Selver # 63

Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

TO: AGC4 Distribution

\$

2

FROM: Hugh Blair-Smith

DATE: September 30, 1965, Revised July 1, 1966

SUBJECT: AGC4 MEMO # 9 - Block II Instructions

TABLE OF CONTENTS

Introduction	
Memory	
Basic Instructions	
Extracode Instructions 1	1
Implied-Address Codes 1	5
Unprogrammed Sequences 27	1
Address Constant Formats 28	5
Control Pulse Definitions 27	7
Condensed List of Programmable Instructions 34	4
Pulse Sequences	5

Introduction

This document supercedes all revisions of and appendices to AGC4 Memo # 8, "Block II Instructions, Revised". The format has been changed to include more information for YUL-language programmers and to include the engineering details formerly relegated to appendices. A new descriptive section on unprogrammed sequences has been added.

Some confusion has arisen about the nature of channel numbers or addresses. Channel addresses should be used just like memory addresses in programming, that is, regarding the channels as a third category of memory, distinct from E and F. The fact that the numbers used as channel addresses coincide with some of the numbers used as memory addresses should cause no confusion, because the addresses in In/Out instructions are always channel addresses, and the addresses in other instructions are always memory addresses. In fact, the coincidence is put to good use: the L register is accessible both at memory address 0001 and at channel address 01.

In YUL language, symbols may be equated to channel addresses as well as memory addresses. The only distinction made by the assembler is that addresses of In/Out instructions have a theoretical maximum of 777.

Memory

2

Block II differs significantly from Block I in register and memory layout and in addressing. The LP register has been renamed L because it is a lower accumulator in every sense. The IN and OUT registers no longer have addresses in memory, but are referenced with 9-bit channel addresses by the seven input/output instructions (code 10). Channel assignments are given in Digital Development Memo #254, Revision A (Sept. 7, 1965). Figures 1 and 2 show the arrangement of addresses. The erasable banks use local addresses 1400-1777. The fixed banks use local addresses 2000-3777. Figure 3 explains the bank-switching and editing registers.

Basic Instructions

Figure 4 shows the relationships among the operation codes, with alternate spelling in brackets. Subscripts are running times, in MCT EXTEND time of 1 MCT is not included in extracode times.

Code 00.	I: TC K Transfer Control 1 MCT
K≢3,4,6	Set $c(Q) = TC I + 1;$
	Take next instruction from K and proceed from there.
	Remarks: Alternate spelling is TCR, for Transfer
	Control setting up Return.

ARRANGEMENT OF ADDRESSES

F

OCTAL PSEUDO- ADDRESS	REGISTER NAME	REMARKS	TYPE
00000	A		
00001	L	(also channel 01)	
00002	Q	(also channel 02)	
00003	EB	Erasable Bank Register	Flip-flop
00004	FB	Fixed Bank Register	registers
00005	Z		
00006	BB	Both Bank Registers	
00007		Zeros	
00010	ARUPT	x RUPT = Storage for x	
00011	LRUPT	during Interrupt;	
00012	QRUPT	ZRUPT & BRUPT stored	
00013	(spare)	automatically.	
00014	(spare)		
00015	ZRUPT		2040 words
00016	BBRUPT		of Erasable
00017	BRUPT	(RIP)	
00020	CYR	Cycle Right 1 Bit	
00021	SR	Shift Right 1 Bit	
00022	CYL	Cycle Left 1 Bit	
00023	EDOP	Edit (Polish) Opcode	
00024-00057	Counters		
00060-01377	Unswitched Era	asable	
01400-03777	5 Erasable Bar	nks @ 256 words (See Fig. 2)	

Fixed and Erasable Bank-Switching

Ł

(Fig. 2)

Octal Pseudo- Address	Memory Type	Erasable Bank Reg.	Fixed Bank Reg.	Fixed Ex- tension bit (channel 7)	S-Reg. Value
00000-01377	(Note 1)	x	XX	x	0000-1377
00000-00377	(Note 1)	0	xx	x	1400-1777
00400-00777	Unswitched E	1	XX	x	1400-1777
01000-01377	Unswitched E	2	xx	x	1400-1777
01400-01777	Switched E	3	xx	x	1400-1777
02000-02377	Switched E	4	XX	x	1400-1777
02400-02777	Switched F	5	XX	x	1400-1777
03000-03377	Switched E	6	xx	x	1400-1777
03400-03777	Switched E	7	xx	x	1400-1777
04000-07777	Fixed-fixed	x	xx	x	4000-7777
10000-11777	Common fixed	x	00	x	2000-3777
12000-13777	Common fixed	х	01	x	2000-3777
04000-05777	Fixed-fixed	x	02	x	2000-3777
06000-07777	Fixed-fixed	x	03	x	2000-3777
20000-21777	Common fixed	x	04	x	2000-3777
22000-23777	Common fixed	x	05	x	2000-3777
	and so or	n through:			
64000-65777	Common fixed	x	26	x	2000-3777
66000-67777	Common fixed	x	27	x	2000-3777
70000-71777	Super-bank 0	x	30	0	2000-3777
72000-73777	Super-bank 0	x	31	0	2000-3777
	and so or	n through:			
106000-107777	Super-bank 0	x	37	0	2000-3777
110000-111777	Super-bank 1	x	30	1	2000-3777
112000-113777	Super-bank 1	x	31	1	2000-3777
114000-115777	Super-bank 1	x	32	1	2000-3777
116000-117777	Super-bank 1	x	33	1	2000-3777

(Note 1) Flip-flop central registers, counters, and unswitched erasable. Central and special-purpose registers will be accessed as E-bank 0 only under exceptional circumstances.

Octal Address	Register Name	Access to Bank-Switching Circuits
0003	EB	0000EEE000000000
0004	FB	FFFFF000000000
(Actual Circ	uits)	S FFFFF EEE
0006	BB	FFFFF0000000EEE
Chan. 07	FEB	0000000 S 000000
		A bank number written into EB or FB is automatically available at BB. Information written into BB is auto- matically available at EB and FB.
		EDITING REGISTER TRANSFORMATIONS
(bit positions)		15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
0020	CYR	01 15 14 13 12 11 10 09 08 07 06 05 04 03 02
0021	SR	15 15 14 13 12 11 10 09 08 07 06 05 04 03 02
0022	CYL	$14 \ 13 \ 12 \ 11 \ 10 \ 09 \ 08 \ 07 \ 06 \ 05 \ 04 \ 03 \ 02 \ 01 \ 15$
0023	EDOP	14 13 12 11 10 09 08

BANK-SWITCHING AND EDITING REGISTERS

Fig. 3

00	01	02	03	04	05	06	07
RELINT(3) INHINT(4)	CCS ₂	DAS ₃			RESUME(17) INDEX [NDX] ²		
EXTEND(6) TC ₁ [TCR]	TCF,	LXCH ₂	CA ₂	CS ₂	DXCH ₃	AD ₂	MASK ₂
		INCR ₂	[CAF]		TS ₂		[MSK]
		ADS2			XCH ₂		
READ ₂ WRITE ₂	DV ₆	MSU2				SU2	
RAND ₂ WAND ₂		QXCH ₂	DCA	DCS	INDEX	BZME	MD
ROR ₂ WOR ₂	BZF _{1,2}	AUG2		003	[NDX]	1, 2	3
	-	DIM ₂					
10	11	12	13	14	15	16	17

OPERATION CODES (10-17 are extracodes)

Fig. 4

-7

Code 00.	I: TC K (Special Ca	ses of TC) 1	MCT
K = 3, 4, or 6	Set indicator specified by K	3	
	Take next instruction from	I + 1.	
	Remarks: TC 3 = RELINT	(allow interrupt),	
	TC $4 = INHINT$ (inhibit interrupt),	
	TC $6 = EXTEND$	(set extracode switch).	

The extracode switch causes the next instruction to be an extracode. Any extracode except INDEX resets the switch. Interrupt is inhibited while the switch is on.

Code 01. I: CCS K Count, Compare and Skip 2 MCT QC0 Set c(A) = DABS [b(K)];Set c(K) = b(K), editing if K is 0020-0023. Take next instruction from I + 1 if b(K) > + 0;from I + 2 if b(K) = + 0;from I + 3 if b(K) < - 0;from I + 4 if b(K) = -0.

Remarks: The Diminished Absolute Value of an integer x

2

is:

DABS(x) =
$$\begin{cases} |x| - 1 & \text{if } |x| > 1 \\ + 0 & \text{if } |x| \le 1 \end{cases}$$

Code 01.I: TCFKTransfer Control to Fixed1 MCTQC1-3Take next instruction from K and proceed from there.
Remarks: QC n denotes Quarter Code n, where n is bits

12 and 11 of the instruction word.

 Code 02.
 I: DAS
 K
 Double Add to Storage
 3 MCT

 QC 0
 Set c(K, K+1) = b(A, L) + b(K, K+1), editing if K or K + 1
 is 0020-0023;

If $K \neq 0$, Set c(L) = +0 and set c(A) = net overflow; Take next instruction from I + 1.

Remarks: If positive (negative) overflow resulted from the double precision addition as a whole, the net overflow is +1(-1), otherwise it is +0. Notice that DAS A doubles the contents of the double precision accumulator — implied address code DDOUBL assembles as DAS A. Since the

hardware must operate on the low-order operands first, consider DAS as the operation code 20001, to which the address K is added to form the instruction.

-

Code 02.	I: LXCH K Exchange L and K 2 MCT
QC1	Set $c(L) = b'(K);$
	Set $c(K) = b(L)$, editing if K is 0020-0023;
	Take next instruction from $I + 1$.
\$	Remarks: The prime indicates overflow correction.
Code 02.	I: INCR K Increment 2 MCT
QC2	Set $c(K) = b(K) + 1$, editing if K is 0020-0023;
	Take next instruction from I + 1.
	Remarks: INCR and two other codes, AUG and DIM,

are slightly modified counter-increment sequences. Accordingly, if one of this group overflows when addressing a counter for which overflow during involuntary incrementing is supposed to cause an interrupt, the interrupt will happen. This is true also for chain-reaction increments like T_2 , which is incremented after an overflow of T_1 . It should be noted that all these three instructions, unlike the increment sequences, always operate in ones complement, even when addressing CDU counters.

Code 02.	I:	ADS K	Add to storage		2 MCT
QC3	Set	c(A), $c(K) = b$	K) + b(A), editing if K =	0020-0023;	
	Tal	ke next instruc	ion from I + 1.		

Code 03.	I: CA K Clear and Add	2 MCT
	Set $c(A) = b(K);$	
	Set c(K) = b(K), editing if K is 0020-0023;	
	Take next instruction from I + 1.	

Remarks: Alternate spelling CAF is permitted when referring to fixed memory; alternate spelling CAE is permitted when referring to erasable memory.

Code 04.	I: CS K Clear and Subtract	2 MCT
	Set $c(A) = -b(K);$	
	Set $c(K) = b(K)$, editing if K is 0020-0023;	
	Take next instruction from I + 1.	

Code 05.	I: INDEX K Index Next Instruction	2 MCT
QC0	Set $c(K) = b(K)$, editing if K is 0020-0023;	
K ‡ 0017	Use $[b(K) + c(I+1)]'$ as the next instruction.	
	Remarks: The prime indicates overflow correction.	
Code 05.	I: INDEX 0017 Resume Interrupted Program	2 MCT
QC0	Set $c(Z) = c(0015)$	
K = 0017	Use c(0017) as the next instruction.	
	Remarks: The implied-address code RESUME assem	bles as
INDEX 17.		
Code 05.	I: DXCH K Double Exchange	3 MCT
QC1	Set $c(A, L) = b(K, K+1);$	
	Set c(K, K+1) = b(A, L), editing if Kor K+1 is 0020-002	3;
	Take next instruction from I + 1.	
	Remarks: The final c(L) will be overflow -corrected.	The
operation code	should be treated as 52001 (see DAS, page 8).	

The implied-address codes DTCF (DXCH FB) and DTCB (DXCH Z) are recognized. The idea is that a DXCH, by changing both Z and one of the bank registers, can be a "double-precision transfer control" that can jump banks and leave a D. P. return address in A and L.

Code 05.	I: TS K	Transfer to Storage	2 MCT
QC2	Set $c(K) = b(A)$,	editing if K is 0020-0023;	
	If $+$ overflow in	b(A), set $c(A) = +1$ and take next instr	uction
from $I + 2;$			
	If no overflow in	b(A), take next instruction from $I + 1$.	
	Remarks: TS	A guarantees $c(A) = b(A)$ but skips to	I + 2 on
overflow. Impl	ied-address code	e = OVSK.	
Code 05.	I: XCH K	Exchange A and K	2 MCT
QC3	Set $c(A) = b(K);$		
	Set $c(K) = b(A)$,	editing if K is 0020-0023;	
	Take next instru	action from I + 1.	
Code 06.	I: AD K	ADD	2 MCT
	Set $c(A) = b(A) +$	+ b(K);	
	Set $c(K) = b(K)$,	editing if K is 0020-0023;	
	Take next instru	action from I + 1.	
	Remarks: The	OVCTR of Block I has been dropped.	

Code 07.

5

I: MASK K Mask A by K 2 MCT Set $c(A) = b(A) \land c(K)$;

Take next instruction from I + 1.

Remarks: \land denotes Boolean AND. Truth table for each bit position of b(A) and c(K):

Α	K	A ^ K
0	0	0
0	1	0
1	0	0
1	1	1

MASK very carefully omits to edit an argument from 0020-0023, in order to aid the interpreter and other software.

Extracode Instructions

Code 10.	I: READ KC	Read Channel KC	2 MCT
PC0	Set $c(A) = c(KC)$,	where KC is an in/out channel;	
	Take next instruc	ction from I + 1.	

Remarks: Code 10 is broken down into seven peripheral codes (PC0-PC6). Each uses a 9-bit address to reference an input/output channel KC. The L register is channel 01, to facilitate fancy logic in an arithmetic register. The Q register is channel 02, for the same reason.

Code 10. PC1	I: WRITE KC Write Channel KC Set c(KC) = c(A); Take next instruction from I + 1.	2 MCT
Code 10. PC2	I: RAND KC Read and Mask Set $c(A) = b(A) \land c(KC)$; Take next instruction from I + 1. Remarks: \land denotes Boolean AND (see MASK).	2 MCT
Code 10. PC3	I: WAND KC Write and Mask Set c(KC), c(A) = b(A) \wedge b(KC); Take next instruction from I + 1.	2 MCT
Code 10. PC4	I: ROR KC Read and Superimpose Set $c(A) = b(A) \lor c(KC)$;	2 MCT

Take next instruction from I + 1.

Remarks: \lor denotes Boolean Inclusive OR. Truth table for each bit position of b(A) and c(KC):

2

	A	KC	AvKC		
	0	0	0		
	0	1	1		
	1	0	1		
	1	1	1		
Code 10. PC5	J: V Set	VOR H c(KC),	&C c(A) = b	Write and Superimpose (A) v b(KC);	2 MCT
	Tak	e next i	nstructi	ion from I + 1.	
Code 10.	I: H	RXOR	KC	Read and Invert	2 MCT
PC6	Set	c(A) = h	o(A) ↔ (e(KC);	
	Tak	e next i	nstructi	on from I + 1.	
	Ren	narks: -	+ denot	es Boolean Exclusive OR.	Truth table for

each bit position of b(A) and c(KC):

	A	KC	A₩KC	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	0	
Code 10.	EDR	UPT		3 MCT
PC7	(For	machine	checkout only)	
Code 11.	I: D	V K	Divide	6 MCT
QC0	Set o	e(A) = b(A)	A, L) ÷ c(K);	
	Set o	c(L) = replaced	nainder;	
	Take	e next ins	truction from I + 1.	

Remarks: The signs of the double-length dividend in A and L need not agree. The net sign of the dividend is the sign of b(A) unless $b(A) = \pm 0$, in which case it is the sign of b(L). The remainder bears the net dividend sign, and the quotient sign is determined strictly be the divisor and net dividend signs. DV does not disturb c(Q), and does not edit an argument from 0020-0023 because there isn't enough time.

Code 11	I: BZF K Branch Zero to Fixed 1 o	r 2 MCT
QC 1-3	<pre>If C(A) = + 0, take next instruction from K and procee there (1 MCT);</pre>	ed from
	Otherwise, take next instruction from $I + 1$ (2 MCT).	
Code 12.	I: MSU K Modular Subtract Set $c(A) = b(A) + b(K)$:	2 MCT
400	Set c(K) = b(K), editing if K is 0020-0023;	
	Take next instruction from I + 1.	
	Remarks: O denotes modular subtraction, which form	ns a
signed one's co	mplement difference of two unsigned (modular, or peri	odic)
two's complem	ent inputs. The method is to form the two's complement	nt d iffer-
ence, to decre sum as the re	ment it if it is negative, and to take the overflow- <u>uncor</u> esult.	rected
Code 12.	I: QXCH K Exchange Q and K	2 MCT
QC1	Set $c(Q) = b(K);$	
	Set c(K) = b(Q), editing if K is 0020-0023;	
	Take next instruction from $1 + 1$.	
Code 12.	I: AUG K Augment	2 MCT
Code 12. QC2	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00	2 MCT
Code 12. QC2	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 To be post instruction from $L + 1$	2 MCT 023; 023;
Code 12. QC2	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1.	2 MCT 023; 023;
Code 12. QC2 Code 12.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish	2 MCT 023; 023; 2 MCT
Code 12. QC2 Code 12. QC3	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Male (K) = 0.0000000000000000000000000000000000	2 MCT 023; 023; 2 MCT 023;
Code 12. QC2 Code 12. QC3	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023	2 MCT 23; 23; 2 MCT 023; 3; 3;
Code 12. QC2 Code 12. QC3	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take pert instruction from I ± 1	2 MCT 023; 023; 2 MCT 023; 3; 023;
Code 12. QC2 Code 12. QC3	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI	2 MCT 023; 023; 2 MCT 023; 3; 023; NC does.
Code 12. QC2 Code 12. QC3	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI L: DCA K Double Clear and Add	2 MCT 23; 23; 2 MCT 023; 3; 023; NC does. 3 MCT
Code 12. QC2 Code 12. QC3 Code 13.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI I: DCA K Double Clear and Add Set $c(A, L) = b(K, K+1)$:	2 MCT 023; 023; 2 MCT 023; 3; 023; NC does. 3 MCT
Code 12. QC2 Code 12. QC3 Code 13.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI I: DCA K Double Clear and Add Set $c(A, L) = b(K, K+1)$; Set $c(K) = b(K)$, editing if K is 0020-0023;	2 MCT 023; 023; 2 MCT 023; 3; 023; NC does. 3 MCT
Code 12. QC2 Code 12. QC3 Code 13.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI I: DCA K Double Clear and Add Set $c(A, L) = b(K, K+1)$; Set $c(K) = b(K)$, editing if K is 0020-0023; Set $c(K+1) = b(K+1)$, editing if K+1 is 0020-0023;	2 MCT 023; 023; 2 MCT 023; 3; 023; NC does. 3 MCT
Code 12. QC2 Code 12. QC3 Code 13.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 Take next instruction from I + 1. Remarks: DIM does not generate output pulses as DI I: DCA K Double Clear and Add Set $c(A, L) = b(K, K+1)$; Set $c(K) = b(K)$, editing if K is 0020-0023; Set $c(K+1) = b(K+1)$, editing if K+1 is 0020-0023; Take next instruction from I + 1.	2 MCT 023; 023; 2 MCT 023; 3; 023; NC does. 3 MCT
Code 12. QC2 Code 12. QC3 Code 13.	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, editing if K is 0020-00 If $b(K) \le -0$, set $c(K) = b(K) - 1$, editing if K is 0020-00 Take next instruction from I + 1. I: DIM K Diminish If $b(K) > +0$, set $c(K) = b(K) - 1$, editing if K is 0020-0023 If $b(K) = \pm 0$, set $c(K) = b(K)$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023 If $b(K) < -0$, set $c(K) = b(K) + 1$, editing if K is 0020-0023 Set $c(A, L) = b(K, K+1)$; Set $c(K) = b(K)$, editing if K is 0020-0023; Set $c(K+1) = b(K+1)$, editing if K+1 is 0020-0023; Take next instruction from I + 1. Remarks: The final $c(L)$ will be overflow-corrected.	2 MCT 23; 23; 2 MCT 023; 3; 023; NC does. 3 MCT The

.

Code 14.I: DCS KDouble Clear and Subtract3 MCTSet c(A, L) = -b(K, K+1);Set c(K) = b(K), editing if K is 0020-0023;Set c(K-1) = b(K+1), editing if K+1 is 0020-0023;Take next instruction from I + 1.Remarks; DCSA succeeds in complementing the double pre-

cision accumulator — implied-address code: DCOM. The final c(L) will be overflow-corrected. The operation code should be treated as 40001 (see DAS page 8).

Code 15. I: INDEX K Index Extracode Instruction 2 MCT (See INDEX, page 10).

Remarks: This is the only extracode that does not reset the extracode switch. The way to index an extracode (MP, say) is:

EXTEND INDEX ADDRWD MP 0

The extension (extracode switch) will stay in force during any n-level nesting of extracode INDEXes. This INDEX will never act as a RESUME.

Code 16.	I: SU K Subtract	2 MCT
QC0	Set $c(A) = b(A) - b(K);$	
	Set c(K) = b(K), editing if K is 0020-0023;	
	Take next instruction from I + 1.	
Code 16.	I: BZMF K Branch Zero or Minus to Fixed	1 or 2 MCT
QC 1-3	If $c(A) \leq +0$, take next instruction from K and pro-	oceed from
	there (1 MCT);	
	Otherwise, take next instruction from I + 1 (2 MC	т)
Code 17.	I: MP K Multiply	3 MCT
	Set $c(A, L) = b(A) \times c(K);$	
	Take next instruction from I + 1.	
	Remarks: The two words of the product agree in	sign. A zero

result is positive unless $b(A) = \pm 0$ and c(K) is non-zero with the opposite sign.

MP does not edit an argument from 0020-0023 because there isn't enough time.

Implied-Address Codes

Some operations are defined for only one address value, like RESUME; others have unusual results when addressing central registers. For convenience in using these operation, the YUL System assembler recognizes implied-address codes, written without an address, and fills in the address. These codes are shown in Fig. 5 (alphabetically) and Fig. 6 (by actual code). Brief descriptions follow:

Code 00.	I: XXALQ	Execute Extracode	2 MCT
K = 0000		Using A , L and Q	
	Assume that	t b(A) = 000006 and b(L) is an (extracode

instruction;

Execute the EXTEND in A, the instruction in L, then return to I + 1; leave c(Q) = 000003.

Remarks: This is a marginally useful operation because an extracode instruction built up in L could usually be executed better by the sequence:

EXTEND	
INDEX	L
0	0

Code 00.	I: XLQ Execute using L and Q 2 MCT	Г
K = 0001	Assume that b(L) is a basic instruction.	
	Execute the instruction in L and, if it is not a successful	

branch, return to I + 1;

Leave c(Q) = 000003.

Remarks: Like XXALQ, this operation is marginal. The time (2 MCT) for XXALQ and XLQ includes the TC to A or L and the return TC from Q, but not the time spent in executing c(A) or c(L).

Code 00.	I: RETURN Return from Subroutine	2 MCT
K = 0002	Assume that $b(Q) = TC K';$	

	Take the next instruction from KI and proceed	
from there;	Take the next instruction from K and proceed	
	Leave c(Q) = 000003.	
Code 00.	I: RELINT Release (allow) Interrupt	1 MCT
K = 0003 to the restriction flow in A);	Allow interrupt after this instruction (subject a that interrupt cannot occur while there is <u>+</u> over-	
	Take next instruction from I + 1.	
Code 00.	I: INHINT Inhibit Interrupt	1 MCT
K = 0004	Inhibit interrupt until a subsequent RELINT;	
	Take next instruction from $I + 1$.	
	Remarks: The inhibition set by INHINT and remove	ed
by RELINT is en removed by RES	tirely independent of the one set by interrupt and UME.	
Code 00.	I: EXTEND Extend Next Instruction	1 MCT
K = 0006	Take the next instruction from I + 1 and execute	
it as an extracod	e.	
	Remarks: If the next instruction is INDEX (full cod	le 15),
the following ins	truction will be executed as an extracode too.	
Code 01.	I: NOOP No Operation (Fixed)	1 MCT
QC 1 - 3	Take the next instruction from $I + 1$.	
K = I + 1	Remarks: This is how NOOP is assembled when I	
is in fixed memo	ry.	
Code 02.	I: DDOUBL Double Precision Double	3 MCT
QC 0	Set $c(A, L) = b(A, L) + b(A, L);$	
K = 0000	Take next instruction from I + 1.	
	Remarks: If $b(A)$ contains <u>+</u> overflow, the results	
are messy; in pa	$\operatorname{trticular, sgn} \left[c(A) \right] \neq \operatorname{sgn} \left[b(A) \right]. \operatorname{If} \left b(A) \right \geq 1/3$	2,
overflow will be	retained in c(A).	

Implied- Address Cod e	Actual Operation Code	Register (If appli- cable)	Word as as- sembled	NOTE
COM	CS	А	40000	
DCOM	DCS	A	40001	Х
DDOUBL	DAS	А	20001	
DOUBLE	AD	А	60000	
DTCB	DXCH	Z	52006	
DTCF	DXCH	FB	52005	
EXTEND	TC		00006	S
INHINT	TC		00004	S
NOOP	TCF		1 (I+1)	F
NOOP	CA	А	30000	E
OVSK	TS	A	54000	
RELINT	TC		00003	S
RESUME	INDEX	BRUPT	50017	R
RETURN	TC	Q	00002	
SQUARE	MP	А	70000	Х
ТСАА	TS	Z	54005	
XLQ	TC	L	00001	
XXALQ	TC	А	00000	
ZL	LXCH		22007	
ZQ	QXCH		22007	Х

NOTE EXPLANATION:

ą.

.

X	Extracode instruction.
S	Special Indicator-setting hardware responds to addresses 0003, 0004, and 0006.
R	Special RESUME hardware responds to address 0017.
F	Applies when I is in fixed memory.
Е	Applies when I (location of instruction) is in erasable memory.

Fig. 5

IMPLIED ADDRESS CODES

(By Actual Code)

8

Actual Operation Code	Register (If ap- plicable)	Word as assembled	Implied- Address Code	NOTE (See Fig. 5)
TC	А	00000	XXALQ	
TC	L	00001	XLQ	
TC	Q	00002	RETURN	
TC		00003	RELINT	S
TC		00004	INHINT	S
TC		00006	EXTEND	S
TCF		1 (I+1)	NOOP	F
DAS	А	20001	DDOUBL	
LXCH		22007	ZL	
CA	А	30000	NOOP	E
CS	А	40000	COM	
INDEX	BRUPT	50017	RESUME	R
DXCH	FB	52005	DTCF	
DXCH	Z	52006	DTCB	
TS	А	54000	OVSK	
TS	Z	54005	TCAA	
AD	А	60000	DOUBLE	
QXCH		22007	ZQ	 X
DCS	А	40001	DCOM	X
MP	А	70000	SQUARE	х

Fig. 6

Code 02.	I: ZL	Zero L	2 MCT
QC 1	Set c(L) = +	0;	
K = 0007	Take next in	astruction from I + 1.	
	Remarks: "	This code and its companion ZQ depend	
on two properties	of address	0007: no storage is associated with it,	
and references to	it (in fact,	to any of 0000-0007) are not checked	
for good parity.	Address 000	7 is therefore a generally usable source	е
of zeros.			

Code 03	I: NOOP	No Operation (Erasable)	2 MCT
K = 0000	Take next in	nstruction from I + 1.	
	Remarks: '	This is how NOOP is assembled when I	
is in erasable me	mory		

Code 04.	I: COM	Complement c(A)	2 MCT
K = 0000	Set $c(A) = -b($	A);	
	Take next ins	truction from I + 1.	
	Remarks: Al	1 16 bits are complemented.	
Code 05.	I: RESUME	Resume Interrupted Program	2 MCT
QC 0	Set $c(Z) = c(0)$	015);	
K = 0017	Use c(0017) a	s the next instruction.	
Code 05.	I: DTCF	Double Transfer Control,	3 MCT
QC 1		Switching F bank	
K = 0004	Set $c(A, L) = 1$	b(FB,Z);	
	Set c(FB,Z) =	= b(A,L);	
	Take next ins	truction from I + 1.	
	Remarks: A	double-precision address constant	

format, 2 FCADR, is defined for use with DTCF.

Code 05.	I: DTCB	Double Transfer Control	3 MCT
QC 1		Switching Both Banks	
K = 0005 format, 2 BCADR	Set c(A,L) = Set c(Z, BB) Take next ins Remarks: A A, is defined f	<pre>b(Z, BB); = b(A,L); struction from I + 1. double-precision address constant or use with DTCB.</pre>	
Code 05.	I: OVSK	Overflow Skip	2 MCT
QC 2	Do not chang	e c(A);	
K = 0000	If <u>+</u> overflow If no overflow	in c(A), take next instruction from I w in c(A), take next instruction from	+ 2; I +1.
Code 05.	I: TCAA	Transfer Control to	2 MCT
QC 2		Address in A	
K = 0005 in bits 12-1 of b(If <u>+</u> overflow Take next ins A). Remarks: T	in b(A), set $c(A) = + 1$; struction from the location whose add he perils associated with TCAA in Mo	ress i s od
3C and Block I A	GC do not exis	st in Block II AGC.	
Code 06.	I: DOUBLE	Double c(A)	2 MCT
K = 0000	Set c(A) = b(A Take next ins Remar ks : So	A) + b(A); struction from I + 1. ee remarks on overflow under DDOUI	3L,
Code 12.	I: ZQ	Zero Q	2 MCT
QC 1	Set $c(Q) = + ($	0;	
K = 0007	Take next ins Remarks: So	struction from I + 1. ee under ZL.	

20

)

Code 14.	I: DCOM	Double Complement	3 MCT
K = 0000	Set c(A,L) = - Take next instr Remarks: All	b(A,L); ruction from I + 1. 32 bits of A and L are complem	nented.
Code 17.	I: SQUARE	Square c(A)	3 MCT
K = 0000	Set c(A,L) = b(Take next instr Remarks: Res	A) \times b(A), ruction from I + 1. ults are messy if b(A) contains	+
overflow.			<u> </u>

Unprogrammed Sequences

Some of the actions performed by the computer are not programmed but occur in response to external events. The categories of these unprogrammed sequences are shown in Fig. 7. Interrupt is inhibited if an interrupt has occurred after the latest RESUME, or an INHINT has occurred after the latest RELINT, or c(A) contains <u>+</u> overflow. Otherwise interrupt may occur before any basic (non-extracode) instruction except RELINT, INHINT, or EXTEND.

RUPT

Interrupt Program

3 MCT

Set c(0015) = b(Z); Set c(0017) = the postponed instruction;

Take next instruction from the location whose address is permanently associated with the cause of the interrupt, and proceed from there. Inhibit further interrupt until RESUME.

Remarks: See also remarks under INHINT.

Counter increments and decrements, serial-parallel conversion steps, and GSE interface transactions are lumped together under the name of counter interrupts because they perform limited tasks by snatching one or two memory cycles and then let the computer continue. They can occur before any instruction except RELINT, INHINT or EXTEND.

U N P R O G R A M M E D	SEQUENCES
Program Interrupt	PUPT
riogram interrupt	NOT I
Counter Increment/Decrement	PINC
	PCDU
	MINC
	MCDU
	DINC
Serial-Parallel Conversion	SHINC
(and vice-versa)	SHANC
Ground Support Interface	INOTRD
	INOTLD
	FETCH
	STORE
Manual Override	GOJ
	TCSAJ

Fig. 7

PINC Plus Increment

Set c(CTR) = b(CTR) + 1;

If + overflow, set c(CTR) = +0 and set up

an interrupt if CTR = T3, T4 or T5 or set up a PINC for T2 if CTR = T1.

Remarks: This sequence and its priority chain effects are shared by the instruction INCR.

PCDU	Plus Increment (CDU)	1 MCT
	Set c(CDUCTR) = b(CDUCTR) + 1 in two's	
	nodulen notation	

complement modular notation.

Remarks: Incrementing in two's-complement modular notation transforms 77777 into 00000 and 37777 into 40000, and is otherwise like one's-complement. INCR never acts like PCDU. PCDU and MCDU replace PINC and MINC for counters 0032-0036.

MINC	Minus Increment	1 MCT
	Set $c(CTR) = b(CTR) - 1;$	
	If - overflow, set $c(CTR) = -0$.	
MCDU	Minus Increment(CDU)	1 MCT
	Set $c(CDUCTR) = c(CDUCTR) - 1$ in twos	
complement me	odular notation.	
	Remarks: Transforms 40000 into 37777 and 00000	
into 77777. Se	e remarks under PCDU.	
DINC	Diminishing Increment	1 MCT
	If $c(CTR) > +0$, set $c(CTR) = b(CTR) - 1$ and	
emit signal PO	UT (Plus Output);	
	If $c(CTR) < -0$, set $c(CTR) = b(CTR) + 1$ and	
emit signal MC	UT (Minus Output);	
	If $c(CTR) = \pm 0$, leave $c(CTR)$ unchanged and	
emit signal ZO	UT (Zero Output & turn off DINC request).	

Remarks: Used to generate output pulse trains and to count down T6. Values to be counted down by DINC might be developed by the instruction MSU from a desired and an actual CDU angle. This sequence is shared by the instruction DIM, but without POUT, MOUT and ZOUT. 2

SHINC	Shift Increment	1 MCT
	Set $c(CTR) = b(CTR) + b(CTR);$	
	If + overflow, set the priority chain station	
for this counter.		
	Remarks: SHINC and SHANC are used to convert	
incoming serial convert words t	bit streams into words for parallel access, and to to outgoing serial bit streams.	
SHANC	Shift and Add Increment	1 MCT
	Set $c(CTR) = b(CTR) + b(CTR) + 1;$	
	If + overflow, set the priority chain station	
for this counter.		
	Remarks: See under SHINC.	
INOTRD	In/Out Read to GSE	1 MCT
	Accept a channel address from the Ground	
Support Equipm	ent and place the contents of the addressed input/	
output channel o	on the GSE data busses.	
INOTLD	In/Out Load from GSE	1 MCT
	Accept a channel address from the Ground	
Support Equipm	ent and write the contents of the GSE data busses	
into the address	ed input/output channel.	
FETCH	Fetch from Memory to CSF	2 МСТ
FEICH	Fetch from Memory to GSE	2 WCI
	Accept from the Ground Support Equipment a	
setting for eithe	er FB or EB and an address for the corresponding	
GSE data bugges	ace the contents of the address is $0.020-0.022$	
Then restore b(BB).	

STORE Store in Memory from GSE

2 MCT

2 MCT

Accept from the Ground Support Equipment a setting for EB and an address in erasable memory, and write the contents of the GSE data busses into the addressed location. Then restore b(BB), unless the location stored into is BB itself.

The manual override instructions can occur at any time because they are not obliged to preserve the state of the computer.

 $\begin{array}{cccc} GOJ & Go & Jam & & 2 \ MCT \\ & & Set \ c(Q) = b(Z); \\ & & Take \ next \ instruction \ from \ location \ 4000 \end{array}$

and proceed from there.

TCSAJ

Transfer Control to Specified Address Jam

Take next instruction from the location whose address is on the Ground Support Equipment data

busses, and proceed from there.

Address Constant Formats

The address constants available for Block II programming are considerably different than for Block I. A summary of them follows. The EBANK= code is also discussed.

ADRES	Address
REMADR	Remote Address
GENADR	General Address

Each of these codes creates a single precision constant word identical to the instruction word that would have resulted if the opcode had been TC. ADRES requires the location and address values to be in the <u>same F</u> - Bank if both are in F - Banks and to be in the same E - Bank if both are in E - Banks. REMADR requires the location and address values to be in <u>different F</u> - Banks if both are in F - Banks and to be in different E - Banks if both are in E - Banks. GENADR **does**n't care.

CADR FCADR (Fixed) Complete Address

These codes are synonymous. The address value must be in an F - Bank. The resulting single precision constant word equals the pseudo-address value minus octal 10000. Bits 15-11 equal the F - Bank number and bits 10 - 1 equal the relative location of the address in that bank.

ECADR Erasable Complete Address

The address value must be erasable, 0000-3777, and the resulting single precision word equals the the eleven bit pseudo-address. Bits 15-12 = 0.

EBANK= Erasable Bank Declaration

This code does not generate an AGC word. It informs the assembler of which E-Bank the programmer intends subsequent E-Bank addresses to be in. For basic instructions and interpretive address words, the assembler complains wherever an address is equivalent to a location in a different E-Bank. If the EBANK= code is followed by* a BBCON, 2BCADR or 2CADR code, this EBANK= value is good only for that one subsequent code, and then the previous EBANK= setting is restored. This is called a "one-shot EBANK= declaration".

^{* &}quot;followed by" means with no instructions, interpretive opcode words, or address constants intervening.

Both Bank Constant

BBCON

This code generates a single precision constant word intended as data to be placed in the BB central register. The address value must be a fixed memory location or it must be equivalent to a valid F-Bank number, (range 0-27 now, 0-43 later). Bits 15-11 of the resulting word equal the address' bank number (fixed - fixed being banks 2 and 3). Bits 10 - 4 are zeros. Bits 3 - 1 equal the current EBANK= code.

2CADR 2BCADR Double Complete Address Including a BBCON

These codes are synonymous. This code is intended to be used as the operand of a DTCB (DXCH Z) instruction. Two constant words are generated by this code. The first word is formed under the rules for GENADR. If the address value is in fixed memory, the second word is formed under the rules for BBCON. For an erasable address the second word becomes 0000x where x = the address' octal code EBANK number in the range 0 - 7.

2FCADR

Double Complete Address Including an FCADR

This code's address value must be in fixed memory. The code is intended as an operand of a DTCF (DXCH FB) instruction. Two constant words are generated by this code. The first word is formed under the rules for FCADR, and second under the rules for GENADR. Exception: both words are GENADRs if address value is in fixed fixed.

Control Pulse Definitions

To understand the control pulses and the pulse sequences, it is necessary to know the unaddressable central registers:

G Memory Local Register Bits 1 - 16 In an MCT in which erasable memory is cycled, the word from memory appears in G by the 5th microsecond (time 5 of 12 times) of the MCT. If it is left there through time 12, it is restored exactly as it was read out. If a new value is written into G before time 10, that becomes the new value in the memory location. When fixed memory is cycled, the word appears in G by time 7.

WL Write Lines or Busses Bits 1 - 16 These are the normal medium of communication among central registers, although some private lines exist.

B General Buffer Register Bits 1 - 16 The B register always holds the instruction word at the beginning of each instruction.

C Complement Output of B Bits 1 - 16 Not a separate storage. Each bit of C is the opposite of the corresponding bit of B.

YPrimary Adder InputBits 1 - 16Has conventional and doubling inputs.XSecondary Adder InputBits 1 - 16

Fed by private line from A and from constant

generators.

U Adder Output Bits 1 - 16 Exists as a function of c(X) and c(Y) - has no

storage of its own.

S Address Selection Register Bits 1 - 12 Holds the address of a fixed memory location from time 8 of the preceding MCT through time 7 of the current MCT, or holds (in bits 1 - 10) the address of an erasable memory location from time 1 through time 7 of an MCT.

Sequence Selection Register

Bits 10-16

Holds the operation code during execution of each instruction. Bit 15 is the extracode bit. SQ is aided by a three-bit stage counter and two branch flip-flops. A stage counter value of 2 selects the standard fetch-next-instruction subinstruction, regardless of the c(SQ) and the branch bits. Sequence selection by SQ is suppressed during counter interrupts by a signal called INKL.

CONTROL PULSE DEFINITIONS

A2X COPY A1-16 IMIO X1-16 BY PRIVATE LINF.

B15X SET BIT 15 UF X TO 1.

- CI INSERT CARRY INTO BIT 1 OF THE ADDER.
- CLXC CLEAR X CONDITIONAL ON THE OUTCOME OF TSGU. X IS CLEARED IF BR1 = 0. USED IN DIVIDE.

4

1

- DVST CAUSE DIVIDE STAGING BY A SIMPLE RULF. ALSO PERMIT STAGING TO OCCUP AT TIMES OF DIVIDE CYCLES.
- EXT SET THE EXTEND FLIP FLOP.
- G2LS * COPY G4-15+16+1 INTO L1-12+16+15+
- KRPT RESFT INTERRUPT PRIORITY CELL.
- L16 SET BIT 16 OF L TO 1.
- L2GD COPY L1-14.16 INTO G2-15.16 -- ALSO MCRO INTO G1.
- MONEX SET BITS 2-16 OF X TO ONES.
- MOUT NEGATIVE RATE OUTPUT PULSE.
- NEACOF PERMIT END APOUND CARRY AFTER END OF MP3.
- NEACON INHIBIT FND AROUND CARRY UNTIL NEACOF.
- NISQ NEXT INSTRUCTION IS TO BE LOADED INTO 5Q. ALSO FREES CERTAIN RESTRICTIONS- PERMITS INCREMENTS AND INTERRUPTS.
- PIFL WHEN L15 = 1. BLOCK WRITING INTO Y1 ON A WYD.
- PONEX SET BIT 1 OF X TO 1.
- POUT POSITIVE RATE OUTPUT PULSE.
- PTWOX SET BIT 2 OF X TO 1.

R15 PLACE OCTAL 000015 ON WL'S.

CONTPOL PULSE DEFINITIONS

.

RIC PLACE OCTAL 177776 = -1 ON WL'S.

R6 PLACE OCTAL 000006 ON WRITE LIVES.

RA READ A1-16 TO WL1-16.

RAD PEAD ADDRESS OF NEXT CYCLE. THIS APPEARS AT THE END OF AN INSTRUCTION AND MORMALLY IS INTERPRETED AS RG. IF THE NEXT INSTRUCTION IS TO BE A PSFUDO CODF (INHINT FELINT EXTEND). IT IS INSTEAD INTERPRETED AS RZ ST2.

RB READ B1-16 TO WL1-16.

RB1 PLACE OCTAL 000001 ON THE WL'S.

RB1F PLACE OCTAL 000001 ON THE WL'S CONDITIONAL ON THE OUTCOME OF ISGU. RB1F IF BR1=1.

RB2 PLACE OCTAL 000002 ON THE WL'S.

RBBK READ THE BB (BOTH BANK) CONFIGURATION ONTO THE WRITE LINES. I.E. FB 9-11 TO WL 1-3 AND FB 11-14.16.16 TO WL 11-14.15.16.

RC READ THE CONTENT OF B INVERTED: C1-16 TO WL1-16.

RCH PEAD THE CONTENT OF THE INPUT OR OUTPUT CHANNEL SPECIFIED BY THE CURRENT CONTENT OF 5: CHANNEL BITS 1-14 TO WL1-14+ AND BIT 16 TO WL15+16+ CHANNELS 1 AND 2 READ AS RL AND RQ+

RG READ G1=16 TO WL1=16.

READ L1-14 TO WL1-14. AND L16 TO WL15 AND 16.

READ LOW 10 BITS OF B TO WL 1-10.

RQ READ Q1-16 TO WL1-16.

- RRPA READ THE ADDRESS OF THE HIGHEST PRIORITY INTERRUPT REQUESTED.
- RSC READ THE CONTENT OF CENTRAL STORE DEFINED BY THE ADDRESS CURRENTLY IN S: CENTRAL STORE BITS 1-16 ARE COPIED TO WL1-16.

RSCT READ THE ADDRESS OF HIGHEST PRIORITY COUNTER REQUEST.

RSTRT PLACE OCTAL 004000 = BLOCK 2 START ADDRESS ON WL'S.

RSTSTG RESET THE DIVIDE TO3 STAGING CONDITION.

READ U1-16 TO WL1-16.

RU

CONTROL PULSE DEFINITIONS

RUS	READ UI-14 TO WLI-14. AND U15 TO WL15 AND 16.
RZ	READ Z1-16 TO WL1-16.
571	SET STAGE1 HIP FLOP NEXT TI2.
ST2	SET STAGEZ FLIP FLOP NEXT T12.
STAGE	EXECUTE GREY-CODED STAGE ADVANCE COMPUTED BY DVST.
TL15	COPY LIS INTO BRI.
TMZ	TEST WL1-16 FOP ALL ONES (-0). SET BR2 IF TRUE.
TOV	TEST FOR + OR - OVERFLOW. SFT BR1.2 TO OO IF NO OVERFLOW. 01 IF + OVERFLOW. 10 IF - OVERFLOW.
TPZG	TEST CONTENT OF 6 FOR PLUS ZERO. IF TRUE SET BR2=1.
TRSM	TEST FOR RESUME ADDRESS ON INDEX. 5T2 IF (5)=0017.
TSGN	TEST SIGN. COPY WI16 TO BRI.
TSGN2	TEST SIGN. COPY WL16 TO BR2.
TSGU	TEST SIGN OF SUM (U). COPY U16 INTO BR1.
U2BBK	ADDER BITS 1-3 AND 11-14+16 ARE TRANSFERRED INTO ERASABLE AND FIXED BANKS. THIS PULSE MAY BE INHIBITED BY CTS SIGNAL MONWEK.
WA	CLFAR AND WRITE WL1-16 INTO A1-16.
WALS *	CLEAR AND WRITE INTO A1-14 FROM WL3-16. CLEAR AND WRITE INTO L13.14 FROM WL1.2. CLEAR AND WRITE INTO A15.16 FROM G16 (IF G1=0) OR FROM WL16 (IF G1=1).
WB	CLEAR AND WRITE WLI-16 INTO B1-16.
WСH	CLEAR AND WRITE WL1-14.16.PARITY INTO CHANNEL BITS 1-14.16.PARITY. CHANNELS 1 AND 2 WRITE AS WL AND WG. THE CHANMEL TO BE LOADED IS SPECIFIED BY THE CURRENT CONTENT OF S.
WG	CLFAR AND WRITE WLI-16 INTO GI-16 FXCEPT FOR ADDRESSES OCTAL 20-23, WHICH CAUSE EDITING.
WL	CLEAR AND WRITE WL1-16 INTO L1-16.

CONTROL PULSE DEFINITIONS

WOVR		TEST FOR OVEPFLOW DURING COUNTER INCREMENTS AND PROGRAM INITIATED INCREMENTS(INCR AND AUG). RUPT IF OVERFLOW OCCURS WHEN ADDRESSING CERTAIN COUNTERS.
WQ		CLEAR AND WRITE WLI-16 INTO GI-16.
w 5		CLFAR AND WRITE WE1-12 INTO 51-12.
wSC		CLFAR AND WRITE WL1-16 INTO THE CENTRAL REGISTER SPECIFIED BY THE CURRENT CONTENT OF 5. BITS 1-16 INTO POSITIONS 1-16.
WSQ	*	CLEAR AND WRITE WL10-14+16 INTO SQ10-14+16+ AND COPY THE EXTEND FLIP FLOP INTO SQ15+
WY		CLEAR Y AND X. WRITE WL1-16 INTO Y1-16.
WY12		CLFAR Y AND X. WRITE WL1-12 INTO Y1-12.
WYD		CLEAR Y AND X. WRITE WL1-14 INTO Y2-15. WRITE WL16 INTO Y16. WRITE WL16 INTO Y1 EXCEPT: (1) WHEN END-AROUND CAPRY IS INHIBITED BY NEACON. (2) DURING SHINC SEQUENCE: OR (3) PIFL IS ACTIVE AND L15 = 1.
WZ		CLFAR AND WRITE WL1-16 INTO Z1-16.
Z15		SET BIT 15 OF Z TO 1.
Z16		SET BIT 16 OF Z TO 1.
ZAP		ALWAYS IMPLIES RU. G2LS. AND WALS.
ZIP		ALWAYS IMPLIES AZX AND LZGD. ALSO IF L15.2.1 ARE:
		L15 L2 L1 READ WRITE CARRY REMEMBER 0 0 0 - WY - - 0 0 1 RB WY - - 0 1 0 RB WY - - 0 1 0 RB WY - - 0 1 1 RC WY CI MCRO 1 0 1 RB WY - - 1 0 1 RB WY - - 1 0 1 RB WY - - 1 0 1 RC WY - - 1 1 1 - WY - - 1 1 1 - WY - MCRO
ZOUT		NO RATE OUTPUT PULSE. RESET OUTBIT REQUESTING DINC.

* THESE PULSES DO NOT APPEAR IN THE PULSE SEQUENCES.

PROGRAMMABLE INSTRUCTIONS

OP CODE	EXT	5016+14=10	OPERATION
TC CCS TCE TCF DAS LXCH INCR ADS CA CS INDEX (NDX) DXCH TS XCH AD MASK (MSK)		000 001 00 001 01 001 10 001 11 010 01 010 01 010 10 010 10 011 10 101 00 101 01 101 10 101 11 110 11 111 110 111 110	TRAMSFER CONTROL AND PSENDO-CODES * COUNT, COMPARE, AND SKIP TRAMSFEP CONTROL TO FIXED """"""""""""""""""""""""""""""""""""
READ WRITF RAND WAND ROR WOR RXOR EDRUPT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 00 0 000 00 1 000 01 0 000 01 1 000 10 1 000 10 1 000 10 1 000 11 1 000 11 1	READ FROM CHANNEL WRITF IN CHANNEL PEAD. "AND" TO A WRITE. "AND" TO CHANNEL READ. "OR" TO A WRITE. "OR" TO CHANNEL READ. EXCLUSIVE "OR" TO A ED SMALLY'S OWN RUPT ORDER
DV BZF BZF MSU QXCH AUG DIM DCA DCS INDEX (NDX) SU BZMF BZMF BZMF BZMF	111111111111111111111111111111111111111	001 00 001 01 001 10 001 11 010 01 010 10 010 10 010 11 010 10 101 11 110 00 110 01 110 10 110 10 110 11 111 11	DIVIDE PRANCH ON ZERO TO FIXED """"""""""""""""""""""""""""""""""""

2

* PSEUDO-CODES: RELINT = TC 0003, INHINT = TC 0004, EXTEND = TC 0006. THE TC OPERATION CODE IS SHARED BY THE NON-PROGRAMMABLE SEQUENCES GOJ1 (FOLLOWED BY TCO) AND TCSAJ3 (FOLLOWED BY STD2). s -

TCO RR WY12 CI 1. RSC WG NISO 2. 3. RZ WQ RU WZ 6. RAD WB WS 8. GOJ1 RSC WG 2. RSTRT WS WB 8. TCSA.J3 RSC WG 2. WS WZ ST2 8. CCSO RI 10BB WS 1. RSC WG 2. RG WB TSGN TMZ TPZG 5. RZ WY12 00 7. RZ WY12 PONEX 7. 01 -RZ WY12 PTWOX 7. 10 RZ WY12 PONEX PTWOX 7. 11 RU WZ WS 8. RB WG 9. RB WY MONEX CI ST2 10. 00 WY ST2 10. X1 RC WY MONEX CI ST2 10. 10 11. RU WA TCFO RB WY12 CI 1. RSC WG NISQ 2.

RU WZ

RAD WB WS

6.

8.

35

PULSE SFOUFNCES

DASO

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 00 10. 01 10. 10 10. 11	RLIOBE WS WY12 MOMEX CI RSC WG RA WB RL WA RU WL RG WY A2X RE WA RL WB RU WSC WG TOV RA WY ST1 RA WY ST1 PONEX RA WY ST1 MONEX RA WY ST1
DA51	
1. 2. 3. 5. 6. 7. 00 7. 01 7. 10 7. 11 8. 9. 10. X0 11. X1	RL10BB WS RSC WG RU WA RG WY A2X RU WG WSC TOV WA WA RB1 WA R1C WA RZ WS ST2 RC TMZ WL RU WA
LXCHO	
1. 2. 3. 5. 7. 8.	RL10BB WS RSC WG RL WB RG WL RB WSC WG RZ WS ST2
INCRO	
1 • 2 • 5 • 6 • 7 • 8 •	RL10BB WS RSC WG RG WY TSGN TMZ TPZG PONEX RU WSC WG WOVR RZ WS ST2

2

ADSO

8

.

1.		RLIOBE WS
5.		RG WY AZX
6.		RU WSC WG TON
7.	00	WA
7.	01	WA PB1
7.	10	WA RIC
7.	11	WA
8.		RZ WS ST2
9.		RC TMZ
11+		RU WA
CAO		
2.		RSC WG
7.		RG WB
8.		RZ WS ST2
9.		RP WG
10.		RB WA
C 50		
2.		RSC WG
7.		RG WB
8.		RZ WS ST2
9.		RB WG
10.		RC WA

NDXO

2 •	RSC WG
5 •	TRSM
7 •	RG WB
8 •	RZ WS
9 •	RB WG
10 •	ST1
NDX1	
1 •	RZ WY12 CT
2 •	RSC wG NISO
3 •	RR WZ
4 •	RA WB
5 •	RZ WA
6 •	RU WZ
7 •	RG WY A2X
8 •	RU WS
9 •	RB WA
10 •	RU WB
RSM3	
1 •	R15 WS
2 •	RSC WG NISQ
5 •	RG WZ
6 •	RR WG
8 •	RAD WP WS
DXCHO	
1 •	RL10BB WS WY12 MOMEX CI
2 •	RSC WG
3 •	RL WB
5 •	RG WL
7 •	RB WSC WG
8 •	RU WS WB
10 •	ST1
DXCH1	
1.	RL10BB WS
2.	RSC WG
3.	RA WB
5.	RG WA
7.	RB WSC WG
8.	RZ WS ST2

TSO

1. 2. 3. 4. 00 4. 01 4. 10 4. 10 4. 11 5. 01 5. 10 6. 7. 8.	RE10BB WS RSC WG RA WB TOV RZ WY12 RZ WY12 CI RZ WY12 CI RZ WY12 CI RJ WA RJC WA RU W2 RB WSC WG RZ WS ST2
хсно	
1 • 2 • 3 • 5 • 7 • 8 •	RL10BB W5 RSC WG RA WB RG WA RB WSC WG RZ W5 ST2
ADO	
2 • 7 • 8 • 9 • 10 • 11 •	RSC WG RG WB RZ WS ST2 RB WG RB WY A2X RU WA
MSKO	
2. 3. 4. 7. 8. 9. 10. 11.	RSC WG RA WB RC WA RG WB RZ WS ST2 RC RA WY RU WB RC WA

READO

1+	RL10BB WS
2.	RA WB
3.	WY
4.	RCH WR
5.	RB WA
6.	RA WB
8.	RZ WS ST2

WRITEO

1.	RL10BB WS
2.	RA WB WG
3.	WY
4.	RCH WB
5.	RA WCH
6.	RA WB
8.	RZ WS ST2

RANDO

1.	RL10BB WS
2.	RA WB
3.	RC WY
4.	RCH WB
5.	RC RU WA
6.	RA WB
7.	RC WA
8.	RZ WS ST2

WANDO

1.	RL10BB WS
2.	RA WB
3.	RC WY
4.	RCH WB
5.	RC RU WA
6.	RA WB
7.	RC WA WCH
8.	RZ WS ST2

3

PULSE SEQUENCES

RORO

17

x

1.	RI LOBR WS
2.	RA WB
3.	RP WY
4.	RCH WB
5.	RB RU WA
6.	RA WB
8.	RZ WS ST2

WORO

1.	RL10BR WS
2.	RA WB
3.	RR WY / Wer - Store
4.	RCH WB
5.	RR RU WA WCH Ch
6.	RAWB
8.	RZ WS ST2

RXORO

1+	RL10BB WS
2.	RA WB
3.	RC RCH WY
4.	RCH WB
5.	RA RC WG
7.	RG WB
8.	RZ WS ST2
9.	RC WG
10.	RU WB
11.	RC RG WA

RUPTO

1.	R15 WS
2.	RSC WG
9.	RZ WG
10.	ST1.
RUPT1	
1.	R15 RB2 WS
2.	RSC WG
3.	RRPA WZ
8.	RZ WS STZ
9.	RB WG KRPT

41

PULSE SFOUENCES

DVO RA WE TSGN TMZ 1. RC WA THZ DVST OX 2. 2. 1 X DVST RU WB STAGE 3. DV1 XO RL WB 4. RI WB TSGN 4. X1 RP WY B15X 5. 0X RC WY B15X Z16 5. 1X RU WL TOV 6. RG RSC WB TSGN 7. RA WY PONEX 8. XO RA WY 8. X1 9. 0X RB WA RC WA Z15 9. 1X RU WB 10. RL WYD 11. RU WL 12. 1. LZGD PB WYD AZX PIFL 2. 0X RG WL TSGU DVST CLXC 1X RG WL TSGU DVST RP1F 2. RU WB STAGE 3. DV3 4. L2GD RB WYD A2X PIFL 5. 0X RG WL TSGU CLXC RG WL TSGU RB1F 5. 1X RU WB 6. L2GD RB WYD A2X PIFL. 7. 0X RG WL TSGU CLXC 8. RG WL TSGU RB1F 8. 1 X 9. RU WB L2GD RB WYD A2X PIFL 10. RG WL TSGU CLXC 11. OX 11+ 1X RG WL TSGU PB1F RU WB 12. LZGD RB WYD AZX PIFL 1. 2. 0X RG WL TSGU DVST CLXC 1X RG WL TSGU DVST RB1F 2. RU WB STAGE 3.

.

DV7

4.		LOGD RB WYD AZX PIFL
5.	OX	RG WL TSGU CLXC
5+	1 X	RG WL TSGU RHIF
6.		RU WB
7.		LZGD RB WYD AZX PIFL
8.	OX	RG WL TSGU CLXC
8.	1X	RG WL TSGU RHIF
9.		RU WB
10.		L2GD RB WYD A2X PIFL
11+	OX	RG WL TSGU CLXC
11+	1X	RG WL TSGU RB1F
12.		RU WB
1.		LZGD RB WYD AZX PIFL
2.	OX	RG WL TSGU DVST CLXC
2.	1 X	RG WL TSGU DVST RRIF
3.		RU WB STAGE
DV6		
4.		L2GD RB WYD A2X PIFL
5.	ox	RG WL TSGU CLXC
5+	1X	RG WL TSGU RBIF
6.		RU WB
7.		LZGD RB WYD AZX PIFL
8.	OX	RG WL TSGU CLXC
8.	1X	RG WL TSGU PB1F
9.		RU WB
10.		LZGD RB WYD AZX PTFL
11+	OX	RG WL TSGU CLXC
11+	1X	RG WL TSGU RBIF
12.		RU WB
1+		LZGD RB WYD AZX PIFL
2.	OX	RG WL ISGU DVST CLXC
2.	1X	RG WL TSGU DVST RHIF
3+		RU WB STAGE
DVA		
UV4		
2.		PIL WE STAGE
4.		1260 PR WYD A2X PTFI
5.	OX	RG WB WA TSGU CI XC
5.	1 x	RG WB WA TSGU PBIF
6.	• /	RZ TOV
7.	01	RC WA
7.	1x	RC WA
8.	• **	RT WS ST2 TSGN RSTSTG
9.		RU WB WI
10.	OY	RC WI
TAF	U A	1. Mar. 1. Mar.

BZFO

1.		RA WG TSGN TMZ
2.		TPZG
3.		RSC WG
5.	×1	RB WY12 CI
6.	X1	RU WZ
8.	XO	RZ WS ST2
8.	×1	RAD WB WS NISO

.

1

MSUO

1.	RL10BB WS
2.	RSC WG
5.	RG WB
6.	RC WY CI A2X
7.	RUS WA TSGN
8.	R7 WS ST2
9.	RB WG
10. 1X	RA WY MONEX
11.	RUS WA

OXCHO

1.	RL10BB WS
2.	RSC WG
3.	RO WB
5.	RG WQ
7.	RP WSC WG
8.	RZ WS ST2

AUGO

1.		RL10BB WS
2.		RSC WG
5.		RG WY TSGN TMZ TPZG
6.	OX	PONEX
6.	1X	MONEX
7.		RU WSC WG WOVR
8.		RZ WS ST2

DIMO

1.		RL10BB WS
2.		RSC WG
5.		RG WY TSGN TMZ TPZG
6.	00	MONEX
6.	10	PONEX
7.		RU WSC WG WOVR
8.		RZ WS ST2

DCAO	
1 • 2 • 7 • 8 • 9 • 10 •	RB WY12 MONEX CI RSC wG RG WB RU WS RP WG RB WL ST1
DCA1	
2 • 7 • 8 • 9 • 10 •	RSC WG RG WB RZ WS ST2 RR WG RB WA
DCSO	
1 • 2 • 7 • 8 • 9 • 10 •	RB WY12 MONEX CI RSC WG RG WB RU WS RB WG RC WL ST1
DC51	
2 • 7 • 8 • 9 •	RSC WG RG WB RZ WS ST2 RB WG RC WA

1

NDXXO

2.	RSC WG
7.	RG WB
8.	R7 WS
9.	RB WG
10.	ST1
NDXX1	
1.	RZ WY17 CI
2•	RSC WG NISQ
3.	RB WZ
4.	RA WB
5.	RZ WA
6.	RU WZ
7.	RG WY A2X
8.	RU WS
9.	RB WA
10.	RU WB EXT
SUO	
2.	RSC WG
7.	RG WB
8.	RZ WS ST2
9.	RP WG
10.	RC WY A2X
11.	RU WA
BZMFO	
1.	RA WG TSGN THZ
2.	TPZG
3.	RSC WG
5. 01	RB WY12 CI
5. 10	RE WY12 CI
5. 11	RP WY12 CI
6. 01	RUWZ
6. 10	RU WZ
6. 11	RU WZ
8. 00	RZ WS ST2
8. 01	RAD WE WS NISO
8. 10	RAD WE WS NISO
8. 11	RAD WB WS NISQ

PULSE SFOUENCES

MPO

2.	RSC WG
3.	RA WB TSGN
4. OX	RB WL
4. 1X	RC WL
7.	RG WB TSGN2
8.	RZ WS
9. 00	RB WY
9. 01	RB WY CI
9. 10	RC WY CI
9. 11	RC WY
10.	RU WB TSGN ST1 NEACON
11. OX	WA
11. 1X	WA RBI RIC 116
MP1	
	710
1.	
2.	710
3.	740
5.	710
6.	ZAP
7.	ZIP
8.	ZAP
9.	ZIP
10.	ZAP ST1 ST2
11.	ZIP
MP3	
1+	ZAP
2.	ZIP NISQ
3.	
4.	
2.	RL WILL CI DIL WZ TI 15 NEACOE
7. 17	PR WY ADY
8.	RAD WB WS
9.	RA
10.	RL
11• 1X	RU WA
STD2	·
1.	RZ WY12 CI
2.	RSC WG NISQ
6.	RU WZ
8.	RAD WB WS

PINC RSCT WS 1. RSC WG 2. RG WY TSGN THZ TPZG 5. PONEX 6. RU WSC WG WOVR 7. 8. RB WS PCDU RSCT WS 1. RSC WG 2. RG WY TSGN TMZ TP7G 5. CI 6. RUS WSC WG WOVR 7. RR WS 8. MINC RSCT WS 1. RSC WG 2. RG WY TSGN TMZ TPZG 5. MONEX 6. RU WSC WG WOVR 7. RR WS 8. MCDU RSCT WS 1. RSC WG 2. RG WY TSGN TMZ TPZG 5. MONEX CI 6. RUS WSC WG WOVR 7. RB WS 8. DINC RSCT WS 1. RSC WG 2. RG WY TSGN TMZ TPZG 5. MONEX POUT 00 6. 10 PONEX MOUT 6. ZOUT X1 6. RU WSC WG WOVR 7.

RP WS

8.

48

.

SHINC

3

.

1+	RSCT WS
2.	RSC WG
5.	RG WYD TSGN
7.	RUS WSC WG WOVR
8.	RB WS

SHANC

1+	RSCT WS
2.	RSC WG
5.	RG WYD TSGN CI
7.	RUS WSC WG WOVR
8.	RB WS

INOTRD

1.	WS
2.	RSC WG
5.	RCH
8.	RR WS

INOTLD

WS
RSC WG
RCH
WCH
RP WS

FETCHO

1 •	R6 WS
2 •	RSC WG WY ST1
4 •	WSC
8 •	WS
FETCH1	
2 •	RSC WG
7 •	RG
8 •	RB WS U2BBK
10 •	RBBK
STORFO	
1 •	R6 WS
2 •	R5C WG WY ST1
4 •	WSC
8 •	WS
STORE1	
2 •	RSC WG
4 •	WSC
7 •	RG
8 •	RB WS U2BBK
9 •	WG
10 •	RBBK

2

R

apollo M.I.T. INSTRUMENTATION LABORATORY _____ TP# 146+3-1 ____ 12/65

** OCTAL WORD COUNT ADDRESSABLE WITHOUT CHANGING ANY BANK BITS.

" NOT PRFFERRED

"SUPER BANK O

"SUPER BANK 1"

PSI	EUDO	70 000	23	PSEUDO	106 000	PSEUDO	110 000 2	2 PSEUDO	11
FCA	ADR	60 000	53	FCADR	76 000	FCADR	60 000	FCADR	6
Y EXT	FB SREG	0 30 2 000	53	EXT FB SREG	0 37 2 000	EXT FB SREG	1 30 2 000	S EXT FB SRE	G 1 33 2

						PSEUDO ECADR EB SREG EB SREG*	00 000 0 000 X 0 000 0 1 400				
2 000 WORDS	••					PSEUDO ECADR EB SREG EB SREG*	00 400 0 400 X 0 400 1 1 400				
	ERASABLE MEMORY 400 (OCTAL)					PSEUDO ECADR EB SREG EB SREG*	01 000 1 000 X 1 000 2 1 400				
	BOX	PSEUDO ECADR EB SREG	01 400 1 400 3 1 400	PSEUDO ECADR EB SREG	02 000 2 000 4 1 400	PSEUDO ECADR EB SREG	02 400 2 400 5 1 400	PSEUDO ECADR EB SREG	03 000 3 000 6 1 400	PSEUDO ECADR EB SREG	03 400 3 400 7 1 400
10 000 WORDS** 6 000 WORDS	FIXED MEMOR 2 000 (OCTAL) WORDS PER BOX	Υ.				PSEUDO EXT FB SREG EXT FB SREG* PSEUDO EXT FB SREG	04 000 x xx 4 000 x 02 2 000 06 000 x xx 6 000				
		PSEUDO	10 000	PSEUDO	12 000	EXT FB SREG* PSEUDO	X 03 2 000 PSEUDO	20 000	3	PSEUDO	66 000
		FCADR EXT FB SREG	00 000 X 00 2 000	FCADR EXT FB SREG	02 000 X 01 2 000	ADDRESSES 14 000-17 777 NON-EXISTENT	FCADR EXT FB SREG	10 000 X 04 2 000		FCADR EXT FB SREG	56 000 × 27 2 000

AGC BLOCK II MEMORY ORGANIZATION AND ADDRESSING

G