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PART I - SIMULATOR 

Introduction 

The Saturn Fault Simulator i s  a system of a A compiled simulator rather than an in- 
programs to  be executed on an IBM 7090 computer. terpretive type was chosen. This com- 
The objectives of this simulator were: piled simulator i s  conlpletcly contained 

in core storage 
Verify the logic design of the Saturn 
computer a A technique called "Parallel E r ro r  Simu- 

lation" allowed s i  mu1t:lneous nor lnal 
Analyze the effects of solid plus inter- plus 33 fault simulations at no decrease 
mittent faults in speed 

a Evaluate the effectiveness of the Saturn 
Diagnostic programs through fault simu- 
lation 

a  valuate changes in design before com- 
mitment to hardware. 

The significant characteristics of this simu- 
lator a re :  

a Full Central Processing Unit simulation 
while containing in one 32K memory the 
complete compiled logic simulator and a 
simulated Saturn memory module plus 
interface data 

Fault simulation capability, including 
single o r  multiple, solid o r  intermittent 
faults 

a Approximately 2,000 Saturn clock times 
a r e  simulated per  minute 

a User-specified output options plus an out- 
put editing program which controls the 
mass of simulation output 

Solid Logic Design Automation system 
used to define the logic t o  the simulator. 
Simulation i s  carr ied out at the basic 
AND-OR-INVERT level rather  than at a 
functional level. 

To achieve a practical Simulation speed, the 
following was accomplished: 

a A technique called "Stimulus Bypassing" 
was developed. Essentially, this means 
that groups of compiled 7090 instructions 
will not be executed if specific conditions 
exist 

Program system nlodularity was estab- 
lished to allow the flexibility of using only 
the routines which a r e  necessary in a 
given run. 

The system allows the user  to specify up to  
100 source nets or  test points which will be moni- 
tored during simulation. The binary values for 
these points will be printed out according to n 
variety of options. 

This paper consists of two parts.  Par t  I de- 
scribes the programs, while Part  I1 describes 
the application of the simulator. The paper de- 
scr ibes  the programs in the same order  that they 
would normally be executed, a s  shown in Figure 1. 

The Program System 

The following features of the s y s t e n ~  will be 
described: 

a Data Collection (SLDA) 

a Logic Selection 

Fault Injection 

a Intermittent Fault Analysis 



Logic Conlp~lat ion 

S~nlula t ion 

Race Mon~tor ing Feature  

Saturn P r o g r a m  Execut~on T r a c e  

Functional Menlory Dumps 

Executive Prograril Summary 

Simulator Output 

Prograni  System Modularity 

Whilc) this paper does not intend t o  delve into a 
det l~i led  desc:ription of SLDA, t h e  general  flow, a s  
i t  per ta ins  t o  the Saturn Fault Simulator, i s  d is-  
cussed.  

The logic i s  f i r s t  nianually drawn on SLDA 
sketch s h t e t s .  Keypunch operators  then convert 
the sketch she?)t inforniation into SLDA punched 
cards .  Using these  ca rds ,  SLDA produces a Logic 
Master  Tape (LMT) which now scrv's a s  the basic 
s o u r r e  of logic input to thc Saturn Fault Siniulator. 
SLDA :11so produces dr;i\vlngs callcd Automated 
Logic. Diagrams (ALD) which portray the logic a s  
it is defined on the LMT. Figure 2 shows the data 
collectioil systeni.  

Sinlulator Running Time. 

, 
SELECT 'ORDER 
PROGRAM 

1 
COMPILER PROGRAM 
NORMAL AND.'OR 

SIMULATION 
RESULTS 
EDITOR PROGRAM 

RESULTS w 
Figure  1. General  Flow of the Saturn 

Fault Simulator 

Data Collection. The SLDA systenl i s  used to 
r e c o r d  the logical design of the Saturn computer. 

A 
S Y S T E M  A h 3  
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1 I 

C I 

EDIT UPDATE - 
PRlhT 

Figure 2.  Ilnta Collection System 

Logic Selection. The "Select" p rogram i s  that - - .- - 
par t  of the simulation systenl which in ter laces  w i t h  
SLDA. "Select" has the capabilitv to read the 
LMT, extract  use r  specified logic. blocks f rom it ,  
and p repare  these  blorks lor  1og;ic compilation. 
A kcy problem in logic simulation i s  attacked by 
our Select procedure: i. c .  , the logic must be 
simulated in the s a m e  fashion, o r  o rde r ,  that the 
actual information i s  propajiated in the Saturn 
computer. If this logical o r d e r ~ n g  i s  not achieved 
the sinlulator would have to  loop, o r  repeatedly 
sinlulate the logic while holding t ime constant, 
until co r rec t  propagation has occurred.  "Looping" 
the complete Saturn computer logic would ~ r e a t l y  
increase  the IBM 7090 Conlputer running tinle, 
which inc reases  the cost of using the simulator.  
To attack this problem the logic i s  "selected" from 
the LMT in a specific sequence. U1oc:k functions 



a r e  selected In the sanie order  that they would 
perform thelr functlons In the computer. At pre- 
sent, thls a man-niachlne procedure. The cor- 
rect  order  for  the loglc block functlons IS  nlanuallv 
determined and speclfled to  the Select program, 
whlch then performs the deslred loglc selectlon 
and loglc ordering. The general order of loglc 
selectlon for the Saturn computer IS: 

Timing logic 

Combinational logic (AND, OR, INVERT) 

Sequential logic (latches, tratches, etc. ) 

The end result of the Select procedure is a tape 
which contams all of the loglcal data necessary 
for a properly ordered, compiled simulator. 

Fault Injection. One reason for the success 
of any computer logic fault simulator i s  the ease 
with which faults may be specified by the user .  
A fault nlay be thought of as  the transforntation 
of one logical function into another. A fault could 
be considered to be a termlnal node of a logic 
block stuck at "logical one" or  "logical zero". If 
the user  were forced to re-deflne the logic to 
slniulate a fault condltlon, he could be reluctant 
to make extensive use of a fault simulator. Con- 
sider a coniplex Doolean functlon loglc descrlp- 
tlon. T11c slnlulat~on of a fault would reclulrc that 
the Boolean equat~ons 5e studled and changed to 
reflect the deslred fault condltlon. In contrast. 
the approach taken In the Saturn Fault S ~ ~ n u l a t o r  
1s to malntaln a constant, hxed logic descrlptlotl 
(the LMT) Faults a r e  then speclfled by the user 
In a very slniple manner. He nierely s p e c ~ f ~ e s :  

The ALD page upon which the iallrd 
tcrmlnal i s  shown 

The logic block ser ial  number of the 
lailcd ter  mlnnl 

The line to or  from tlie logic block whlch 
represents the failed terminal 

The logical type of fault (0 or 1). 

Fikgre 3 portrays a typical ALD logic block and 
the deslred fault situation. 

The characteristics of this method of fault 
sin~ulation can be summed up as  follows: 

The fault injection procedure i s  separated 
from the logic description part of the 
system. A conlplex logic description 
does not have to be redefined by the user.  

Figure 3. F~iult Injection Esantl~le 

F'iult itijec\ivti is scparatrd frotn tlie 
logic contpllrr prugratn. Tlius the s:imc 
simulator can be used for eitltci- normal 
design analysis or fault siniulnt~on ex- 
pcrimeiits. 

Thc faults to be s~niulatc'ct can I)<. the 
terniinals of any logic. I~lock on all ALI), 
stuck to either logical onc or  logical 
zero. 

Internlittent f:iult ana ly s~s  i s  1)crformccl 
at simulntor csecution time. Sinw tht, 
internlittent tault can I)c considered to I)e 
:t special case of a solid fault, intermit- 
tent fault specification is t h c  s:lntt as  
solid f:\ult spt~clflcation :is far r ts  the 
user  1s concrrned. 

Slngle faults or nlultlple faults can t)e 
simulated. Up to 33 slngle faults or  33 
qroups of ntulti1)le faults (up to 25 f'lults 
per group), ~ ) l u s  the normal niachtne, 
can be slmu1;tted at one ttnie In the IUhl  
7090 Computer, with no Increase In run- 
nlng t ~ r n c  over the single-fault sirnul,l- 
tlon case. This 1s pos s~b le  bccause ol 
techmque used in the programs callrd 
Parallel E r ro r  Sln~ulatlun. - - - -- 



In paralled e r r o r  sinlulation, each bit posi- 
tion in the 36-bit 7090 computer word can be used 
to  contain the binary value of a specified fault o r  
a specified group of multiple faults. In actual 
practice, the Saturn design dictated that three kts 
be reserved for the normal (unfailed) machine 
and the remaining 33 bits used for fault sinlulation 
The mechanics of p,arallel sinlulation can be il- 
lustrated by an example of single-fault simulation. 

Consider a three-input AND logic block. It 
i s  desired to "fail" the first  input to  "1". It i s  
also desired to  "fail" the second input to  "I", yet 
keep these faults independent from each other. 
They a r e  single faults in this example, not mul- 
tiple faults. The 7090 FAP (FORTRANAssenibler 
Program) instructions for this block would be as  
follows: 

CAL INPUT 1 Pick up first  input 

ORA MASK 1 "FAIL" it 

SLW OUT Save "FAILED" input 

CAL INPUT 2 Pick up second input 

ORA MASK 2 "FAIL" it 

ANA INPUT 3 Perform "AND"function 

ANS OUT Perform final "AND" 
function 

In this example, assume that the three inputs 
to  the block have the binary values 011, that is: 

INPUT 1 (Unfailed) :. 0 

INPUT 2 (Unfailed) - 1 

INPUT 3 (Unfailed) = 1 

Since 36 bits a r e  used for each input in our 
example, the following bit assignment i s  made 
(numbering bits 1 through 36): 

BITS 1 ,2 ,3  - - - normal machine value 

BIT 4 - - -  INPUT 1 failed to  1 

BIT 5 - - -  INPUT 2 failed to 1 

Thus, in the example, the following values 
exist pr ior  to  simulation: 

INPUT 1 - 000000 - - -  0 

INPUT 2 - 111111 - - -  1 

INPUT 3 - 111111 - - -  1 

MASK 1 - 000010 - -  - 0 

MASK 2 - CCCC10 --- 0 

OUT - XxXX - - -  X (Don't care)  

If we carry out the sin~ulation of the failed 
logic, showing the values of the accumulator and 
"OUT", we have: 

Compilation -- Accumulator Out - 

CAL INPUT 1 ooooo - - - - - - -  0 xxx ---x 
ORA MASK 1 00010 - - - - - - -  0 xxx---x 
SLW OUT 00010-------0 00010---0 
CAL INPUT 2 11111-------I 00010---0 
ORA MASK 2 11111-------I 00010---0 
ANA INPUT 3 11111-------I  00010---0 
ANS OUT 11111-------I 00010---0 

Upon esaniinatlon of'the final valuc of loca- 
tion "OUT", thi. following conclusions can be 
drawn: 

The normal machine value, as  shown by 
bits 1. 2, 3, i s  sti l l  zero, a s  i t  should I)e 

INPUT 1 failed to "I", results in the final 
I)lock value of "l", differing from the 
normal m:lchine value. BIT 4 i s  a "1" 

INPUT 2 falled to "1" does not cause the 
failed valuc to  dlffer from the normal 
value. BIT 5 equals I3IT 1. 

Although parallel simulation necessitates a 
certain amount of bit manil)ulation in the simulator, 
this added work i s  far esceeded in value by the 
resulting reduction in running time of the IBM 
7090 Computer. 

The mechanics of multiple-fault simulation a r e  
similar to single-fault simulation. The difference 
i s  that for multiple faults a group of faults i s  
forced to affect only one bit position in the com- 
puter word rather than a unique bit position for 
each fault. The user  defines, through control 
cards, whether a single o r  multiple faults a r e  to  
be simulated. In any given 7090 Computer run, 
several single o r  multiple faults may be specified. 

Intermittent Fault Analysis. Two different 7. 

techniclues were used for intermittent fault simu- 
lation. Initially, it was decided to have the user 
define the behavior of the intermittent faults. 
This technique was followed by a second in which 
the user did not define the characteristics,  but 
merely followed the fault injection procedure 



previously discussed.  Each of these  two tech- HOW scrisltivc i s  ttic coml~u te r  to specific 
niques shal l  now be presented.  fault conditions'? 

In the f i r s t  procedure ,  the u s e r  defined the Is  the cllcct of a given fault "latclicd up'' 
following: o r  is the t l icc t  transient  in rinturc'? 

The logic I~lock fault te rminal  

The t ime for fault injection, which i s  de- 
fined by the Saturn operation code and 
clock t ime  

The t ime for fault r e ~ r ~ o v a l  (normal iza-  
tlon) a l so  defined by Saturn operation 
code and clock t ime. 

During the simulation of the Saturn test  pro-  
g r a m ,  the des i r ed  faults were  e i ther  injected o r  
removed. This  procedure  depended upon the 
u s e r ' s  knowledge about the behavior of an inter-  
mittent fault, i t s  effect upon the computer,  and 
i t s  detection by the diagnostic progranis .  Rather 
than having the u s e r  determine these  fac tors ,  it 
was decided to make the Saturn Fault Sioiulator 
provide this information. 

In the second procedure,  the use r  had only to 
define the logic block fault te rminals .  The tinit. 
of injection o r  removal was not specii ied ov the 
use r .  

The slniulator assunled that a specified fault 
was "solid" until detected. Drtectlon caused 
cer ta in  counters in the  s imula tor  (not hardware) 
to be increniented. The s imula tor  presented 
seve ra l  cha rac te r i s t i c s  about the intermittent 
fault including: 

The nurnlx~r of tirnes the fault affected 
the logic 

The percent of cycle t i m e  during which 
the logic was affected 

The number of t imes  the fault a a s  de- 
tected 

0 1  the faults which affect the beliavio~. ol 
thc coniputt~r,  how many a r e  dtxtected bv 
the diagnostic, progr;inis '' 

tiow long: 111 microsc.c~onds, must an 111- 

tc,rtnittent fnult rctnain "soliti" I ~ c f ~ ~ r c ,  
being detecstcd I)? ;I given d iagnos t~c  1)ro- 
granl'? 

Uhdt a r e  the p~*ol)al)llities of dt>tt.c'tloti 
for a given interlnlttent fault a s  we allow 
~ t s  rfuratioli, o r  "l)eriod of solitiity". 1 0  
vary " 

In su~nnia t lon,  u.l!:it is .;an i n t c ~ r n i ~ t t e ~ i t  fault, how 
does it affc,ct t lie con<)uter, can it l,e detccted and 
diagnosed? Itifol.n~ation :il)out t Ire ac.tual in tcr -  
mittent fnult sinlulatiun and analvsis can bcx found 
in Pa r t  I1 of this 1)apt.r. 

L o g  - .. - -. - - i i t i ~  - ... - - L'1) 1 0  t l i l s  point, Data 
Collection. 1,oqic. S~l t ' c t i (~11,  and Fault I~i j r~ct ion 
have been presented. Thest> thrc3c s ~ ~ I ) s ~ s t c ~ l ~ i s  
supply all  oi the logic;11 il~iornl:itlon ~ i c ~ c e ~ ~ a r \ .  t o  

generate a con~pi lcd  logic fault 01- n o r n ~ a l  ~ i n i u -  
lator.  Ttic Coml) l lc~~,  ltsrlf c,i)nsist5 o f  ,I lliaill 
prog,rani 1)lus a s c r i t s  (11 suI)routi~ics.  t,:~c'h su1)- 
routine ~)rogr;initiif.d 10  c .onlp~lr  :I sl)cxc,liic< tspe 01 
logic block. Different sul)routines i ~ r c  .illowed to 
exist  fur the s a m e  type o1 locic block, thus :111o\v- 
ing the u s e r  to experiment with different l o g l ~ ~ , i l  
models. Thr  Compiler 11:1s tiit. following cliar:~c- 
t e r i s t i c s :  

It iriteriacncs urlth :I ~ n a s t c r  lojilc input 
tape,  ;iutoniatically producrd I)y t h t  p r c -  
cedinq sys tem progranis .  Thus.  any  
changes in the systeni  logic. c;\n clulckl\. 
and auto~iiatically be incorl)oratcd in thc 
conipiled logic sinlulator.  

An actual conij)iled s ~ n l u l a t o r  1s produced. 
The percent of occurrences  which were  consisting of 7090 FAP instructions readv 
detected for execution. Efficient use  of 7090 FtZP 

instructions plus data r e su l t s  in l e s s  c(j11i- 
The t imes  of detection ( in  niicroseconds) puter cost at s i n ~ u l a t o r  csecution ti~nc.. 

# 
Fault models .ire casilv cotiipiled usiiiq 

The interval  between detectlons(1n m i c r e  
seconds).  the  subroutine approach. 

This  type of s ta t i s t ica l  approach enabled the Figure 4 sho\vs a siniplifled portion of .I con]- 

u s e r  to  study such problems as :  
piler  sut)routine flow chart .  Note that the (*om- 
pi ler  approach t&t3n I n  the subroutine is vr ry  

How many t lmes  does a given fault actual- straightforward 
ly affect the behavlor of the computer') The simulation of n type of logic. l~ lock c,illcd 



Figure 5. "Bypassing" for the 'r~pc' 
Figure  4.  Por t ion  of Conipiler Subroutine Flow "A" Flip- Flop 

Char t  for Type A F F  

the  "macro block" was implemented. Basically, 
a m a c r o  block consis ts  of the AND-OR-LNVERT 
(A-0-1) logic which makes up a specific function, 
such a s  a latch. Rather than define the individual 
A-0-1 logic blocks on the ALD's, the macro  block 
i s  used. Severa l  advantages result  f rom the use  
of m a c r o  blocks, including: 

ALD1s which a r e  e a s i e r  to r ead  

r e se t  sign:tl i s  present ,  the fl11)-flop 1 ~ 1 1 1  not 
change s ta te .  If a macro  block c : ~ n  csh:lngc s t a t e  
only at s p e c i f ~ c  clock tlnit', it 1s necessary  to 
simulate the block onlv at that par t icular  t ime.  
It i s  obvious that 7090 Connputer instructions must 
be added t o t h e  basic conipiled logic s imula tor  t o  
tes t  for these  byl)xss t :ondit~ons,  It i s  not fcoriom- 
ically feasible to add these  cudes for the individual 
A-0-1  logic blocks: but it is feasil)le to do s o  for  
the macro  block. For a s e t - r e s e t  fll1)-flop, tlie 
bypass r equ i re s  th rcc  additional FAP operations,  

Fewer  e r r o r s  in  the  logic definitionphase narilelv: 
s ince  fewer blocks a r e  defined 

CAL SET VALUE 
F a s t e r  simulation speed s ince  the macro  
block makes possible a simulation tech- ORA RESET VALUE 
nique called "Instruction Bypassing" 

T Z E  BYPASS 
Feedback loops within latch co~lfiguration 
can be isolated within a macro  block. 
Figure  4 shows a flip-flop macro  block 
r.nd i t s  in ternal  logic. 

Instruction bypassing can be defined a s  the 
skipping of specific computer instructions during 
simulation.  If the s imula tor  can determine that a 
logic block cannot possibly change s t a t e  during a 
simulation pass ,  then t h e r e  i s  no need t o  execute 
the  7090 Computer instructions which s imula te  
that par t icular  logic block. Consider the  flip- 
flop shown in  Figure  5. If neither a se t  nor  a 

This will resul t  i n  the byp&sing of 1 2  FAP 
operations when neither the se t  nor the r e s e t  1s 
present .  Since most flip-flops a r c  inactive a t  any 
given t ime during the simulation, the by-pass r e -  
su l ts  in a significant saving in execution t ime.  
The normal s e t - r e s e t  case  just y resen ted i l lu s t r a t e s  
the minimum saving. If faults had been specified 
for the flip-flop, more  instructions would be by- 
passed.  The Set-Reset flip-flop i s  one of the most 
s imple  sequential models siniulated. The more  
complex models resul t  in an  even g rea te r  savlng in 
execution t ime due to instruction bypassing. 



The final product of the Compiler i s  the com- 
piled logic simulator. It consists of three major 
sections: 

b 

The compiled FAP instructions 

A table reserved for the logic block 
values 

A master l ist  stating which location in 
the table of logic block values represents 
each logic block output terminal. 

A compiled FAP instruction consists of a 
7090 Computer operation plus an address. The 
address re fe rs  to a location in the table of logic 
block values. These addresses a r e  not converted 
to  absolute 7090 Computer locations until simu- 
lator execution time. Thus, the compiled simu- 
lator and the table of logic block values can be 
located anywhere in the 7090 Computer core s tor-  
age at execution time. This flexibility is note- 
worthy since it allows fewer fixed table s izes  at 
execution time, thus extending the capacity of the 
simulator through complete usage of the 7090 
Computer's core storage. Since dynamic storage 
allocation is used when it i s  practical, it i s  diffi- 
cult to  deternline the largest s ize logic network 
which can be simulated. A logic network will be 
compiled and simulated if it can be contained by 
the system in the 7090 Computer core storage. 
If the logic exceeded the 32K memory, other tech- 
niques would have to be used. Techniques such as 
packing/unpacking the compiled simulator, or  us- 
ing tapes for additional storage, o r  a very sophis- 
ticated functional-logical approach would have to  
be programmed. It i s  estimated that execution 
time on the 7090 Computer would increase by at 
least a factor of 10 if core storage were inade- 
quate. 

So far ,  the described programs have accomp- 
lished the following: 

Mode - either the NORMAL or  a FAILED 
-- 
mode will be silnulated 

-. Simulation Limit - The user  specifics the 
maximum number o f  Saturn instruction 
cycles to be simulated. Termination o f  
the simulation will occur either when this 
limit i s  reached o r  when an "END" opera- 
tion code i s  reached in the Saturn pro- 
:ram being simulated. 

Output Options - The following; optiuns 
a r e  available- 

- Display the binarv values o f  all 
specified output terminals at each 
interval of Saturn clock time. 

- Display thc binary values of all 
specified output terminals only when 
a terminal. changes v;iluc. 

- Display the Saturn computer d ~ s a -  
grecment detectors. 

Output 'Terminals - The user spcc~fie..; - - - - . . - -- - 
up to 100 uutput terminals whlch will bc 
displayed. They a r e  sgccified I)y their 
ALD net names (rage, block and tcrn1in;il 
number) 

Output Registers - Thcs uscar c;un sl)txcify - . - --- -- - - - 
output rcyistcrs as  well ;IS ~ndividual outi~u! 
terminals, since a register can be thoucht 
of a s  a collect ion of specific outl)ut tcr- 
nlinals. The limitation is that only 100 
binary values can be printed 3s sinlulator 
output, s o  no more than 100 terminals 
(total) should 1)e contained in the sl)ccificd 
registers.  The collection of terminals 
which constitute a rc'gister i s  dcfincd 
once at compilation tinic, rather than 
esecution tinic, since this defitiition is 
fixed by the desijin. 

Converted the designer's logic sketch 
sheets into a computerized language - Output Times - - If output ol)tiuns a r c  not 

specified, t hc user can spr?cify the c.sac.i 
Selected the logic to  be simulated i.n such Saturn clock times at uh ic t~  he wants tl~cs 
a way a s  to provide efficient, loop free output terminals displayed. Dlsl)lav ocscurs 
simulation 

Compiled a model of the logic in the 7090 
FAP language, with o r  without user 
specified faults. 

Simulation. To execute the compiled model, 
the user  must specify several factors to the Ex- 
ecutive program. These a r e  listed below, but 
a r e  not discussed in detail: , 

each time a specified clock time i s  1):lssed 
in the simulation 

Logic Initlalizatioll - The user can initial- 
~ 

ize any logic block output terminal or  any 
interface line (I 0, control, power, etc. ) 
by specifyillg the ALD net nanie arid the 
desired initial value (logical 1 or 0) 

Simulated Saturn Program Flow'- Nor- . - -- -- - - 
mally, a fault being simulated i s  not 



allowed to affect the value of the Memory 
Address Register. Thus the program 
flow determined by the good, unfailed 
logic, i s  followed. If the user  desires,  
a specified fault will be allowed to se t  
the value of the Memory Address Register. 
This procedure exists because parallel 
simulation makes it  possible to  simulate 
many faults in one 7090 Computer execu- 
tion, but for one Saturn program and one 
program flow. To follow al l  possible 
program flows for all faults would revert 
the simulation procedure back to the one 
fault per  7090 Computer run technique. 

The Saturn Program - The operational 
o r  diagnostic program to be loaded into 
the simulated Saturn memory 'was coded 
by the user  in his assembly language. 
A memory loader existed in the system, 
performing the task of converting the 
Saturn operation codes and data into the 
proper memory bit patterns and storing 
these patterns in the correct  simulated 
memory loactions. Checking for illegal 
Saturn.operation codes was performed. 

Certain a reas  with the Saturn cornputcr did 
not lend themselves easily to  logic simulation. 
These included the decode and select circuits for 
the simulated memory module. For purposes of 
fault simulation and central processing unit (CPU) 
design verification, it i s  necessary to-simulate 
the logic up to  a well defined memory interface. 
The memory address register (MAR)andthe mern- 
ory buffer register (MBR) plus the read/write 
signals constitute the interface. The binary val- 
ues for the interface emanate from the simulated 
logic during a write procedure. The executive 
program then functionally decodes the MAR and 
s tores  the contents of the MBR in the addressed 
location within the block of 7090 Computer storage 
defined to be the "memory" of the Saturn coin- 
puter. A Read operation i s  the converse in that 
the executive program decodes the MARand moves 
the binary contents of the addressed location into 
the MBR, from which point logic simulation 
propagates it through the central processing unit. 
Figure 6 il lustrates the memory interface as it 
appears to the simulator. 

Race Monitoring Feature. A "race" situation 
exists in a logic design if one o r  more state de- 
termining signal a r e  of equal "length" and 
a r e  excited simultaneously. The final circuit 
s ta te  could be indeterminate, since small deffer- 
ences in the path and element delays can change 
the actual final value. Since the Saturn computer 
design employs disagreement detectors which 
monitor circuit states,  a false e r r o r  indication 

Fihare 6. Mcnlory Module Interface 

can result from n non-critical race. To reduce 
or  eliminate circuitry which would cause tticse 
race  conditions the siniulator was modified 111 thch 

(r manner: followin, 

At Compiler t l t l~e. a table containing the 
ALD net 1larnc.s of the scquenti;~l elenir,nts 
in the logic. (Ilip-flop trachcs) was con- 
structed 

Also i n  this table the indices to the locrt- 
tions in the I)lock value table for the SET 
and RESET output values for each s e -  
quential I~lock were savcd. This tahle of 
names and indices is passed on to the 
Executive program along with the corn- 
piled simulator. 

The Executive program uses this table for 
r ace  monitoring in the following manner. After 
each simulation pass of the logic, the Executive 
program examines the block value locations in -  
dexed by each pair of SET-RESET indices. If it 
finds that both SET and RESET equal "logical 
zero" it produces a diagnostic message tor the 
user ,  stating that: "Flip-flop 0-0 state occurs at 
time X , instruction Y , page .  A , block - - -. - -. 

B , environment N . "  where: 
-. - - - .. - 

X i s  the Saturn clock time, such a s  "AOlW. " 

Y i s  the 1oc:ition in simulated Saturn memory 
for the Saturn op code t~cing executed, as  "23" 



A i s  the ALD page name on which the flip- 
flop can be located, a s  "AA201". 

B i s  the block designation of the flip-flop 
as it  appears  on the previously defined 
page, a s  "BA". 

N i s  the fault number,  but s ince  multiple 
faults can be  simulated,  we p re fe r  to  
call  it the environment nuniber, a s  "5". 
Thus, the effect of a single fault o r  the 
effect of a group of faults  o r  the fault 
f r e e  normal  behavior of the logic could 
have caused the r a c e  condition. 

Note that this 0 - 0 flip-flop condition was 
caused by both the  SET and the RESET input s ig-  
nals  coming up to  a logical "1" value a t  the s a m e  
t ime.  If only one signal, ei ther the SET o r  the 
RESET, then r e t u r n s  t o  a 0 s ta te ,  the  flip-flop 
will stablize to  a predictable output s ta te ,  but if 
both signals r e tu rn  to  a "0" s t a t e t h e  flip-flop 
final s t a t e  cannot be computed by the simulator.  
Either the t r u e  output will be a "I" and the com- 
plement output a "Ow, o r  vice ve r sa .  The s imu-  
lator brings this situation to the attention of the 
u s e r  and he decides if it i s  cri t ical .  If he decides 
that the r a c e  situation i s  not cr i t ica l ,  he can sup- 
p r e s s  the r a c e  monitoring for particular flip-flops 
by punching the proper  execute control ca rds .  

Saturn P r o g r a m  Execution Trace .  The Ex- 
ecutive proc;ram decodes the value of the MAR 
and pr ints  out every t ime a Saturn instruction i s  
r ead  f rom memory. The Saturn address  i s  broken 
down into th ree  subfields; the memory sector ,  
the location within the sec to r ,  and the syllable 
within the location. The cause  of the instruction 
fetch, namely the good machine o r  a particular 
fault environment i s  a lso  printed out. Thus, the 
u s e r  knows the flow path of the executed Saturn 
p rogram and whether it was caused by apar t i cu la r  
fault o r  the normal  machine. In most simulation 
runs ,  only the good machine value of the MAR i s  
actually used to  determine the "next instruction 
address",  but fault-caused values of the MAR a r e  
printed out s ince  this i s  a form of fault de tec t~on .  
Figure 7 i l lus t ra tes  a memory t race .  

Functional Memory Dumps. In addition to 
beingused a s  a logic design and evaluation tool, 
the s imulator  could aid in the debugging of Saturn 
operational o r  diagnostic programs.  It was not 
intended that the s imulator  be extensively used 
for p rogram debugk~ng s ince  i t s  7090 compute r  
execution t i m e  could be much higher than a func- 
tional operation code s imulator  ( a  normal  differ- 
ence  between a compiled logic simulator and an 
operation code simulator).  However, fault con- 
ditions will present  an environment for the Saturn 
p rogram which i s  not achievable in  most opera- 
tion code s imulators .  Also, s ince  the normal  
behavior of a Saturn program i s  not checked out 

for every possible data conibination, the possibil- 
ity of a program "bug" does exist .  To aid in the 
checking of the Saturn program,  in addition to 
checking the logic, the Executive p rograms  dumps 
the simulated Saturn rneniory before and after the 
simulation of a Saturn program.  Thus the use r  
can exanline the r e su l t s  of Saturn prograni execu- 
tion by s tor ing the resul ts  in mentory and examin- 
ing the final memory dump, 

Execu t~ve  P r 3 r a n i  Summary. 'As stated - p- - - -- 
previously, severa l  p roc rams  In the sys tem have 
produced a compiled logic simulator.  It I S  up tu 
the use r  to  control this s imulator  to obtaln useful 
information. He does t hls by punching tt~c. esecu-  
tive prograt-n control ca rds ,  which wlll specify the 
terminals  to t)e displayed, the r a t e  o r  t ime  of 
display, the number of Saturn operation cvdcs to 
be simulated, the Saturn program t o  be executed, 
the logic block initial conditions, and in general ,"  
al l  con&tions which could vary and st111 allow u s e  
of the s a m e  conlpi1t.d simulator.  A l i ~ i i i t a t ~ o n  to 
be remembered i s  that 01) to 100 terminals  In the 
logic may be displaytd during one 7090 Computer 
run. A very general  plcturc of the siniulation 
flow at execution tinie 1s S ~ O K ~ I I  111 Figure 8. 

Simulator Output. As with :my program ex- 
-. -- - - - 

cess ive  conlputer lnput 'output ol)eratiotis, includ- 
ing card  readlng, on-  llne printing, tape rc~ading 
and writing, etc.  tends to contribute signlficantlv 
to  computer running t ime. The techniques a l -  
ready stated have t ren~cndouslv  helped to  nllnintlze 
the actual in-cort. s~niulnt ion tinie. To nilniniiac 
the tinie necessary to present the resul ts  to the 
use r  the following appro:~c,h was taken: 

The Exccu t~ve  progranl wrltes a high 
density, binary output tape. This tape 
contains the values of the u5t.r s p c c i f ~ e d  
logic t~lock terminals  at use r  spec:lfied 
output tinies. P r i o r  to execution of the 
compiled s imulator ,  the Executive pro-  
g ram reads  the use r  supplied output con- 
t ro l  ca rds  and s e t s  up a table containing 
the addresses  of the locat~oris in the 
7090 Computer storage* which cont:iin tilt' 
logic block values for the specified out- 
put terminals.  

During ext.cution, this taljle is used to 
quickly locate the output terminal  values 
and move these values to  one preassigned 
output buffer. This done only when the 
Executive prograni decides that it i s  t ime 
for a use r  specified output. 

The Executive program then wrl tes  the 
output value table on tape, one binary 
record,  with no conversion to t3CD. 
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Figure 7. Memory Trace 

An Edit program follows the conlplete 
simulation run. The user specifies the 
faults (actually the environment numbcrs) 
for which the binary simulation results 
a r e  to be converted to BCD, set up in the 
proper format, and written on another 
tape ready for printing. 

The advantages of this approach a re :  

More 7090 Connputer locations a r e  avail- 
able for actual simulation since the pro- 
grams which convert the binary logic 

' block values to BCD, in a format accept- 
able to  the user ,  a r e  not in the 7090 
Computer at simulation time. 

:~llow tnorv forniat sp~cif icat ion I)y the 
uscr .  The outl~ut terminal tianlcxs, which 
a r e  either signal nanies or ALII nalncs, 
plus t hc c'olunin assilzned to that tcrn~in;il 
in the outl)ut fornlat, a re  user sprlc'ificd. 
Thus the user names and groups thc 
ternninal v:~lues in whatever forni;lt ix 
niost useful to  him. 

The uscr can sl)t,cify tha t  part ,  o r  all, of 
the environnicnts to l)c printed. T h  1nl)~it 
tape to the Edit progranl i s  saved, thus 
the Edit progranl can I)e used to print 
niore cupics, or  to print only selected 
environnlents. 

Output forniat flexibility i s  achieved. Figure 9 s h o ~ s  a snmplc outl)ut ;rttt.r Editl~ig. 
Since the Edit program can also use all The environnlent number, plus a list o f  thc faults 
of the 7090 Computer storage, it can in that environment, a r e  shown at the top of the, 



output. The  output t e rmina l s  were  defined by the 
u s e r  in  two ways: 

As ALD names (page, block, output line 
number) 

As Signal names (EPO1, EP02, etc. ). 

PRIMARY INPUT I I COMBINATIONAL VALUES I 
I I LOGIC BLOCK I 

I 1 

EXECUTIVE 
PROGRAM 
(INCREMENT TIME, 
CHECK FOR RACES, 
OUTPUT OPTIONS, 

SIMULATION 
INSTRUCTIONS 

i 

ETC .) 5- 
BINARY 
OUTPUT 

e-- 

PROGRAM 

LOGIC BLOCK 
VALUES 

4 

VALUES [fi 

SEQUENTIAL 
LOGIC BLOCK 
SIMULATION 
INSTRUCTIONS 

Figure  8. Simulation Flow 

+ 

The ALD nanies a r e  essential  in o rde r  that 
the Executive program can monitor the proper  
logic block values.  However, signal names could 
have more  ~ncanirig to  the use r .  If he specifies 
both the ALD name and the signal nanie, the Edit 
program will prlnt the signal name. The informa- 
tion on the left of the page shows the Saturn clock 
t imes  (Phase ,  Bit Time,  Clock) at which the out- 
put terminal  values were  monitored. The binary 
values in the center of the  page are read from top 
to  bottom, showing the changing values of the 
monitored terminals .  The information on the  ex- 
trerrie right o! the page is  the rilemory address  
r eg i s t e r  value, thus showing the location of the 
Saturn operation code which was being executcd 
at that tinie. 

P rogram System Modularity. F i p r e  10 -. . . - - -- - 
shows the sys t tn l  of simulator programs.  Since 
the simulator is composed of distinct progranis ,  
each having a unique purljose, it is  recommended 
that the s i n ~ u l a t o r  1.w used in a modular fashion. 
Consider the following aspects:  

The SLDA systctll provides the logic de- 
scription tlt 'rcssarv for colnpilation and 
simulation. It i s  necessary  to  run the 
"SELECT" propranl ot11y when the logic, 
a s  defined on the LMT, is  changed. 
Therefore,  the output tape froni SELECT 
i s  saved. 

The COhlPILEIi PROGRAM must be r e -  
run whericver SELECT i s  r e run  o r  when 
a different group o f  33 fault c>nvironnlents 
i s  to  be sinlulated. It would not t)tx r e run  
if different Saturn diagnostic progranis 
were  to be run with a given set of c o n -  
piled faults. 

The FAILURE INJECTION PROGRAM i s  
run only when a group of faults 1s t o  I)e 
coml)iled and sitnulated. 

The Executive program 1s run 1ncJre Sre- 
quently than the others,  s ince  this is the 
actual sitnu1;ttion. It i s  h e r r  that the u s e r  
will specify the Saturn program to be 
executed, the initial conditions for  the 
logic and the output options desired.  It 
produces a tape which contains the blnary 
s in~u la t ion  resu l t s  and i s  the input to  the 
Node-Edit program. 

The Node-Edit program i s  usually run 
once pe r  simulation, but i t  may be used 
t o  edit different fault environments or t o  
produce additional copies of s imulator  
output. 
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Figure 9. Typical Printout From Redundant Conlputt-.r Siniulatlo~l 

The two blocks in  Figure 9 labeled Fault Injcctioll i)rosraln - K 1 niirlutt: 
"Evaluator P rogram"  and "Evaluation 
Report" a r e  proposed but not yet included 
in  the sys tem.  The purpose of the Eval- Co~npi l e r  t)l'ogranl - 6 minutes 
uator would be to  determine the effect- 
iveness of the operation code diagnostics, 
a s  measured by the diagnostic resolu- 
tion, the  hard-core  requirements,  and 
the t ime  t o  diagnose. This evaluation 
would be accomplished by a programmed 
c3mparison of actual  simulation resu l t s  
against u s e r  supplied data, in a manner 
yet  to  be  defined. 

Simulator Running Time. IBM 7090 Com- 
puter ,  32K memory. (Assuming about 4,000 

v .  

iogic blocks a r e  to be s imula ted :  

Select program - 5 minutes 

Executive jlrogranl - 12  Saturn ol) c.odc,s 
per  min. Thls Includes co1n1)letr s imu-  
lation of each operation code for e a c t ~  01 
the 168 Saturn clocks per  instruction 
cycle, s u  actually 2,016 Sa tu r~ i  c v c . 1 ~ ~  

.arc! simulated per  minute. 

Edlt proyram - running t ~ n ~ e  t lr~ptnds 
upon the amount of slmulatlon output. Fur 
a shor  Saturn program (20 t o  30 op codes) 
t h c  E d l t  prorr.llrl could requlre  about 
th ree  nnnutes to edit a!l of the 33 fault 
envlronrnents plus thc good machine. 



Figure  10. Saturn-V System Simulator 
Flow Diagram 

PART I1 - SIMULATION 

Introduction 

Extensive u s e  was made of the Saturn V Sys- 
t e m  Simulator on the Saturn and re la ted  p rograms  
a s  a n  aid in evaluating computer operation in both 
normal  and faulure  modes. The s imula tor  was  
used to  verify the logical integrity of computer 
c i r cu i t s  and to evaluate proposed engineering 
changes. The computer se l f - tes t  p rogram and 
built-in t e s t  c i r cu i t ry  operation was  examined 
with the  aid of the siniulator t o  determine the  
effectiveness of the computer er ror-detec t ion 
sys t em.  Data identical t o  that available in nor-  
ma l  checkout of a Saturn computer with i t s  as- 
socia ted  t e s t  equipment was  generated by se lec ted  
simulation r u n s  and examined fo r  diagnostic con- 
tent, and additional da ta  was  compiled for  use  by 
the  opera tor  in diagnosing fa i lure  symptoms. 

The Saturn V LVDC (Launch Vehicle Digital 
Computer)  i s  a binary, fixed point, s e r i a l  machine 
emj~loying TkIR ( t r ip le  modular redundancy) to  
provide very high reliability for the  Saturn V mis-  
sion. The computer logic is organized in th ree  
identical para l le l  channels with almost 200 voting 
c i rcui ts  located in such a wav a s  to  provide 2-out- 
of-3 voting on a niodular level. As many a s  one 
th i rd  of the conlputer components theoretically 
could fai l  without causing a coniputatio~ial e r r o r  in 
a TMR machine s ince  thc effects of each component 
fa i lure  in a channel a r e  voted out I)y the equivalent 
comlmnents in the other two channels, 

Since the effects of component fa i lures  tend to 
be niasked in a ThlR nlnchine, built-in detection 
c i r ru i t ry  was instrunlented in the Saturn V corn- 
puter t o  detect disagrcenlents in ttie logic s t a tus  
of the th ree  channels and thclreby dtbtcrmine the 
reliability s ta tus  of the c.on~l)uter. These  d i sag rcc -  
nient de tec tors  were  designed a s  three-in!)ut cs- 
clusive OR ci rcui ts  and placed pr11n:~rlly a c r o s s  
the th ree  inputs of thc voters .  

An additional circuit  checkout capability was 
instrumented by providihg a simplex mode opera-  
tion in which one channel i s  forced to a logical one 
level and a second channel forccd to a logical z e r o  
level. Since the votes of these  two forccd channels 
cancel ,  the s ta tus  of tllc third ch:inncl de termines  
the logical s ta tus  o f  t hc computer,  ;inti n c-ornpon- 
ent fai lure in this cllannel can l)e detected t)y nor -  
nlal checkuut proceclurt~s used ivlttl s implex conl- 
puters.  Ally of tlie th ree  channels rnay be se lec ted  
a s  thc operat:ng ch:innel by a n ~ o d e  sc,lect switch. 

During the s u l ~ ~ e c t  studies,  sever;11 hundred 
fa i lures  were  s ~ n l u l a t e d  in thc coniputer in both 
siniplex and redundant niodes. Although the  r e -  
su l ts  represent  a relatively sm;tll s ta t i s t ica l  
sample ,  thcv were  suffic.iently c:onsistcnt to  p ro -  
vide :] high dcgl.c$t> of c.onfidcnct3 in tht, co~iclusions.  

Sirnplex Simulation -. - 

In the Saturn V d~vc>lopn~cn t  progranl ,  the 
initial phase includcd thc design, build and tes t  of 
a simplex vers ion o f  thc cornputer for t~ngincering 
evaluation. The purposts ot t h i s  pliast. was to  as- 
s u r e  the logical intt.grity 01 tl~c. Ins i c  dc~sign and 
to  determine by ~):tr:inlc'trlc mt~ ; i su rc r~~er l t s  a n y  
marginal  c h a r a c t e r i s t ~ c s  of the design. 

Siniulation of tht. Saturn V computer in i t s  
s implex mode of operatio11 provided data s in i i lar  
t o  that obtained i n  the hardware tes ts  with the  s i m -  
plex conlputer breadbo~rrd.  The simplex sinlula- 
tion experinlents fel l  into t h r e e  p r imary  a r e a s :  
design verification, tes t  program evnluation, and 
t e s t  point catalog generation. 

Simulation provides cer ta in  advantages over  
hardware  test ing for  1)relintinnry engineering 



evaluation of a new design. Some of the princi- 
ple advantages are:  

Timeliness - Simulation data can be -- - 
made available to  the designer long before 
breadboards can be built and tested. 

Completeness - The speed and flexi- 
bilitv of simulation over hardware test- 
ing allows a more thorough examination 
of the circuit operation under variable 
operating conditions. 

Access - Unlike hardware testing, 
simulation provides complete access to  
all  logical modes in a digital system for 
signal injection and status monitoring. 

Design Verification. Portions of the Saturn 
V computer, such as  regis ters  and counters, 
were simulated individually to  verify their logic 
integrity before the coniputer was simulated as 
a complete system. One of these preliminary 
simulations was a set  of race-monitoring experi- 
ments in which a latch may be set  o r  reset  de- 
pending upon marginal timing characteristics af 
the input signals. A race condition i s  defined 
here as  a (0, 0) on a complementary output nodes 
of latches or  improper outputs on other sequen- 
tial memory elements. 

In one race-  monitoring experiment, three 
race  conditions were detected in a counter design. 
One was due to improper initialization conditions 
which were corrected in the computer initializa- 
tion procedures. One was corrected by a design 
change. The third was a logical "don't care" 
condition which did not affect circuit performance 
but could result  in a false disagreement detector 
e r r o r  signal in the redundant mode o! operation. 

To verify the design integrity of the computer 
a s  a complete system, the computer logic was 
exercised in the sinlulator by a special test pro- 
gram (described in the next section) which was 
deslgned to assure  that every logic component 
was exercised at least once during each cycle o! 
the program. No improper conditions were dis- 
covered during this last phase of the design ver- 
ification simulation program. 

Test Program Evaluation. The simplex mode 
was designed t o  be a failure isolation mode of the 
Saturn V computer after detection of an e r r o r  in 
the redundant (operational) mode. The failure 
isolation capability i s  based on channel-switching 
and module-switching techniques as well a s  on . 
the analysis of data generated by the various tests.  
The computer test program was primarily 

desikmed to (1) detect logic failures in the simplex 
or redundant modes, and (2 )  generated sufficient 
data to allow a knowledgc>able ol)t.rator to diaqnost 
the failure symptoms. 

" ram The basic organi~at ion (11 the tcst pro, 
was changed from the usual boot-strap fu~ictir)nal 
exerciser to a component-oricbnted, sand\viched- 
subroutine format, The program was ge11t:rated 
by failing components systeniatic;ill~; (on  papor) 
and deriving subroutines to check t.ach and el c,ry 
failure. Instruction addresst-s were. sc.lected t u  
exercise ;ill drivt. lines i n  :ill stcbr;i::cx sec,tors 
during the progr;ini c'yrlc .  Thc conil)lttc. tcst pro- 
gram cons~sted of less t lian 500 ~ristructions. 

'rhe resultant tclst prosran1 1)rovldc'h ;idv;in- 
tages over a functional progran) althougli the 
work effort involved 111 gcwcrated i t  I.-; considcr:~l)l> 
greater.  T h e  coii~])onent orieritatlc~it 01 the 1)ru- 
gram requires fcwcr 111structi0ns. Thc dis t r i t~u-  
tion of the co111l)utcr func'tions throughout the 11ro- 
gram, rather t11n11 lumping each f u n c t ~ o ~ ~  i n  n pal-- 
ticular portion of the ~ ~ r o g r a m ,  11ruvidt~s a 1)ettt.r 
inherent capability for drtccting ~ntc,rrn~ttcnts.  

During thc .-;ul~iec.t study, - (  vc,r:~l !1111i(Ire(i 
selected and randoiiily cliose~! fa1lurt.s u.crc silli- 
ulated Ijy a 11atcI1-slniulntim tt,c'linlrlu~~ In wh!c'ii 33 
failed mach~nes \vtyrcx excrclscd sinnulta~it~c)usly. 
Only single failure5 were ilijt5ctc3d lnto r;lch Ilia- 

chine. The sin3ulntor exercisecf the ttxst 1)roKrnlll 
until the first  failure dttection. ;it whic'h time tho 
failure was flagged and s in~ula t lo~i  of thc fl.igg:.c~tl 
niachine discontiiiucd. Tlic .siniulator t Iicn COII- 
tinued exercis~ng t hr, renlalning (unf lap.~r,d) III;I- 
c h n e s  un t~ l  the ]lest lallurt' oc,c,urred. Tills pro- 
cess  was repeated until :ill fn11ul.c~ ticid 1)t.t.n 
flagged o r  (in the c.:lse of undcltt.ct t ~ d  l,iiltircs) U I I -  
ti1 the test program li;~d !wen coml~letc,d. 

Of the injected failurrs,  lcss r i i n~~  10 ~)crc.cnt 
were undetected by t h o  test l)rdSrarn. An ex:tillirl:t- 
tiori of the undetected failures disclosed, huwevtxr, 
that the niajority o f  them would not c:iust ;I 1o::ic. 
failure even in the sirnplc~x mode. hl:rny ot the un-  
detected failures involved logic tlcnicnts wh~ch 
were included 111 thc computer ~nstru~rlent;~tlt ,n to 
insure against possil~le ~n:wzinal conditions, e s -  
pecially in the are:) of tinning. Otliers il~volved 
loglc elements included to miniriiize I1owc.r con- 
sumption, or  which were simply redundant- - rcsl-  
dues of design changes that eliminated their func- 
tions but which were retained to mililniize clilinge 
costs. 

Alter these tyl lcs  of f311ures h e r e  > C I . C C I ~ P ~  

out, less than one percent of the s ~ n ~ u l n t ~ t i  i,111ures 
remainetf unaccou~ited for,  rtssult~nr: ~n .I l ' i~lurc 



detection efficiency of over 99 percent for  the 
s implex computer j tes t  p rogram system.  Changes 
i n  the  t e s t  p rogram were  made t o  pick up most of 
these  undetected fa i lures .  

A limited analysis of simulation resul ts  was 
performed t o  determine whether sufficimt infor- 
mation was generated by the t e s t  to  enable an 
operator  to diagnose the e r r o r  symptoms. Al- 
though i t  was concluded that diagnosis was feas-  
ible, the conlplexity of the failure isolation pro- 
blem appears  t o  preclude extensive precomputed 
corre la t ion of symptoms and faults  in  the simplex 
mode. 

Figure  11 i s  a curve derived from a typical 
simplex simulation. It i l lus t ra tes  the relation- 
ship between the percentage of detected fa i lures  
injected into the  s i n ~ u l a t o r  and the portion of 
t e s t  p rogram completed. The high r a t e  of failure 
detection during the ear ly  portion of the program 
can be attr ibuted to (1) the necessarily high pe r -  
centage of operation codes used ear ly  in the pro- 
g ram,  and ( 2 )  the existence of program-indepen- 
dent e r r o r s .  The curve shows that the program 
could be  considerably shortened if e r r o r  detection 
was the only requirement.  For  example, the pro- 
g r a m  could be truncated to  the f i r s t  40 percent of 
the instructions while maintaining a 90-percent 
e r r o r  detection capability. This character is t ic ,  
indicated by the  dotted lines in the figure, i s  ap- 
plicable to  the construction of in-flight check- 
out p rograms .  However, the full p rogram i s  de- 
s i r ab le  f rom the standpoint of generating diag- 
nostic data, and i t  provides better e r ro r -de tec t  - 
ing efficiency. 

AMOUNT OF TEST PROGRAM EXERCISED (PERCENT) 

F i ~ g r e  11. Typical Simplex 
Simulation Curve 

Tes t  Point Catalog Generation. The s imu-  
la tor  was used t o  generate a t e s t  point catalog 
containing the  logical values of 90  selected tes t  

poltits at eacll col11l)utcr clock t ime  whlle tho 
siniuldtor executed the 480 ~ns t ruc t lon  test  pro- 
grani. The complctcti catalog cotitalned lilore 
than 15,000 loqic values. The ualuc of thls cata- 
log for lal)orator\ chct kout o f  thc comjtuter 1s 
that the st'ite of tile com1)uter 1s predetermined 
at 90 nodes in i t s  org'lnlL:ition for a fa i lure-f ree  
condition. Coniparison of test  data itencrated In 
laboratory checkout ot the actual coml)utr.rs wlth 
the tes t  point cat,~lo;r has pi oveli helpful 111 dia(:- 
nosing syniptoni\. 

Redundant SI mulrlt ion 
- -- - - - - - - - - 

Tiit> redundant nlodc was designed to 11c tlic, 
operational '111~1 !':lilure-detectloti tilotic, o f  the 
Saturn V conlputc,r. Again, :is in ~ h c  sii~!j)lt~x- 
mode simulations, tllc cornl)uter 1oj:ic \\,as exe r -  
cised Ily the test  progralll t o  determine tlif. effcc- 
t iveness of tile failurc dotcc~ion ful ic t~f~i l .  In i t s  
redundait mode, however? tllr con~pu tc~r  provides 
e r r o r  indications froni tl~cl i~uilt-111 dts :~; , rce~~lc~nt  
detector c i rcul ts  to  : i ~ d  111 dettcting and tliagnos- 
ing e r r o r  syml~tonis .  

In addition to cvalu;itinp, thtl ellcctlvents,i o! 
the test  1) rogra11i -d1sag1~(~~~111(~1i t  ctetc~c'tor' s y s t c n ~ ,  
the sinlulator W;IS u s c ~ l  ( (2  d c t ~ r  ~ii inc t t ic '  o j~t in iul i~  
number :Inti pl:tcsen!c,rit 01 d i saC~.c~e~~i t i l t  detectors 
in the conq)uter orga~liz,ition. S ~ n ~ i l a ~  s in~ul : t t io~i  
e .y~er iments  were pcxrfoi.nltd to d c t t r ~ ~ i i n t ~  the 
optiniuni plac'crnent oi voters in tl:' 7'hlIt l o ~ i c . .  

Otie 01' tilt) ril;~jor ; ~ ( i v ; ~ n t : ~ ~ e s  uf :I ThTR or$iti- 
ization i s  its al)llity to pcrforlii In tht' I)rrscricc, of 
internii t te~it  conlj)oncnt :ind i l l terco~ir ic~ct io~~ i.li!- 
u res .  If an i ~ ~ t e r l i l ~ t t c i ~ ~ t  1:iilurc oc.c,urs In one of 
the ttlrec ThIR chatinels, ~ t s  t \ f f ( . c . t s  nrl, not o111y 
nlaskecl bv ttlc voting fu~~( . t io l i ,  1)ut tiif' c.unlput~1. 
rec:overs ~ t s  i~l i t ia l  (unfa11t.tf) stntc itttcr tI!e per .~od 
of the internllttcnt has t.nd(lcf. An in tc , r t~~ i t t c~n t  
failure :~nalys is  w a s  pcriorllicd wit11 the aid oi the 
Saturn V sitilulator to t l c t ~ r l l ~ ~ n e  tilt c i f cc t~vc~nc~ss  
of the coniputcr dctcctiun s y s t c n ~  111 detc~ct~n;r  
various c l a s scs  of ~n t f . r~~ : i t t en t  f:*ilurr~s. 

Detection Systcslil E:v:~luatio~i. AltllougI! the 
.- -~ -- -- . 

redundant mode was dcsicrlcd to.-l)c, t lie opcr;itiol:al 
and failure-tletection ~ n o d c  of the Sntur l~  V co1:i- 
puter,  avai1al)llity of a sufficient :tnlount o f  fal lurc 
data based on t .rror-  rno~iitor indicatioris appears  
to  allow a high degree of failure iso1;ltion. Sevcrai  
hundred fa i lurrs  wcrc  simulated usirtg the> i~atcfl- 
silnulation technique already described. Again, 
as i n  the siliiplex- mode simul,ttion, only single 
fa i lures  were  injectrd into each siniulated ma-  
c h n e .  Unlike in the sinlplc~s siriiulatio~i, however, 
each failed nlacl~inc) was ese rc i sed  for the duration 
of the tes t  1)rogram. A s  a result ,  a varying e r r o r -  
monitor pattern was generatt!i: for eacti fai1r.d mi- 

c h n e .  



Again, of the several  hundred failures in- 
jected into the computer logic, less  than 10 per-  
cent were undetected 17 the e r r o r  monitors. As 
in the simplex sinlulation, these undetected fail- 
u res  involved either redundant logic elenients o r  
those which were included in the computer de- 
sign to conserve power o r  insure against mar- 
ginal conditions. A 99-percent failure-detection 
effectiveness was obtained after these types of 
failures were screened out. 

The approach to failure isolation a s  examined 
in the redundant simulation is based on correla- 
tion of logic failures with e r r o r  monitor patterns, 
pattern changes, and sequence of pattern changes. 
The simulation data indicated that about 75 per-  
cent of the failures could be isolated to a single 
logic module through examination of the e r ro r  
monitor patterns. About 90 percent could be iso- 
lated to one o r  two modules. In addition, exam- 
ination of certain pattern characteristics--such 
a s  fixed-or-variable pattern, number of pattern 
changes during the test program, and sequence 
of e r r o r  monitor changes as  the test program 
exercises various portions of the coniputer logic 
provides an e r r o r  resolution of one module for 
alniost all of the simulated failures. In those 
cases  where the test resolution exceeded one 
page, channel and,'or module switching would 
provide the additional resolution desired. 

Another important conclusion fro111 the com- 
puter simulation i s  the apparent feasibility of 
constructing a diagnostic test program in which 
program branching i s  based on e r r o r  monitor 
indic:ltions. The main program would be a short 
logic exercisor designed for efficient e r r o r  de- 
tection only, and would operate periodically dur- 
ing the operational periods of the coniputer mis- 
sion. If no e r r o r  i s  detected, little operational 
t ime i s  consumed by the test. But if an e r r o r  is 
detected, the program will branch to specific 
subroutines determined by the e r r o r  monitor 
patterns. 

Figure 12 i s  a portion of a typical prlnt-out 
from the simulation of a redundant computer. 
The phase, bit, and clock time listed in the left- 
hand column i s  the instruction fetch time, but the 
simulator could be rnstructed to print out the 
actual t ime of occurrence of the e r r o r  signal in- 
stead. The e r r o r  monitor signals a r e  represented 
by the 13 EP (e r ro r  position) colun~ns, and the 
instruction sector and address location by the 
right-hand columns. 

The simulator was instructed to print out a 
new line every time an EP location changed state. 
Consequently, only a small portion of the test 
program i s  listed in Figure 12 .  The particular 

failures simulated in this run affected e r ro r  moni- 
tor positions 1 2  and 19. Diagnostic inforn~atiun 
i s  contained not only in the generated E P  s ig~ials  
but also in the instructions associated with a 
change of state of an e r ro r  inonitor and in the 
total number of ch;ulges in state,  i. e .  , with the 
entire E P  pattern. 

Table I represt?nts the I-t!sults of another rt!- 
dundant s in lu la t io~~ in which tlr' sinluli~tcd failurcs 
a r e  associated with logic pnges 1 and 2. anti 1~1th 
e r ro r  monitors 1, 2, and 3. Ali cx:tniinatio~~ t ) f  
the faiIure,/nionltor corre1:~tion :~lonr. :iynorlng 
the addttional d~:rgnostlc, ~nfortili~tion i:ivc~l by the* 
instructions and tinle stquenc.c,c nssociflted u.ith 
state changes) indicates :I h igh  clc!.:rec, of rc~solu- 
tion between the two pages. Error  nlonitor cow- 
I>inations EPl  ,1lollt, E:I'l EP2:  and E P 1  EP3 
were associ~ter l  !\.it11 f:~ilurc..: in,)c$ctt~cl c)ntc.~ l);lycs 
1, vrror  nio:litor c'onl1)inittions Is:P2 ;llonc, ; ~ n d  E P l  
EPS wcre :~ssoc~: i t t t l  wit11 failures , ) ! I  p~v,e  2: .tnd 
e r ror  niolut or EP3  ;~lon;x indlc:ated I i.11 iurt' 
eitt1t.r page 1 or 1);ific' 2 .  E';iill!rcs t l :us isolatcc! 
to page 1 rryrcst-t~tr)ti 39 percrwt of ttie sir?iul;~tc'd 
failures, thosr~ 1sol.itc1ti 1 0  ) ) : I . (~  2 rc,lirc.sentcatf 313 
percent, and tilost2 vi.l?ici! c.ould not 1.w resolvt;ti 
I)etwcc~li page. 1 I,!. \);I::, 2 rcy:'c~sc:~itc'd 25 1)<,rc.~~rtt. 
Howt?vcr, t lie 25 ~)cl.(.e:it of ~itirc.solved la] 1~11- t ' s  

could then be rc~solt.c~d !;y an c>.;.~!uin;ltion of' tile 
full pattern equ~valcnt l o  that i llust r.ttcd I n  F i ~ u r c  
12.  

Many differerlt typt's o f  synipto~nr; \rere pro- 
duced as a byproduct of tht ,  s i n ~ u l a t i o ~ l r ~ s l ~ o r i n ~ t ~ n t s  
All of these were itn;ily/ccl t o  rletcrniinc' thcil- 
individual and cotill)lned valuc in iduntifyin; logic. 
signal failures. Tai~lc  I1 glrles n suniniary o f  
these results. Sig~lnl fa~lurr '  idontifir:ltions ;lrcl 
based on the rearrai~gcd rii:l;1-diag1lostic !~iotiulc 
configuratio~:. Only iinique sign:11 itic?ntificat~clns 
were tabulaterl. 

Disagrceme~it Dctc'ctor Pl;ic*c.nlr.nt. 'IVw dis- 
- - - -. . - - - . . . - -- - - . -- - . - 

agreement detection function was sinlr!latetl I)> 
coniparing the logic status of selected nodt2s in 
the channel containing Lhc Injected f;c~lurcs \?.ith 
corresponding nodes i n  a referctlce channel. 
Simulated renioval or addition elf tlis;+grcenlc~lt 
detectors was nccon~plishcd by r emor ;~ l  or  :iddi- 
tion of monitorini: nodes from the selected nod(. 
listing. 

*Just a s  packaging of co~nputer componets on 
replaceable modules partitions the c.olnputer 
physically, placement of dls,~grec>tnt nt detc>c,tc)rs 
within a nlachine organlzat~on par t i t~ons  the corn- 
puter diagnostit.ally . 

At present, no clearly dc~llncd ground rules 
exist wh~ch can lje appl~ed to opt~nlallv partition 
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INSTRUCTION 

Table I 

RESULTS OF A TYPICAL REDUNDANT 
COMPUTER SIMULATION 

electronic units into diagnostic modules. Logx 
simulation has been used, instead, t o  determine 
the characteristics of failed machines and the . 
nature of e r r o r  propagation in a digital system 

EP 1 

EP 3 

to provide data from which such ground rules 
might be derived. Two simulation experiments 
were performed during the study to t race failure 
propagation through the computer logic. Sixty- 
six simulated failures were injected into repre-  
sentative voter interfaces and e r r o r  propagation 
was monitored by disagreement detectors placed 
at the input to  every voter and at other selected 
logic nodes within the four modules of the AES 
computer. These nodes were selected on the 
basis of the total number of signal inputs to logic 
latches. 

These experiments provided sufficient data to 
partition the computer into diagnostic modules al- 
though no change in the physical packaging of the 
computer modules was considered. The arithme- 
tic nlodule of the computer was partitioned fur- 
ther into three diagnostic modules, a s  was the 
control module. A comparison of e r r o r  signal 

EP  2 

Page 1 
12% 

EP 3 1 

Page 2 
13% 

Pages 1 and 2 
25% 
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propagation between four and eight diagnostic 
nlodules is shown in Table ILI for sample failures. 
Note that there i s  less  likelihood of identical 
failure symptoms occurring for failures in each of 
the four physical modules if the additional diag- 
nostic partitioning i s  instrumented. For example, 
a failure in physical module 2 and another in phys- 
ical module 3 caused identical failure symptoms 
in physical modules 2 and 3 when the computer 
was partitioned diagnostically into four modules 
but no identical failure symptoms when the com- 
puter was partitioned into eight diagnostic mod- 
ules. 

Table I1 

SYMPTOM - FAILURE CORRELATION 

The extensive propagation of e r r o r s  through 
the computer presented the greatest problem in 
isolating failures to a replaceable module. Prop- 
agated e r r o r s  tend to be sensed by many detectors 
even though these detectors a r e  not directly as-  
sociated with the logic containing the failure, thus 
masking the source of e r r o r  by "overdetection". 
An approach suggested during the course of the 
study of clocking the detectors only at the time 

Failures Identified 
(percent) NO. 

1 

that the associated logic i s  being used was found 
to require too much additional timing circuitry to 
be practical. Blt gates, phase gates, and in some 
cases even program step identification were found 
to be required to accomplish the desired detector 
timing. 

Observed Symptoms 
in Logic 

Table 111 

1 

2 

3 

4 

5 

ERROR SIGNAL PROPAGATION 

Firs t  Program Step of 
Detected E r ro r  

Final E r ro r  Pattern 

Time of Firs t  Detected 
Failure 

Final E r ro r  Pattern 

Flrs t  Three Program 
Steps of Detected 
E r ro r s  

Frrst Three Program 
Steps of Detected 
E r r o r  and Final E r ro r  
Pattern 

First  Program Step at 
Detected E r ro r  and 
Final E r ro r  Pattern 

F i r s t  Program Step of 
Detected E r ro r ,  Final 
E r ro r  Pattern, and 
Phase, Bit, Clock 
Time of Firs t  De- 
tected E r ro r  

The Saturn-V disagreement detectors a r e  
clocked every like clock time (for example, any 
one disagreement detector may be clocked every 
x-time, another every y-time, etc. ). As a re -  
sult, detectors a r e  sensing for disagreements 
between the simplex modules of TMR tr ios  even 

Functional Partitioning 

at times when those  nodules a r c  not being used 
by the program. 

Interface 
Failure In 

Module 

Timing 

1 

2 

3 

4 

10. 5 

26.3  

28. 1 

20.2 

63 .2  

96. 5 

63. 1 

82.4  

Er ror  propagation has also been the major 
problem in attempting an optimunl placement of 
disagreement detectors. Although failure isola- 
tion to a replaceable r~lodule level has been found 
to be feasible in the computer by reorganization 
on a functional basis and by redesign of the 
Saturn-V disagreement detectors, means must be 

- 

Symptoms Will Occur In 
Functional Modules 

Diagnostic Partitioning 

4 

4 

4 

Interface 
Failure In 

Module 

Timing 

1 

2 

3 

4 - 

3 

3 

3 

3 

1 

1 

1 

1 

2 

2 

2 

2 

2 

Syml~toms Will Orcur  111 
Dynanilc. hlodules 

1 2 

2 

4 

4 
- 

3 

2 3 4 5  

-- 

5 

4 5 6  

2 3 4 5 6 7 8 :  

5 

I 

6 

7 

7 

i 
8 

8 
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found to prevent the e r r o r  from propagating from 
one module to  another and thereby destroying the 
isolation ( a s  in the case of timing signals). An 
approach was investigated in which each of the 
logic modules was partitioned into two o r  more 
diagnostic sections by placing additional detect- 
o r s  internal to the module to  provide required 
isolation information. 

The logic simulator was revised t o  allow 
flexible diagnostic partitioning and used to pro- 
vide data for optimum placement of disagreement 
detectors. 

A logic simulation was designed to determine 
the optimum placement of disagreement detectors 
in the TMR logic. A total of 32 voters were 
failed and the failure data analyzed to determine 
the logic level to which the failures can be local- 
ized. The specific voters to  be analyzed were 
chosen a s  representative of the various types of 
combinational and sequential circuits which would 
be "inputted" by the voted signals. The instruc- 
tion and computer time when any of the n~odule 
interface disagreement detectors sensed a failure 
was tabulated. An analysis of the simulation re-  
sults showed that: 

.Fifty-three percent of the voter failures 
could be identified by knowing which dis- 
agreement detectors had sensed the 
failed conditions. 

Forty and seven tenths percent of the 
voter failures could be identified by 
knowing the program instruction and 
computer time of f i rs t  detection in addi- 
tion to  which detectors had sensed the 
failed conditions. 

Six and three tenths percent could not be 
identified. 

The partitioning of the reorganized conlputer 
resulted in using approximately 120 voters at the 
module interfaces. The simulation described as-  
sumed disagreement detectors at the input of each 
voter and nowhere else. The 6 .3  percent of the 
voter failures which could not be identified was 
due to e r r o r  propagation within a module and sig- 
nal feedbwks between modules, resulting in iden- 
tical e r r o r  patterns for different failures. 

This problem was alleviated by placement of 

additional disagreement detectors within the mod- 
ules and at the module interfaces. To determine 
the number and location bf the intramodule detect- 
ors ,  the four conlputer modules of the reorgan- 
ized computer were divided into equivalent diag- 
nosable subunits by physical count of the signal 
inputs to each of the latches and tratches in each 
of the modules. Table IV summarizes the results 
of this count and indicates a measure of the un- 
balance of signals and voters (disagreement detect- 
o r s )  in each module. 

Table IV 

SIGNALS, LOGIC, AND VOTERS 

Of particular interest i s  the ratio of the total 
number of signal inputs to the total number of 
voters (or disagreement detectors since the DD's 
were located at the voter inputs). T h s  ratio was 
found to be 24:l. Using this fibmre a s  the basis 
for organization of equivalent diagnosable sub- 
units, approximately 21 additional disagreement 
detectors were required. Their distribution and 
effect on the detector-to-signal ratio i s  shown in 
Table V. The ratios a r e  average values, which 
may be misleading because the additional de- 
tectors were chosen 3n the basis of individual 
circuit sizes within the module and on the basis 
of use and criticality. The effect of these addi- 
tional 21 disagreement detectors was determined 
by simulation. 

Module 
Slgnal 
Inputs 

459 

1213 

Number Name 
Latches, 
Tratches 

2 7 

7 4 

1 Rilenlory and 
Read 

2 Arithmetic 

3 Control T l l n i n ~  387 

Voters 
(DD'S) 

17 

9 

3 4 

69 

13 

217 

4 Operation and 
Decoder 

2 6 

4 5 

2 3 

120 1 
1 

720 

Timlng(D1s- 1 135 
tributed 
among four 
Modules) 

Total 2914 



Table V 

ADDITIONAL DISAGREEMENT DETECTORS 

Based on component packaging density and 
intermodule wiring considerations,  the Saturn V 
computer was  repart i t ioned into four modules. 
Approximately 105 disagreement  detector t r io s  
have been defined for intermodule fa i lure  detec- 
tion. Table  VI shows the distribution of these  
detec tors  in the four modules. 

Table VI 

Module Baslc  
Ratio 

27.0 

134. 8 

14.9  

16. 0 

Number 

1 

2 

3 

4 

Arlthnletic 

Address  Reqis ters  

4 Control 30 

Name 

Memory and 
Read 

Arithmetic 

Control  
Tlming 

Operation and 
Decodlnq 

.DISTRIBCTION O F  DETECTORS 

Voter Placement.  The voting function was 
s imula ted  in the  Saturn V sinlulator by forcing the 

Added 
DD's 

1 

16 

2 

2 

Module 

logic s ta tus  of se lec ted  nodes in the channel con- 
taining the injected fa i lures  to ag ree  with c o r r e -  
sponding nodes in a reference  channel. E r r o r  
propagation is thus allowed only f rom the  point of 
fa i lure  injection to  the f i r s t  "voter" node in the 
data flow. 

hlodified 
Ratio 

25. 5 

48. 5 

13.8  

15.3  

Optilnum placement of voters  for res t r ic t ing  
e r r o r  propagation ( a  reliability factor)  o r  for  
diagnostic capabil i t ies can therefore  t)e investi- 
gated with the  aid of the sys t em s imula tor .  This  
i s  an  a r e a  which was not thoroughly examined in 
the simulation studies.  
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Function 

Intermittent Failure Analysis. Several  ex- 
~ - -- -- - - - - - 

per iments  were made to  determine the sensitivity 
of the computer luclc to intermittent  faults. 
These  intermittcwts were  made to  vary in dura-  
tion frcinl 500 nanoseconds (one clock t ime)  to 5 
milliseconds. These  internlittent faults were  
specified at randomly chosen points'of combina- 
tional and sequential logic c i rcul ts  in the  ar i th-  
metic-instruction and multiplv-divide units. A 
total of 535, 798 intermittent  f:lilures were  s i n ~ u -  
lated in the logic to give a rea l i s t ic  stat ist ical  
sample.  

DD's 

For each ~nter i l t i t tc~nt ,  a record  h a s  kept o f  
the tinic of e . ~ c h  de tec t~on ,  ttw number ol dfstec- 
tions ,and fn i lur t~s  which caused a difference lroln 
a "qsod" machlne. From these  r ecords ,  the 
p r ~ b a b l l ~ t y  of detection was calculatcd. Table 
VII suinnlarlLes the r e su t t s  ot  the si i~nul~it lc~n. 

'Table VII  

DETECTIOX O F  INTERILIITTENTS 

Logic 
Sinlu- 
lated 

Mult- 
Div 

This tat~ulntiun shows that many internlittent 
fai lures will tia~;e verv little o r  no effect on the 
co r rec t  operation of the. logic c i rcui ts ,  i. i.. , 8. 3 
percent of the total fai lures injected would cause  
the conlputer to p e r f o r n ~  incorrectly.  An analy- 
s i s  showed that this  "nlasking" of f a ~ l u r e s  1s p r i -  
mar i ly  due to the  l a rge  use  of conli)ln;it~onal logic 
and the method of clocking the "AND" gates which 
feed the sequential c i rcui ts .  This tablc a lso  s h o w s  
the large  difference in e r r o r  detection sensitivities 
between the two modules, and suggest  a need f(,r 3 

Illore efficient partitionin!: in the modules. 

Data derived frorn the s i m u l a t ~ o n  runs  was 
used to calculate the detection efficiencies of the  
disagreement detec tors .  F i p r e s  13 and 14 give 
thls plot of detection l~robabi l i t les  v e r s u s  fa l lure  
duration. The fiqures in Table VII a r e  hcavily 
welghted by a larqe  number of shor t  failures, 
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Figure  13 .  Detection Efficiency 
(By Conlputer Disagreement Detectors) 

Figure 14.  Detection Efficiency 
(By Coniputer Disagreement Detectors) 

leading to  a low average detection probability. 
Figures  13 and 14  indicate these  probabilities for 
var ious  lengths of interniittents. The "best" and 
"worst" c a s e  detections a r e  shown to  give the 
sp read  in detection efficiencies.  

A summary  of the resul ts  obtained in s imu-  
lating intermittent failures i s  given below: 

There  is a smal l e r  probability of detect- 
ing intermittent fa i lures  in combinational 
(AND) type c i rcui ts  than in sequential 
( latch) c i rcui ts .  

ha.d intermittents lastin!: for one com- 
puter word t ime. The detection probabil- 
i!y i s  low because of the fact that many 
internlitterits have no effect on the logic 
(they do not make the "failed" machine 
different froni a "good" machine) and 
further,  because detection i s  program 
dependent, in that the logic must be ex- 
erc ised by appropriate instruction and 
data for the failure to t ~ e  ind~ca tcd  by a 
disagreelnent detector. 

e ' r h e r ~  is a wick: variation of e r r o r  detec- 
tion s t~nsl t iv i t ies  between modules. This  
sensitivity c-ould be equalized to provide 
r i  more  efficient e r r o r  detection organiza- 
!Lon. 

For the fault locations chosen and the 
programs c lccutcd,  the faults caused 
block outl~uts to  d ~ f f t  r f rom those of the 
unfa~led ~n'ichine only about 10-20  percent 
of the t ~ n i e .  

For these locations and programs ;I fault 
c,x~stln< for 0. 5 n-ircrosc~cond (ont cloch 
t ~ n l e )  u ~ s  1 irtuallv undetectable: one 
exlstinl: for 0. 5 to 1 ~nl l l i second was 
about 50 percent likely to  be detected: 
one existing tor 4 tu 5 n l~l l i seconds  u a s  
almost 100 percent likely to t)e detected. 

The dlsaqreenlcnt detectors a r c  clockcd, 
thus having a 25 percent duty cyclc. 
C h a n ~ i n q  the sin:ulation mude! to give a 
100 percent duty cvclc made no signlfi- 
cant ~ l n ! ~ r o v e n ~ e n t  In failure-detection 
abllity In these experilner~ts.  

During a1;alysis of the resul ts  uf the mul- 
tiply-divide e x t r c i s c  prograrli used for 
these  run>,  it was discovered that the nia- 
c h n e  w~)uld fa11 to rt,cognize a M P Y  o r  
DIV instruction given durlng the ins t ruc-  
tion cycle in u,hich the resul ts  of a pricir 
RilPY o r  DIV would normally be s tored;  
for exaniple, by the sequence CLA, M P Y ,  
CLA, SHF, ADD, MPY.  Such an instruc,- 
tlon sequence would not normally be pro-  
grammed,  but could occur In ;] dlagnostlc 
exercise  program like this one. When the 
hardware lnachlrle was found to ag ree  
with the slmul;~tion,  analysis showed the 
timing relation w h c h  caused the action. 

There  is a very smal l  chance of detecting Acknowledgen~ents 
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