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DESIGN AND USE OF FAULT SIMULATION FOR SATURN COMPUTER DESIGN

F. Hardie
R. Suhocki

International Business Machines Corporation
Federal Systems Division
Electronics Systems Center
Owego, New York

PART I - SIMULATOR

Introduction

The Saturn Fault Simulator is a system of
programs to be executed on an IBM 7090 computer.
The objectives of this simuldtor were:

e Verify the logic design of the Saturn
computer

® Analyze the effects of solid plus inter-
mittent faults

] Evaluate the effectiveness of the Saturn
Diagnostic programs through fault simu-
lation

e Evaluate changes in design before com-
mitment to hardware.

The significant characteristics of this simu-
lator are:

e  Full Central Processing Unit simulation
while containing in one 32K memory the
complete compiled logic simulator and a
simulated Saturn memory module plus
interface data

e  Fault simulation capability, including
single or multiple, solid or intermittent
faults

e Approximately 2, 000 Saturn clock times
are simulated per minute

e User-specified output options plus an out-
put editing program which controls the
mass of simulation output

e Solid Logic Design Automation system
used to define the logic to the simulator.
Simulation is carried out at the basic
AND-OR-INVERT level rather than at a
functional level.

To achieve a practical simulation speed, the
following was accomplished:

e A compiled simulator rather than an in-
terpretive type was chosen, This com-
piled simulator is completely contained
in core storage

e A technique called "Parallel Error Simu-
lation" allowed simultaneous normal
plus 33 fault simulations at no decrgase
in speed

e A technique called "Stimulus Bypassing"
was developed. Essentially, this means
that groups of compiled 7090 instructions
will not be executed if specific conditions
exist

e Program system modularity was estab-
lished to allow the flexibility of using only
the routines which are necessary 1n a
given run.

The system allows the user to specify up to
100 source nets or test points which will be moni-
tored during simulation., The binary values for
these points will be printed out according to a
variety of options.

This paper consists of two parts. Part I de-
scribes the programs, while Part Il describes
the application of the simulator. The paper de-
scribes the programs in the same order that they
would normally be executed, as shown in Figure 1.

The Program System

The following features of the system will be
described:

e Data Collection (SLDA)
e Logic Selection
[ Fault Injection

e Intermittent Fault Analysis



e Logic Compilation

e Simulation

e Race Monitoring Feature

e Saturn Program Execution Trace
e  Functional Memory Dumps

e Executive Program Summary

e Simulator Output

e Program System Modularity

e Simulator Running Time.
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Figure 1. General Flow of the Saturn

Fault Simulator

Data Collection. The SLDA system is used to
record the logical design of the Saturn computer.

While this paper does not intend to delve into a
detailed description of SLDA, the general flow, as
it pertains to the Saturn Fault Simulator, is dis-
cussed.

The logic is first manually drawn on SLDA
sketch sheets,  Keypunch operators then convert
the sketch sheet information into SLDA punched
cards. Using these cards, SLDA produces a Logic
Master Tape (LMT) which now serves as the basie
source of logic input to the Saturn Fault Simulator.
SLDA also produces drawings called Automated
Logic Diagrams (ALD) which portray the logic as
it is defined on the LMT,  Figure 2 shows the data
collection system,
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Data Collection System
Logic Selection. The "Select” program is that
part of the simulation system which interfaces with
SLDA. "Select" has the capability to read the
LMT, extract user specified logic blocks from it,
and prepare these blocks tor logic compilation,
A key problem in logic simulation is attacked by
our Select procedure: 1.e., the logic must be
simulated in the same fashion, or order, that the
actual information is propagated in the Saturn
computer, If this logical ordering is not achieved
the simulator would have to loop, or repeatedly
simulate the logic while holding time constant,
until correct propagation has occurred. "Looping”
the complete Saturn computer logic would greatly
increase the IBM 7090 Computer running time,
which increases the cost of using the simulator.
To attack this problem the logic is "selected” from
the LMT in a specific sequence. DBlock functions



are selected in the same order that they would
perform their functions in the computer. At pre-
sent, this a man-machine procedure. The cor-
rect order [or the logic block functions is manually
determined and specified to the Select program,
which then performs the desired logic selection
and logic ordering. The general order of logic
selection for the Saturn computer is:

e Timing logic
e Combinational logic (AND, OR, INVERT)
e Sequential logic (latches, tratches, etc.)

The end result of the Select procedure is a tape
which contains all of the logical data necessary
for a properly ordered, compiled simulator.

Fault Injection. One reason for the success
with which faults may be specified by the user,
A fault may be thought of as the transformation
of one logical function into another. A fault could
be considered to be a terminal node of a logic
block stuck at "'logical one” or "logical zero™. If
the user were forced to re-define the logie to
simulate a fault condition, he could be reluctant
to make extensive use of a fault simulator. Con-
sider a complex Boolean function logic descrip-
tion. The simulation of a fault would require that
the Boolean equations be studied and changed to
reflect the desired fault condition. In contrast,
the approach taken in the Saturn Fault Simulator
is to maintain a constant, fixed logic description
(the LMT), Faults are then specified by the user
in a very simple manner. He merely specilies:
e The ALD page upon which the failed
terminal is shown

e The logic block serial number of the
tailed terminal

e The line to or from the logic block which
represents the failed terminal

e The logical type of fault (0 or 1),

Figure 3 portrays a typical ALD logic block and
the desired fault situation,

The characteristics of this method of fault
simulation can be summed up as follows:

e The fault injection procedure is separated
from the logic description part of the
system. A complex logic description
does not have to be redefined by the user.

Figure 3. Fuault Injection Example

Fault injection is separated from the
logic compiler program, Thus the same
simulator can be used for either normal
design analysis or fault simulation ex-
periments,

The faults to be simulated can be the
terminals of any logic block on an ALD,
stuck to either logical one or logical
zero,

Intermittent fault analysis is performed
at simulator execution time, Since the
intermittent fault can be considered to be
a special case of a solid fault, intermit-
tent fault specilication is the same as
solid fault specification as far as the
user is concerned,

Single faults or multiple faults can be
simulated. Up to 33 single faults or 33
groups of multiple faults (up to 25 faults
per group), plus the normal machine,
can be simulated at one time in the IBM
7090 Computer, with no increase in run-
ning time over the single-fault simula-
tion case, This is pussible because of a
technique used 1n the programs called
Parallel Error Simulatiun.




In paralled error simulation, each bit posi-
tion in the 36-bit 7090 computer word can be used
to contain the binary value of a specified fault or
a specified group of multiple faults. In actual
practice, the Saturn design dictated that three its
be reserved for the normal (unfailed) machine
and the remaining 33 bits used for fault simulation
The mechanics of parallel simulation can be il-
lustrated by an example of single-fault simulation.

Consider a three-input AND logic block. It
is desired to "fail" the first input to "1", It is
also desired to "fail” the second input to 1", yet
keep these faults independent from each other,
They are single faults in this example, not mul-
tiple faults. The 7090 FAP (FORTRANAssembler
Program) instructions for this block would be as
follows:

CAL INPUT 1 Pick up first input

ORA MASK 1 "FAIL" it

SLW ouT Save "FAILED" input
CAL INPUT 2 Pick up second input
ORA MASK 2 UFAIL" it

ANA. INPUT 3 Perform "AND'" function
ANS  OUT Perform final "AND"

function

In this example, assume that the three inputs
to the block have the binary values 011, that is:

INPUT 1 (Unfailed) = 0
INPUT 2 (Unfailed) 1
INPUT 3 (Unfailed) = 1
Since 36 bits are used for each input in our

example, the following bit assignment is made
(numbering bits 1 through 36):

BITS 1,2, 3 --- normal machine value

BIT 4 --- INPUT 1 failed to 1

BIT 5 --- INPUT 2 failed to 1

Thus, in the example, the following values
exist prior to simulation:
INPUT 1 - 000000 ---0

INPUT 2 - 111111 ---1

INPUT 3 - 111111 ---1
MASK 1 - 000010 --- 0
MASK 2 - (0CCl10 --- 0
ouT - XXXX --- X (Don't care)

If we carry out the simulation of the failed
logic, showing the values of the accumulator and
"OUT", we have:

Compilation Accumulator Out
CAL INPUT 1 00000------- 0 XXX ---X
ORA MASK 1 00010------- 0 XXX ---X
SLW OUT 00010-------0 00010---0
CAL INPUT 2 11111 -==---- 1 00010---0
ORA MASK 2 11111----u-- 1 00010---0
ANA INPUT 3 11111 ------- 1 00010---0
ANS OUT 11111------- 1

00010---0

Upon examination of 'the final value of loca-
tion "OUT", the following conclusions can be
drawn:

e The normal machine value, as shown by
bits 1. 2, 3, is still zero, as it should be

e INPUT 1 failed to ""1", results in the final
block value of 1", differing from the
normal machine value, BIT 4 is a "'1"

[ INPUT 2 failed to "1 does not cause the
failed value to differ from the normal
value, BIT 5 equals BIT 1,

Although parallel simulation necessitates a
certain amount of bit manipulation in the simulator,
this added work is far exceeded in value by the
resulting reduction in running time of the IBM
7090 Computer.

The mechanics of multiple-fault simulation are
similar to single-fault simulation. The difference
is that for multiple faults a group of faults is
forced to affect only one bit position in the com-
puter word rather than a unique bit position for
each fault. The user defines, through control
cards, whether a single or multiple faults are to
be simulated. In any given 7090 Computer run,
several single or multiple faults may be specified.

Intermittent Fault Analysis. Two different
techniques were used for intermittent fault simu-
lation. Initially, it was decided to have the user
define the behavior of the intermittent faults,
This technique was followed by a second fn which
the user did not define the characteristics, but
merely followed the fault injection procedure




previously discussed. Each of these two tech-
niques shall now be presented.

In the first procedure, the user defined the
following:

e The logic block fault terminal

® The time for fault injection, which is de-
fined by the Saturn operation code and
clock time

° The time for fault removal (normaliza-
tion) also defined by Saturn operation
code and clock time.

During the simulation of the Saturn test pro-
gram, the desired faults were either injected or
removed. This procedure depended upon the
user's knowledge about the behavior of an inter-
mittent fault, its effect upon the computer, and
its detection by the diagnostic programs. Rather
than having the user determine these factors, it
was decided to make the Saturn Fault Simulator
provide this information.

In the second procedure, the user had only to
define the logic block fault terminals. The time
of injection or removal was not specified by the
user.

The simulator assumed that a specified fault
was "'solid" until detected. Detection caused
certain counters in the simulator (not hardware)
to be incremented. The simulator presented
several characteristics about the intermittent
fault including:

. The number of times the fault affected
the logic

e The percent of cyele time during which
the logic was affected

° The number of times the fault was de-
tected

] The percent of occurrences which were
detected

[ The times of detection (in microseconds)
']
e The interval between detections (in micro-
seconds),

This type of statistical approach enabled the
user to study such problems as:

e How many times does a given fault actual-
ly affect the behavior of the computer?

e How sensitive is the compuier to specific
fault conditions?

e Is the etfect of a given fault "latched up”
or is the effect transient in nature ?

e  Of the faults which affect the behavior of
the computer, how many are detected by
the diagnostic programs?

e How long, i microsceonds, must an in-
termittent fault remain “solid” before
being detected by a viven diagnostic pro-
aram?

e What are the probabilities of detection
fur a given mtermittent fault as we allow
its duration, or “period of soliditv™, to
vary?

In summation, what 18 an intermittent fault, how
does it alfect the computer, can it be detected and
diagnosed? Information about the actual inter-
mittent fault simulation and analysis can be found
in Part II of this paper.

Logic Compilation.  Up to this point, Data
Collection, Logic Selection, and Fault Injection
have been presented. These three subsvstoms
supply all ot the logical information necessary to
generate a compiled logie fault or normal simu-
lator. The Compiler itself consists of a main
program plus a =eries ot subroutines, each sub-
routine programmed to compile a4 specitic type of
logic block. Dfferent subroutines are allowed to
exist for the same type ot logic block, thus allow-
ing the user to experiment with different logical
models. The Compiler has the lollowing charac-
teristics:

e It intertaces with a master logic input
tape, automatically produced by the pre-
ceding system programs, Thus, any
changes in the svstem logic can gquickly
and automatically be incorporated in the
compiled logic simulator.

e  An uactual compiled simulator 1s produced,
consisting of 7090 FAP instructions ready
for execution. Efficient use ol 7090 FAP
instructions plus data results in less com-
puter cost at simulator execution time.

e Faull models are easily compiled using
the subroutine approach.

Figure 4 shows a simplified portion of a com-
piler subroutine flow chart. Note that the com-
piler approach taken in the subroutine is very
straightforward.

The simulation of a tvpe of losie block called
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Figure 4. Portion of Compiler Subroutine Flow
’ Chart for Type A FF

the "macro block' was implemented, Basically,
a macro block consists of the AND-OR-INVERT
(A-O-T1) logic which makes up a specific function,
such as a latch. Rather than define the individual
A-0O-I logic blocks on the ALD's, the macro block
is used. Several advantages result from the use
of macro blocks, including:

e ALD's which are easier to read

e Fewer errors in the logic definitionphase
since fewer blocks are defined

e  Faster simulation speed since the macro
block makes possible a simulation tech-
nique called "Instruction Bypassing"

e Feedback loops within latch configuration
can be isolated within a macro block.
Figure 4 shows a flip-flop macro block
ond its internal logic.

Instruction bypassing can be defined as the
skipping of specific computer instructions during
simulation. If the simulator can determine that a
logic block cannot possibly change state during a
simulation pass, then there is no need to execute
the 7090 Computer instructions which simulate
that particular logic block. Consider the flip-
flop shown in Figure 5. If neither a set nor a
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Figure 5. "Bypassing” for the Type
A" Flip-Flop

reset signal is present, the flip-flop will not
change state. If a macro block can change state
only at specific clock time, it is necessarv to
simulate the block onlv at that particular time.

It is obvious that 7090 Computer instructions must
be added to'the basic compiled logic simulator to
test for these bypass conditions, It 1s not econoni-
ically feasible to add these cudes for the individual
A-O-I logic blocks, but it 1s feasible to do so for
the macro block. For a set-reset flip-flop, the
bypass requires three additional FAP operations,
namely:

CAL SET VALUE
ORA RESET VALUE
TZE BYPASS

This will result in the byp:&ssmg of 12 FAP
operations when neither the set nor the reset is
present. Since most flip-flops are inactive at any
given time during the simulation, the by-pass re-
sults in a significant saving in execution time.

The normal set-reset case just presentedillustrates
the minimum saving. If faults had been specified
for the flip-flop, more instructions would be byv-
passed. The Set-Reset flip-flop is one of the most
simple sequential models simulated. The more
complex models result in an even greater saving in
execution time due to instruction bypassing,



The final product of the Compiler is the com-
piled logic simulator. It consists of three major
sections: ;

e The compiled FAP instructions

e A table reserved for the logic block
values

e A master list stating which location in
the table of logic block values represents
each logic block output terminal.

A compiled FAP instruction consists of a
7090 Computer operation plus an address. The
address refers to a location in the table of logic
block values. These addresses are not converted
to absolute 7090 Computer locations until simu-
lator execution time. Thus, the compiled simu-
lator and the table of logic block values can be
located anywhere in the 7090 Computer core stor-
age at execution time. This {lexibility 1s note-
worthy since it allows fewer fixed table sizes at
execution time, thus extending the capacity of the
simulator through complete usage of the 7090
Computer's core storage. Since dynamic storage
allocation is used when it is practical, it is diffi-
cult to determine the largest size logic network
which can be simulated. A logic network will be
compiled and simulated if it can be contained by
the system in the 7090 Computer core storage.

If the logic exceeded the 32K memory, other tech-
niques would have to be used. Techniques such as
packing/unpacking the compiled simulator, or us-
ing tapes for additional storage, or a very sophis-
ticated functional-logical approach would have to
be programmed, It is estimated that execution
time on the 7090 Computer would increase by at
least a factor of 10 if core storage were inade-
quate,

So far, the described programs have accomp-
lished the following:

e Converted the designer's logic sketch
sheets into a computerized language

e Selected the logic to be simulated in such
a way as to provide efficient, loop free
simulation

e Compiled a model of the logic in the 7090
FAP language, with or without user
specified faults.

Simulation. To execute the compiled model,
the user must specify several factors to the Ex-
ecutive program. These are listed below, but
are not discussed in detail:

Mode - either the NORMAL or a FAILED

mode will be simulated

Simulation Limit - The user specifies the
maximum number of Saturn instruction
cycles to be simulated. Termination of
the simulation will occur either when this
limit is reached or when an "END'" opera-
tion code is reached in the Saturn pro-
gram being simulated.

Output Options - The following options

are available:

- Display the binary values of all
specified output terminals at each
iterval of Saturn clock time.

- Display the binary values of all
specified output terminals only when
a terminal changes value.

- Display the Saturn computer disa-
vreement detectors,

Output Terminals - The user specifies
up to 100 output terminals which will be
displaved. They are specified by their
ALD net names (page, block and terminal
number)

Output Registers - The user can specity
output revisters as well as imdividual output
terminals, since a register can be thought
of as a collection of specific output ter-
minals, The limitation is that only 100
binary values can be printed as simulator
output, so no more than 100 terminals
(total) should be contained in the specified
registers. The collection of terminals
which constitute a register is delined
once at compilation time, rather than
execution time, since this definition 1s
fixed by the design.

Output Times - If output options are not
specified, the user can specify the cxuct
Saturn clock times at which he wants the
output terminals displayed. Display vecurs
each time a specified clock time is passed
in the simulation

Logic Initialization - The user can initial-
ize any logic block output terminal or any
interface line (1 O, control, power, ete.)
by specifving the ALD net name and the

desired initial value (logical 1 or 0)

Simulated Saturn Program Flrm'_'- Nor-
mally, a fault being simulated is not




allowed to affect the value of the Memory
Address Register. Thus the program
flow determined by the good, unfailed
logic, is followed. If the user desires,
a specified fault will be allowed to set
the value of the Memory Address Register.
This procedure exists because parallel
simulation makes it possible to simulate
many faults in one 7090 Computer execu-
tion, but for one Saturn program and one
program flow. To follow all possible
program flows for all faults would revert
the simulation procedure back to the one
fault per 7090 Computer run technique.

e The Saturn Program - The operational
or diagnostic program to be loaded into
the simulated Saturn memory'was coded
by the user in his assembly language.

A memory loader existed in the system,
performing the task of converting the
Saturn operation codes and data into the
proper memory bit patterns and storing
these patterns in the correct simulated
memory loactions, Checking for illegal
Saturn-operation codes was performed.

Certain areas with the Saturn computer did
not lend themselves easily to logic simulation.
These included the decode and select circuits for
the simulated memory module. For purposes of
fault simulation and central processing unit (CPU)
design verification, it is necessary to simulate
the logic up to a well defined memory interface.
The memory address register (MAR)and the mem-
ory buffer register (MBR) plus the read/write
signals constitute the interface. The binary val-
ues for the interface emanate from the simulated
logic during a write procedure. The executive
program then functionally decodes the MAR and
stores the contents of the MBR in the addressed
location within the block of 7090 Computer storage
defined to be the "memory'' of the Saturn com-
puter. A Read operation is the converse in that
the executive program decodes the MAR and moves
the binary contents of the addressed location into
the MBR, from which point logic simulation
propagates it through the central processing unit.
Figure 6 illustrates the memory interface as it
appears to the simulator.

Race Monitoring Feature. A 'race’ situation
exists in a logic design if one or more state de-
termining signal paths are of equal "length' and
are excited simultaneously. The final circuit
state could be indeterminate, since small deffer-
ences in the path and element delays can change
the actual final value. Since the Saturn computer
design employs disagreement detectors which
monitor circuit states, a false error indication
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Figure 6. Memory Module Intertace

can result from a non-critical race, Tou reduce
or eliminate circuitry which would cause these
race conditions the simulator was modilied 1n the
following manner:

e At Compiler time, a table contaimng the
ALD net names of the sequential elements
in the logic (flip-flop traches) was con-
structed

e Also in this table the indices to the loca-
tions in the block value table for the SET
and RESET output values for each se-
quential block were saved. This table of
names and indices 18 passed on to the
Executive program along with the com-
piled simulator.

The Executive program uses this table for
race monitoring in the following manner. Aflter
each simulation pass of the logic, the Executive
program examines the block value locations in-
dexed by each pair ot SET-RESET indices. 1If it
finds that both SET and RESET equal “logical
zero" it produces a diagnostic message tor the
user, stating that: "Flip-flop 0-0 state occurs at
time X , instruction Y , page A , block
B, environment N " where:

X  is the Saturn clock time, such as "AQ1W_"

Y isthelocationinsimulated Saturn memory
for the Saturn op code being executed, as 23",



A is the ALD page name on which the flip-
flop can be located, as "AA201".

B is the block designation of the flip-flop
as it appears on the previously defined
page, as "BA",

N  is the fault number, but since multiple
faults can be simulated, we prefer to
call it the environment number, as "'5".
Thus, the effect of a single fault or the
effect of a group of faults or the fault
free normal behavior of the logic could
have caused the race condition,

Note that this 0 - 0 flip-flop condition was
caused by both the SET and the RESET input sig-
nals coming up to a logical "1" value at the same
time. If only one signal, either the SET or the
RESET, then returns to a 0 state, the {lip-flop
will stablize to a predictable output state, but if
both signals return to a "'0" state the flip-flop
final state cannot be computed by the simulator,
Either the true output will be a ''1"" and the com-
plement output a 0", orvice versa. The simu-
lator brings this situation to the attention of the
user and he decides if it is critical. If he decides
that the race situation is not critical, he can sup-
press the race monitoring for particular flip-flops
by punching the proper execute control cards.

Saturn Program Execution Trace. The Ex-
ecutive program decodes the value of the MAR
and prints out every time a Saturn instruction is
read from memory. The Saturn address is broken
down into three subfields; the memory sector,
the location within the sector, and the syllable
within the location. The cause of the instruction
fetch, namely the good machine or a particular
fault environment is also printed out. Thus, the
user knows the flow path of the executed Saturn
program and whether it was caused by a particular
fault or the normal machine. In most simulation
runs, only the good machine value of the MAR is
actually used to determine the "next instruction
address’’, but fault-caused values of the MAR are
printed out since this is a form of fault detection.
Figure 7 illustrates a memory trace.

Functional Memory Dumps. In addition to
being used as a logic design and evaluation tool,
the simulator could aid in the debugging of Saturn
operational or diagnostic programs. It was not
intended that the simulator be extensively used
for program debugging since its 7090 Computer
execution time could be much higher than a func-
tional operation code simulator (a normal differ-
ence between a compiled logic simulator and an
operation code simulator). However, fault con-
ditions will present an environment for the Saturn
program which is not achievable in most opera-
tion code simulators. Also, since the normal
behavior of a Saturn program is not checked out

for every possible data combination, the possibil-
ity of a program "bug” does exist. To aid in the
checking of the Saturn program, in addition to
checking the logic, the Executive programs dumps
the simulated Saturn memory before and after (he
simulation of a Saturn program. Thus the user
can examine the results of Saturn program execu-
tion by storing the results in memory and examin-
ing the final memory dump.

Executive Program Summary. 'As stated
previously, several programs in the svstem have
produced a compiled logic simulator. Tt is up to
the user to control this simulator to obtain useful
information. He does this by punching the execu-
tive program control cards, which will specify the
terminals to be displayed, the rate or time of
display, the number of Saturn operation codes to
be simulated, the Saturn program to be executed,
the logic block initial conditions, and in general,
all conditions which could vary and stuill allow use
of the same compiled simulator. A Limitation to
be remembered is that up to 100 terminals in the
logic may be displayed during one 7090 Computer
run, A very general picture of the simulation
flow at execution time 1s shown in Figure 8,

Simulator Output. As with any program ex-
cessive L'umpﬁli‘}_m}ﬁ! output vperations, includ-
ing card reading, on-lhine printing, tape reading
and writing, etc., tends to contribute significantly
to computer running time. The techniques al-
ready stated have tremendously helped to munimze
the actual in-core simulation time, To nunimize
the time necessary to present the results to the
user the following approach was taken:

e The Executive program writes a high
density, binary output tape. This tape
contains the values of the user specified
logic block terminals at user specified
output times. Prior to execution of the
compiled simulator, the Executive pro-
gram reads the user supplied output con-
trol cards and sets up a table contaimng
the addresses of the locations in the
7090 Computer storase which contain the
logic block values for the specified out-
put terminals,

e During exccution, this table is used to
quickly locate the output terminal values
and move these values to one preassigned
output buffer. This done only when the
Executive program decides that it 1s time
for a user specified output.

e The Executive program then writes the
output value table on tape, one binary
record, with no conversion to BCD.
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An Edit program follows the complete
simulation run, The user specifies the
faults (actually the environment numbers)
for which the binary simulation results
are to be converted to BCD, set up in the
proper format, and written on another
tape ready for printing.

advantages of this approach are:

More 7090 Computer locations are avail-
able for actual simulation since the pro-
grams which convert the binary logic
block values to BCD, in a format accept-
able to the user, are not in the 7090
Computer at simulation time.

Output format flexibility is achieved.
Since the Edit program can also use all
of the 7090 Computer storage, it can
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allow more format specilication by the
uscr.  The output terminal names, which
are either sienal names or ALD names,
plus the column assigned to that terminal
in the output format, are user specified.
Thus the user names and proups the
terminil values in whatever format is
most useful to him,

The user can specify that part, or all, of
the environments to be printed. The put
tape to the Edit program is saved, thus
the Edit program can be used to print
more copies, or to print only selected
environments.

Figure 9 shows a sample output atter Editing.
The environment number, plus a list of the taults
in that environment, are shown at the top of the



output. The output terminals were defined by the
user in two ways:

e As ALD names (page, block, output line
number)

e As Signal names (EP01, EP02, etc.).

l
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BINARY
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EDIT
PROGRAM

Figure 8. Simulation Flow

The ALD names are essential in order that
the Executive program can monitor the proper
logic block values. However, signal names could
have more meaning to the user. If he specifies
both the ALD name and the signal name, the Edit
program will print the signal name, The informa-
tion on the left of the page shows the Saturn clock
times (Phase, Bit Time, Clock) at which the out-
put terminal values were monitored. The binary
values in the center of the page are read from top
to bottom, showing the changing values of the
monitored terminals. The information on the ex-
treme right ot the page is the memory address
register value, thus showing the location of the
Saturn operation code which was being executed
at that time.

Program System Modularity, Fiure 10
shows the system of simulator programs. Since
the simulator is composed of distinet programs,
each having a unique purpose, it is recommended
that the simulator be used in a modular fashion.
Consider the following aspects:

e The SLDA system provides the logic de-
scription necessary for compilation and
simulation. It is necessary to run the
"SELECT" program only when the logic,
as defined on the LMT, is changed.
Therefore, the output tape from SELECT
is saved.

e The COMPILER PROGRAM must be re-
run whenever SELECT is rerun or when
a different group of 33 fault environments
is to be simulated. Tt would not be rerun
if different Saturn diagnostic programs
were to be run with a given set of com
piled faults.

e The FAILURE INJECTION PROGRAM i5
run only when a group of faults is to he
compiled and simulated.

e The Executive program is run more ire-
quently than the others, since this 1s the
actual simulation, It is here that the user
will specify the Saturn program to be
executed, the initial conditions for the
logic and the output options desired. It
produces a tape which contains the binary
simulation results and is the input to the
Node-Edit program.

e The Node-Edit program is usually run
once per simulation, but it may be used
to edit different fault environments or to
produce additional copies of simulator
output.



Simulator Running Time.
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The two blocks in Figure 9 labeled
"Evaluator Program'' and "Evaluation
Report' are proposed but not yet included
in the system. The purpose of the Eval-
uator would be to determine the effect-
iveness of the operation code diagnostics,
as measured by the diagnostic resolu-
tion, the hard-core requirements, and
the time to diagnose. This evaluation
would be accomplished by a programmed
comparison of actual simulation results
against user supplied data, in a manner
yet to be defined.

IBM 7090 Com-

puter, 32K memory. (Assuming about 4,000
logic blocks are to be simulated):

Select program - 5 minutes

g m

020000000 o 0000000000000V ODOO0CODO00O0DOCDO0D000

12

-~ m

0000000000000 o000 00DOoO0D00D000D0DOPOO0T0OTOD

ERROR MONITORS

o — g m

00000 o000 IO 000000C OIS DoDO0OC0DoC OO DoOODOR

=

00000 QOOo0C oI 000D 20000 IDDDDIITOC IO OO0ODDIDOO0

@—rgm

000D ODODODOSTITIITDODOTODTSIDIOIDITDOONODDOCOCODOO0OD

INSTRUCTION

o=mm
ewmgm

DO m
mwm= g

e Do Do e D e e D e Do D e e D e D e D e S e e

a2 211

O0OCOOO0Do00000 000D 000000D D IO DCIDO0O0LOo000OOT
2

e G S

Typical Printout From Redundant Computer Simulation

Fault Injection program - <1 minute

Compiler program - 6 minutes

Executive program - 12 Saturn op codes
per min. This includes complete simu-
lation of each operation code for each ot
the 168 Saturn clocks per instruction
cvele, so actually 2,016 Saturn cveles

-are simulated per minute.

Edit program - running time depends
upoun the amount of simulation output, For
a shor Saturn program (20 to 30 op codes)
the Edit procram could require about
three minutes to edit all of the 33 fault
environments plus the good machine.,
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PART II - SIMULATION
Introduction

Extensive use was made of the Saturn V Sys-
tem Simulator on the Saturn and related programs
as an aid in evaluating computer operation in both
normal and faulure modes. The simulator was
used to verify the logical integrity of computer
circuits and to evaluate proposed engineering
changes. The computer self-test program and
built-in test circuitry operation was examined
with the aid of the simulator to determine the
effectiveness of the computer error-detection
system. Data identical to that available in nor-
mal checkout of a Saturn computer with its as-
sociated test equipment was generated by selected
simula ion runs and examined for diagnostic con-
tent, and additional data was compiled for use by
the operator in diagnosing failure symptoms.
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The Saturn V LVDC (Launch Vehicle Digital
Computer) is a binary, fixed point, serial machine
employing TMR (triple modular redundancy) to
provide very high reliability for the Saturn V mis-
sion. The computer logic is organized in three
identical parallel channels with almost 200 voting
circuits located in such a way as to provide 2-out-
of-3 voting on a modular level. As many as one
third of the computer components theoretically
could fail without causing a computational error in
a TMR machine since the effects of each component
failure in a channel are voted out by the equivalent
components in the other two channels,

Since the effects of component failures tend to
be masked in a TMR machine, built-in detection
circuitry was instrumented in the Saturn V com-
puter to detect disagreements in the lugic status
of the three channels and thereby determine the
reliability status of the computer. These disagree-
ment detectors were designed as three-input ex-
clusive OR circuits and placed primarily across
the three inputs of the voters.

An additional circuit checkout capability was
instrumented by providing a simplex mode opera-
tion in which vne channel is foreed to a logical vne
level and a second channel forced to a logical zero
level. Since the votes of these two forced channels
cancel, the status of the third channel determines
the logical status of the computer, and a compon-
ent failure in this chunnel can be detected by nor-
mal checkout procedures used with simplex coni-
puters. Any of the three channels may be selected
as the operating channel by a mode select switch.

During the subjeet studies, several hundred
failures were simulated in the computer in both
simplex and redundant modes. Although the re-
sults represent a relatively small statistical
sample, they were sulficiently consistent to pro-
vide a high degree of confidence in the conclusions,

Simplex Simulation

In the Saturn V development program, the
initial phase included the design, build and test of
a simplex version of the computer for engineering
evaluation. The purpose o! this phuse was to as-
sure the logical integrity ol the basic design and
to determine by parametric measurcments any
marginal characteristics of the design.

Simulation of the Saturn V computer in its
simplex mode of operation provided data similar
to that obtained in the hardware tests with the sim-
plex computer breadboard. The simplex simula-
tion experiments fell into three primary areas:
design verification, test program evaluation, and
test point catalog generation,

Simulation provides certain advantages over
hardware testing for preliminary engineering



evaluation of a new design. Some of the princi-
ple advantages are:

e Timeliness — Simulation data can be
made available to the designer long before
breadboards can be built and tested.

e Completeness — The speed and flexi-
bility of simulation over hardware test-
ing allows a more thorough examination
of the circuit operation under variable
operating conditions.

e Access — Unlike hardware testing,
simulation provides complete access to
all logical modes in a digital system for
signal injection and status monitoring.

Design Verification. Portions of the Saturn
V computer, such as registers and counters,
were simulated individually to verify their logic
integrity before the computer was simulated as
a complete system. One of these preliminary
simulations was a set of race-monitoring experi-
ments in which a latch may be set or reset de-
pending upon marginal timing characteristics of
the input signals. A race condition is defined
here as a (0, 0) on a complementary output nodes
of latches or improper outputs on other sequen-
tial memory elements.

In one race-monitoring experiment, three
race conditions were detected in a counter design.
One was due to improper initialization conditions
which were corrected in the computer initializa-
tion procedures. One was corrected by a design
change. The third was a logical "don't care"”
condition which did not affect circuit performance
but could result in a false disagreement detector
error signal in the redundant mode of operation,

To verify the design integrity of the computer
as a complete system, the computer logic was
exercised in the simulator by a special test pro-
gram (described in the next section) which was
designed to assure that every logic component
was exercised at least once during each cycle of
the program. No improper conditions were dis-
covered during this last phase of the design ver-
ification simulation program. i

Test Program Evaluation. The simplex mode
was designed to be a failure isolation mode of the
Saturn V computer after detection of an error in
the redundant (operational) mode. The failure
isolation capability is based on channel-switching
and module-switching techniques as well as on
the analysis of data generated by the various tests.
The computer test program was primarily
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designed to (1) detect logic failures in the simplex
or redundant modes, and (2) generated sulficient
data to allow a knowledgeable operator to diagnose
the failure symptoms,

The basic organization of the test proecram
was changed {rom the usual boot-strap functional
exerciser to a component-oriented, sandwiched-
subroutine format. The program was generated
by failing components systematically (on paper)
and deriving subroutines to check cach and every
failure. Instruction addresses were selected tu
exercise all drive lines in all storage sectors
during the program cyele. The complete test pro-
gram consisted of less than 500 instructions.

The resultant test program provides advan-
tages over a functional program although the
work effort involved in generated it 1s considerably
greater. The component orientation of the pro-
gram requires {ewer mstructions. The distribu-
tion of the computer functions throughout the pro-
gram, rather than lumping each function in a par-
ticular portion of the program, provides a better
inherent capability for detecting intermittents.

During the subject study, soveral bundred
selected and randomly chosen failures were sim-
ulated by a batch-simulation technique in which 33
failed machines were exercised simultaneously,
Only single failures were injected into each mia-
chine. The simulator exercised the test program
until the first failure detection, at which time the
failure was flagged and simulation of the tlageed
machine discontinued. The simulator then con-
tinued exercising the remaining (unflagged) ma-
chines until the next failure occurred.  This pro-
cess was repeated until all tarlures had been
flagged or (in the case of undetected failures) un-
til the test program had been completed.

Of the injected failures, less than 10 percent
were undetected by the test proeram, An examini-
tion of the undetected failures disclosed, however,
that the majority of them would not cause a logic
failure even in the simplex mode. Muny ot the un-
detected failures involved logic elements which
were included in the computer imstrumentation to
insure against possible marginal conditions, es-
pecially in the area of timing. Others mmvolved
logic elements included to minimize power con-
sumption, or which were simply redundant--resi-
dues of design changes that eliminated their func-
tions but which were retained to minimize change
costs.

After these types of fallures were screenced
out, less than one percent of the simulated failures
remained unaccounted for, resulting in a failure



detection efficiency of over 99 percent for the
simplex computer/test program system. Changes
in the test program were made to pick up most of
these undetected failures.

A limited analysis of simulation results was
performed to determine whether sufficient infor-
mation was generated by the test to enable an
operator to diagnose the error symptoms, Al-
though it was concluded that diagnosis was feas-
ible, the complexity of the failure isolation pro-
blem appears to preclude extensive precomputed
correlation of symptoms and faults in the simplex
mode.

Figure 11 is a curve derived from a typical
simplex simulation. It illustrates the relation-
ship between the percentage of detected failures
injected into the simulator and the portion of
test program completed. The high rate of failure
detection during the early portion of the program
can be attributed to (1) the necessarily high per-
centage of operation codes used early in the pro-
gram, and (2) the existence of program-indepen-
dent errors. The curve shows that the program
could be considerably shortened if error detection
was the only requirement. For example, the pro-
gram could be truncated to the first 40 percent of
the instructions while maintaining a 90-percent
error detection capability, This characteristic,
indicated by the dotted lines in the figure, is ap-
plicable to the construction of in-flight check-
out programs. However, the full program is de-
sirable from the standpoint of generating diag-
nostic data, and it provides better error-detect-
ing efficiency.
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Figure 11. Typical Simplex
Simulation Curve

Test Point Catalog Generation, The simu-
lator was used to generate a test point catalog
containing the logical values of 90 selected test
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points at each computer clock time while the
simulator executed the 480 instruction test pro-
granm. The completed catalog contained more
than 15, 000 logic values. The value of this cata-
log for laboratory checkout of the computer is
that the state of the computer is predetermined
at 90 nodes in its organization for a failure-free
condition. Comparison of test data generated in
laboratory checkout ot the actual computers with
the test point catalog has proven helpful in diag-
nosing symptoms.

Redundant Simulation

The redundant muode was desicned to be the
operational and failure-detection mode of the
Saturn V computer,  Apain, as in the simplex-
mode simulations, the computer logic was exer-
cised by the test program to determine the effec-
tiveness of the farlure detection function,  In its
redundant mode, however, the computer provides
error indications {rom the built-in disacreement
detector circuits to aid in detecting and diagnos-
ing error symptoms,.

In addition to evaluatine the cifectiveness of
the test provram-disagreement detector systen,
the simulator was used to deternnne the optimum
number and placenent of disagreenment detectors
in the computer orguanization,  Suunilar simulation
experiments were pertormed Lo deternune the
optimum placement ol voters in the TMR logic.

One of the major advantages of 4 TMR ourgan-
ization is its abnlity to perform n the presence ol
intermittent component ind mterconnection fail-
ures. If an intermittent lailure occurs in one of
the three TMR channels, its effects are not only
masked by the voting function,  but the computer
recovers its imtial (untailed) state atter the period
of the intermittent has ended,  An intermittent
failure analysis was pertormed with the aid of the
Saturn V simulator to determine the etffectiveness
of the computer detection systenn in detecting
various classes of internnttent failures,

Detection System Evaluation.  Although the
redundant mode wis designed to be the operational
and failure-detection mode ot the Saturn V cum-
puter, availability of a sufficient amount of tailure
data based on error-monitor indications appears
to allow a high degree of farlure isolation.  Several
hundred failures were simulated using the batch-
simulation technique already described. Again,
as in the simplex-mode simulation, only single
failures were injected into each simulated ma-
chine, Unlike in the simplex simulation, howcever,
cach failed machine was exercised for the duration
of the test program. As a result, a varying error-
monitor pattern was generated for each [ailed ma-
chine.




Again, of the several hundred failures in-
jected into the computer logic, less than 10 per-
cent were undetected by the error monitors. As
in the simplex simulation, these undetected fail-
ures involved either redundant logic elements or
those which were included in the computer de-
sign to conserve power or insure against mar-
ginal conditions. A 99-percent failure-detection
effectiveness was obtained after these types of
failures were screened out,

The approach to failure isolation as examined
in the redundant simulation is based on correla-
tion of logic failures with error monitor patterns,
pattern changes, and sequence of pattern changes,
The simulation data indicated that about 75 per-
cent of the failures could be isolated to a single
logic module through examination of the error
monitor patterns. About 90 percent could be iso-
lated to one or two modules. In addition, exam-
ination of certain pattern characteristics--such
as fixed-or-variable pattern, number of pattern
changes during the test program, and sequence
of error monitor changes as the test program
exercises various portions of the computer logic
provides an error resolution of one module for
almost all of the simulated failures. In those
cases where the test resolution exceeded one
page, channel and ‘or module switching would
provide the additional resolution desired.

Another important conclusion from the com-
puter simulation is the apparent feasibility of
constructing a diagnostic test program in which
program branching is based on error monitor
indications. The main program would be a short
logic exercisor designed for efficient error de-
tection only, and would vperate periodically dur-
iy the operational periods of the computer mis-
sion. If no error is detected, little operational
time 1s consumed by the test. But if an error is
detected, the program will branch to specific
subroutines determined by the error monitor
patterns,

Figure 12 is a portion of a typical print-out
from the simulation of a redundant computer,
The phase, bit, and clock time listed in the left-
hand column is the instruction fetch time, but the
simulator could be gnstructed to print out the
actual time of occurrence of the error signal in-
stead. The error monitor signals are represented
by the 13 EP (error position) columns, and the
instruction sector and address location by the
right-hand columns.

The simulator was instructed to print out a
new line every time an EP location changed state,
Consequently, only a small portion of the test
program is listed in Figure 12. The particular
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failures simulated in this run affected error moni-
tor positions 12 and 19. Diagnostic information

i5 contained not only in the generated EP signals
but also in the instructions associated with a
change of state of an error monitor and in the
total number of changes in state, i.e., with the
entirc EP pattern.

Table I represents the results of another re-
dundant simulation in which tle simulated failures
are associated with logic pages 1 and 2. and with
error moniters 1, 2, and 3. An examanation of
the failure ’monitor correlation alone Jienoring
the additional diagnostie information civen by the
instructions and time sequences associated with
state chunges) indicares a high degree ol resolu-
tion between the two pages.  Error monitor com-
binations EP1 alone, EP1 EP2, and EP1 EP3
were associated with tailures imjected onto page
1, error monitor combinations EP2 alone and EP1
EP3 were assocuated with fatlures o pave 2: and
error montor EP3 alone indicated 1 Laure on
either page 1 or puge 2. Fallures thus solated
to page | represented 349 percent of the simulated
failures, those 1solated to pace 2 represented 36
percent, and those whicl could not be resolved
between page 1 or pace 2 represented 25 pereent,
However, the 25 puercent of unresolved failures
could then be resolved by an exananation of the
full pattern equivalent to that illustrated in Ficure
12,

Many different types of symptoms were pro-
duced as a byproduct of the simulationexperiments
All of these were anilvzed to determine their
individual and combined value in identifyving logic
signal failures, Table Il gives a summary of
these results. Signal Lalure identifications ave
based on the rearranged eichi-diagnostic module
configuration. Only unique signal identifications
were tabulated,

Disagreement Detector Placement. The dis-
agreement detection function was simulated by
comparing the logic status of selceeted nodes in
the channel containing the injected finlures with
corresponding nodes in a reference channel.
Simulated removal or addition of disagreement
detectors was accomplished by removal or addi-
tion of monitoring nodes from the selected node
listing,

Just as packaging of computer componets on
replaceable modules partitions the computer
physically, placement of disagrecement detectors
within a machine organization partitions the com-
puter diagnostically.

At present, no c¢learly defined ground rules
exist which can be applied to optimally partition
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Typical Print-Out From Redundant

Computer Simulation

Table I

RESULTS OF A TYPICAL REDUNDANT
COMPUTER SIMULATION

EP 1 EP 2 EP 3
EP 1 Page 1
22%
EP 2 Page 1 Page 2
5% 23%
EP 3 Page 1 Page 2 Pages 1 and 2
12% 13% 25%

electronic units into diagnostic modules. Logic
simulation has been used, instead, to determine
the characteristics of failed machines and the
nature of error propagation in a digital system
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to provide data from which such ground rules
might be derived. Two simulation experiments
were performed during the study to trace failure
propagation through the computer logic. Sixty-
six simulated failures were injected into repre-
sentative voter interfaces and error propagation
was monitored by disagreement detectors placed
at the input to every voter and at other selected
logic nodes within the four modules of the AES
computer. These nodes were selected on the
basis of the total number of signal inputs to logic
latches.

These experiments provided sufficient data to
partition the computer into diagnostic modules al-
though no change in the physical packaging of the
computer modules was considered. The arithme-
tic module of the computer was partitioned fur-
ther into three diagnostic modules, as was the
control module. A comparison of error signal



»
propagation between four and eight diagnostic
modules is shown in Table III for sample failures.
Note that there is less likelihood of identical
failure symptoms occurring for failures in each of
the four physical modules if the additional diag-
nostic partitioning is instrumented. For example,
a failure in physical module 2 and another in phys-
ical module 3 caused identical failure symptoms
in physical modules 2 and 3 when the computer
was partitioned diagnostically into four modules
but no identical failure symptoms when the com-
puter was partitioned into eight diagnostic mod-
ules.

Table I1

SYMPTOM - FAILURE CORRELATION

Failures Identified
(percent)

Observed Symptoms
No. in Logic

1 | First Program Step of 10.5
Detected Error

2 Final Error Pattern 26,3

' 3 Time of First Detected 28.1
Failure

4 Final Error Patlern 20.2

5 | First Three Program 63.2
Steps of Detected
Errors

First Three Program 96.5
Steps of Detected
Error and Final Error
Pattern

First Program Step at 63.1
Detected Error and
Final Error Pattern

First Program Step of 82.4
Detected Error, Final
Error Pattern, and
Phase, Bit, Clock
Time of First De-
tected Error

The extensive propagation of errors through
the computer presented the greatest problem in

isolating failures to a replaceable module. Prop- -

agated errors tend to be sensed by many detectors
even though these detectors are not directly as-
sociated with the logic containing the failure, thus
masking the source of error by "overdetection',
An approach suggested during the course of the
study of clocking the detectors only at the time
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that the associated logic is being used was found
to require too much additional timing circuitry to
be practical. Bit gates, phase gates, and in some
cases even program step identification were found
to be required to accomplish the desired detector
timing.

Table III

ERROR SIGNAL PROPAGATION

Functional Partitioning

Interface
Failure In Symptoms Will Occur In
Module Functional Modules
Timing 1 2 3 4
1 2 a2 4
2 1 2 3
3 1 2 3
4 1 2 3

Diagnostic Partitioning

Interface
Failure In Symptoms Will Occur In
Module Dynamuc Modules
Timing 1|2 ]|1314 |5 |&1]7 8
i
1 4 15 |6 8
2 213|415 |86 |7 8
3 2 |13 |45 7 ]
q 2 4 |5 8

The Saturn-V disagreement detectors are
clocked every like clock time (for example, any
one disagreement detector may be clocked every
x-time, another every y-time, etc.). As are-
sult, detectors are sensing for disagreements
between the simplex modules of TMR trios even
at times when those modules are not being used
by the program.

Error propagation has also been the major
problem in attempting an optimum placement of
disagreement detectors. Although failure isola-
tion to a replaceable module level has beenfound
to be feasible in the computer by reorganization
on a functional basis and by redesign of the
Saturn-V disagreement detectors, means must be



found to prevent the error from propagating from
one module to another and thereby destroying the
isolation (as in the case of timing signals). An
approach was investigated in which each of the
logic modules was partitioned into two or more
diagnostic sections by placing additional detect-
ors internal to the module to provide required
isolation information.

The logic simulator was revised to gllow
flexible diagnostic partitioning and used to pro-
vide data for optimum placement of disagreement
detectors.

A logic simulation was designed to determine
the optimum placement of disagreement detectors
in the TMR logic. A total of 32 voters were
failed and the failure data analyzed to determine
the logic level to which the failures can be local-
1zed, The specific voters to be analyzed were
chosen as representative of the various types of
combinational and sequential circuits which would
be "inputted' by the voted signals. The instruc-
tion and computer time when any of the module
interface disagreement detectors sensed a failure
was tabulated. An analysis of the simulation re-
sults showed that:

e  Fifty-three percent of the voter failures
could be identified by knowing which dis-
acrreement detectors had sensed the
failed conditions.

e Forty and seven tenths percent of the
voter failures could be identified by
knowing the program instruction and
computer time of first detection in addi-
tion to which detectors had sensed the
failed conditions.

® Six and three tenths percent could not be
identified.

The partitioning of the reorganized computer
resulted in using approximately 120 voters at the
module interfaces. The simulation described as-
sumed disagreement detectors at the input of each
voter and nowhere else. The 6.3 percent of the
voter failures which could not be identified was
due to error propagation within a module and sig-
nal feedbacks between modules, resulting in iden-
tical error patterns for different failures.

This problem was alleviated by placement of
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additional disagreement detectors within the mod-
ules and at the module interfaces. To determine
the number and location bf the intramodule detect-
ors, the four computer modules of the reorgan-
ized computer were divided into equivalent diag-
nosable subunits by physical count of the signal
inputs to each of the latches and tratches in each
of the modules. Table IV summarizes the results
of this count and indicates a measure of the un-
balance of signals and voters (disagreement detect-
ors) in each module.

Table IV

SIGNALS, LOGIC, AND VOTERS

1
Meodule Signal | Latches, |Voters
Number Name Inputs |Tratches [(DD'S)
1 Memory and 459 27 17
Read t
2 Arithmetic 1213 74 9
3 Control Timine 387 34 26
4 Operation and | 720 69 45
Decoder
Timing (Dis- 135 13 23
tributed
among four
Modules)
Total 2914 2117 120

Of particular interest is the ratio of the total
number of signal inputs to the total number of
voters (or disagreement detectors since the DD's
were located at the voter inputs). This ratio was
found to be 24:1. Using this figure as the basis
for organization of equivalent diagnosable sub-
units, approximately 21 additional disagreement
detectors were required. Their distribution and
effect on the detector-to-signal ratio is shown in
Table V. The ratios are average values, which
may be misleading because the additional de-
tectors were chosen on the basis of individual
circuit sizes within the module and on the hasis
of use and criticality. The effect of these addi-
tional 21 disagreement detectors was determined
by simulation.



Table V

ADDITIONAL DISAGREEMENT DETECTORS

Module Basic |Added | Modified
Number Name Ratio | DD's Ratio

1 Memory and 27.0 1 25.5
Read

2 Arithmetic 134. 8 16 48. 5

3 Control 14. 9 2 13.8
Timing

4 Operation and | 16,0 2 15.3
Decoding

Based on component packaging density and
intermodule wiring considerations, the Saturn V
computer was repartitioned into four modules,
Approximately 105 disagreement detector trios
have been defined for intermodule failure detec-

Intermittent Failure Analysis, Several ex-
periments were made to determine the sensitivity
ot the computer lugie to intermittent faults,
These mtermittents were made to vary in dura-
tion from 500 nanoseconds (one clock time) to 5
milliscconds, These intermittent faults were
specified at randomly chosen points of combina-
tional and sequential logic circuits in the arith-
metic-instruction and multiply-divide units., A
total uf 535, 798 intermittent failures were simu-
lated in the logic to give a realistic statistical
sample,

For each intermittent, a record was kept of
the time of each detection, the number of detec-
tions and failures which caused a difference trom
a "good” machine.  From these records, the
probability of detection was calculated, Table
VII summarizes the results of the simulation,

Table VII

DETECTION OF INTERMITTENTS

tion, Table VI shows the distribution of these Failures
detectors in the tour modules, Cuausing Porcemt
Difterence | Percent | Number |[Detocted
Table VI Logic From Of Of O
Simu "Good” Total | Failures | Total
"DISTRIBUTION OF DETECTORS lated | Machines | Failures [Detected | Failed
Module Function DD's Mult - 22,376 8.3 1,122 5.0
- Dy
1 Menmory and Memory Interface 39 ! [
Instr, 44.704 7.5 252 | 0.5 |
2 Arithmetic 9 Ctr, '. | |
3 Address Revisters 27 This tabulation shows that many intermittent
farlures will have very little or no effect on the
4 Control 30 correct operation of the logic circuits, 1.¢,, 8,3
percent of the total fatlures injected would cause
Voter Placement. The voting function was the computer to perform incorrectlv,  An analy-

simulated in the Saturn V simulator by torcing the

logie status of selected nodes in the chiannel con-
taining the injected failures to agree with corre-
sponding nodes in a reference channel. Error
propagation 1s thus allowed only from the point of
failure injection to the first "voter' node in the
data flow.

Optimum placement of voters for restricting
error propagation (a reliability factor) or for
diagnostic capabilities can therefore be investi-
gated with the aid of the system simulator. This
is an area which was not thoroughly examined in
the simulation studies.
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sis showed that this "masking' of latlures 1s pri-
marily due to the large use of combinational logic
and the method of clocking the "AND" gates which
feed the sequential circuits, This table also shows
the large difference in error detection sensitivities
between the two modules, and suggest a need for a
more efficient partitioning in the modules.

Data derived from the simulation runs was
used to calculate the detection efficiencies of the
disagreement detectors, Figures 13 and 14 pive
this plot of detection probabilities versus failure
duration, The figures in Table VII are heavily
weighted by a larve number of short failures,
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leading to a low average detection probability.
Figures 13 and 14 indicate these probabilities for
various lengths of intermittents. The "best' and
"worst" case detections are shown to give the
spread in detection efficiencies.

A summary of the results obtained in simu-
lating intermittent failures is given below:

e There 1s a smaller probability of detect-
ing intermittent failures in combinational
(AND) type circuits than in sequential
(latch) circuits.

had mtermittents lastine for one com-
puter word time. The detection probabil-
ity is low because of the fact that many
intermittents have no effect on the logic
(they do not make the "failed" machine
different from a "gond" machine) and
turther, because detection is program
dependent, in that the logic must be ex-
ercised by appropriate instruction and
data for the failure to be indicated by a
disagreement detector,

There is a wide variation of error detec-
tion sensitivities between modules., This
sensitivity could be equalized to provide
a more efficient error detectionorganiza-
L10m,

For the fault locations chosen and the
programs executed, the faults caused
block vutputs to differ from those of the
untailed machine only about 10-20 percent
of the time.

For these locations and programs a fault
existing for 0.5 microsecond (one clock
time) was virtually undetectable: one
existing for 0.5 to 1 millisecond was
about 50 percent likely to be detected:
one existing for 4 to 5 milliseconds was
almost 100 percent likely to be detected.

The disagreement detectors are clocked,
thus having a 25 percent duty cycle,
Changing the simulation model to vive a
100 percent duty cvele made no signifi-
cant improvement in failure-detection
ability 1n these experimernts.

During analysis ol the results of the mul-
tiplv-divide excreise program used for
these runs, 1t was discovered that the ma-
chine would fail to recognize a MPY or
DIV instruction given during the instruc-
tion cycle in which the results of a prioi
MPY or DIV would normally be stored;
for example, by the sequence CLA, MPY,
CLA, SHF, ADD, MPY. Such an instruc-
tion sequence would not normally be pro-
grammed, but could occur in a diagnostic
exercise program like this one. When the
hardware machine was found to agree

with the simulation, analysis showed the
timing relation which caused the action,

® There is a very small chance of detecting  Acknowledgements
a single occurrence intermittent failure

on a logic page. One experiment verified R. E. Forbes, C. B, Stieglitz and D, H,
this finding by detecting six out of a total Rutherford for their technical guidance in the de-
of 33 randomly selected failures which sign of the Saturn V. Fault Simulator, L. H. Tung
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for the formulation of certain basic simulation
techniques. R. E. Ide for a major portion of the
Fault Simulator programs and documentation.

M. Ball and R. M, Lewis for the design of the
simulation experiments and for the evaluation of
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