
P = 5 ;* .7
- - $ l h Flight Soft ware Development Laboratory

%\I - - -
,- U..ri'T

Univ r ity . f , -
rc I l titute

H i ~ t o l y of Science G T chnojos G~~~~

Date ma--m----- Doc Na -.....--

IBM NO. 68-U6O-0022

IBM NO. 68-U60-0022

FLIGHT SOFTWARE
DEVELOPMENT LABORATORY

T. H. Witzel
and

J. S. Hughes

Presented at the 3rd Conference of
the American Institute of Aeronautics

and Astronautics on Flight, Test , Simulation,
and Support, March 10-12, 1969

International Business Machines Corporation
Federal Systems Division

Space Systems Center
Huntsville, Alabama

FLIGHT SOFTWARE DEVELOPMENT LABORATORY

T. H. Witzel and J. S. Hughes
Space S y s t e m s Cen te r

International Bus ines s Machines Corpora t ion
Huntsvil le , Alabama

Abs t r ac t i l l u s t r a t ed in F igu re 2. Continued emphas i s i s
placed on flight sof tware re l iab i l i ty because i t i s a n

A man-in-the-loop computer faci l i ty h a s been e s sen t i a l e l emen t in overa l l vehicle pe r fo rmance .
c r ea t ed us ing a digi tal computer , display t e r m i -
nal , and space vehicle flight computer t o enable
p r o g r a m m e r s t o check out flight p r o g r a m s in a
s imula ted s p a c e flight environment. The s imu la -
tion r e q u i r e s a r e a l t i m e mul t i p rog rammed en-
vironment, which i s supplied by a control s y s t e m
capable of scheduling p r o g r a m s on 32 l eve l s of
pr ior i ty i n t e r rup t a s well a s answer ing demands
for s e r v i c e a t the d isp lay t e rmina l . A specia l
in ter face device p e r m i t s visibility and cont ro l of
the flight p r o g r a m a s i t executes in the flight com-
puter . On-l ine inputs f rom the p r o g r a m m e r a t t he
d isp lay t e r m i n a l and outputs f rom data collect ion
and reduction rout ines t o the d isp lay s c r e e n a r e
executed in r e a l t ime. The Flight Software Devel-
opment Laboratory::: h a s proved to be ve ry useful in
reducing p r o g r a m prepara t ion t ime and inc reas ing
flight p rog ram confidence.

Introduction

The Fl ight Software Development Labora to ry
(F igu re 1) has been c rea t ed to a id p r o g r a m m e r /
engineers in t h e development of p rog rams that will
opera te in a spaceborne computer aboard the
Apollo/Saturn IB and V Launch Vehicles. T h e
Flight Computer ope ra t e s a s an in tegra l p a r t of
var ious vehicle subsys t ems in the In s t rumen t Unit.
The subsys t ems provide onboard navigation, guid-
ance , cont ro l , sequencing, da ta compres s ion , and
ground communications. These functions a r e

No opportunity ex i s t s t o t e s t o r e x e r c i s e the f l ight
p r o g r a m in i t s ac tua l flight envi ronment p r i o r to a
miss ion . The re fo re , to e n s u r e t he in tegr i ty of t he
flight p r o g r a m , s i m u l a t o r s a r e u s e d to accompl i sh
flight test ing. The purpose of th is paper i s to p r e -
s en t the organizat ion of one such s imu la to r that h a s
been c rea t ed with t he so le purpose of the develop-
m e n t and checkout of Sa turn flight software. T h e
emphas i s throughout the des ign and implementa t ion
of the Labora to ry h a s been tha t i t m u s t be u s e r -
or ien ted fo r p r o g r a m checkout. Be fo re the ex i s t -
ence of the Labora to ry , ava i lab le fac i l i t ies fo r
checking out flight p r o g r a m s w e r e or iented to h a r d -
w a r e checkout. Although such fac i l i t ies can be, and
have been, r igged for p rog ram checkout, they have
not provided the type of a s s i s t a n c e r equ i r ed to pro-
duce the quali ty of sof tware demanded by spaceborne
compu te r s . The Labora to ry i s believed t o be unique
in the capabi l i t ies i t provides to the p r o g r a m m e r /
engineer i n control l ing and affect ing the opera t ion
of the flight compu te r in a r e a l t i m e envi ronment .

Fl ight sof tware development begins with a s e t of
explici t engineering r equ i r emen t s : equation and
logic definition, range of va r i ab l e s , and expected
pe r fo rmance data. Af ter a n in tens ive ana lys i s of
the r equ i r emen t s , t he flight sof tware i s designed
and organized to m e e t t he se engineer ing r equ i r e -
m e n t s with minimal flight computer m e m o r y and
reasonable flexibility. After the flight p r o g r a m h a s
been flowed, sca led (fixed point compu te r) , coded,

FIGURE 1. FLIGHT SOFTWARE DEVELOPMENT LABORATORY

+This work was sponsored by National Aeronaut ics and Space Adminis t ra t ion Contrac t NAS8-14000.

1

(i Instrument Unit Block Diagram

Launch Vehicle '
\ Control

Digitol Computer Sensors

4
Integrating Control Computer
Accelerometers Analog Filter

I Accel.
1 Meos.

I

Measuring And -tl Re01 Equipment

Telemetry Telemetry In Laboratory

Data

Instrument Unit I I I i 1-1 Switch Selector h
SIVB Stoge
Switch Selector

Circuitry 14-H Switch Selector

14-p Switch Selector

To Nozzles 4 SIVB Stage Auxiliary
Propulsion System

SIVB Stoge
Engine Actuotors

To Engines 511 Stage
Enaine Actuotors

Engine Actuators

FIGURE 2. REAL AND SIMULATED FLIGHT EQUIPMENT

assembled, and checked out by the program unit o r
module, the flight phases a r e integrated and
checked out. This process continues until the en-
t i r e flight software has been integrated. The pro-
cedure described above requires that the pro-
grammerlengineer be able to measure and evalu-
ate his progress in an efficient manner. The pur-
pose of this laboratory facility i s to provide the
programmerlengineer with a user-oriented tool by
which he i s able to tes t and evaluate his programs
in a simulated flight environment, using an actual
spaceborne computer and interface hardware.
This enables him to measure and evaluate flight
software performance against the engineering r e -
quirements for the many vehicles and environmen-
tal variations.

The Laboratory u s e r must produce quality soft-
ware in the shor tes t possible time frame. There-
fore, the key objective in designing the Laboratory
was to provide accurate simulation models in the
fo rm of user-or iented tools. Thus, he can swiftly
determine the progress and resul ts of his work
through real t ime man-computer interaction. The
computer offers data, counsel, and guidance to the
man, who in re turn supplies cer ta in indispensable
knowledge of the overall system. Systems re l ia-
bility and effective communications between the
Laboratory and u s e r play a major roll in

establishing u s e r confidence. Operating experience
in the Laboratory has c lear ly demonstrated that
these objectives have been satisfied.

Briefly, the Laboratory consis ts of an IBM
System1360 Model 44 linked to a Saturn Flight Com-
puter and Data Adapter. An IBM 2250 Display Unit
i s used a s an integral pa r t of the Laboratory to pro-
vide good man-computer interface for communica-
tions with the system. This makes possible rea l
time programmerlengineer participation.

The choice of equipment to be used in a simula-
to r such a s this i s in many ways a subjective judg-
ment based on the u s e r ' s objectives, his experience,
and available resources . To meet the system ob-
jectives, i t was decided to u s e the actual flight
hardware (Computer and Data Adapter) s o a s to
minimize the r i s k of e r r o r . An alternate approach
would be to simulate the Flight Computer and Data
Adapter within the System/360 Model 44. An inac-
curate simulation of the Flight Computer and Data
Adapter would seriously impact the reliability of
the software. On the other hand, to provide the r e -
quired flexibility, i t i s highly desi rable to simulate
other vehicle subsystems with equation and logic
models. This approach provides the ability to
easily generate the numerous malfunctions and off-
nominal conditions that must be introduced to
measure and evaluate flight software performance.

Hardware Configuration

The Laboratory has a s i t s main hardware com-
ponents an IBM System/360 Model 44, linked
through a special purpose interface to a Saturn
Launch Vehicle Digital Computer and Launch Ve-
hicle Data Adapter. An IBM 2250 Display Unit i s
employed a s an integral par t of the Laboratory,
providing two-way man-computer communications.
F igure 3 i l lus t ra tes the organization of the hard-
ware components and in general indicates the basic
paths of information flow.

Display
Unit

8K Buffer -
Card Punch,

MPX Reader,
Printer

System/360
4

Model 44 4
262,144
Bytes

HSMX

-

that support r ea l t ime data collection and permit
fas t access for the display system.

The 32 levels of pr ior i ty in terrupt couple the
computing power of the central processor to the
ability to respond quickly to different external
events with a minimum of centra l processor t ime.

In this particular application, s ix of the 32 levels
a r e used by external hardwired equipment. The
others a r e used by internally generated software
functions for scheduling time-dependent software
functions.

The Launch Vehicle Digital Computer and Launch
Vehicle Data Adapter a r e the two flight components
that have been integrated into the Laboratory.

The Flight Computer i s a general purpose com-
puter which, under control of a stored program,
processes data ser ia l ly , using fixed point 2 ' s com-
plement ari thmetic. The principal storage device
i s a random access f e r r i t e core memory with sepa-
ra te controls for data and instruction addressing.
The memory can be operated in simplex or duplex
mode. In duplex operation, memory modules a r e
operated in pairs with the same data being s tored
in each module. Each memory module provides
4096 28-bit words of storage. A maximum capacity -
of eight modules provides a simplex s torage of

Data t, Interface 32,768 words.
Adapter Unit

LVDA LVDC
M

The Data Adapter se rves a s an input/output de-
vice for the Flight Computer and the centra l station

FIGURE 3. FLIGHT SOFTWARE DEVELOPMENT
LABORATORY - BLOCK DIAGRAM

The Mode1 44, even though a member of IBM
System/360, has been tailored to handle scientific
data acquisition, and to process control applica-
tions. The central processing unit has a 1. 0-
microsecond storage cycle t ime with a four-byte
parallel access-to-processor storage. High speed
internal circuits a r e used to implement four-byte
(word) data flow and control. Sixteen general pur-
pose regis ters use high speed c i rcui ts and have a
.25-microsecond read/wri te t ime. The Model 44
instruction set , including the floating point and
commercial features, i s the same a s the System/
360 universal instruction set .

One high speed multiplexer channel has been
dedicated to the flight hardware interface. Each
of the subchannels i s likewise dedicated, a s shown
in Figure 3. The dedicated channel and subchan-
nels minimize interference from other 110 activi-
t ies and enable the creation of a special low over-
head channel scheduler. These features incorpo-
rated with the priority interrupt scheme discussed
below make the Model 44 highly responsive to the
real t ime interface requirements. The other high
speed multiplexer channel i s dedicated to disks

for the signal flow in the Saturn Astrionics System
(Figure 2). The Data Adapter accepts d i sc re te in-
put signals f rom the stage switch selectors , Instru-
ment Unit command receiver , ground launch com-
puter, telemetry computer interface unit, te lemetry
data multiplexer, control distributor, and other
vehicle equipment. It has output r eg i s te r s to pro-
vide discrete output signals to the above-mentioned
equipment. It a lso accepts and processes computer
interrupt signals from the ground launch computer
and Instrument Unit equipment. Figure 4 depicts
the Flight Computer, Data Adapter, and interface
equipment.

The interface unit links the Flight Computer /
Data Adpater combination and the parallel data
adapters contained in the IBM 2701 control unit
i l lustrated in Figure 5. The interface was built on
site, using the same solid logic technology a s i s
used in the System/360 to maximize reliabil i ty and
to control and minimize noise. The interface unit
provides the necessa ry features to check out s p e r -
ational flight software, in unaltered fo rm, using
flight equipment. In addition, the interface unit
contains sufficient internal logic, controls, and
displays to perform extensive automatic self-check
via the central processor and l imited manual
testing.

-. - The para l le l Data Adapter in the 2701 control
unit al lows the connection of external devices tha t

" . per fo rm parallel-by-bit , serial-by-word data t r a n s - . - f e r s with the cen t ra l p rocesso r . The f i r s t word of
a wr i t e operation contains address ing information
used to d r ive the multiplexers. Once a mul t ip lexer
channel has been s e t f o r a n input o r a n output oper-
ation, the cen t ra l p rocesso r i s f r e e to t r a n s m i t o r
receive data through the para l le l Data Adapter with-
out in ter fer ing with the cent ra l p rocesso r .

1
The pr ior i ty in ter rupt control s cheme ga the r s

/

a,l
' information f rom many points within the in ter face

unit and genera tes external pr ior i ty in t e r rup t s and -
1 %

I data for the cen t ra l p rocesso r . Each of the s ix ex-
"% ' - t e rna l in t e r rup t s i s preass igned, allowing the cen-

I. t r a l p rocesso r to respond in a predetermined
- $1 1

manner . -4
\ . The in ter face unit provides a l l the normal

FIGURE 4. FLIGHT COMPUTER, DATA ground and flight communications paths between the

ADAPTER, AND INTERFACE flight ha rdware and the cent ra l p rocesso r . How-

EQUIPMENT ever , th is in ter face was designed to go beyond

r------------------------------
I

1 Interface Unit
Accelerometer

I

FIGURE 5. INTERFACE EQUIPMENT

these requirements. The interface i s unique in
that i t was designed to place emphasis on (1) mini-
mizing the centra l processor interface traffic and
(2) maximizing u s e r visibility by giving the u s e r
the control of internal flight hardware operations
and the access to information internal to the Flight
Computer. Also, the unit was designed for ease
of maintainability. Specifically, three major capa-
bilities have been incorporated into the interface
unit. F i r s t , the interface unit has been designed
so that i t can control the internal operation and
timing of the Flight Computer and Data Adapter.
Through the interface unit, the central processor
can single-step the Flight Computer and stop, r e -
s t a r t , recycle, o r halt the flight hardware under
Model 44 software control. All such operations
a r e t ransparent to the programs executing in the
Flight Computer. Secondly, the interface contains
special hardware, oriented toward supporting flight
program debug a s opposed to program verification.
The interface unit has di rect access to the Flight
Computer accumulator, t ransfer r eg i s te r , operand,
address , and memory buffer regis ters . With such
capabilities, the centra l processor has di rect ac-
cess to the Flight Computer memory, allowing
both forced loads and reads of memory that a r e in-
dependent of flight software. In addition, this ca-
pability provides the central processor with the
ability to force any desi red Data Adapter operation
by directly loading 110 commands into the Flight
Computer t r ans fe r r eg i s te r , and forcing their exe-
cutions without the necessity of processing a flight
computer stored program. All these features were
implemented through the interface, requiring no
modifications to the Flight Computer.

The Flight Computer memory and accumulator
access capability i s used extensively during the
real t ime mode to allow the u s e r to perform Flight
Computer t r aces , snaps, and dumps. The inter-
face i s a lso able to perform address compares on
Flight Computer instructions or data addresses
during real time runs a s well a s compares on
Flight Computer 110 addresses . These compares
can be used either to collect data (snaps) and/or
to control Flight Computer stops, and t r a c e se -
lected a r e a s of the flight program.

Finally, the interface unit has been designed so
that extensive automatic diagnostics can be run
from the central processor to isolate suspected
interface failures. In general, every regis ter in
the interface unit may be loaded from and read by
the central processor. During the operational
mode, diagnostics a r e automatically run before
the u s e r begins to utilize the system for software
development. This ensures that the u s e r has a
fully operational interface unit before beginning
his runs. In addition, the central processor soft-
ware has been designed so that i t i s immediately
made aware of internal failures in the interface
and automatically notifies the u s e r of the sus-
pected problem.

The IBM 2250 Display Unit is organized around
a cathode r a y tube on which computer-programmed
graphic and alphameric information is displayed a t
high speeds. This provides visual communication
between the computer and the use r . In addition,
keyboards and a light pen provide the u s e r with a
versati le means of entering and modifying computer
information. With the display system, the u s e r has
di rect and rapid access to stored data which can be
selected, processed, modified, and displayed in
alphameric and graphic representation. F o r ex-
ample, the u s e r can display and modify memory
in both the Model 44 and the Flight Computer
through the display unit.

The display unit was configured to minimize cen-
t r a l processor t ime and core requirements on the
Mode1 44. A pr imary feature of the display unit i s
a buffer storage of 8 , 192 bytes which is used to
s to re images for display regeneration purposes.
The use of a buffer enables the display unit to oper-
a te concurrently with the computer system, freeing
the main c o r e and the channel for other functions.
Additional features which greatly compress the
image storage requirements a r e the absolute vector
and charac te r generator features.

Operating System

The operating system for the Laboratory i s desig-
nated a s the Checkout Control System (CCS). It i s
the operating system which i s furnished with the
IBM System1360 Model 44, with additions and modi-
fications to convert the system from a sequential
batch job processor to a r ea l t ime multiprogram-
ming processor . However, all the original func-
tions and features have been retained. P r o g r a m s
not requiring the elements of a real t ime multipro-
gramming system may operate a s though the addi-
tional facil i t ies were not present.

The Model 44 Programming System (44PS) con-
s i s t s of a supervisor , an assembler , a FORTRAN
compiler, and system support programs. It pro-
vides FORTRAN and assembler language processing
and program execution in a monitored environment,
with automatic job-to-job transition, in terrupt
handling, and input/output supervisor. The system
has facilities for the creation and maintenance of
l ib ra r i es (program and data) and the manipulation
of their contents. It a lso provides extensive job
control and program segmentation capabilities for
flexibility and versati l i ty in the preparation of pro-
g r a m s for execution.

The supervisor controls the ent i re system and
provides a common interface to all processing pro-
grams. In par t icular , i t manages the use of input/
output devices, data se ts , and processing programs.
P rogram modules a r e loaded from the absolute pro-
gram l ib ra ry a s required by job control o r r e -
quested by programs in execution. It handles input1
output requirements including e r r o r recovery

procedures and the execution of inputfoutput with- gains control and the routine corresponding to the
out r e fe rence to a par t icular device type by the t i m e r in terrupt i s placed into a s ta te of execution.
use r . All c l asses of in terrupts a r e serviced with Its immediate or deferred execution i s a function
t r a n s f e r s to the appropriate system o r u s e r rou- of pr ior i ty levels. When a t imer in terrupt occurs ,
tine for processing. The u s e of the inputfoutput a comparison is made between the pr ior i ty level of

channels i s scheduled to effect overlap in these the routine current ly in execution and the level of
operations. the routine for which the t i m e r in terrupt has oc-

curred. If the level of the cur ren t routine is higher
The principal a r e a of 44PS in which additions than o r equal t o the other, i t r e sumes execution

and changes have been made i s the supervisor. while the execution of the lower pr ior i ty routine i s
The required functions of CCS include the ability deferred. Conversely, if the pr ior i ty level of the
to support various operations of computing a t pre- cur ren t routine i s lower, the other i s placed imme-
c ise intervals of t ime. These operations a r e se- diately into execution, temporarily suspending the
lected by a priority scheme which controls the f i rs t . This method of scheduling uses the hard-
sequence of execution. Other operations a r e ware priority in terrupt system and additional soft-
designed to execute a s a resul t of in terrupts in- ware of CCS.
duced outside the central processor . These a r e
generally of such importance that their pr ior i t ies Figure 7 i l lus t ra tes some of the conditions which
a r e higher than operations initiated a s a resul t of may occur with a typical combination of t imer ini- -

time. The function of multiprogramming through tiated pr ior i ty routines. Notice that the execution
a scheme of pr ior i ty in terrupts and the require- pr ior i ty level of t imer interrupts i s coincident with
ment of r ea l t ime operation a r e the principal r e - the pr ior i ty level executing a t that time. In addi-
quirements for CCS. To satisfy these require- tion, the figure shows how the high priority routine
ments, capabilities in three principal a r e a s have gains control f rom a lower pr ior i ty routine. In th is
been added. These a r e multiprogram scheduling, pr ior i ty system, low magnitude numbers c o r r e -
real t ime input/output scheduling, and application spond to high level priority.
program phasing control.

A principal element of the program scheduling P r i u i l y 1 0

facility for CCS i s the t imer queue (Figure 6). It
consists of a s t r ing of i t ems ordered in ascending
sequence of time-to-execute. Each i tem of the ~ , i ~ r i t ~ 15

queue contains a pointer to the routine to be exe-

Head I

cuted a t the corresponding time. When the t imer
interrupt occurs , the t imer processor routine

~ , i - i t ~ 20

Pointer to First ltem

P r w
D

Progrom C ~6

Priority
15

Time to Execute
24

10

2 9

I I 4 9
Program D

Point to First ltem

Progrom A

Program B

Progrom E

FIGURE 6. TIMER QUEUE

\ t 3 t s 8 , I # m 4 ,

19 24 29 34 39 44 49 54 5 9 64 69 74

Time

FIGURE 7. TIMER-INITIATED
MULTIPROGRAMMING

Timer

Interrupt

Figure 6 i l lus t ra tes a t imer queue containing
several i tems, which will initiate programs on
various levels a t different t imes. These i tems
match the information i l lustrated in Figure 7. As
each i tem reaches the top of the l i s t , the internal
interval t imer i s se t to the increment of t ime f rom
"now" until the program i s to execute. When the
t imer expires, a priority level request for the
program i s se t , the i tem i s removed from the
queue, and an interval for the next i tem i s calcu-
lated. The program pointed to by the i tem which
caused the t imer interrupt i s attached to i t s pri-
ority level for execution. When the queue becomes
empty, the non-priority level regains control.

15 10 25 20 10 n r u n n n

The second ma jo r fea ture of p rogram schedul-
ing is the supervis ion of pr ior i ty in t e r rup t s by the
pr ior i ty in t e r rup t executive. Cer t a in 'house-
keeping' functions a r e performed by th is fea ture ,
such a s r e g i s t e r saving and res tor ing, a s control
passes up and down the pr ior i ty levels. Control i s
automatically given to the pr ior i ty in t e r rup t execu-
tive whenever any one of the 32 l eve l s i s activated.
The routine to be given control i s de termined,
r e g i s t e r s a r e saved a s required , and a pointer to
p a r a m e t e r s i s se t . Control i s then given to the
pr ior i ty routine. When the routine concludes i t s
operation, i t r e t u r n s control to the pr ior i ty in ter -
rupt executive which r e s t o r e s r e g i s t e r s and cause s
the routine on the next highest level to r e s u m e o r
begin execution.

F igure 8 i l l u s t r a t e s the overa l l flow of data and
control in CCS. Whereas F igure 7 i l lus t ra tes the
effect of program scheduling, this f igure i l lus-
t r a t e s the mechanics involved. A p rogram cur -
rent ly executing m a y be in ter rupted by the t i m e r

(1). The t i m e r p rocesso r se lec ts data f rom the
queue (2) and a t taches the routine to execute (3).
I t s e t s a new in terval in the t i m e r (4) and in i t ia tes
a pr ior i ty in ter rupt (5) (assuming the routine i s of
a higher pr ior i ty than the cu r ren t program). The
pr ior i ty in t e r rup t executive determines the routine
to execute (6) and gives control to the routine (7)
which r e tu rns control (8) when finished. The
executive then r e tu rns control to the in ter rupted
p rogram (9). A t s tep 5, the condition m a y ex i s t
that the t imer-init iated routine is of lower pr ior i ty
than the cu r ren t program. If so , the t i m e r pro-
c e s s o r r e tu rns control d i rec t ly to the c u r r e n t pro-
g r a m (10).

Timer O Interrupt

25

Interrupt
I Executive . I-' I J

I
I
I Pr ia i ty

I Interrupts

I Prqlram Poinlers,
P r iu i ty , Etc.

Programs
I Interface
I Unit

FIGURE 8. PROGRAM SCHEDULING

Both application and sys tem p r o g r a m s m a y queue
routines us ing the t i m e r queue (11). The ac tual

queueing i s done by a sys t em routine.

In Figure 8, the dash l ine connecting "p rograms"
and "current program" i s intended to show that the
c u r r e n t p rogram i s m e r e l y one of many which i s
se lec ted by the pr ior i ty in ter rupt executive.

The System/360 Model 44 P r o g r a m Sys tem
(44PS) provides two levels of 110 p rogram inter face
facil i t ies. The higher of these, called r e a d f w r i t e ,
allows the u s e r to specify and init iate 110 act iv i t ies
by means of sys t em routines. The lower level ,
called execute channel p rogram (EXCP), al lows the
u s e r to u s e some sys tem rout ines in combination
with u s e r - supplied routines. In the r e a l t i m e en-
vironment of CCS, the u s e r i s required to init iate
110 using the EXCP level ; however, FORTRAN
110 cal ls , al l of which a r e init iated on the s a m e
pr ior i ty level , a r e allowed to u s e the r e a d f w r i t e
level . This r e s t r i c t ion i s n e c e s s a r y due to the
non-reentrant na ture of the r e a d f w r i t e level
facil i t ies.

The 44PS I f 0 channel scheduler was changed to
handle a mul t iprogrammed environment. Among
the changes w e r e new r e a l t ime , c o r e res ident
I / O device routines, a gated front end to the chan-
nel scheduler and I f 0 terminat ion in t e r rup t routine,
and de-queueing logic a t the exit point of the chan-
nel scheduler.

Of seve ra l options available to modify the chan-
nel scheduler, one w a s chosen which allows only
one transaction into the scheduler a t a t ime. The
effect of this method i s to allow an I /O request to
en te r the scheduler and be serviced only if the
scheduler i s not current ly process ing a previous
request . Due to multi level program execution, an
110 request being made while another i s being
processed can occur only when the new request i s
of a higher pr ior i ty level routine. Therefore , the
reques t in process when in ter rupted by a higher
pr ior i ty level is r e sumed a t i t s point of in ter rupt .
The new higher pr ior i ty level r eques t i s s e rv iced
immediately thereaf ter .

Cer ta in routines a r e used in common by both the
channel scheduler and the 110 terminat ion in t e r rup t
program. Therefore , the I /O terminat ion in t e r -
rupts a r e disabled while a t ransact ion i s in the
channel scheduler. Conversely, the gate i s c losed
to new requests while a n 110 terminat ion i s being
processed. A posting function i s a l so associa ted
with I /O termination. I t s purpose i s t o allow pr i -
or i ty level routines to reques t 110, give up control
on thei r level , and then regain control when the
110 i s completed.

To m e e t the demands of r e a l t ime 110 for the
Flight Computer, a specia l low overhead channel
scheduler is used. The gated channel scheduler
using 44PS has some fea tures neither n e c e s s a r y
nor required for the Flight Computer channel.

There fo re , a specialized channel control p rogram
was introduced which reduces the amount of com-
puting overhead required to se rv ice 110 reques t s
for the flight computer. Moreover, a much bet ter
response to 110 reques t s ex i s t s fo r the channel.
As F i g u r e 9 shows, a t e s t point i s included a t the
beginning of the normal channel scheduler to f i l te r
out r eques t s for that dedicated channel. The figure
i s a simplified flow c h a r t of the gated 110
scheduler .

Enter 9
Request I

Schedule
Request In Time
Low Overhead Interface
Scheduler

N

Prepare
To Finish
Previous
Request U
I

Waiting

(>--1* Return

FIGURE 9. GATED I /O

The de-queueing and re tu rn logic when a waiting
reques t has been serviced causes p rogram control
to r e tu rn to the high pr ior i ty routine. The control
which would have allowed re tu rn to the lower pr i -
or i ty routine i s adjusted to cause r e tu rn a f t e r the
high pr ior i ty routine rel inquishes control on i t s
high pr ior i ty level .

The CCS phasing function provides the capabil i ty
to load and init ial ize the required se t of application
p rograms under the control of operations init iated
a t the display console. An application c o r e load
(phase) contains a l l programs required in m e m o r y
a t the s a m e t ime to perform one of the ma jo r s im-
ulation functions.

The phases a r e res ident on the sys tem r e s i -
dence disk volume and a r e t r a n s f e r r e d to the

application p rogram a r e a of cen t ra l p rocesso r
m e m o r y when requested by the flight p r o g r a m m e r /
engineer via the display console. The t r a n s f e r is
implemented by CCS through s tandard 44PS load
capabilities. After a phase has been loaded, t h e
unused portion of m e m o r y i s calculated and des ig-
nated a s available work space which will l a t e r be
used by the phase p rograms . The phase i s given
p rogram control a t i ts ent ry point on the nonpri-
or i ty level of p rogram execution.

Selection of the phase to be loaded and executed
i s made f rom the init ial tu tor ia l d isplay which is
s e t up by the init ial loading of CCS. The u s e r a t
the display console i s enabled to make h i s se lec t ion
of the phase via the l ight pen ins t rument . The s e -
lection of a phase in i t ia tes CCS opera t ions which
r e su l t in a c o r e load of the application p rogram
a r e a . When the u s e r chooses to change f rom the
execution of one phase to another , he r eques t s the
redisplay of the init ial tutorial . Upon th is r eques t ,
CCS executes an o rde r ly shutdown of the ac t iv i t ies
in p rocess f o r the c u r r e n t phase and then r e loads
the cent ra l p rocesso r m e m o r y with the phase r e -
quested. F igure 10 i l l u s t r a t e s the genera l al loca-
tion of c o r e fo r the application p rograms .

Checkout
Control
System

Flight Simulation

Application
Programs

Space u
FIGURE 10. PHASE LOAD CORE MEMORY MAP

Application Software

Application software in the Laboratory i s de-
signed to pe r fo rm four basic tasks : (1) ha rdware
diagnostics, (2) flight simulation init ial ization,
(3) flight simulation execution, and (4) post-flight
data reduction. A self-contained s e t of sof tware
p rograms , called a phase, has been const ructed to
perform each of these tasks . At any given t i m e
only one phase r e s ides in c o r e with both communi-
cation region and t empora ry data se t res id ing on
a disk device.

The hardware diagnostics phase contains pro-
g r a m s which perform the power-up and initializa-
tion function for the Flight Computer and i ts in ter-
face unit. The diagnostic programs a r e required
by engineering for maintaining and servicing the
interface unit.

The flight simulation initialization phase con-
s i s t s of the programs to specify the details and
options of the particular flight simulation the u s e r
wishes to make. He may specify such i tems a s
loading, modifying, and accessing the flight pro-
g ram; digital command system o r d e r s ; computer
interface unit measurements ; r ea l t ime output
quantities; flight pause points; data to be saved fo r
post-flight analysis; the particular Saturn vehicle
to be simulated; and the type of simulation run to
be made.

The post-flight data reduction phase contains
all software necessary to process data that was
collected by real t ime programs operating in the
simulation phase. This consists of data from the
Flight Computer, the 6-DOF simulator, and the
FORTRAN flight program model. The capability
of generating plots on the display unit has been
provided along with conversion, formatting, analy-
s i s , and outputting of data on the printer.

In these th ree phases, very l i t t le u s e i s made
of the pr ior i ty in terrupt feature on the Model 44 a s
an ins t rument of r ea l t ime operation. P rac t i ca l ly
all programs a r e initiated by operator action a t the
display console and programs receiving control
operate on the pr ior i ty level assigned to display
control. This same level i s reserved for display
control in each phase. The ent i re real t ime s imu-
lation phase i s built around and i s controlled by
the priority in terrupt feature.

The application programs in this phase perform
the following tasks:

6-degree-of-freedom (6-DOF) launch
vehicle simulation.

Digital command system simulation (ground
data link).

FORTRAN equation and logic model execu-
tion of the flight program.

Data reduction and analysis.

Figure 11 presents a n overview of the major appli-
cation software components required fo r the r e a l
time phase and their interrelationships. The

FIGURE l l . APPLICATION SOFTWARE FUNCTIONAL FLOW - REAL TIME PHASE

9

t

I Flight Hordwore 1

, LVDC/DA

I Flight . 1

1 Program

Model

1 + 1
Real Time
Doto
Buffer

I
1 •
I

--

--

I
I

0 1 4 9

Data

'

-

Data Sits

b Reduction , =
and Analysis

Tutoring * Displays

t

+
-

I+-@

A-

I

Vehicle
Perturbations

L -------- I

Flight ond
Vehicle
Specifications

Do to
Reduction
Analysis
And Control

Ground Station
Simulator

Vehicle and 0

@ -
m

Fortran
Flight
Program

operator, seated a t the display control unit, com-
municates with the system through preformatted
tutorial displays. Three data se t s a r e used a s an
input in terface between the display unit and the
rea l t ime application software. The flight and
vehicle specifications data se t i s used to s t ructure
the vehicle and flight program skeletons to any of
the many missions under development. This data
se t i s defined and generated during the initialization
phase. The two remaining data se t s (vehicle per-
turbation and data reduction analysis and control)
a r e accessible both during the initialization and real
t ime simulation phases. The vehicle perturbation
functions allow the operator to specify various ve-
hicle anomalies such a s thrust perturbations, com-
mand receiver failures, staging o r event failures,
inertial platform fai lures , e t c . , in addition to the
s t a r t t ime and duration for each. The appropriate
control information i s ordered by t ime of occur-
rence and recorded in a vehicle sequencing queue
until the specified activation time. A s imilar pro-
cedure i s followed in the creation of the data reduc-
tion analysis and control data set .

The FORTRAN flight program model i s an engi-
neering representation of the flight program. It
se rves a s an additional reference to measure and
evaluate actual flight software performance.

The rea l t ime data buffer receives data from the
FORTRAN flight program model and the 6-DOF ve-
hicle simulator a s well a s te lemetry data f rom the
flight hardware. This ent i re se t of data i s r e -
corded on tape for the post-flight data reduction
phase. Data selected for real t ime observation i s
organized, formatted, and recorded on the disk.
This particular data i s access ible a t any t ime upon
request from the display console a s either tabular
data or graphic plots. Such displays may be gen-
era ted from historical data beginning a t some
particular point in the past and ca r r i ed up through
the current values or i t may s t a r t with cur ren t
values. In both cases , the display i s continually
updated from the rea l t ime data buffer. In addi-
tion, the real t ime tabular data may be perma-
nently recorded on the printer.

The 6-DOF simulator consis ts of both rotational
and translational dynamics a s well a s a simulation
of the vehicle subsystems involved in vehicular
control, such a s sequencing, digital command sys-
tem, etc. This simulator may be driven by either
the actual flight hardware o r the FORTRAN flight
program model. In turn, the 6-DOF simulator
supplies inputs to both the flight hardware and the
FORTRAN flight program model.

Each of these real t ime application programs i s
assigned a relative priority and an absolute pr ior-
ity level. Figure 12 shows groups of application
programs and their priority interrupt level a s -
signments used in this system a t the present t ime.
In general, high priority levels have shor t execu-
tion t imes. These routines respond to discrete
external events or internal keying by the interval
t imer . Routines with longer execution t imes a r e

Model 44 I CPU

L
Non-Pr:rx'ty
Id 'c L w p

I

. - - - - - . - - - - - -

i

I lnitiotcd By

1
I i
I

I I l o

FIGURE 12. FUNCTIONAL GROUPINGS O F
PRIORITY INTERRUPT LINE
ASSIGNMENTS (0-31) IN REAL
TIME PHASE

Inlerloce
Unit

on lower pr ior i ty levels. Among these routines
a r e rea l t ime reduction and graphic support. The
priority level assignments, both hardware and
software activated, can be changed easily to opti-
mize system performance.

Vehicle Sequencing 141
Scheduler

I I
I I i

- i i
i
i

The requirements of the real t ime application
programs guided the design of the program sched-
u le r in CCS. As a resul t , the priority scheduler
provides the r e a l t ime application programs with a
highly flexible operating environment. This en-
vironment has developed a s a resul t of these sig-
nificant points. F i r s t , the System/360 Model 44
and the Flight Computer operate asynchronously
with respect to one another. This condition re -
l ieves the system of several constraints in i t s op-
erating environment which would otherwise be
present and tend to constrict the system ra the r than
allow i t flexibility. Second, the application pro-
g r a m s a r e very responsive to the information sup-
plied f rom the interface unit via the priority in ter-
rupt feature. There a r e six high pr ior i ty levels of
the thirty-two which a r e assigned to signals f rom
the interface unit. This s t ructure permits immedi-
a te response t o Flight Computer conditions in the
Model 44 by interrupting programs operating on a
lower pr ior i ty level. Third, a related function to
point two i s that the low priority operations such a s
servicing display unit operations execute on a non-
interference basis with the time cr i t ica l functions
on higher pr ior i ty level assignments. Fourth , with
respect to t ime-slicing, i t i s a self-adjusting sys-
tem. This means that programs on lower pr ior i ty
levels will automatically give up t ime to p rograms
operating on higher levels. For example, the solu-
tion ra te on vehicle navigation can be changed by
simply a l ter ing one constant so that the ent i re sys -
tem will self-adjust to the new solution ra te .

User / sys tem Interaction

With reference to use r / sys tem interaction, the
system may be said to have two pr imary objectives:

F[u to provide a m o r e detailed and complete checkout of
flight programs, and to ease the burden and reduce Display # I

Display

the t ime required of a flight programmer to check - L Prcgram Displays

out a flight program. To meet these objectives,
the following system c r i t e r i a were established:

Chapter

1. Minimal knowledge of the central processor
required of system use rs .

2. The number of people required to run a s im-
ulation minimized.

3 . The operator control stations centralized.

4 . The u s e r s ' ability to influence the flight pro-
g ram maximized.

5. The time required to se t up runs minimized.

6 . Ent i re simulations run by nontechnical
operators.

In order to satisfy these c r i t e r i a , system s ta r t -
up procedures were automated, peripheral device
management routines were written (to allow tapes
and disks to be remounted on a rb i t r a ry dr ives) ,
d i rect access storage was fully utilized, program
overlay was used extensively, and all operator
control (after initial setup) was centralized a t the
display unit.

The graphic display software provides the in-
terface between the application programs and the
IBM 2250 Display Unit through which the u s e r
communicates with the system. Through this soft-
ware, the display console operator i s in complete
control of the flight program and has a very wide
range of capabilities in initializing, controlling,
monitoring, and analyzing the flight program
performance.

The display program that provides this interface
operates in a r ea l t ime environment. Therefore,
to reduce the core and t ime requirement necessa ry
to c rea te each individual display, all displays a r e
preformatted by an off-line graphics program.
(See Figure 13 .) This program receives card
images of the text and control information asso-
ciated with each display and creates a 'book' of
displays. This display book res ides on a disk
cartridge and i s divided into one index and a s
many chapters a s there a r e displays. Each dis-
play text i s in an 'expanded' format containing em-
bedded graphic o r d e r s and in a format ready for
transmission to the display unit buffer. It r e -
quires no editing, scanning, or unpacking in r e a l
time. The keyboard and light pen pages provide
control information needed by the real t ime dis-
play control program to respond to operator key-
board and light pen inputs. F o r each chapter
created by the off-line program, there i s a cor -
responding entry in the index. Each index entry

Display Text
------A

Control Information
For Compose Field -------
Legal Data Format

Control Information
For Light Pen Action -------

FIGURE 1 3 . DISPLAY BOOK GENERATION
AND ORGANIZATION

contains the name and disk address of i t s c o r r e -
sponding chapter.

During system initialization, the rea l t ime d i s -
play control program reads the index into core and
re t r ieves the system initial display f rom the dis-
play book. The initialize phase of the r e a l t ime
display software i s complete when the initial op-
tions a r e displayed. Light pen or keyboard inputs
from the display console operator a r e required to
initiate the display of new texts.

The display device routine services the light pen
and keyboard 110 interrupts and schedules the dis-
play control program on the t imer queue for imme-
diate execution on a predetermined priority in ter-
rupt level. When display control gets control on
i t s priority interrupt level, the type of action
taken by the operator i s examined. The light pen
page and the keyboard page of the cur ren t display
chapter define all legal light pen inputs and key-
board entr ies .

The display control program displays the prop-
e r text in response to the operator ' s light pen
actions, validates keyboard inputs, and passes
control information specified in the keyboard o r
light pen page. Response to the u s e r ' s inputs ap-
pears to be instantaneous to the operator (500
milliseconds maximum). When a longer t ime is
needed to process the operator ' s request, the
program to perform the operation i s scheduled to
operate on another priority level and normal display
processing continues. The operator may initiate
several tasks to be performed simultaneously.

On a light pen detect, the light pen page of the
cur ren t display chapter i s examined for a possible
NEXT PROGRAM. If one i s specified, control i s
passed to i t and the NEXT DISPLAY i s presented

when the program re tu rns control to display con-
trol . When the NEXT PROGRAM i s omitted f rom
the light pen page, the NEXT DISPLAY i s presented
immediately and the display control program pr i -
or i ty level i s f reed for additional operator inputs.

Display control makes legality checks on all
keyboard input against the legal data in the key-
board page of the display chapter and passes the
data to the designated program. When i t i s neces-
s a r y to input a l a r g e amount of data through the
display compose fields, o r when many displays and
light pen actions a r e required to initiate a proce-
dure , the light pen options and keyboard entr ies
may be predefined on ca rds or disk. The display
software can initiate one option after another and
each t ime re tu rn to the predefined option set for
another option ra ther than waiting on the console
operator for further action. This speeds the setup
for procedures done repetitively and greatly r e -
duces the possibility of operator e r r o r s .

The rea l t ime display control program accepts
inputs f rom the display console operator and a lso
f r o m the application programs. While the re can be
many application programs providing input during a
small interval of t ime, there can be only one dis-
play being presented to the operator. The inputs
affecting future o r past displays a r e entered in a
queue and may be viewed by the operator by use of
the function keyboard.

An application program on any priority interrupt
level may u s e the display system to communicate
with the u s e r through previously defined input a r e a s
in the display text. These input a r e a s may be de-
fined by the u s e r to suit his needs and to present
his input data in an easy-to-read format. F o r
example, if the input a r e a s in a display a r e defined
in a column format, the programmer 's data will
automatically be presented in a column format
when the input a r e a s a r e filled.

Figure 14 i l lus t ra tes the display control in ter-
face with the display unit. The control information
pages of a display chapter will remain in memory
a s long a s the display text i s being presented to
the operator. When the operator uses the light pen
o r keyboard, display control will use these pages
to determine the NEXT PROGRAM and NEXT DIS-
PLAY. When the chapter for the next display i s
retrieved from the display book, the text page
processor merges the display text with any appli-
cation program data to be displayed and t rans fe r s
the combined text and data to the display buffer.
The new light pen and keyboard pages will remain
in memory to identify the next operator action.

A function key must be l i t by the function key
processor before the key becomes active. An
application program can direct display control to
activate a function key and present a given control
display when the operator uses the key.

As the u s e r views the system, the hear t i s the
display system. The programmed book of tutorial

FIGURE 14. DISPLAY CONTROL INTERFACE

displays is provided to give him complete control
over the Flight Computer, the interface, and the
simulation itself. The book along with the use of
the light pen and the display keyboard leads the u s e r
through the functions of powering up the Flight
'Computer and Data Adapter, loading and access ing
the Flight Computer, setting up and executing the
simulation, and post-processing simulation data.
Each u s e r option i s carefully spelled out, and all
u s e r input i s verified before i t i s accepted by the
system. Should e r r o r conditions occur (due to in-
cor rec t input, hardware failure, o r flight program
failure), e r r o r messages a r e presented to the u s e r
with instructions a s to the recovery action.

A complete his tory of u s e r actions a t the display
unit i s logged on the console typewriter for l a t e r
reference.

Figures 15 and 16 demonstrate u s e r activity a t
the graphic display terminal. By using the light
pen, the user i s able to t ravel through the display
s t ructure i l lustrated in Figure 15. Figure 16 de-
picts photographs of the displays represented by the
s t ructure of Figure 15. Figure 16a shows the top
level display (DMOO). When the light pen i s applied
to the keys for path 1, i t leads to a display, DM33DA
(Figure 16e), calling for information to be entered
f rom the keyboard. The keyboard entry or compose
field i s defined by the legend on the display. Pa th 2
shows how the same path may be entered f rom the
execute flight simulation display, r ea l t ime phase.

Along with the capability to se t up and execute
complete runs through the display system, the u s e r
has the ability to monitor the execution and take

Flight Simulation and

L l l l l l l l l - l l l l
1 I I I--1

Access,Modify Mod. 44 L m d Modify Access LVDC Vehicle Perturbations
Program DM05

I I I l ~ 1 1 1
.............. .*a , , , , -1 .

I

.1.1.1.1.1.1.1.

I l l I
Accelerometer Failures Engine Thrust Perturbations Staging And Event Failures

DM33A

Interface Subsystem Checkout
and Initialize DM80

....... Path 1
m--- Poth 2
I . I . Poths I and 2

Flight Simulation, Execute Flight Simulation Post Data Reduction
Initialize D M 5 0

Thrust Magnitude Deviations Thrust Mivrlignment

'Display Identification

FIGURE 15. DISPLAY STRUCTURE

r e s t a r t dumps. These, too, a r e controlled f rom
the display console. A request may be made to
print out specific quantities on the pr inter a s they
a r e calculated in either the Flight Computer o r the
centra l processor. At the same t ime he may r e -
quest various status displays, tabular displays, o r
data plots to appear on the display unit. Should an
i r regular i ty be detected, the operator has the abil-
ity to pause the simulation, process a l l the data
acquired thus fa r , and make changes o r cor rec -
tions. He then has the option to continue the s im-
ulation, r e s t a r t the simulation f rom various points
where r e s t a r t information i s available, o r t e rmi -
nate the run entirely.

Due to the complexity of the flight programs,
the flexibility of the facilities of the Laboratory,
and the des i re to ease the burden of job setup a s
much a s possible, a scheme has been implemented
to sequence automatically f r o m s ta r t to finish.
The sequencing and input information can be saved
on ca rds o r in data se t s on direct access storage.
Through the u s e of this scheme, i t i s possible for
a flight programmer to se t up complex runs, sub-
mi t the job for running by an operator, and re turn
l a te r to pick up complete output from the run.

All the pertinent information flowing through
the rea l t ime data buffer i s collected and saved on
tape (the 'Post P rocessor tape') for l a t e r analysis.
If the flight programmer has requested SNAPS and
TRACES of actual Flight Computer memory loca-
tions during instruction execution, this informa-
tion i s saved on the postprocessor tape. The post-
processor tape may be processed immediately or
a t a l a t e r date.

When processing the tape, the u s e r has several
options available to him through use of the display
system. He may selectively dump any data on the
tape and request that the data be converted to deci-
mal form in specified units pr ior to printing. He
may have his data printed in a tabular form o r he

may plot data on the display unit. Special calcu-
lations may be performed on some of the data and
the resul ts printed o r displayed. He may pr int o r
plot e r r o r s between various quantities to verify
that the flight program resul ts agree with the
6-DOF simulator.

Experience

The implementation of the Laboratory f rom the
initial planning phase through the completion of
the original objectives spans a seventeen-month
period. The System/360 Model 44 was installed
during the sixth month; the flight hardware and
interface unit were installed during the seventh
month; and the system was made available for
flight software development, with limited capa-
bility, during the ninth month. As of this writ ing,
twelve months into the project, the Laboratory
facility has been used extensively in support of the
AS-503/C P r i m e (Apollo 8) flight software devel-
opment activities. Although i t i s still too e a r l y to
completely a s s e s s the total impact of this Labora-
tory on the future of flight programming, i t has
met all initial objectives thus fa r .

The p rogrammers and engineers a r e current ly
using the system in excess of 40 hours per week for
i t s intended purpose. The Laboratory has provided
them with a new dimension of visibility and man-
computer interraction which has had the effect of
stimulating higher levels of in teres t and creativity.

In the development of the Laboratory, cer ta in
aspects have been cause for concern. A great deal
of t ime and effort by the most experienced and com-
petent software designers was spent in the planning
and organization of the vast amount of software
needed. Such an approach necessar i ly makes for a
slow s t a r t but i s of such importance to be done pro-
perly that any undue haste in this phase i s l ikely to
resul t in an inferior product which will l a t e r r e -
quire extensive rework. Another phase of the de-

Path 1

Path 2

l i.,
i b e . m . ,

F I G U R E 16. TUTORIAL DISPLAYS

velopment which was nonproductive in itself was the
period in which the computer was entirely dedicated

\ to operating system checkout. However, th is period
i s essential and must be done not only with dispatch
but with accuracy so that the working application
programs which run under control of the operating

'i system may be executed with l i t t le o r no e r r o r con-
ditions occurring in the operating system itself.

Conclusion

i
The problem of designing a Flight Software De-

velopment Laboratory and ensuring that the pro-

+ -, grammerlengineer has the capabilities he requires
I is a complex task. The techniques of simulation, the

selection of equipment, and the methods employed
for man-computer and computer-computer in ter-

I face must be carefully weighed. The requirement

for pin-point accuracy in the Laboratory resulted
in a r e a l t ime multiprogrammed sys tem which i s
proving an invaluable tool for ass is t ing in the de-
velopment and checkout of the flight p rograms . I t
has made possible the development of flight soft-
ware which can be re l ied upon to a much g r e a t e r
extent than before and has reduced the amount of
t ime necessa ry to produce it. In effect, the Lab-
oratory accomplishes the necessary a ids toward
producing successful flight software.

Some of the software concepts employed in the
Laboratory may certainly be applied in re la ted
a r e a s of simulation technology. The operating
system and display support software have d i rec t
conceptual applications in a i r borne and space ve-
hicle simulators.

F ~ d n ~ a l 5ystnms Division, S

, - .
r ' : 1 - , ,A!-,

." . .

