Complete Address for fixed memory (FBANK and
S-register information packed)

CAE VA-1 Clear and Add from Erasable

CAF VA-1 Clear and Add from Fixed

- CARDNS ITI-21 Modify card numbers
CCS IVB-1 Count, Compare, and Skip
CoM VA-1 Complement

D-1

Symbol See Page
COUNT I1I-9
cs IVB-2
DAS IVB-2
DCA TVC-2
DCOM VA-1
DCS IVC-2
DDOUBL VA-2
DEC VB-1
DELETE TIT-2%
DIM IVC-2
DING ITH-2
DNCHAN VG-3
DNPTR VC-3
DOUBLE VA-2
DTCB VA-2
DTCF VA-2
DV TVC-2
DXCH TVB-2
ERANK= III-9
- ECADR VC-3
EDRUPT TTH-L
EQUALS III-9
(or =)
ERASE III-10
EXTEND VA-2
FCADR VC-3
FETCH IIH-10
GENADR VC-4
INCR TVB-3
TNDEX IVB-3
TVC-3
INHINT VA-2
INOTLD TIH-10
INOTRD IIH-10
INSERT TIT-24
LOC III-10

Function

Meonitor use of fixed memory cells for tabulation
Clear and Subtract

Double Precision Add and Stors

Double Precision Clear and Add

Double Precision Complement

Double Precision Clear and Subtract

Double Precision Double (4, L)

Single precision decimal number

Delete indicated lines of coding

Diminish Magnitude

Decrement magnitude (counter interrupt)
Telemetry downlist channel

Telemetry downlist sub-list pointer

Double Accumulator contents

Transfer to step given in 2CADR form in (A, L)
Transfer to step given in 2FCADR form in (4, L)
Divide

Double Precision Exchange

Set assembler cell to indicated EBANK value
Erasable Memory Complete Address

Programmed RUPT

Give quantity in tag field same definition as
guantity in address field

Allocate erasable memory storage

Permit an extended operation to be performed
Fixed memory complete address, same as CADR
Computer test set instruction

S-register information, same as ADRES
Increment

Index

Inhibit interrupts:
Computer test set instruction
Computer test set instruction

Insert lines of coding
Same as SETLOC

Svmbol See Page Function

LXCH IVE-3 Exchange L Register

MASK IVB-3 Mask

MCDU IIH-2 Decrement (counter interrupt) in twos comple-
ment

MEMORY I1T-10 Allocate memory cells

MING ITH-2 Decrement (counter interrupt) in ones comple-
ment

MM VB-3 Mz jor Mode (program number)

MP IVC-3 Multiply

MSK VA-2 Mask

MSU IVC-3 Modular Subtract (twos complement subtract)

NDX VA-2 Index

NOOP VA-2 No COperation

NV VB-3 Verb-Noun information (same as VN)

OoCT VB-3 Single precision octal number

OCTAL VB-3 Same as OCT

OVEK VA-2 Overflow Skip

PCDU ITH-2 Increment (counter interrupt) in twos comple-
ment

PINC IIH-2 Increment (counter interrupt) in ones comple-
ment

QXCH IVC-4 Exchange Q Register

RAND VC-4 Read Masked Channel

READ IVC-4 Read Chamnel

RELINT VA-3 Release interrupts

REMADR VC-4 S-register contents, same as ADRES

RESUME VA-3 Resume computations interrupted by program
interrupt

RETURN VA-3 Exit from subroutine

ROR IvC-4 Read ORed Channel

RUPT IIH-4 Implement in hardware the program interrupt

RXCR IVC-4 . Read Exclusive-ORed Channel .

SBANK= ITI-10 Set assembler cell to specified superbank

SETLOC III-10 Set location counter in assembly program to

) indicated value
SHANC ITH-2 Shift (counter interrupt) and add 1
SHINC ITH-3 Shift (counter interrupt)

Symbol See Page
SQUARE VA-3
STORE ITH-10
SU IVC-5
SUERO ITT-11
TC IVB-4
TCAA VA-3
TCF TVB-L
TCR VA-3
TCSAJ ITH-10
TS IVB-4
VN VB-3
WAND IvC-5
WOR IVCc-5
WRITE IVC-5
XCH IVB-4
X1Q VA-3
XXALQ VA-3
ZL VA-3
zQ VA-3

Function

Square contents of Accumulator

Computer test set instruction (same mnemonic
also used for interpretive language order)

Subtract

Include in assembly the Subroutine with the
indicated identification

Transfer Control
Transfer Control to Address in A

Transfer Control to Fixed Memory
ransfer Control and save Return (same as TC)
Computer test set instruction
Transmit to Storage
Verb-Noun information
Write Masked Channel
Write ORed Channel
Write Channel

Exchange
Execute instructions in L and Q

Execute instructions in A, L, and Q
Zero L register

Zero Q register

Alphabetical Listing of Interpretive
Language Instructions

Symbol Page VIB- Function

ABS 3 Absolute Value of Scalar

ABVAL 15 Absolute Value (length) of Vector
ACOS 3 Arc Cosine

ARCCOS 3(AC0S) Arc Cosine

ARCSIN 5(ASIN) Arc Sine

ASTN 5 Arc Sine

AXC L6 Address to Index Complemented

AXT L6 Address to Index True

BDDV 5 Backwards Double Precision Divide
BDSU 8 Backwards Double Precision Subtract
BHIZ L1 Branch if High-order Zero

BMN L1 Branch if Minus

BOF 51(BOFF) Transfer if Bit Is Off

BOFCLR 50 Clear Bit and Transfer if Bit Was Off
BOFF 51 Transfer if Bit Is Off

BOFINV 51 Invert Bit and Transfer if Bit Was Off
BOFSET 51 Set Bit and Transfer if Bit Was Off
BON 52 Transfer if Bit Is On |

BONCIR 52 Cleazr Bit and Transfer if Bit Was On
BONINV 52 Invert Bit and Transfer if Bit Was On
BONSET 53 Set Bit and Transfer if Bit Was On
BOV L1 Branch on Overflow

BOVB L1 Branch on Overflow to Basic

BPL L2 Branch if Positive

BVSU 15 Backwards Vector Subtract

BZE L2 Branch if Zero

CALL L2 Transfer with Return Address

CAIRB 42(CALL) Transfer with Return Address, Return in Basic
OEATL; L3 - Computed CALL ‘
CCLRB L43(CCALL) Computed CALL, Return in Basic

CGOTO - L3 Computed GOTO

CLEAR 53 Clear Bit

CIR 53(CLEAR) Clear Bit

D-5

Symbol Page VIB-
CIRGO 53

COS 8
COSINE 8(cos)
DAD 9
DCOMP 3

DDV 9
DLOAD 35

DMP 9
DMFR 10

DOT 16

D3Q 10

DSU 11
EXIT Ly
GOTO Ll
INCR L6

v 54(INVERT)
INVERT 5l
INVGO 54

ITA 35
ITCQ 45(RVQ)
IXA L7

IXC L7

MXV 17
NORM 26
PDDL 35
PDVL 36
PUSH 397
ROUND 11

RTB L5

RVQ L5

SET 51
SETGO 51
SETPD 38
SIGN 11

SIN 12
SINE 12(SIN)

Function

Clear Bit and Transfer

Cosine

Cosine

Double Precision Add

Double Precision Complement
Double Precision Divide

Double Precision Load

Double Precision Multiply

Double Precision Multiply and Round
Dot Product of Vectors

Double Precision Square Operation
Double Precision Subtract

Exit from Interpreter

Transfer Control

Increment Index by Address
Invert Bit

Invert Bit

Invert Bit and Transfer

Interpretive Transfer Address to Storage
Interpretive Transfer Control via QFRET
Load Index from Address

Load Index from Complement of Address
Matrix Times Vector

Normalize

Store in Push—down List and Double Precision
Load

Store in Push-down List and Vector Load
Store in Push-down List
Round to Double Precision
Return to Basic

Return Via 'QFRET

Set Bit

Set Bit and Transfer

Set Push—down List Address
Sign Function

Sine

Sine

D-6

Symbol Page VIB- Function

SL 27 Scalar Shift ILeft

SL1-3S1L 27 Short Scalar Shift left

SLC 26(NORM) Shift Left and Count

SLOAD 38 Single Precision Load

SIR 28 Scalar Shift Left and Round
SL1R-SLLR 29 Short Scalar Shift Left and Round
SQRT 12 Square Root Function

SR 29 Scalar Shift Right

SR1-SR4 30 Short Scalar Shift Right

SRR 30 " Scalar Shift Right and Round
SRIR-SRLR 31 Short Scalar Shift Right and Round
SSP 38 Store Single Precision Constant
STADR 38 Cause Push-up on Store Address
STCALL 39 Store and do & CALL Instruction
STODL 39 Store and do a DLOAD Instruction
STORE 39 Store in Address

STOVL 39 Store and do a VLOAD Instruction
STQ 35(ITA) Store QPRET

SXA L7 Store Index in Address

TAD : 14 Triple Precision Add

TTX L8 Transfer on Index

TLOAD L0 Triple Precision Load

UNIT 18 Form a Unit Vector

VAD 19 Vector Add

VCOMFP 19 Vector Complement

VDEF 19 Vector Define

VLOAD 40 Vector Lead

VPROJ 20 Vector Projection on New Vector
V5L 31 Vector Shift Left

VSL1-VSL8 32 Short Vector Shift Left

VsQ 20 Vector Square Operation

VSR 33 Vector Shift Right

VSR1-VSR8 33 Short Vector Shift Right

Vsu ' 23 Vector Subtract

VXM 21 Vector Times Matrix

VZSC 22 Vector Times Scalar

D-7

Svmbol Page VIB- Function

VXV 23 Vector Cross Product

v/SC 2L Vector Divided by Scalar

XAD L8 : Add to Index from Address

XCHX L9 Exchange Contents of Index and Address
X5U 49 Subtract Address from Index

An asterisk after an operation (e.g. DLOAD*) means that index register
selection information is to be obtained from the address specification.
For an index-affecting operation, the two index registers are indicated

with the operation symbol itself, such as: AXC,l1 and AXC,2.

D-8

Alphabetical Listing of Registers,
Program Steps, and Storage
References

This 1list includes only those symbols which serve a significant function
in the program control logic or which are assigned to hardware-

oriented registers and cells. Most of the program-step tags used solely
within a particular routine have been omitted, as have various cell tags
whose function is self-explanatory from the method in which they are
used (such as TS, BUFF, etc.).

Symbol See Page Function

34D,35D VIiD-2 Relative addresses with respect to FIXIOC,
containing LVSQUARE (square of vector after
ABVAL and UNIT operations)

36D,37D VIiD-2 Relative addresses with respect to FIXIOC,
containing LV (length of vector after UNIT)

ZPHSCHNG VIIC-13 Routine to change 2 phase table entries for
restarts

15ADRERS VIC-5 Load EBANK and POLISH with erasable address

A IIC-1 Hardware accumulator

ADDRWD VIC-4 S-register portion of interpreter address

ADVAN VIIB-10 Looping point in dummy job routine

ATARM VIID-1 Routine entered if software encounters a
non-severe problem

ATARMI VIID-1 Entrance to "ALARM" to retain triggering data

ALTM IID-14 Computer output shift register for altitude
and altitude rate meter

ARUPT ITD-1 Used to save A after a program interrupt

BATLOUT VIID-1 Software restort for recoverable problem

BAILOUT1 VIID-1 Entrance to "BAILOUT" to retain triggering data

BANKAIRM 1ID-14 BBANK of alarm source

BANKCALL VIID-1 Permit two-way communication in (A, L)
between routines in different banks

BANKJUMP VIID-2 One—-way transfer of program control to a
step in a different bank

BANKRUPT IID-2 Used to save BBANK after a program interrupt

BANKSET VIIB-13 Cell for storage of BBANK information

BBANK - I1IC-2 Both banks, i.e. FBANK and EBANK, information

BMAGX,Y,Z IID-7 Body-mounted attitude gyro input cells

BRUPT 1ID-2 Used to save B-register after a program interrupt

T
0

Svmbol See Page
CADRTAB VIIC-5
CCSHOLE VIID-2
CDUS 1ID-6
CDUT 1ID-5,6
CDUiCMD 1ID-11,12
4 &= 5

CDUX,Y,Z IID-5
CDUiCMD 1ID-10
i =330

CHAN5 ITE-
CHANG IIE-4
CHAN12 ITE-9
CHAN13 ITE-13.
CHAN1 IIE-16
CHAN30 IIE-19
CHAN31 IIE-23
CHAN32 ITE-26
CHAN33 IIE-28
CHANGL VIIB-7
CHANG?2 VIIB-7
CHANJOB VIIB-7
CHECKMM VIID-2
CURTAINS VIID-2
CYL IID-3
CYR IID-2
DANZIG VIC=2
DELAYJOB VIID-2
DIRADRES VIC-4
DMPNSUB VIID-2
DNTM1,2 IIE-32
DOSTORE VIC-6
DOWNFLAG VIID-3
DOWNRUPT — ITH-6
DP VIA-4
DPAGREE VIID-3

Shaft CDU input
Trunnion CDU input

Shaft and trunnion CDU command

MU CDU angle information

Driving information for CDU D to A converter
(MU CDU's)

Channel 05

Channel 06

Charmel 12

Channel 13

Channel 14

Channel 30

Channel 31

Channel 32

Channel 33

Cause a higher priority job to be started

Same as "CHANG1", entered only from "DANZIG"
Complete function of changing job

Check for equality with MODREG (program register)
Routine entered if serious hardware difficulty
Cycle left register

Cycle right register

Standard return from most interpretive orders

Wait for time interval given by A, then start
performing job computations again

Determine address information for non-indexed
Indexable Operation in interpreter

Multiply'MPACdp and A, and shift result
Channels 34 and 35, used for telemetry
Process interpreter storage commands

Set flagworﬁ bit to zero ‘

Computations when telemetry interrupt received

Setting of MODE if double precision computations
being performed (is +0)

Force sign agreement of MPACdp

Symbol See Page
DSAIMOUT IIE-4
DUMMYJOR VIIB-10
EBANK 11C-1
EDOP 11D-3
EJSCAN - ¥VIIB-10
EMSD 11D-13
ENDOFJOB VIIB-9
F EXT ITE-4
FBANK IIC-2
FINDVAC VIIB-5
FIXDELAY VIIA-4
FIXI.0C VID-1
GEADDR VIC-5
GENTRAN VIID-3
GOPROG ITH-7
GYROCMD I1D-10
HAND ITH-7
CONTROL RUPT
HISCALAR ITE-3
IBNKCALL VIID-3
TNDEX VIC-4
INDJUMP VIC-8
INLINK I1D-8
INTBT15 VIC-2
INTFRET Vic-2
ISWCALL VIiID-3
ISWRETRN VIID-3
ITSAVAR VIIC-17
ITSLGCL1" VIIC-16
JOBSLEEP VIIB-8

Function

Channel 11
Idling routine in executive system
Erasable memory bank register

Fdit operand register, shifts bits 14-8 +to
bits 7-1

Scan for highest priority job
Cell assigned for entry monitoring purposes

Terminate computations associated with a job
and release associated memory cells

Charmel 07 (same as SUPERBNK)
Fixed memory bank register
Establish a new job with a VAC area

Delay a waitlist task a certain amount of time,
then return to computations

Starting point for relative addresses in VAC
area

Determine propsr cell settings for erasable
memory reference by Indexable Operation

Move set oi cells from one location to another
Perform computations associated with restart
Cell containing number of gyro torquing pulses

Initiate computations associated with hand-
contreoller interrupt

Channel 03

Interrupt analog of "BANKCALL"

Determine effect on address of index register
Transfer to Indexable Operation

Input to computer from uplink receiver

Cell used to distinguish between low and high
fixed memory banks in interpreter

Starting address for interpreter
Interrupt analog of "SWCALL"

. BExit after "IBNKCALL'" or "ISWCALL"

Restart computations if information in erasable
memoxry

Restart computations if "LONGCALL" restart

Put job "to sleep" (inactive)

D-11

Symbol See Page
JOBWAKE, VITR-8
KEYRUPT1,2 IIH-5
KILLTASK VITA-7
L 1IC-1
LCHAN IIE-3
LEMONM I1D-13
LOADTIME VI1iD-3
LOC VIIB-13
LOCALARM ITD-1),
LOCCTR VIIB-6
LONGBASE VIIC-6
LONGCADR VIIA-5
LONGCALL VIIA-S
LONGTIME VIIA-5
LOSCAIAR ITE-3
IRUPT I1D-1
LST1 VITA-9
LST2 VIIA-9
LV VID-2
LVSQUARE VIiDh-2
MAKECADR VIID-4
+MAY, -MAX Var.
MISCJUMP VIic-8
MNEEY IN I@E—lB
MODE VIIB-13
MPAC VIIB-12
NAVEEY TN ITE-18
NEWJOB I1ID-15
NEWOPS vIit-2

Computations performed when DSKY, optics. or IM
b - <] I 3
ROD (rate of descent) contrel inputs received

Remove task from waitlist queue

L-register (has least significant half of

‘double precision number)

L-register information when used as chammel 01
Cell assigned for IM monitoring purposes
Lozd MPACd with computer clock (TIME2,TIMEL)

Cell for keeping track of addresses in
interpreter

I0C value fer alarm source

Cell containing indexing information for location
of Job Register Set when a job established or
awakened

Time origin of information for restarting
"LONGCALL!

Starting address of task in "LONGCALL"

Routine permitting use of waitlist system (for
one task at a time) for a large time value

Time argument for "LONGCALL"

Channel 04

Used to save L after a program interrupt
List of times in waitlist system

List of task starting addresses in waitlist
system

Vector length (cf. 36D,37D)
Square of vector length (cf. 34D,35D)
Form an address in CADR format

Maximum values that can be accommodated by
computer register

Transfer to Miscellaneous Operation
Channel 15

Information on character of computations being
performed (cf. DP, TP, and VG)

Multi-purpose accumulator
Channel 16

Cell set to LOCCTR if current job not the one
of highest priority

Obtain new interpreter operation

|

Symbol See Page
NEWPHASE VIIC-13
NOQBRSM VIIA-7
NOQRSM VIIA-7
NORMUNIT VIID-4
NORMUNX1 VIID-4
NOVAC VIIB-6
NOVAC2 VIIB-6
ONEORTWO VIIC-14
OPJUMP VIiC-3
OPJUMP2,3 VIC-3
0oUTO ITE-L
OUTLINK I1TD-14
OVFIND VIA-10
P-RHCCTR 1ID-7
PHASCHNG VIIC-13
PHASEiL VIIC-3
i=1-6

PHSCHNGA VIIC-13
PHSNAMEI ~ VIIC-5.
i=1-6

PHSPRDTA VIIC-5
i=1-6

PIPAX,Y,Z IID-6
POLISH VIC-3
POLY VIID-4
POODO0 VIID-4
POODOOL VIID-4
POSTJUMP VIID-4
POWRSERS VIID-5
PRDTTAB VIIC-5
PRIOCHNG VIIB-9
PRIORITY ViIB-13
PUSHLOC VIIB-13

Function

Update restart phase table information
Resurne computations after a program interrupt

Restore BBANK and resume computations after
a program interrupt

Form unit vector after shifting left 13 if
all components small

Entrance to "NORMUNIT" leaving shift amount in X1
Establish a new job without a VAC area

Computations common to "FINDVAC'" and "NOVAC"
Check nature of variable-type phase update

Branch to proper computations determined by
prefix of interpretive order

Continue "OPJUMP" checks

Channel 10

Erasable memory shifting-type cell

Overflow indicator for interpreter

Yaw rotational hand controller analog input (IM)
Update phase table information

Restart phase table selection information

Entrance to "PHASCHNG" with argument in A

Starting addresses stored in erasable memory
for variable-type restarts

Priority/ﬁelay'time stored in erasable memory
for variable-type restarts

Accelerometer inputs

Cell loaded for Miscellaneous Operations with
address information (subsequently modified in
some cases). Method of writing interpretive
language information is '"Polish notation'.

Routine to e-raluate a polynomial

Software restart for problem not expected to be
recoverable

Entrance to '"POODOO" to retain triggering data

Transfer to a step in a different bank (retaining
(A, L))

Routine to evaluate a polynomial (different
calling sequence than "POLY")

Entry of priority/delay time for restart table
Change priority of current job
Cell containing priority information on job

Address where next word to be stored in push-
down 1list
D-13

Symbol See Parge Function

PUSHUP VIC-5 Routine to withdraw information from push-
down list

PYJETS ITE-, Channel 05

Q IIC-1 Return address (Q-register) information for TC
machine language order

Q-RHCCTR IID-7 Pitch rotational hand controller analog
input (IM)

QCHAN ITE-3 Q-register information when used as channel 02

QPRET VIiD-2 Return address information in interpreter

QRUPT ITD-1 Used to save Q after a program interrupt

R-RHCCTR IID-7 Roll rotational hand controller analog input (IM)

RADAR RUPT IIH-7 Computations when radar input buffer has been
filled

RESTARTS VIIC-15 Computations performed for each active group
when a restart takes place

RESUME VITA-7 Restore Q and BBANK, then resume computations
after a program interrupt

RNRAD 11D-9 Radar input data buffer

ROLLJETS ITIE-4 Channel 06

g1, 82 VID-2 Step registers (used with interpreter TIX)

53, S4 I1T1B-2 Superbank settings

SAMPTIME IID-1 Sampled value of computer clock

SETLCC VIIB-7 Check for whether NEWJOB must be set

SGNAGREE VIID-5 RTB order to force MPAth sign agreement

SHORTMP VIID-5 Multiply MPACt and A

SIGNMPAC VIID-5 Set MPACdp to = MAX depending on MPACH+O sign

SPCOS VIID-5 Single precision cosine routine

SPECTEST VIIB-7 Special computations if no active jobs are
running and one becomes activated

SPSIN VIID-5 Single precision sine routine

SPVAC VIIB-6 Special entrance to "FINDVAC" with priority

information already loaded (into NEWFRIO) and
job starting address in (4, L)

SR IID-3 Shift right register

STORE * VIC-7 Store information in erasable memory

SUPDACAL VIID-6 Obtain data from another bank, including switch
of SUPEREBNK

SUPDXCHZ VIID-6 ; Transfer to address in (A, L) including setting
of SUPERBNK (format as for 2CADR)

SUPERBNK I1E-4 Channel 07

SUPFRSW VIID-6 Routine to load bits 7-5 of A into charmnel o7

D-14

Symbol See Page
SVCT3 Vita-6
SWCALL VIID-6
SWRETURN VIID-6
T3RUPT VIIA-6
TiRUPT ITH-5
b = §ySyb
TASKOVER VIIA-7
TBASEi VIIC-6
i=1-6

THRUST 1ID-13
TIMEL IID-4
TIMEZ2 IID-4
TIME3,4 I1D-4
TIMES,6 ITD-5
TIMETEST VIIC-17
TP VIA-4
TPAGREE VIID-6
TPMODE VIID-6
TVCPITCH IID-12
TVCYAW IID-12
TWIDDLE VITA-3
UNAJUMP VIC-9
UPFLAG VIID-6
UPRUPT IIH-6
USPRCADR VIC-9
VACIUSE VID-1
I=1-5 |
VARDELAY VIIA-L
Ve - VIA-L

Function

Dummy task, serving primarily for waitlist
control purposes

Perform routine in another bank (CADR given
in A), and then return

Return from "BANKCALL" or "SWCALLM

Computations when TIME3 program interrupt
processed '

Computations when TIMEL, TIME5, and TIME6
program interrupts processed

Terminate a waitlist task

Time origin information for restarting wait-
list tasks

Cell containing number of pulses to be sent to
change throttle setting of descent engine(IM)

Least significant half of computer clock
Most significant half of computer clock
Cells controlling T3RUPT and TLRUPT
Cells controlling T5RUPT and T6RUPT

Check for nature of time information for a
waitlist restart

Setting of MODE if triple precision computations
are being performed (is +1)

tp
Set interpreter MODE cell for triple precision

Force sign agreement of MPAC

SPS pitch control ("steering')

SPS yaw control ("steering')

Waitlist entry for task in same BBANK
Transfer to Unary Operation

Set flagword bit to one

Computations when uplink interrupt received

Routine to permit use of interpreter subroutines
in variable-fixed memory

Control cell indicating, if zero, that the
associated VAC area is assigned

Delay a waitlist task the amount of time in A,
then return to computations

Setting of MODE if vector computations are
being performed (is -1)

Symbol See Page
WAITLIST VIIA-3
X1, X2 Vib-2

Z 1I1C-2
ZRUPT I1ID-2

Function

Entrance to waitlist system to place a task in
queue for execution after a specified time
has elapsed

Subtractive index registers for interpretive
language

Z-register (program counter)

Saves value of Z (is loaded and restored by
hardware means) when program interrupt occurs

Alphabetical Listing of Terms

This list includes those terms which have a special definition in the

previous sections of this document.

Most computer-oriented terms have

been defined in accordance with a glossary compiled by the U. S.

Bureau of the Budget as an official reference (and reprinted by the

magazine '"Datamation").

Term

Accumilator

Assembler

Bank number
Bank register

CADR

Calling address

CDU

Centi-second
Channel

Checksum

See Page

IIC-1
VIA-T7

1111

ITF-2
1TB2

VC-3

I1D-5

A-15
IIE-1
ITF-5

Comments

In machine language, register used to
hold the result of most arithmetic
operations. In the interpretive
language, is set of 7 erasable
memory cells (MPAC) performing an
analogous function.

A general-purpose computer program
("assembly program") which produces
memory information for a computer
from symbolic inputs.

There are separate ones for fixed
and erasable memory.

Term meaning "complete address',
used for information expressed
in this format.

Address of cell causing transfer to
a "called" program: return generally
would be to the step after this
address.

Coupling Data Unit, consisting of
an analog-to-digital side and a
digital-to-analog side. Used

in association with IMU gimbal
angle determination (and other
functions).

0.01 second.

Sum (formed in a special way) of the
contents of a fixed memory bank.

Term

COLOSSUS

COMANCHE

DSKY
Dummy job

Dummy task

Error counter
Executive system
Extended order
Field

Fixed-fixed memory

GAP

Hardware restart

MU

Index register

Indexable Operation

Interpreter

I-1

ITJ-1
VIIB-5

VIIA-6

1ID-10
VIIB-1
IVA-1
11112
IIB-2

TIT-4

ITH-9

11D-5
VIA-5

VIA-6
VIA-2

See Page

Comments

Generic identification of manned CSM
earth orbital and lunar capability
program. Numerical values for first
two flights were assembly revision
mumbers; subseguently, the numerical
value indicates a major revision, and
the letter (if any) a baseline update
(although not necessarily a flight
program)., Same first letter as "CSM".

Code name for programs of the "COLOSSUS 2x"
series, with subsequent serial giving the
unique assembly revision number,

Routine performed if no jobs need
be done.

Task performed every 81.93 sec.,
primarily for waitlist control.

An assigned area on a card.

Special term used to refer to that
portion of fixed memory which can
be uniquely addressed by S-register
alone, regardless of FBANK value.

 General Assembly Program,

Causes program to go back to a
certain planned point (based on
information in restart tables), due
to various hardware-discovered
problems (some can be induced by
the software).

Inertial Measurement Unit.

Cell containing a quantity which may
be used to modify addresses: there
are two associated with the inter-
pretive language, stored in VAC
area. oShould not be confused with
the machine language INDEX order,
although net effect is similar.

A routine which, as the computation
progresses, translates operation
and address parameter information
into machine language orders and
executes these orders.

Term

Interpretive language

Interrupt

Jask

Job

Job Register Set
Left justified

IM-1

Location counter

Log section
LUMINARY

Machine language

MCT

Miscellaneous Operation
Ones Complement
Overflow

Parameter

See Page

VIA-1

ITH-1

VIi-2

VIIB-1

VIIB-12
ITI-5

ITI-8

I1I-4
- I-1

IVA-1

ITA-3

VIA-2

D-19

Comments

The notation used for operations
and addresses that can be under-
stood by the interpreter.

Temporarily disrupt normal computa-
tions because of a special signal
(computer has both counter and
program interrupts).

"A job to other tasks and a task
to other jobs'".

Any computation being performed
under jurisdication of the executive
system. If the computer is not
performing a task/jask or the

dummy job, it is performing a job
(by definition).

Arranged so that the left-most
digit (whether O or not) is in a
standard column.

First (unmanned) Lunar Module flight.

Assembler counter used to determine
assignment of binary memory infor-
mation to absolute machine addresses.

Generic identification of manned IM
earth orbital and lunar capability
program (see COLOSSUS). Also used

as the code name for the "LUMINARY 1x"
series, with subsequent serial giving
the unique assembly revision number.
Same first letter as "IM".

A language which, after processing
by the assembler, can be performed
directly by the hardware, as
contrasted with "Interpretive
language!'.

Memory Cycle Time, the quantum of
execution time for a machine language
order. One MCT is 11.71875 microsec.,
the time for 12 pulses at a prf of
1.024 mc. '

Quantity processed by interpreter
to produce an instruction or an
address.

Perity

PIPA

Precision

Prefix
Priority
Pseudo-Operation

Push—-down list

Regular order

Relative address

Restart tables

Revolution
Ropes

5., 5,

S-register
Scale factor

Software restart

See Page -

ITA-3

IID-6

VIIB-2
VA-1

VID-3

IVA-1
VID-1

VIIC-5

A-11
ITF-2
T1G-2

I1B-2
A-11
ITH-9

Comments

A check bit indicating (for the "odd
parity" system used) that the total
number of binary ones, including
itself, should be odd.

Pulsed Integrating Pendulous
Accelerometer.

The degree of exactness with which
a quantity is stated. Single
precision means that the basic
computer word size is used; double
precision means two such words;
triple precision means three such
words. Computer word length is

14 magnitude bits (plus a sign bit).

A symbolic operation which is not
one of the standardized machine
language codes, or not part of the
hardware design, but which can be
suitably analyzed by the assembler.

IList in which the last item that is
inserted is first item withdrawn.

An address to which a base address
must be added to find the machine
address.

Tables containing job and task
information used if a restart is
encountered.

360 degrees.

Accumulator sign bits. Should not
be confused with S1 and S2, which
are interpretive language index
stepping cells.

Causes program to go back to a
certain planned point (based on
information in restart tables), due
to various software-discovered
problems (if recoverable, is a
BATLOUT type, if not, a POODOO type).

D-20

Term

Subroutine

Superbank

Switched erasable

3

Task

True address

Twos complement
Unary Operation

Unswitched erasable

VAC area

Variable-fixed memory

Waitlist system
YUL System

I1B-2
IIB=2

I11-8

TIH-4

IIB-3

VIA-T7
I1B-2

VID-1

IIB-2

VIIA-1

D-21

Comments

Program segments read by SUBRO
assembler control cards, and iden-
tified in this document by the
capitalized first letter.

Special term used to refer to portion
of erasable memory which must use
EBANK to help determine cell reference.

Symbolic identification for a cell
location (so it can be referenced
by other steps).

Computations performed in the
"interrupt mode" when a program
interrupt is being acted upon
(distinguished from a "Job").

Address determined from combination
of S-register and appropriate bank
register.

Special term used to refer to
portion of erasable memory which
can be uniquely addressed by S-
register, regardless of EBANK.

One of five working areas which can
be assigned to a job.

Special term used to refer to
portion of fixed memory which must
use FBANK (and perhaps SUPERBNK) to
help determine cell reference.

G&N contractor software package for
general-purpose computer to aid in
preparation of programs for guidance
computer (comprised of assembler and
other programs). So named because

of development schedule of an early
computer (December 1959). The ass-
embly program in Section III is called
"GAP", and superseded YUL.

