Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

TO: AGC4 Distribution
FROM: Hugh Blair-Smith
DATE: September 30, 1965, Revised June 1, 1967
SUBJECT: AGC4 MEMO # 9 - Block II Instructions

....

TABLE OF CONTENTS

-

Introduction
Memory 3
Basic Instructions
Extracode Instructions 11
Implied-Address Codes 15
Unprogrammed Sequences 21
Address Constant Formats 25
Control Pulse Definitions 27
Condensed List of Programmable Instructions
Pulse Sequences

Introduction

This document supercedes all revisions of and appendices to AGC4 Memo # 8, "Block II Instructions, Revised". The format has been changed to include more information for YUL-language programmers and to include the engineering details formerly relegated to appendices. A new descriptive section on unprogrammed sequences has been added.

Some confusion has arisen about the nature of channel numbers or addresses. Channel addresses should be used just like memory addresses in programming, that is, regarding the channels as a third category of memory, distinct from E and F. The fact that the numbers used as channel addresses coincide with some of the numbers used as memory addresses should cause no confusion, because the addresses in In/Out instructions are always channel addresses, and the addresses in other instructions are always memory addresses. In fact, the coincidence is put to good use: the L register is accessible both at memory address 0001 and at channel address 01.

In YUL language, symbols may be equated to channel addresses as well as memory addresses. The only distinction made by the assembler is that addresses of In/Out instructions have a theoretical maximum of 777.

Memory

-

Block II differs significantly from Block I in register and memory layout and in addressing. The LP register has been renamed L because it is a lower accumulator in every sense. The IN and OUT registers no longer have addresses in memory, but are referenced with 9-bit channel addresses by the seven input/output instructions (code 10). Channel assignments are given in Digital Development Memo #254, Revision A (Sept. 7, 1965). Figures 1 and 2 show the arrangement of addresses. The erasable banks use local addresses 1400-1777. The fixed banks use local addresses 2000-3777. Figure 3 explains the bank-switching and editing registers.

Basic Instructions

Figure 4 shows the relationships among the operation codes, with alternate spelling in brackets. Subscripts are running times, in MCT ; EXTEND time of 1 MCT is not included in extracode times.

Code 00.	I: TC K Transfer Control 1 MCT		
K∮3,4,6	Set $c(Q) = TC I + 1;$		
	Take next instruction from K and proceed from there.		
	Remarks: Alternate spelling is TCR, for Transfer		
	Control setting up Return.		

ARRANGEMENT OF ADDRESSES

-

OCTAL PSEUDO- ADDRESS	REGISTER NAME	REMARKS	TYPE
00000	A]	
00001	L	(also channel 01)	
00002	Q	(also channel 02)	
00003	EB	Erasable Bank Register	Flip-flop
00004	FB	Fixed Bank Register	registers
00005	Z		
00006	BB	Both Bank Registers	
00007		Zeros	
00010	ARUPT	x RUPT = Storage for x	
00011	LRUPT	during Interrupt;	
00012	QRUPT	ZRUPT & BRUPT stored	
00013	(spare)	automatically.	
00014	(spare)		
00015	ZRUPT		2040 words
00016	BBRUPT		of Erasable
00017	BRUPT	(RIP)	
00020	CYR	Cycle Right 1 Bit	
00021	SR	Shift Right 1 Bit	
00022	CYL	Cycle Left 1 Bit	
00023	EDOP	Edit (Polish) Opcode	
00024-00057	Counters		
00060-01377	Unswitched Era	asable	
01400-03777	5 Erasable Bar	nks @ 256 words (See Fig. 2)	
04000 -up	Fixed (See Fig. 2)		Fixed

Fixed and Erasable Bank-Switching

ē

	-		O \	
	r 1	σ.	1	
· · · ·	1 1	5.	/	

Octal Pseudo- Address	Memory Type	Erasable Bank Reg.	Fixed Bank Reg.	Fixed Ex- tension bits (7,6,5 of	S-Reg. Value
00000-01377	(Note 1)	x	xx	channel 7)	0000-1377
00000-00377	(Note 1)	0	XX	x	
00400-00777	Unswitched E	1	xx	x	1400-1777
01000-01377	Unswitched E	2	XX	x	1400-1777
01400-01777	Switched E	3		x	1400-1777
02000-02377	Switched E	4	XX	x	1400-1777
02400-02777	Switched F	4 5	XX	x	1400-1777
03000-03377	Switched E	5	XX	x	1400-1777
03400-03777			XX	x	1400-1777
	Switched E	7	XX	x	1400-1777
04000-07777	Fixed-fixed	X	XX	x	4000-7777
10000-11777	Common fixed	x	00	x	2000-3777
12000-13777	Common fixed	x	01	x	2000-3777
04000-05777	Fixed-fixed	x	02	x	2000-3777
06000-07777	Fixed-fixed	x	03	x	2000-3777
20000-21777	Common fixed	x	04	x	2000-3777
22000-23777	Common fixed	x	05	x	2000-3777
•	and so or	n through:			
64000-65777	Common fixed	x	26	x	2000-3777
66000-67777	Common fixed	x	27	x	2000-3777
70000-71777	Super-bank 3	x	30	3*	2000-3777
72000-73777	Super-bank 3	x	31	3*	2000-3777
	and so or	h through:			
106000-107777	Super-bank 3	x	37	3*	2000-3777
110000-111777	Super-bank 4	x	30	4	2000-3777
112000-113777	Super-bank 4	x	31	4	2000-3777
114000-115777	Super-bank 4	x	32	4	2000-3777
116000-117777	Super-bank 4	x	33	4	2000-3777

(Note 1) Flip-flop central registers, counters, and unswitched erasable. Central and special-purpose registers will be accessed as E-bank 0 only under exceptional circumstances.

* Any value 0-3 is OK. 3 is conventional.

Octal Address	Register Name	Access to Bank-Switching Circuits
0003	EB	0000EEE000000000
0004	FB	FFF FF0 000 000000
(Actual Cir	cuits) SS	S FFFFF EEE
0006	BB	FFF FF0 000 000 EEE
Chan. 07	FEB	00000005550000
		is automatically available at BB. Information written into BB is auto- matically available at EB and FB.
		EDITING REGISTER TRANSFORMATIONS
(bit positions)		15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
0020	CYR	01 15 14 13 12 11 10 09 08 07 06 05 04 03 02
0021	SR	15 15 14 13 12 11 10 09 08 07 06 05 04 03 02
0022	CYL	$14 \ 13 \ 12 \ 11 \ 10 \ 09 \ 08 \ 07 \ 06 \ 05 \ 04 \ 03 \ 02 \ 01 \ 15$
0023	EDOP	14 13 12 11 10 09 08

BANK-SWITCHING AND EDITING REGISTERS

1

Fig. 3

00	01	02	03	04	05	06	07
RELINT(3) INHINT(4)	ccs ₂	DAS ₃			RESUME(17) INDEX [NDX] ²		
EXTEND(6) TC ₁ [TCR]	ND(6)	LXCH ₂	CA ₂	CS2	DXCH ₃	AD ₂	MASK ₂
	1	INCR ₂ [C4	[CAF]	[CAF] [CAE]	TS ₂		[MSK]
		ADS2	()		хсн ₂		
READ ₂ WRITE ₂	dv ₆	MSU2				SU2	
RAND ₂ WAND ₂	_	QXCH ₂	DCA ₃	DCS ₃	INDEX ₂	BZMF _{1,2}	MP ₃
ROR ₂ WOR ₂	BZF _{1, 2}	AUG2	3	3	[NDX]	1, 2	3
RXOR ₂	-	DIM ₂					
10	11	12	13	14	15	16	17

OPERATION CODES (10-17 are extracodes)

Fig. 4

Code 00.	I: TC K	(Special Cases of TC)	1 MCT
K = 3, 4, or 6	Set indicat	or specified by K;	
	Take next	instruction from I + 1.	
	Remarks:	TC 3 = RELINT (allow interrupt),	
		TC 4 = INHINT (inhibit interrupt),	
		TC 6 = EXTEND (set extracode switch).

The extracode switch causes the next instruction to be an extracode. Any extracode except INDEX resets the switch. Interrupt is inhibited while the switch is on.

Code 01.	I: CCS K Count, Compare and Skip	2 MCT
QC0	Set $c(A) = DABS [b(K)];$	
	Set c(K) = b(K), re-editing if K is 0020-0023.	1
	Take next instruction from $I + 1$ if $b(K) > + 0$;	
	from $I + 2$ if $b(K) = +0$;	
	from $I + 3$ if $b(K) < -0$;	
	from $I + 4$ if $b(K) = -0$.	

Remarks: The Diminished Absolute Value of an integer x

-

is:

DABS(x) =	x - 1	if x	>1
	+ 0	if x	≤1

Code 01.I: TCFKTransfer Control to Fixed1 MCTQC1-3Take next instruction from K and proceed from there.DemontonOC n denotes Overteen Code n

Remarks: QC n denotes Quarter Code n, where n is bits 12 and 11 of the instruction word.

 Code 02.
 I: DAS
 K
 Double Add to Storage
 3 MCT

 QC 0
 Set c(K, K+1) = b(A, L) + b(K, K+1), re-editing if K or K+1
 is 0020-0023;

If $K \neq 0$, Set c(L) = +0 and set c(A) = net overflow; Take next instruction from I + 1.

Remarks: If positive (negative) overflow resulted from the double precision addition as a whole, the net overflow is + 1(-1), otherwise it is + 0. Notice that DAS A doubles the contents of the double precision accumulator — implied address code DDOUBL assembles as DAS A. Since the

hardware must operate on the low-order operands first, consider DAS as the operation code 20001, to which the address K is added to form the instruction.

-

Code 02.	I: LXCH K Exchange L and K	2 MCT
QC1	Set $c(L) = b^{\dagger}(K);$	
	Set $c(K) = b(L)$, re-editing if K is 0020-0023;	
	Take next instruction from I + 1.	
٤	Remarks: The prime indicates overflow correction.	
Code 02.	I: INCR K Increment	2 MCT
QC2	Set c(K) = b(K) + 1, re-editing if K is 0020-0023;	
	Take next instruction from $I + 1$.	

Remarks: INCR and two other codes, AUG and DIM,

are slightly modified counter-increment sequences. Accordingly, if one of this group overflows when addressing a counter for which overflow during involuntary incrementing is supposed to cause an interrupt, the interrupt will happen. This is true also for chain-reaction increments like T_2 , which is incremented after an overflow of T_1 . It should be noted that all these three instructions, unlike the increment sequences, always operate in ones complement, even when addressing CDU counters.

Code 02.	I: ADS K	Add to storage	2 MCT
QC3	Set c(A), c(K)	= b(K) + b(A), re-editing if K	= 0020-0023;
	Take next inst	ruction from I + 1.	

Code 03.I: CA KClear and Add2 MCTSet c(A) = b(K);Set c(K) = b(K), re-editing if K is 0020-0023;Take next instruction from I + 1.

Remarks: Alternate spelling CAF is permitted when referring to fixed memory; alternate spelling CAE is permitted when referring to erasable memory.

Code 04.	I: CS K Clear and Subtract	2 MCT	
	Set $c(A) = -b(K);$		
	Set c(K) = b(K) , re-editing if K is 0020-0023;		
	Take next instruction from $I + 1$.		

Code 05. QC0 K ‡ 0017	I: INDEX K Index Next Instruction Set c(K) = b(K), re-editing if K is 0020-0023; Use [b(K) + c(I+1)] as the next instruction. Remarks: The prime indicates overflow correction.	2 MCT
Code 05. QC0 K = 0017	 I: INDEX 0017 Resume Interrupted Program Set c(Z) = c(0015) Use c(0017) as the next instruction. Remarks: The implied-address code RESUME assem 	2 MCT
INDEX 17.	Temarko, The Implied dudress code ItESOME assem	DIES AS
Code 05. QC1	I: DXCH K Double Exchange Set c(A, L) = b(K, K+1); Set c(K, K+1) = b(A, L), re-editing if K or K+1 is 0020 Take next instruction from I + 1. Remarks: The final c(L) will be overflow -corrected. should be treated as 52001 (see DAS, page 8).	
operation code		
one of the bank	The implied-address codes DTCF (DXCH FB) and DT recognized. The idea is that a DXCH, by changing bot registers, can be a "double-precision transfer control and leave a D. P. return address in A and L.	h z and

-

Code 05.	I: TS K Transfer to Storage 2	MCT
QC2	Set $c(K) = b(A)$, re-editing if K is 0020-0023;	
	If \pm overflow in b(A), set c(A) = \pm 1 and take next instruc	tion
from $I + 2$		
	If no overflow in $b(A)$, take next instruction from $I + 1$.	
	Remarks: TS A guarantees $c(A) = b(A)$ but skips to I	+ 2 on
overflow.	Implied-address code = OVSK.	

Code 05.	I: XCH K Exchange A and K	2 MCT		
QC3	Set $c(A) = b(K);$			
	Set c(K) = b(A), re-editing if K is 0020-0023;			
	Take next instruction from I + 1.			
Code 06.	I: AD K ADD	2 MCT		
	Set $c(A) = b(A) + b(K);$			
	Set c(K) = b(K), re-editing if K is 0020-0023;			
	Take next instruction from I + 1.			

Remarks: The OVCTR of Block I has been dropped.

Code 07.

-

I: MASK K Mask A by K 2 MCT
Set
$$c(A) = b(A) \land c(K)$$
;

Take next instruction from I + 1.

Remarks: \wedge denotes Boolean AND. Truth table for each bit position of b(A) and c(K):

Α	К	A ^ K
0	0	0
0	1	0
1	0	0
1	1	1

MASK specifically omits to re-edit an argument from 0020-0023, in order to aid the interpreter and other software.

Extracode Instructions

Code 10.	I: READ KC Read Channel KC 2 MCT	
PC0	Set $c(A) = c(KC)$, where KC is an in/out channel;	
	Take next instruction from $I + 1$.	

Remarks: Code 10 is broken down into seven peripheral codes (PC0-PC6). Each uses a 9-bit address to reference an input/output channel KC. The L register is channel 01, to facilitate fancy logic in an arithmetic register.

The Q register is channel 02, for the same reason.

Code 10. PC1	I: WRITE KC Write Channel KC Set c(KC) = c(A);	2 MCT
	Take next instruction from I + 1.	
Code 10. PC2	I: RAND KC Read and Mask Set $c(A) = b(A) \land c(KC)$; Take next instruction from I + 1. Remarks: \land denotes Boolean AND (see MASK).	2 MCT
Code 10. PC3	I: WAND KC Write and Mask Set c(KC), c(A) = b(A) \wedge b(KC); Take next instruction from I + 1.	2 MCT
Code 10. PC4	I: ROR KC Read and Superimpose Set $c(A) = b(A) \lor c(KC);$	2 MCT

Take next instruction from I + 1.

Remarks: \lor denotes Boolean Inclusive OR. Truth table for each bit position of b(A) and c(KC):

2

	A	KC	AvKC		
	0	0	0		
	0	1	1		
	1	0	1		
	1	1	1		
Code 10.	I: W	VOR K	KC V	Vrite and Superimpose	2 MCT
PC5	Set	c(KC),	c(A) = b(A) v b(KC);	
	Take	e next i	nstructio	on from I + 1.	
Code 10.	I: R	XOR	KC	Read and Invert	2 MCT
PC6	Set	c(A) = b	o(A) ↔ c((KC);	
	Take	e next i	nstructio	on from I + 1.	
	Rom	anka		Realan Evaluative OR	Truth toble for

Remarks: \forall denotes Boolean Exclusive OR. Truth table for each bit position of b(A) and c(KC):

	A	KC	A₩KC	
	0	0	0	
	0	1	1	
	1 -	0	1	
	1	1	0	
Code 10.	EDR	UPT		3
PC7	(For	machine	checkout only)	
Code 11.	I: D	V K	Divide	6
QC0	Set o	c(A) = b(A)	,L) ; c(K);	
	Set o	c(L) = ren	nainder;	
	Take	e next ins	truction from I + 1.	

Remarks: The signs of the double-length dividend in A and L need not agree. The net sign of the dividend is the sign of b(A) unless $b(A) = \pm 0$, in which case it is the sign of b(L). The remainder bears the net dividend sign, and the quotient sign is determined strictly by the divisor and net dividend signs. DV does not disturb c(Q), and does not re-edit an argument from 0020-0023 because there isn't enough time.

Code 11 QC 1-3	I: BZF K Branch Zero to Fixed If C(A) = <u>+</u> 0, take next instruction from K and pro- there (1 MCT);	l or 2 MCT ceed from
	Otherwise, take next instruction from I + 1 (2 MCT	`).
Code 12. QC0	I: MSU K Modular Subtract Set c(A) = b(A) + b(K);	2 MCT
QC0	Set $c(K) = b(K)$, re-editing if K is 0020-0023; Take next instruction from I + 1.	
	Remarks: O denotes modular subtraction, which fo	orms a
two's complen	omplement difference of two unsigned (modular, or ponent inputs. The method is to form the two's complexement it if it is negative, and to take the overflow-undesult.	nent differ-
Code 12. QC1	I: QXCH K Exchange Q and K Set c(Q) = b(K); Set c(K) = b(Q), re-editing if K is 002-0023; Take next instruction from I + 1.	2 MCT
Code 12. QC2	I: AUG K Augment If $b(K) \ge +0$, set $c(K) = b(K) + 1$, re-editing if K is If $b(K) \le -0$, set $c(K) = b(K) - 1$, re-editing if K is Take next instruction from $I + 1$.	
Code 12.	I: DIM K Diminish	2 MCT
QC3	If $b(K) > +0$, set $c(K) = b(K) - 1$, re-editing if K is If $b(K) = +0$, set $c(K) = b(K)$, re-editing if K is 002 If $b(K) < -0$, set $c(K) = b(K) + 1$, re-editing if K is Take next instruction from I + 1. Remarks: DIM does not generate output pulses as	20-0023; 0020-0023;
Code 13.	 I: DCA K Double Clear and Add Set c(A, L) = b(K, K+1); Set c(K) = b(K), re-editing if K is 0020-0023; Set c(K+1) = b(K+1), re-editing if K+1 is 0020-002 Take next instruction from I + 1. Remarks: The final c(L) will be overflow-corrected 	
operation code	e should be treated as 30001 (see DAS, page 8).	

-

Code 14.I: DCS KDouble Clear and Subtract3 MCTSet c(A, L) = -b(K, K+1);Set c(K) = b(K), re-editing if K is 0020-0023;Set c(K-1) - b(K+1), re-editing if K+1 is 0020-0023;Take next instruction from I + 1.Remarks: DCSA succeeds in complementing the double pre-

10

cision accumulator — implied-address code: DCOM. The final c(L) will be overflow-corrected. The operation code should be treated as 40001 (see DAS page 8).

Code 15.I: INDEX KIndex Extracode Instruction2 MCT(See INDEX, page 10).

Remarks: This is the only extracode that does not reset the extracode switch. The way to index an extracode (MP, say) is:

EXTEND INDEX ADDRWD MP 0

The extension (extracode switch) will stay in force during any n-level nesting of extracode INDEXes. This INDEX will never act as a RESUME.

Code 16.	I: SU K Subtract	2 MCT
QC0	Set $c(A) = b(A) - b(K);$	
	Set c(K) = b(K), re-editing if K is 0020-0023;	
	Take next instruction from I + 1.	
Code 16.	I: BZMF K Branch Zero or Minus to Fixed	1 or 2 MCT
QC 1-3	If $c(A) \le +0$, take next instruction from K and protection there (1 MCT);	oceed from

Otherwise, take next instruction from I + 1 (2 MCT)

Code 17. I: MP K Multiply 3 MCTSet c(A, L) = b(A) × c(K); Take next instruction from I + 1.

Remarks: The two words of the product agree in sign. A zero result is positive unless b(A) = +0 and c(K) is non-zero with the opposite sign.

MP does not re-edit an argument from 0020-0023 because there isn't enough time.

Implied-Address Codes

Some operations are defined for only one address value, like RESUME; others have unusual results when addressing central registers. For convenience in using these operation, the YUL System assembler recognizes implied-address codes, written without an address, and fills in the address. These codes are shown in Fig. 5 (alphabetically) and Fig. 6 (by actual code). Brief descriptions follow:

Code 00.	I: XXALQ	Execute Extracode	2 MCT
K = 0000		Using A , L and Q	
	Assume that	t b(A) = 000006 and $b(L)$ is an e	extracode
instruction;			
			· · ·

Execute the EXTEND in A, the instruction in L, then return to I + 1; leave c(Q) = 000003.

Remarks: This is a marginally useful operation because an extracode instruction built up in L could usually be executed better by the sequence:

EXTEND	
INDEX	\mathbf{L}
0	0

Code 00.I: XLQExecute using L and Q2 MCTK = 0001Assume that b(L) is a basic instruction.
Execute the instruction in L and, if it is not a successful

branch, return to I + 1;

Leave c(Q) = 000003.

Remarks: Like XXALQ, this operation is marginal.

The time (2 MCT) for XXALQ and XLQ includes the TC to A or L and the return TC from Q, but not the time spent in executing c(A) or c(L).

Code 00.	I: RETURN Return from Subroutine	2 MCT
K = 0002	Assume that $b(Q) = TC K'$;	

from there;	Take the next instruction from K' and proceed	
from mere,	Leave $c(Q) = 000003$.	
Code 00.	I: RELINT Release (allow) Interrupt	1 MCT
K = 0003	Allow interrupt after this instruction (subject	
to the restriction flow in A);	n that interrupt cannot occur while there is \pm over-	
	Take next instruction from I + 1.	
Code 00.	I: INHINT Inhibit Interrupt	1 MCT
K = 0004	Inhibit interrupt until a subsequent RELINT;	
	Take next instruction from I + 1.	
	Remarks: The inhibition set by INHINT and remov	ed
by RELINT is en removed by RES	ntirely independent of the one set by interrupt and UME.	
Code 00.	I: EXTEND Extend Next Instruction	1 MCT
K = 0006	Take the next instruction from I $+ 1$ and execute	
it as an extraco		
the following ins	Remarks: If the next instruction is INDEX (full coo struction will be executed as an extracode too.	de 15),
Code 01.	I: NOOP No Operation (Fixed)	1 MCT
QC 1 - 3	Take the next instruction from $I + 1$.	
K = I + 1	Remarks: This is how NOOP is assembled when I	
is in fixed memo	ory.	
Code 02.	I: DDOUBL Double Precision Double	3 MCT
QC 0	Set $c(A, L) = b(A, L) + b(A, L);$	
K = 0000	Take next instruction from $I + 1$.	
	Remarks: If b(A) contains + overflow, the results	
are messy; in p	articular, $sgn[c(A)] \neq sgn[b(A)]$. If $ b(A) \ge 1/$	2,

10 14

overflow will be retained in c(A).

Im p lied- Address Code	Actual Operation Code	Register (If appli- cable)	Word as as- sembled	NOTE
001	(30		10000	
COM	CS	А	40000	
DCOM	DCS	А	40001	Х
DDOUBL	DAS	А	20001	
DOUBLE	AD	А	60000	
DTCB	DXCH	Z	52006	
DTCF	DXCH	FB	52005	
EXTEND	TC		00006	S
INHINT	TC		00004	S
NOOP	TCF		1 (I+1)	F
NOOP	CA	А	30000	E
OVSK	TS	A	54000	
RELINT	TC		00003	S
RESUME	INDEX	BRUPT	50017	R
RETURN	TC	Q	00002	
SQUARE	MP	А	70000	Х
TCAA	TS	Z	54005	
XLQ	TC	L	00001	
XXALQ	TC	А	00000	
ZL	LXCH		22007	
ZQ	QXCH		22007	Х

NOTE EXPLANATION:

*

.

Е	Applies when I (location of instruction) is in erasable memory.
F	Applies when I is in fixed memory.
R	Special RESUME hardware responds to address 0017.
S	Special Indicator-setting hardware responds to addresses 0003, 0004, and 0006.
X	Extracode instruction.

Fig. 5

IMPLIED ADDRESS CODES

(By Actual Code)

-

.

Actual Operation Code	Register (If ap- plicable)	Word as assembled	Implied- Address Code	NOTE (See Fig. 5)
TC	A	00000	XXALQ	
TC	L	00001	XLQ	
TC	Q	00002	RETURN	
ТС		00003	RELINT	S
TC		00004	INHINT	S
TC		00006	EXTEND	S
TCF		1 (I+1)	NOOP	 F
DAS	А	20001	DDOUBL	
LXCH		22007	ZL	
CA	А	30000	NOOP	E
CS	А	40000	COM	
INDEX	BRUPT	50017	RESUME	R
DXCH	FB	52005	DTCF	
DXCH	Z	52006	DTCB	
TS	А	54000	OVSK	
TS	Z	54005	TCAA	
AD	А	60000	DOUBLE	
QXCH	ه هنه مي بين بينه ميبر هنه <u>مد اينا</u> خله منه مي خل خ	22 007	ZQ	X
DCS	А	40001	DCOM	х
MP	А	70000	SQUARE	x

Fig. 6

Code 02.	I: ZL Zero L	2 MCT
QC 1	Set $c(L) = +0;$	
K = 0007	Take next instruction from I + 1.	

Remarks: This code and its companion ZQ depend on two properties of address 0007: no storage is associated with it, and references to it (in fact, to any of 0000-0007) are not checked for good parity. Address 0007 is therefore a generally usable source of zeros.

Code 03	I: NOOP	No Operation (Erasable)	2 MCT
K = 0000	Take next	instruction from I + 1.	
	Remarks:	This is how NOOP is assembled when	I

is in erasable memory.

.

Code 04.	I: COM Complement c(A)	2 MCT
K = 0000	Set c(A) = -b(A); Take next instruction from I + 1. Remarks: All 16 bits are complemented.	
Code 05.	I: RESUME Resume Interrupted Program	2 MCT
QC 0	Set $c(Z) = c(0015);$	
K = 0017	Use c(0017) as the next instruction.	
Code 05.	I: DTCF Double Transfer Control,	3 MCT
QC 1	Switching F bank	
K = 0004	Set c(A,L) = b(FB,Z); Set c(FB,Z) = b(A,L); Take next instruction from new c(Z) Remarks: A double-precision address constant	
format, 2 FCADE	R, is defined for use with DTCF.	

Code 05.	I: DTCB	Double Transfer Control	3 MCT
QC 1		Switching Both Banks	
K = 0005 format, 2 BCADI	Remarks: A		
Code 05.	I: OVSK	Overflow Skip	2 MCT
QC 2	Do not chang	ge c(A);	
K = 0000	-	w in $c(A)$, take next instruction from I ow in $c(A)$, take next instruction from I	
Code 05.	I: TCAA	Transfer Control to	2 MCT
QC 2		Address in A	
K = 0005		v in b(A), set $c(A) = \pm 1$; astruction from the location whose add	ress i s
in bits 12-1 of b	(A).		
3C and Block I A		The perils associated with TCAA in Mo ist in Block II AGC.	d
Code 06.	I: DOUBLE	Double c(A)	2 MCT
K = 0000		(A) + b(A); astruction from I + 1. See remarks on overflow under DDOUE	BL.
Code 12.	I: ZQ	Zero Q	2 MCT
QC 1	Set c(Q) = +	0;	
K = 0007		struction from I + 1. See under ZL.	

-

.

Code 14.	I: DCOM	Double Complement	3 MCT
K = 0000		b(A,L); ruction from I + 1. 32 bits of A and L are compleme	ented.
Code 17.	I: SQUARE	Square c(A)	3 MCT
K = 0000		A) \times b(A), ruction from I + 1. ults are messy if b(A) contains $\frac{1}{2}$	+
overflow			

overflow.

Unprogrammed Sequences

Some of the actions performed by the computer are not programmed but occur in response to external events. The categories of these unprogrammed sequences are shown in Fig. 7. Interrupt is inhibited if an interrupt has occurred after the latest RESUME, or an INHINT has occurred after the latest RELINT, or c(A) contains <u>+</u> overflow. Otherwise interrupt may occur before any basic (non-extracode) instruction except RELINT, INHINT, or EXTEND.

RUPT	Interrupt Program	3 MCT
	Set $c(0015) = b(Z);$	

Set c(0017) = the postponed instruction;

Take next instruction from the location whose address is permanently associated with the cause of the interrupt, and proceed from there. Inhibit further interrupt until RESUME.

Remarks: See also remarks under INHINT.

Counter increments and decrements, serial-parallel conversion steps, and GSE interface transactions are lumped together under the name of counter interrupts because they perform limited tasks by snatching one or two memory cycles and then let the computer continue. They can occur before any instruction except RELINT, INHINT or EXTEND, but never inside instructions.

U N P R O G R A M M E D	SEQUENCES
Program Interrupt	RUPT
Counter Increment/Decrement	PINC PCDU MINC MCDU DINC
Serial-Parallel Conversion (and vice-versa)	SHINC SHANC
Ground Support Interface	INOTRD INOTLD FETCH STORE
Manual Override	GOJ TCSAJ

Fig. 7

PINC

Plus Increment

1 MCT

Set c(CTR) = b(CTR) + 1; If + overflow, set c(CTR) = + 0 and set up

an interrupt if CTR = T3, T4 or T5 or set up a PINC for T2 if CTR = T1.

Remarks: This sequence and its priority chain effects are shared by the instruction INCR.

PCDU Plus Increment (CDU) 1 MCT

Set c(CDUCTR) = b(CDUCTR) + 1 in two's

complement modular notation.

Remarks: Incrementing in two's-complement modular notation transforms 77777 into 00000 and 37777 into 40000, and is otherwise like one's-complement. INCR never acts like PCDU. PCDU and MCDU replace PINC and MINC for counters 0032-0036.

MINC	Minus Increment	1 MCT
	Set $c(CTR) = b(CTR) - 1;$	
	If - overflow, set $c(CTR) = -0$.	
MCDU	Minus Increment(CDU)	1 MCT
	Set c(CDUCTR) = c(CDUCTR) - 1 in twos	
complement mod	dular notation.	
	Remarks: Transforms 40000 into 37777 and 00000	
into 77777. See	remarks under PCDU.	
DINC	Diminishing Increment	1 MCT
DINC		1
	If $c(CTR) > +0$, set $c(CTR) = b(CTR) - 1$ and	
emit signal POU		
	If $c(CTR) < -0$, set $c(CTR) = b(CTR) + 1$ and	
emit signal MOU	JT (Minus Output);	
	If $c(CTR) = \pm 0$, leave $c(CTR)$ unchanged and	
emit signal ZOU	T (Zero Output & turn off DINC request).	

Remarks: Used to generate output pulse trains and to count down T6. Values to be counted down by DINC might be developed by the instruction MSU from a desired and an actual CDU angle. This sequence is shared by the instruction DIM, but without POUT, MOUT and ZOUT. *

SHINC	Shift Increment	1 MCT
	Set $c(CTR) = b(CTR) + b(CTR);$	
	If + overflow, set the priority chain station	
for this counter	•	
	Remarks: SHINC and SHANC are used to convert	
	l bit streams into words for parallel access, and to	
	to outgoing serial bit streams.	
SHANC	Shift and Add Increment	1 MCT
	Set $c(CTR) = b(CTR) + b(CTR) + 1;$	
	If + overflow, set the priority chain station	
for this counter		
	Remarks: See under SHINC.	
INOTRD	In/Out Read to GSE	1 MCT
	Accept a channel address from the Ground	
Support Equipm	nent and place the contents of the addressed input/	
output channel	on the GSE data busses.	
INOTLD	In/Out Load from GSE	1 MCT
INCILD		INCI
	Accept a channel address from the Ground	
	ent and write the contents of the GSE data busses	
into the address	sed input/output channel.	
FFTCH	Estab from Moment to CSE	2 MCT
FETCH	Fetch from Memory to GSE	2 MCT
	Accept from the Ground Support Equipment a	
0	er FB or EB and an address for the corresponding	
	lace the contents of the addresses location on the	
	s. Do not edit if the address is 0020-0023.	
Then restore b	BB).	

STORE Store in Memory from GSE

Accept from the Ground Support Equipment a setting for EB and an address in erasable memory, and write the contents of the GSE data busses into the addressed location. Then restore b(BB), unless the location stored into is BB itself.

The manual override instructions can occur at any time because they are not obliged to preserve the state of the computer.

GOJ	Go Jam	2 MCT
	Set $c(Q) = b(Z);$	
	Take next instruction from location 4000	
and proceed	d from there.	

TCSAJ	Transfer Control to Specified	2 MCT	
	Address Jam		

Take next instruction from the location

whose address is on the Ground Support Equipment data busses, and proceed from there.

Address Constant Formats

The address constants available for Block II programming are considerably different than for Block I. A summary of them follows. The EBANK= code is also discussed.

ADRES	Address
REMADR	Remote Address
GENADR	General Address

2 MCT

Each of these codes creates a single precision constant word identical to the instruction word that would have resulted if the opcode had been TC. ADRES requires the location and address values to be in the <u>same</u> F - Bank if both are in F - Banks and to be in the same E - Bank if both are in E - Banks. REMADR requires the location and address values to be in <u>different</u> F - Banks if both are in F - Banks and to be in different E - Banks if both are in E - Banks. GENADR **doesn't** care.

CADR FCADR (Fixed) Complete Address

These codes are synonymous. The address value must be in an F - Bank. The resulting single precision constant word equals the pseudoaddress value minus octal 10000. Bits 15-11 equal the F - Bank number and bits 10 - 1 equal the relative location of the address in that bank.

ECADR Erasable Complete Address

The address value must be erasable, 0000-3777, and the resulting single precision word equals the the eleven bit pseudo-address. Bits 15-12 = 0.

EBANK=

Erasable Bank Declaration

This code does not generate an AGC word. It informs the assembler of which E-Bank the programmer intends subsequent E-Bank addresses to be in. For basic instructions and interpretive address words, the assembler complains wherever an address is equivalent to a location in a different E-Bank. If the EBANK= code is followed by* a BBCON, 2BCADR or 2CADR code, this EBANK= value is good only for that one subsequent code, and then the previous EBANK= setting is restored. This is called a "one-shot EBANK= declaration", and is required before every BBCON and 2BCADR or 2CADR.

^{* &}quot;followed by" means with no instructions, interpretive opcode words, or address constants intervening.

^{**} Interpretive address EBANK restriction is for BLK2 programs but not for AGC programs.

SBANK=

Super Bank Declaration

Similar to EBANK=, but not required before BBCONs and 2CADRs. The address must be in a superbank.

1DNADR

1-Word Downlist Address

Same as ECADR, but used when the word addressed is the left half of a double-precision word for down telemetry.

2DNADR - 6DNADR N-Word Downlist Address, 2 < N < 6

Same as 1DNADR, but with the 4 unused bits of the ECADR format filled in with 0001-0101. Used to point to a list of N doubleprecision words, stored consecutively, for down telemetry.

DNCHAN

Downlist Channel Address

Same as 1DNADR, but with prefix bits 0111. Used to point to a pair of channels for down telemetry.

DNPTR

Down Telemetry Sublist Pointer

Same as CAF, but tagged as a constant. Used in a downlist to point to a sublist.

BBCON

Both Bank Constant

This code generates a single precision constant word intended as data to be placed in the BB central register. The address value must be a fixed memory location or it must be equivalent to a valid F-Bank number, (range 0-27 now, 0-43 later). Bits 15-11 of the resulting word equal the address' bank number (fixed - fixed being banks 2 and 3). Bits 10 - 4 are zeros. Bits 3 - 1 equal the current EBANK= code.

2CADR 2BCADR

Double Complete Address Including a BBCON

These codes are synonymous. This code is intended to be used as the operand of a DTCB (DXCH Z) instruction. Two constant words are generated by this code. The first word is formed under the rules for GENADR. If the address value is in fixed memory, the second word is formed under the rules for BBCON. For an erasable address the second word becomes 0000x where x = the address' octal code EBANK number in the range 0 - 7.

2FCADR

Double Complete Address Including an FCADR

This code's address value must be in fixed memory. The code is intended as an operand of a DTCF (DXCH FB) instruction. Two constant words are generated by this code. The first word is formed under the rules for FCADR, and second under the rules for GENADR. Exception: both words are GENADRs if address value is in fixed fixed.

Control Pulse Definitions

To understand the control pulses and the pulse sequences, it is necessary to know the unaddressable central registers:

G Memory Local Register Bits 1 - 16 In an MCT in which erasable memory is cycled, the word from memory appears in G by the 5th microsecond (time 5 of 12 times) of the MCT. If it is left there through time 12, it is restored exactly as it was read out. If a new value is written into G before time 10, that becomes the new value in the memory location. When fixed memory is cycled, the word appears in G by time 7.

2

WL Write Lines or Busses Bits 1 - 16 These are the normal medium of communication among central registers, although some private lines exist.

B General Buffer Register Bits 1 - 16 The B register always holds the instruction word at the beginning of each instruction.

C Complement Output of B Bits 1 - 16 Not a separate storage. Each bit of C is the opposite of the corresponding bit of B.

Y Primary Adder Input Bits 1 - 16 Has conventional and doubling inputs.

XSecondary Adder InputBits 1 - 16Fed by private line from A and from constant

generators.

U Adder Output Bits 1 - 16 Exists as a function of c(X) and c(Y) - has no

storage of its own.

S Address Selection Register Bits 1 - 12 Holds the address of a fixed memory location from time 8 of the preceding MCT through time 7 of the current MCT, or holds (in bits 1 - 10) the address of an erasable memory location from time 1 through time 7 of an MCT.

Sequence Selection Register

Bits 10-16

Holds the operation code during execution of each instruction. Bit 15 is the extracode bit. SQ is aided by a three-bit stage counter and two branch flip-flops. A stage counter value of 2 selects the standard fetch-next-instruction subinstruction, regardless of the c(SQ) and the branch bits. Sequence selection by SQ is suppressed during counter interrupts by a signal called INKL.

SQ

CONTROL PULSE DEFINITIONS

A2X COPY A1-16 IMTO X1-16 BY PRIVATE LINF.

B15X SET BIT 15 UF X TO 1.

- CI INSERT CARRY INTO BIT 1 OF THE ADDER.
- CLXC CLEAR X CONDITIONAL ON THE OUTCOME OF TSGU. X IS CLEARED IF BR1 = 0. USED IN DIVIDE.

.

.

- DVST CAUSE DIVIDE STAGING BY A SIMPLE RULF. ALSO PERMIT STAGING TO OCCUP AT TIMES OF DIVIDE CYCLES.
- EXT SET THE EXTEND FLIP FLOP.
- G2LS * COPY G4-15+16+1 INTO L1-12+16+15+

KRPT RESET INTERRUPT PRIORITY CELL.

- L16 SET BIT 16 OF L TO 1.
- L2GD COPY L1-14.16 INTO G2-15.16 -- ALSO MCRO INTO G1.
- MONEX SET BITS 2-16 OF X TO ONES.
- MOUT ... NEGATIVE RATE OUTPUT PULSE.
- NEACOF PERMIT END AROUND CARRY AFTER END OF MP3.
- NEACON INHIBIT END AROUND CARRY UNTIL NEACOF.
- NISQ NEXT INSTRUCTION IS TO BE LOADED INTO SQ. ALSO FREES CERTAIN RESTRICTIONS- PERMITS INCREMENTS AND INTERRUPTS.
- PIFL WHEN LIS = 1. BLOCK WRITING INTO Y1 ON A WYD.
- PONEX SET BIT 1 OF X TO 1.
- POUT POSITIVE RATE OUTPUT PULSE.
- PTWOX SET BIT 2 OF X TO 1.
- R15 PLACE OCTAL 000015 ON WL'S.

CONTPOL PULSE DEFINITIONS

:

RIC PLACE OCTAL 177776 = -1 ON WL'S.

PLACE OCTAL 000006 ON WRITE LIVES.

- RA READ A1-16 TO WL1-16.
- RAD PEAD ADDRESS OF NEXT CYCLE. THIS APPEARS AT THE END OF AN INSTRUCTION AND MORMALLY IS INTERPRETED AS RG. IF THE NEXT INSTRUCTION IS TO BE A PSFUDD CODF (INHINT FELINT (EXTEND) (IT IS INSTEAD INTERPRETED AS RZ ST2.

RB READ B1-16 TO WL1-16.

- RB1 PLACE OCTAL 000001 ON THE WL'S.
- RBIF PLACE OCTAL 000001 ON THE WL'S CONDITIONAL ON THE OUTCOME OF TSGU. RBIF IF BRI=1.
- RB2 PLACE OCTAL 000002 ON THE WL'S.
- RBBK READ THE BB (BOTH BANK) CONFIGURATION ONTO THE WRITE LINES. I.E. FB 9-11 TO WL 1-3 AND FB 11-14.16.16 TO WL 11-14.15.16.
- RC READ THE CONTENT OF B INVERTED: C1-16 TO WL1-16.
- RCH PEAD THE CONTENT OF THE INPUT OR OUTPUT CHANNEL SPECIFIED BY THE CURRENT CONTENT OF S: CHANNEL BITS 1-14 TO WL1-14. AND BIT 16 TO WL15.16. CHANNELS 1 AND 2 READ AS RL AND RQ.

RG READ G1-16 TO WL1-16.

READ L1-14 TO WL1-14. AND L16 TO WL15 AND 16.

RLIORB READ LOW 10 BITS OF B TO WL 1-10.

RQ READ Q1-16 TO WL1-16.

RRPA READ THE ADDRESS OF THE HIGHEST PRIORITY INTERRUPT REQUESTED.

RSC READ THE CONTENT OF CENTRAL STORE DEFINED BY THE ADDRESS CURRENTLY IN S: CENTRAL STORE BITS 1-16 ARE COPIED TO WL1-16.

RSCT READ THE ADDRESS OF HIGHEST PRIORITY COUNTER REQUEST

RSTRT PLACE OCTAL 004000 = BLOCK 2 START ADDRESS ON WL ...

RSTSTG RESET THE DIVIDE TO3 STAGING CONDITION.

RU READ U1-16 TO WL1-16.

CONTROL PULSE DEFINITIONS

RUS	READ UI-14 TO WLI-14. AND UIS TO WLIS AND 16.
RZ	READ Z1-16 TC WL1-16.
STI	SET STAGE1 FLIP FLOP NEXT T12.
ST2	SET STAGF2 FLIP FLOP NEXT T12.
STAGE	EXECUTE GREY-CODED STAGE ADVANCE COMPUTED BY DVST.
TL15	COPY LIS INTO BEL.
TMZ	TEST WL1-16 FOR ALL ONES (-0). SET BR2 IF TRUE.
TOV	TEST FOR + OP = OVERFLOW. SFT BR1.2 TO 00 IF NO OVERFLOW. 01 IF + OVERFLOW. 10 IF = OVERFLOW.
TPZG	TEST CONTENT OF & FOR PLUS ZERO. IF TRUE SET BR2=1.
TRSM	TEST FOR RESUME ADDRESS ON INDEX. ST2 IF (S)=0017.
TSGN	TEST SIGN. COPY WI16 TO BRI.
TSGN2	TEST STGN. COPY WL16 TO BR2.
TSGU	TEST SIGN OF SUM (U). COPY U16 INTO BR1.
U2BBK	ADDER BITS 1-3 AND 11-14.16 ARE TRANSFERRED INTO ERASABLE AND FIXED BANKS. THIS PULSE MAY BE INHIBITED BY CTS SIGNAL MONWER.
WA	CLFAR AND WRITE WL1-16 INTO A1-16.
WALS *	CLEAR AND WRITE INTO A1-14 FROM WL3-16. CLEAR AND WRITE INTO L13.14 FROM WL1.2. CLEAR AND WRITE INTO A15.16 FROM G16 (IF G1=0) OR FROM WL16 (IF G1=1).
WB	CLEAR AND WRITE WL1-16 INTO B1-16.
WСH	CLEAR AND WRITE WL1-14.16.PARITY INTO CHANNEL BITS 1-14.16.PARITY. CHANNELS 1 AND 2 WRITE AS WL AND WQ. THE CHANNEL TO BE LOADED IS SPECIFIED BY THE CURRENT CONTENT OF S.
wG	CLFAR AND WRITE WL1-16 INTO G1-16 FXCEPT FOR ADDRFSSES OCTAL 20-23. WHICH CAUSE EDITING.
WL	CLEAR AND WRITE WL1-16 INTO L1-16.

*

CONTROL PULSE DEFINITIONS

WOVR		TEST FOR OVERFLOW DURING COUNTER INCREMENTS AND PROGRAM INITIATED INCREMENTS(INCR AND AUG). RUPT IF OVERFLOW OCCURS WHEN ADDRESSING CERTAIN COUNTERS.
WQ		CLFAR AND WRITE WL1-16 INTO G1-16.
w5		CLFAR AND WRITE WL1-12 INTO 51-12.
wSC		CLEAR AND WRITE WLI-16 INTO THE CENTRAL REGISTER SPECIFIED BY THE CURRENT CONTENT OF 5. BITS 1-16 INTO POSITIONS 1-16.
WSQ	*	CLEAR AND WRITE WL10-14.16 INTO 5010-14.16. AND COP THE EXTEND FLIP FLOP INTO 5015.
WY		CLEAR Y AND X. WRITE WL1-16 INTO Y1-16.
WY12		CLFAR Y AND X. WRITE WL1-12 INTO Y1-12.
WYD		CLEAR Y AND X. WRITE WL1-14 INTO Y2-15. WRITE WL16 INTO Y16. WRITE WL16 INTO Y1 EXCEPT: (1) WHEN END-AROUND CAPRY IS INHIBITED BY NEACON. (2) DURING SHINC SEQUENCE. OR (3) PIFL IS ACTIVE AND L15 = 1.
WZ		CLFAR AND WRITE WL1-16 INTO Z1-16.
Z15		SET BIT 15 OF Z TO 1.
Z16		SET BIT 16 OF Z TO 1.
ZAP		ALWAYS IMPLIES RU. G2LS. AND WALS.
ZIP		ALWAYS IMPLIES AZX AND LZGD. ALSO IF L15.2.1 ARE:
		L15 L2 L1 READ WRITE CARPY REMEMBER 0 0 0 - WY 0 0 1 RB WY 0 1 0 RB WYD 0 1 1 RC WY CI MCRO 1 0 0 RB WY 1 0 1 RB WYD 1 0 1 RB WYD 1 1 0 RC WY CI MCRO 1 1 - WY - MCRO
ZOUT		NO RATE OUTPUT PULSE. RESET OUTBIT REQUESTING DINC.
	* THESE	E PULSES DO NOT APPEAR IN THE PULSE SEQUENCES.

OP CODE	EXT 5016+14=10	OPERATION
TC CCS TCF TCF DAS LXCH INCR ADS CA CS INDEX (NDX) DXCH TS XCH AD MASK (MSK)	0 000 0 001 00 0 001 01 0 001 10 0 001 10 0 010 01 0 010 01 0 010 10 0 010 10 0 010 10 0 101 00 0 101 01 0 101 10 0 101 11 0 101 11 0 111 0	THAMSFER CONTROL AND PSEUDO-CODES * COUNT. COMPARE. AND SKIP TRANSFEP CONTROL TO FIXED """"""""""""""""""""""""""""""""""""
READ WRITF RAND WAND ROR WOR RXOR EDRUPT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	READ FROM CHANNEL WRITF IN CHANNEL READ. "AND" TO A WRITE. "AND" TO CHANNEL READ. "OR" TO A WRITE. "OR" TO CHANNEL READ. EXCLUSIVE "OR" TO A ED SMALLY'S OWN RUPT ORDER
DV BZF BZF MSU QXCH AUG DIM DCA DCS INDEX (NDX) SU BZMF BZMF BZMF MP	1 001 00 1 001 01 1 001 10 1 001 11 1 010 00 1 010 01 1 010 10 1 010 11 1 100 1 101 1 110 01 1 110 11 1 111	DIVIDE PHANCH ON ZERO TO FIXED """"""""""""""""""""""""""""""""""""

*

.

* PSFUDD-CODES: RELINT = TC 0003, INHINT = TC 0004, EXTEND = TC 0006. THE TC OPERATION CODE IS SHARED BY THE NON-PROGRAMMABLE SEQUENCES GOJ1 (FOLLOWED BY TCO) AND TCSAJ3 (FOLLOWED BY STD2).

PULSE SPOUENCES

TCO	
1 •	RP WY12 CI
2 •	RSC WG NISQ
3 •	RZ WQ
6 •	RU WZ
8 •	RAD WB WS
GOJ1	
2 •	RSC WG
8 •	RSTRT WS WB
TC5AJ3	·
2•	RSC WG
8•	WS WZ ST2
CCSO	
1.	RI 10BB WS
2.	RSC WG
5.	RG WB TSGN TMZ TPZG
7. 00	RZ WY12
7. 01	RZ WY12 PONFX
7. 10	RZ WY12 PTWOX
7. 11	RZ WY12 PONFX PTWOX
8.	RU WZ WS
9.	RB WG
10. 00	RB WY MONFX CI ST2
10. X1	WY ST2
10. 10	RC WY MONFX CI ST2
11.	RU WA
TCFO	
1 •	RB WY12 CI
2 •	RSC WG NISQ
6 •	RU WZ
8 •	RAD WB WS

DASO

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 00 10. 01 10. 10 10. 11	RLIOBR WS WY12 MOMEX CI RSC WG RA WB RL WA RU WL RG WY A2X RP WA RL WB RU WSC WG TOV RA WY ST1 RA WY ST1 PONEX RA WY ST1 MONEX RA WY ST1
DAS1	
7. 00 7. 01 7. 10 7. 11 8. 9.	RLIOBB WS RSC WG RU WA RG WY A2X RU WG WSC TOV WA WA RB1 WA R1C WA RZ WS ST2 RC TMZ WL RU WA
LXCHO	
1 • 2 • 3 • 5 • 7 • 8 •	RL10BB WS RSC WG RL WB RG WL RB WSC WG RZ WS ST2
INCRO	
1 • 2 • 5 • 6 • 7 • 8 •	RL10BB WS RSC WG RG WY TSGN TMZ TPZG PONEX RU WSC WG WOVR RZ WS ST2

.

AD50	
1 • 2 •	RLIOBE WS RSC WG
5.	RG WY A2X
6.	RU WSC WG TOV
7. 00	WA
7. 01	WA PB1
7. 10	WA RIC
7. 11	WA
8.	RZ WS ST2
9.	RC TMZ
11.	RU WA
CAO	
2.	RSC WG
7.	RG WB
8.	RZ WS ST2
9.	RP WG
10.	RB WA
C50	
2.	RSC WG
7.	RG WB
8.	RZ WS ST2
9.	RB WG
10.	RC WA

NDXO

2. 5. 7. 8. 9. 10. NDX1	RSC WG TRSM RG WB RZ WS RB WG ST1
1 •	RZ WY12 CI
2 •	RSC wG NISQ
3 •	RP WZ
4 •	RA WB
5 •	RZ WA
6 •	RU WZ
7 •	RG WY A2X
8 •	RU WS
9 •	RB WA
10 •	RU WB
RSM3	
1 •	R15 WS
2 •	RSC WG NISQ
5 •	RG WZ
6 •	RP WG
8 •	RAD WP WS
DXCHO	
1 •	RL10BB WS WY12 MOMEX CI
2 •	RSC WG
3 •	RL WB
5 •	RG WL
7 •	RB WSC WG
8 •	RU WS WB
10 •	ST1
DXCH1	
1 •	RL10BR WS
2 •	RSC WG
3 •	RA WB
5 •	RG WA
7 •	RB WSC WG
8 •	RZ WS ST2

38

8

.

-11

.

T50 RI LOBP WS 1 . RSC WG 2. RA WB TOV 3. RZ WY12 4. 00 RZ WY12 CI 01 4. RZ WY12 CI 4. 10 **R7 WY12** 11 4. RB1 WA 5. 01 RIC WA 5. 10 RU WZ 6. RB WSC WG 7. RZ WS ST2 8. XCHO RL10BB WS 1. RSC WG 2. RA WB 3. RG WA 5. RP WSC WG 7. RZ WS ST2 8. ADO RSC WG 2. RG WB 7. 8. RZ WS ST2 RB WG 9. 10. RB WY A2X 11. RU WA MSKO 2. RSC WG RA WB 3. RC WA 4. RG WB 7. RZ WS ST2 8. RC RA WY 9. RU WB 10. 11. RC WA

READO

1.	RL10BB WS
2.	RA WB
3.	WY
4.	RCH WR
5.	RB WA
6.	RA WB
8.	RZ W5 ST2

WRITEO

1.	RL10BB WS
2.	RA WB WG
3.	WY
4.	RCH WB
5.	RA WCH
6.	RA WB
8.	RZ WS ST2

RANDO

1+	RL10BB WS
2.	RA WB
3.	RC WY
4.	RCH WB
5.	RC RU WA
6.	RA WB
7.	RC WA
8.	RZ WS ST2

WANDO

1.	RLIOBB WS
2.	RA WB
3.	RC WY
4.	RCH WB
5.	RC RU WA
6.	RA WB
7.	RC WA WCH
8.	RZ WS ST2

4

.

RORO	
1.	RI LOBR WS
2.	RA WB
3.	RP WY
4.	RCH WR
5.	RB RU WA
6.	RA WB
8.	RZ WS ST2
WORO	
1.	RL10BB WS
2•	RA WB
3.	RP WY
4.	RCH WB RB RU WA WCH
5.	RA WB
6 • 8 •	RZ WS ST2
0.	NE NO JIE
RXORO	
1.	RL10BB WS
2.	RA WB
3.	RC PCH WY
4.	RCH WB RA RC WG
5.	RA RC WG
7 • 8 •	DT WS STO
9.	RG WB RZ WS ST2 RC WG RU WB
10.	RU WB
11.	RC RG WA
RUPTO	
1.	R15 WS
2•	RSC WG
9.	RZ WG
10.	ST1
RUPT1	
1.	R15 RB2 WS
2.	RSC WG
3.	RRPA WZ
8.	RZ WS ST2
9.	RB WG KRPT

PULSE SFOUENCES

DVO RA WE TSGN THZ 1. RC WA THZ DVST 0x 2. 2. 1 X DVST RU WB STAGE 3. DV1 4. XO RL WB RI WB TSGN X1 4. RP WY B15X 5. 0X RC WY B15X Z16 5. 1X 6. RU WL TOV RG RSC WB TSGN 7. RA WY PONEX 8. XO 8. RA WY X1 RR WA 9. 0X RC WA Z15 9. 1X RU WB 10. RL WYD 11. RU WL 12. LZGD PB WYD AZX PIFL 1. RG WL TSGU DVST CLXC 2. OX RG WL TSGU DVST RRIF 2. 1 X RU WB STAGE 3. DV3 4. L2GD RB WYD AZX PIFL RG WL TSGU CLXC 5. 0X RG WL TSGU RB1F 5. 1X RU WB 6. L2GD RB WYD A2X PIFL 7. RG WL TSGU CLXC 8. 0X RG WL TSGU RB1F 8. .1X 9. RU WB L2GD RB WYD AZX PIFL 10. RG WL TSGU CLXC RG WL TSGU RB1F 11. OX 11. 1X RU WB 12. L2GD RB WYD A2X PIFL 1. RG WL TSGU DVST CLXC 2. 0X RG WL TSGU DVST RB1F 2. 1X RU WB STAGE 3.

42

8

-

DV7

4.		LOGD RB WYD AZX PIFL
5.		RG WL TSGU CLXC
5.	1 X	RG WL TSGU RH1F
6.		RU WB
7.		LZGD RB WYD AZX PTFL
8.	OX	RG WL TSGU CLXC
8.		RG WL TSGU RHIF
9.	•	RU WB
10.		LZGD RB WYD AZX PIFL
11.		RG WL TSGU CLXC
11.		RG WL TSGU PBIF
		RU WB
12.		
1+		L2GD RB WYD A2X PIFL
2.	0X	RG WL TSGU DVST CLXC
	1 X	RG WL TSGU DVST RRIF
3.		RU WB STAGE
DV6		
4.		LZGD RB WYD AZX PIFL
5.	OX	RG WL TSGU CL.XC
	1X	RG WL TSGU RB1F
6.		RU WB
7.		LZGD RB WYD AZX PIFL
8.	OX	RG WL TSGU CLXC
	ĩx	RG WL TSGU PB1F
9.	10	RU WB
		LZGD RB WYD AZX PIFL
10.		RG WL TSGU CLXC
11+		
11+	1X	RG WL TSGU RB1F
12.		RU WB
1.	-	LZGD RB WYD AZX PIFL
2.	OX	RG WL TSGU DVST CLXC
	1X	RG WL TSGU DVST RBIF
3.		RU WB STAGE
DV4		
3.		RU WB STAGE
4.		LZGD RB WYD AZX PIFL
5.	OX	RG WB WA TSGU CLXC
5.	1x	RG WB WA TSGU RBIF
6.	• ^	RZ TOV
7.	01	RC WA
	1X	RC WA
7.	14	RZ WS ST2 TSGN RSTSTG
8.		
9.	-	RU WB WL
10.	OX	RC WL

BZFO

6• X1 8• X0	RA WG TSGN TMZ TPZG RSC WG RB WY12 CI RU WZ RZ WS ST2 RAD WB WS NISQ
1 • 2 • 5 • 6 • 7 • 8 • 9 • 10 • 1X 11 •	RLIOBB WS RSC WG RG WB RC WY CI A2X RUS WA TSGN RZ WS ST2 RB WG RA WY MONEX RUS WA
2.	RLIOBR WS RSC WG RQ WB RG WQ RP WSC WG RZ WS ST2
AUGO	
1 • 2 • 5 • 6 • 0 × 6 • 1 × 7 • 8 •	RL10BB WS RSC WG RG WY TSGN TMZ TPZG PONEX MONEX RU WSC WG WOVR RZ WS ST2
DIMO	
1 • 2 • 5 • 6 • 00 6 • 10 7 • 8 •	RL10BB WS RSC WG RG WY TSGN TMZ TPZG MONEX PONEX RU WSC WG WOVR RZ WS ST2

-

DCAO

.

-

1.	RP WY12 MONEX CI
2.	RSC NG
7.	RG WB
8.	RU WS
9.	RP WG
10.	RP WL ST1
DCA1	
2.	RSC MG
7.	RG WB
8.	RZ WS ST2
9.	RR WG
10.	RB WA
DCSO	
1.	RB WY12 MONEX CT
2.	RSC WG
7.	RG WB
8•	RU WS
9.	RB WG
10.	RC WL ST1
DC51	
2.	RSC WG
7.	RG WB
8.	RZ WS ST2
9.	RR WG
10.	RC WA

3

8

NDXXO

9. 10.	RSC WG RG WB R7 WS RB WG ST1
NDXX1	1
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 •	RZ WY12 CI RSC WG NISO RB WZ RA WB RZ WA RU WZ RG WY A2X RU WS RB WA RU WB EXT
SUO	
2. 7. 8. 9. 10. 11.	RSC WG RG WB RZ WS ST2 RF WG RC WY A2X RU WA
BZMFO	
1. 2. 3. 5. 01 5. 10 5. 11 6. 01 6. 10 6. 11 8. 00 8. 01 8. 10 8. 11	RA WG TSGN TMZ TPZG RSC WG RB WY12 CI RB WY12 CI RB WY12 CI RU WZ RU WZ RU WZ RU WZ RZ WS ST2 RAD WB WS NISQ RAD WB WS NISQ

MPO	
2. 3. 4. 0X 4. 1X 7. 8. 9. 00 9. 01 9. 10 9. 10 9. 11 10. 11. 0X 11. 1X MP1	RSC wG RA WB TSGN RB WL RC WL RG WB TSGN2 RZ WS RB WY RB WY CI RC WY RU WB TSGN ST1 NEACON WA WA RB1 R1C L16
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 •	ZIP ZAP ZIP ZAP ZIP ZAP ZIP ZAP ST1 ST2 ZIP
MP3 1. 2. 3. 4. 5. 6. 7. 1X 8. 9. 10. 11. 1X	ZAP ZIP NISQ ZAP RSC WG RZ WY12 CI RU WZ TL15 NFACOF RB WY A2X RAD WB WS RA RL RU WA
STD2	
1 • 2 • 6 • 8 •	RZ WY12 CI RSC WG NISQ RU WZ RAD WB WS

PINC	
2 • 5 • 6 •	RSCT WS RSC WG RG WY TSGN TMZ TPZG PONFX RU WSC WG WOVR RB WS
PCDU	
1 • 2 • 5 • 6 • 7 • 8 •	RSCT WS RSC WG RG WY TSGN TMZ TP7G CI RUS WSC WG WOVR RB WS
MINC	
2.	RSCT WS RSC WG RG WY TSGN TMZ TPZG MONEX RU WSC WG WOVR RB WS
MCDU	
1 • 2 • 5 • 6 • 7 • 8 •	RSCT WS RSC WG RG WY TSGN TMZ TPZG MONEX CI RUS WSC WG WOVR RB WS
DINC	
1 • 2 • 5 • 6 • 00 6 • 10 6 • X1 7 • 8 •	RSCT WS RSC WG RG WY TSGN TMZ TPZG MONEX POUT PONEX MOUT ZOUT RU WSC WG WOVR RP WS

SHINC

.....

.

0

1.	RSCT VS
2.	RSC NG
5.	RG WYD TSGN
7.	RUS WSC WG WOVR
8.	RB WS

SHANC

1.	RSCT WS
2.	RSC WG
5.	RG WYD TSGN CI
7.	RUS WSC WG WOVR
8.	RB WS

INOTRD

1.	WS
2.	RSC WG
5.	RCH
8.	RR WS

INOTLD

1+	WS
2.	RSC WG
5.	RCH
7.	WCH
8.	RP WS

FETCHO

1 •	R6 WS
2 •	RSC WG WY ST1
4 •	WSC
8 •	WS
FETCH1	
2.	RSC WG
7.	RG
8.	RP WS U2BBK
10.	RBBK
STORFO	
1 •	R6 WS
2 •	R5C WG WY ST1
4 •	W5C
8 •	WS
STORE1	
2 •	RSC WG
4 •	WSC
7 •	RG
8 •	RR WS U2BBK
9 •	WG
10 •	RRBK

....

*

apollo

** OCTAL WORD COUNT ADDRESSABLE WITHOUT CHANGING ANY BANK BITS.

* NOT PREFERED

"SUPER BANK 3

SUPER BANK 4

PSEUDO FCADR	70 000 60 000	PSEUDO FCADR	106 000 76 000	PSEUDO FCADR	110 000	PSEUDO FCADR	116 000
EXT FB SREG		EXT FB SREG		EXT FB SREG	4 30 2 000	EXT FB SREG	

		FCADR EXT FB SREG	00 000 X 00 2 000	FCADR EXT FB SREG	02 000 X 01 2 000	AD DRESSES 14 000-17 777 NON-EX I STENT	FCADR EXT FB SREG	10 000 X 04 2 000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FCADR EXT FB SREG	56 000 X 27 2 000
		PSEUDO	10 000	PSEUDO	12 000	PSEUDO	PSEUDO	20 000	33	PSEUDO	66 000
						EXT FB SREG*	X 03 2 000				
WORD	S**					EXT FB SREG	X XX 6000				
6 000						PSEUDO	06 000				
	BOX					EXT FB SREG*	X 02 2 000				
	FIXED MEMOR 2 000 (OCTAL) WORDS PER	Y				EXT FB SREG	x xx 4 000				
) S**	Ļ					PSEUDO	04 000				
	Î	EB SREG	3 1 400 3 1 400	EB SREG	4 1 400	ECADR EB SREG	5 1 400	EB SREG	6 1 400	EB SREG	7 1 400
	WORDS PER BOX	PSEUDO ECADR	01 400	PSEUDO ECADR	02 000 2 000	PSEUDO	02 400 2 400	PSEUDO ECADR	03 000 3 000	PSEUDO	03 400 3 400
	ERASABLE MEMORY 400 (OCTAL)					ECADR EB SREG EB SREG*	1 000 X 1 000 2 1 400				
						PSEUDO	01 000				
2 000 WORDS	C.8.4			,		ECADR EB SREG EB SREG*	0 400 X 0 400 1 1 400				
						EB SREG EB SREG* PSEUDO	X 0 000 0 1 400 00 400				
I						PSEUDO ECADR	00 000 0 000				

AGC BLOCK II MEMORY ORGANIZATION AND ADDRESSING

ы