A CFETET

Flight Soft!vqr? HDeyelopment Laboratory
University cf Al o r. FU ',' tT e
History of Scnence G' Te h 0,0g)f Group

P2 TOE

;&-;mty ot clima ‘}? i
SaTurm fﬁnsiw;

L N R

IBM No. 68-U60-0022

BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBEMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBEMIBEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBEMIBMIBM
BMIBMIBMIBMIBMIBMIBEMIBMIBMIBMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBEMIBMIBMIBMIBMIBEM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBEMIBMIBEMIBMIBM
BMIBMIBMIEMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIEMIBMIBEMIBMIEMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIEMIEMIBMIEM
BMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBEMIBMIBMIBMIBMIBMIBMIEMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIEMIBMIBM
BMIBMIBMIBMIBMIEMIEMIBMIBMIBMIEMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIEBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIEM
BMIBMIBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBEMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBMIEMIBMIEMIBMIBMIBMIBMIEM
BMIBMIBMIBMIBMIBMIBEMIBMIEMIBMIBMIBMIBMIBEM
BMIBEMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIEM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBM
BMIBMIBMIBMIBMIBEMIBMIBMIBMIBMIEMIBMIBMIBM
BMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBEMIBM

IBM No.

FLIGHT SOFTWARE
DEVELOPMENT LABORATORY

by

T. H. Witzel
and
J. S. Hughes

Presented at the 3rd Conference of
the American Institute of Aeronautics
and Astronautics on Flight, Test, Simulation,
and Support, March 10-12, 1969

International Business Machines Corporation
Federal Systems Division
Space Systems Center
Huntsville, Alabama

68-U60-0022

FLIGHT SOFTWARE DEVELOPMENT LABORATORY

T. H. Witzel and J. S. Hughes
Space Systems Center
International Business Machines Corporation
Huntsville, Alabama

Abstract

A man-in-the-loop computer facility has been
created using a digital computer, display termi-
nal, and space vehicle flight computer to enable
programmers to check out flight programs in a
simulated space flight environment. The simula-
tion requires a real time multiprogrammed en-
vironment, which is supplied by a control system
capable of scheduling programs on 32 levels of
priority interrupt as well as answering demands
for service at the display terminal. A special
interface device permits visibility and control of
the flight program as it executes in the flight com-
puter. On-line inputs from the programmer at the
display terminal and outputs from data collection
and reduction routines to the display screen are
executed in real time. The Flight Software Devel-
opment Laboratory* has proved to be very useful in
reducing program preparation time and increasing
flight program confidence.

Introduction

The Flight Software Development Laboratory
(Figure 1) has been created to aid programmer/
engineers in the development of programs that will
operate in a spaceborne computer aboard the
Apollo/Saturn IB and V Launch Vehicles, The
Flight Computer operates as an integral part of
various vehicle subsystems in the Instrument Unit.
The subsystems provide onboard navigation, guid-
ance, control, sequencing, data compression, and
ground communications. These functions are

— —‘——‘-z.,__;'h\:‘:\

g.

illustrated in Figure 2. Continued emphasis is
placed on flight software reliability because it is an
essential element in overall vehicle performance.
No opportunity exists to test or exercise the flight
program in its actual flight environment prior to a
mission. Therefore, to ensure the integrity of the
flight program, simulators are used to accomplish
flight testing. The purpose of this paper is to pre-
sent the organization of one such simulator that has
been created with the sole purpose of the develop-
ment and checkout of Saturn flight software. The
emphasis throughout the design and implementation
of the Laboratory has been that it must be user-
oriented for program checkout. Before the exist-
ence of the Laboratory, available facilities for
checking out flight programs were oriented to hard-
ware checkout. Although such facilities can be, and
have been, rigged for program checkout, they have
not provided the type of assistance required to pro-
duce the quality of software demanded by spaceborne
computers, The Laboratory is believed to be unique
in the capabilities it provides to the programmer/
engineer in controlling and affecting the operation
of the flight computer in a real time environment.

Flight software development begins with a set of
explicit engineering requirements: equation and
logic definition, range of variables, and expected
performance data. After an intensive analysis of
the requirements, the flight software is designed
and organized to meet these engineering require-
ments with minimal flight computer memory and
reasonable flexibility. After the flight program has
been flowed, scaled (fixed point computer), coded,

& F sy

FIGURE 1. FLIGHT SOFTWARE DEVELOPMENT LABORATORY

*This work was sponsored by National Aeronautics and Space Administration Contract NAS8-14000,

4 Instrument Unit Block Diagram |
| 7T TN |
I d N |
| m————— —_————— / \\ |
| I Stabilized Platform | Launch Vehicle \ Control I
| ,/ Digital Computer \ Sensors i
| Attitude |
Y= | | | Angles \ { * | * 0
N N | | Integrating] \ Launch Vehicle / Control Computer
. | Accelerometers Data Adapter / Analog Filter |
> |] I Accel. \ I
v : [T, ——— _I Meas. \\ / l
| Measuring And Real Equipment |
| Telemetry te—— Telemetry in Laboratory |
| Data :
S R
I I iU Command Flight]
| System Sequence 1
| Y Commands
| :
| Instrument Unit |
] Switch Selector i
sic NI IO B R
SIVB Stage SIVB Stage Auxiliory
To Stage < Switch Selector To Nozzles Propulsion System
Circuitry
/
Sii Stage SIVB Stage
Switch Selector Engine Actuators
L
SIC Stage ; < Sif Stage \
- la E - 9
Switch Selector To Engines Engine Actuators [+
N
SIC Stage '
L Engine Actuators

FIGURE 2. REAL AND SIMULATED FLIGHT EQUIPMENT

assembled, and checked out by the program unit or
module, the flight phases are integrated and
checked out. This process continues until the en-
tire flight software has been integrated. The pro-
cedure described above requires that the pro-
grammer/engineer be able to measure and evalu-
ate his progress in an efficient manner. The pur-
pose of this laboratory facility is to provide the
programmer/engineer with a user-oriented tool by
which he is able to test and evaluate his programs
in a simulated flight environment, using an actual
spaceborne computer and interface hardware.

This enables him to measure and evaluate flight
software performance against the engineering re-
quirements for the many vehicles and environmen-
tal variations.

The Laboratory user must produce quality soft-
ware in the shortest possible time frame. There-
fore, the key objective in designing the Laboratory
was to provide accurate simulation models in the
form of user-oriented tools, Thus, he can swiftly
determine the progress and results of his work
through real time man-computer interaction. The
computer offers data, counsel, and guidance to the
man, who in return supplies certain indispensable
knowledge of the overall system. Systems relia-
bility and effective communications between the
Laboratory and user play a major roll in

establishing user confidence. Operating experience
in the Laboratory has clearly demonstrated that
these objectives have been satisfied.

Briefly, the Laboratory consists of an IBM
System/360 Model 44 linked to a Saturn Flight Com-
puter and Data Adapter. An IBM 2250 Display Unit
is used as an integral part of the Laboratory to pro-
vide good man-computer interface for communica-
tions with the system. This makes possible real
time programmer/engineer participation.

The choice of equipment to be used in a simula-
tor such as this is in many ways a subjective judg-
ment based on the user's objectives, his experience,
and available resources. To meet the system ob-
jectives, it was decided to use the actual flight
hardware (Computer and Data Adapter) so as to
minimize the risk of error. An alternate approach
would be to simulate the Flight Computer and Data
Adapter within the System/360 Model 44. An inac-
curate simulation of the Flight Computer and Data
Adapter would seriously impact the reliability of
the software. On the other hand, to provide the re-
quired flexibility, it is highly desirable to simulate
other vehicle subsystems with equation and logic
models. This approach provides the ability to
easily generate the numerous malfunctions and off-
nominal conditions that must be introduced to
measure and evaluate flight software performance.

Hardware Configuration

The Laboratory has as its main hardware com-
ponents an IBM System/360 Model 44, linked
through a special purpose interface to a Saturn
Launch Vehicle Digital Computer and Launch Ve-
hicle Data Adapter. An IBM 2250 Display Unit is
employed as an integral part of the Laboratory,
providing two-way man-computer communications.
Figure 3 illustrates the organization of the hard-
ware components and in general indicates the basic
paths of information flow.

Console
| » Typewriter
Display
Unit
8K Buffer
Card Punch,
MPX Reader,
Printer
System/360
Model 44 #{ Tapes
262,144
Bytes -
HSMX W -
HSMX
Data 7| Interface
t Adapter Unit LVDAfLVDC
FIGURE 3. FLIGHT SOFTWARE DEVELOPMENT

LABORATORY - BLOCK DIAGRAM

The Model 44, even though a member of IBM
System/360, has been tailored to handle scientific
data acquisition, and to process control applica-
tions. The central processing unit has a 1. 0-
microsecond storage cycle time with a four-byte
parallel access-to-processor storage. High speed
internal circuits are used to implement four-byte
(word) data flow and control. Sixteen general pur-
pose registers use high speed circuits and have a
.25-microsecond read/write time. The Model 44
instruction set, including the floating point and
commercial features, is the same as the System/
360 universal instruction set.

One high speed multiplexer channel has been
dedicated to the flight hardware interface. Each
of the subchannels is likewise dedicated, as shown
in Figure 3. The dedicated channel and subchan-
nels minimize interference from other I/O activi-
ties and enable the creation of a special low over-
head channel scheduler. These features incorpo-
rated with the priority interrupt scheme discussed
below make the Model 44 highly responsive to the
real time interface requirements. The other high
speed multiplexer channel is dedicated to disks

that support real time data collection and permit
fast access for the display system.

The 32 levels of priority interrupt couple the
computing power of the central processor to the
ability to respond quickly to different external
events with a minimum of central processor time.

In this particular application, six of the 32levels
are used by external hardwired equipment. The
others are used by internally generated software
functions for scheduling time-dependent software
functions.

The Launch Vehicle Digital Computer and Launch
Vehicle Data Adapter are the two flight components
that have been integrated into the Laboratory.

The Flight Computer is a general purpose com-
puter which, under control of a stored program,
processes data serially, using fixed point 2's com-
plement arithmetic. The principal storage device
is a random access ferrite core memory with sepa-
rate controls for data and instruction addressing.
The memory can be operated in simplex or duplex
mode. In duplex operation, memory modules are
operated in pairs with the same data being stored
in each module, Each memory module provides
4096 28-bit words of storage. A maximum capacity
of eight modules provides a simplex storage of
32,768 words.

The Data Adapter serves as an input/output de-
vice for the Flight Computer and the central station
for the signal flow in the Saturn Astrionics System
(Figure 2). The Data Adapter accepts discrete in-
put signals from the stage switch selectors, Instru-
ment Unit command receiver, ground launch com-
puter, telemetry computer interface unit, telemetry
data multiplexer, control distributor, and other
vehicle equipment. It has output registers to pro-
vide discrete output signals to the above-mentioned
equipment., It also accepts and processes computer
interrupt signals from the ground launch computer
and Instrument Unit equipment. Figure 4 depicts
the Flight Computer, Data Adapter, and interface
equipment.

The interface unit links the Flight Computer/
Data Adpater combination and the parallel data
adapters contained in the IBM 2701 control unit
illustrated in Figure 5. The interface was built on
site, using the same solid logic technology as is
used in the System/360 to maximize reliability and
to control and minimize noise. The interface unit
provides the necessary features to check out oper-
ational flight software, in unaltered form, using
flight equipment. In addition, the interface unit
contains sufficient internal logic, controls, and
displays to perform extensive automatic self-check
via the central processor and limited manual
testing.

The parallel Data Adapter in the 2701 control
unit allows the connection of external devices that
perform parallel-by-bit, serial-by-word data trans-
fers with the central processor, The first word of
a write operation contains addressing information
used to drive the multiplexers, Once a multiplexer
channel has been set for an input or an output oper-
ation, the central processor is free to transmit or
receive data through the parallel Data Adapter with-
out interfering with the central processor.

The priority interrupt control scheme gathers
information from many points within the interface
unit and generates external priority interrupts and
data for the central processor. Each of the six ex-
ternal interrupts is preassigned, allowing the cen-
tral processor to respond in a predetermined
manner.

The interface unit provides all the normal
ground and flight comnmunications paths between the
flight hardware and the central processor. How-
ever, this interface was designed to go beyond

FIGURE 4, FLIGHT COMPUTER, DATA

ADAPTER, AND INTERFACE

EQUIPMENT
—————— —— e ——— ———————— —_—————————
] Interface Unit |
| Accelerometer |
1 " Measurements o~ | —
| Platform Simulator Attitude Angles |
-] > |
| * Failure Control |
| |
Launch L Vehicle Sequencing And :
N Data Input "
Vehicle ota nPuTE g | -
Data LVDA Discrete And f:" Data Buses <
Sequencing Outputs ™3 2
Adapter : d P 2 : a
(LVDA) R dl ite Control
Internal Interface Control <— sad/Write Contro

v .

Power Sequencing, LVDC
Single Step, And Halt Control

-

——— ———————— — — =

Instruction Compare

3

2701 Control Unit
System/360 Model 44

LVDC Access Control !
Lounch
l 5 5
Vehicle E, z
Y o
. > LVDC Load/Verify = Data Buses =
Digital > p
= i &
Computer |
Steering Commonds '
(LvDQ) 1" °r Read/Write Control

Telemetry

Pricrity Interrupt & Priority Interrupt Levels

Control \ L—J

h

/O Address Compares

| e e e] e —— —— ——

FIGURE 5. INTERFACE EQUIPMENT

these requirements. The interface is unique in
that it was designed to place emphasis on (1) mini-
mizing the central processor interface traffic and
(2) maximizing user visibility by giving the user
the control of internal flight hardware operations
and the access to information internal to the Flight
Computer. Also, the unit was designed for ease

of maintainability, Specifically, three major capa-
bilities have been incorporated into the interface
unit. First, the interface unit has been designed
so that it can control the internal operation and
timing of the Flight Computer and Data Adapter.
Through the interface unit, the central processor
can single-step the Flight Computer and stop, re-
start, recycle, or halt the flight hardware under
Model 44 software control. All such operations
are transparent to the programs executing in the
Flight Computer. Secondly, the interface contains
special hardware, oriented toward supporting flight
program debug as opposed to program verification.
The interface unit has direct access to the Flight
Computer accumulator, transfer register, operand,
address, and memory buffer registers. With such
capabilities, the central processor has direct ac-
cess to the Flight Computer memory, allowing
both forced loads and reads of memory that are in-
dependent of flight software. In addition, this ca-
pability provides the central processor with the
ability to force any desired Data Adapter operation
by directly loading I/O commands into the Flight
Computer transfer register, and forcing their exe-
cutions without the necessity of processing a flight
computer stored program. All these features were
implemented through the interface, requiring no
modifications to the Flight Computer.

The Flight Computer memory and accumulator
access capability is used extensively during the
real time mode to allow the user to perform Flight
Computer traces, snaps, and dumps. The inter-
face is also able to perform address compares on
Flight Computer instructions or data addresses
during real time runs as well as compares on
Flight Computer I/O addresses. These compares
can be used either to collect data (snaps) and/or
to control Flight Computer stops, and trace se-
lected areas of the flight program.

Finally, the interface unit has been designed so
that extensive automatic diagnostics can be run
from the central processor to isolate suspected
interface failures. In general, every register in
the interface unit may be loaded from and read by
the central processor. During the operational
mode, diagnostics are automatically run before
the user begins to utilize the system for software
development. This ensures that the user has a
fully operational interface unit before beginning
his runs. In addition, the central processor soft-
ware has been designed so that it is immediately
made aware of internal failures in the interface
and automatically notifies the user of the sus-
pected problem.

The IBM 2250 Display Unit is organized around
a cathode ray tube on which computer-programmed
graphic and alphameric information is displayed at
high speeds. This provides visual communication
between the computer and the user. In addition,
keyboards and a light pen provide the user with a
versatile means of entering and modifying computer
information. With the display system, the user has
direct and rapid access to stored data which can be
selected, processed, modified, and displayed in
alphameric and graphic representation, For ex-
ample, the user can display and modify memory
in both the Model 44 and the Flight Computer
through the display unit.

The display unit was configured to minimize cen-
tral processor time and core requirements on the
Model 44, A primary feature of the display unit is
a buffer storage of 8, 192 bytes which is used to
store images for display regeneration purposes,
The use of a buffer enables the display unit to oper-
ate concurrently with the computer system, freeing
the main core and the channel for other functions,
Additional features which greatly compress the
image storage requirements are the absolute vector
and character generator features.

Operating System

The operating system for the Laboratory is desig-
nated as the Checkout Control System (CCS)., It is
the operating system which is furnished with the
IBM System/360 Model 44, with additions and modi-
fications to convert the system from a sequential
batch job processor to a real time multiprogram-
ming processor. However, all the original func-
tions and features have been retained. Programs
not requiring the elements of a real time multipro-
gramming system may operate as though the addi-
tional facilities were not present.

The Model 44 Programming System (44PS) con-
sists of a supervisor, an assembler, a FORTRAN
compiler, and system support programs, It pro-
vides FORTRAN and assembler language processing
and program execution in a monitored environment,
with automatic job-to-job transition, interrupt
handling, and input/output supervisor. The system
has facilities for the creation and maintenance of
libraries (program and data) and the manipulation
of their contents. It also provides extensive job
control and program segmentation capabilities for
flexibility and versatility in the preparation of pro-
grams for execution.

The supervisor controls the entire system and
provides a common interface to all processing pro-
grams. In particular, it manages the use of input/
output devices, data sets, and processing programs.
Program modules are loaded from the absolute pro-
gram library as required by job control or re-
quested by programs in execution. It handles input/
output requirements including error recovery

procedures and the execution of input/output with-
out reference to a particular device type by the
user. All classes of interrupts are serviced with
transfers to the appropriate system or user rou-
tine for processing, The use of the input/output
channels is scheduled to effect overlap in these
operations.

The principal area of 44PS in which additions
and changes have been made is the supervisor.
The required functions of CCS include the ability
to support various operations of computing at pre-
cise intervals of time. These operations are se-
lected by a priority scheme which controls the
sequence of execution. Other operations are
designed to execute as a result of interrupts in-
duced outside the central processor. These are
generally of such importance that their priorities
are higher than operations initiated as a result of
time. The function of multiprogramming through
a scheme of priority interrupts and the require-
ment of real time operation are the principal re-
quirements for CCS. To satisfy these require-
ments, capabilities in three principal areas have
been added. These are multiprogram scheduling,
real time input/output scheduling, and application
program phasing control.

A principal element of the program scheduling
facility for CCS is the timer queue (Figure 6). It
consists of a string of items ordered in ascending
sequence of time-to-execute. Each item of the
queue contains a pointer to the routine to be exe-
cuted at the corresponding time. When the timer
interrupt occurs, the timer processor routine

Head
Pointer to First ltem \
Priority Point to First item
15
Time to Execute

24 Program A >
10

29 Program B >
25

38 Program C >
20

49 Program D >
10

56 Progrom E

FIGURE 6. TIMER QUEUE

gains control and the routine corresponding to the
timer interrupt is placed into a state of execution.
Its immediate or deferred execution is a function
of priority levels. When a timer interrupt occurs,
a comparison is made between the priority level of
the routine currently in execution and the level of
the routine for which the timer interrupt has oc-
curred. If the level of the current routine is higher
than or equal to the other, it resumes execution
while the execution of the lower priority routine is
deferred. Conversely, if the priority level of the
current routine is lower, the other is placed imme-
diately into execution, temporarily suspending the
first. This method of scheduling uses the hard-
ware priority interrupt system and additional soft-
ware of CCS,

Figure 7 illustrates some of the conditions which
may occur with a typical combination of timer ini-
tiated priority routines. Notice that the execution
priority level of timer interrupts is coincident with
the priority level executing at that time, In addi-
tion, the figure shows how the high priority routine
gains control from a lower priority routine. In this
priority system, low magnitude numbers corre-
spond to high level priority.

Prog Prog
Priority 10 B E
Prog Prog
Priority 15 A A
Prog Pr.
Priority 20 o} b

Prog Piog
Priority 25 C C
Non=Priority

Times ﬂ

Interrupt _, u | H

Time

FIGURE 7. TIMER-INITIATED
MULTIPROGRAMMING

Figure 6 illustrates a timer queue containing
several items, which will initiate programs on
various levels at different times. These items
match the information illustrated in Figure 7. As
each item reaches the top of the list, the internal
interval timer is set to the increment of time from
""now'" until the program is to execute, When the
timer expires, a priority level request for the
program is set, the item is removed from the
queue, and an interval for the next item is calcu-
lated. The program pointed to by the item which
caused the timer interrupt is attached to its pri-
ority level for execution. When the queue becomes
empty, the non-priority level regains control,

The second major feature of program schedul-
ing is the supervision of priority interrupts by the
priority interrupt executive. Certain ‘house-
keeping' functions are performed by this feature,
such as register saving and restoring, as control
passes up and down the priority levels. Control is
automatically given to the priority interrupt execu-
tive whenever any one of the 32 levels is activated.
The routine to be given control is determined,
registers are saved as required, and a pointer to
parameters is set. Control is then given to the
priority routine. When the routine concludes its
operation, it returns control to the priority inter-
rupt executive which restores registers and causes
the routine on the next highest level to resume or
begin execution.

Figure 8 illustrates the overall flow of data and
control in CCS. Whereas Figure 7 illustrates the
effect of program scheduling, this figure illus-
trates the mechanics involved. A program cur-
rently executing may be interrupted by the timer
(1). The timer processor selects data from the
queue (2) and attaches the routine to execute (3).

It sets a new interval in the timer (4) and initiates
a priority interrupt (5) (assuming the routine is of
a higher priority than the current program). The
priority interrupt executive determines the routine
to execute (6) and gives control to the routine (7)
which returns control (8) when finished. The
executive then returns control to the interrupted
program (9). At step 5, the condition may exist
that the timer-initiated routine is of lower priority
than the current program. If so, the timer pro-
cessor returns control directly to the current pro-
gram (10).

Timer O Interrupt
- Current
| Progrom
|
|
1
: Priority
| _ Program Attachment
1 N g Toble
E 2
| ® @ |E =
I , @ |—
1 . Program Pointers, Timer Program
Timer Priority Processor Pointers 10
| Queue v
I o — "
]) | Priority 20
1 1/\\ ‘ Interrupt @
— | 2%
: ® Priority Program
| Interrupt Pointers —_
: Executive . <
|
: @
Hardware
| Priority
| @ Interrupts
] Program Pointers P
aiue ’ Py ms
) Priority, Etc. rogre interface
| Unit
I)
e e e e = — -
FIGURE 8. PROGRAM SCHEDULING

Both application and system programs may queue
routines using the timer queue (11). The actual
queueing is done by a system routine,

In Figure 8, the dash line connecting "'programs"
and '"'current program' is intended to show that the
current program is merely one of many which is
selected by the priority interrupt executive.

The System/360 Model 44 Program System
(44PS) provides two levels of I/O program interface
facilities, The higher of these, called read/write,
allows the user to specify and initiate I/O activities
by means of system routines. The lower level,
called execute channel program (EXCP), allows the
user to use some system routines in combination
with user-supplied routines. In the real time en-
vironment of CCS, the user is required to initiate
1/0 using the EXCP level; however, FORTRAN
I1/O calls, all of which are initiated on the same
priority level, are allowed to use the read/write
level., This restriction is necessary due to the
non-reentrant nature of the read/write level
facilities.

The 44PS I/O channel scheduler was changed to
handle a multiprogrammed environment. Among
the changes were new real time, core resident
1/0 device routines, a gated front end to the chan-
nel scheduler and I/O termination interrupt routine,
and de-queueing logic at the exit point of the chan-
nel scheduler.

Of several options available to modify the chan-
nel scheduler, one was chosen which allows only
one transaction into the scheduler at a time. The
effect of this method is to allow an I/O request to
enter the scheduler and be serviced only if the
scheduler is not currently processing a previous
request, Due to multilevel program execution, an
1/O request being made while another is being
processed can occur only when the new request is
of a higher priority level routine. Therefore, the
request in process when interrupted by a higher
priority level is resumed at its point of interrupt,
The new higher priority level request is serviced
immediately thereafter.

Certain routines are used in common by both the
channel scheduler and the I/O termination interrupt
program,. Therefore, the I/O termination inter-
rupts are disabled while a transaction is in the
channel scheduler. Conversely, the gate is closed
to new requests while an I/O termination is being
processed, A posting function is also associated
with I/O termination. Its purpose is to allow pri-
ority level routines to request I/O, give up control
on their level, and then regain control when the
1/0 is completed.

To meet the demands of real time I/O for the
Flight Computer, a special low overhead channel
scheduler is used. The gated channel scheduler
using 44PS has some features neither necessary
nor required for the Flight Computer channel.

Therefore, a specialized channel control program
was introduced which reduces the amount of com-
puting overhead required to service I/O requests
for the flight computer. Moreover, a much better
response to I/O requests exists for the channel.

As Figure 9 shows, a test point is included at the
beginning of the normal channel scheduler to filter
out requests for that dedicated channel. The figure
is a simplified flow chart of the gated I/O

scheduler.
I/O
Request
Schedule R.eul
Request In Time
Low Overhead Interface
Scheduler Chgnnel

Scheduler Queue
Busy Request
: '

Prepare
Close To Finish
Gate Previous
Request
Y
Schedule
P S
Request p

Request
Waiting
?

y
DN
FIGURE 9. GATED I/0O

The de-queueing and return logic when a waiting
request has been serviced causes program control
to return to the high priority routine. The control
which would have allowed return to the lower pri-
ority routine is adjusted to cause return after the
high priority routine relinquishes control on its
high priority level.

The CCS phasing function provides the capability
to load and initialize the required set of application
programs under the control of operations initiated
at the display console. An application core load
(phase) contains all programs required in memory
at the same time to perform one of the major sim-
ulation functions.

The phases are resident on the system resi-
dence disk volume and are transferred to the

application program area of central processor
memory when requested by the flight programmer/
engineer via the display console. The transfer is
implemented by CCS through standard 44PS load
capabilities, After a phase has been loaded, the
unused portion of memory is calculated and desig-
nated as available work space which will later be
used by the phase programs. The phase is given
program control at its entry point on the nonpri-
ority level of program execution,

Selection of the phase to be loaded and executed
is made from the initial tutorial display which is
set up by the initial loading of CCS. The user at
the display console is enabled to make his selection
of the phase via the light pen instrument. The se-
lection of a phase initiates CCS operations which
result in a core load of the application program
area, When the user chooses to change from the
execution of one phase to another, he requests the
redisplay of the initial tutorial. Upon this request,
CCS executes an orderly shutdown of the activities
in process for the current phase and then reloads
the central processor memory with the phase re-
quested. Figure 10 illustrates the general alloca-
tion of core for the application programs.

Checkout
Control
System
Flight Hardware
W
Flight Simulation
Application @z_afion/
Programs
* Flight
Simulation
Post Flight
Data Reduciiol
Free
Space
FIGURE 10, PHASE LOAD CORE MEMORY MAP

Application Software

Application software in the Laboratory is de-
signed to perform four basic tasks: (l) hardware
diagnostics, (2) flight simulation initialization,

(3) flight simulation execution, and (4) post-flight
data reduction, A self-contained set of software
programs, called a phase, has been constructed to
perform each of these tasks. At any given time
only one phase resides in core with both communi-
cation region and temporary data set residing on

a disk device.

The hardware diagnostics phase contains pro-
grams which perform the power-up and initializa-
tion function for the Flight Computer and its inter-
face unit. The diagnostic programs are required
by engineering for maintaining and servicing the
interface unit.

The flight simulation initialization phase con-
sists of the programs to specify the details and
options of the particular flight simulation the user
wishes to make. He may specify such items as
loading, modifying, and accessing the flight pro-
gram; digital command system orders; computer
interface unit measurements; real time output
quantities; flight pause points; data to be saved for
post-flight analysis; the particular Saturn vehicle
to be simulated; and the type of simulation run to
be made,.

The post-flight data reduction phase contains
all software necessary to process data that was
collected by real time programs operating in the
simulation phase. This consists of data from the
Flight Computer, the 6-DOF simulator, and the
FORTRAN flight program model. The capability
of generating plots on the display unit has been
provided along with conversion, formatting, analy-
sis, and outputting of data on the printer,

In these three phases, very little use is made
of the priority interrupt feature on the Model 44 as
an instrument of real time operation, Practically
all programs are initiated by operator action at the
display console and programs receiving control
operate on the priority level assigned to display
control. This same level is reserved for display
control in each phase. The entire real time simu-
lation phase is built around and is controlled by
the priority interrupt feature.

The application programs in this phase perform
the following tasks:

® 6-degree-of-freedom (6-DOF) launch
vehicle simulation.

® Digital command system simulation {(ground
data link).

® FORTRAN equation and logic model execu-
tion of the flight program.

® Data reduction and analysis.
Figure 11 presents an overview of the major appli-

cation software components required for the real
time phase and their interrelationships. The

{Flight Hordware |
1 |
I LVDC/DA L
1| Flight. |
| Program _l——
I 1 Vehicle and
L 1 Selector Ground Station
———————— Simulator
Fortran
> Flight
Program
Model l
Real Time
—® Dato
Buffer
‘ Data Sets
Data Vehicle
Dato Reduction Tapes Perturbations
Disks ond Analysis
Flight and
Printer Vehicle
Specifications
Display
Disk
Data
Tutoring Display Reduction
Displays o Console Analysis
And Control
FIGURE 11, APPLICATION SOFTWARE FUNCTIONAL FLOW - REAL TIME PHASE

operator, seated at the display control unit, com-
municates with the system through preformatted
tutorial displays., Three data sets are used as an
input interface between the display unit and the

real time application software. The flight and
vehicle specifications data set is used to structure
the vehicle and flight program skeletons to any of
the many missions under development, This data
set is defined and generated during the initialization
phase. The two remaining data sets (vehicle per-
turbation and data reduction analysis and control)
are accessible both during the initialization and real
time simulation phases. The vehicle perturbation
functions allow the operator to specify various ve-
hicle anomalies such as thrust perturbations, com-
mand receiver failures, staging or event failures,
inertial platform failures, etc., in addition to the
start time and duration for each., The appropriate
control information is ordered by time of occur-
rence and recorded in a vehicle sequencing queue
until the specified activation time. A similar pro-
cedure is followed in the creation of the data reduc-
tion analysis and control data set.

The FORTRAN f{light program model is an engi-
neering representation of the flight program. It
serves as an additional reference to measure and
evaluate actual flight software performance.

The real time data buffer receives data from the
FORTRAN flight program model and the 6-DOF ve-
hicle simulator as well as telemetry data from the
flight hardware. This entire set of data is re-
corded on tape for the post-flight data reduction
phase. Data selected for real time observation is
organized, formatted, and recorded on the disk,
This particular data is accessible at any time upon
request from the display console as either tabular
data or graphic plots. Such displays may be gen-
erated from historical data beginning at some
particular point in the past and carried up through
the current values or itmay start with current
values. In both cases, the display is continually
updated from the real time data buffer. In addi-
tion, the real time tabular data may be perma-
nently recorded on the printer.

The 6-DOF simulator consists of both rotational
and translational dynamics as well as a simulation
of the vehicle subsystems involved in vehicular
control, such as sequencing, digital command sys-
tem, etc. This simulator may be driven by either
the actual flight hardware or the FORTRAN flight
program model, In turn, the 6-DOF simulator
supplies inputs to both the flight hardware and the
FORTRAN flight program model,

Each of these real time application programs is
assigned a relative priority and an absolute prior-
ity level. Figure 12 shows groups of application
programs and their priority interrupt level as-
signments used in this system at the present time.
In general, high priority levels have short execu-
tion times. These routines respond to discrete
external events or internal keying by the interval
timer. Routines with longer execution times are

10

) i]) B
| Model 44 Toterface Unit .
| cru Initiated (0, 2, 5, 8, 11, 13) |
O e e e - e o — - o —— 1
| Initioted By -‘I
| Timer Processor
H [} Interfoce
| 6-DOF {10, 20} H— i ()
| I =]
Digital Command System
1141 l
! : I Jio 1
| .—f.{ Vehicle Sequencing (4] I-—}-. Scheduler
Display | i
ﬁ le——a Contsol] I
~ 23] 1 .
Reol Time Data Collection
118)
Ll I
| |
Real Time Dato Reduction | |
— 1 (28, 29, 30) |
. . | ‘
FORTRAN Model
1 117, 22, 24, 25, 26) : 1
N - ‘
]
Tpares 11, 3, 6, 7, 9, 12, K
15, 16, 19,°21] 27, 30 ‘
I Non=Priority
Idle Loop '

FIGURE 12, FUNCTIONAL GROUPINGS OF
PRIORITY INTERRUPT LINE
ASSIGNMENTS (0-31) IN REAL

TIME PHASE

Among these routines
The

on lower priority levels.
are real time reduction and graphic support.
priority level assignments, both hardware and
software activated, can be changed easily to opti-
mize system performance.

The requirements of the real time application
programs guided the design of the program sched-
uler in CCS. As a result, the priority scheduler
provides the real time application programs with a
highly flexible operating environment, This en-
vironment has developed as a result of these sig-
nificant points. First, the System/360 Model 44
and the Flight Computer operate asynchronously
with respect to one another. This condition re-
lieves the system of several constraints in its op-
erating environment which would otherwise be
present and tend to constrict the system rather than
allow it flexibility. Second, the application pro-
grams are very responsive to the information sup-
plied from the interface unit via the priority inter-
rupt feature, There are six high priority levels of
the thirty-two which are assigned to signals from
the interface unit., This structure permits immedi-
ate response to Flight Computer conditions in the
Model 44 by interrupting programs operating on a
lower priority level. Third, a related function to
point two is that the low priority operations such as
servicing display unit operations execute on a non-
interference basis with the time critical functions
on higher priority level assignments, Fourth, with
respect to time-slicing, it is a self-adjusting sys-
tem. This means that programs on lower priority
levels will automatically give up time to programs
operating on higher levels, For example, the solu-
tion rate on vehicle navigation can be changed by
simply altering one constant so that the entire sys-
tem will self-adjust to the new solution rate.

User/System Interaction

With reference to user/system interaction, the
system may be said to have two primary objectives:
to provide a more detailed and complete checkout of
flight programs, and to ease the burden and reduce
the time required of a flight programmer to check
out a flight program. To meet these objectives,
the following system criteria were established:

1. Minimal knowledge of the central processor
required of system users.

2. The number of people required to run a sim-
ulation minimized.,

3. The operator control stations centralized.

4. The users' ability to influence the flight pro-
gram maximized.

5. The time required to set up runs minimized.

6. Entire simulations run by nontechnical
operators,

In order to satisfy these criteria, system start-
up procedures were automated, peripheral device
management routines were written (to allow tapes
and disks to be remounted on arbitrary drives),
direct access storage was fully utilized, program
overlay was used extensively, and all operator
control (after initial setup) was centralized at the
display unit,

The graphic display software provides the in-
terface between the application programs and the
IBM 2250 Display Unit through which the user
communicates with the system. Through this soft-
ware, the display console operator is in complete
control of the flight program and has a very wide
range of capabilities in initializing, controlling,
monitoring, and analyzing the flight program
performance.

The display program that provides this interface
operates in a real time environment. Therefore,
to reduce the core and time requirement necessary
to create each individual display, all displays are
preformatted by an off-line graphics program.
(See Figure 13.) This program receives card
images of the text and control information asso-
ciated with each display and creates a 'book' of
displays. This display book resides on a disk
cartridge and is divided into one index and as
many chapters as there are displays. Each dis-
play text is in an 'expanded' format containing em-
bedded graphic orders and in a format ready for
transmission to the display unit buffer, It re-
quires no editing, scanning, or unpacking in real
time. The keyboard and light pen pages provide
control information needed by the real time dis-
play control program to respond to operator key-
board and light pen inputs. For each chapter
created by the off-line program, there is a cor-
responding entry in the index. Each index entry

11

H L]
Disploy 73 Off-Line Printed
Display #2 Graphic Listing
D; 4 Display Of All
isplay 11 ~———p» | Program —_— Displays
Display Book / Chapter

S Index Dato 5S¢t " (— Display Text
[Tloy 7, Towelel / - — — — — — —

\ y Control Information
For Compose Field

— e ——— —— —

O 12/

ND/g -
Play £ TowselY 1

T

/
L
d
I
-
k—\
A

Control Information

) For Light Pen Action

Vd

/
4
_

.

FIGURE 13. DISPLAY BOOK GENERATION

AND ORGANIZATION

contains the name and disk address of its corre-
sponding chapter.

During system initialization, the real time dis-
play control program reads the index into core and
retrieves the system initial display from the dis-
play book. The initialize phase of the real time
display software is complete when the initial op-
tions are displayed, Light pen or keyboard inputs
from the display console operator are required to
initiate the display of new texts.

The display device routine services the light pen
and keyboard I/O interrupts and schedules the dis-
play control program on the timer queue for imme-
diate execution on a predetermined priority inter-
rupt level. When display control gets control on
its priority interrupt level, the type of action
taken by the operator is examined. The light pen
page and the keyboard page of the current display
chapter define all legal light pen inputs and key-
board entries.

The display control program displays the prop-
er text in response to the operator's light pen
actions, validates keyboard inputs, and passes
control information specified in the keyboard or
light pen page. Response to the user's inputs ap-
pears to be instantaneous to the operator (500
milliseconds maximum), When a longer time is
needed to process the operator's request, the
program to perform the operation is scheduled to
operate on another priority level and normal display
processing continues. The operator may initiate
several tasks to be performed simultaneously.

On a light pen detect, the light pen page of the
current display chapter is examined for a possible
NEXT PROGRAM. If one is specified, control is
passed to it and the NEXT DISPLAY is presented

when the program returns control to display con-
trol, When the NEXT PROGRAM is omitted from
the light pen page, the NEXT DISPLAY is presented
immediately and the display control program pri-
ority level is freed for additional operator inputs.

Display control makes legality checks on all
keyboard input against the legal data in the key-
board page of the display chapter and passes the
data to the designated program., When it is neces-
sary to input a large amount of data through the
display compose fields, or when many displays and
light pen actions are required to initiate a proce-
dure, the light pen options and keyboard entries
may be predefined on cards or disk. The display
software can initiate one option after another and
each time return to the predefined option set for
another option rather than waiting on the console
operator for further action. This speeds the setup
for procedures done repetitively and greatly re-
duces the possibility of operator errors.

The real time display control program accepts
inputs from the display console operator and also
from the application programs. While there can be
many application programs providing input during a
small interval of time, there can be only one dis-
play being presented to the operator. The inputs
affecting future or past displays are entered in a
queue and may be viewed by the operator by use of
the function keyboard.

An application program on any priority interrupt
level may use the display system to communicate
with the user through previously defined input areas
in the display text, These input areas may be de-
fined by the user to suit his needs and to present
his input data in an easy-to-read format. For
example, if the input areas in a display are defined
in a column format, the programmer's data will
automatically be presented in a column format
when the input areas are filled.

Figure 14 illustrates the display control inter-
face with the display unit, The control information
pages of a display chapter will remain in memory
as long as the display text is being presented to
the operator. When the operator uses the light pen
or keyboard, display control will use these pages
to determine the NEXT PROGRAM and NEXT DIS-
PLAY. When the chapter for the next display is
retrieved from the display book, the text page
processor merges the display text with any appli-
cation program data to be displayed and transfers
the combined text and data to the display buffer,
The new light pen and keyboard pages will remain
in memory to identify the next operator action.

A function key must be lit by the function key
processor before the key becomes active., An
application program can direct display control to
activate a function key and present a given control
display when the operator uses the key.

As the user views the system, the heart is the
display system., The programmed book of tutorial

12

Display
Book

N ~ ESPIQY "/ /
N _INDEX__~]

\\Qupreﬁl A

__ //
N CHAPTERS

~__

Display Chapter
Light Pen Software
Detect Liohi Pen Detect Light
ight Pen Detec Pen
Processor] Page

Keyboard| Light Pen Page |a—

| Keyboard
Keyboard Input Page
Processor
Keyboard Page [&— Text
Disploy Text Text Page Page
. Processor la—
Display
Buffer Function Key —
Function Key Processor || Application
Input —— Program
Function Key Display
/ Data Inputs

FIGURE 14, DISPLAY CONTROL INTERFACE

displays is provided to give him complete control
over the Flight Computer, the interface, and the
simulation itself. The book along with the use of
the light pen and the display keyboard leads the user
through the functions of powering up the Flight
‘Computer and Data Adapter, loading and accessing
the Flight Computer, setting up and executing the
simulation, and post-processing simulation data.
Each user option is carefully spelled out, and all
user input is verified before it is accepted by the
system. Should error conditions occur (due to in-
correct input, hardware failure, or flight program
failure), error messages are presented to the user
with instructions as to the recovery action.

A complete history of user actions at the display
unit is logged on the console typewriter for later
reference.

Figures 15 and 16 demonstrate user activity at
the graphic display terminal. By using the light
pen, the user is able to travel through the display
structure illustrated in Figure 15. Figure 16 de-
picts photographs of the displays represented by the
structure of Figure 15. Figure l6a shows the top
level display (DMO00). When the light pen is applied
to the keys for path 1, it leads to a display, DM33DA
(Figure lée), calling for information to be entered
from the keyboard. The keyboard entry or compose
field is defined by the legend on the display. Path 2
shows how the same path may be entered from the
execute flight simulation display, real time phase,.

Along with the capability to set up and execute
complete runs through the display system, the user
has the ability to monitor the execution and take

Flight Simulation and
Analysis System

DMO0*

TTT T T]

Interface Subsystem Checkout
and Initialize DM80

Flight Simulation,
Initialize

DMO1

FTTTTTTTTTI |

Access/Modify Mod. 44

UTTTTTtT I

Execute Flight Simulation Post Data Reduction

DM30

DM50

L----—--------1

Vehicle Perturbations

Load,/Modify, Access LVDC

Program DMO5 Program DMO6 DM33
v
4 ¢ BB o GR s OGN o ME o EE ° BB e BN ¢
T I 4
Accelerometer Failures Engine Thrust Perturbations Stoging And Event Failures
DM33A DM33D DM33E
¥
r----o—o—a—o---.‘
' H |]
Thrust Magnitude Deviations Engine Out Thrust Misalignment
DM33DA DM33DB DM33DC
Key
seesese Poth]
=== Poth 2 *Display Identification
w o wm o Paths | ond 2 play
FIGURE 15, DISPLAY STRUCTURE

restart dumps, These, too, are controlled from
the display console. A request may be made to
print out specific quantities on the printer as they
are calculated in either the Flight Computer or the
central processor, At the same time he may re-
quest various status displays, tabular displays, or
data plots to appear on the display unit. Should an
irregularity be detected, the operator has the abil-
ity to pause the simulation, process all the data
acquired thus far, and make changes or correc-
tions. He then has the option to continue the sim-
ulation, restart the simulation from various points
where restart information is available, or termi-
nate the run entirely.

Due to the complexity of the flight programs,
the flexibility of the facilities of the Laboratory,
and the desire to ease the burden of job setup as
much as possible, a scheme has been implemented
to sequence automatically from start to finish,
The sequencing and input information can be saved
on cards or in data sets on direct access storage.
Through the use of this scheme, it is possible for
a flight programmer to set up complex runs, sub-
mit the job for running by an operator, and return
later to pick up complete output from the run.

All the pertinent information flowing through
the real time data buffer is collected and saved on
tape (the 'Post Processor tape') for later analysis,
If the flight programmer has requested SNAPS and
TRACES of actual Flight Computer memory loca-
tions during instruction execution, this informa-
tion is saved on the postprocessor tape. The post-
processor tape may be processed immediately or
at a later date.

When processing the tape, the user has several
options available to him through use of the display
system., He may selectively dump any data on the
tape and request that the data be converted to deci-
mal form in specified units prior to printing. He
may have his data printed in a tabular form or he

13

may plot data on the display unit, Special calcu-
lations may be performed on some of the data and
the results printed or displayed. He may print or
plot errors between various quantities to verify
that the flight program results agree with the
6-DOF simulator.

Eerrience

The implementation of the Laboratory from the
initial planning phase through the completion of
the original objectives spans a seventeen-month
period, The System/360 Model 44 was installed
during the sixth month; the flight hardware and
interface unit were installed during the seventh
month; and the system was made available for
flight software development, with limited capa-
bility, during the ninth month. As of this writing,
twelve months into the project, the Laboratory
facility has been used extensively in support of the
AS-503/C Prime (Apollo 8) flight software devel-
opment activities. Although it is still too early to
completely assess the total impact of this Labora-
tory on the future of flight programming, it has
met all initial objectives thus far.

The programmers and engineers are currently
using the system in excess of 40 hours per week for
its intended purpose. The Laboratory has provided
them with a new dimension of visibility and man-
computer interraction which has had the effect of
stimulating higher levels of interest and creativity.

In the development of the Laboratory, certain
aspects have been cause for concern. A great deal
of time and effort by the most experienced and com-
petent software designers was spent in the planning
and organization of the vast amount of software
needed, Such an approach necessarily makes for a
slow start but is of such importance to be done pro-
perly that any undue haste in this phase is likely to
result in an inferior product which will later re-
quire extensive rework. Another phase of the de-

MULATLON &ND AHALYS|S P 1GHT STHULATION fTu1ilaL]

ioan ORITI0N i0UCH LIGHT SLECT Al ORI 0N
AUDRADE | ATE bEY SYRBOL 0 ARDROPRATE
QriLON
30, mm STMULATION SYSIEN
Path 1 CYCLE UP THSTRUCTIONS - -
ZF £CI/RE D?D RUN 0P T10NS
ACCESS/MODIF Y MOD 44 PROGRAM
CCUTY FLIGHT S — Path 2 LOAD/ROD IF Y/ ACCESS LVOC PR
0047 FLiGRi DATA REDUCTION Cl€r DCS COMMANDS-- -
RESET FLIGHT STHULATION -- CiFY Ciu MEASUREMENTS - --
SIGH OFF wWiih LVDC POWERED DFF CIFY QUIPUT REQUIREMENTS
SIGH OFF WiTH LVDC POWERED UH- ECIFY FLIGHT PAUSE PQINIS
CHITR DEMONSTRATION MODE - CIFY SIMULATED FLIGHT MOL
417 DEMONSTRATION MODE - CiFy FORTRAN MODEL @
CHFy VERICLE MODEL
DEFINE HICLE PERTURBATIONS -
LUAD f RAN AND VEHICLE MODEL
RETURN I0 MAIN QP]1 <]
MALE A4 HMARD COPY OF TH|S DiSPLAY-
D1SPLAY DMOO LAY DRON
16b,
¢EMICLE PERTURBATIONS ENGINE THRUST PERTURBAT |DNS
HRUS | HAGN‘IUDL DEVIAT{ONS
- H FNGINE OUT - - -
E’l‘r‘ﬂ;i{‘ THRUST P1I>AL‘IGI‘JP1 NT - - -
; ; . eR
£uc e - ;’ 2 ENGINE HARD OVER------
. ge - : IME STHCE GRR 00 HRS 03 MIN 0
“‘"f{,,‘";i ;f” hpsoc IME 10 TIME BASE T0 + iRb SEC
T1RD SIHCE GRR HH MRS HM MiN . .
A CE s g RETURN 10 PRIOR LEVEL DISPLAY PEN KEY
HE T Ting fasE T e Sic MALE A 1ARD COPY OF ThIS DISPLAY KEY
RETURH i PRIOR LEVEL DISPLAY PEN KEY
navgE A HARD CUPY OF THIS DISPLAY KEY
DISOLAY DH3S Diseeay onsp
l6¢c. 16d.

THRUST HMAGNITUDE DEVIATIONS EAECUTE FLIGHT SIMULATION

PFRESUME SIMULATIDN RUb -
A RESTARI DUMP ----
DISPLAY LVDA REGISTERS- -
D|«DLAV FCDD REGISTERS- -
3 |URHAIIONS
MMAND ‘\’ch IVER OPERAT

R

A--STAGE

FOR ALL)

TART PERTURBAT|ON
i0P PERTURBATION
PLIER

B--EHGINE 8

C--TIHE tH SE

D--T{HE [N BASE
-THRYUST R TUDE M

RARRRHIR

R A
g s
o
LTI
THRUST = NOMINAL * €

YOU HAVE ENTERED LUtitiiiiinisititieyngy

AABCCCCC CDDDDD DE EEF

HCE GRR 00 HRS 03 MIN 1% SEC
T{ME BASE [0 + RS E G

1G
Py
Py
Py
PuU
Py
Py
Py
PU
Py
Py

AAAA REAL
igp PRINT @

RETURM 10 PRIOR LEVEL 3 PEN KEY 0
i

MAKE & HARD COPY 0OF (g
PIME SINCE GRR 00 KRS

i1nE IN THIME BASE 10 o

URN 10 MAIN ORIONS
navl A HARD COPY OF THIS D(SPLAY

DisPLay DH3O

16F.

FIGURE 16, TUTORIAL DISPLAYS

14

velopment which was nonproductive in itself was the
period in which the computer was entirely dedicated
to operating system checkout. However, this period
is essential and must be done not only with dispatch
but with accuracy so that the working application
programs which run under control of the operating
system may be executed with little or no error con-
ditions occurring in the operating system itself,

Conclusion

The problem of designing a Flight Software De-
velopment Laboratory and ensuring that the pro-
grammer /engineer has the capabilities he requires
is a complex task, The techniques of simulation, the
selection of equipment, and the methods employed
for man-computer and computer-computer inter-
face must be carefully weighed. The requirement

15

for pin-point accuracy in the Laboratory resulted
in a real time multiprogrammed system which is
proving an invaluable tool for assisting in the de-
velopment and checkout of the flight programs, It
has made possible the development of flight soft-
ware which can be relied upon to a much greater
extent than before and has reduced the amount of
time necessary to produce it. In effect, the Lab-
oratory accomplishes the necessary aids toward
producing successful flight software.

Some of the software concepts employed in the
Laboratory may certainly be applied in related
areas of simulation technology. The operating
system and display support software have direct
conceptual applications in airborne and space ve-
hicle simulators.

Federal Systems Division, S

IBMIBMIBMIEMIBMIEMIEMIEMIBMIBMIEMIBMIEMIB
IBMIBMIEMIBMIBMIBMIEMIBMIEMIEMIBMIBEMIEMIB
IBMIBMIEMIEMIBMIEMIEMIEMIBMIBMIBMIBMIEMIB
IBMIBMIBMIEMIBMIEMIBEMIEMIEMIBMIBMIBMIEMIB
IBMIBMIBMIEMIBMIBMIBMIBEMIBMIBMIBMIBEMIBMIB
IBMIBMIEMIEMIEMIBMIBMIEMIBMIEMIBMIBMIBMIB
IBMIBMIEMIBEMIBMIEMIEMIEMIBEMIBMIBMIBMIEMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIEMIEMIBMIB
IBMIBMIEMIBMIBMIBMIBEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIBMIBMIBMIEMIBMIBMIBEMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIBMIBMIBMIBEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIEMIEMIEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIEMIEMIEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIEMIBMIBMIBMIEMIBEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIBMIBMIBMIEMIBMIBMIBMIBMIBMIBMIB
IBMIEMIBMIBMIBMIEMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIEMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBEMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIBMIBMIBMIEMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBEMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIEMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBEMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIEMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB
IBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIB

