
SATURN H!STQ!?Y DOCVMEN~
university OF Aiabcrna Rprcarch I n s ~ i ~ u ~
History of Science & Techno/ogy Group

Pi- ?** - , <---

h e --a=------ Doc. No. ---em---

IBM NO. : 66- 82 5- 1992

DESIGN AND USE O F FAULT SIMULATION
FOR SATURN COMPUTER DESIGN

F. Hardie
R. Suhocki

Fedel-rrl S \ ~ s t c ~ ~ s Di!>isiou, I:'lt.cli,o~rrc~s S\, u t c ~ ~ r l c Ce~rtcl-,
Ow ego, Se ru 1.0 J. k

CONTENTS

PART I . SIMULATOR

. INTRODUCTION 1

. THEPROGRAMSYSTEM 1

. Data Collection 2
Logic Selection . 2

. Fault Injection 3
Intermittent Fault Analysis . 4

. Logic Compilation 5
. Sin~ulation 7

Race Monitoring Feature . 8
Saturn Program Execution Trace . 9
Functional Menlory Du~nps . 9
Executive Program Summary . 9

. Simulator Output 9
. Program System Modularity 11

S in~ula tor Running Tirne . 12

PART II . SIMULATION

. INTRODUCTION 13

SIMPLEX SIMULATION . 13

Design Verification . 14
. Test P rog ram Evaluation 14

Tes t Point Catalog Generation . 15

REDUNDANTSIMULATION . 15

Detection System Evaluation . 15
Disagreement Detector Placement . 16
Voter Placement . 20
Intermittent Fai lure Analysis . 20

ACKNOWLEDGEMENTS . 21

REFERENCES . 22

DESIGN AND USE O F FAULT SIMULATION FOR SATURN COMPUTER DESIGN

F. Hardie
R. Suhocki

International Business Machines Corporation
Federal Systems Division

Electronics Systems Center
Owego, New York

PART I - SIMULATOR

Introduction

The Saturn Fault Simulator i s a system of a A compiled simulator rather than an in-
programs to be executed on an IBM 7090 computer. terpretive type was chosen. This com-
The objectives of this simulator were: piled simulator i s conlpletcly contained

in core storage
Verify the logic design of the Saturn
computer a A technique called "Parallel E r ro r Simu-

lation" allowed s i mu1t:lneous nor lnal
Analyze the effects of solid plus inter- plus 33 fault simulations at no decrease
mittent faults in speed

a Evaluate the effectiveness of the Saturn
Diagnostic programs through fault simu-
lation

a valuate changes in design before com-
mitment to hardware.

The significant characteristics of this simu-
lator a re :

a Full Central Processing Unit simulation
while containing in one 32K memory the
complete compiled logic simulator and a
simulated Saturn memory module plus
interface data

Fault simulation capability, including
single o r multiple, solid o r intermittent
faults

a Approximately 2,000 Saturn clock times
a r e simulated per minute

a User-specified output options plus an out-
put editing program which controls the
mass of simulation output

Solid Logic Design Automation system
used to define the logic t o the simulator.
Simulation i s carr ied out at the basic
AND-OR-INVERT level rather than at a
functional level.

To achieve a practical Simulation speed, the
following was accomplished:

a A technique called "Stimulus Bypassing"
was developed. Essentially, this means
that groups of compiled 7090 instructions
will not be executed if specific conditions
exist

Program system nlodularity was estab-
lished to allow the flexibility of using only
the routines which a r e necessary in a
given run.

The system allows the user to specify up to
100 source nets or test points which will be moni-
tored during simulation. The binary values for
these points will be printed out according to n
variety of options.

This paper consists of two parts. Par t I de-
scribes the programs, while Part I1 describes
the application of the simulator. The paper de-
scr ibes the programs in the same order that they
would normally be executed, a s shown in Figure 1.

The Program System

The following features of the s y s t e n ~ will be
described:

a Data Collection (SLDA)

a Logic Selection

Fault Injection

a Intermittent Fault Analysis

Logic Conlp~lat ion

S~nlula t ion

Race Mon~tor ing Feature

Saturn P r o g r a m Execut~on T r a c e

Functional Menlory Dumps

Executive Prograril Summary

Simulator Output

Prograni System Modularity

Whilc) this paper does not intend t o delve into a
det l~i led desc:ription of SLDA, t h e general flow, a s
i t per ta ins t o the Saturn Fault Simulator, i s d is-
cussed.

The logic i s f i r s t nianually drawn on SLDA
sketch s h t e t s . Keypunch operators then convert
the sketch she?)t inforniation into SLDA punched
cards . Using these ca rds , SLDA produces a Logic
Master Tape (LMT) which now scrv's a s the basic
s o u r r e of logic input to thc Saturn Fault Siniulator.
SLDA :11so produces dr;i\vlngs callcd Automated
Logic. Diagrams (ALD) which portray the logic a s
it is defined on the LMT. Figure 2 shows the data
collectioil systeni.

Sinlulator Running Time.

,
SELECT 'ORDER
PROGRAM

1
COMPILER PROGRAM
NORMAL AND.'OR

SIMULATION
RESULTS
EDITOR PROGRAM

RESULTS w
Figure 1. General Flow of the Saturn

Fault Simulator

Data Collection. The SLDA systenl i s used to
r e c o r d the logical design of the Saturn computer.

A
S Y S T E M A h 3
LOGIC DESIGN .
GROiP

1 I

C I

EDIT UPDATE -
PRlhT

Figure 2. Ilnta Collection System

Logic Selection. The "Select" p rogram i s that - - .- -
par t of the simulation systenl which in ter laces w i t h
SLDA. "Select" has the capabilitv to read the
LMT, extract use r specified logic. blocks f rom it ,
and p repare these blorks lor 1og;ic compilation.
A kcy problem in logic simulation i s attacked by
our Select procedure: i. c . , the logic must be
simulated in the s a m e fashion, o r o rde r , that the
actual information i s propajiated in the Saturn
computer. If this logical o r d e r ~ n g i s not achieved
the sinlulator would have to loop, o r repeatedly
sinlulate the logic while holding t ime constant,
until co r rec t propagation has occurred. "Looping"
the complete Saturn computer logic would ~ r e a t l y
increase the IBM 7090 Conlputer running tinle,
which inc reases the cost of using the simulator.
To attack this problem the logic i s "selected" from
the LMT in a specific sequence. U1oc:k functions

a r e selected In the sanie order that they would
perform thelr functlons In the computer. At pre-
sent, thls a man-niachlne procedure. The cor-
rect order for the loglc block functlons IS nlanuallv
determined and speclfled to the Select program,
whlch then performs the deslred loglc selectlon
and loglc ordering. The general order of loglc
selectlon for the Saturn computer IS:

Timing logic

Combinational logic (AND, OR, INVERT)

Sequential logic (latches, tratches, etc.)

The end result of the Select procedure is a tape
which contams all of the loglcal data necessary
for a properly ordered, compiled simulator.

Fault Injection. One reason for the success
of any computer logic fault simulator i s the ease
with which faults may be specified by the user .
A fault nlay be thought of as the transforntation
of one logical function into another. A fault could
be considered to be a termlnal node of a logic
block stuck at "logical one" or "logical zero". If
the user were forced to re-deflne the logic to
slniulate a fault condltlon, he could be reluctant
to make extensive use of a fault simulator. Con-
sider a coniplex Doolean functlon loglc descrlp-
tlon. T11c slnlulat~on of a fault would reclulrc that
the Boolean equat~ons 5e studled and changed to
reflect the deslred fault condltlon. In contrast.
the approach taken In the Saturn Fault S ~ ~ n u l a t o r
1s to malntaln a constant, hxed logic descrlptlotl
(the LMT) Faults a r e then speclfled by the user
In a very slniple manner. He nierely s p e c ~ f ~ e s :

The ALD page upon which the iallrd
tcrmlnal i s shown

The logic block ser ial number of the
lailcd ter mlnnl

The line to or from tlie logic block whlch
represents the failed terminal

The logical type of fault (0 or 1).

Fikgre 3 portrays a typical ALD logic block and
the deslred fault situation.

The characteristics of this method of fault
sin~ulation can be summed up as follows:

The fault injection procedure i s separated
from the logic description part of the
system. A conlplex logic description
does not have to be redefined by the user.

Figure 3. F~iult Injection Esantl~le

F'iult itijec\ivti is scparatrd frotn tlie
logic contpllrr prugratn. Tlius the s:imc
simulator can be used for eitltci- normal
design analysis or fault siniulnt~on ex-
pcrimeiits.

Thc faults to be s~niulatc'ct can I)<. the
terniinals of any logic. I~lock on all ALI),
stuck to either logical onc or logical
zero.

Internlittent f:iult ana ly s~s i s 1)crformccl
at simulntor csecution time. Sinw tht,
internlittent tault can I)c considered to I)e
:t special case of a solid fault, intermit-
tent fault specification is t h c s:lntt as
solid f:\ult spt~clflcation :is far r ts the
user 1s concrrned.

Slngle faults or nlultlple faults can t)e
simulated. Up to 33 slngle faults or 33
qroups of ntulti1)le faults (up to 25 f'lults
per group), ~) l u s the normal niachtne,
can be slmu1;tted at one ttnie In the IUhl
7090 Computer, with no Increase In run-
nlng t ~ r n c over the single-fault sirnul,l-
tlon case. This 1s pos s~b le bccause ol
techmque used in the programs callrd
Parallel E r ro r Sln~ulatlun. - - - --

In paralled e r r o r sinlulation, each bit posi-
tion in the 36-bit 7090 computer word can be used
to contain the binary value of a specified fault o r
a specified group of multiple faults. In actual
practice, the Saturn design dictated that three kts
be reserved for the normal (unfailed) machine
and the remaining 33 bits used for fault sinlulation
The mechanics of p,arallel sinlulation can be il-
lustrated by an example of single-fault simulation.

Consider a three-input AND logic block. It
i s desired to "fail" the first input to "1". It i s
also desired to "fail" the second input to "I", yet
keep these faults independent from each other.
They a r e single faults in this example, not mul-
tiple faults. The 7090 FAP (FORTRANAssenibler
Program) instructions for this block would be as
follows:

CAL INPUT 1 Pick up first input

ORA MASK 1 "FAIL" it

SLW OUT Save "FAILED" input

CAL INPUT 2 Pick up second input

ORA MASK 2 "FAIL" it

ANA INPUT 3 Perform "AND"function

ANS OUT Perform final "AND"
function

In this example, assume that the three inputs
to the block have the binary values 011, that is:

INPUT 1 (Unfailed) :. 0

INPUT 2 (Unfailed) - 1

INPUT 3 (Unfailed) = 1

Since 36 bits a r e used for each input in our
example, the following bit assignment i s made
(numbering bits 1 through 36):

BITS 1 ,2 ,3 - - - normal machine value

BIT 4 - - - INPUT 1 failed to 1

BIT 5 - - - INPUT 2 failed to 1

Thus, in the example, the following values
exist pr ior to simulation:

INPUT 1 - 000000 - - - 0

INPUT 2 - 111111 - - - 1

INPUT 3 - 111111 - - - 1

MASK 1 - 000010 - - - 0

MASK 2 - CCCC10 --- 0

OUT - XxXX - - - X (Don't care)

If we carry out the sin~ulation of the failed
logic, showing the values of the accumulator and
"OUT", we have:

Compilation -- Accumulator Out -

CAL INPUT 1 ooooo - - - - - - - 0 xxx ---x
ORA MASK 1 00010 - - - - - - - 0 xxx---x
SLW OUT 00010-------0 00010---0
CAL INPUT 2 11111-------I 00010---0
ORA MASK 2 11111-------I 00010---0
ANA INPUT 3 11111-------I 00010---0
ANS OUT 11111-------I 00010---0

Upon esaniinatlon of'the final valuc of loca-
tion "OUT", thi. following conclusions can be
drawn:

The normal machine value, as shown by
bits 1. 2, 3, i s sti l l zero, a s i t should I)e

INPUT 1 failed to "I", results in the final
I)lock value of "l", differing from the
normal m:lchine value. BIT 4 i s a "1"

INPUT 2 falled to "1" does not cause the
failed valuc to dlffer from the normal
value. BIT 5 equals I3IT 1.

Although parallel simulation necessitates a
certain amount of bit manil)ulation in the simulator,
this added work i s far esceeded in value by the
resulting reduction in running time of the IBM
7090 Computer.

The mechanics of multiple-fault simulation a r e
similar to single-fault simulation. The difference
i s that for multiple faults a group of faults i s
forced to affect only one bit position in the com-
puter word rather than a unique bit position for
each fault. The user defines, through control
cards, whether a single o r multiple faults a r e to
be simulated. In any given 7090 Computer run,
several single o r multiple faults may be specified.

Intermittent Fault Analysis. Two different 7.

techniclues were used for intermittent fault simu-
lation. Initially, it was decided to have the user
define the behavior of the intermittent faults.
This technique was followed by a second in which
the user did not define the characteristics, but
merely followed the fault injection procedure

previously discussed. Each of these two tech- HOW scrisltivc i s ttic coml~u te r to specific
niques shal l now be presented. fault conditions'?

In the f i r s t procedure , the u s e r defined the Is the cllcct of a given fault "latclicd up''
following: o r is the t l icc t transient in rinturc'?

The logic I~lock fault te rminal

The t ime for fault injection, which i s de-
fined by the Saturn operation code and
clock t ime

The t ime for fault r e ~ r ~ o v a l (normal iza-
tlon) a l so defined by Saturn operation
code and clock t ime.

During the simulation of the Saturn test pro-
g r a m , the des i r ed faults were e i ther injected o r
removed. This procedure depended upon the
u s e r ' s knowledge about the behavior of an inter-
mittent fault, i t s effect upon the computer, and
i t s detection by the diagnostic progranis . Rather
than having the u s e r determine these fac tors , it
was decided to make the Saturn Fault Sioiulator
provide this information.

In the second procedure, the use r had only to
define the logic block fault te rminals . The tinit.
of injection o r removal was not specii ied ov the
use r .

The slniulator assunled that a specified fault
was "solid" until detected. Drtectlon caused
cer ta in counters in the s imula tor (not hardware)
to be increniented. The s imula tor presented
seve ra l cha rac te r i s t i c s about the intermittent
fault including:

The nurnlx~r of tirnes the fault affected
the logic

The percent of cycle t i m e during which
the logic was affected

The number of t imes the fault a a s de-
tected

0 1 the faults which affect the beliavio~. ol
thc coniputt~r, how many a r e dtxtected bv
the diagnostic, progr;inis ''

tiow long: 111 microsc.c~onds, must an 111-

tc,rtnittent fnult rctnain "soliti" I ~ c f ~ ~ r c ,
being detecstcd I)? ;I given d iagnos t~c 1)ro-
granl'?

Uhdt a r e the p~*ol)al)llities of dt>tt.c'tloti
for a given interlnlttent fault a s we allow
~ t s rfuratioli, o r "l)eriod of solitiity". 1 0
vary "

In su~nnia t lon, u.l!:it is .;an i n t c ~ r n i ~ t t e ~ i t fault, how
does it affc,ct t lie con<)uter, can it l,e detccted and
diagnosed? Itifol.n~ation :il)out t Ire ac.tual in tcr -
mittent fnult sinlulatiun and analvsis can bcx found
in Pa r t I1 of this 1)apt.r.

L o g - .. - -. - - i i t i ~ - ... - - L'1) 1 0 t l i l s point, Data
Collection. 1,oqic. S~l t ' c t i (~11, and Fault I~i j r~ct ion
have been presented. Thest> thrc3c s ~ ~ I) s ~ s t c ~ l ~ i s
supply all oi the logic;11 il~iornl:itlon ~ i c ~ c e ~ ~ a r \ . t o

generate a con~pi lcd logic fault 01- n o r n ~ a l ~ i n i u -
lator. Ttic Coml) l lc~~, ltsrlf c,i)nsist5 o f ,I lliaill
prog,rani 1)lus a s c r i t s (11 suI)routi~ics. t,:~c'h su1)-
routine ~)rogr;initiif.d 10 c .onlp~lr :I sl)cxc,liic< tspe 01
logic block. Different sul)routines i ~ r c .illowed to
exist fur the s a m e type o1 locic block, thus :111o\v-
ing the u s e r to experiment with different l o g l ~ ~ , i l
models. Thr Compiler 11:1s tiit. following cliar:~c-
t e r i s t i c s :

It iriteriacncs urlth :I ~ n a s t c r lojilc input
tape, ;iutoniatically producrd I)y t h t p r c -
cedinq sys tem progranis . Thus. any
changes in the systeni logic. c;\n clulckl\.
and auto~iiatically be incorl)oratcd in thc
conipiled logic sinlulator.

An actual conij)iled s ~ n l u l a t o r 1s produced.
The percent of occurrences which were consisting of 7090 FAP instructions readv
detected for execution. Efficient use of 7090 FtZP

instructions plus data r e su l t s in l e s s c(j11i-
The t imes of detection (in niicroseconds) puter cost at s i n ~ u l a t o r csecution ti~nc..

Fault models .ire casilv cotiipiled usiiiq

The interval between detectlons(1n m i c r e
seconds). the subroutine approach.

This type of s ta t i s t ica l approach enabled the Figure 4 sho\vs a siniplifled portion of .I con]-

u s e r to study such problems as :
piler sut)routine flow chart . Note that the (*om-
pi ler approach t&t3n I n the subroutine is vr ry

How many t lmes does a given fault actual- straightforward
ly affect the behavlor of the computer') The simulation of n type of logic. l~ lock c,illcd

Figure 5. "Bypassing" for the 'r~pc'
Figure 4. Por t ion of Conipiler Subroutine Flow "A" Flip- Flop

Char t for Type A F F

the "macro block" was implemented. Basically,
a m a c r o block consis ts of the AND-OR-LNVERT
(A-0-1) logic which makes up a specific function,
such a s a latch. Rather than define the individual
A-0-1 logic blocks on the ALD's, the macro block
i s used. Severa l advantages result f rom the use
of m a c r o blocks, including:

ALD1s which a r e e a s i e r to r ead

r e se t sign:tl i s present , the fl11)-flop 1 ~ 1 1 1 not
change s ta te . If a macro block c : ~ n csh:lngc s t a t e
only at s p e c i f ~ c clock tlnit', it 1s necessary to
simulate the block onlv at that par t icular t ime.
It i s obvious that 7090 Connputer instructions must
be added t o t h e basic conipiled logic s imula tor t o
tes t for these byl)xss t :ondit~ons, It i s not fcoriom-
ically feasible to add these cudes for the individual
A-0-1 logic blocks: but it is feasil)le to do s o for
the macro block. For a s e t - r e s e t fll1)-flop, tlie
bypass r equ i re s th rcc additional FAP operations,

Fewer e r r o r s in the logic definitionphase narilelv:
s ince fewer blocks a r e defined

CAL SET VALUE
F a s t e r simulation speed s ince the macro
block makes possible a simulation tech- ORA RESET VALUE
nique called "Instruction Bypassing"

T Z E BYPASS
Feedback loops within latch co~lfiguration
can be isolated within a macro block.
Figure 4 shows a flip-flop macro block
r.nd i t s in ternal logic.

Instruction bypassing can be defined a s the
skipping of specific computer instructions during
simulation. If the s imula tor can determine that a
logic block cannot possibly change s t a t e during a
simulation pass , then t h e r e i s no need t o execute
the 7090 Computer instructions which s imula te
that par t icular logic block. Consider the flip-
flop shown in Figure 5. If neither a se t nor a

This will resul t i n the byp&sing of 1 2 FAP
operations when neither the se t nor the r e s e t 1s
present . Since most flip-flops a r c inactive a t any
given t ime during the simulation, the by-pass r e -
su l ts in a significant saving in execution t ime.
The normal s e t - r e s e t case just y resen ted i l lu s t r a t e s
the minimum saving. If faults had been specified
for the flip-flop, more instructions would be by-
passed. The Set-Reset flip-flop i s one of the most
s imple sequential models siniulated. The more
complex models resul t in an even g rea te r savlng in
execution t ime due to instruction bypassing.

The final product of the Compiler i s the com-
piled logic simulator. It consists of three major
sections:

b

The compiled FAP instructions

A table reserved for the logic block
values

A master l ist stating which location in
the table of logic block values represents
each logic block output terminal.

A compiled FAP instruction consists of a
7090 Computer operation plus an address. The
address re fe rs to a location in the table of logic
block values. These addresses a r e not converted
to absolute 7090 Computer locations until simu-
lator execution time. Thus, the compiled simu-
lator and the table of logic block values can be
located anywhere in the 7090 Computer core s tor-
age at execution time. This flexibility is note-
worthy since it allows fewer fixed table s izes at
execution time, thus extending the capacity of the
simulator through complete usage of the 7090
Computer's core storage. Since dynamic storage
allocation is used when it i s practical, it i s diffi-
cult to deternline the largest s ize logic network
which can be simulated. A logic network will be
compiled and simulated if it can be contained by
the system in the 7090 Computer core storage.
If the logic exceeded the 32K memory, other tech-
niques would have to be used. Techniques such as
packing/unpacking the compiled simulator, or us-
ing tapes for additional storage, o r a very sophis-
ticated functional-logical approach would have to
be programmed. It i s estimated that execution
time on the 7090 Computer would increase by at
least a factor of 10 if core storage were inade-
quate.

So far , the described programs have accomp-
lished the following:

Mode - either the NORMAL or a FAILED
--
mode will be silnulated

-. Simulation Limit - The user specifics the
maximum number o f Saturn instruction
cycles to be simulated. Termination o f
the simulation will occur either when this
limit i s reached o r when an "END" opera-
tion code i s reached in the Saturn pro-
:ram being simulated.

Output Options - The following; optiuns
a r e available-

- Display the binarv values o f all
specified output terminals at each
interval of Saturn clock time.

- Display thc binary values of all
specified output terminals only when
a terminal. changes v;iluc.

- Display the Saturn computer d ~ s a -
grecment detectors.

Output 'Terminals - The user spcc~fie..; - - - - . . - -- -
up to 100 uutput terminals whlch will bc
displayed. They a r e sgccified I)y their
ALD net names (rage, block and tcrn1in;il
number)

Output Registers - Thcs uscar c;un sl)txcify - . - --- -- - - -
output rcyistcrs as well ;IS ~ndividual outi~u!
terminals, since a register can be thoucht
of a s a collect ion of specific outl)ut tcr-
nlinals. The limitation is that only 100
binary values can be printed 3s sinlulator
output, s o no more than 100 terminals
(total) should 1)e contained in the sl)ccificd
registers. The collection of terminals
which constitute a rc'gister i s dcfincd
once at compilation tinic, rather than
esecution tinic, since this defitiition is
fixed by the desijin.

Converted the designer's logic sketch
sheets into a computerized language - Output Times - - If output ol)tiuns a r c not

specified, t hc user can spr?cify the c.sac.i
Selected the logic to be simulated i.n such Saturn clock times at uh ic t~ he wants tl~cs
a way a s to provide efficient, loop free output terminals displayed. Dlsl)lav ocscurs
simulation

Compiled a model of the logic in the 7090
FAP language, with o r without user
specified faults.

Simulation. To execute the compiled model,
the user must specify several factors to the Ex-
ecutive program. These a r e listed below, but
a r e not discussed in detail: ,

each time a specified clock time i s 1):lssed
in the simulation

Logic Initlalizatioll - The user can initial-
~

ize any logic block output terminal or any
interface line (I 0, control, power, etc.)
by specifyillg the ALD net nanie arid the
desired initial value (logical 1 or 0)

Simulated Saturn Program Flow'- Nor- . - -- -- - -
mally, a fault being simulated i s not

allowed to affect the value of the Memory
Address Register. Thus the program
flow determined by the good, unfailed
logic, i s followed. If the user desires,
a specified fault will be allowed to se t
the value of the Memory Address Register.
This procedure exists because parallel
simulation makes it possible to simulate
many faults in one 7090 Computer execu-
tion, but for one Saturn program and one
program flow. To follow al l possible
program flows for all faults would revert
the simulation procedure back to the one
fault per 7090 Computer run technique.

The Saturn Program - The operational
o r diagnostic program to be loaded into
the simulated Saturn memory 'was coded
by the user in his assembly language.
A memory loader existed in the system,
performing the task of converting the
Saturn operation codes and data into the
proper memory bit patterns and storing
these patterns in the correct simulated
memory loactions. Checking for illegal
Saturn.operation codes was performed.

Certain a reas with the Saturn cornputcr did
not lend themselves easily to logic simulation.
These included the decode and select circuits for
the simulated memory module. For purposes of
fault simulation and central processing unit (CPU)
design verification, it i s necessary to-simulate
the logic up to a well defined memory interface.
The memory address register (MAR)andthe mern-
ory buffer register (MBR) plus the read/write
signals constitute the interface. The binary val-
ues for the interface emanate from the simulated
logic during a write procedure. The executive
program then functionally decodes the MAR and
s tores the contents of the MBR in the addressed
location within the block of 7090 Computer storage
defined to be the "memory" of the Saturn coin-
puter. A Read operation i s the converse in that
the executive program decodes the MARand moves
the binary contents of the addressed location into
the MBR, from which point logic simulation
propagates it through the central processing unit.
Figure 6 il lustrates the memory interface as it
appears to the simulator.

Race Monitoring Feature. A "race" situation
exists in a logic design if one o r more state de-
termining signal a r e of equal "length" and
a r e excited simultaneously. The final circuit
s ta te could be indeterminate, since small deffer-
ences in the path and element delays can change
the actual final value. Since the Saturn computer
design employs disagreement detectors which
monitor circuit states, a false e r r o r indication

Fihare 6. Mcnlory Module Interface

can result from n non-critical race. To reduce
or eliminate circuitry which would cause tticse
race conditions the siniulator was modified 111 thch

(r manner: followin,

At Compiler t l t l~e. a table containing the
ALD net 1larnc.s of the scquenti;~l elenir,nts
in the logic. (Ilip-flop trachcs) was con-
structed

Also i n this table the indices to the locrt-
tions in the I)lock value table for the SET
and RESET output values for each s e -
quential I~lock were savcd. This tahle of
names and indices is passed on to the
Executive program along with the corn-
piled simulator.

The Executive program uses this table for
r ace monitoring in the following manner. After
each simulation pass of the logic, the Executive
program examines the block value locations in -
dexed by each pair of SET-RESET indices. If it
finds that both SET and RESET equal "logical
zero" it produces a diagnostic message tor the
user , stating that: "Flip-flop 0-0 state occurs at
time X , instruction Y , page . A , block - - -. - -.

B , environment N . " where:
-. - - - .. -

X i s the Saturn clock time, such a s "AOlW. "

Y i s the 1oc:ition in simulated Saturn memory
for the Saturn op code t~cing executed, as "23"

A i s the ALD page name on which the flip-
flop can be located, a s "AA201".

B i s the block designation of the flip-flop
as it appears on the previously defined
page, a s "BA".

N i s the fault number, but s ince multiple
faults can be simulated, we p re fe r to
call it the environment nuniber, a s "5".
Thus, the effect of a single fault o r the
effect of a group of faults o r the fault
f r e e normal behavior of the logic could
have caused the r a c e condition.

Note that this 0 - 0 flip-flop condition was
caused by both the SET and the RESET input s ig-
nals coming up to a logical "1" value a t the s a m e
t ime. If only one signal, ei ther the SET o r the
RESET, then r e t u r n s t o a 0 s ta te , the flip-flop
will stablize to a predictable output s ta te , but if
both signals r e tu rn to a "0" s t a t e t h e flip-flop
final s t a t e cannot be computed by the simulator.
Either the t r u e output will be a "I" and the com-
plement output a "Ow, o r vice ve r sa . The s imu-
lator brings this situation to the attention of the
u s e r and he decides if it i s cri t ical . If he decides
that the r a c e situation i s not cr i t ica l , he can sup-
p r e s s the r a c e monitoring for particular flip-flops
by punching the proper execute control ca rds .

Saturn P r o g r a m Execution Trace . The Ex-
ecutive proc;ram decodes the value of the MAR
and pr ints out every t ime a Saturn instruction i s
r ead f rom memory. The Saturn address i s broken
down into th ree subfields; the memory sector ,
the location within the sec to r , and the syllable
within the location. The cause of the instruction
fetch, namely the good machine o r a particular
fault environment i s a lso printed out. Thus, the
u s e r knows the flow path of the executed Saturn
p rogram and whether it was caused by apar t i cu la r
fault o r the normal machine. In most simulation
runs , only the good machine value of the MAR i s
actually used to determine the "next instruction
address", but fault-caused values of the MAR a r e
printed out s ince this i s a form of fault de tec t~on .
Figure 7 i l lus t ra tes a memory t race .

Functional Memory Dumps. In addition to
beingused a s a logic design and evaluation tool,
the s imulator could aid in the debugging of Saturn
operational o r diagnostic programs. It was not
intended that the s imulator be extensively used
for p rogram debugk~ng s ince i t s 7090 compute r
execution t i m e could be much higher than a func-
tional operation code s imulator (a normal differ-
ence between a compiled logic simulator and an
operation code simulator). However, fault con-
ditions will present an environment for the Saturn
p rogram which i s not achievable in most opera-
tion code s imulators . Also, s ince the normal
behavior of a Saturn program i s not checked out

for every possible data conibination, the possibil-
ity of a program "bug" does exist . To aid in the
checking of the Saturn program, in addition to
checking the logic, the Executive p rograms dumps
the simulated Saturn rneniory before and after the
simulation of a Saturn program. Thus the use r
can exanline the r e su l t s of Saturn prograni execu-
tion by s tor ing the resul ts in mentory and examin-
ing the final memory dump,

Execu t~ve P r 3 r a n i Summary. 'As stated - p- - - --
previously, severa l p roc rams In the sys tem have
produced a compiled logic simulator. It I S up tu
the use r to control this s imulator to obtaln useful
information. He does t hls by punching tt~c. esecu-
tive prograt-n control ca rds , which wlll specify the
terminals to t)e displayed, the r a t e o r t ime of
display, the number of Saturn operation cvdcs to
be simulated, the Saturn program t o be executed,
the logic block initial conditions, and in general ,"
al l con&tions which could vary and st111 allow u s e
of the s a m e conlpi1t.d simulator. A l i ~ i i i t a t ~ o n to
be remembered i s that 01) to 100 terminals In the
logic may be displaytd during one 7090 Computer
run. A very general plcturc of the siniulation
flow at execution tinie 1s S ~ O K ~ I I 111 Figure 8.

Simulator Output. As with :my program ex-
-. -- - - -

cess ive conlputer lnput 'output ol)eratiotis, includ-
ing card readlng, on- llne printing, tape rc~ading
and writing, etc. tends to contribute signlficantlv
to computer running t ime. The techniques a l -
ready stated have t ren~cndouslv helped to nllnintlze
the actual in-cort. s~niulnt ion tinie. To nilniniiac
the tinie necessary to present the resul ts to the
use r the following appro:~c,h was taken:

The Exccu t~ve progranl wrltes a high
density, binary output tape. This tape
contains the values of the u5t.r s p c c i f ~ e d
logic t~lock terminals at use r spec:lfied
output tinies. P r i o r to execution of the
compiled s imulator , the Executive pro-
g ram reads the use r supplied output con-
t ro l ca rds and s e t s up a table containing
the addresses of the locat~oris in the
7090 Computer storage* which cont:iin tilt'
logic block values for the specified out-
put terminals.

During ext.cution, this taljle is used to
quickly locate the output terminal values
and move these values to one preassigned
output buffer. This done only when the
Executive prograni decides that it i s t ime
for a use r specified output.

The Executive program then wrl tes the
output value table on tape, one binary
record, with no conversion to t3CD.

MACH S I L L MACH

0

r

0

0

0

0 I 23

0 1 2 5

0

0

0 I 27

0

0

0

I

0

0

0 1 0 2

I 29

0

I

1

I

I I 0 3

I

I

I I " I

I I 7

I

I

L'

0

L

O

0 0 000 0 1 0 4 00 000 i l l 1 6 01, 000 , f 1 0 0 0 0 0 "

Figure 7. Memory Trace

An Edit program follows the conlplete
simulation run. The user specifies the
faults (actually the environment numbcrs)
for which the binary simulation results
a r e to be converted to BCD, set up in the
proper format, and written on another
tape ready for printing.

The advantages of this approach a re :

More 7090 Connputer locations a r e avail-
able for actual simulation since the pro-
grams which convert the binary logic

' block values to BCD, in a format accept-
able to the user , a r e not in the 7090
Computer at simulation time.

:~llow tnorv forniat sp~cif icat ion I)y the
uscr . The outl~ut terminal tianlcxs, which
a r e either signal nanies or ALII nalncs,
plus t hc c'olunin assilzned to that tcrn~in;il
in the outl)ut fornlat, a re user sprlc'ificd.
Thus the user names and groups thc
ternninal v:~lues in whatever forni;lt ix
niost useful to him.

The uscr can sl)t,cify tha t part , o r all, of
the environnicnts to l)c printed. T h 1nl)~it
tape to the Edit progranl i s saved, thus
the Edit progranl can I)e used to print
niore cupics, or to print only selected
environnlents.

Output forniat flexibility i s achieved. Figure 9 s h o ~ s a snmplc outl)ut ;rttt.r Editl~ig.
Since the Edit program can also use all The environnlent number, plus a list o f thc faults
of the 7090 Computer storage, it can in that environment, a r e shown at the top of the,

output. The output t e rmina l s were defined by the
u s e r in two ways:

As ALD names (page, block, output line
number)

As Signal names (EPO1, EP02, etc.).

PRIMARY INPUT I I COMBINATIONAL VALUES I
I I LOGIC BLOCK I

I 1

EXECUTIVE
PROGRAM
(INCREMENT TIME,
CHECK FOR RACES,
OUTPUT OPTIONS,

SIMULATION
INSTRUCTIONS

i

ETC .) 5-
BINARY
OUTPUT

e--

PROGRAM

LOGIC BLOCK
VALUES

4

VALUES [fi

SEQUENTIAL
LOGIC BLOCK
SIMULATION
INSTRUCTIONS

Figure 8. Simulation Flow

+

The ALD nanies a r e essential in o rde r that
the Executive program can monitor the proper
logic block values. However, signal names could
have more ~ncanirig to the use r . If he specifies
both the ALD name and the signal nanie, the Edit
program will prlnt the signal name. The informa-
tion on the left of the page shows the Saturn clock
t imes (Phase , Bit Time, Clock) at which the out-
put terminal values were monitored. The binary
values in the center of the page are read from top
to bottom, showing the changing values of the
monitored terminals . The information on the ex-
trerrie right o! the page is the rilemory address
r eg i s t e r value, thus showing the location of the
Saturn operation code which was being executcd
at that tinie.

P rogram System Modularity. F i p r e 10 -. . . - - -- -
shows the sys t tn l of simulator programs. Since
the simulator is composed of distinct progranis ,
each having a unique purljose, it is recommended
that the s i n ~ u l a t o r 1.w used in a modular fashion.
Consider the following aspects:

The SLDA systctll provides the logic de-
scription tlt 'rcssarv for colnpilation and
simulation. It i s necessary to run the
"SELECT" propranl ot11y when the logic,
a s defined on the LMT, is changed.
Therefore, the output tape froni SELECT
i s saved.

The COhlPILEIi PROGRAM must be r e -
run whericver SELECT i s r e run o r when
a different group o f 33 fault c>nvironnlents
i s to be sinlulated. It would not t)tx r e run
if different Saturn diagnostic progranis
were to be run with a given set of c o n -
piled faults.

The FAILURE INJECTION PROGRAM i s
run only when a group of faults 1s t o I)e
coml)iled and sitnulated.

The Executive program 1s run 1ncJre Sre-
quently than the others, s ince this is the
actual sitnu1;ttion. It i s h e r r that the u s e r
will specify the Saturn program to be
executed, the initial conditions for the
logic and the output options desired. It
produces a tape which contains the blnary
s in~u la t ion resu l t s and i s the input to the
Node-Edit program.

The Node-Edit program i s usually run
once pe r simulation, but i t may be used
t o edit different fault environments or t o
produce additional copies of s imulator
output.

INSTRUCTION
FETCH TIME

B
I
T

P C
H T L
A l O
S M C
E E K

ERROR MONITOR8

E E E E E E E E E E E E E
P P P P P P P P P P P P P
0 0 0 0 1 1 1 1 1 1 1 1 2
1 2 3 4 1 1 3 4 S 6 8 0 0

INSTRUCTION

Figure 9. Typical Printout From Redundant Conlputt-.r Siniulatlo~l

The two blocks in Figure 9 labeled Fault Injcctioll i)rosraln - K 1 niirlutt:
"Evaluator P rogram" and "Evaluation
Report" a r e proposed but not yet included
in the sys tem. The purpose of the Eval- Co~npi l e r t)l'ogranl - 6 minutes
uator would be to determine the effect-
iveness of the operation code diagnostics,
a s measured by the diagnostic resolu-
tion, the hard-core requirements, and
the t ime t o diagnose. This evaluation
would be accomplished by a programmed
c3mparison of actual simulation resu l t s
against u s e r supplied data, in a manner
yet to be defined.

Simulator Running Time. IBM 7090 Com-
puter , 32K memory. (Assuming about 4,000

v .

iogic blocks a r e to be s imula ted :

Select program - 5 minutes

Executive jlrogranl - 12 Saturn ol) c.odc,s
per min. Thls Includes co1n1)letr s imu-
lation of each operation code for e a c t ~ 01
the 168 Saturn clocks per instruction
cycle, s u actually 2,016 Sa tu r~ i c v c . 1 ~ ~

.arc! simulated per minute.

Edlt proyram - running t ~ n ~ e t lr~ptnds
upon the amount of slmulatlon output. Fur
a shor Saturn program (20 t o 30 op codes)
t h c E d l t prorr.llrl could requlre about
th ree nnnutes to edit a!l of the 33 fault
envlronrnents plus thc good machine.

Figure 10. Saturn-V System Simulator
Flow Diagram

PART I1 - SIMULATION

Introduction

Extensive u s e was made of the Saturn V Sys-
t e m Simulator on the Saturn and re la ted p rograms
a s a n aid in evaluating computer operation in both
normal and faulure modes. The s imula tor was
used to verify the logical integrity of computer
c i r cu i t s and to evaluate proposed engineering
changes. The computer se l f - tes t p rogram and
built-in t e s t c i r cu i t ry operation was examined
with the aid of the siniulator t o determine the
effectiveness of the computer er ror-detec t ion
sys t em. Data identical t o that available in nor-
ma l checkout of a Saturn computer with i t s as-
socia ted t e s t equipment was generated by se lec ted
simulation r u n s and examined fo r diagnostic con-
tent, and additional da ta was compiled for use by
the opera tor in diagnosing fa i lure symptoms.

The Saturn V LVDC (Launch Vehicle Digital
Computer) i s a binary, fixed point, s e r i a l machine
emj~loying TkIR (t r ip le modular redundancy) to
provide very high reliability for the Saturn V mis-
sion. The computer logic is organized in th ree
identical para l le l channels with almost 200 voting
c i rcui ts located in such a wav a s to provide 2-out-
of-3 voting on a niodular level. As many a s one
th i rd of the conlputer components theoretically
could fai l without causing a coniputatio~ial e r r o r in
a TMR machine s ince thc effects of each component
fa i lure in a channel a r e voted out I)y the equivalent
comlmnents in the other two channels,

Since the effects of component fa i lures tend to
be niasked in a ThlR nlnchine, built-in detection
c i r ru i t ry was instrunlented in the Saturn V corn-
puter t o detect disagrcenlents in ttie logic s t a tus
of the th ree channels and thclreby dtbtcrmine the
reliability s ta tus of the c.on~l)uter. These d i sag rcc -
nient de tec tors were designed a s three-in!)ut cs-
clusive OR ci rcui ts and placed pr11n:~rlly a c r o s s
the th ree inputs of thc voters .

An additional circuit checkout capability was
instrumented by providihg a simplex mode opera-
tion in which one channel i s forced to a logical one
level and a second channel forccd to a logical z e r o
level. Since the votes of these two forccd channels
cancel , the s ta tus of tllc third ch:inncl de termines
the logical s ta tus o f t hc computer, ;inti n c-ornpon-
ent fai lure in this cllannel can l)e detected t)y nor -
nlal checkuut proceclurt~s used ivlttl s implex conl-
puters. Ally of tlie th ree channels rnay be se lec ted
a s thc operat:ng ch:innel by a n ~ o d e sc,lect switch.

During the s u l ~ ~ e c t studies, sever;11 hundred
fa i lures were s ~ n l u l a t e d in thc coniputer in both
siniplex and redundant niodes. Although the r e -
su l ts represent a relatively sm;tll s ta t i s t ica l
sample , thcv were suffic.iently c:onsistcnt to p ro -
vide :] high dcgl.c$t> of c.onfidcnct3 in tht, co~iclusions.

Sirnplex Simulation -. -

In the Saturn V d~vc>lopn~cn t progranl , the
initial phase includcd thc design, build and tes t of
a simplex vers ion o f thc cornputer for t~ngincering
evaluation. The purposts ot t h i s pliast. was to as-
s u r e the logical intt.grity 01 tl~c. Ins i c dc~sign and
to determine by ~):tr:inlc'trlc mt~ ; i su rc r~~er l t s a n y
marginal c h a r a c t e r i s t ~ c s of the design.

Siniulation of tht. Saturn V computer in i t s
s implex mode of operatio11 provided data s in i i lar
t o that obtained i n the hardware tes ts with the s i m -
plex conlputer breadbo~rrd. The simplex sinlula-
tion experinlents fel l into t h r e e p r imary a r e a s :
design verification, tes t program evnluation, and
t e s t point catalog generation.

Simulation provides cer ta in advantages over
hardware test ing for 1)relintinnry engineering

evaluation of a new design. Some of the princi-
ple advantages are:

Timeliness - Simulation data can be -- -
made available to the designer long before
breadboards can be built and tested.

Completeness - The speed and flexi-
bilitv of simulation over hardware test-
ing allows a more thorough examination
of the circuit operation under variable
operating conditions.

Access - Unlike hardware testing,
simulation provides complete access to
all logical modes in a digital system for
signal injection and status monitoring.

Design Verification. Portions of the Saturn
V computer, such as regis ters and counters,
were simulated individually to verify their logic
integrity before the coniputer was simulated as
a complete system. One of these preliminary
simulations was a set of race-monitoring experi-
ments in which a latch may be set o r reset de-
pending upon marginal timing characteristics af
the input signals. A race condition i s defined
here as a (0, 0) on a complementary output nodes
of latches or improper outputs on other sequen-
tial memory elements.

In one race- monitoring experiment, three
race conditions were detected in a counter design.
One was due to improper initialization conditions
which were corrected in the computer initializa-
tion procedures. One was corrected by a design
change. The third was a logical "don't care"
condition which did not affect circuit performance
but could result in a false disagreement detector
e r r o r signal in the redundant mode o! operation.

To verify the design integrity of the computer
a s a complete system, the computer logic was
exercised in the sinlulator by a special test pro-
gram (described in the next section) which was
deslgned to assure that every logic component
was exercised at least once during each cycle o!
the program. No improper conditions were dis-
covered during this last phase of the design ver-
ification simulation program.

Test Program Evaluation. The simplex mode
was designed t o be a failure isolation mode of the
Saturn V computer after detection of an e r r o r in
the redundant (operational) mode. The failure
isolation capability i s based on channel-switching
and module-switching techniques as well a s on .
the analysis of data generated by the various tests.
The computer test program was primarily

desikmed to (1) detect logic failures in the simplex
or redundant modes, and (2) generated sufficient
data to allow a knowledgc>able ol)t.rator to diaqnost
the failure symptoms.

" ram The basic organi~at ion (11 the tcst pro,
was changed from the usual boot-strap fu~ictir)nal
exerciser to a component-oricbnted, sand\viched-
subroutine format, The program was ge11t:rated
by failing components systeniatic;ill~; (on papor)
and deriving subroutines to check t.ach and el c,ry
failure. Instruction addresst-s were. sc.lected t u
exercise ;ill drivt. lines i n :ill stcbr;i::cx sec,tors
during the progr;ini c'yrlc . Thc conil)lttc. tcst pro-
gram cons~sted of less t lian 500 ~ristructions.

'rhe resultant tclst prosran1 1)rovldc'h ;idv;in-
tages over a functional progran) althougli the
work effort involved 111 gcwcrated i t I.-; considcr:~l)l>
greater. T h e coii~])onent orieritatlc~it 01 the 1)ru-
gram requires fcwcr 111structi0ns. Thc dis t r i t~u-
tion of the co111l)utcr func'tions throughout the 11ro-
gram, rather t11n11 lumping each f u n c t ~ o ~ ~ i n n pal--
ticular portion of the ~ ~ r o g r a m , 11ruvidt~s a 1)ettt.r
inherent capability for drtccting ~ntc,rrn~ttcnts.

During thc .-;ul~iec.t study, - (vc,r:~l !1111i(Ire(i
selected and randoiiily cliose~! fa1lurt.s u.crc silli-
ulated Ijy a 11atcI1-slniulntim tt,c'linlrlu~~ In wh!c'ii 33
failed mach~nes \vtyrcx excrclscd sinnulta~it~c)usly.
Only single failure5 were ilijt5ctc3d lnto r;lch Ilia-

chine. The sin3ulntor exercisecf the ttxst 1)roKrnlll
until the first failure dttection. ;it whic'h time tho
failure was flagged and s in~ula t lo~i of thc fl.igg:.c~tl
niachine discontiiiucd. Tlic .siniulator t Iicn COII-
tinued exercis~ng t hr, renlalning (unf lap.~r,d) III;I-
c h n e s un t~ l the]lest lallurt' oc,c,urred. Tills pro-
cess was repeated until :ill fn11ul.c~ ticid 1)t.t.n
flagged o r (in the c.:lse of undcltt.ct t ~ d l,iiltircs) U I I -
ti1 the test program li;~d !wen coml~letc,d.

Of the injected failurrs, lcss r i i n~~ 10 ~)crc.cnt
were undetected by t h o test l)rdSrarn. An ex:tillirl:t-
tiori of the undetected failures disclosed, huwevtxr,
that the niajority o f them would not c:iust ;I 1o::ic.
failure even in the sirnplc~x mode. hl:rny ot the un-
detected failures involved logic tlcnicnts wh~ch
were included 111 thc computer ~nstru~rlent;~tlt ,n to
insure against possil~le ~n:wzinal conditions, e s -
pecially in the are:) of tinning. Otliers il~volved
loglc elements included to miniriiize I1owc.r con-
sumption, or which were simply redundant- - rcsl-
dues of design changes that eliminated their func-
tions but which were retained to mililniize clilinge
costs.

Alter these tyl lcs of f311ures h e r e > C I . C C I ~ P ~

out, less than one percent of the s ~ n ~ u l n t ~ t i i,111ures
remainetf unaccou~ited for, rtssult~nr: ~n .I l ' i~lurc

detection efficiency of over 99 percent for the
s implex computer j tes t p rogram system. Changes
i n the t e s t p rogram were made t o pick up most of
these undetected fa i lures .

A limited analysis of simulation resul ts was
performed t o determine whether sufficimt infor-
mation was generated by the t e s t to enable an
operator to diagnose the e r r o r symptoms. Al-
though i t was concluded that diagnosis was feas-
ible, the conlplexity of the failure isolation pro-
blem appears t o preclude extensive precomputed
corre la t ion of symptoms and faults in the simplex
mode.

Figure 11 i s a curve derived from a typical
simplex simulation. It i l lus t ra tes the relation-
ship between the percentage of detected fa i lures
injected into the s i n ~ u l a t o r and the portion of
t e s t p rogram completed. The high r a t e of failure
detection during the ear ly portion of the program
can be attr ibuted to (1) the necessarily high pe r -
centage of operation codes used ear ly in the pro-
g ram, and (2) the existence of program-indepen-
dent e r r o r s . The curve shows that the program
could be considerably shortened if e r r o r detection
was the only requirement. For example, the pro-
g r a m could be truncated to the f i r s t 40 percent of
the instructions while maintaining a 90-percent
e r r o r detection capability. This character is t ic ,
indicated by the dotted lines in the figure, i s ap-
plicable to the construction of in-flight check-
out p rograms . However, the full p rogram i s de-
s i r ab le f rom the standpoint of generating diag-
nostic data, and i t provides better e r ro r -de tec t -
ing efficiency.

AMOUNT OF TEST PROGRAM EXERCISED (PERCENT)

F i ~ g r e 11. Typical Simplex
Simulation Curve

Tes t Point Catalog Generation. The s imu-
la tor was used t o generate a t e s t point catalog
containing the logical values of 90 selected tes t

poltits at eacll col11l)utcr clock t ime whlle tho
siniuldtor executed the 480 ~ns t ruc t lon test pro-
grani. The complctcti catalog cotitalned lilore
than 15,000 loqic values. The ualuc of thls cata-
log for lal)orator\ chct kout o f thc comjtuter 1s
that the st'ite of tile com1)uter 1s predetermined
at 90 nodes in i t s org'lnlL:ition for a fa i lure-f ree
condition. Coniparison of test data itencrated In
laboratory checkout ot the actual coml)utr.rs wlth
the tes t point cat,~lo;r has pi oveli helpful 111 dia(:-
nosing syniptoni\.

Redundant SI mulrlt ion
- -- - - - - - - - -

Tiit> redundant nlodc was designed to 11c tlic,
operational '111~1 !':lilure-detectloti tilotic, o f the
Saturn V conlputc,r. Again, :is in ~ h c sii~!j)lt~x-
mode simulations, tllc cornl)uter 1oj:ic \\,as exe r -
cised Ily the test progralll t o determine tlif. effcc-
t iveness of tile failurc dotcc~ion ful ic t~f~i l . In i t s
redundait mode, however? tllr con~pu tc~r provides
e r r o r indications froni tl~cl i~uilt-111 dts :~; , rce~~lc~nt
detector c i rcul ts to : i ~ d 111 dettcting and tliagnos-
ing e r r o r syml~tonis .

In addition to cvalu;itinp, thtl ellcctlvents,i o!
the test 1) rogra11i -d1sag1~(~~~111(~1i t ctetc~c'tor' s y s t c n ~ ,
the sinlulator W;IS u s c ~ l ((2 d c t ~ r ~ii inc t t ic ' o j~t in iul i~
number :Inti pl:tcsen!c,rit 01 d i saC~.c~e~~i t i l t detectors
in the conq)uter orga~liz,ition. S ~ n ~ i l a ~ s in~ul : t t io~i
e .y~er iments were pcxrfoi.nltd to d c t t r ~ ~ i i n t ~ the
optiniuni plac'crnent oi voters in tl:' 7'hlIt l o ~ i c . .

Otie 01' tilt) ril;~jor ; ~ (i v ; ~ n t : ~ ~ e s uf :I ThTR or$iti-
ization i s its al)llity to pcrforlii In tht' I)rrscricc, of
internii t te~it conlj)oncnt :ind i l l terco~ir ic~ct io~~ i.li!-
u res . If an i ~ ~ t e r l i l ~ t t c i ~ ~ t 1:iilurc oc.c,urs In one of
the ttlrec ThIR chatinels, ~ t s t \ f f (. c . t s nrl, not o111y
nlaskecl bv ttlc voting fu~~(. t io l i , 1)ut tiif' c.unlput~1.
rec:overs ~ t s i~l i t ia l (unfa11t.tf) stntc itttcr tI!e per .~od
of the internllttcnt has t.nd(lcf. An in tc , r t~~ i t t c~n t
failure :~nalys is w a s pcriorllicd wit11 the aid oi the
Saturn V sitilulator to t l c t ~ r l l ~ ~ n e tilt c i f cc t~vc~nc~ss
of the coniputcr dctcctiun s y s t c n ~ 111 detc~ct~n;r
various c l a s scs of ~n t f . r~~ : i t t en t f:*ilurr~s.

Detection Systcslil E:v:~luatio~i. AltllougI! the
.- -~ -- -- .

redundant mode was dcsicrlcd to.-l)c, t lie opcr;itiol:al
and failure-tletection ~ n o d c of the Sntur l~ V co1:i-
puter, avai1al)llity of a sufficient :tnlount o f fal lurc
data based on t .rror- rno~iitor indicatioris appears
to allow a high degree of failure iso1;ltion. Sevcrai
hundred fa i lurrs wcrc simulated usirtg the> i~atcfl-
silnulation technique already described. Again,
as i n the siliiplex- mode simul,ttion, only single
fa i lures were injectrd into each siniulated ma-
c h n e . Unlike in the sinlplc~s siriiulatio~i, however,
each failed nlacl~inc) was ese rc i sed for the duration
of the tes t 1)rogram. A s a result , a varying e r r o r -
monitor pattern was generatt!i: for eacti fai1r.d mi-

c h n e .

Again, of the several hundred failures in-
jected into the computer logic, less than 10 per-
cent were undetected 17 the e r r o r monitors. As
in the simplex sinlulation, these undetected fail-
u res involved either redundant logic elenients o r
those which were included in the computer de-
sign to conserve power o r insure against mar-
ginal conditions. A 99-percent failure-detection
effectiveness was obtained after these types of
failures were screened out.

The approach to failure isolation a s examined
in the redundant simulation is based on correla-
tion of logic failures with e r r o r monitor patterns,
pattern changes, and sequence of pattern changes.
The simulation data indicated that about 75 per-
cent of the failures could be isolated to a single
logic module through examination of the e r ro r
monitor patterns. About 90 percent could be iso-
lated to one o r two modules. In addition, exam-
ination of certain pattern characteristics--such
a s fixed-or-variable pattern, number of pattern
changes during the test program, and sequence
of e r r o r monitor changes as the test program
exercises various portions of the coniputer logic
provides an e r r o r resolution of one module for
alniost all of the simulated failures. In those
cases where the test resolution exceeded one
page, channel and,'or module switching would
provide the additional resolution desired.

Another important conclusion fro111 the com-
puter simulation i s the apparent feasibility of
constructing a diagnostic test program in which
program branching i s based on e r r o r monitor
indic:ltions. The main program would be a short
logic exercisor designed for efficient e r r o r de-
tection only, and would operate periodically dur-
ing the operational periods of the coniputer mis-
sion. If no e r r o r i s detected, little operational
t ime i s consumed by the test. But if an e r r o r is
detected, the program will branch to specific
subroutines determined by the e r r o r monitor
patterns.

Figure 12 i s a portion of a typical prlnt-out
from the simulation of a redundant computer.
The phase, bit, and clock time listed in the left-
hand column i s the instruction fetch time, but the
simulator could be rnstructed to print out the
actual t ime of occurrence of the e r r o r signal in-
stead. The e r r o r monitor signals a r e represented
by the 13 EP (e r ro r position) colun~ns, and the
instruction sector and address location by the
right-hand columns.

The simulator was instructed to print out a
new line every time an EP location changed state.
Consequently, only a small portion of the test
program i s listed in Figure 12 . The particular

failures simulated in this run affected e r ro r moni-
tor positions 1 2 and 19. Diagnostic inforn~atiun
i s contained not only in the generated E P s ig~ials
but also in the instructions associated with a
change of state of an e r ro r inonitor and in the
total number of ch;ulges in state, i. e . , with the
entire E P pattern.

Table I represt?nts the I-t!sults of another rt!-
dundant s in lu la t io~~ in which tlr' sinluli~tcd failurcs
a r e associated with logic pnges 1 and 2. anti 1~1th
e r ro r monitors 1, 2, and 3. Ali cx:tniinatio~~ t) f
the faiIure,/nionltor corre1:~tion :~lonr. :iynorlng
the addttional d~:rgnostlc, ~nfortili~tion i:ivc~l by the*
instructions and tinle stquenc.c,c nssociflted u.ith
state changes) indicates :I h igh clc!.:rec, of rc~solu-
tion between the two pages. Error nlonitor cow-
I>inations EPl ,1lollt, E:I'l EP2: and E P 1 EP3
were associ~ter l !\.it11 f:~ilurc..: in,)c$ctt~cl c)ntc.~ l);lycs
1, vrror nio:litor c'onl1)inittions Is:P2 ;llonc, ; ~ n d E P l
EPS wcre :~ssoc~: i t t t l wit11 failures ,) ! I p~v,e 2: .tnd
e r ror niolut or EP3 ;~lon;x indlc:ated I i.11 iurt'
eitt1t.r page 1 or 1);ific' 2 . E';iill!rcs t l :us isolatcc!
to page 1 rryrcst-t~tr)ti 39 percrwt of ttie sir?iul;~tc'd
failures, thosr~ 1sol.itc1ti 1 0)) : I . (~ 2 rc,lirc.sentcatf 313
percent, and tilost2 vi.l?ici! c.ould not 1.w resolvt;ti
I)etwcc~li page. 1 I,!. \);I::, 2 rcy:'c~sc:~itc'd 25 1)<,rc.~~rtt.
Howt?vcr, t lie 25 ~)cl.(.e:it of ~itirc.solved la] 1~11- t ' s

could then be rc~solt.c~d !;y an c>.;.~!uin;ltion of' tile
full pattern equ~valcnt l o that i llust r.ttcd I n F i ~ u r c
12.

Many differerlt typt's o f synipto~nr; \rere pro-
duced as a byproduct of tht , s i n ~ u l a t i o ~ l r ~ s l ~ o r i n ~ t ~ n t s
All of these were itn;ily/ccl t o rletcrniinc' thcil-
individual and cotill)lned valuc in iduntifyin; logic.
signal failures. Tai~lc I1 glrles n suniniary o f
these results. Sig~lnl fa~lurr ' idontifir:ltions ;lrcl
based on the rearrai~gcd rii:l;1-diag1lostic !~iotiulc
configuratio~:. Only iinique sign:11 itic?ntificat~clns
were tabulaterl.

Disagrceme~it Dctc'ctor Pl;ic*c.nlr.nt. 'IVw dis-
- - - -. . - - - . . . - -- - - . -- - . -

agreement detection function was sinlr!latetl I)>
coniparing the logic status of selected nodt2s in
the channel containing Lhc Injected f;c~lurcs \?.ith
corresponding nodes i n a referctlce channel.
Simulated renioval or addition elf tlis;+grcenlc~lt
detectors was nccon~plishcd by r emor ;~ l or :iddi-
tion of monitorini: nodes from the selected nod(.
listing.

*Just a s packaging of co~nputer componets on
replaceable modules partitions the c.olnputer
physically, placement of dls,~grec>tnt nt detc>c,tc)rs
within a nlachine organlzat~on par t i t~ons the corn-
puter diagnostit.ally .

At present, no clearly dc~llncd ground rules
exist wh~ch can lje appl~ed to opt~nlallv partition

INSTRUCTlON
FETCH TIWE

0
I
T

P C
H T L
A 1 0
S M C
E E K

ERROR MOMTORS

E E E E E E E E E E E E E
P P P P P P P P P P P P P
0 0 0 0 1 1 1 1 1 1 1 1 2
I S 3 4 l a 3 4 S 8 8 0 0

F1b~I-e 12. Typical Print-Out From Redundant
Computer Simulation

INSTRUCTION

Table I

RESULTS OF A TYPICAL REDUNDANT
COMPUTER SIMULATION

electronic units into diagnostic modules. Logx
simulation has been used, instead, t o determine
the characteristics of failed machines and the .
nature of e r r o r propagation in a digital system

EP 1

EP 3

to provide data from which such ground rules
might be derived. Two simulation experiments
were performed during the study to t race failure
propagation through the computer logic. Sixty-
six simulated failures were injected into repre-
sentative voter interfaces and e r r o r propagation
was monitored by disagreement detectors placed
at the input to every voter and at other selected
logic nodes within the four modules of the AES
computer. These nodes were selected on the
basis of the total number of signal inputs to logic
latches.

These experiments provided sufficient data to
partition the computer into diagnostic modules al-
though no change in the physical packaging of the
computer modules was considered. The arithme-
tic nlodule of the computer was partitioned fur-
ther into three diagnostic modules, a s was the
control module. A comparison of e r r o r signal

EP 2

Page 1
12%

EP 3 1

Page 2
13%

Pages 1 and 2
25%

b

propagation between four and eight diagnostic
nlodules is shown in Table ILI for sample failures.
Note that there i s less likelihood of identical
failure symptoms occurring for failures in each of
the four physical modules if the additional diag-
nostic partitioning i s instrumented. For example,
a failure in physical module 2 and another in phys-
ical module 3 caused identical failure symptoms
in physical modules 2 and 3 when the computer
was partitioned diagnostically into four modules
but no identical failure symptoms when the com-
puter was partitioned into eight diagnostic mod-
ules.

Table I1

SYMPTOM - FAILURE CORRELATION

The extensive propagation of e r r o r s through
the computer presented the greatest problem in
isolating failures to a replaceable module. Prop-
agated e r r o r s tend to be sensed by many detectors
even though these detectors a r e not directly as-
sociated with the logic containing the failure, thus
masking the source of e r r o r by "overdetection".
An approach suggested during the course of the
study of clocking the detectors only at the time

Failures Identified
(percent) NO.

1

that the associated logic i s being used was found
to require too much additional timing circuitry to
be practical. Blt gates, phase gates, and in some
cases even program step identification were found
to be required to accomplish the desired detector
timing.

Observed Symptoms
in Logic

Table 111

1

2

3

4

5

ERROR SIGNAL PROPAGATION

Firs t Program Step of
Detected E r ro r

Final E r ro r Pattern

Time of Firs t Detected
Failure

Final E r ro r Pattern

Flrs t Three Program
Steps of Detected
E r ro r s

Frrst Three Program
Steps of Detected
E r r o r and Final E r ro r
Pattern

First Program Step at
Detected E r ro r and
Final E r ro r Pattern

F i r s t Program Step of
Detected E r ro r , Final
E r ro r Pattern, and
Phase, Bit, Clock
Time of Firs t De-
tected E r ro r

The Saturn-V disagreement detectors a r e
clocked every like clock time (for example, any
one disagreement detector may be clocked every
x-time, another every y-time, etc.). As a re -
sult, detectors a r e sensing for disagreements
between the simplex modules of TMR tr ios even

Functional Partitioning

at times when those nodules a r c not being used
by the program.

Interface
Failure In

Module

Timing

1

2

3

4

10. 5

26.3

28. 1

20.2

63 .2

96. 5

63. 1

82.4

Er ror propagation has also been the major
problem in attempting an optimunl placement of
disagreement detectors. Although failure isola-
tion to a replaceable r~lodule level has been found
to be feasible in the computer by reorganization
on a functional basis and by redesign of the
Saturn-V disagreement detectors, means must be

-

Symptoms Will Occur In
Functional Modules

Diagnostic Partitioning

4

4

4

Interface
Failure In

Module

Timing

1

2

3

4 -

3

3

3

3

1

1

1

1

2

2

2

2

2

Syml~toms Will Orcur 111
Dynanilc. hlodules

1 2

2

4

4
-

3

2 3 4 5

--

5

4 5 6

2 3 4 5 6 7 8 :

5

I

6

7

7

i
8

8

8

found to prevent the e r r o r from propagating from
one module to another and thereby destroying the
isolation (a s in the case of timing signals). An
approach was investigated in which each of the
logic modules was partitioned into two o r more
diagnostic sections by placing additional detect-
o r s internal to the module to provide required
isolation information.

The logic simulator was revised t o allow
flexible diagnostic partitioning and used to pro-
vide data for optimum placement of disagreement
detectors.

A logic simulation was designed to determine
the optimum placement of disagreement detectors
in the TMR logic. A total of 32 voters were
failed and the failure data analyzed to determine
the logic level to which the failures can be local-
ized. The specific voters to be analyzed were
chosen a s representative of the various types of
combinational and sequential circuits which would
be "inputted" by the voted signals. The instruc-
tion and computer time when any of the n~odule
interface disagreement detectors sensed a failure
was tabulated. An analysis of the simulation re-
sults showed that:

.Fifty-three percent of the voter failures
could be identified by knowing which dis-
agreement detectors had sensed the
failed conditions.

Forty and seven tenths percent of the
voter failures could be identified by
knowing the program instruction and
computer time of f i rs t detection in addi-
tion to which detectors had sensed the
failed conditions.

Six and three tenths percent could not be
identified.

The partitioning of the reorganized conlputer
resulted in using approximately 120 voters at the
module interfaces. The simulation described as-
sumed disagreement detectors at the input of each
voter and nowhere else. The 6 .3 percent of the
voter failures which could not be identified was
due to e r r o r propagation within a module and sig-
nal feedbwks between modules, resulting in iden-
tical e r r o r patterns for different failures.

This problem was alleviated by placement of

additional disagreement detectors within the mod-
ules and at the module interfaces. To determine
the number and location bf the intramodule detect-
ors , the four conlputer modules of the reorgan-
ized computer were divided into equivalent diag-
nosable subunits by physical count of the signal
inputs to each of the latches and tratches in each
of the modules. Table IV summarizes the results
of this count and indicates a measure of the un-
balance of signals and voters (disagreement detect-
o r s) in each module.

Table IV

SIGNALS, LOGIC, AND VOTERS

Of particular interest i s the ratio of the total
number of signal inputs to the total number of
voters (or disagreement detectors since the DD's
were located at the voter inputs). T h s ratio was
found to be 24:l. Using this fibmre a s the basis
for organization of equivalent diagnosable sub-
units, approximately 21 additional disagreement
detectors were required. Their distribution and
effect on the detector-to-signal ratio i s shown in
Table V. The ratios a r e average values, which
may be misleading because the additional de-
tectors were chosen 3n the basis of individual
circuit sizes within the module and on the basis
of use and criticality. The effect of these addi-
tional 21 disagreement detectors was determined
by simulation.

Module
Slgnal
Inputs

459

1213

Number Name
Latches,
Tratches

2 7

7 4

1 Rilenlory and
Read

2 Arithmetic

3 Control T l l n i n ~ 387

Voters
(DD'S)

17

9

3 4

69

13

217

4 Operation and
Decoder

2 6

4 5

2 3

120 1
1

720

Timlng(D1s- 1 135
tributed
among four
Modules)

Total 2914

Table V

ADDITIONAL DISAGREEMENT DETECTORS

Based on component packaging density and
intermodule wiring considerations, the Saturn V
computer was repart i t ioned into four modules.
Approximately 105 disagreement detector t r io s
have been defined for intermodule fa i lure detec-
tion. Table VI shows the distribution of these
detec tors in the four modules.

Table VI

Module Baslc
Ratio

27.0

134. 8

14.9

16. 0

Number

1

2

3

4

Arlthnletic

Address Reqis ters

4 Control 30

Name

Memory and
Read

Arithmetic

Control
Tlming

Operation and
Decodlnq

.DISTRIBCTION O F DETECTORS

Voter Placement. The voting function was
s imula ted in the Saturn V sinlulator by forcing the

Added
DD's

1

16

2

2

Module

logic s ta tus of se lec ted nodes in the channel con-
taining the injected fa i lures to ag ree with c o r r e -
sponding nodes in a reference channel. E r r o r
propagation is thus allowed only f rom the point of
fa i lure injection to the f i r s t "voter" node in the
data flow.

hlodified
Ratio

25. 5

48. 5

13.8

15.3

Optilnum placement of voters for res t r ic t ing
e r r o r propagation (a reliability factor) o r for
diagnostic capabil i t ies can therefore t)e investi-
gated with the aid of the sys t em s imula tor . This
i s an a r e a which was not thoroughly examined in
the simulation studies.

Meinory and hlemory Interface 39

Function

Intermittent Failure Analysis. Several ex-
~ - -- -- - - - - -

per iments were made to determine the sensitivity
of the computer luclc to intermittent faults.
These intermittcwts were made to vary in dura-
tion frcinl 500 nanoseconds (one clock t ime) to 5
milliseconds. These internlittent faults were
specified at randomly chosen points'of combina-
tional and sequential logic c i rcul ts in the ar i th-
metic-instruction and multiplv-divide units. A
total of 535, 798 intermittent f:lilures were s i n ~ u -
lated in the logic to give a rea l i s t ic stat ist ical
sample.

DD's

For each ~nter i l t i t tc~nt , a record h a s kept o f
the tinic of e . ~ c h de tec t~on , ttw number ol dfstec-
tions ,and fn i lur t~s which caused a difference lroln
a "qsod" machlne. From these r ecords , the
p r ~ b a b l l ~ t y of detection was calculatcd. Table
VII suinnlarlLes the r e su t t s ot the si i~nul~it lc~n.

'Table VII

DETECTIOX O F INTERILIITTENTS

Logic
Sinlu-
lated

Mult-
Div

This tat~ulntiun shows that many internlittent
fai lures will tia~;e verv little o r no effect on the
co r rec t operation of the. logic c i rcui ts , i. i.. , 8. 3
percent of the total fai lures injected would cause
the conlputer to p e r f o r n ~ incorrectly. An analy-
s i s showed that this "nlasking" of f a ~ l u r e s 1s p r i -
mar i ly due to the l a rge use of conli)ln;it~onal logic
and the method of clocking the "AND" gates which
feed the sequential c i rcui ts . This tablc a lso s h o w s
the large difference in e r r o r detection sensitivities
between the two modules, and suggest a need f(,r 3

Illore efficient partitionin!: in the modules.

Data derived frorn the s i m u l a t ~ o n runs was
used to calculate the detection efficiencies of the
disagreement detec tors . F i p r e s 13 and 14 give
thls plot of detection l~robabi l i t les v e r s u s fa l lure
duration. The fiqures in Table VII a r e hcavily
welghted by a larqe number of shor t failures,

'AODULt
A R I I H M f TIC -
I N I T R U C TiC'iP. i : , U h T t i

a- - S E Q U E N T I A L --- C O M B I N A T I O N A L
r

C L O C K E L

u ..
z 6-

, .
Id !(M ma;

M I R 4 T l C Y i ' t Ir4:tRhniTTENT FAILt,Rf I M I C R C ~ ~ L O ~ ~ " ~

Figure 13 . Detection Efficiency
(By Conlputer Disagreement Detectors)

Figure 14. Detection Efficiency
(By Coniputer Disagreement Detectors)

leading to a low average detection probability.
Figures 13 and 14 indicate these probabilities for
var ious lengths of interniittents. The "best" and
"worst" c a s e detections a r e shown to give the
sp read in detection efficiencies.

A summary of the resul ts obtained in s imu-
lating intermittent failures i s given below:

There is a smal l e r probability of detect-
ing intermittent fa i lures in combinational
(AND) type c i rcui ts than in sequential
(latch) c i rcui ts .

ha.d intermittents lastin!: for one com-
puter word t ime. The detection probabil-
i!y i s low because of the fact that many
internlitterits have no effect on the logic
(they do not make the "failed" machine
different froni a "good" machine) and
further, because detection i s program
dependent, in that the logic must be ex-
erc ised by appropriate instruction and
data for the failure to t ~ e ind~ca tcd by a
disagreelnent detector.

e ' r h e r ~ is a wick: variation of e r r o r detec-
tion s t~nsl t iv i t ies between modules. This
sensitivity c-ould be equalized to provide
r i more efficient e r r o r detection organiza-
!Lon.

For the fault locations chosen and the
programs c lccutcd, the faults caused
block outl~uts to d ~ f f t r f rom those of the
unfa~led ~n'ichine only about 10-20 percent
of the t ~ n i e .

For these locations and programs ;I fault
c,x~stln< for 0. 5 n-ircrosc~cond (ont cloch
t ~ n l e) u ~ s 1 irtuallv undetectable: one
exlstinl: for 0. 5 to 1 ~nl l l i second was
about 50 percent likely to be detected:
one existing tor 4 tu 5 n l~l l i seconds u a s
almost 100 percent likely to t)e detected.

The dlsaqreenlcnt detectors a r c clockcd,
thus having a 25 percent duty cyclc.
C h a n ~ i n q the sin:ulation mude! to give a
100 percent duty cvclc made no signlfi-
cant ~ l n ! ~ r o v e n ~ e n t In failure-detection
abllity In these experilner~ts.

During a1;alysis of the resul ts uf the mul-
tiply-divide e x t r c i s c prograrli used for
these run>, it was discovered that the nia-
c h n e w~)uld fa11 to rt,cognize a M P Y o r
DIV instruction given durlng the ins t ruc-
tion cycle in u,hich the resul ts of a pricir
RilPY o r DIV would normally be s tored;
for exaniple, by the sequence CLA, M P Y ,
CLA, SHF, ADD, MPY. Such an instruc,-
tlon sequence would not normally be pro-
grammed, but could occur In ;] dlagnostlc
exercise program like this one. When the
hardware lnachlrle was found to ag ree
with the slmul;~tion, analysis showed the
timing relation w h c h caused the action.

There is a very smal l chance of detecting Acknowledgen~ents
pp -. - -

a single occurrence intermittent failure
on a logic page. One experiment verified R. E. Forbes , C. B. Stleglltz and D. H.
this finding by detecting s i x out of a total Rutherford for their technical guidance i n the de-
of 33 randomly selected failures which sign of the Saturn V. Fault Siniulator. L. H. Tung

for the formulation of cer ta in basic simulation
techniques. R. E. Ide for a major portion of the
Fault Simulator p rograms and documentation.
M. Ball and R. M. Lewis for the design of the
simulation experiments and for the evaluation of
the simulation data.

References

R. E. Ide, R. J. Suhocki, "User 's Manual,
Logic System Simulator", IBM No. 65- 578-01,
January 8, 1965.

IBM Dept. 578, "Final Report Work Package
386OW, IBM Nu. 65-578-03, January 12, 1965.

P. W. Case, H. H. Graff , L. E. Grlffith,
A. R. I , ~ c l e r c q , W. R. Murley, T. M. Spence,
"Solid L,,)(~lc Deslqn Automation", IBM Journal,
V o ~ r ~ m e 8, No. 2, April 1964, pages 127-140.

"AES-EPO Study Program- Final Study
Report", IRM No. 65-562-012.

