UNCLASSIFIED

APOLLO GUIDANCE COMPUTER

Information Series

ISSUE 30
BLOCK II APOLLO GUIDANCE
COMPUTER SUBSYSTEM
FR-2.130

RAYTHEON

RAYTHEON COMPANY
SPACEANDINFORMATIONSYSTEMSDIVISION

APOLLO GUIDANCE COMPUTER
 Information Series
 ISSUE 30
 BLOCK II APOLLO GUIDANCE COMPUTER SUBSYSTEM
 FR-2-130
 31 August 1965

CONTENTS

Paragraph Page
30-1 INTRODUCTION 30-1
30-9 BLOCK II AGC SUBSYSTEM 30-3
30-16 COMPUTER OPERATIONS 30-13
30-18 Timer 30-13
30-22 Sequence Generator 30-13
30-29 Central Processor 30-17
30-33 CP Register Manipulations 30-17
30-42
Adder 30-21
30-48 Parity Block 30-23
30-5130-54
30-6530-6730-7530-8330-8930-9030-9530-100Memories30-25
Addressing 30-25
E Location Assignments and Counter Operations 30-33
Input-Output Control 30-45
Output Channels 30-46
Input Channels 30-49
Special Circuits 30-60
CDU Drive Control 30-60
Gyro Drive Control 30-63
EMS and Thrust Drive Control 30-65

$$
30-105
$$

Radar Control 30-67

$$
30-110
$$

BMAG/RHC Control of the CM 30-70

$$
30-113
$$

$$
30-116
$$

BMAG/RHC Control of the LEM 30-71A
Inlink Control. 30-71A

$$
30-120
$$

Outlink Control 30-71D

$$
30-123
$$

Altitude Meter Control 30-71F
30-126 Downlink Converter $30-71 \mathrm{H}$
30-128 Priority Control 30-71L
30-130 Interrupt Priority Control 30-71L
30-136 Counter Priority Control 30-71M
30-140 Alarm Control 30-72
30-141 A
Digital Fault Detections30-72
30-141 B
Parity Fail. 30-72
30-141 DRupt Lock30-73

CONTENTS (cont)

ILLUSTRATIONS

TABLES

Table Page

30-0 Modules and Drawing Numbers 30-12B
30-1 Information Flow Between CP Register Bit Positions and Write Amplifiers. 30-18
30-2 E Addressing. 30-27
30-3 F Addressing. 30-28
30-4 E Location Assignments and Counter Operations . . 30-35
30-5 Input-Output Channels 30-48
30-5A Output Channel 12 30-50
30-5B Output Channel 13 30-51
30-5C Output Channel 14. 30-52
30-5D Input Channel 30. 30-53
30-5E Input Channel 31. 30-54
30-5F Input Channel 32. 30-56

TABLES (cont)

APPENDICES

Appendix Page

30-1. INTRODUCTION

30-2. This is the thirtieth issue of the AGCIS published to inform the technical staff at MIT/IL and Raytheon about the Apollo guidance computer (AGC) subsystems. The various types of computer subsystems are listed in paragraph 1-5 of Issue 1. This issue is an over-all description of the Block II AGC subsystems used in the Command Modules (CM's) and the Lunar Excursion Modules (LEM's). Other issues will describe in more detail the various sections and programs of the Block II AGC subsystems.

30-3. A Block II AGC subsystem used in a CM consists of one Apollo guidance computer (AGC) and two identical Display and Keyboards (DSKY's). One DSKY is mounted in the Navigation Panel of the CM, the other in the Main Panel. A Block II AGC subsystem used in a LEM consists of one AGC and only one DSKY. The CM and LEM Computers are identical except for the programs wired in and some input and output signals. An AGC, including its own power supply, occupies a volume of about l cu ft . and weighs approximately 60 lbs. Each DSKY occupies about $1 / 5 \mathrm{cu}$ ft. and weights approximately 17 lbs.

30-4. An AGC subsystem is a control computer (real time computer) with many features of a general purpose computer. The AGC's are parallel digital computers which operate with 16 -bit words and single address instructions. The clock rate of an AGC is 1.024 Mc (oscillator frequency of 2.048 Mc and word transfer time of approximately $1 \mu \mathrm{sec}$). They employ a ONE's complement number system with overflow bit and fixed binary point. Each Block II AGC contains an Erasable Memory (ferrite core array) capable of storing 2048 words of 16 -bits each, and a Fixed Memory (Mo-perm core ropes) capable of storing 36,864 words of 16 -bits each. The words stored in the two memories include one parity bit for error detection. All Block II logic is built from only one type of solid state integrated NOR gates contained in flat packages.

30-5. Input signals to the AGC subsystem can be parallel binary information (DC signals), incremental data (pulses counted), or serial binary data. Output signals can also be parallel binary information (DC signals or pulse trains), controlled pulse bursts (computed number of drive pulses), or timing pulses (continuous pulse trains).

30-6. Provision is made to have the AGC's operating either in the standby or the normal mode of operation to save power. When an AGC is in the standby mode, only the Timer is operating to monitor time information. When in the normal mode of operation, the whole subsystem operates.

30-7. Most modern computers, large business machines in particular, are designed such that various programs can be inserted and executed. The AGC differs from these computers since programs are wired in and can be changed only by replacing the Fixed Memory (either completely or in part) into which the program is wired. Therefore, an AGC program should be defined as the entire content of the Fixed Memory. An AGC program consists of various program sections (sub-programs).

30-8. An AGC program section can be written in regular machine language, in interpretive language, or in both. The regular machine language can be expressed with 38 different Regular Instructions, including some double precision operations. More than 100 different Interpretive Instructions, including double precision, triple precision, vector double precision, and matrix operations, are provided for the interpretive language. Program portions written in regular language operate faster than portions written in interpretive language because interpretive portions require extra time to interpret instructions. Portions written in interpretive language require less space for program storage than portions written in basic language because of the subroutine character of Interpretive Instructions. Furthermore, the interpretive language considerably simplifies the programming of complicated mathematical operations. The interpretive language is used mainly in program sections dealing with astronautical computations. Many of the control operations that the computer must perform are written in regular language; the interpretive language is used to simplify multiprecision and vector operations. Thus, the AGC is a fast computer when operating in the regular machine language, and a powerful machine when operating in the interpretive mode.

30-9. THE BLOCK II AGC SUBSYSTEM

30-10. A Block II AGC subsystem used in a CM consists of one Apollo guidance computer (AGC) and two identical Display and Keyboards (DSKY's). A Block II AGC subsystem used in a LEM consists of one AGC and only one DSKY. The AGC, which occupies a volume of about $1 \mathrm{cu} f \mathrm{ft}$, consists of one Tray A and one Tray B (figure 30-1). Tray A contains 24 logic modules, 5 interface modules, and 2 power supply modules (figure 30-2). A logic module may contain up to 120 flat packs and measures approximately $93 / 4 \times 11 / 2 \times$ $5 / 8$ inches. All other modules also measure $93 / 4 \times 1 \mathrm{l} / 2$ inches but vary in width in multiples of $1 / 8$ inch. Tray B contains the oscillator module, the alarm module, the erasable memory module, 6 core rope modules, and 8 modules which contain all the drivers and amplifiers for Erasable (E) and Fixed (F) Memory (figure $30-3$). All modules, except the core rope modules, are plugged into receptacles mounted in the bottom of the trays. The core rope modules are plugged in from the front.

30-11. The two trays are joined such that the wirewrapped interconnections in the tray bottoms are on the outside (figure 30-1). Both trays are covered on the outside. The AGC is mounted with the logic tray side to a cold plate. The core rope modules can be interchanged without removing the cover of Tray B.

30-12. A 360 pin connector (A5l) in figure 30-2 provides all the necessary connections between the AGC and the DSKY's, the G \& N system, and the space craft (S/C), i. e., the CM or the LEM. A 144 pin connector (A52) is provided for connecting the AGC to the Computer Test Set (CTS), the Program Analyzer Console (PAC), or any other applicable test equipment.

30-13. A Block II DSKY consists of the main and front housing assembly with covers (figure 30-4). A 91 pin connector (J9) provides all the necessary connections to the AGC, the G \& N system, and the CM or the LEM.

30-14. All signals fed into the AGC and the two DSKY's of a CM, and all the signals provided by these three units are described in Appendix A. All signals of the LEM AGC and DSKY are described in Appendix B.

30-15. All Block II logic is built from flat packages each of which contains two solid state silicon integrated NOR gates with three inputs (figure 30-5). If one or more inputs of a NOR gate are connected to a positive potential of approximately 1.5 volts, the output potential of the NOR gate is about 0.2 volt.

Figure 30-1. Block II AGC (Sheet 1 of 3)

Figure 30-1. Block |I AGC (Sheet 3 of 3)

Figure 30-2. Tray A


```
FR-2-130
```


Figure 30-4. Block II DSKY (Sheet 1 of 2)

Figure 30-4. Block II DSKY (Sheet 2 of 2)

Figure 30-5. Flat Package, Schematic Diagram

If all inputs of a NOR gate are connected to a positive potential of about 0.2 volt or less, the output potential is approximately 1.5 volts. Thus, a logical ONE is represented by a positive potential of approximately 1.5 volts and a logical ZERO by a positive potential of about 0.2 volt. Since each NOR gate inverts voltage levels, a logical ZERO can represent either a data ZERO or a data ONE depending on the operational location of a gate, and a logical ONE can represent a data ONE or a data ZERO. The reference point is the input to the Write Amplifiers where a data ONE is represented by a logical ONE (positive potential of approximately 1.5 volts) and a data ZERO by a logical ZERO (positive potential of about 0.2 volt). At the outputs of the Write Amplifiers, a logical ONE (positive potential of approximately 1.5 volts) represents a data ZERO, and a logical ZERO (positive potential of approximately 0.2 volt) represents a data ONE.

30-15A. Table 30-0 lists all modules of the AGC, the numbers of NASA drawings showing the logic of the se modules, and the numbers of the gates contained in the modules.

TABLE 30-0
MODULES AND DRAWING NUMBERS

Module	Drawing Number	Gate Numbers
A1	2005059	38101 - 38491
A2	2005060	37101 - 37459
A3	2005051	30001 - 30457
A4	2005062	36101 - 36460
A5	2005061	39101 - 39461
A6	2005063	40101 - 40441
A 7	2005052	$33101-33459$
A8	2005055	$51101-51463$
A9	2005056	52101 - 52463
Al0	2005057	$53101-53463$
All	2005058	54101-54463
Al 2	2005053	34101 - 34467
Al 3	2005069	41101-41244
Al 4	2005064	$42101-42457$
Al 5	2005065	35101 - 35460
Al 6	2005066	$43101-43460$
Al 7	2005067	44101 - 44464
Al 8	2005068	$45101-45456$
Al 9	2005070	46101 - 46461
A20	2005054	$31101-31459$
A21	2005050	32001 - 32658
A22	2005071	47101 - 47460
A23	2005072	$48101-48458$
A24	2005073	$49101-49443$
A25-A26	2005021	-
A27-A29	2005020	-
A30-A31	2005010	-
B7	2005003	-
B8	2005008	-
B9-B10	2005004	-
Bl1	2005005	-
B12	2005006	-
B13-B14	2005002	-
B15	2005009	-
B16-B17	2005000	-
DSKY	2005900	-
DSKY	2005950	-
D1-D6	2005902	-
D8	2005903	-
Buffer	2014123	-

30-16. COMPUTER OPERATIONS

30-17. The organization of the AGC subsystem is illustrated in figure 30-6. The AGC subsystem can be divided into the following major sections:
a. Timer
b. Sequence Generator (SQG)
c. Central Processor (CP)
d. Erasable (E) Memory
e. Fixed (F) Memory
f. Standby Control
g. Alarm Control
h. Power Supply
i. Interface (including RHC Converter)
j. Display and Keyboards (DSKY's)

30-18. TIMER

30-19. The Timer consists of the Clock, the Scalers, and the Time Pulse Generator. The Clock is driven by a 2.048 Mc oscillator. For classified information, refer to Issue 1, paragraph 1-40.

30-20. The Clock provides various signals of $1.024 \mathrm{Mpps}, 512 \mathrm{kpps}$, and 102.4 kpps . Some of these signals are used for driving the Time Pulse Generator, and for timing and gating various logic areas of the AGC. Two 102. 4 kpps signals are fed into the 33 stage Scaler, each stage of which divides by two. Stage 10, for instance, supplies 100 pps (one pulse every 10 msec) and the last stage generates a pulse about every 23.3 hours. The last 28 stages of the Scaler can be read out like two 14 -bit input channels (registers of the Input-Output Control), thus making time information available to the computer. If the AGC is in the standby mode, only the Clock and the Scaler are operating. When the mode is switched from standby to normal operation, time information is transferred under program control from the Scaler to time counters T2 and Tl.

30-21. The Time Pulse Generator generates one time pulse every $0.977 \mu \mathrm{sec}$ and a sequence of twelve time pulses (T0l through Tl2) every $11.7 \mu \mathrm{sec}$, which is referred to as one Memory Cycle Time (MCT). The time pulses control the Sequence Generator and other sections of the AGC.

30-22. SEQUENCE GENERATOR

30-23. The Sequence Generator (SQG) generates a set of control pulses, if required, for the subinstruction being executed whenever a time pulse (TOl through T12) is received. Each such set of control pulses is called an

Action. The control pulses control various registers and gates in the Central Processor (CP), the Input-Output Control, and other sections of the AGC. All Machine Instructions (Regular, Involuntary, and Peripheral or Test Instructions) are composed of one, two, or more subinstructions, each subinstruction consisting of 12 Actions (one MCT).

30-24. The execution of a Regular Instruction (Basic, Extra Code, Channel, or Special Instruction) is initiated by entering its order code into register $S Q$. When stored in memory, Extra Code and Channel Instructions use the same order codes as the Basic Instructions. However, Extra Code and Channel Instructions are preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register $S Q$. When a program is executed, one Regular Instruction after another is transferred from memory into the CP and the order code is entered into register $S Q$, together with the EXT bit which is entered into bit position SQ-EXT of register $S Q$.

30-25. Involuntary Instructions (Interrupting Instructions and Counter Instructions) are executed at the request of the Priority Control. Instruction RUPT commands the SQG to interrupt the execution of the program section currently being executed in favor of a programmed operation of higher priority. Instruction RUPT is executed upon request from the Interrupt Priority Control which also supplies the address of the priority program. Instruction RESUME, a Special (Regular) Instruction, orders the SQG to resume the execution of the interrupted program. Instruction GO commands the SQG to restart program execution. This instruction is executed at the occurrence of certain errors.

30-26. Counter Instructions cause the SQG to change the content of a specified counter. They are executed upon request from the Counter Priority Control which also supplies the proper counter address. The Counter Instructions are executed between the execution of Regular Instructions, and each delays the program execution by one MCT.

30-27. Peripheral Instructions are executed under the control of the Computer Test Set (CTS) or the Program Analyzer Console (PAC) during the testing of the AGC on the ground.

30-28. The control pulses generated by the SQG can be grouped in five categories:
a. Read pulses - read content of a register to WA's (for instance, RA reads content of register A to the WA's; content of A is not changed)
b. Write pulses - clear register and write into it information from WA's (for instance, WA writes into A from the WA's)

[^0]

Figure 30-6. Block II AGC Subsystem, Machine Organization
c. Direct read-write - copy content of one register directly (not via WA's) into another register (for instance, $A 2 X$ copies $c(A)$ into X)
d. Test pulses - test content of certain bit positions and set branch flip-flops accordingly (for instance, TOV tests for overflow)
e. Special pulses - enter certain information into the WA's or into a register, or set certain flip-flops, etc.

All control pulses are defined in Issue 32, table 32-4.

30-29. CENTRAL PROCESSOR

30-30. The Central Processor (CP) consists of various registers, the Adder, the Write Amplifiers (WA's), and the Parity Block. All CP registers are NOR gate flip-flop registers which can be read nondestructively.

30-31. All CP registers are shown in figure 30-6. Registers A, L, Q, Z, and B consist of 16 -bit positions (flip-flops) each, which are numbered 16 through 1 from left to right. Register FBANK consists of 5-bit positions numbered 16 and 14 through 11. Register EBANK consists of 3-bit positions numbered 11 through 9. Register S consists of 12 -bit positions numbered 12 through l. Register SQ consists of 7-bit positions, one named SQ-EXT and the remainder numbered 16 and 14 through 10 . Registers X and Y of the Adder each also consist of 16 -bit positions numbered 16 through 1 . The 16 output gates (U) of the Adder, and the WA's are also numbered 16 through 1. All registers mentioned so far may contain instructions, addresses, a code, etc., or a number, but do not contain a parity bit. Whenever a number is contained, the lowest order bit is stored in bit position l, the highest order bit in bit position 14, and the sign bit (a ZERO for a plus sign and a ONE for a minus sign) is stored in bit position 16. Bit position 15 is used for storing any overflow bit (OV).

30-32. Register G, which serves as a buffer between the CP and the memories, consists of 16 -bit positions which are numbered 16 through l. Any parity bit which is received from memory is transferred to the Parity Block but to no $C P$ register. The 16 inputs to the Parity Block are numbered 16 and 14 through 0. No provision is made to enter an overflow bit into the Parity Block.

30-33. CP REGISTER MANIPULATIONS

30-34. Registers A, L, Q, FBANK, EBANK, and Z are addressable; registers $B, S, S Q, Y, X$, and G are not addressable. A register is addressable when it can be selected for write-in or read-out by entering the proper address into register S.

TABLE 30-1
INFORMATION FLOW BETWEEN CP REGISTER BIT POSITIONS AND WRITE AMPLIFIERS

Register				Control Pulse	Read and Write Lines of Write Amplifiers (WA's)															
Octal Address	Initials	Name			16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0000	A	Accumulator		WA, WSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
				WALS 1	14	13	12	11	10	9	8	7	6	5	4	3	2	1	-	-
				RA, RSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0001	L	Low Order Accumulator		WL, WSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
				WALS A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	13
				RL, RSC	16		14	13	12	11	10	9	8	7	6	5	4	3	2	1
0002	Q	Return Address Register		WQ, wSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
				RQ, RSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0003	EBANK	E Memory Bank Selector		WSC	-	-	-	-	-	11	10	9	-	-	-	-	-	-	-	-
				RSC	-	-	-	-	-	11	10	9	-	-	-	-	-	-	-	-
0004	FBANK	F Memory Bank Selector		wSC	16	-	14	13	12	11	-	-	-	-	-	-	-	-	-	-
				RSC	16	-	14	13	12	11	-	-	-	-	-	-	-	-	-	-
0005	z	Program Counter		WZ, wSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
				RZ, RSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0006	BBANK	Both registers EBANK and FBANK	EBANK	WSC	-	-	-	-	-	-	-	-	-	-	-	-	-	11	10	9
				RSC	-	-	-	-	-	-	-	-	-	-	-	-	-	11	10	9
			FBANK	WSC	16	-	14	13	12	11	-	-	-	-	-	-	-	-	-	-
				RSC	16	-	14	13	12	11	-	-	-	-	-	-	-	-	-	-
0007	ZERO	ZERO (non-existing register)		RSC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

1 WALS also enters content of bit position 16 of G into bit positions 16 and 15 of A if bit position 1 of G contains a ZERO
or enters content of output gate 16 of U into bit positions 16 and 15 if bit position 1 of G contains a ONE.

TABLE 30-1
INFORMATION FLOW BETWEEN CP REGISTER BIT POSITIONS AND WRITE AMPLIFIERS (cont)

Register					Control Pulse	Read and Write Lines of Write Amplifiers (WA's)															
Octal Address	$\begin{aligned} & \text { Ini- } \\ & \text { tials } \end{aligned}$	Name				16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
none	B	Buffer Register with direct output B and complement output C			W B	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
					RB, RC	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
					RLI0BB	-	-	-	-	-	-	10	9	8	7	6	5	4	3	2	1
none	S	Address Register			WS	-	-	-	-	12	11	10	9	8	7	6	5	4	3	2	1
none	SQ	Sequence Register			WSQ	16	-	14	13	12	11	10	-	-	-	-	-	-	-	-	-
none	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{X} \\ & \mathrm{U} \end{aligned}$	Adder with input registers X and Y and output gates U			WY	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
					WY12	-	-	-	-	12	11	10	9	8	7	6	5	4	3	2	1
					WYD 2	116	-	15	14	13	12	11	10	9	8	7	6	5	4	3	2
					RU	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
					RUS	15		14	13	12	11	10	9	8	7	6	5	4	3	2	1
none	G	Memory Buffer Register			RG	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
		Function	$c(\mathbf{S})$	Control Signal																	
		Direct	Any Other Address	WGIG, WG5G	WG	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
		CYR	0020	WG2G, WG4G	WG	14	-	13	12	11	10	9	8	7	6	5	4	3	2	1	16
		SR	0021	WG2G, WG5G	WG	1614	-	13	12	11	10	9	8	7	6	5	4	3	2	1	-
		CYL	0022	WG3G, WG6G	WG	1	-	16	14	13	12	11	10	9	8	7	6	5	4	3	2
		EDOP	0023	WG3G, WG5G	WG	-	-	7	6	5	4	3	2	1	-	-	-	-	-	-	-

(2) There are exceptions where content of WA 16 is not entered into bit position 1 of Y.

Table 30-1 lists those control pulses in addition to control pulses WSC and RSC. Control pulses WSC and RSC are applied to all addressable registers for write-in or read-out, but only that register, the register of which is contained in register S, is written into or read out.

30-35. A word can be transferred from one CP register to another either via the WA's or directly. Read and Write control pulses (paragraph 30-28) occur simultaneously and gate the read gates of the transmitting and the write gates of the receiving register at the same time and thus allow a word to flow from one register to another via the WA's. (Refer to table 30-1). The flow of information to and from the WA's occurs on two different sets of lines, the read and write lines. When one read pulse and two or three write control pulses occur simultaneously, the same information is entered into two or three registers. Direct read-write pulses transfer information directly from one register to only one other register.

30-36. Information contained in the WA's is written into the corresponding bit position of register A if control pulse WA is applied; information contained in register A is read out to the corresponding WA's if control pulse RA is applied. When control pulse WALS is applied (during a multiplication), the information contained in the WA's is shifted two places to the right while writing into register A whereby the last two bits are shifted into register L. When control pulse WL is applied, information contained in the WA's is written into the corresponding bit positions of register L. Information contained in register L is read into the corresponding WA's by means of control pulse RL except for the content of bit position 16 which is read into WA16 and WAl5. Refer to table 30-1.

30-37. Registers Q and Z are written into and read out straight, i.e., from and into the corresponding WA's. Registers FBANK and EBANK are written into and read out straight if address 0003 or 0004 is contained in register S. If register S contains 0006, the content of the WA's is written into or read out straight from register FBANK but shifted eight places as it is written into or read out of register EBANK. Register B is always written into and read out straight; however, the content of register B (by means of control pulse $R B$) or its complement (by means of RC) can be read into the WA's. Control pulse RL10BB reads only the content of bit positions 10 through 1 into the corresponding WA's.

30-38. Registers S and $S Q$ are written into from the corresponding WA's. Bit position SQ-EXT accepts the EXT bit (paragraph 30-24).

30-39. Both registers Y and X of the Adder are cleared whenever control pulse WY, WYl2, or WYD is generated. Control pulse WY writes the content of WA's 16 through 1 into register Y; control pulse $W Y 12$ writes only the content of WA's 12 through linto register Y. Control pulse WYD cycles the content of the WA's one place to the left as it is written into register Y, thereby doubling the content of the WA's. Information is transferred directly (not via WA's) from register A to register X whenever control pulse A2X is applied. Control pulse RU reads the sum contained in the Adder into the corresponding WA's. Control pulse RUS, which is used in connection with inlink and TWO's complement operations, reads the content of output gate 15 into WA's 16 and 15.

30-40. Register G is able to exchange information (except the parity bit) with E or F Memory on one side, and with the CP registers on the other side. Words stored in E or F Memory consist of 16 bits numbered 15 through 0 where bit number 0 is the parity bit. If a memory location contains a number, bit position 15 stores the sign bit and bit position 1 the lowest order bit. When a word is transferred from E or F Memory to register G, bit number 15 is entered into bit positions 16 and 15 of register G while bits 14 through 1 are entered into the corresponding bit positions of register G. Entering a sign bit into bit positions 16 and 15 has the effect of providing a sign bit in bit position 16 and a plus or minus zero (ZERO or ONE) in bit position 15, i. e., in front of the fourteen value bits. Likewise, the content of bit positions 16 and 14 through 1 of register G is transferred to bit positions 15 through 1 in E Memory while the new parity bit, which is supplied by the Parity Block, is entered into bit position 0. The content of bit position 15 of register G is not transferred to memory. Consequently, any overflow bit (opposite to sign bit) which might be contained in bit position 15 is lost on the way to memory.

30-41. Whenever register G is read into the $G P$, the content of its bit positions is transferred to the corresponding WA's. When the content of the WA's is written into register G, normally WA's 16 through 1 are gated into the corresponding bit positions of register G. If register S contains address 0020, 0021 , or 0022 , the content of WA's 16 and 14 through 1 is cycled one place to the right, shifted one place to the right, or cycled one place to the left, respectively, while writing into bit positions 16 and 14 through 1 of register G (table 30-1). If register S contains address 0023, the content of the WA's is shifted seven places to the right, as requested during the breaking of Interpretive Instruction Words.

30-42. ADDER

30-43. The Adder, the arithmetic unit of the AGC, is able to add two ONE's complement or two cyclic TWO's complement numbers at a time. Normally, an addition is carried out in the ONE's complement number system.

The Adder has two input registers (X and Y) and a bank of output gates (U). Two ONE's complement numbers to be added can be of the same or opposite sign. Numbers containing fourteen value bits can be added; the Adder generates an additional bit in bit position 15 in case of positive or negative overflow. Control pulses WY, WY12, and WYD reset both the X and Y registers; therefore, the Y register must be loaded first or simultaneously with register X. The arithmetic sum of the two values is available at output gate U less than $1 \mu s e c$ after both operands have been entered. The Sequence Generator, on command, can enter the positive quantity one (000001) or the negative quantity one (177776) into register X, or force a carry into the Adder.

30-44. As shown in figure 30-7, the bit positions of the Adder registers (X and Y) and the output gates (U) are numbered 16 through 1. (No parity bit is entered into the Adder.) When an operand is gated from E or F Memory into register Y (via register G), its sign (SG) is entered into bit positions 16 and 15. A plus is represented by a ZERO, a minus by a ONE. Entering a sign bit into bit position 15 is equivalent to providing an additional value bit, either a plus or a minus zero (which is represented by a ZERO or a ONE) in front of the fourteen-bit value. When an operand is gated from register A into the corresponding bit positions of register X (control pulse A2X), its sign bit is entered into bit position 16 only. Bit position 15 could receive an overflow bit but, normally, contains the same bit as bit position 16. If an overflow occurs during an addition, the Adder supplies a ONE for a plus overflow, or a ZERO for a minus overflow at output gate 15 . This additional output bit is labeled OV. Output gate 16 always contains the correct sign of the sum.

Figure 30-7. Adder Input Registers and Output Gates

30-45. The upper half of figure 30-8 illustrates the principle of adding two ONE's complement numbers. For simplification, each number consists of two sign bits as normally entered into bit positions 16 and 15 of registers Y and X , and of only 3 value bits instead of 14 . In reality, the largest octal number resulting from ONE's complement addition as provided by the sixteen output gates (U) is +77777 (quantity 077777), the smallest is -77777 (quantity 100000). Counters are incremented or decremented by adding the quantity plus one or minus one to whatever might be contained in the counter.

30-46. The lower half of figure 30-8 illustrates the principle of adding two cyclic TWO's complement numbers. A cyclic TWO's complement number stored in memory can be interpreted in two different ways. One can consider the fifteen bits stored in bit positions 15 through las 15 value bits representing positive TWO's complement numbers only which express angular information from 00 to 360°. One can also consider the bit stored in bit position 15 as a sign bit and the bits stored in bit positions 14 through 1 as the value bits representing positive 'TWO's complement numbers which express angles from 00 to plus 180°, or negative TWO's complement numbers which express angles from 0° to minus 180°. The first way of interpretation better explains cyclic TWO's complement operations.

30-47. Whenever cyclic TWO's complement information is transferred from memory, bit 15 is entered into bit positions 16 and 15 of the Adder. Whenever a cyclic TWO's complement sum is transferred from the output gates to E Memory, the content of output gate 15 is entered into bit positions 16 and 15 of register G, and finally read from bit position 16 of register G into bit position 15 of the addressed E Memory location. In reality, the largest octal quantity which can result from a cyclic TWO's complement addition is 77777. In the examples of figure $30-8$, four-bit numbers are assumed whereby the highest order bit is entered into two bit positions of register Y or X.

30-48. PARITY BLOCK

30-49. When a word is transferred from memory to the CP, bits 15 through 1 are entered into register G which passes the se fifteen bits on to the Parity Block. Bit 0, the parity bit, is transferred from memory directly to the Parity Block where it is stored in the SAP flip-flop (gates 34245/34246). Bits 15 through l are fed into a parity tree which generates a new parity bit (PC15). If bits 15 through 1 contain an odd number of ONE's, bit PCl5 becomes a ZERO; if they contain an even number of ONE's, bit PCl 5 becomes a ONE. The new parity bit (PC15) and the original parity bit (bit 0 stored in the SAP flip-flop) are compared and signals PALE (parity alarm) and MPAL/ are generated if the two bits do not agree and if the word was received from memory (octal address 0010 or larger). All sixteen bits (bits 15 through 0) of a word stored in memory must always contain an odd number of ONE's which

ADDITION OF ONE'S COMPLEMENT NUMBERS			
DECIMAL SCALE +7 +6 +5 +4 +3 +2 +1 +0 -0 -1 -2 -3 -4 -5 -6 -7	IBINARY SCALE 0111 0110 0101 0100 0011 0011 0001 0	$\begin{gathered} \begin{array}{r} Y=+5 \\ X=-3 \end{array} \\ \hline \text { SUM }=+2 \end{gathered} \quad \begin{aligned} & 00101 \\ & 11100 \\ & \cline { 1 - 3 } \end{aligned}$	$\begin{array}{rl} Y=-5 & 11010 \\ X=+3 & 00011 \\ \hline \text { SUM }=-2 & 11 \underbrace{101}_{2} \end{array}$
NOTES: X'S AND Y'S REVERSED GIVE THE SAME SUM \rightarrow MEANS CARRY AROUND			
ADDITION OF CYCLIC TWO'S COMPLEMENT NUMBERS			

Figure 30-8. Summation of Two Binary Numbers
is established by entering the proper parity bit. The parity bit provides a simple means of detecting single errors, or any odd number of errors when reading out of F or E Memory. Registers 0000 through 0007 do not store a parity bit.

30-50. Bits 16 and 14 through 1 of a word entered into register G from a CP register are passed on to the Parity Block in a similar way; however, no test for correct parity is made and bit CPl5 generates signal GEMP which writes the parity bit into E Memory if required.

30-51. MEMORIES
30-52. The Erasable (E) Memory is a coincident-current ferrite corearray capable of storing 2048 sixteen-bit words. The selection logic (SLE) (figure $30-6$) together with the x and y selection, the $z d r i v e r s$, the 16 sense amplifiers (SAE's), and the memory cycle timer (MCTE) permit addressing certain location in E Memory. Information can be transferred from the addressed location to register G at time pulse T04 or vice versa at time pulse Tl0. Readout of the E Memory is destructive; however, information can be preserved for later use by writing it back into the addressed location after readout if no new information is to be entered. The selection logic SLE is under the control of registers S and EBANK.

30-53. The Fixed (F) Memory consists of six core rope modules which are built from Mo-perm magnetic cores and is capable of storing 36, 864 sixtenbit words. The addressing scheme employed allows the extension of Fixed Memory to 65,536 words. The selection logic (SLF) together with various drivers, the sense amplifiers (SAF's), and the memory cycle timer (MCTF) make it possible to address a certain location in F Memory and to read its content into register G at T06. Information stored in F Memory is wired in and cannot be destroyed during readout, therefore, it does not have to be preserved for writing back into F memory. The selection logic (SLF) is under the control of registers S, FBANK, and FEXT. Register FEXT, which consists of three bit positions numbered 7 through 5, is addressed like a register in the Input-Output Control.

30-54. ADDRESSING

30-55. The E Memory can be subdivided into eight E Banks (0 through 7) as indicated in table 30-2. Each bank is capable of storing 256 words. The first 8 locations of E-Bank 0 are not used because their addresses are needed to address the CP registers. Another 12 addresses are reserved for addressing special locations and 29 for addressing counters, all of which are part of E-Bank 0. The remaining 207 addresses are used for addressing those locations of E-Bank 0 which are accessible for general use.

30-56. E-Banks 0, 1, and 2 are referred to as Unswitched E Memory because all their locations (as well as the CP registers) can be addressed by entering their addresses into register S without regard to what might be contained (XXX) in register EBANK. E-Banks 3 through 7 are referred to as Switched E Memory because all their locations can be addressed only if the respective bank number is contained in register EBANK. Locations in Unswitched E Memory can also be addressed as locations in Switched E Memory if the proper bank number is contained in register EBANK. Of course, the contents of registers FBANK and FEXT are irrelevant whenever any location in the CP or E Memory is addressed.
(text continued on page 30-32)

TABLE 30-2
E ADDRESSING

Register or Location Groups		Octal Address		c(FEXT)			c(FBANK)					c(EBANK)			c(S)											
		EMA	Real	7	6	5	16		13		11	11	10	9	12	11	10	9	8	7	6	5	4	3	2	1
CP		0000-0007	$\begin{aligned} & 0000-0007 \\ & 1400-1407 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	x 0	0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0	y y	y y	y y				
	Special Locations	0010-0023	$\begin{aligned} & 0010-0023 \\ & 1410-1423 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	y	y y	y y	y y	y y							
	Counters	0024-0060	$\begin{aligned} & 0024-0060 \\ & 1424-1460 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	y y	${ }^{\mathbf{y}}$	${ }^{\mathbf{y}}$	y y	${ }^{\mathbf{y}}$	y							
	General Use	0061-0377	$\begin{aligned} & 0061-0377 \\ & 1461-1777 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	${ }_{0}$	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{x} \\ 0 \end{gathered}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	${ }^{\mathbf{y}}$	y y	${ }^{\mathrm{y}}$	y	y y	y y							
$\begin{array}{\|l\|l} \stackrel{y}{4} \\ \text { B } \end{array}$	E-Bank 1	0400-0777	$\begin{aligned} & 0400-0777 \\ & 1400-1777 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	x 0	x 0	$\begin{gathered} x \\ 1 \end{gathered}$	0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	y y	${ }^{\mathrm{y}}$	y	y y	${ }^{\mathbf{y}}$	y							
5	E-Bank 2	1000-1377	$\begin{aligned} & 1000-1377 \\ & 1400-1777 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	x 0	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	0	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathbf{y} \end{aligned}$	y y	y y	${ }^{\mathbf{y}}$	${ }^{\mathbf{y}}$	${ }^{\mathbf{y}}$	y y			
	E-Bank 3	1400-1777	1400-1777	x	x	x	x	x	x	x	x	0	1	1	0	0	1	1	y	y	y	y	y	y	y	y
	E-Bank 4	2000-2377	1400-1777	x	x	x	x	x	x	x	x	1	0	0	0	0	1	1	y	y	y	y	y	y	y	y
	E-Bank 5	2400-2777	1400-1777	x	x	x	x	x	x	x	x	1	0	1	0	0	1	1	y	y	y	y	y	y	y	y
	E-Bank 6	3000-3377	1400-1777	x	x	x	x	x	x	x	x	1	1	0	0	0	1	1	y	y	y	y	y	y	y	y
	E-Bank 7	3400-3777	1400-1777	x	x	x	x	x	x	x	x	1	1	1	0	0	1	1	y	y	y	y	y	y	y	y

1. x means 0 or 1 which does not have an effect on addressing.
y means 0 or 1 as defined by address.
2 CP registers and Special Location

Recister or Location Groups			Octal Address		c (FEXTY			c(FBANK) 1					c(EBANK) 1			c(S) 2											
			FMA	Real	7	6	5	16		13		11	11	10	9	12	11	10	9	8	7	6	5	4	3	2	1
		F-Bank 02	04000-05777	$\begin{aligned} & 4000-5777 \\ & 2000-3777 \end{aligned}$	x x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	\mathbf{x}	x 0	$\begin{aligned} & \mathbf{x} \\ & 0 \end{aligned}$	x 0	x 1	x 0	x x	x x	x x	1	0	y y	y y	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	y	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	y y	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	$\begin{aligned} & y \\ & y \end{aligned}$
		F-rank 03	06000-07777	$\begin{aligned} & 6000-7777 \\ & 2000-3777 \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x 0	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & 1 \end{aligned}$	x	x \times	$\begin{aligned} & x \\ & x \end{aligned}$	1	1	y y	y y	y	y	$\begin{aligned} & y \\ & y \end{aligned}$	$\begin{aligned} & y \\ & y \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \end{aligned}$	y y	$\begin{aligned} & \mathbf{y} \\ & \mathbf{y} \end{aligned}$	$\begin{aligned} & y \\ & y \end{aligned}$
		F-Bank 00	00000-01777	2000-3777	x	x	x	0	0	0	0	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 01	02000-05777	2000-3777	x	x	\times	0	\bigcirc	0	0	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 04	10000-11777	2000-3777	x	x	x	0	0	1	0	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Eank 05	12000-13777	2000-5777	x	x	\times	0	0	1	0	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 0́m	14000-15777	2000-3777	x	x	x	0	0	1	1	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Eank 07	16000-17777	2000-3777	x	x	x	0	0	1	1	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Trank 10	20000-21777	2000-3777	x	x	x	0	1	0	0	0	\times	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 11	22000-23777	2000-3777	x	x	\times	\bigcirc	1	0	0	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 12	24000-25777	2000-3777	x	x	\times	0	1	0	0	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Eank 13	26000-27777	2000-3777	x	x	x	0	1	0	1	1	x	x	\times	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank $1-4$	30000-31777	2000-3777	x	\times	:	0	1	1	0	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 15	32000-33777	2000-3777	x	\times	x	0	1	1	0	1	\times	X	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Eank 16	34000-35777	2010-3777	\times	\times	\times	0	1	1	1	0	v	x	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 17	36000-37777	2000-3777	x	x	x	0	1	1	1	1	x	\times	x	0	1	y	y	y	y	y	y	y	y	y	y
		F-Bank 20	40000-41777	2000-3777	\times	\times	\times	1	0	0	0	0	x	x	\cdots	0	1	y	y	y	y	y	y	y	y	y	y

1. x means 0 or 1 which does not have an effect on addressing.
$2 y$ ineans 0 or 1 as defined by address.

TABLE 30-3
F ADDRESSING (cont)

Register or Location Groups		Octal Address		$\mathrm{c}(\mathrm{FEXT}) \triangle$			c(FBANK) \triangle					c(EBANK) 1			c(S) 2											
		FMA	Real	7	6	5	16	14	13	12	11	11	10	9	12	11	10	9	8	7	6	5	4	3	2	1
式 F-Bank 21		42060-437iT	2000-377i	x	x	x	1	0	0	0	1	x	x	x	0	1	צ	y	y	y	\checkmark	y	y	y	y	\bigcirc
	F-Bank 22	44000-457TT	2000-3777	x	x	x	1	0	0	1	0	x	x	x	0	1	v	$\stackrel{y}{ }$	$\stackrel{\square}{1}$	y	y	y	y	y	y	y
	F-Bank 23	46000-47717	2000-3777	x	x	x	1	0	0	1	1	x	x	x	1	1	y	y	y	y	y	y	y	y	y	y
	F-Bank 24	50000-517i7	2000-3777	x	x	x	1	0	1	0	0	x	x	x	0	1	y	y	y	5	y	y	y	y	y	y
	F-Bank 25	52000-53777	2000-3777	x	x	x	1	0	1	0	1	x	x	x	0	1	y	y	$\stackrel{y}{ }$	y	y	${ }^{\text {y }}$	y	y	y	y
	F-Bank 26	54000-55777	2000-3777	x	x	x	1	0	1	1	0	x	x	x	0	1	y	s	y	y	y	y	y	y	y	y
	F-Bank 27	56000-57777	2000-3777	x	x	x	1	0	1	1	1	x	x	x	0	1	y	5	y	y	y	y	y	y	y	y
FEXT Channel 0-3	F-Bank 30	060000-061777	2000-3777	0	x	x	1	1	0	0	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
	F-Bank 31	062000-063777	2000-3777	0	x	x	1	1	0	0	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y	y
	F-Bank 32	064000-065777	2000-3777	0	x	x	1	1	0	1	0	x	\times	x	0	1	y	y	y	y	y	y	\underline{y}	y	y	y
	F-Bank 33	066000-0677 77	2000-27Ti	0	x	x	1	1	0	1	1	x	x	x	0	1	Y	\because	y	\underline{y}	Y	y	y	y	y	y
	F-Bank 34	070000-071777	2000-3777	0	x	x	1	1	1	0	0	x	x	x	0	1	y	y	$\stackrel{\square}{ }$	$\stackrel{y}{ }$	\because	y	y	y	y	y
	F-Bank $3 \bar{\square}$	072000-073777	2000-37त7	0	x	x	1	1	1	0	1	x	x	x	0	1	y	y	$\stackrel{y}{ }$	y						
	F-Bank 36	074000-075777	2000-37i	0	x	x	1	1	1	1	0	x	x	x	0	1	y	y	$\stackrel{y}{*}$	$\stackrel{\square}{1}$	v	y	$\stackrel{y}{ }$	\underline{y}	y	5
	F-Bank 37	076000-077777	2000-3777	0	x	x	1	1			1	x	x	x	0	1	y	y	$!$	y	$\stackrel{r}{ }$	y	y	y	y	5

$\triangle \mathrm{x}$ means 0 or 1 which does not have an effect on addressing.
4 y means 0 or 1 as defined iy address.

F ADDRESSING (cont)

	Octal Address		c(FEXT)			c(FBANK)					c(EbANK) \triangle			c(S) 2										
Register or Location Grougs	FMA	Real	7	6	5	16	14	13	12	11	11	10	9	12	11	10	9	8	73	5	4	3	2	1
	109000-101777	2090-3777	1	0	0	1	1	0	0	0	x	x	x	0	1	$\stackrel{r}{ }$	y	y	y ${ }^{\text {y }}$	y	\because	y	y	y
	102000-103777	2000-3777	1	0	0	1	1	0	0	1	x	x	x	0	1	y	y							
	104000-105777	2000-3777	1	0	0	1	1	0	1	0	x	x	x	0	1	y	y	y	y y	y	y	y	y	y
	106000-107777	2000-3777	1	0	0	1	1	0	1	1	x	x	\times	0	1	y	y	y	y y	y	y	y	y	$\stackrel{3}{5}$
	110000-111777	2000-3777	1	0	0	1	1	1	0	0	x	x	x	0	1	y	y	y	y^{\prime}	y	y	y	y	y
	112000-113777	2000-3777	1	0	0	1	1	1	0	1	x	x	x	0	1	y	y	y	$y \mathrm{y}$	y	y	y	y	y
	114000-1157¢7	2000-2777	1	0	0	1	1	1	1	0	x	x	x	0	1	y	y	y	y	y	y	y	y	y
	116000-117777	2000-3777	1	0	0	1	1	1	1	1	x	x	x	0	1	y	y	y	y	y	y	y	y	y
	120000-121777	2000-3777	1	0	1	1	1	0	0	0	x	x	x	0	1	y	y	y						
	122000-123777	2000-3777	1	0	1	1	1	0	0	1	x	x	x	0	1	s	y	\because						
	121000-125777	2000-3777	1	0	1	1	1	0	1	0	x	x	x	0	1	s	y	y	y	y	${ }^{\text {y }}$	y	y	y
	126000-127i77	2000-377\%	1	0	1	1	1	0	1	1	x	x	x	0	1	y	${ }^{3}$	r						
	1300000-131777	2000-3777	1	0	1	1	1	1	0	0	x	x	\times	0	1	y	y	y	s	y	5	${ }^{5}$	y	y
	132000-133777	2000-3777	1	0	1	1	1	1	0	1	x	x	x	0	1	y	y	y	j	y	$\stackrel{r}{ }$	y	y	y
	134000-135777	2000-3777	1	0	1	1	1	1	1	0	x	x	x	0	1	y	y	y	s	y	$\underline{\square}$	y	\underline{y}	5
	136000-137777	2000-37i7	1	0	1	1	1	1	1	1	x	x	\times	0	1	y	s	y	y	y	5	y	\because	צ

© x means 0 or 1 which does not have an effect on addressing.
2 y means 0 or 1 as defined by address.
B Banks 44 through 77 do not exist (paragraph 30-57)

TABLE 30-3 F ADDRESSING (cont)

11 x means 0 or 1 which does not have an effect on addressing.
2) y me:ms 0 or 1 as defined by address.
(3) Banks 44 through 77 do not exist (paragraph 30-57)

30-57. The F Memory address field provided can be subdivided into 64 F Banks (octal 00 through 77 as indicated in table 30-3). Each bank is capable of storing 1024 words. Only 36 F -Banks (00 through 43) are built into the AGC, another 28 F-Banks (44 through 77) could be added, which would require some major modifications of the computer.

30-58. F-Banks 00 through 27 are referred to as FEXT-Channel X because all their locations can be addressed by entering their addresses into registers S and FBANK without regard to what might be contained (XXX) in register FEXT. F-Banks 30 through 37 are referred to as FEXT-Channel 0-3 because all their locations can be addressed if channel numbers $0,1,2$, or 3 (0 XX) are contained in register $\$ E X T$. F-Banks 40 through 47,50 through 57, 61 through 67, etc., are referred to as FEXT-Channel 4, 5, 6, etc., respectively, because all their locations can be addressed only if the correct channel number is contained in register FEXT.

30-59. F-Banks 02 and 03 are also referred to as Fixed-Fixed Memory; the other banks of FEXT-Channel X are referred to as Variable-Fixed Memory. All locations in Fixed-Fixed Memory can be addressed by entering their addresses into register S without regard to what might be contained (XXXXX) in register FBANK. All other locations of F Memory can be addressed only if the proper bank number is contained in register FBANK. Locations in Fixed-Fixed Memory can also be addressed like any other location in F Memory if the proper bank number is contained in register FBANK. The content of register EBANK is irrelevant whenever a location in F Memory is addressed.

30-60. Two different classes of pseudo addresses are used: Erasable Memory Addresses (EMA's) and Fixed Memory Addresses (FMA's). When register S contains ZERO's in both bit positions 12 and 11 it indicates that the register contains a real address which represents an EMA. (Refer to table 30-2). When both bit positions 10 and 9 also contain ZERO's it indicates that a CP register or a location in E-Bank 0 is addressed, regardless of the contents of register EBANK. When bit positions 10 or 9 but not both contain a ONE, a location in E-Bank 1 or 2 is addressed regardless of the contents of register EBANK. When bit positions 10 and 9 both contain a ONE, a location is addressed in that E-Bank the number of which is contained in register EBANK.

30-61. The EMA's are composed of four octal digits which represent eleven binary digits (bits) numbered 11 through 1. Bits 11 through 9 indicate an E-Bank number (in many cases contained in register EBANK). Bits 8 through 1 represent that part of the real address which is contained in bit positions 8 through 1 of register S.

30-62. When register S contains a ONE in bit position 12 or 11 , or in both, it indicates that the register contains a real address which represents an FMA. (Refer to table 30-3). Whenever bit position 12 contains a ONE, Fixed-Fixed Memory is addressed, regardless of the contents of registers

FBANK and FEXT. Whenever bit position 12 contains a ZERO and bit position 11 a ONE, a location is addressed in that F Bank which is defined by the contents of registers FBANK and FEXT.

30-63. When bit position 16 and 14 of register FBANK both contain ZERO's, or a ZERO and a ONE, and bit position 12 of register S contains a ZERO and bit position 11 a ONE, it indicates that a bank in FEXT-Channel X is addressed in which case the content of register FEXT is irrelevant. When bit positions 16 and 14 of registers FBANK both contain ONE's, a bank in FEXT-Channel $0-3$, or 4 through 77 is addressed.

30-64. The FMA's are composed of six octal digits which represent sixteen bits numbered 16 through 1 . Bits 16 through 11 indicate an F-Bank number. In many cases this number is contained in register FBANK, or register FEXT and bit positions 13 through 11 of register FBANK. Bits 10 through 1 represent that part of the real address which is contained in bit positions 10 through 1 of register S.

30-65. E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS

30-66. For assignments of E locations 0010 through 0060 refer to table 30-4. Locations 0010 through 0017 are reserved for storing pertinent information of an interrupted program section. Locations 0020 through 0023 are used for storing cycled or shifted data as explained in paragraph 30-41. Locations 0024 through 0060 are counters. Whether the content of a counter is incremented, decremented, diminished (absolute value decreased) or shifted depends on the purpose of the counter. Seven types of counters can be distinguished as shown in the following subparagraphs.
a. Input counters which contain ONE's complement numbers to be incremented only are time counters 0024 through 0030. Whenever such a counter is addressed, an addition is performed as illustrated in the upper part of figure $30-8$, except that the quantity added is always plus one (000001 is entered into register X whereas the counter content is entered into register Y). The largest octal number which can be stored in such a counter is +37777 (37777).
b. The input counter which contains ONE's complement numbers to be diminished only (absolute value is decreased) is time counter 0031. Whenever this counter is addressed, an addition is performed as illustrated in the upper part of figure $30-8$, except that the quantity added is minus one or plus one (177776 or 000001 is entered into regis ter X whereas the counter content is entered into register Y).
c. Input counters which contain ONE's complement numbers to be incremented and decremented are PIPA counters 0037 through 0041 and BMAG or RHC counters 0042 through 0044 . Whenever such a counter is addressed, an addition is performed as illustrated in the upper part of figure 30-8, except that the quantity added is plus one or minus one (000001 or 177776 is entered into register X whereas the counter content is entered into register Y). The largest octal number which can be stored in such a counter is +37777 (37777); the smallest is -37777 (40000).
d. Input counters which contain cyclic TWO's complement numbers which are incremented and decremented are CDU counters 0032 through 0036. Whenever such a counter is addressed, an addition is performed as illustrated in the lower part of figure 30-8. Control pulse RUS is used instead of control pulse RU to move the overflow bit into bit position 16 of register G (paragraphs 30-46 and $30-47$). In reality, the angle 00 is represented by the octal quantity 00000 contained in a counter, 90° by $20000,180^{\circ}$ by 40000 , and 270° $\left(-90^{\circ}\right)$ by 60000 . Thus, 360° is equivalent to 2^{15} increments.
e. Input counters which are used for serial to parallel conversion of incoming information are counters 0045 and 0046. Whenever such a counter is addressed and a ZERO has been received, the counter content is shifted left one position and entered into register Y by means of control pulse WYD, and 000000 is entered into register X. When'a ONE has been received, the counter content is shifted one position to the left and 000001 is entered into register X. The addition is performed as indicated in the upper part of figure 30-8, with these exceptions: Bit 15 (overflow bit) of the sum is transferred to the counter instead of bit 16 (sign bit) and end-around carry is prevented.
f. Output counters which are used to control the number of pulses in pulse bursts driving gyros, CDU's etc., are counters 0047 through 0056. Whenever such a counter is addressed, an addition is performed as illustrated in the upper part of figure 30-8, except that the quantity added is minus one or plus one (177776 or 000001 is entered into register X whereas the counter content is entered into $\mathrm{Y})$.
g. Output counters which are used for parallel to serial conversion of outgoing information are counters 0057 and 0060 . When such a counter is addressed, the counter content is shifted left one position and entered into register Y by means of control pulse WYD.
(text continued on page 30-45)

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2
0010	ARUPT	Last content of register A is stored here during the execution of a RPT Transfer Routine.		
0011	LRUPT	Last content of register L is stored here during the execution of a RPT Transfer Routine.		
0012	QRUPT	Last content of register Q is stored here during the execution of a RPT Transfer Routine.		
0013		Spare		
0014		Spare		
0015	ZRUPT	Last content of register Z is stored here during the execution of instruction RUPT.		
0016	BBRUPT	Last content of registers EBANK and FBANK is stored here during the execution of a RPT Transfer Routine.		
0017	BRUPT	Last content of register B is stored here during the execution of instruction RUPT.		
0020	CYR	Quantity entered here has been cycled one place to the right by register G.		
0021	SR	Quantity entered here has been shifted one place to the right by register G.		
0022	CYL	Quantity entered here has been cycled one place to the left by register G.		
0023	EDOP	Quantity entered here has been cycled seven places to the right by register G.		
0024 0025	T2 T1	T2P from Sequence Generator TlP from Timer	PINC T2	Main Time Counter T2 stores the high order part of reference (clock) time and Main Time Counter Tl stores the low order part. Both counters are preset by program. (Text continued on the next page)

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2
$\begin{aligned} & 0024 \\ & 0025 \\ & \text { (cont) } \end{aligned}$	$\mathrm{T} 2$ Tl	T2P from Sequence Generator TlP from Timer	PINC T2	Signal TIP is generated every 10 msec and requests the execution of instruction PINC T1. Each time PINC T1 is executed, the content of Tl is incremented by one. Whenever counter Tl overflows (every 163.84 sec), signal T2P is generated which requests the execution of instruction PINC T2. Each time PINC T2 is executed, the content of T 2 is incremented by one. (Counter T2 overflows approximately every 31st day.)
0026	T3	T3P from Timer	PINC T3	Time Counter T3 controls the operation of program section Waitlister (Task Control). The counter is preset by the Waitlister. Signal T3P is generated every 10 msec and requests the execution of instruction PINC T3. Each time PINC T3 is executed, the content of T 3 is incremented by one. Upon overflow, the Interrupt Priority Control is triggered to initiate the execution of routine T3RUPT of program section Waitlister.

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks
0027	T4	T4P from Timer	PINC T4	Time Counter T4 controls the operation of program section T4RUPT Output Control. The counter is preset by this program section. Signal T4P is generated every 10 msec and requests the execution of instruction PINC T4. Each time PINC T4 is executed, the content of T 4 is incremented by one. Upon overflow, the Interrupt Priority Control is triggered to initiate the execution of routine T4RUPT of program section T4RUPT Output Control.
0030	T5	T5P from Timer	PINC T5	Time Counter T5 controls the operation of program section Thrust Vector Control. The counter is preset by program. Signal T 5 P is generated every 10 msec and requests the execution of instruction PINC T5. Each time PINC T5 is executed, the content of T5 is incremented by one. Upon overflow, the Interrupt Priority Control is triggered to initiate the execution of program section Thrust Vector Control.

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks

TABLE 30－4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS（cont）

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

| EMA | Initials | Signal Entered
 into Counter
 Priority Control | Instruction
 Executed | Remarks 2 |
| :--- | :--- | :--- | :--- | :--- |$|$| 0045 | INLNK | INLNKM
 INLNKP |
| :--- | :--- | :--- |

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2
0046	RADAR	RNRADM RNRADP	SHINC RADAR SHANC RADAR	This input counter is used to convert incoming serial rendezvous radar data (CM and LEM) or landing radar data (LEM only) into parallel information. The Radar Control gates either the rendezvous radar data (signals 031 and 032) or the landing radar data (signals 071 and 072) into the Counter Priority Control. The pulses entered into the Counter Priority Control request the execution of certain instructions, as shown at the left. The SHINC instruction shifts the content of a counter one place to the left and enters a ZERO into bit position 1. The SHANC instruction also shifts the content one place to the left and enters a ONE into bit position 1.
0047	GYROS	GYROD	DINC GYROS	This output counter is used to control pulse bursts driving the X, Y, and Z gyros. This output counter is used to control pulse bursts driving the X, Y, and Z gyros. The counter is preset by program section T4RUPT Output Control. Whenever the Gyro Drive Control sends a drive signal to the Counter Priority Control, the execution of instruction DINC GYROS is requested. Each time DINC GYROS is executed, the content of GYROS is (cont next page)

E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks
0047 (cont)	GYROS	GYROD	DINC GYROS	diminished by one and a related drive pulse (signals 142 through 147) is transmitted if counter GYROS did not contain zero before the execution of DINC GYROS. If the counter contained zero, Gyro Drive Control is reset to stop further transmission of drive pulses related to this counter.
$\begin{aligned} & 0050 \\ & 0051 \\ & 0052 \\ & 0653 \\ & 0054 \end{aligned}$	XCDUCOM YCDUCOM ZCDUGOM TCDUCOM SCDUCOM	CDUXD CDUYD CDUZD TRUND SHAFTD	DINC XCDUCOM DINC YCDUCOM DINC ZCDUCOM DINC TCDUCOM DINC SCDUCOM	These output counters are used to control pulse bursts driving the IMU CDU's and the Optics CDU's. The counters are preset by program section T4RUPT Output Control. Whenever the CDU Drive Control sends a drive signal to the Counter Priority Control, the execution of a certain instruction is requested as shown at the left. Each time a DINC instruction is executed, the content of the addressed counter is diminished by one and a related drive pulse (signals 126 through 131 and 114 through 117) is transmitted if the respective counter did not contain zero before the execution of the DINC instruction. If the counter contained zero, the CDU Drive Control is reset to stop further transmission of drive pulses related to that counter.

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2

TABLE 30-4
E LOCATION ASSIGNMENTS AND COUNTER OPERATIONS (cont)

EMA	Initials	Signal Entered into Counter Priority Control	Instruction Executed	Remarks 2
$\begin{aligned} & 0057 \\ & 0060 \end{aligned}$	OUTLNK ALT	OTLNKM ALTM	SHINC OUTLNK SHINC ALT	These output counters are used to convert parallel outlink information (CM and LEM) or altitude information (LEM only) into serial data. Outlink or altitude words are entered into a counter by program. Whenever the Outlink Control, or the Altitude Meter Control, sends a signal to the Counter Priority Control, the execution of a certain instruction is requested. When a SHINC instruction is executed, the content of the addressed counter is shifted one place to the left. Each time a ZERO is shifted out, a ZERO is transmitted by the Output Control or the Altitude Meter Control; each time a ONE is shifted out, a ONE is transmitted. Output Signals Generated A ZERO shifted out of counter OUTLINK: Signal 078 A ONE shifted out of counter OUTLINK: Signal 079 A ZERO shifted out of counter ALT: Signal 003 or 012 A ONE shifted out of counter ALT: Signal 002 or 010

Numbers in () refer co signals listed in Appendices A and B
(2) Refer also to figure 30-6.

Also, 00000 is entered into register X . The addition is performed as indicated in the upper part of figure $30-8$, except that bit 15 (overflow bit) of the sum is transferred to the counter instead of bit 16 (sign bit), and that end-around carry is prevented.

30-67. INPUT-OUTPUT CONTROL
30-68. The Input-Output Control consists of various input and output channels, and a number of special circuits (figure 30-6). The output channels are flipflip registers similar to those of the Central Processor (CP); their contents can be read back into the Write Amplifiers (WA's) and they supply binary DC signals which control either relays in the DSKY's, equipment outside the AGC subsystem, the special circuits within the Input-Output Control, or the Standby or the Alarm Control. The DSKY relays in turn control various displays on the DSKY's or generate DC signals controlling other G\&N subsystems and spacecraft systems. Two input channels are also flip-flop registers and accept binary DC signals from the DSKY's and the Optics mark button. The other input registers are banks of gates which accept binary DC signals from various $G \& N$ subsystems and spacecraft systems.

30-69. The CDU Drive Control, the Gyro Drive Control, and the EMS and Thrust Drive Control generate signals controlling and driving the CDU's, the Gyros, the EMS (entry monitor system) of the CM or the LEM monitor, and the LEM thrust control. The Radar Control generates pulse trains controlling the radars and accepts serial data from the rendezvous and the landing radar to convert it to parallel information which is stored in counter RADAR (0046). The BMAG/RHC Control accepts either incremental pulses from the BMAG's (body mounted acceleration gyros) or the RHC (rotation hand control) Converter and stores it in the BMAG counters (0042 through 0044).

30-70. The Inlink Control accepts serial data from the Uplink or Crosslink equipment and converts it to parallel information which is stored in counter INLNK (0045). The Outlink Control converts parallel information contained in counter OUTLNK (0057) to serial data which is transmitted to the Crosslink equipment. The Altitude Meter Control converts parallel information contained in counter ALT (0060) to serial data which is transmitted to the altitude monitor. The Downlink Converter converts parallel information contained in output channels 34 and 35 to serial data which is sent to the NA programmer. The NA programmer collects telemetry data from various spacecraft systems and arranges it for downlink transmission.

30-71. Seven different Channel (Input-Output) Instructions, a group of Regular Machine Instructions, are provided to transfer information from register A in the CP to an output channel, or vice versa, or from an input channel to register A. Such information flow occurs via the WA's and is also under the
control of the Sequence Generator (SQG). Information which is transferred from register A to a channel is transferred to corresponding bit positions, except for the content of bit position 16 of register A which is always trans ferred to bit position 15 of an addressed channel if this bit position exists. The content of bit position 15 of register A is never transferred to a channel. Information which is transferred from a channel to register A is also transferred to corresponding bit positions, except for the content of bit position 15 of an addressed channel which is always transferred to bit positions 16 and 15 of register A.

30-72. The main difference between Channel Instructions and other Regular Instructions is the fact that the relevant address of a Channel Instruction always refers to an input/output channel whereas the relevant address of any other Regular Instruction refers to a CP register or a memory location. The relevant address of any Regular Instruction is entered into register S during execution of the instruction and the SQG decides whether to use it as a CP/ Memory or a channel address. Channel Instructions can transfer information either wholly or in part, in either direction, between a channel and register A.

30-73. Table 30-5 defines all the input/output channels. There are no channels occupying channel addresses 00 through 02 . Channel addresses 01 and 02 can be used to address CP registers L and Q by means of a Channel Instruction. Thus, registers L and Q can be read out and written into from register A like any input/output channel. Addresses 03 and 04 are used to address Scalers 2 and 1, respectively, thus allowing the transfer of time information from the Timer to the CP (paragraph 30-20).

30-74. Channel FEXT, address 07, is used for addressing F Memory as described in paragraphs 30-57 and 30-61. Presently, only bit position 7 is used for addressing while two additional bit positions are provided for increasing the addressing capability.

30-75. OUTPUT CHANNELS
30-76. Output channels 05 and 06, each consisting of eight bit positions (flip-flops), supply DC signals to control the reaction control system (outside the AGC) which in turn controls the reaction control jets. Refer to table 30-5H.

30-77. All fifteen bit positions (flip-flops) of output channel 10 are used to simultaneously control identical relay matrices in each DSKY. Each relay matrix consists of thirteen banks (octal 00 through 14) of up to eleven latching relays each. Bits 15 through 12 of channel 10 select a relay bank in each DSKY for resetting while bits 11 through 1 reset the relays of the selected bank. Relay banks 00 through 10 control the three 5-digit data displays on

TABLE 30－5
INPUT－OUTPUT CHANNELS

$\underset{\substack{\text { Octal } \\ \text { Address }}}{\text { and }}$	Name or Contents	Bit Positions														
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
01	L	CP register L，bit positions 16 through 1														
02	Q	CP register Q，bit positions 16 through 1														
03	SCALER2	High－order scaler channel， 14 hit positions														
04	SCALER1	Low－order scaler channel， 14 hit positions														
05	Outbits， Reaction Con－ trol System								$\stackrel{\overbrace{(804)}^{\mathrm{C} C+\mathrm{X}-\mathrm{Y}}}{ }$		$\begin{gathered} \begin{array}{c} \text { RC-X-X } \\ \varrho \\ (808) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \substack{\text { RC+X+Y } \\ 乌_{(803)}} \end{gathered}$	$\begin{array}{\|c} \hline \text { RC+X-P-P } \\ \text { (802) } \end{array}$		$\begin{gathered} \hline \text { RC-X-X } \\ \substack{9 \\ (806) \\ \hline} \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \mathrm{RC}+\mathrm{X}+\mathrm{P} \\ 9 \\ (801) \end{array} \\ \hline \end{array}$
${ }^{06}$	Outbits， Reaction Con－ trol System									$\begin{gathered} \frac{\mathrm{ra}-\mathrm{Y}+\mathrm{R}}{} \\ \stackrel{\rho}{(811)} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { RC- }-\mathrm{Y}-\mathrm{R} \\ \hline(812) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \mathrm{RC}+\mathrm{Y}+\mathrm{R} \\ \frac{9}{(809)} \end{array} \end{gathered}$	$\begin{gathered} \stackrel{\mathrm{RC}+\mathrm{Z}-\mathrm{R}}{(814)} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{RC-}-\mathrm{Z}+\mathrm{R} \\ \frac{9}{(815)} \\ \hline \end{array}$	$\stackrel{\overbrace{816}^{\mathrm{RC}-\mathrm{Z}-\mathrm{R}}}{ }$	$\overbrace{813}^{\mathrm{RC}^{2}+\mathrm{Z}+\mathrm{R}}$
07	${ }^{\text {FEXT（Fixed }}$									E7／	E6	E5				
10	Outbits DSKY R Relays	$\begin{aligned} & \text { RYWD16 } \\ & (228) \end{aligned}$	$\begin{aligned} & \text { RYWD14 } \\ & \text { (227) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { RYWD13 } \\ (226) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { RYWD12 } \\ (225) \end{gathered}\right.$	$\begin{aligned} & \text { RLYB11 } \\ & (224) \end{aligned}$	$\begin{gathered} \text { RLYB } 10 \\ (223) \\ \hline \end{gathered}$	$\begin{gathered} \text { RLYB09 } \\ (222) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { RIB08 } \\ 8 \\ (821) \\ (228 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { RLYB07 } \\ (220) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { RLYB06 } \\ (219) \\ \hline \end{array}$	$\begin{gathered} \hline \text { RLYB05 } \\ (218) \\ \hline \end{gathered}$	$\begin{gathered} \text { RLYB04 } \\ (217) \\ \hline \end{gathered}$	$\begin{gathered} \text { RLYB } 03 \\ (216) \end{gathered}$	RLYB02 （215）	$\begin{gathered} \text { RLYB } 01 \\ (214) \\ \hline \end{gathered}$
11	Outbits Relays	OT1116 Spare （855）	$\begin{gathered} \text { OT1114 } \\ \text { Spare } \\ (854) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OT11113 } \\ \text { Spare } \\ \text { (853) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OT1112 } \\ \text { Spare } \\ (852) \end{gathered}$	$\begin{gathered} \text { OT11111 } \\ \text { Spare } \\ (851) \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { OT110 } \\ \frac{14}{(850)} \end{array} \end{aligned}$	$\begin{aligned} & \text { OT1109 } \\ & \text { Spare } \end{aligned}$	$\begin{array}{\|c} \text { OT1108 } \\ \text { Spare } \\ (848) \end{array}$	$\underset{(244)}{\text { OPEROR }}$	$\underset{\substack{\text { vNELSH LSH } \\(238)}}{ }$	$\underset{(236)}{\operatorname{KYRLS}}$	$\underset{(258)}{\text { TMPOUT }}$	$\begin{aligned} & \text { UPLACT } \\ & (235) \end{aligned}$	$\underset{(230)}{\text { COMACT }}$	$\underset{(129)}{\substack{\text { ISSWAR } \\(229}}$
12	Outbits GN\＆C	$\begin{gathered} \text { ISSTDC } \\ \text { (9099) } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { S4SSEQ } \\ \sum_{233}^{233} \end{array}$	$\begin{array}{\|c} \hline \text { MROLGT } \\ \hline(841) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{DISDAC}^{\text {DIC }} \\ & (902)^{2} \end{aligned}$	$\begin{array}{\|c} \text { ZEROPT } \\ (9006) \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { TVCNAB } \\ \frac{2}{(161)} \end{array}$	$\begin{gathered} \text { ENON } \\ \frac{2}{(011)} \\ \hline \end{gathered}$	${\underset{(196)}{\text { ENERIM }}}_{\frac{2}{2}}$	$\begin{aligned} & \text { ZZIMCDU } \\ & \frac{2}{(195)} \end{aligned}$	$\begin{aligned} & \text { COARSE } \\ & \frac{\widehat{(194)}}{} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { STARON } \\ (162) \end{array}$	$\begin{aligned} & \text { ENEROP } \\ & \frac{2}{(186)} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ZOPCDU } \\ \frac{2}{(185)} \\ \hline \end{array}$
13	Outbits，AGC	B	③	③	－3	－${ }^{\text {a }}$	今	令	${ }^{\text {B }}$	B	B	3	3	B	${ }^{3}$	B
14	Outbits，gyro and CDU Drives	4	4	4	4	4	4	4	4）	4	4	4	\triangle	4	（4）	4
15	Inbits，Main Panel Keyboard											$\begin{array}{r} \hline \begin{array}{c} \text { MKEY5 } \\ (257) \\ \hline \end{array}{ }^{2} 5 \end{array}$	$\frac{\text { TRA }}{\text { MKEY4 }}$ （256）	$\frac{\mathrm{P} 15, \quad \mathrm{RUP}}{\text { MKEY } 3}$ (255)	$\begin{gathered} \text { MKEY2 } \\ (254) \end{gathered}$	$\begin{gathered} \text { MKEY1 } \\ (253) \end{gathered}$
16	Inbits，Nav Panel Keyboard									$\xrightarrow[\text { TRAP16 }]{\text { MREJ }}$ （182）	$\begin{aligned} & \text { RUPT6 } \\ & \text { MAREK } \\ & (102) \\ & (102) \end{aligned}$	$\begin{gathered} \hline \text { NKEY5 } \\ \frac{10}{(205)} \\ \hline \end{gathered}$	$$	$\begin{aligned} & \frac{\mathrm{PP} 16 \mathrm{~B}, \mathrm{RUF}}{\text { NKEY3 }} \\ & \frac{10}{(203)} \end{aligned}$	$\begin{aligned} & 6 \\ & \hline \frac{\text { NKEY2 }}{} \\ & \frac{10}{(202)} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { NKEY } \\ (10) \\ (201) \\ \hline \end{array}$
30	Inbits， GN \＆ C	$\begin{gathered} \frac{5}{\text { TEIN }} \\ \frac{5}{(125)} \end{gathered}$	$\begin{aligned} & \mathrm{IST}^{\mathrm{s} \text { or }} \\ & \frac{5}{(113)} \end{aligned}$		$\underbrace{\text { CDUFAL }}_{\frac{5}{(124)}}$	$\begin{aligned} & \frac{5}{\text { IMYCAG }} \\ & \frac{5}{(193)} \end{aligned}$	$\begin{aligned} & { }^{{ }^{\text {CTH }} \times \text { SAT }} \\ & \frac{5}{(158)} \end{aligned}$	$\begin{aligned} & \text { IMUOPR } \\ & \frac{5}{(184)} \end{aligned}$	$\begin{gathered} \text { INTo } 88 \\ \text { Spare } \\ \text { Sare } \\ (084) \\ \hline(084) \end{gathered}$	$\begin{gathered} \hline \text { OPCDFL } \\ \frac{5}{(112)} \end{gathered}$	$\begin{array}{\|l\|} \hline \frac{\text { GUREL }}{5} \\ \frac{5088}{(068)} \end{array}$	$\begin{aligned} & \text { LFTOFF } \\ & \frac{5}{(007)} \end{aligned}$	$\begin{aligned} & \text { SABSAB } \\ & \frac{5}{1066)} \end{aligned}$		$\begin{aligned} & \text { SMSEPR } \\ & \frac{5}{(067)} \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{5}{(004)} \\ \hline \text { ULLTHR } \\ \hline \end{array}$
${ }^{31}$	Inbits，Trans－ lation and Rotation	$\begin{gathered} \text { GCAPCL } \\ \frac{6}{(159)} \\ \hline \end{gathered}$		$\begin{gathered} \text { HoLFUN } \\ \frac{6}{(040)} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TRAN-Z } \\ \frac{6}{(023)} \\ \hline \end{array}$	$\begin{gathered} \text { TRAN+Z } \\ \frac{6}{(022)} \\ \hline \end{gathered}$		$\begin{gathered} \text { UPTII } \\ \frac{6}{\text { TRAN Y }} \\ \frac{6}{(020)} \\ \hline \end{gathered}$	$\begin{gathered} \text { TRAN-X } \\ \frac{6}{(019)} \end{gathered}$	$\begin{gathered} \text { TRAN+X } \\ \frac{6}{(018)} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { MANR-R } \\ \hline 68 \\ (098) \\ \hline \end{array}$	$\begin{gathered} \hline \text { MANR+R } \\ \frac{6}{(097)} \\ \hline \end{gathered}$	RAP31A，R $\stackrel{\text {（096）}}{6}$		$\overbrace{(094)}^{\text {MANR-P }}$	$\begin{gathered} \hline \text { MANR+P } \mathrm{P} \\ \frac{6}{(093)} \\ \hline \end{gathered}$
32	Inbits， Impulse	$\begin{array}{\|c\|} \hline \text { IN3216 } \\ \text { Spare } \\ \text { (845) } \\ \hline \end{array}$	$\begin{gathered} \text { IN3214 } \\ \text { Spare } \\ \text { S(844) } \\ \hline(88) \end{gathered}$	$\begin{array}{\|c} \hline \text { IN3213 } \\ \text { Spare } \\ \hline(034) \\ \hline \end{array}$		$\begin{gathered} \text { Lematt } \\ \frac{7}{(060)} \\ \hline \end{gathered}$	$\begin{aligned} & \text { ROLGOFGO } \\ & \frac{(843)}{(843)} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PCHGOF } \\ & \frac{(7}{(842)} \end{aligned}$		$\begin{gathered} \text { TRSTT9 } \\ \frac{7}{(831)} \\ \hline \end{gathered}$		$\begin{aligned} & \text { MNTID } \\ & \frac{7}{(188)} \\ & \hline \end{aligned}$	$\begin{gathered} \text { MNMM-Y } \\ \left(\frac{174)}{(174)}\right. \end{gathered}$	$\begin{gathered} \text { MNIM+Y } \\ \frac{\wedge}{(173)} \end{gathered}$		$\begin{gathered} \mathrm{MNIM}^{\mathrm{M}+\mathrm{P}} \\ \frac{\mathrm{7}}{(171)} \end{gathered}$
33	Inbits，Optics and AGC	$\begin{array}{\|l} \hline \text { OCALM } \\ 8 \longdiv { 8 } \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{AGCWAR} \\ 8 \widehat{8} \widehat{11} \end{array}$	$\stackrel{\text { PiPAFL }}{8}$	$8 \boxed{12}$	（8） 13	$\begin{array}{\|c\|} \hline \text { BLKUPL } \\ \frac{8}{(083)} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LRRLSC } \\ \frac{8}{(061)} \end{array}$	$\begin{aligned} & \text { LVDAGD } \\ & \frac{8}{(039)} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { STRPRS } \\ & \frac{8}{(183)} \end{aligned}$	$\begin{gathered} \begin{array}{c} \hline \text { OMSW3 } \\ (1007) \\ (108 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { OPMSW2 } \\ & \frac{8}{(106)} \\ & \hline \end{aligned}$	$\begin{gathered} \text { ZEROP } \\ \frac{8}{(104)} \\ \hline \end{gathered}$	$\begin{gathered} \text { RRRLSO } \\ \frac{8}{(069)} \\ \hline \end{gathered}$	$\begin{aligned} & \text { RRPONA } \\ & \frac{8}{(064)} \\ & \hline \end{aligned}$	Spare （840）
34	Downlink Bits	16 bit positions														
35	Downlink Bits	16 bit positions														

```
1．Signal names taken from NASA drawings 2005066 listed in Appendices A and B．
（2）Refer to table \(30-5 \mathrm{~A}\)
（3）Refer to table \(30-5 \mathrm{~B}\)
```

4 Refer to table $30-5 \mathrm{C}$ 5 Refer to table 30－5D \triangle Refer to table $30-5 \mathrm{~F}$

8．Refer to table $30-5 \mathrm{G}$
9．Refer to table $30-5 \mathrm{H}$
（0）Refer to table $30-5 \mathrm{I}$
（10）Refer to table $30-5 \mathrm{I}$
（12）Signal supplied by Inlink Control
（13）Signal supplied by Downlink Converter
（14．Also generates signal W1110 which controls the restart flip－flop in the start－stop
the DSKY's. Banks 11 through 13 control the 2-digit NOUN, VERB, and PROGRAM display, respectively (figure $30-4$). Seven relays of bank 14 control seven of the status and caution indicators on the DSKY's (AUTO, HOLD, FREE, NO ATT, GIMBAL LOCK, PROG, and TRACKER).

30-78. Bit positions 1 through 7 (flip-flops) of output channel 11 control seven non-latched relays in the DSKY's. The relays which are controlled by signals COMACT, UPLACT, TMPCAU, KYRLS, and OPEROR control five other status and caution indicators on the DSKY's (COMP ACTY, UPLINK ACTY, TEMP, KEY REL, and OPR ERR, respectively). Signal TMPCAU is generated by "ORing" signals TMPOUT and TEMPIN/. The relay controlled by signal VNFLSH controls the VERB-NOUN flash control, and the relay controlled by signal ISSW AR generates ISS warning signals which are transmitted to various $G \& N$ subsystem and spacecraft caution indicator s.

30-79. Bit positions 1 through 14 (flip-flops) of output channel 12 provide DC signals controlling various G\&N subsystems and the SIVB engine. Refer to table $30-5 \mathrm{~A}$.

30-80. Bit positions 1 through 15 (flip-flops) of output channel 13 provide DC signals which control various areas of the AGC. Bit positions 1 through 3 control the radar mode selection and bit position 4 controls another part of the Radar Control. Refer to table 30-5B. Bit positions 5 and 6 control the Inlink Control. Bit position 7 controls the Downlink Converter. Bit positions 8 and 9 control the BMAG/RHC Control. Bit position 10 controls the Alarm Control and bit position 11 the Standby Control. Bit positions 12 through 15 control the Interrupt Priority Control.

30-81. Bit positions 1 through 15 (flip-flops) of output channel 14 also provide DC signals which control various parts of the AGC. Bit position 1 controls the Outlink Control. Refer to table 30-5C. Bit positions 2 and 3 control the Altitude Meter Control, and bit positions 4 and 5 the EMS and Thrust Drive Control. Bit positions 6 through 10 control the Gyro Drive Control and bit positions 11 through 15 the CDU Drive Control.

30-82. Output channels 34 and 35 (flip-flops) provide 16 bit words including a parity bit to the Downlink Converter for downlink transmission.

30-83. INPUT CHANNELS

30-84. In the CM bit positions 1 through 5 (flip-flops) of channel 15 accept five different DC signals from the main panel DSKY keyboard. Bit positions 1 through 5 (flip-flops) of channel 16 accept similar signals from the keyboard of the navigation panel DSKY. Bit positions 6 and 7 (flip-flops) of channel 16 accept two different DC signals from the Optics mark buttons. Any of the
(text continued on page 30-60)

TABLE 30-5A
OUTPUT CHANNEL 12

Bit Position	Channel Output Signal	Purpose in CM	Purpose in LEM
1	ZOPCDU (185)	zero Optics CDU	zero rendezvous radar CDU
2	ENEROP (186)	enable Optics error counter	enable rendezvous radar counter
3	STARON (162)	enable star tracker	use low scale factor for horizon velocity
4	COARSE (194)	enable coarse alignment	same as in CM
5	ZIMCDU (195)	zero IMU CDU's	same as in CM
6	ENERIM (196)	enable IMU error counter	same as in CM
7	ENON (011) 2 ENOFF (013)	turn SPS engine on not used	turn engine on turn engine off
8	TVCNAB (161)	enable SIVB engine thrust vector control	display inertial data
9	S4BTAK (160)	enable SIVB take over	trim plus pitch gimbal
10	ZEROPT (906)	zero Optics	trim minus pitch gimbal
11	DISDAC (902)	disengage Optics DAC	trim plus roll pitch gimbal
12	MROLGT (841)	not used	trim minus roll pitch gimbal
13	S4BSEQ (233)	enable SIV start sequence	except landing radar position command
14	S4BOFF (234)	cutoff SIV engine	enable rendezvous radar lock on
15	ISSTDC (909)	ISS turn on delay completed	same as in CM

1
Numbers in () refer to signals listed in Appendices A and B.
If bit position contains a ONE, signal ENON is generated If bit position contains a ZERO, signal ENOFF is generated.

TABLE 30-5B
OUTPUT CHANNEL 13

TABLE 30-5C
OUTPUT CHANNEL 14

Bit Position	Purpose in CM	Purpose in LEM
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	transmit one outlink word not used not used not used drive EMS enable gyro gyro selection b gyro selection a gyro selection c (minus drive gyro sign)	same as in CM altitude rate selection transmit one altitude meter word drive thrust drive monitor same as in CM
	Selection Bits c a b	Signals Generated by Gyro Drive Control
	0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1	none none GYXP (142), drive X gyro positive GYXM (143), drive X gyro negative GYYP (144), drive Y gyro positive GYYM (145), drive Y gyro negative GYZP (146), drive Z gyro positive GYZM (147), drive Z gyro negative
11 12 13 14 15	drive Optics CDU S drive Optics CDU T drive IMU CDU Z drive IMU CDU Y drive IMU CDU X	same as in CM

Numbers in () indicate related interface signals listed in Appendices A and B .

TABLE 30-5D
INPUT CHANNEL 30

Bit Position	(1) Channel Input Signal	Indication in CM	Indication in LEM
1	$\begin{aligned} & \text { ULLTHR } \\ & (004) \end{aligned}$	ullage thrust present	abort
2	SMSEPR (067)	service model separation	stage verification
3	$\begin{gathered} \text { SPSRDY } \\ (082) \end{gathered}$	SPS ready	engine armed
4	S4BSAB	SIVB separation	stage abort
5	$\begin{gathered} \text { LFTOFF } \\ (007) \end{gathered}$	lift off SIVB	horizon velocity low scale
6	$\begin{gathered} \text { GUIREL } \\ (068) \end{gathered}$	guidance reference release	inertial data display
7	$\underset{(112)}{O P C D F L}$	Optics CDU fail	rendezvous radar CDU fail
8	IN3008	spare	spare
9	IMUOPR	IMU operates	same as in CM
10	CTLSAT	Saturn control	four jet selection
11	IMUCAG)
	(193)		
12	$\begin{gathered} \text { CDUFAL } \\ (124) \end{gathered}$	IMU CDU fail	
13	$\begin{aligned} & \text { IMUFAL } \\ & (141) \end{aligned}$	IMU fail	same as in CM
14	ISSTOR	ISS turned on request	
15	TEMPIN	temperature within limits	

1) Numbers in () refer to signals listed in Appendices A and B.

TABLE 30-5E

INPUT CHANNEL 31

$\begin{array}{\|c} \text { Bit } \\ \text { Position } \end{array}$	Channel 1 Input Signal	Indication in CM	Indication in LEM
1	$\begin{aligned} & \text { MANR+P } \\ & (093) \end{aligned}$	+pitch command from manual rotation control	\bigcirc
2	$\begin{aligned} & \text { MANR - P } \\ & (094) \end{aligned}$	- pitch command from manual rotation control	\int not used
3	$\begin{gathered} \text { MANR+Y } \\ (095) \end{gathered}$	+yaw command from manual rotation control	attitude control out of detention
4	$\begin{aligned} & \text { MANR-Y } \\ & (096) \end{aligned}$	-yaw command from manual rotation control	1
5	$\begin{aligned} & \text { MANR+Z } \\ & (097) \end{aligned}$	+roll command from manual rotation control	not used
6	$\begin{aligned} & \text { MANR - Z } \\ & (098) \end{aligned}$	-roll command from manual rotation control	1
7	$\begin{aligned} & \text { TR AN+X } \\ & \text { (018) } \end{aligned}$	+X translation command from manual translation control	
8	$\begin{aligned} & \text { TRAN-X } \\ & (019) \end{aligned}$	-X translation command from manual translation control	
9	$\begin{aligned} & \text { TRAN+Y } \\ & (020) \end{aligned}$	+Y translation command from manual translation control	
10	$\begin{aligned} & \text { TR AN-Y } \\ & (021) \end{aligned}$	-Y translation command from manual translation control	1
11	$\begin{aligned} & \text { TRAN+Z } \\ & (022) \end{aligned}$	$+Z$ translation command from manual translation control	
12	$\begin{aligned} & \text { TRAN-Z } \\ & (023) \end{aligned}$	-Z translation command from manual translation control	1

TABLE 30-5E
INPUT CHANNEL 31 (cont)

Bit Position	Channel 1 1 Input Signal	Indication in CM	Indication in LEM
13	HOLFUN (040)	hold function	auto stabilization
14	FREFUN (065) GCAPCL (159)	free function guidance control, auto pilot control	auto stabilization G\&N control

1) Numbers in () refer to signals listed in Appendices A and B.

TABLE 30-5F
INPUT CHANNEL 32

Bit Position	Channel 1 Input Signal	Indication in CM	Indication in LEM
1	$\underset{(171)}{\mathrm{MNIM}}$	+pitch minimum impulse	thruster 2-4 fail
2	$\underset{(172)}{\text { MNIM-P }}$	-pitch minimum impulse	thruster 5-8 fail
3	$\underset{(173)}{\substack{\text { MNIM+Y }}}$	+yaw minimum impulse	thruster 1-3 fail
4	$\underset{(174)}{\text { MNIM-Y }}$	-yaw minimum impulse	thruster 6-7 fail
5	$\underset{(188)}{\mathrm{MNIM}^{2}}$	+roll minimum impulse	thruster 14-16 fail
6	$\underset{(189)}{\text { MNIM }_{2}}$	-roll minimum impulse	thruster 13-15 fail
7	$\begin{gathered} \text { TRST9 } \\ (831) \end{gathered}$	not used	thruster 9-12 fail
8	$\begin{gathered} \text { RST10 } \\ (832) \end{gathered}$	not used	thruster 10-11 fail
9	$\begin{gathered} \text { PCHGOF } \\ (842) \end{gathered}$	not used	pitch gimbal off
10	$\begin{gathered} \text { ROLGOF } \\ (843) \end{gathered}$	not used	roll gimbal off
11	$\underset{(060)}{\text { LEMATT }}$	LEM attached	altitude hold
12	IN3212	spare	spare
13	$\begin{array}{r} (033) \\ \text { IN } 3213 \\ (034) \end{array}$	spare	spare
14	IN3214	spare	spare
15	$\begin{array}{r} (844) \\ \text { IN3216 } \\ (845) \end{array}$	spare	spare

1) Numbers in () refer to signals listed in Appendices A and B.

TABLE 30-5G
INPUT CHANNEL 33

Bit Position	Channel 1 Input Signal	Indication in CM	Indication in LEM
1	-	spare	spare
2	$\begin{aligned} & \text { RRPONA } \\ & (064) \end{aligned}$	not used	rendezvous radar on automatic
3	$\begin{gathered} \text { RRRLSC } \\ (069) \end{gathered}$	not used	rendezvous radar on low scale
4	$\begin{gathered} \text { ZEROP } \\ (104) \end{gathered}$	zero optics	rendezvous radar data good
5	OPMSW ${ }^{\text {OPb }}$	AGC has control	landing radar data good
6	$\begin{aligned} & \text { OPMSW } 3 \\ & \text { (107) } \end{aligned}$	star tracker on	landing radar in position 1 (descent)
7	STRPRS (183)	star present	landing radar in position 2 (hover)
8	LVDAGD	not used	landing velocity data good
9	LRRLSC	not used	landing radar on low scale
10	BLKUPL (083)	accept uplink data	
11	no name 3	inlink too fast	
12	no name 4	downlink too fast	same as in CM
13	PIPAFL 2	PIPA fail	15
14	AGCW AR 2	AGC warning	
15	OSCALM 2	oscillator alarm	10

1 Numbers in () refer to signals listed in Appendices A and B.
2 Signal is supplied by Alarm Control
(3) Signal is supplied by Downlink Converter

4 Signal is supplied by Inlink Control

TABLE $30-5 \mathrm{H}$
OUTPUT CHANNELS 05 AND 06

Bit Position	Channel Output Signal \qquad	Purpose in CM 2 ¢	Purpose in LEM 2	
Channel 05				
1	$\mathrm{RC}+\mathrm{X}+\mathrm{P}(80 \mathrm{l})$	\# 1 RCS + X + P	\# 1 RCS	4 U
2	RC - X - P (806)	\# $2 \mathrm{RCS}-\mathrm{X}-\mathrm{P}$	\# 2 RCS	4D
3	RC - X + P (805)	\# 5 RCS - X + P	\# 5 RCS	3 U
4	RC + X - P (802)	\# 6 R CS + X - P	\# 6 RCS	3D
5	$R C+X+Y(803)$	\# $9 \mathrm{RCS}+\mathrm{X}+\mathrm{Y}$	\# 9 RCS	2 U
6	RC - X - Y (808)	\# 10 RCS - X - Y	\#10 RCS	2D
7	RC - X + Y (807)	\# 13 R CS - X + Y	\#13 RCS	1 U
8	$\mathrm{RC}+\mathrm{X}-\mathrm{Y}(804)$	\# $14 \mathrm{RCS}+\mathrm{X}-\mathrm{Y}$	\# 14 RCS	1 D
Channel 06				
1	$R C+Z+R(813)$	\# $7 \mathrm{RCS}+\mathrm{Z}+\mathrm{R}$	\# 7 RCS	3 F
2	RC-Z - R (816)	\# 3 RCS - Z - R	\# 3 RCS	4F
3	RC-Z + R (815)	\#15 RCS - Z + R	\#15 RCS	1 F
4	RC + Z - R (814)	\#11 RCS + Z - R	\#11 RCS	2F
5	$\mathrm{RC}+\mathrm{Y}+\mathrm{R}$ (809)	\#12 RCS + Y + R	\# 12 RCS	2 S
6	RC-Y - R (812)	\# 8 RCS - Y - R	\# 8 RCS	35
7	RC - Y + R (811)	\# 4 RCS - Y + R	\# 4 RCS	45
8	$R C+Y-R(810)$	\#16 RCS + Y - R	\# 16 RCS	1 S

1) Numbers in () refer to signals listed in Appendices A and B.
(2) RCS means Reaction Control System
(3) P, Y, and R mean pitch, yaw, and roll, respectively.

TABLE 30-5J
INPUT CHANNEL 16

\triangle Numbers in () refer to signals listed in Appendices A and B.
signals from the main panel DSKY sets TRAPl5 and triggers the Interrupt Priority Control to initiate the execution of sequence RUPT5. Refer to tables $30-5$ and $30-5 \mathrm{~J}$. Any of the signals from the navigation panel DSKY sets trap TRAP16A and any of the optics signals sets TRAP16B; all signals cause the Interrupt Priority Control to initiate the execution of sequence RUPT6. Input channel 15 serves the DSKY in the LEM the same way as the channel serves the main panel DSKY in the CM. Channel 16 has a different purpose in the LEM than in the CM.

30-85. Bit positions 1 through 15 (gates) of channel 30 accept DC signals from various G\&N subsystems and spacecraft systems. Refer to table 30-5D. All incoming signals are inverted, i.e., the presence of a signal is indicated by zero volts and its absence by +28 volts.

30-86. Bit positions 1 through 15 (gates) of channel 31 accept DC signals from the manual rotation control, the manual translation command, etc. Refer to table 30-5E. Any signal fed into bit positions 1 through 6 sets TRAP31A and any signal entered into bit positions 7 through 12, TRAP31B; all these signals trigger the Interrupt Priority Control to initiate the execution of sequence RUPT10. All incoming signals are inverted.

30-87. Bit positions 1 through 11 (gates) of channel 32 accept DC signals from the minimum impulse control, thrust fail indications, etc. Refer to table 30-5F. Any signal entered into bit positions 1 through 10 sets TRAP32 and triggers the Interrupt Priority Control to initiate the execution of sequence RUPT10. All incoming signals are inverted.

30-88. Bit positions 2 through 9 (gates) of channel 33 accept various DC signals from the Optics and the radars. Refer to table 30-5G. Bit position 10 (a gate) accepts a DC signal from the UPTEL switch. Bit positions 11 through 15 (flip-flops) accept information within the AGC. All incoming signals are inverted.

30-89. SPECIAL CIRCUITS
30-90. CDU Drive Control
30-91. The CDU Drive Control (figure 30-8A) is controlled by bit positions 11 through 15 of output channel 14 (table $30-5 \mathrm{C}$) and the following signals which are supplied by the SQG during the execution of a DINC instruction:

POUT/ generate plus (P) drive pulse
MOUT/ generate minus (M) drive pulse
ZOUT/ generate no more drive pulses

ALL GATES ARE LOCATED IN MODULE A23

Figure 30-8A. CDU Drive Control

Signals XB0/ through XB4/ and signal OCTAD5 are provided by the address decoding logic when addresses 0050 through 0054 are contained in register S .

30-92. Depending on the inputs, the CDU Drive Control generates the following signals:

CDUXD	3.2 kpps signals entered into the Counter Priority Control to request the executions of DINC instructions (table 30-7)	
CDUYD		
CDUZD		
TRNDD		
SHAFTD		
CDUXDP	(126) drive X CDU positive	
CDUXDM	(127) drive X CDU negative	
CDUYDP	(128) drive Y CDU positive	
CDUYDM	(129) drive Y CDU negative	
CDUZDP	(130) drive Z CDU positive	ulses driving the CDU'
CDUZDM	(131) drive Z CDU negative	pulses driving the CDU
TRNDP	(114) drive T CDU positive	
TRNDM	(115) drive T CDU negative	
SHAF TDP	(116) drive S CDU positive	
SHAFTDM	(117) drive S CDU negative	

30-93. Signal CDUXD is generated when bit position 15 of output channel 14 contains a ONE, signal CDUYD when position 14 contains a ONE, signal CDUZD when 13 contains a ONE, signal TRUND when 12 contains a ONE, and signal SHAFTD when bit position 11 contains a ONE. More than one of these signals can be generated simultaneously. The P and M signals (l 26 through 117 listed above) are generated under the control of the Counter Priority Control.

30-94. Once a desired quantity (for instance minus 432) has been entered into a CDUCOM counter (for instance counter XCDUCOM, table 30-4) and output channel 14 has been set properly (a ONE has been entered into bit position 15), the CDU Drive Control generates a corresponding D signal (CDUXD). The D signal sets cell 21 in the Counter Priority Control which then supplies the proper CDUCOM counter address (0050) and triggers the SQG to execute a DINC instruction (DINC XCDUCOM). As the instruction is executed, the cell is reset, an OUT/ signal is generated by the SQG (signal MOUT/because XCDUCOM contains a negative quantity) and the counter content is diminished by one (to minus 431). A POUT/ or MOUT/ signal coincident with the decoded counter address (signals XBO/ and OCTAD5) causes the CDU Drive Control to release one P or M drive pulse respectively (CDUXDM in our example). Since the priority cell is set again by another D pulse (another CDUXD pulse), the execution of another DINC instruction is requested. This is repeated
until the counter content has diminished to zero. Once the counter contains zero and a DINC instruction is executed, signal ZOUT/ is generated which clears the proper bit position of channel 14 (bit position 15 in our example) thus stopping the transmission of drive pulses.

30-95. Gyro Drive Control
30-96. The Gyro Drive Control (figure 30-8B) is controlled by bit positions 6 through 10 of output channel 14 (table $30-5 C$) and the following signals which are supplied by the SQG during the execution of a DINC instruction:

POUT/	generate plus (P) drive pulse
MOUT/	generate minus (M) drive pulse
ZOUT/	generate no more drive pulses

Signals XB7/ and CA4/ are provided by the address decoding logic when address 0047 is contained in register S.

30-97. Depending on the inputs, the Gyro Drive Control generates the following signals:

GYROD $\quad 3.2 \mathrm{kpps}$ signal entered into the Counter Priority Control to request the executions of DINC instructions (table 30-7)

GYENAB (192) enable gyro
120 kpps pulse train
$\left.\begin{array}{l}\text { GYRRST (148) gyro reset } \\ \text { GYRSET (198) gyro set }\end{array}\right\}$
$\left.\begin{array}{ll}\text { GYXP } & \text { (142) drive gyro } X \text { positive } \\ \text { GYXM } & (143) \text { drive gyro } X \text { negative } \\ \text { GYYP } & (144) \text { drive gyro } Y \text { positive } \\ \text { GYYM } & (145) \text { drive gyro } Y \text { negative } \\ \text { GYZP } & (146) \text { drive gyro } Z \text { positive } \\ \text { GYZM } & (147) \text { drive gyro } Z \text { negative }\end{array}\right\}$
3.2 kpps pulse trains

102 kpps pulse trains controlling the gyros

30-98. Signal GYROD is generated when bit position 10 of output channel 14 contains a ONE, and signal GYENAB when position 6 contains a ONE. The P and M signals (142 through 147) are generated according to the content of bit positions 7 through 9 as shown in table 30-5C. If the gyros are not driven (bit position 10 contains a ZERO), GYRRST pulses are transmitted at a rate of 3.2 kpps . When a ONE has been entered into bit position 10 (signal GYROD is transmitted), and a POUT/ or MOUT/ signal is received, the transmission of GYRRST pulses is interrupted and the transmission of GYRSET pulses is started. At the time bit position 10 is reset (contains ZERO, no POUT/ or

Figure 30-8B. Gyro Drive Control

MOUT/ signals are generated), the transmission of GYRSET pulses is discontinued and the transmission of GYRRST pulses is continued.

30-99. Once the desired quantity (for instance plus 123) has been entered into counter GYROS (table $30-4$) and output channel 14 has been set properly (for instance ONE's have been entered into bit positions 6, 7, 9, and 10), the Gyro Drive Control generates drive signal GYROD. This signal sets cell 20 in the Counter Priority Control which then supplies the address of counter GYROS (0047) and triggers the SQG to execute instruction DINC GYROS. As the instruction is executed, the cell is reset, an OUT signal is generated by the SQG (signal POUT/ because counter GYRO contains a positive quantity) and the Counter content is diminished by one (to plus l22). A POUT/ or a MOUT/ signal causes the Gyro Drive Control to generate GYRRST pulses in place of GYRSET pulses. Since the priority cell is set again by another GYROD pulse, the execution of another DINC instruction is requested. This is repeated until the counter content has diminished. Once the counter contains zero and a DINC instruction is executed, signal ZOUT/ is generated which clears bit position 10 of channel 14, thus stopping the transmission of drive pulses and starting again the transmission of GYRRST pulses.

30-100. EMS and Thrust Drive Control
30-101. The EMS and Thrust Drive Control (figure 30-8C) is controlled by bit positions 4 and 5 of output channel 14 (table $30-5 \mathrm{C}$) and the following signals which are supplied by the SQG during the execution of a DINC instruction:

POUT/	generate plus (P) drive pulse
MOUT/	generate minus (M) drive pulse
ZOUT/	generate no more drive pulses

Signals XB5/, XB6/, and CA5/ are provided by the address decoding logic when address 0055 or 0056 is contained in register S.

30-102. Depending on the inputs, the drive control generates the following signals:
\(\left.\begin{array}{l}THRSTD

EMSD\end{array}\right\}\)| 3.2 kpps signals entered into the Counter Priority Con-
 trol to request the executions of DINC instructions (table
 $30-7$) |
| :--- |

\(\left.\begin{array}{lll}THRUST+(008) \& drive thrust positive

THRUST- (009) \& drive thrust negative

EMS+ \& (029) \& drive EMS or LEM monitor positive

EMS- \& (030) \& drive EMS or LEM monitor negative\end{array}\right\} \quad\)| pulse trains |
| :--- |

Figure 30-8C. EMS and Thrust Drive Control

30-103. Signal THRSTD is generated if bit position 4 of output channel 14 contains a ONE, and signal EMSD if position 5 contains a ONE. The + and signals (008 through 030 above) are generated according to the content of the same two bit positions.

30-104. Once a desired quantity (for instance plus 246) has been entered into counter THRUST or EMS (counter THRUST for example, table 30-4) and output channel 14 has been set properly (a ONE has been entered into bit position 4), the drive control generates a corresponding D signal (THRSTD). The D signal sets cell 36 in the Counter Priority Control which then supplies the address of the proper counter (0055) and triggers the SQG to execute a DINC instruction (DINC THRUST). As the instruction is executed, the cell is reset, an OUT/ signal is generated by the SQG (POUT/ in the example), and the counter content is diminished by one (to plus 245). A POUT/ or MOUT/signal causes the drive control to start transmitting + or - drive pulses (THRUST+) at a rate of 3.2 kpps . Since the priority cell is set again by another D signal, the execution of another DINC instruction is requested. This is repeated until the counter content has diminished. Once the counter contains zero and a DINC instruction is executed, signal ZOUT/ is generated which clears the proper bit position of channel 14, thus stopping the transmission of drive pulses.

30-105. Radar Control
30-106. The Radar Control (figure 30-8D) is controlled by bit positions 1 through 4 of output channel 13 (table $30-5 B$) and accepts the following signals from the radars:

$\left.\begin{array}{ll}\text { RRINO } & (031) \\ \text { RRIN1 } & (032)\end{array}\right\}$	Serial data from rendezvous radar (RR)
LRIN0	$\left.\begin{array}{l}(071) \\ \text { LRIN1 }\end{array}\right\}$ Serial data from landing radar (LR), LEM only

30-107. Depending on the inputs, the Radar Control generates the following signals:

RRRANG	(041)	supply RR range data	3.2 kpps pulse trains controlling the radars
RRRARA	(042)	supply R R range rate data	
LRRANG	(046)	supply LR range data	
LRXVEL	(043)	supply LR X velocity data	
LRYVEL	(044)	supply LR Y velocity data	
LRZVEL	(045)	supply LR Z velocity data	
RRSYNC	(047)	3.2 kpps sync pulses for	of RR data
LRSYNC	(051)	3.2 kpps sync pulses for	of LR data

FR-2-130

\(\left.\begin{array}{l}RNRADM

RNRADP\end{array}\right\}\)| Signals entered into the Counter Priority Control to |
| :--- |
| request the execution of a SHINC or SHANC instruction |
| (table $30-7$) |

RADRPT signal sent to Interrupt Priority Control (cell 9) to request the execution of sequence RUPT 9.
$\left.\begin{array}{l}\operatorname{RRRST}(048) \\ \operatorname{LRRST}(052)\end{array}\right\} 3.2 \mathrm{kpps}$ reset pulses sent to RR and LR
30-108. The contents of bit positions 1 through 3 of channel 13 defines which data is to be supplied by the radars (table 30-5B). They also define whether sync pulses are to be sent to the rendezvous radar or to the landing radar and from which radar serial data is to be accepted.

30-109. Once a ONE has been entered into bit position 4, together with the necessary selection bits in bit positions 1 through 3 (for instance, a ONE in bit position lonly in order to request the rendezvous radar to transmit range data), the following sequence is started thereafter:
a. Flip-flop $45402 / 45403$ is set at occurrence of first Fl0A/ signal. As the flip-flop is set, gate 45404 generates signal ADVCNT which sets flip-flop 45320/45321. When this flip-flop has been set, either gate 45324 or 45325 starts to generate a 3.2 kpps bar signal dependent on the content of bit position 3. (In the given example, gate 45324.) The 3.2 kpps bar signal gates either gates 45328 and 45329 or gates 45330 through 45333. Dependent on the content of bit positions 1 through 3, one of the six output gates starts to generate a 3.2 kpps pulse train controlling a radar. (In the example, gate 45328 generates signal RRRANG.)
b. Signals ADVCNT, 3 sec pulses, occur at a rate of 100 pps and trigger the radar counter which starts to generate signal CNTOF9 at the occurrence of the ninth ADVCNT pulse. (The counter has been reset by a signal RADRPT previously.) Signal CNTOF9 resets flipflop $45320 / 45321$, thus discontinuing the generation of any control signal (described in point (a)) after a period of approximately 80 msec.
c. At the time signal CNTOF9 occurs (a little more than 80 msec after entering the ONE into bit position 1) and the first GTSET/ signal, flip-flop $45337 / 45338$ is set. Once the flip-flop has been set, gate 45339 starts to generate pulses at a rate of 3.2 kpps . These pulses cause gate 45345 or 45346 to generate sync pulses. (In the example, pulses RR SYNC.)
d. The first pulse generated by gate 45339 also sets flip-flop 45340 / 45341. Approximately 4.7 msec thereafter, at the occurrence of signal GTRST/, signal RADRPT is generated. (Signal GTRST/ occurs 4.7 msec after signal GTSET/.) Signal RADRPT is generated approximately 85 msec after the first ADVCNT pulse.
e. Signal RADRPT causes the following four operations: It resets flipflop $45337 / 45338$, thus cutting off signal RADRPT and the generation of the sync pulses described in point (c). (Fifteen sync pulses were generated during the 4.7 msec period.) It resets bit position 4 , thus resetting flip-flop $45402 / 45403$ and stopping the generation of pulses ADVCNT. It resets the radar counter to zero. It sets cell 9 in the Interrupt Priority Control to request the execution of sequence RUPT9 (table 30-6).
f. The radar under the control of 3.2 kpps pulse train (signal RRRANG in the given example, see point (a)) and sync pulses (signal RRSYNC, point (c)), returns serial data (pulses RRINO and RRINl in case of our example). The incoming serial pulses are gated according to the content of bit positions 1 through 4. If a ONE is contained in bit position 4, each RRINO or LRINO pulse received causes the generation of one RNRADP pulse, and each RRINl or LRIN1 pulse received causes the generation of one RNRADM pulse. Each RNRADP pulse, as well as each RNRADM pulse, sets cell 19 of the Counter Priority Control; however, each RNRADP pulse causes the Counter Priority Control to request the execution of an instruction SHINC RADAR while each RNRADM pulse causes it to request the execution of an instruction SHANC RADAR.
g. Reset pulses RRRST and LRRST are generated by gates 49218 and 49219 all the time and at a rate of 3.2 kpps , which is the same rate with which the sync pulses are generated. The reset pulses occur about halfway between the sync pulses.

30-110. BMAG/RHC Control of the CM
30-111. The BMAG/RHC Control (figure $30-8 \mathrm{E}$) is controlled by bit positions 8 and 9 of output channel 13 (table $30-5 B$) and accepts the following signals from the body mounted acceleration gyros.

BMGXP
BMGXM
BMGYP
BMGYM
BMGZP
BMGZM

Figure 30-8E. BMAG/RHC Control

30-112. When bit position 8 contains a ONE and bit position 9 a ZERO, the following corresponding pulses are generated whenever one of the incremental input pulses of paragraph 30-111 are received:

BMAGXP	
BMAGXM	Signals entered into the Counter Priority Control to
BMAGYP	request the execution of a PINC or MINC instruction
BMAGYM BMAGZP	(table 30-7)
BMAGZM	

30-113. BMAG/RHC Control of the LEM
30-114. The BMAG/RHC Control of the LEM is identical to that of the CM but accepts the following signals from the RHC Converter (circuits A of modules A27 through A29) :

SIGNX SIGNY SIGNZ	
$\left.\begin{array}{l}\text { GATEX/ } \\ \text { GATEY/ } \\ \text { GATEZ/ }\end{array}\right\}$ Pulses	

30-115. When a ONE has been entered into bit position 9 of channel 13, flipflop $46328 / 46329$ is set at the occurrence of the first F07D/ pulse and reset by a $\mathrm{F} 07 \mathrm{~B} / \mathrm{pulse}$ approximately $234 \mu \mathrm{sec}$ thereafter. During this $234 \mu \mathrm{sec}$ period, one pulse RCHGO is generated which resets bit position 9 and which triggers the RHC Converter. During the $234 \mu \mathrm{sec}$ period, gates 46332,46341 , and 46351 are enabled to set flip-flop $46333 / 46334,46342 / 46343$, or 46352 / 46353 if signal SIGNX, SIGNY, or SIGNZ, respectively, is received from the RHC Converter in response to the RCHGO signal. Gate 46351 resets shortly thereafter any flip-flop set. Gates $46335,46336,46344,46345,46354$, and 46355 AND the information contained in the three flip-flops, and the information represented by signals GATEX/, GATEY/, and GATEZ/ received from the RHC Converter thus cause the generation of BMAG signals (signals BMAGXP through BMAGZM) accordingly, if bit position 8 contains a ONE. Signals GATEX/, GATEY/, and GATEZ/ are DC signals which vary in length, thus causing the generation of zero to thirty-two BMAG pulses. These pulses enter the Counter Priority Control and each requests the execution of a PINC or MINC instruction as mentioned in paragraph 30-112.

30-116. Inlink Control

30-117. The Inlink Control (figure $30-8 \mathrm{~F}$) is controlled by bit positions 5 and 6 of output channel 13 (table 30-5B), and DC signal BLKUPL/ from the Uplink switch and accepts the following signals:

$\left.\begin{array}{ll}\text { UPL0 } & (024) \\ \text { UPL1 } & (025)\end{array}\right\}$ serial data from uplink equipment	
XLNK0	$\left.\begin{array}{l}(080) \\ \text { XLNK1 }\end{array}\right\}$serial data from crosslink equipment

Signal C45R is provided by the Counter Priority Control when counter INLNK is being addressed and signal BRI/ is generated by the Sequence Generator when the flag bit of an uplink or crosslink word has moved into bit position 16.

30-118. When bit positions 5 and 6 contain ZERO's, and signal BLKUPL/ is present, the Inlink Control generates pulse INLNKM if it received pulse UPLO, and pulse INLNKP if it receives pulse UPLl. These INLNK pulses are used to shift uplink data into counter INLNK as described in tables 30-4 and 30-7. Signal BLKUPL/ means accept uplink data. If bit position 6 contains a ONE, or signal BLKUPL/ is not present, no INLNK signals are generated. When bit position 5 contains a ONE and bit position 6 a ZERO, pulse INLNKM is generated if pulse XLNK0 is received, and pulse INLNKP is generated if pulse XLNKl is received.

30-119. Each INLNK pulse sets cell 18 in the Counter Priority Control to request the execution of instruction SHINC INLNK (signal INLNKP) or SHANC INLNK (signal INLNKM). Each incoming uplink word as well as each incoming crosslink word starts with a flag bit (a ONE) which is followed by fifteen data bits. Each time a SHINC INLNK or SHANC INLNK instruction is executed, the content of counter INLNK is shifted one place to the left until the flag bit is detected and shifted out (discarded). At this instance, signal BR1/ is generated, which causes the generation of signal UPRUPT to request the execution of the RUPT7 sequence (table 30-6).

30-119A. Flip-flop $46216 / 46217$ is set every $156 \mu \mathrm{sec}$ by signal F04A and then enables gates 46203 and 46206 to generate signals INLNKP and INLNKM as described in paragraph 30-118. As flip-flop $46216 / 46217$ is set, it resets flip-flop $46219 / 46218$ in case it was set. Signal C45R is generated each time a SHINC INLNK or SHANC INLNK instruction is executed and sets flip-flop $46219 / 46218$ which, in turn, resets flip-flop $46216 / 46217$ if it was set, thus cutting off gates 46203 and 46206 and enabling gate 4621 . In case an inlink or crosslink bit should arrive before flip-flop $46216 / 46217$ is set again, no INLNK pulse is generated but bit position 11 of channel 33 is set to indicate the fact that two uplink or crosslink bits have been received within $156 \mu \mathrm{sec}$.

Figure $30-8 \mathrm{~F}$. Inlink Control

30-120. Outlink Control
30-121. The Outlink Control (figure 30-8G) is controlled by bit position 1 of output channel 14, and signals BRl and BRI/from the SQG. The Outlink Control is able to generate the following signals:

OTLNKM $\quad 3.2 \mathrm{kpps}$ signals entered into the Counter Priority Control to request the executions of instruction SHINC OUTLNK (table 30-7)
$\left.\begin{array}{ll}\text { OTLNK0 } & (078) \\ \text { OTLNK1 } & (079)\end{array}\right\} \quad$ Serial crosslink data
30-122. When a ONE has been entered into bit position 1 of channel 14 , the following sequence is started thereafter:
a. At the occurrence of the first GTSET/ pulse, flip-flop 46138/46139 is set. The GTSET/ pulses are $10 \mu \mathrm{sec}$ wide and occur at a rate of 200 pps , or every 5 msec .
b. Approximately $156 \mu \mathrm{sec}$ later, at the occurrence of an F5ASB2/ pulse, one OTLNKl pulse is generated, flip-flop $46141 / 46142$ is set, and bit position l is reset. The F5ASB2/ pulses occur at a rate of 3.2 kpps .
c. Another $156 \mu \mathrm{sec}$ later, at the occurrence of a GTONE pulse, flipflop $46138 / 46139$ is reset. The GTONE pulses are $10 \mu s e c$ wide and occur at a rate of 200 pps , approximately $312 \mu \mathrm{sec}$ after the GTSET/ pulses.
d. Another $156 \mu \mathrm{sec}$ later, at the occurrence of an F5ASB0/ pulse, a signal OTLNKM is generated. The F5ASB0/ pulses occur at the same rate as the F5ASB2/ pulses and approximately $3 \mu s e c$ earlier.
e. Another $312 \mu \mathrm{sec}$ later, at the occurrence of the next F5ASB0/ pulse, a second signal OTLNKM is generated.
f. At the occurrence of the next thirteen F5ASB0/ pulses (intervals of $312 \mu \mathrm{sec}$ each), thirteen OTLNKM signals are generated.
g. Thereafter, at the occurrence of a GTSET pulse, flip-flop 46141/ 46142 is reset, thus discontinuing the generation of OTLNKM signals. Altogether, fifteen OUTLNKM signals are sent to the Sequence Generator.

Figure 30-8G. Outlink Control

30-122A. Each OTLNKM pulse causes the execution of instruction SHINC OUTLNK (table 30-4). Each time this instruction is executed, the content of counter OUTLNK is shifted one place to the left and the bit shitted out is converted into an OTLNK signal. If the bit shifted out is a ZERO, signal OTLNK0 is generated; if it is a ONE, signal OTLNKl is generated. The OTLNKl signal generated as described in point (b) of the previous paragraph is the flag bit of the crosslink word, while the fifteen OTLNKO and OTLNKl signals generated thereafter represent data bits of the same crosslink word.

30-122B. When a new crosslink word has been entered into counter OUTLNK and a ONE has been entered into bit position 1 of channel 14 , the operation described in paragraphs 30-122 and $30-122 \mathrm{~A}$ is repeated.

30-123. Altitude Meter Control
30-124. The Altitude Meter Control (figure $30-8 \mathrm{H}$) is controlled by bit positions 2 and 3 of output channel 14, and signals BR1 and BR1/from the SQG. The control is able to generate the following signals:

ALTM	3.2 kpps signals entered into the Counter Priority Control to request the executions of instruction SHINC ALT (table 30-7).

ALT0 (003)
ALT1 (002)
ALRT0 (012)
ALRTl (010)
serial altitude meter data

ALTSNC (028) $\quad 5.13 \mathrm{msec}$ sync signal
30-125. When bit position 2 of channel 14 contains a ZERO, signals ALTO and ALTl are generated. When bit position 2 contains a ONE, signals ALRTO and ALRTl are generated instead. Bit position 3 has a purpose similar to bit position l for the Outlink Control. When a ONE has been entered into bit position 3, the following sequence is started thereafter.
a. At the occurrence of the first GTSET/ pulse, flip-flop $46124 / 46125$ is set and the generation of signals ALTSNC begins. (For a description of timing pulses, refer to paragraph 30-123).
b. Approximately $156 \mu \mathrm{sec}$ later, at the occurrence of an F5ASB2/ pulse, an ALTl or ALRTl pulse (dependent on the content of bit position 2) is generated, flip-flops $46127 / 46128$ and $46130 / 46131$ are set, and bit position 3 is reset.

Figure $30-8 \mathrm{H}$. Altitude Meter Control
c. Another 156μ sec later, at the occurrence of a GTONE pulse, flipflop $46124 / 46125$ is reset.
d. Another $156 \mu \mathrm{sec}$ later, at the occurrence of an F5ASB0/ pulse, a signal ALTM is generated.
e. Another $312 \mu \mathrm{sec}$ later, at the occurrence of the next F5ASB0/ pulse, a second signal ALTM is generated.
f. At the occurrence of the next thirteen F5ASB0/pulses, thirteen ALTM signals are generated.
g. Thereafter, at the occurrence of the GTSET pulse, flip-flop $46127 / 46128$ is reset, thus discontinuing the generation of ALTM signals.
h. Approximately $312 \mu \mathrm{sec}$ later, at the occurrence of the next GTONE pulse, flip-flop $46130 / 46131$ is reset, thus suspending signal ALTSNC, the generation of which started 5.3 msec earlier, as mentioned in point (a).

30-125A. Each ALTM pulse causes the execution of instruction SHINC ALT (table 30-4). Each time this instruction is executed, the content of counter ALT is shifted one place to the left and the bit shifted out is converted into an ALT or ALRT signal, dependent on the content of bit position 2 . If the bit shifted out is a ZERO, signal ALT0 or ALRT0 is generated; if it is a ONE, signal ALTl or ALRTl is generated. The ALTl or ALRTl signal mentioned in point (b) of the previous paragraph is the flag bit of the altitude meter word.

30-125B. When a new altitude meter word has been entered into counter ALT and a ONE has been entered into bit position 3 of channel 14, the operation described in paragraphs $30-125$ and $30-125 \mathrm{~A}$ is repeated.

30-126. Downlink Converter
30-127. The Downlink Converter (figure 30-8J) is able to convert the following information into serial data: content of bit position 7 (downlink order bit) of channel 13, contents of bit positions 15 through 0 of channel 34, and contents of bit positions 15 through 0 of channel 35 in this sequence. (For numbering of bit positions, refer to figure 30-8J and paragraph 30-71. Bit position 0 contains the parity bit.) The command module AGC is generating all 33 data bits, the LEM AGC only the first 17. The Downlink Converter is controlled by the following signals received from the NA Programmer:

Figure 30-8J. Downlink Converter (Sheet 1 of 2)

FR-2-130

Figure $30-8 \mathrm{~J}$. Downlink Converter (Sheet 2 of 2)

DKSTRT (014) Start transmission of a downlink word (33 or 17 bits). received at intervals of approximately $20 \mu \mathrm{sec}$.
DKEND (015) End of downlink word.
Each time a DKBSNK pulse is received, the Downlink Converter generates a signal DKDATA (017) and a signal DKDATB (085). Both signals are alike and are a ZERO when the bit position contains a ONE. When a complete downlink word has been transmitted, cell 8 in the Interrupt Priority Control is set to request the execution of program section DOWNRUPT which enters new information into bit position 7 of channel 13 into all bit positions of channel 34 and into all bit positions of channel 35, if applicable. The Downlink Converter sets bit position 12 of channel 33 when the transmission of two downlink words is requested at an interval shorter than 10 msec .

30-127A. Signal DKSTRT, a $3 \mu \mathrm{sec}$ pulse, causes the generation of pulse DLKCLR which clears (resets to zero) the 32 step counter and sets flip-flops $47105 / 47104$ and $47153 / 47154$. In the set position, the first flip-flop generates signal RDOUT/ which controls gates 47106,47256 , and 47261 . The second flip-flop generates signal WDORDR and a bar signal which is fed into gate 47159. Gate 47159 generates signal ORDRBT if bit position 7 of channel 13 contains a ONE. Each DKBSNC signal, a $3 \mu \mathrm{sec}$ pulse, received causes the generation of a BSYNC/ pulse which is fed into gates 47256 and 47261 . Each BSYNC/ pulse is also fed into gate 47106; however, the first BSYNC/ pulse after pulse DKSTRT has no effect on gate 47106 since it is kept in the on position by signal WDORDR. All BSYNC/ pulses cause the generation of a spike (short pulse) and the first resets flip-flop $47153 / 47154$. As the flip-flop is reset, signal WDORDR is discontinued, thus allowing gate 47106 to generate an ADVCTR pulse in response to each subsequent BSYNC/ pulse. Each ADVCTR pulse advances the 32 step counter one step. The 10 outputs of the counter are decoded and the 12 outputs of the decoder are used to control the 32 read gates of channels 34 and 35.

30-127B. At the occurrence of the first DKBSNC pulse, gate 47254 is kept in the on position by signal WDORDR. If bit position 7 of channel 13 contains a ONE, signal ORDRBT turns gate 47255 on and signals DKDATA and DKDATB are generated; if bit position 7 contains a ZERO, the two output signals are not generated. At the occurrence of the subsequent 32 (or 16) DKBSNC pulses, no signal WDORDR or ORDRBT is present and the DKDATA and DKDATB pulses are generated according to the contents of bit positions $15,14, \ldots . .1$ and 0 of channel 34 and bit positions $15,14 \ldots . .1$ and 0 of channel 35 if applicable. The bit positions are selected by the output signals of the decoder as mentioned in the previous paragraph. When signal DKEND is received, a $3 \mu \mathrm{sec}$ pulse, signal END, is generated, which resets flip-flop $47105 / 47104$, thus stopping the generation of further DKDATA and DKDATB signals. Signal DKEND also causes setting cell 8 in the Interrupt Priority

Control. Furthermore, the frequency with which the DKEND pulses occur is checked and bit position 12 of channel 33 is set when the interval between two DKEND pulses is less than 10 msec . The DKEND signal in the LEM occurs after the seventeenth DKBSNK pulse, the DKEND pulse in the CM occurs after the thirty-third DKBSNK pulse.

30-128. PRIORITY CONTROL
30-129. The Priority Control consists of the Interrupt Priority Control and the Counter Priority Control.

30-130. INTERRUPT PRIORITY CONTROL

30-131. The Interrupt Priority Control is triggered at the occurrence of certain events to interrupt the execution of a program section currently being executed in favor of a programmed operation of higher priority. The events can be an overflow occurring in certain counters, certain incoming signals, a failure, etc. Refer to table 30-6. At the occurrence of such an event, the start-stop logic or a cell in the Interrupt Priority Control is set.

30-131A. If the Interrupt Priority Control receives one of the signals listed below, the start-stop logic (gates 37227 through $37254,37259,41101$ through 41105,41237 through 41240,45222 and 45224) generates signals GOJAM/, GOJAM, and MGOJAM.

$$
\begin{array}{ll}
\text { ALGA } & \text { caused by a parity fail, a rupt lock, a TC trap, or a watch- } \\
& \text { man failure (paragraphs } 30-141 \mathrm{~B} \text { through } 30-141 \mathrm{~L} \text {). }
\end{array}
$$

Signal STRT2 causes the start-stop logic to generate the GOJAM signals immediately and forces the Time Pulse Generator into time Tl2. The other input signals cause the generation of the GOJAM signals at the next time 12. The GOJAM signals are terminated at the execution of instruction GO (signal GOJ1).

30-131B. Signals GOJAM/ and GOJAM cause the execution of instruction GO (paragraphs 32-283 through 32-285), which is followed by the execution of instruction TC 4000 to then execute program section Restart. Furthermore, signals GOJAM/ and GOJAM set the restart flip-flop (gates $41237 / 41238$) and reset a number of circuits in the AGC. The restart flip-flop then causes the generation of signal RESTART (232) which controls DSKY indicator RESTART. The generation of signal RESTART can also be caused by the presence of signal ALTEST, i.e., if bit position 10 of output channel 13 contains a ONE, Signal RESTART is turned on by signal GOJAM and is turned off by signal ERRST or signal SBYEXT; and signal RESTART remains on as long as a ONE is
contained in bit position 10 of output channel 13. Signal ERRST is generated if signal CAURST (208) is received or if a ONE is contained in bit position 10 of output channel ll. Signal SBYEXT is generated by the start-stop logic. Program section Restart clears various locations in E Memory, enters certain quantities into other E memory locations, and sets certain bit positions of the output channels.

30-132. If a RUPT cell has been set, the Interrupt Priority Control does three things: it signals the Sequence Generator to execute instruction RUPT, it supplies the address of the proper RUPT Transfer Routine, and it resets the cell upon the execution of instruction RUPT. Instruction RUPT interrupts the execution of the current program section and transfers control to the proper RUPT Transfer Routine. Ten different RUPT Transfer Routines are provided. Instruction RUPT and the RUPT Transfer Routines preserve pertinent information contained in the CP registers by storing it in locations 0010 through 0017 (table 30-4). Finally, the RUPT Transfer Routine transfers control to the program section to be currently executed. A small routine and instruction RESUME, the last instruction of the interrupting programmed operation, return the pertinent information to the CP registers and cause the SQG to resume the execution of the inter rupted program section.

30-133. Whenever two or more interrupt requests have been made (two or more RUPT cells have been set) simultaneously, the Interrupt Priority Control first selects the request of highest priority (lowest priority number) and carries it out; the other requests are carried out after the first request has been satisfied. Thus, current requests are carried out in the order of assigned priorities.

30-134. Once an interrupt request has been made and is being carried out, its execution cannot be interrupted by a request of higher priority. Thus, interruption of an interrupting operation is prevented. Assigned priorities have an effect only on selecting the next request to be carried out.

30-135. Sometimes it is desirable to inhibit any interruption of a program being executed. This can be done by executing instruction INHINT. Instruction RELINT then is used to release the inhibition of a program interrupt.

30-136. COUNTER PRIORITY CONTROL
30-137. The Counter Priority Control is triggered at the occurrence of certain events to increment, decrement, diminish, or shift the content of a counter. The events can be time pulses generated in the AGC, signals received from other equipment or drive pulses generated in the AGC. Refer to table 30-7. Incremental signals received from the outside are fed directly or via the BMAG/RHC Control into the Counter Priority Control and request
(Text continued on page 30-72).

TABLE 30-6
INTERRUPT MOTIONS

Priority Level Number	Initiating Event 4	RUPT Cell Set (Gates)	Further Actions Caused
0	Occurrence of signal ALGA, STARTl, START2, or MSTRT	RUPT0 (37226 through 37229)	Execution of instructions GO and TC 4000 Execution of Restart Sequence.
1	Content of Counter T6 diminishes to zero	RUPT1 (35306 through 35309)	Execution of instruction RUPT. Execution of RUPT Transfer Routine 1. Execution of program section Reaction Control.
2	Overflow of Counter T5	RUPT2 (35310 through 35313)	Execution of instruction RUPT. Execution of RUPT Transfer Routine 2. Execution of program section Trans Vector Control.
3	Overflow of Counter T3	RUPT3 (35315 through 35318)	Execution of instruction RUPT. Execution of RUPT Transfer Routine 3. Execution of routine T3RUPT of program section Waitlister (Task Control). Execution of Task due.
4	Overflow of Counter T4 2	$\begin{aligned} & \text { RUPT4 (35322, } \\ & 35323,35325, \\ & 35326 \text {) } \end{aligned}$	Execution of instruction RUPT. Execution of RUPT Transfer Routine 4. Execution of routine T4RUPT of program section T4RUPT Output Control. Transfer of information to DSKY's via output channel 10 , or driving CDU's, or checking IMU or Optics mode, etc.
5	Arrival of a KEY bit from main panel DSKY	RUPT5 (35327 through 35329)	Execution of instruction RUPT. Execution of RUPT Transfer Routine 5. Execution of function KEYRUPT which requests the execution of Job CHARIN of program section Keyboard and Display to process keyed in data.

TABLE 30-6
INTERRUPT MOTIONS (cont)

TABLE 30-6
INTERRUPT MOTIONS (cont)

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Priority \\
Level \\
Number
\end{tabular} \& Initiating Event
\(\qquad\) \& \begin{tabular}{l}
RUPT \\
Cell Set \\
(Gates)
\end{tabular} \& Further Actions Caused \\
\hline 9

10 \& \begin{tabular}{l}
Occurrence of signal RADRPT from Radar Control

Arrival of a rotation or translation command (093 through 098 and 018 through 022) from the hand controller

 \&

RUPT9 (35220, 35222, 35223)

RUPT10 (35221, 35223, 35225)

 \&

Execution of instruction RUPT. Execution of RUPT Transfer Routine 9. Execution of program section Radar to process data from a radar. (See paragraphs 30-105 through 30-109.)

Execution of instruction RUPT. Execution of RUPT Transfer Routine 10. Execution of program section Hand Control to carry out commanded motion.
\end{tabular}

\hline
\end{tabular}

1 The names of some RUPT Transfer Routines and of some program sections have been arbitrarily chosen until official names are available.
(2) Also refer to table 30-4.
(3) Also refer to table 30-5.

Numbers in () refer to signals listed in Appendices A and B .

COUNTER PRIORITY CONTROL INPUTS

Priority Level Number and Priority Cell Number (Input Gate)	Event	Instruction Executed
1 (31129)	Overflow of counter Tl	PINC T2
2 (31136)	10 msec time signal from Scaler 1	PINC Tl
3 (31143)	10 msec time signal from Scaler 1	PINC T3
4 (31229)	10 msec time signal from Scaler 1	PINC T4
5 (31236)	10 msec time signal from Scaler 1	PINC T5
6 (31243)	10 msec time signal from Scaler 1	DINC T6
7 (31102)	Signal CDUXP (118)	PCDU XCDU
7 (31109)	Signal CDUXM (119)	MCDU XCDU
8 (31115)	Signal CDUYP (120)	PCDU YCDU
8 (31124)	Signal CDU YM (121)	MCDU YCDU
9 (31202)	Signal CDUZP (122)	PCDU ZCDU
9 (31209)	Signal CDUZM (123)	MCDU ZCDU
10 (31215)	Signal TRNP (110)	PCDU TCDU
10 (31224)	Signal TRNM (111)	MCDU TCDU
11 (31303)	Signal SHAFTP (108)	PCDU SCDU
11 (31309)	Signal SHAFTM (109)	MCDU SCDU
12 (31315)	Signal PIPXP (132)	PINC XPIPA
12 (31324)	Signal PIPXM (133)	MINC XPIPA
13 (31402)	Signal PIPYP (134)	PINC YPIPA
13 (31409)	Signal PIPYM (135)	MINC YPIPA
14 (31415)	Signal PIP ZP (136)	PINC ZPIPA
$14 \quad(31424)$	Signal PIPZM (137)	MINC ZPIPA
15 (32502)	Signal BMAGXP (817) 2	PINC XBMAG
15 (32509)	Signal BMAGXM (818) 2	MINC XBMAG

TABLE 30-7
COUNTER PRIORITY CONTROL INPUTS 1 (cont)

Priority Level Number and Priority Cell Number (Input Gate)	Event	Instruction Executed
16 (32515)	Signal BMAGYP (821)	PINC YBMAG
16 (32524)	Signal BMAGYM (822)	MINC YBMAG
17 (32602)	Signal BMAGZP (819) 2	PINC ZBMAG
17 (32609)	Signal BMAGZM (820)	MINC ZBMAG
18 (32615)	Signal INLNKP (024)	SHINC INLNK
18 (32624)	Signal INLNKM (025)	SHANC INLNK
19 (32629)	Signal RNRADP (031)	SHINC RADAR
19 (32636)	Signal RNRADM (032) $\}$	SHANC RADAR
20 (32643)	Signal GYROD (142 through 147) 5	DINC GYROS
21 (31329)	Signal CDUXD $(126,127)$)	DINC XCDUCOM
22 (31336)	Signal CDU YD (128,129)	DINC YCDUCOM
23 (31343)	Signal CDUZD (130, 131) 6	DINC ZCDUCOM
24 (31429)	Signal TRUND (114, 115)	DINC TCDUCOM
25 (31436)	Signal SHAFTD (116,117) \quad)	DINC SCDJCOM
26 (31443)	Signal THRSTD (LEM only) $(008,009)\} 7$	DINC THRUST
27 (32529)	Signal EMSD (029 and 030)	DINC EMS
28 (32536)	Signal OTLNKM	SHINC OUTLNK
29 (32543)	Signal ALTM (LEM only) 9	SHINC ALT

Numbers in () refer to signals listed in Appendices A and B
Also refer to table 30-4.
Refer to paragraphs 30-110 through 30-115
Refer to paragraphs 30-116 through 30-119 Refer to paragraphs 30-105 through 30-109 Refer to paragraphs 30-95 through 30-99

Refer to paragraphs 30-90 through 30-94 Refer to paragraphs 30-100 through 30-104 Refer to paragraphs 30-120 through 30-122 Refer to paragraphs 30-123 through 30-125
the execution of an incrementing or decrementing instruction. The incremental signals (pulses) may represent a positive or a negative quantity of equal magnitude. Serial data received from outside the AGC is fed into the Inlink or Radar Control (figure 30-6) which gates it into the Counter Priority Control. When a ZERO is received, the content of a counter is shifted one place to the left and a ZERO is entered into bit position 1 ; when a ONE is received, the content is also shifted one place but a ONE is entered into bit position 1. Whenever one of the events previously described occurs, a cell in the Counter Priority Control is set. One cell is provided for each priority level.

30-138. If a cell has been set, the Counter Priority Control does three things: first, it signals the Sequence Generator (SQG) to execute instruction PINC (positive increment), MINC (negative increment or decrement), DINC (diminish absolute quantity), PCDU (positive increment of cyclic TWO's complement information), SHINC (shift and enter a ZERO in bit position 1), or SHANC (shift and enter a ONE in bit position 1); second, it supplies the address of the proper counter; and third, it resets the priority cell upon the execution of the requested Counter Instruction. The Counter Instruction is executed as soon as the execution of a Regular Instruction is completed.

30-139. If more than one request for incrementing, decrementing, diminishing, or shifting the content of a counter has been made during the execution of a Regular Instruction, the requested operations are carried out according to assigned priorities. The levels of priority decrease as the addresses of the counters increase. All requested counter operations are carried out before the next Regular Instruction is executed.

30-140. ALARM CONTROL

30-141. The Alarm Control consists of several digital fault detectors, several analog fault detectors, and a warning integrator which works with some of the detectors. Most of these circuits are shown on NASA drawings 2005069, 2005072, 2005073, and 2005008. Many of the signals generated by the Alarm Control are listed in Appendix C. Indication of Optics CDU fail, IMU CDU fail, IMU fail, and temperature within limits, is produced outside the AGC and is received via input channel 30 (table 30-5D).

30-141A. DIGITAL FAULT DETECTIONS
30-141B. Parity Fail
30-141C. The Parity Block generates signals PALE and MPAL/ when it detects incorrect parity (paragraph 30-49). Signal PALE causes the alarm control gates 41116 through 41118 to generate signal ALGA unless signal NHALGA
(Appendix C) is provided by peripheral equipment. Signal ALGA causes the start-stop logic to restart computer operation.

30-141D. Rupt Lock
30-141E. If a program interrupt lasts too long, or if program interruptions occur in too short intervals, the alarm control gates 41107 through 41118 generate signal MRPTAL/, and also signal ALGA when signal NHALGA is not applied. Signal ALGA causes the start-stop logic to restart computer operation. The terms "too long" and "too short" are phase dependent and may vary from 80 msec to 240 msec .

30-141F. TC Trap
30-141G. If consecutive TC K and/or TCF F instructions are executed for too long, or if these instructions are executed in too short intervals, the alarm control gates 41119 through 41128 and 41116 through 41118) generate signal MTCAL/, and also signal ALGA when signal NHALGA is not applied. Signal ALGA causes the start-stop logic to restart computer operation. The terms "too long" and "too short" are phase dependent and may vary from 5 msec to 15 msec .

30-141H. Watchman
30-141J. If location 0067 is not addressed within a certain period, the alarm control gates 49110 through 49118 generate signals WATCHP and MWATCH/. Signal WATCHP causes the generation of signal ALGA (gates 41116 through 41118), except when signal NHALGA is applied, and causes the restart of computer operation. The duration of the period is phase dependent and may vary from 0.64 sec to 1.92 sec .

30-141K. Counter Fail
30-141L. If Counter Instructions are executed consecutively for too long (i.e., if locations 0024 through 0056 are addressed for too long) or if a Counter Instruction is not being executed once its execution has been requested, the alarm control gates 49435 through 49443 and 41132 through 41151 generates signals DOFILT and MCTRAL/. The term "too long" is phase dependent and may vary from 0.625 msec to 1.875 msec . Signal DOFILT causes the generation of signal FILTIN (gates 41208 through 41216 , paragraph 30-141AA) which is fed into the warning integrator (paragraph 31-141AB). Depending on the frequency with which signal FILTIN occurs, the warning integrator may generate signal FLTOUT. Signal FLTOUT causes the generation of signals CGCWAR (237) and MWARNF/ (gates 41223, 41224, and 41227) and enters
a ONE into bit position 14 of input channel 33 (gates $41225 / 41226$ and 44258). An AGC program can make use of the bit stored in channel 33.

30-141M. PIPA Fail
30-141N. If no PIPA pulse (signals 132 through 137) is received from any PIPA during a $312.5 \mu \mathrm{sec}$ period, or if a + and - PIPA pulse from the same PIPA is received simultaneously, or if the time period between the arrival of a + and a - PIPA pulse from one PIPA is too long, the alarm control gates 48149 through 48154,48252 through 48257,49303 through 49308, and 48101 through 48105 generate a signal which enters a ONE into bit position 13 of input channel 33. The term "too long" is phase dependent and may vary from 1.28 sec to 3.84 sec . Bit position 13 of channel 33 (gates 48106 through 48108) supplies signal PIPAFL and gate 41106 signal MPIPAL/. The AGC program makes use of the bit stored in channel 33 to set ISS warning and program caution relays in the DSKY's.

30-141P. ANALOG FAULT DETECTIONS

30-141Q. Voltage Fail
30-141R. If an AGC voltage (+28VAC, +14VDC BPLUS, +4VDC) is out of limits, the voltage alarm (module B08) generates signal VFAIL. If this signal is present for a period between 157 and $470 \mu s e c$, and if inhibit signal NHVFAL (912) is not present, the alarm control gates 41201 through 41207 generate signals STRT1 and MVFAIL. Signal STRT1 causes the start-stop logic to restart computer operation unless line STRTl is connected to ground (see STRT1 of Appendix C).

30-141S. When the AGC operates in the standby mode, signal FILTIN is generated simultanenusly with signal STRT1 (gates 41208 through 41216). Depending on the frequency with which signal FILTIN occurs, the warning integrator may generate signal FLTOUT and cause the subsequent actions described in paragraph 30-141 L.

30-141 T. Oscillator Fail

30-141U. If the oscillator stops, i.e., if the Q2A pulses which are similar to the clock pulses CLK (signal 001) are not generated, the os cillator alarm (module B08) generates signal STRT2 within 250 msec . Signal STRT2 causes the start-stop logic to restart computer operation immediately, i.e., without waiting for the next time pulse T12. Signal STRT2 also enters a ONE into bit position 15 of input channel 33 (gates $41232 / 41233$ and 44257) which provides signal OSCALM. Signal MOSCAL/ is provided by gate 41231. An AGC program can make use of the bit stored in channel 33.

30-141V. When the AGC operates in the standby mode, the oscillator alarm is without power and 250 msec is required after switching to normal operation to be operative thus avoiding an erroneous failure indication at mode switching.

30-141 W. Scaler Fail
30-141X. If stage 17 of the Scaler fails to produce pulses (signal FS17, 0.78125 pps), the scaler alarm (gate 32258 and module $B 08$) generates signal SCAFAL. Signal SCAFAL causes the alarm control gates 41224 and 41222 to generate signals CGCWAR (237) and MSCAFL/, and to enter a ONE into bit position 14 of input channel 33 (gates $41225 / 41226$ and 44258). Signal DOSCAL from peripheral equipment prevents FSl7 pulses from producing SCAS17 pulses and can be used to test the scaler alarm circuits.

30-141Y. If stage 10 of the Scaler produces more than 200 pps instead of 100 pps (signal FS10), the double frequency scaler alarm (gates 30057 through 30059, 41242, 41243, 34253, and module 08) generates signals 2FSFAL, SCADBL, and MSCDBL/. Signal SCADBL causes the generation of signal FILTIN as signal DOFILT does. The actions caused by signal FILTIN are described in paragraph 31-141L and apply here as well. Signal DBLTST from peripheral equipment causes the Alarm Control to use FS09 pulses instead of FS10 pulses to produce SCAS10 pulses and can be used to test the double frequency scaler alarm circuits.

30-141Z. WARNING INTEGRATOR

30-141AA. The warning integrator generates signal FLTOUT if the following events occur repeatedly within a certain time.

Counter fail (paragraph 30-141L)
Voltage fail (paragraph 30-141S)
Double frequency scaler fail (paragraph 30-141Y)
Test alarm (a ONE is entered into bit position 10 of output channel 13)
Signal DOFIL T from the counter fail detection, a signal from the voltage fail detection, signal SCADBL from the double frequency scaler fail detection, and signal ALTEST from bit position 10 of channel 13 set the first warning filter flip-flop (gates $41211 / 41212$) which is reset by pulse F14B occurring every 160 msec . The second filter flip-flop ($41214 / 41215$), which is controlled by the output of the first flip-flop and signal F14B, cannot produce more than one FILTIN pulse per 160 msec , no matter how many signals were received from the fail detections.

30-141AB. Approximately six consecutive FILTIN pulses cause the warning integrator to generate signal FLTOUT for about 5 sec . Signal FLTOUT causes the generation of signals CGCWAR and MWARNF, and signal SCAFAL causes the generation of signals CGCWAR and MSCAFL/. Non-consecutive FILTIN pulses may also cause the warning integrator to generate signal FLTOUT if the frequency of FILTIN pulses is 0.9 pps or higher. Once signal FLTOUT is being generated, it will remain if FILTIN pulses occur at a frequency of 0.6 pps or more.

30-141 AC. ASSOCIA TED SIGNALS
30-141AD. Light Test
30-141AE. Entering a ONE into bit position 10 of output channel 13 allows testing DSKY relays and indicators which cannot be controlled by a program. Bit position 10 of channel 13 generates signal ALTEST which controls the start-stop logic, the Alarm Control, and the Standby Control. In the startstop logic, signal ALTEST causes the generation of signal RESTRT (232) which operates DSKY indicator RESTART (paragraph 30-131B). In the Alarm Control, signal ALTEST causes the generation of signal FILTIN (paragraph 30-141AA). Signal FILTIN causes the generation of signal CGCWAR (237) which lights an indicator in the spacecraft and which enters a ONE into bit position 14 of channel 33 (paragraph 30-141L). In the Standby Control, signal ALTEST causes the generation of signal SBYLIT (231) which operates DSKY indicator STBY.

30-141AF. When bit position 10 of output channel 13 is reset to contain ZERO, the generation of signal RESTRT is terminated immediately and the DSKY indicator RESTART is turned off; if no counter failure, no voltage failure, and no double frequency scaler failure is present, signal FILTIN is terminated and the CGC warning indicator in the spacecraft will be turned off within 5 sec ; and signal SBYLIT is terminated immediately and the STBY indicator turned off.

30-141AG. Alarm Reset
30-141AH. Depressing key RSET on a DSKY produces signal CAURST (208) and a ONE contained in bit position 10 of output channel 11 generates signal W1110. Both signals generate signal ERRST which resets the restart flipflop (paragraph 30-131B) and terminates the generation of signal RESTRT (232). Terminating signal RESTRT has the effect of turning on DSKY indicator RESTART and turning off the caution indicator(s) in the spacecraft.

30-141AJ. STANDBY CONTROL

30-141AK. The Standby Control (gates 45141 through 45159,41234 through 41236, and 42457) allow switching computer operation from the normal mode of operation to standby and vice versa. Switching to standby is established by first entering a ONE into bit position 11 of channel 13 to enable the Standby Control and then pressing the STBY button on a DSKY for a period of .64 to 1.92 sec . Normal operation is resumed by again pressing the STBY button for .64 to 1.92 sec .

30-141AL. Pressing the STBY button produces signal SBYBUT (207). When the button is pressed during normal operation, if signal SBYBUT is present for .64 to 1.92 sec , and if bit position 11 of channel 13 contains a ONE, then signals SBYREL/, SBYLIT, SBY, and STNDBY/ are generated. When the button is pressed a second time, if signal SBYBUT is present for .64 to 1.92 sec, the four output signals of the Standby Control are terminated.

30-141AM. Signal SBYREL/, which operates two relays in the Power Supply turns off the switchable +4 and +14 voltage lines, thus putting the AGC into a low power mode, where only the Clock and the Scaler operate and some timing and auxiliary signals are generated. Signal SBYLIT (231) turns on DSKY indicator STBY. Signal SBYLIT is also generated when signal ALTEST occurs during light test (paragraph 30-141AE). Signal SBY causes the startstop logic to generate GOJAM commands (paragraph 30-131A). Signal SBY also causes the generation of an SBYEXT pulse (up to 10 msec long) which causes the start-stop logic to turn off signal RESTART (paragraph 30-131 B). Signal STNDBY/allows the Alarm Control to generate signal FILTIN in case of a voltage failure (paragraph 30-141S) which causes an AGC warning. An AGC warning can also occur in the standby mode due to a scaler failure (paragraph 30-141 W) but not due to a counter failure, a double frequency scaler failure, or an alarm test (paragraph 30-141AA).

30-142. DISPLAY AND KEYBOARDS

30-143. The two DSKY's (figure 30-4) allow an operator in the command module (CM) to communicate with the AGC. Commands (in coded form) and data can be entered into the computer by punching it into a DSKY keyboard. As a key is depressed (except key STBY), input channel 15 or 16 (table 30-5) accepts the corresponding 5-bit key code and the Interrupt Priority Control initiates the execution of program section Keyboard and Display (table 30-6, priority levels 5 and 6, and paragraph 30-84). This program section then processes each 5-bit code information as keyed in, assembles commands or data, and carries out any command punched in or stores inserted data in the specified location.

30-144. Switching the AGC from normal mode of operation to standby is established by punching in Verb-Noun combination Enable Standby, which enters a ONE into bit position 11 of output channel 13, and by pressing key STBY for .64 to 1.92 sec . Switching the AGC from standby to normal operation is done by pressing key STBY for .64 to 1.92 sec (paragraphs 30-141AJ through 30-141AM).

30-145. Information keyed in is displayed automatically as well as any information which is to be displayed on command. Such information is entered into output channel 10 (table 30-5) under program control (program sections Keyboard and Display and T4RUPT Output Control). Output channel 10 controls relay matrices in the DSKY's which, in turn, control the numeric displays and some caution indicators (paragraph 30-77). Some other indicators are controlled by output channel 11 (paragraph 30-78). Indicators STBY and RESTART are controlled by hardware originated signals (paragraphs 30-141AM and 30-131B, respectively); all other displays are under program control.

30-145A. Each DSKY contains a relay matrix consisting of thirteen banks (octal 00 through 14) of up to eleven latching relays each. The latching relays are set or reset by means of relay words entered into output channel 10 (table 30-5). Bit positions 15 through 12 of a relay word contain a bank number which addresses the proper relay bank; any ONE or ZERO in bit positions 11 through 1 sets or resets the respective relay in the addressed bank. Relay banks 00 through 10 control the three 5 -digit data displays, each digit display being composed of seven segments and each sign display of three segments. Banks 11 through 13 control the 2-digit NOUN, VERB, and PROGRAM displays, respectively.

30-145B. The nine relays of bank 14 control eight DSKY status and caution indicators and the PIPA's as described below.

Relay	Function
AUTO	operates indicator AUTO, controlled by bit 1
operates indicator HOLD, controlled by	
bit 2	
operates indicator FREE, controlled by	
bit 3	

Relay
SPARE
TRACKER

PROG CAUTION

Function
enables the PIPA's, controlled by bit 7 operates indicator TRACKER, controlled by bit 8 1 operates indicator PROG, controlled by bit 9 1

4 of a relay word contained in channel 10; the relay word contains the relay word code 14 in bit positions 15 through 12.

Relays GIMBAL LOCK, TRACKER, and PROG CAUTION also operate a caution indicator on the condition annunciator.

30-145C. Each DSKY also contains 12 non-latching relays which are used as follows:

Relay

Function

COMP ACTY	controlled by bit position 2 of channel 11 (signal 230) operates DSKY indicator
	COMP ACTY,
UPLINK ACTY	controlled by bit position 3 of channel 11 (signal 235),operates DSKY indicator
	UPLINK ACTY,
TEMP CAUTION	controlled by signal TMPCAU (258), i.e., by bit position 4 of channel 11 and signal TEMPIN/s operates DSKY indicator TEMP,
KEY REL	controlled by bit position 5 of channel 11 (signal 236, pulse modulated), operates DSKY indicator KEY REL which flashes,
OPR ERROR	controlled by bit position 7 of channel 11 (signal 244, pulse modulated), operates DSKY indicator OPR ERR which flashes,
FLASH	controlled by bit position 6 of channel 11 (signal 238), operates the verb-noun flash circuit in the DSKY,
ISS WARNING	controlled by bit position 6 of channel 11 (signal 229) generates signals ISS WARNING (324 and 351) which operate inertial subsystem warning indicators in the spacecraft but none on the DSKY's,
INJ SEQ START	controlled by bit position 13 of channel 12 (signal 233), operates the injection sequence start control in the spacecraft,

Relay
CUTOFF

RESTART

CIRCUIT

STBY

Fynction
controlled by bit position 14 of channel 12 (signal 234), operates the SIVB engine, controlled by start-stop logic (signal 232, paragraph 30-13B), operates DSKY indicator RESTART, controlled by the Alarm Control (signal 237, paragraph 30-141AB), operates an indicator in the spacecraft but none on the DSKY, controlled by the Standby Control (signal 231, paragraph 30-141AM), operates indicator STBY,

Relays TEMP and RESTART operate a caution indicator on the condition annunciator as do relays GIMBAL LOCK, TRACKER, and PROG CAUTION.

30-146. All information transmitted from the AGC to the DSKY's is also sent to the ground stations via output channels 34 and 35 (paragraph 30-82) and downlink. Thus, the ground stations are informed about what is going on in the spacecraft and what actions the spaceborne crew is taking.

30-147. An operator at a ground station can communicate with an AGC in a spaceborne CM in a similar way as an operator in the spacecraft. In this case, commands and data are entered into the AGC via the uplink equipment and counter INLINK (table 30-4). Counter INLINK accepts the same 5-bit key codes as input channels 15 and 16 , except that each key code is transmitted three times and entered in counter INLINK three times. Routine UPRUPT makes uplink information available to program section Keyboard and Display for processing as described in paragraph 30-143. Of course, the spacecraft crew is able to observe any actions taken by a ground station and has the capability to prevent any interference from the ground.

30-148. INSTRUCTIONS

30-149. WORD FORMATS AND INSTRUCTION TYPES
30-150. Instruction words, address words, and data words consist of sixteen bits when stored in E or F Memory. The bits are numbered 15 through 0 as indicated in figure 30-9. Bit position 0 is always reserved for the parity bit (paragraph 30-48).

30-151. Normally, a data word represents a ONE's complement quantity with a sign bit in bit position 15, the highest order bit in bit position 14 and the lowest order bit in bit position 1 (paragraphs 30-43 through 30-45). If a data word represents a cyclic TWO's complement number, bit positions 15 through 1 contain value bits only and no sign bit (paragraph 30-46).

30-152. Two types of instructions can be written in an AGC program: Regular Machine Instructions and Interpretive Instructions (paragraph 30-8). A Regular Instruction, normally, is composed of a 3-bit order code in bit positions 15 through 13 and a l2-bit relevant address in bit positions 12 through 1.

30-153. A Regular Machine Instruction which refers to E Memory only may be composed of a 5-bit order code and a 10 -bit address. The 5-bit order code consists of a regular (whole) order code in bit positions 15 through 13 and a quarter code in bit positions 12 and 11, with an assumed binary point between bit positions 13 and 12. This allows one to express all order codes in fractional octal number. (The quarter codes are $0 / 4=.0,1 / 4=.2$, $2 / 4=.4,3 / 4=.6$.

30-154. Channel Instructions (paragraph 30-69) are composed of a 6-bit order code and a 9-bit address. The 6-bit order code consists of a whole order code in bit positions 15 through 13 and an eighth code in bit positions 12 through 11. (The eighth codes are: $0 / 8=.0,1 / 8=.1,2 / 8=.2,3 / 8=.3, \ldots$ $7 / 8=.7$).

30-155. The order code of an Interpretive Instruction consists of seven bits. An Interpretive Instruction Word may contain two such order codes in bit positions 7 through 1 and 14 through 8. An Interpretive Instruction Word is incremented by one and complemented (by the Yul programming system) before it is stored in F memory; therefore, it contains a ONE in bit position 15.

Figure 30-9. Word Formats

An Interpretive Address Word is incremented by one before it is stored in F Memory and contains up to 15 address bits. Each Interpretive Instruction W ord is followed by as many (two, one, or none) Interpretive Address Words as required by the order codes contained in the Interpretive Instruction Word. Interpretive Store Words contain a store code in bit positions 14 through 11 and an E Memory address in bit positions 10 through 1. An Interpretive Store Word is incremented by one before it is stored in F Memory and contains a ZERO in bit position 15 to distinguish it from an Interpretive Instruction Word.

30-156. MACHINE INSTRUCTIONS

30-157. The Machine Instructions can be grouped in Regular, Involuntary, and Peripheral Instructions (table 30-8). Regular Instructions can be written into a program and are executed when transferred from memory to the Central Processor and the Sequence Generator (paragraph 30-24). Involuntary Instructions cannot be written into a program and are executed at the occurrence of certain events or signals during normal operation (paragraphs 30-25 and 30-26). Peripheral Instructions also cannot be written into a program and are executed under the control of the Computer Test Set (CTS) or the Program Analyzer Console (PAC) during testing (paragraph 30-27).

TABLE 30-8
MACHINE INSTRUCTION TYPES

Group	Type	
Regular Instructions	Basic Instructions Extra Code Instructions	Sequence changing instructions Fetching and storing instructions Modifying instructions Arithmetic and logic instructions
	Channel Instructions Special Instructions	
Involuntary Instructions	Interrupting Instructions Counter Instructions	
Peripheral Instructions	Sequence changing test instructions Display and load test instructions	

30-158. REGULAR INSTRUCTIONS
30-159. Regular Instructions can be subdivided into Basic, Extra-Code, Channel, and Special Instructions. A regular instruction word consists of
three order code bits and twelve address bits as shown in figure 30-9. Three order code bits allow only eight different order codes. In order to double the number of order codes, a fourth order code bit is provided by the AGC. This fourth order code bit is entered into bit position SQ-EXT of register SQ upon the execution of instruction EXTEND. Normally, bit position SQ-EXT contains a ZERO in which case Basic Instructions are executed. Whenever instruction EXTEND is executed, a ONE is entered into bit position SQ-EXT and an Extra-Code Instruction or Channel Instruction is executed thereafter. After most Extra-Code Instructions, and all Channel Instructions, bit position SQ-EXT is reset to ZERO. Thus, sixteen different order codes can be represented by the three order code bits and the extend bit.

30-160. When E Memory is addressed, bit positions 12 and 11 of register S both contain ZERO's (table 30-2). When F Memory is addressed, bit position 12 or 11, or both, contain a ONE (table 30-3). This makes it possible to use bits 12 and 11 as additional order code bits (quarter code bits, paragraph 30-153) whenever all instructions using the same regular (whole) order code are restricted to the use of E Memory. On the other hand, an instruction word that contains ZERO's in bit positions 12 and 11 may represent an instruction which is restricted to the use of E Memory while an instruction word that contains a ONE in bit position 12 or 11 , or in both, and the same regular order code, may represent an instruction which is restricted to the use of F Memory. In this case, a part of the address becomes part of the order code.

30-161. Instruction CA, for instance, is represented by regular order code 03 (table 30-9) and refers to either E Memory or F Memory. The octal point can be thought of as being located between bits 13 and 12 of the instruction word stored in memory. Instruction DAS is represented by order code 02.0 (bits 12 and 11 are ZERO's), LXCH by 02.2 (bit 11 is a ONE), INCR by 02.4 (bit 12 is a ONE), and ADS by 02.6 (bits 12 and 11 are ONE's). The last four instructions refer to E Memory only. All five instructions mentioned are Basic Instructions because bit SQ-EXT (equivalent to bit 16 of a word in memory) is a ZERO. Extra-Code Instruction DCA is represented by order code 13. and refers to E as well as F Memory. Extra-Code instructions MSU, QXCH, AUG, and DIM are represented by order codes $12.0,12.2,12.4$, and 12.6, respectively, and refer to E Memory only. All instructions which refer to E Memory only do not enter bits 12 and 11 into register S.

30-162. Instruction CCS is represented by order code 01.0 and refers to E Memory only. Instruction TCF refers to F Memory only because it can be represented by order code 01.2, 01.4, or 01.6 (bits 12 and 11 are really a part of the address). All instructions which refer to F Memory only enter bits 12 and 11 into register S.

TABLE 30-9

30-163. When channels (input/output registers) are addressed, bits 12, 11, and 10 of the instruction word contain ZERO's; therefore, the se three bits can be used as additional order code bits (eighth code bits, paragraph 30-154) whenever an instruction is restricted to the use of channels. Channel Instructions READ through RXOR (table $30-9$) are represented by order codes 10.0 through 10.6.

30-164. Special Instructions are Basic Instructions (bit position SQ-EXT contains a ZERO) which are defined by special 15-bit codes. Whenever the instruction word is $0.0003,0.0004$, or 0.0006 , instruction RELINT, INHINT, or EXTEND, respectively, is executed instead of instruction TC K. Whenever the instruction word is 5.0017 , instruction RESUME is executed instead of instruction NDX E.

30-165. Instructions CYR, SR, CYL, and EDOP have unusual characteristics. They are represented by addresses $0020,0021,0022$, and 0023 , respectively, and may be combined with many Regular Instruction codes. These addresses can be used as fractional order codes .0020, . 0021, . 0022, and . 0023 in a similar way as quarter and eighth codes. Instruction TS CYR, for instance, cycles the quantity one place to the right as the quantity is entered into location 0020. Instruction TS SR shifts the quantity one place to the right as the quantity is entered into location 0021. Instruction TS CYL cycles the quantity one place to the left as the quantity is entered into location 0022. Instruction TS EDOP shifts the quantity seven places to the left as the quantity is entered into location 0023. Refer to table 30-1.

30-166. Regular Instructions can also be classified as Sequence Changing Instructions, Fetching and Storing Instructions, Modifying Instructions, Arithmetic and Logic Instructions, and Channel or Input/Output Instructions as shown in table 30-10 at the end of this section. This table also lists the subinstructions of which each instruction is composed (paragraph 30-23). The execution of each subinstruction takes one MCT or approximately $11.7 \mu \mathrm{sec}$.

30-167. Sequence Changing Instructions
30-168. Five instructions belong in this class, which can be broken into two categories:

Transfer Control Instructions - TC K, TCF F
Decision Making Instructions - CCS E, BZF F, BZMF F

The transfer control instructions determine a single path as defined by the programmer. Instruction TC K transfers control to any location in the central processor (CP) (except locations 0003, 0004, and 0006), E Memory or F Memory, and stores a return address in register Q.

Instruction TCF F transfers control to a location in F Memory only without storing a return address. Both are Basic Instructions; TC K needs only a regular order code whereas TCF F also makes use of address bits 12 and 11 which appear as quarter codes. $2, .4$, and . 6 .

30-169. The decision making instructions branch to alternate program paths in response to defined conditions. Instruction CCS E can branch in four different ways depending on whether register A contains a positive non-zero quantity, plus zero, a negative non-zero quantity, or minus zero. Instruction BZF F branches to an alternate program path only if A contains zero; BZMF F branches to one alternate branch on a negative quantity or on zero. Instruction CCS E is a Basic Instruction which uses quarter code. 0 . Instructions BZF F and BZMF F are Extra-Code Instructions which can refer to F Memory only. Address bits 12 and 11 appear as quarter codes.2, .4, and.6.

30-170. Fetching and Storing Instructions

30-171. Nine instructions belong in this class which can be broken into three categories:

Copying instructions -	CAK
	CS K
	DCA K
	DCS K
Storing instruction -	TS E
Exchange instructions -	XCH E
	LXCH E
	QXCH E
	DXCH E

The copying instructions are used for entering data into the accumulator A, or in the double precision accumulator A, L. Instructions CA K and CS K are Basic Instructions without quarter codes; DCA K and DCS K are ExtraCode Instructions without quarter codes.

30-172. The storing instruction is used to store partial or final results in E Memory. It is a Basic Instruction which refers to E Memory and the $C P$ only, and requires quarter code. 4.

30-173. The exchange instructions are used to exchange data between the single or double precision accumulator and E Memory. Three of the exchange instructions are Basic Instructions; one is an Extra-Code Instruction. All exchange instructions contain a quarter code.

30-174. Modifying Instructions
30-175. Two instructions belong in this class: NDX E and NDX K. The modifying instructions are to create new instructions by indexing existing instruction words with index quantities. Instruction NDX E is a Basic Instruction which refers to E Memory or the CP only and requires quarter code .0 . Instruction NDX K is an Extra Code Instruction which can refer to any location and does not need a quarter code. This instruction automatically enters a ONE into bit position $S Q-E X T$; thus, the computer recognizes the indexed instruction as an Extra-Code Instruction. Both instructions use the same mnemonic code; the Yul compiler then enters the proper octal order code.

30-176. Arithmetic and Logic Instructions
30-177. Eleven instructions belong in this class which can be broken into five categories:

Basic ONE's complement arithmetic operations AD K, SU E, MP K, DV E

Add-and-store instructions - ADS E, DAS E
Incrementing instructions - INCR E, AUG E, DIM E
Basic TWO's complement arithmetic operations - MSU E
Boolean operations - MSK K
The functions of these instructions are described in table 30-10. The operation of the Adder is discussed in paragraphs 30-42 through 30-46. Three instructions can refer to any location and do not need a quarter code while the other eight instructions can refer to E Memory and the $C P$ only and require a quarter code.

30-178. Instructions INCR E, AUG E, and DIM E test for overflow. Whenever time counter 0025 is addressed and an overflow occurs, the incrementing of time counter 0024 is initiated. Whenever time counter 0026, 0027, or 0030 is addressed and an overflow occurs, transfer of program control to certain program sections is initiated (table 30-4).

30-179. Channel Instructions
30-180. Seven instructions belong in this class which can be broken into two categories:

Read instructions - READ H, RAND H, ROR H, RXOR H
Write instructions - WRITE H, WAND H, WOR H
The seven instructions can also be broken into four categories:
Straight read and write instructions - READ H, WRITE H
AND instructions - RAND H, WAND H
OR instructions - ROR H, WOR H

Exclusive OR instruction - RXOR H
The functions of these instructions are described in table 30-10. All Channel Instructions are eighth code instructions. CP registers L and Q can be read out and written into by means of the Channel Instructions when channel address 01 or 02, respectively, is used (paragraphs 30-71 and 30-72).

30-181. Special Instructions

30-182. Eight instructions belong in this class which can be broken into two categories:

Instructions consisting of a certain order code plus a special address code - RELINT, INHINT, EXTEND, RESUME

Instructions consisting of certain addresses which can be combined with many order codes - CYR, SR, CYL, EDOP

The functions of these instructions are described in table 30-10 and in paragraphs 30-135, 30-164, and 30-165.

30-183. INVOLUNTARY INSTRUCTIONS

30-184. The Involuntary Instructions can be divided into Interrupting and Counter Instructions. The Interrupting Instructions cannot be written into a program although they contain order codes. These order codes are supplied by the computer and entered into register $S Q$ under the control of the Interrupt Priority Control at the occurrence of certain events or signals. Whenever an Interrupting Instruction is executed, the execution of a current program section is interrupted and another program section, as defined by the event, is executed instead (table 30-6 and paragraph 30-132).

30-185. Counter Instructions do not have an order code and are executed under the control of the Counter Priority Control at the occurrence of certain signals or events. Whenever a Counter Instruction is executed, the execution of the current program is delayed for about $12 \mu \mathrm{sec}$ and the counter specified by the signal is incremented, decremented, etc. (table 30-7 and paragraph 30-138).

30-186. PERIPHERAL INSTRUCTIONS
30-187. The Peripheral Instructions can be broken into three categories:
Transfer instruction - TCSAJ
Instructions reading from or writing into E and F Memory FETCHK, STORE E.

Instructions which read data out of or into channel - INOTRD H, INOTLD H.

TABLE 30-10
MACHINE INSTRUCTIONS

Symbolic Instruction Word	Order Code	Sub- instructions Executed	Descr		$\bigcirc \begin{aligned} & \text { 1 } \\ & 4\end{aligned}$
REGULAR INSTRUCTIONS					
Sequence Changing Instructions					
TC K	00.	TC0	"Transfer Control to K" Takes next instruction from K and stores return address ($I+1$) in Q.		
TCF F	$\begin{aligned} & 01.2 \\ & 01.4 \\ & 01.6 \end{aligned}$	TCF0	"Transfer Control to Fixed F" Takes next instruction from F without changing $c(Q)$.		
CCS E	01.0	$\begin{aligned} & \text { CCSO } \\ & \text { STD2 } \end{aligned}$	"Count, Compare, and Skip on E" Branches according to $c(E)$ and stores in A the $\|c(E)\|$ diminished by one.		
			positive nonze plus zero negative nonz minus zero		$\begin{aligned} & \mathrm{I}+1 \\ & \mathrm{I}+2 \\ & \mathrm{I}+3 \\ & \mathrm{I}+4 \end{aligned}$
BZF F	$\begin{aligned} & 16.2 \\ & 16.4 \\ & 16.6 \end{aligned}$	$\begin{aligned} & \text { BZF0 } \\ & \text { STD2 } \end{aligned}$	"Branch on Zero to Fixed F" Branches according to $c(A)$. $c(A)$ Transfers to		
			plus or minus zero non zero	(subinstruction STD2 is not executed) I+1 (subinstruction STD2 is executed)	

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	(2) Order Code		Description 4
REGULAR INSTRUCTIONS			
Sequence Changing Instructions (cont)			
BZMF F	$\begin{aligned} & 12.2 \\ & 12.4 \\ & 12.6 \end{aligned}$	$\begin{aligned} & \text { BZMF0 } \\ & \text { STD2 } \end{aligned}$	"Branch on Zero or Minus to Fixed $F^{\prime \prime}$ Branches according to c(A).
Fetching and Storing Instructions			
CAK	03.	$\begin{aligned} & \text { CA0 } \\ & \text { STD2 } \end{aligned}$	"Clear and Add K" Enters c(K) into A. Takes next instruction from I+1.
CS K	04.	$\begin{aligned} & \text { CS0 } \\ & \text { STD2 } \end{aligned}$	"Clear and Subtract K" Enters the complemented $c(K)$ into A. Takes next instruction from I+1.
DCA K	13.	$\begin{aligned} & \text { DCA0 } \\ & \text { DCA1 } \\ & \text { STD2 } \end{aligned}$	"Double Clear and Add K" Enters c $(\mathrm{K}, \mathrm{K}+1)$ into A and L. Takes next instruction from $\mathrm{I}+1$.
DCS K	14.	$\begin{aligned} & \text { DCS0 } \\ & \text { DCS1 } \\ & \text { STD2 } \end{aligned}$	"Double Clear and Subtract K" Enters the complemented c(K, $\mathrm{K}+1$) into A and L . Takes next instruction from $\mathrm{I}+1$.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

1 Symbolic Instruction Word	乞 Order Code		Description
REGULAR INSTRUCTIONS			
Fetching and Storing Instructions (cont)			
TS E	05.4	$\begin{aligned} & \text { TS0 } \\ & \text { STD2 } \end{aligned}$	"Transfer to Storage E" If A does not contain an overflow quantity, instruction enters c(A) into E and takes next instruction from I+1. If A contains a positive overflow, instruction enters $c(A)$ without overflow bit into E, enters plus one into A, and takes next instruction from I+2. If A contains a negative overflow, instruction enters $c(A)$ without overflow bit into E, enters minus one into A, and takes next instruction from I+2,
XCH E	05.6	$\begin{aligned} & \mathrm{XCH0} \\ & \text { STD2 } \end{aligned}$	"Exchange A and E" Exchanges c(A) with c(E). Takes next instruction from $\mathrm{I}+1$.
LXCHE	02.2	$\begin{aligned} & \text { LXCH0 } \\ & \text { STD2 } \end{aligned}$	"Exchange L and E" Exchanges $c(L)$ with $c(E)$. Takes next instruction from $\mathrm{I}+1$.
QXCH E	12.2	QXCHO STD2	"Exchange Q and E" Exchanges $c(Q)$ with $c(E)$. Takes next instruction from $\mathrm{I}+1$.
DXCH E	05.2	$\begin{aligned} & \text { DXCH0 } \\ & \text { DXCH1 } \\ & \text { STD2 } \end{aligned}$	"Double Exchange A and E" Exchanges c(A,L) with c(E, E+1). Takes next instruction from $\mathrm{I}+1$.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	2 Order Code	$\begin{gathered} \frac{3}{\text { Sub- }} \\ \text { instructions } \\ \text { Executed } \end{gathered}$	Description
REGULAR INSTRUCTIONS			
Modifying Instructions			
NDX E NDX K	05.0 15	NDX0 NDX1 NDXXO NDXX1	"Index Next Basic Instruction with $\mathrm{E}^{\prime \prime}$ Adds $\mathrm{c}(\mathrm{E})$ to $\mathrm{c}(\mathrm{I}+1)$ and takes sum as next instruction. "Index Next Extra-Code Instruction with $\mathrm{K}^{\prime \prime}$ Adds $c(K)$ to $c(I+2)$ and takes sum as next instruction. Retains the ONE in bit position SQ-EXT.
Arithmetic and Logic Instructions			
AD K	$06 .$	$\begin{aligned} & \text { AD0 } \\ & \text { STD2 } \end{aligned}$	"Add K" Adds $c(K)$ to $c(A)$ and stores sum in A. Takes next instruction from $I+1$.
SU E	16.0	$\begin{aligned} & \text { SU0 } \\ & \text { STD2 } \end{aligned}$	"Subtract E" Subtracts $c(E)$ from $c(A)$ and stores the difference in A. Takes next instruction from I+I.
MP K	17.	$\begin{aligned} & \text { MP0 } \\ & \text { MP1 } \\ & \text { MP3 } \end{aligned}$	"Multiply K" Multiplies $c(K)$ by $c(A)$ and stores double precision product in A and L (signs in A . and L agree). Takes next instruction from I+1.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	Order Code	$\begin{gathered} \text { Sub- } \\ \text { instructions } \\ \text { Executed } \end{gathered}$	Description
REGULAR INSTRUCTIONS			
Arithmetic and Logic Instructions (cont)			
DV E	11.0		"Divide by E" Divides double precision quantity $c(A, L)$ by $c(E)$, stores quotient in A and remainder in L. Takes next instruction from $I+1$. Signs of $b(A)$ and $b(L)$ need not agree. Sign of remainder equals sign of dividend.
ADS E	02.6	ADSO STD2	"Add to Storage E" Adds $c(A)$ and $c(E)$, stores sum with overflow bit in A and sum without overflow bit in E .
DAS E	02.0	$\begin{aligned} & \text { DAS0 } \\ & \text { DAS1 } \\ & \text { STD2 } \end{aligned}$	"Double Add to Storage E" Adds $c(A, L)$ and $c(E, E+1)$ and stores sum without overflow bit in E and $E+1$. Enters plus one into A in case of positive overflow, minus one in case of negative overflow, and plus zero in case of no overflow. Enters plus zero into L and takes next instruction from I+1.
INCR E	02.4	$\begin{aligned} & \text { INCR0 } \\ & \text { STD2 } \end{aligned}$	"Increment E " Adds plus one to $c(E)$ and stores incremented quantity in E. Takes next instruction from I+1.
AUG E	12.4	AUG0 STD2	"Augment E" Increases the magnitude of the quantity contained in E by one and stores the augmented quantity in E. Takes next instruction from $\mathrm{I}+1$.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	亿 Order Code	Sub- instructions Executed	Description \square 1
REGULAR INSTRUCTIONS			
Arithmetic and Logic Instructions (cont)			
DIM E	12.6	$\begin{aligned} & \text { DIM0 } \\ & \text { STD2 } \end{aligned}$	"Diminish E" Decreases the magnitude of the quantity contained in E by one and stores diminished quantity in E. Takes next instruction from I+1.
MSU E	12.0	$\begin{aligned} & \text { MSU0 } \\ & \text { STD2 } \end{aligned}$	"Modular Subtract E" Subtracts cyclic TWO's complement number in E from cyclic TWO's complement number in A and stores difference expressed in ONE's complement number in A. Takes next instruction from I+1.
MSK K	07.	MSKO STD2	"Mask with K" AND's c(A) with $c(K)$ and stores logical product in A. Takes next instruction from I+l.
Channel Instructions			
READ H	10.0	$\begin{aligned} & \text { READ0 } \\ & \text { STD2 } \end{aligned}$	"Read H" Enters c(H) into A. Takes next instruction from I+l.
WRITE H	10.1	WRITE0 STD2	"Write $\mathrm{H}^{"}$ Enters c(A) into H. Takes next instruction from I+1.
RAND H	10.2	RAND0 STD2	"Read and AND H" AND's c(A) and c(H) and stores logical product in A. Takes next instruction from $\mathrm{I}+1$.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	2 Order Code		Description
REGULAR INSTRUCTIONS			
Channel Instructions (cont)			
W AND H	10.3	W AND0 STD2	"Write and AND H" AND's $c(A)$ and $c(H)$, and stores logical product in A and H . Takes next instruction from I+1.
ROR H	10.4	$\begin{aligned} & \text { ROR0 } \\ & \text { STD2 } \end{aligned}$	"Read and OR H" OR's c(A) and c(H), and stores logical sum in A. Takes next instruction from I+1.
WOR H	10.5	$\begin{aligned} & \text { WOR0 } \\ & \text { STD2 } \end{aligned}$	"Write and OR H" OR's c(A) and c(H), and stores logical sum in A and H. Takes next instruction from I+1.
RXOR H	10.6	RXORO STD2	"Read and Exclusive OR H" Forms exclusive OR from $\mathrm{c}(\mathrm{A})$ and $\mathrm{c}(\mathrm{H})$, and stores result in A. Takes next instruction from I+1.
Special Instructions			
EXTEND	00.0006	STD2	"Extend" Enters a ONE into bit position SQ-EXT. The next instruction, taken from $\mathrm{I}+1$, is an ExtraCode Instruction.
INHINT	00.0004	STD2	"Inhibit Interrupt" Sets inhibit interrupt switch in Inter rupt Priority Control to prevent interruption of program execution. Takes next instruction from Itl.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

1 Symbolic Instruction Word	2 Order Code	$\begin{gathered} \hat{3} \\ \text { Sub- } \\ \text { instructions } \\ \text { Executed } \end{gathered}$	Description 4
REGULAR INSTRUCTIONS			
Special Instructions (cont)			
RELINT	00.0003	STD2	"Release Inhibit Interrupt" Resets inhibit interrupt switch to allow program interruption in favor of a programmed operation of higher priority. Takes next instruction from I+l.
RESUME	05.0017	$\begin{aligned} & \text { NDX0 } \\ & \text { RSM3 } \end{aligned}$	"Resume Interrupted Program" Takes next instruction from location 0017 and enters content of location 0015 into Z. Thus, execution of the interrupted program section is resumed.
CYR	. 0020	6	"Cycle Right" Cycles quantity, which is entered into location 0020, one place to the right.
SR	. 0021	6	"Shift Right" Shifts quantity, which is entered into location 0021, one place to the right.
CYL	. 0022	6	"Cycle Left" Cycles quantity, which is entered into location 0022, one place to the left.
EDOP	. 0023	6	"Edit Operator" Shifts quantity, which is entered into location 0023, seven places to the right.

TABLE 30-10
MACHJNE INSTRUCTIONS (cont)

\begin{tabular}{|c|c|c|c|}
\hline Symbolic Instruction Word \& \begin{tabular}{l}
(2) \\
Order Code
\end{tabular} \& \[
\begin{gathered}
\text { Sub- } \\
\text { instructions } \\
\text { Executed }
\end{gathered}
\] \& Description \\
\hline \multicolumn{4}{|c|}{INVOLUNTARY INSTRUCTIONS} \\
\hline \multicolumn{4}{|c|}{Interrupting Instructions} \\
\hline RUPT

GO \& \begin{tabular}{l}
$$
10.7
$$

00.
$$
00.4000
$$

 \&

RUPT0

R JPTI

STD2

$$
\begin{aligned}
& \text { GOJ1 } \\
& \text { TC0 }
\end{aligned}
$$

 \&

"Interrupt Program Execution" Takes next instruction from address supplied by Interrupt Priority Control. Stores c(B) in location 0017 and $c(Z)$ in location 0015.

"Go"

Takes next instruction from location 04000 in E Memory.
\end{tabular}

\hline \multicolumn{4}{|c|}{Counter Instructions}

\hline PINC C \& none \& PINC \& | "Plus Increment C" |
| :--- |
| Adds one to $c(C)$ and stores incremented quantity in C. |

\hline MINC C \& none \& MINC \& | "Minus Increment C" |
| :--- |
| Subtracts one from $c(C)$ and stores decremented quantity in C . |

\hline DINC C \& none \& DINC \& "Diminish Increment C" Decreases the magnitude of the quantity contained in C by one and stores diminished quantity in C .

\hline PCDU C \& none \& PCDU \& | "Plus CDU C" |
| :--- |
| Adds one to cyclic TWO's complement number in C and stores incremented quantity in C. |

\hline
\end{tabular}

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

Symbolic Instruction Word	Order Code		Description
INVOLUNTARY INSTRUCTIONS			
Counter Instructions (cont)			
MCDU C	none	MCDU	"Minus CDU C" Subtracts one from cyclic TWO's complement number in C and stores decremented quantity in C .
SHINC C	none	SHINC	"Shift Increment C" Shifts c(C) one place to the left and enters a ZERO into bit position 0 of C.
SHANC C	none	SHANC	"Shift and Add Increment C" Shifts c(C) one place to the left and enters a ONE into bit position 0 of C.
PERIPHERAL INSTRUCTIONS			
TCSAJ K	00.	$\begin{aligned} & \text { TCSAJ3 } \\ & \text { STD2 } \end{aligned}$	"Transfer control to specified address $\mathrm{K}^{\prime \prime}$ Takes next instruction from address which is supplied by GSE.
FETCH K	none	FETCHO FETCH1	"Fetch K"; displays $c(K)$ on GSE. Address K is supplied by GSE.
STORE E	none	STOREO STOREI	"Store E"; data supplied by GSE is entered into E by GSE. Address E is also supplied by GSE.

TABLE 30-10
MACHINE INSTRUCTIONS (cont)

1 Symbolic Instruction Word	Order Code	$\begin{aligned} & \text { Sub- } \\ & \text { instructions } \\ & \text { Executed } \end{aligned}$	Description 4
PERIPHERAL INSTRUCTIONS (cont)			
INOTRD H	none	INOTRD	"In Out Read H"; displays c(H) on GSE. Channel address H is supplied by GSE.
INOTLD H	none	INOTLD	"In Oiut Load H"; data supplied by GSE is entered into H by GSE. Channel address H is supplied by Gise.

Address symbol K can represent any address in the Central Processor (CP), E Memory or F Memory.
Address symbol F can represent an address in F Memory only.
Address symbol E can represent an address in the CP or E Memory only.
Address symbol H can represent any channel address.
Address symbol C can represent any counter address.
Entered into $S Q$, or $S Q$ and S.
The execution of each subinstruction, except DV0 and DV4, takes one MCT or about $11.7 \mu \mathrm{sec}$. DV0 and DV4 together require 1 MCT .
Address symbol I represents address of instruction described. Register symbols $A, L, Q, B, S, S Q$, and G refer to registers defined in table 30-1.
Expression $c(K)$ means "content of location (or register) K".
Execution of these seven subinstructions takes only six MCT's.
The code which can be used with any K or E instruction, is contained in register S. Whenever address $0020,0021,0022$, or 0023 is contained in register S, register G cycles or shifts the quantity it receives from a CP register before that quantity is transferred to one of the four locations (paragraph 30-41).

ISSUE 30
APPENDIX A

COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS

All input and output lines or signals passing through connector A51 of the AGC, and connectors J9 of the Main Panel DSKY and the Navigation Panel DSKY are listed in table 30A-1 of this appendix. Information is arranged by order of line or signal numbers frequently referred to in the main body of this issue. The numbers of the connecting pins of connectors A51 and J9 are given in columns 2 through 4 of the table while various signal names are listed in columns 5 and 6. The various types of interface circuits provided are described in figure 30A-1. A short description of the signals is contained in the last column of table 30A-1. Numbers preceded by an A or B indicate module numbers.

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
001	$\begin{aligned} & 516 \\ & 616 \end{aligned}$	-	-	CLK $\quad\left\{\begin{array}{l}\mathrm{XC001H} \\ \mathrm{XC001L}\end{array}\right.$	MASTER CLOCK	Gate 37137 of the Timer generates 1.024 Mpps signal CLK which controls interface circuit 1XT of A25. Master clock output pulses are used in various spacecraft systems.
002 003	$\begin{aligned} & 358 \\ & 458 \\ & 357 \\ & 457 \end{aligned}$			$\begin{array}{ll} \text { ALT1 } & \left\{\begin{array}{l} \text { XA002H } \\ \text { XA002L } \end{array}\right. \\ \text { ALT0 } & \begin{array}{l} \text { XA003H } \\ \text { XA003L } \end{array} \end{array}$	NC NC	Gates 46109 and 46110 of the Altitude Meter Control (par 30-123 through 30-125) generate serial data pulses ALT0 and ALT1 which control interface circuits 5XT and 4 XT of A 29.
004	558	-	-	DE004 ULLTHR	ULLAGE THRUST PRES	Interface circuit 1D of A29 receives DC signals from the spacecraft and feeds gate 44101 of bit position 1 of channel 30 (table 30-5D).
007	657	-	-	DE007 LFTOFF	LIFT OFF (SIVB)	Interface circuit 2D of A29 receives DC signals from the spacecraft and feeds gate 44113 of bit position 5 of channel 30 (table 30-5D).
008 009	$\begin{aligned} & 354 \\ & 454 \\ & 353 \\ & 453 \end{aligned}$	-		$\begin{array}{ll} \text { THRST }+ & \left\{\begin{array}{l} \text { XA008H } \\ \text { XA008L } \end{array}\right. \\ \text { THRST- } & \left\{\begin{array}{l} \text { XA009H } \\ \text { XA009L } \end{array}\right. \end{array}$	NC NC	Gates 46247 and 46248 of the EMS and Thrust Drive Control (par 30-100 through 30-104) generate signals THRST+ and THRST- which control interface circuits 8XT and 9XT of A29.
010 012	$\begin{aligned} & 356 \\ & 456 \\ & 355 \\ & 455 \end{aligned}$	-	-	$\begin{array}{ll} \text { ALRT1 } & \left\{\begin{array}{l} \text { XA010H } \\ \text { XA010L } \end{array}\right. \\ \text { ALRT0 } & \left\{\begin{array}{l} \text { XA012H } \\ \text { XA012L } \end{array}\right. \end{array}$	NC NC	Gates 46111 and 46112 of the Altitude Meter Control (par 30-123 through 30-125) generate serial data pulses ALRT0 and ALRT1 which control interface circuits 7XT and 6XT of A29.
011 013	613 513	-	-	ENON CB011 ENOFF CB013	SPS ENG ON/OFF NC	Bit position 7 of channel 12 (table 30-5A) controls gates 43228 and 43229 to generate signals ENON and ENOFF which control interface circuits 19 C and 18 C of A26. DC output signals control the spacecraft engine.
$\begin{aligned} & 014 \\ & 015 \\ & 016 \end{aligned}$	$\begin{aligned} & 133 \\ & 233 \\ & 132 \\ & 232 \\ & 130 \\ & 230 \end{aligned}$	- - -	- - -	$\left.\begin{array}{l}Y-014 \mathrm{H} \\ Y-014 \mathrm{~L}\end{array}\right\}$ DKSTRT $\left.\begin{array}{l}Y-015 \mathrm{H} \\ Y-015 \mathrm{~L}\end{array}\right\}$ DKEND $\left.\begin{array}{l}Y-016 \mathrm{H} \\ Y-016 \mathrm{~L}\end{array}\right\}$ DKBSNC	DLNK START DLNK END DLNK SYNC	Interface circuits $1 Y, 2 Y$, and $3 Y$ of $A 27$ receive pulses from the NA programmer and feed gates 47101, 45447, and 47227 of the Downlink Converter (par 30-126 and 30-127).

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

MADLE JUA-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
$\begin{aligned} & 066 \\ & 067 \\ & 068 \end{aligned}$	$\begin{aligned} & 640 \\ & 540 \\ & 557 \end{aligned}$	-		DE066 S4BSAB DE067 SMSEPR DE068 GUIREL	SIVB SEPARATE/ABORT SM SEPARATE GUID REF RELEASE	Interface circuits 9D, 10D of A28, and 3D of A29 receive DC signals from the spacecraft and feed bit positions 4, 2, and 6 (gates 44110,44104 , and 44116) of channel 30 (table 30-5D).
069	529	-	-	DE069 RRRLSC	NC	Interface circuit 2D of A27 is able to receive DC signals and feeds bit position 2 (gate 44108) of channel 33 (table 30-5G).
071 072	$\begin{aligned} & 125 \\ & 225 \\ & 124 \\ & 224 \end{aligned}$	-	-	$\left.\begin{array}{l}\left.\begin{array}{l}\text { YG071H } \\ \text { YG071L }\end{array}\right\} \quad \text { LRIN0 } \\ \text { YG072H } \\ \text { YG072L }\end{array}\right\} \quad$ LRIN1	NC NC	Interface circuits 8 Y and 9 Y of A27 are able to receive serial data pulses and feed gates 45355 and 45353 of the Radar Control (par 30-105 through 30-109).
078 079	$\begin{aligned} & 518 \\ & 618 \\ & 517 \\ & 617 \end{aligned}$	-	-	$\begin{array}{ll} \text { OTLNK0 } & \left\{\begin{array}{l} \text { XA078H } \\ \text { XA078L } \end{array}\right. \\ \text { OTLNK1 } & \left\{\begin{array}{l} \text { XA079H } \\ \text { XA079L } \end{array}\right. \end{array}$	$\begin{array}{ll}\text { "0" BIT CROSS OUT } & \text { NC } \\ \text { "1" BIT CROSS OUT } & \text { NC }\end{array}$	Gates 46147 and 46149 of Outlink Control (par 30-120 through 30-122) generate serial data pulses OTLNK0 and OTLNK1 which control interface circuits 6 XT and 7XT of A27. Outputs are provided for the cross link equipment but not connected.
080 081	$\begin{aligned} & 123 \\ & 223 \\ & 122 \\ & 222 \end{aligned}$	-	-	$\left.\begin{array}{l}\text { YG080H } \\ \text { YG080L }\end{array}\right\} \quad$ XLNK0 $\left.\begin{array}{l}\text { YG081H } \\ \text { YG081L }\end{array}\right\} \quad$ XLNK1	"0" BIT CROSS IN NC "1" BIT CROSS IN NC	Interface circuits $10 Y$ and 11 Y of A 27 are able to receive serial data pulses from the cross link equipment and feed gates 46306 and 46307 of the Inlink Control (par 30-116 through 30-119). Inputs are not connected.
082	636	-	-	DE082 SPSRDY	SPS READY	Interface circuit 13D of A28 receives DC signals from the spacecraft and feeds bit position 3 (gate 44107) of channel 30 (table 30-5D).
083	538	-	-	DE083 BLKUPL/	ACCEPT UPLNK	Interface circuit 12D of A28 receives DC signals from the UPTEL switch and feeds gate 46308 of Inlink Control (par 30-116 through 30-119).
084	638	-	-	DE084 IN3008	SPARE CHN30-08 NC	Interface circuit 11D of A28 is able to receive DC signals and feeds bit position 8 (gate 44122) of channel 32 (table 30-5D).
085	$\begin{aligned} & 351 \\ & 451 \end{aligned}$	-	-	DKDATB $\quad\left\{\begin{array}{l}\mathrm{X}-085 \mathrm{H} \\ \mathrm{X}-085 \mathrm{~L}\end{array}\right.$	DLNK DATA NC	Gate 47261 of the Downlink Converter (par 30-126 and 30-127) generates signal DKDATB which controls interface circuit 1 XT of A29. The signal is identical to signal 017.

Line or Signal Number	Connecting Pins at			Name Used on Drawings \square 1		Name Used in DD Memo 185		Signal Description	
	A 51 of AGC	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			3			
086	639	-	-	+28VDC	RD086		66/67		Resistor 5R of A28 provides +28VDC for external equipment.
$\begin{aligned} & 087 \\ & 088 \end{aligned}$	647	-	-	$+28 \mathrm{COM}$	RD087	$\begin{aligned} & 40 / 65 / 83 / 60 \\ & 40 / 65 / 83 / 60 \end{aligned}$		Resistors $1 R$ and 2R of A28 in parallel provide +28VDC for external equipment. Provided with signal 087.	
091	537	-	-	$+28 \mathrm{COM}$	RD091	40/65		Resistor 8 R of A28 provides +28 VDC for external equipment.	
$\begin{aligned} & 093 \\ & 094 \\ & 095 \\ & 096 \\ & 097 \\ & 098 \end{aligned}$	$\begin{aligned} & 628 \\ & 528 \\ & 627 \\ & 527 \\ & 626 \\ & 526 \end{aligned}$			DE093 DE094 DE095 DE096 DE097 DE098	$\begin{aligned} & \text { MANR+P } \\ & \text { MANR-P } \\ & \text { MANR+Y } \\ & \text { MANR-Y } \\ & \text { MANR+R } \\ & \text { MANR-R } \end{aligned}$	+PITCH MAN ROT -PITCH MAN ROT +YAW MAN ROT -YAW MAN ROT +ROLL MAN ROT -ROLL MAN ROT		Interface circuits 3D through $8 D$ of A27 receive DC signals from manual rotation control and feed bit positions 1 through 6 (gates 44201 through 44205, and 44215) of channel 31 (table 30-5E).	
101	620	-	-	+28COM	RD101	SPARE	NC	Resistor 6R of A27 provides +28VDC for external equipment.	
102	549	-	-	DE102	MARK	MARK		Interface circuit 13D of A29 receives DC signals from Optics and feeds bit position 6 (gate 45225) of channel 16 (table 30-5J).	
103	550	-	-	DE103	MRKRST	MARK RESET		Interface circuit 11D of A29 receives DC signals from Optics and resets bit positions 6 and 7 (via gate 45233) of channel 16 (table 30-5J).	
$\begin{aligned} & 104 \\ & 106 \\ & 107 \end{aligned}$	$\begin{array}{r} 649 \\ 650 \\ \\ 648 \end{array}$		-	DE 104 DE106 DE107	ZEROP OPMSW2 OPMSW3	ZERO OPT OPT MODE SW2 (AGC CONTRL) OPT MD SW3 (STR TR ON)		Interface circuits D12, D10, and D14 of A29 receive DC signals from the Optics and feed bit positions 4, 5, and 6 (gates 44111, 44114, and 44117) of channel 33 (table 30-5G).	

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1		Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY				
142	$\begin{aligned} & 121 \\ & 221 \end{aligned}$	-	-	GYXP	$\left\{\begin{array}{l} \mathrm{XB} 142 \mathrm{H} \\ \mathrm{XB} 142 \mathrm{~L} \end{array}\right.$	+X GYRO SELECT	Gates 46424 through $46427,46432,46433$, and 46443 of the Gyro Drive Control (par 30-95 through 30-99) gen-
143	120 220	-	-	GYXM	$\left\{\begin{array}{l}\text { XB143H } \\ \text { XB143L }\end{array}\right.$	-X GYRO SELECT	erate drive pulses GYXP through GYZM (column 5) and reset pulses GYRRST which control interface circuits
144	119 219	-	-	GYYP	$\left\{\begin{array}{l}\text { XB144H } \\ \text { XB144L }\end{array}\right.$	+Y GYRO SELECT	2 XT and 3 XT of A27, A28, and A29, and 5XT of A27. The output pulses drive and reset the gyros in the IMU.
145	118	-	-	GYYM	$\left\{\begin{array}{l} \text { XB145H } \\ \text { XB145L } \end{array}\right.$	- Y GYRO SELECT	
146	$\begin{aligned} & 321 \\ & 421 \end{aligned}$	-	-	GYZP	$\left\{\begin{array}{l}\text { XB146H } \\ \text { XB146L }\end{array}\right.$	+Z GYRO SELECT	
147	$\begin{aligned} & 320 \\ & 420 \end{aligned}$	-	-	GYZM	$\left\{\begin{array}{l}\text { XB147H } \\ \text { XB147L }\end{array}\right.$	-Z GYRO SELECT	
148	$\begin{aligned} & 318 \\ & 318 \end{aligned}$	-	-	GYRRST	$\left\{\begin{array}{l} \mathrm{XA} 148 \mathrm{H} \\ \mathrm{XA} 148 \mathrm{~L} \end{array}\right.$	GYRO RESET	
149 150	$\begin{aligned} & 323 \\ & 423 \\ & 322 \\ & 422 \end{aligned}$	-	-	800 SET 800 RST	$\begin{aligned} & \left\{\begin{array}{l} \mathrm{XC} 149 \mathrm{H} \\ \mathrm{XC} 149 \mathrm{~L} \end{array}\right. \\ & \left\{\begin{array}{l} \mathrm{XC} 150 \mathrm{H} \\ \mathrm{XC} 150 \mathrm{~L} \end{array}\right. \end{aligned}$	800 PPS SET 800 PPS RESET	Gates 49209 and 49210 of the Timer generate 800 pps signals which control interface circuits 10 XT and 11XT of A26. The timing pulses are provided for external equipment.
151	$\begin{aligned} & 316 \\ & 416 \end{aligned}$	-	-		$\left\{\begin{array}{l} \mathrm{XC} 151 \mathrm{H} \\ \mathrm{XC} 151 \mathrm{~L} \end{array}\right.$	3.2 KPPS A	Gates 49211 through 49213 and 49215 of the Timer generate 3200 pps signals which control interface circuits
152	$\begin{aligned} & 315 \\ & 415 \end{aligned}$	-	-	3200B	$\left\{\begin{array}{l} \mathrm{XC} 152 \mathrm{H} \\ \mathrm{XC} 152 \mathrm{~L} \end{array}\right.$	3.2 KPPS B	4 XT through 7XT of A26. The timing pulses are provided for external equipment.
153	-	-	-	$3200 \mathrm{C}$	$\left\{\begin{array}{l} \mathrm{XC} 153 \mathrm{H} \\ \mathrm{XCl} 53 \mathrm{~L} \end{array}\right.$	3.2 KPPS C NC	
154	-	-	-	3200 D	$\left\{\begin{array}{l} \mathrm{XC} 154 \mathrm{H} \\ \mathrm{XC} 154 \mathrm{~L} \end{array}\right.$	3.2 KPPS D NC	
155	$\begin{aligned} & 117 \\ & 217 \end{aligned}$	-	-	12 KPPS	$\left\{\begin{array}{l} \mathrm{XCl} 155 \mathrm{H} \\ \mathrm{XC} 155 \mathrm{~L} \end{array}\right.$	12.8 KPPS (PWR SUP SYNC)	Gate 49217 of the Timer generates 12 kpps signals which control interface circuit 9 XT of A26. The timing pulses are provided for external equipment.
$\begin{aligned} & 158 \\ & 159 \end{aligned}$	$\begin{array}{r} 534 \\ 536 \end{array}$	-	-	$\begin{aligned} & \mathrm{DE} 158 \\ & \mathrm{DE} 159 \end{aligned}$	CTLSAT GCAPCL	S/C CNTRL OF SAT G/C AUTOPIL CNTRL	Interface circuits 18D of module A27 and 14D of A 28 receive DC signals from the spacecraft and feed bit position 10 (gate 44128) of channel 30 (table 30-5D) and bit position 15 (gate 44235) of channel 31 (table 30-5E).

COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
$\begin{aligned} & 182 \\ & 183 \\ & 184 \end{aligned}$	$\begin{aligned} & 548 \\ & 547 \\ & 622 \end{aligned}$	-	- - -	DE182 MRKREJ DE183 STRPRS DE184 IMUOPR	REJECT MARK STAR PRES IMU OPERATE	Interface circuits 15 D and 16D of A29 and 15D of A27 receive DC signals from the Optics and the IMU and feed bit position 7 (gate 45229) of channel 16 (table 30-5J), bit position 7 (gate 44120) of channel 33 (table 30-5G), and bit position 9 (gate 44125) of channel 30 (table 30-5D).
185 186	$\begin{aligned} & 313 \\ & 614 \end{aligned}$	-	-	ZOPCDU CB185 ENEROP CB186	ZERO OPT CDU ERR CNTR ENABLE OPT	Bit positions 1 and 2 (gates 43302 and 43310) of channel 12 (table 30-5A) generate signals ZOPCDU and ENEROP which control interface circuits 16 C and 13C of A26. The interface circuits operate the Optics CDU's and the Optics.
188 189	644 544	-	-	DE 188 MNIM+R DE 189 MNIM-R	MIN IMPULSE +ROLL MIN IMPULSE -ROLL	Interface circuits 3D and 4D of A28 receive DC signals from the minimum impulse control (spacecraft) and feed bit positions 5 and 6 (gates 44244 and 44237) of channel 32 (table 30-5F).
191	$\begin{aligned} & 515 \\ & 615 \end{aligned}$	-	-	CDUCLK $\left\{\begin{array}{l}\text { XC191H } \\ \text { XC191L }\end{array}\right.$	CDU CLOCK (51.2 KPPS)	Gate 49223 of the Timer generates pulses CDUCLK which control interface circuit 8XT of A25. The 51.2 kpps signals are provided for the CDU's.
192	$\begin{aligned} & 317 \\ & 417 \end{aligned}$	-	-	GYENAB $\quad\left\{\begin{array}{l}\text { XB192H } \\ \text { XB192L }\end{array}\right.$	GYRO COMM ENABLE	Gate 46434 of the Gyro Drive Control (par 30-95 through 30-99) generates pulses GYENAB which control interface circuit 1 XT of A26. Output pulses control gyros in the IMU.
193	522	-	-	DE193 IMUCAG	IMU CAGE	Interface circuit 16D of A27 receives DC signal from IMU and feeds bit position 11 (gate 44130) of channel 30 (table 30-5D).
$\begin{aligned} & 194 \\ & 195 \\ & 196 \end{aligned}$	$\begin{aligned} & 514 \\ & 414 \\ & 314 \end{aligned}$	-	- - -	COARSE CB194 ZIMCDU CB195 ENERIM CB196	COARSE ALIGN ENABLE ZERO IMU CDU's ERR CNTR ENABLE IMU	Bit positions 4, 5, and 6 (gates 43320, 43322, and 43330) of channel 12 (table 30-5A) generate signals COARSE, ZIMCDU, and ENERIM which control interface circuits $12 \mathrm{C}, 11 \mathrm{C}$, and 10 C of A 26 . The interface circuits operate the IMU mode control.
197	$\begin{aligned} & 325 \\ & 425 \end{aligned}$	-	-	$\text { PIPDAT } \quad\left\{\begin{array}{l} \mathrm{XCl} 197 \mathrm{H} \\ \mathrm{XCl} 97 \mathrm{~L} \end{array}\right.$	PIPA DATA PULSE	Gate 49206 of the Timer generates PIPDAT pulses which control interface circuit 11 XT of A25. The 3.2 kpps signal is fed into PIPA's.

$$	Line or Signal Number	Connecting Pins at			Name Used on Drawings A	Name Used in DD Memo 185	Signal Description
		$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
	198	$\begin{aligned} & 319 \\ & 419 \end{aligned}$	-	-	GYRSET $\quad\left\{\begin{array}{l}\text { XA198H } \\ \text { XA198L }\end{array}\right.$	GYRO SET	Gate 46442 of the Gyro Drive Control (par 30-95 through 30-99) generates pulses GYRSET which control interface circuit 4XT of A27. Output pulses operate gyros.
	199	$\begin{aligned} & 102 \\ & 202 \end{aligned}$	-	-	$\begin{aligned} & \text { RD199H } \\ & \text { RD199L } \end{aligned}$	TEMP MON 1	Connected only to pins 309 and 409 of both plugs A62 and B62.
	$\begin{aligned} & 201 \\ & 202 \\ & 203 \\ & 204 \\ & 205 \end{aligned}$	$\begin{aligned} & 601 \\ & 501 \\ & 401 \\ & 301 \\ & 201 \end{aligned}$	- - - - -	51 78 77 76 79	DE201 NKEY1 or KEY1 NKEY2 DE202 DE KEY2 DE3 NKEY3 or KEY3 DE204 NKEY4 or KEY4 DE205 NKEY5 or KEY5	KEY CODE 1 (N) KEY CODE 2 (N) KEY CODE 3 (N) KEY CODE 4 (N) KEY CODE 5 (N)	DC signals DE201 through DE205 are generated in the keyboard of the navigation panel DSKY by pressing any key except key STBY and are received by interface circuits 4D through 8D of A25 which feed bit positions 1 through 5 (gates 45201, 45205, 45209, 45213, and 45217) of channel 16 (table 30-5J).
	$\begin{aligned} & 206 \\ & 207 \\ & 208 \\ & 209 \end{aligned}$	$\begin{aligned} & 103 \\ & 502 \\ & 402 \\ & 101 \end{aligned}$	49 28 48	28 48 49	D-206 MAINRS or KEYRST D-207 SBYBUT D-208 or STBY CAURST D-209 or RSET NAVRST or KEYRST	KEYBD RESET (M) STANDBY (NM) RESET (LGHT) (NM) KYBD RESET (N)	DC signals D-206 through D-209 are generated in the keyboards of the DSKY's and received by interface circuits 1D, 2D, 3D, and 9D of A25. Signal D-207 is caused by pressing a STBY key and operates the Standby Control (gate 45151, par 30-141AJ through 30-141AM). Signal D-208 is caused by pressing a RSET key and operates the start-stop logic (gate 45222) to reset the restart flip-flop (gates $41237 / 41238$, par 30-131B). Signals D-206 and D-209 are caused by pressing any key, except key STBY, and reset channel 15 or first positions 1 through 5 of channel 16 (table 30-5J) respectively.
長	210	115	75	75	W-210	SPARE (NM)	Spare connection.
$\begin{aligned} & N \\ & \infty \\ & \mathbf{N}^{-1} \end{aligned}$	211	302	30	-	+28COM R 211	+28 KYBD (M)	Resistors 1R, $2 R$, and $3 R$ of A25 in parallel provide +28 VDC for the main panel DSKY.
	212	504	-	7	ELSNCN CC212	POWER SUPPLY SYNC N	Gate 49249 of the Timer generates signal ELSNCN (800 pps) which controls interface circuit 34C of A25. The interface circuit pulses a DSKY power supply.

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	$\begin{aligned} & \text { A51 } \\ & \text { of } \\ & \text { AGC } \end{aligned}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
213	-	74	74	W-213	SPARE	Spare pin in DSKY's.
$\begin{aligned} & 214 \\ & 215 \\ & 216 \\ & 217 \\ & 218 \\ & 219 \\ & 220 \\ & 221 \\ & 222 \\ & 223 \\ & 224 \\ & 225 \\ & 226 \\ & 227 \\ & 228 \end{aligned}$	$\begin{aligned} & 404 \\ & 304 \\ & 204 \\ & 605 \\ & 505 \\ & 405 \\ & 305 \\ & 205 \\ & 606 \\ & 506 \\ & 406 \\ & 306 \\ & 206 \\ & 607 \\ & 507 \end{aligned}$	$\begin{array}{r} 2 \\ 9 \\ 22 \\ 41 \\ 66 \\ 3 \\ 10 \\ 23 \\ 42 \\ 67 \\ 12 \\ 11 \\ 24 \\ 43 \\ 68 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 22 \\ 41 \\ 66 \\ 3 \\ 10 \\ 23 \\ 42 \\ 67 \\ 12 \\ 11 \\ 24 \\ 43 \\ 68 \end{array}$	RLYB01 CE214 RLYB02 CE215 RLYB03 CE216 RLYB04 CE217 RLYB05 CE218 RLYB06 CE219 RLYB07 CE220 RLYB08 CE221 RLYB09 CE222 RLYB10 CE223 RLYB11 CE224 RYWD12 CE225 RYWD13 CE226 RYWD14 CE227 RYWD16 CE228	CHN 10-1 CHN 10-2 CHN 10-3 CHN 10-4 CHN 10-5 CHN 10-6 CHN 10-7 CHN 10-8 CHN 10-9 CHN 10-10 CHN 10-11 CHN 10-12 CHN 10-13 CHN 10-14 CHN 10-15	Bit positions 1 through 15 (gates 44305, 44311, 44317, 44323, 44329, 44335, 44341, 44347, 44353, 44359, $44405,44411,44417,44423$, and 44429) of channel 10 (table 30-5) generate signals RLYB01 through RYWD16 (column 5) which control interface circuits 33C through 19C of A25. The output DC signals operate the relay matrices in the DSKY's (par 30-145A and 30-145B).
229 230	407 307	27 26	27 26	ISSWAR CB229 COMACT CB230	ISS WARNING COMPUTER ACTIVITY	Bit positions 1 and 2 (gates 43401 and 43412) of channel 11 (table 30-5) generate signals ISSWAR and COMACT which control interface circuits 18C and 17C of A25. The interface circuits ope rate relays ISS WARNING and COMP ACTY (par 30-145C).
231	207	25	25	SBYLIT or STBY CB231	STANDBY LGHT	Gate 45157 of the Standby Control generates signal SBYLIT which controls interface circuit 16C of A25. The interface circuit operates relay STBY (par 30145C).
232	608	44	44	RESTRT C-232	RESTART	Gate 41240 of the start-stop logic (par 30-131B) generates signal RESTRT which controls interface circuit 15C of A25. The interface circuit operates relay RESTART (par 30-145C).
233 234	508 408	69 18	69 18	S4BSEQ CB233 S4BOFF CB234	SIVB INJ SEQ STRT SIVB CUT OFF	Bit positions 13 and 14 (gates 43451 and 43460) of channel 12 (table 30-5A) generate signals S4BSEQ and S4BOFF which control interface circuits 14C and 13C of A25. The interface circuits operate relays INJ SEQ START and CUTOFF (par 30-145C).

COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1		Name Used in DD Memo 185		Signal Description	
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY						
253	603	51	-		MKEY 1 or KEY1		KEY CODE 1 (M)		DC signals DE253 through DE257 are generated by the keyboard of the main panel DSKY (pressing any key ex-
254	503	78	-	DE254	MKEY 2 or KEY2	KEY CODE 2 (M)		cept key STBY) and received by interface circuits 6D through 10D of A26 which feed bit positions 1 through	
255	403	77	-	DE 255	MKEY3 or KEY3	KEY CODE 3 (M)		5 (gates $45101,45105,45109,45113$, and 45117) of channel 15 (table 30-5).	
256	303	76	-	DE256	MKEY4 or KEY4	KEY CODE 4 (M)			
257	203	79	-	DE257	MKEY5 or KEY5	KEY CODE 5 (M)			
258	309	71	71	TMPCAU	CB258	TEMP CAUTION		Gate 41230 of the Alarm Control generates signal TMPCAU when signal TMPOUT or signal TEMPIN/ is present. Signal TMPCAU controls interface circuit 6C of A25 which operates relays TEMP CAUTION (par 30-145C). Signal TMPOUT (temperature out of limits) is supplied by bit position 4 of channel 11 ; signal TEMPIN (temperature within limits) is supplied by line 125 which also feeds bit position 15 of channel 30.	
324A 324C 3240	-	-	$\begin{aligned} & 81 \\ & 82 \\ & 80 \\ & 20 \\ & 2 \end{aligned}$	$\left.\begin{array}{l} \text { SD324A } \\ \text { WD324C } \\ \text { WD324O } \end{array}\right\}$	ISS WARNING	ISS WARNING None None	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	Connections to contacts of relay ISS WARNING which is operated by signal 229.	
$\begin{aligned} & 325 A \\ & 325 \mathrm{C} \\ & \\ & 3250 \end{aligned}$	-		$\begin{aligned} & 32 \\ & 14 \\ & 15 \end{aligned}$	$\left.\begin{array}{l} \text { SD325A } \\ \text { WD325C } \\ \text { WD325O } \end{array}\right\}$	CIRCUIT	AGC WARNING INHIBIT PIPA PULSE TORQ. None		Connections to contacts of relay CIRCUIT which is operated by signal 237.	
326A 326C 3260	-	-	$\begin{array}{r} 34 \\ 6 \\ 17 \end{array}$	$\left.\begin{array}{l} \text { SD326A } \\ \text { WD326C } \\ \text { WD326O } \end{array}\right\}$	SPARE	SPARE (100-7) None None	NC NC NC	Connections to contacts of relay SPARE of bank 14 which is controlled by bit 7 (par 30-145B).	
$\begin{aligned} & 328 \mathrm{~A} \\ & 328 \mathrm{C} \\ & 328 \mathrm{O} \end{aligned}$	-	-	56 16 33	$\left.\begin{array}{l} \text { SD328A } \\ \text { WD328C } \\ \text { WD328O } \end{array}\right\}$	SPARE	SPARE (1100-5) (SL) None None	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	Connections to contacts of relay SPARE of bank 14 which is controlled by bit 5 (par 30-145B).	
$\begin{aligned} & 338 \mathrm{~A} \\ & 338 \mathrm{C} \\ & 3380 \end{aligned}$	-	-		$\left.\begin{array}{l} \text { SD338A } \\ \text { WD338C } \\ \text { WD338O } \end{array}\right\}$	INJ SEQ START	G HIGH LIGHT Signal not mentioned G HIGH RET	NC NC NC	Connections tu contacts of relay INJ SEQ START which is operated by signal 233.	

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	$\begin{aligned} & \text { A51 } \\ & \text { of } \\ & \text { AGC } \end{aligned}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
$\begin{aligned} & 352 \mathrm{~A} \\ & 352 \mathrm{C} \\ & 353 \end{aligned}$	-	-	$\begin{gathered} 31 乌 2 \\ 53 \text { 亿 } \\ 57 \end{gathered}$	SD352A G\&N CAUTION WD352C RESTART WD353 ALARM COMMON	PGNS (CAUTION) None RETURN (342, 351, 352)	Line 352A is connected to contacts of relays GIMBAL LOCK, TRACKER, PROG CAUTION, RESTART, and TEMP CAUTION (par 30-145B and 30-145C) and control the $G \& N$ caution indicator. Line 352 C is connected to a contact of relay RESTART. Line 353 is connected to contacts of relays GIMBAL LOCK, TRACKER, PROG CAUTION, RESTART, TEMP CAUTION, CIRCUIT, and ISS WARNING.
$\begin{aligned} & 354 \mathrm{~A} \\ & 354 \mathrm{C} \\ & 354 \mathrm{O} \end{aligned}$		-	$\begin{aligned} & 35 \\ & 59 \\ & 58 \end{aligned}$	$\begin{aligned} & \text { SD354A } \\ & \text { WD354C } \\ & \text { WD354O } \end{aligned}$	STANBY NC None NC RETURN NC	Connections to contacts of relay STBY which is operated by signal 231.
355	107	-	21	$\begin{array}{ll} \text { WD355 } & +28 \mathrm{COM} \text { or } \\ +28 \mathrm{~V} \end{array}$	+28V (N)	+28VDC output provided by Navigation Panel DSKY. See signal 243.
$\begin{aligned} & 407 \mathrm{~A} \\ & 407 \mathrm{C} \\ & 407 \mathrm{l} \end{aligned}$		$\begin{gathered} 37 \\ 19 \lcm{2} \\ 61 \end{gathered}$	-	$\begin{aligned} & \left.\begin{array}{l} \text { SD407A } \\ \text { WD407C } \\ \text { WD407O } \end{array}\right\} \quad \begin{array}{l} \text { INJ SEQ } \\ \text { START } \end{array} \end{aligned}$	INJ SEQU STRT (SIVB) None INJ SEQU STRT RET	Connections to contacts of relay INJ SEQ START which is operated by signal 233.
409A 409C 4090	-	36 85 60	-	$\left.\begin{array}{l}\text { SD409A } \\ \text { WD409C } \\ \text { WD4090 }\end{array}\right\} \quad$ CUTOFF	CUT OFF CMD (SIVB) None NC CUT OFF CMD RET	Connections to contacts of relay CUTOFF which is operated by signal 234.
437 438	-	38 40	-	W-437 115 V $400 \sim$ $\mathrm{~W}-433$ 115 V $400 \sim$ RET	115V VARIABLE 400 CPS SIG 115V VARIABLE 400 CPS RET	115 VAC power for illumination of keys.
$\begin{aligned} & 439 \mathrm{~A} \\ & 439 \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 83 \\ & 54 \end{aligned}$	-	$\left.\begin{array}{ll} \text { SD439A } \\ \text { WD439C } \end{array}\right\} \quad \text { ISS } \quad \text { WARNING }$	ISS WARNING LGHT None NC	Connections to contacts of relay ISS WARNING which is operated by signal 229.
440 A 440 C	-	$\begin{array}{ll} 3 \cdot & 2 \\ 53 & 2 \end{array}$	-	SD440A G\&N WD440C CAUTION RESTART	G/N CAUTION LGHT None NC	Line 440A is connected to contacts of relays GIMBAL LOCK, TRACKER, PROG CAUTION, RESTART, and TEMP CAUTION (par 30-145B and 30-145C) which control the $G \& N$ caution indicator. Line 440 C is connected to a contact of relay RESTART. Line 450 is connected to contacts of relays GIMBAL LOCK, TRACKER, PROG CAUTION, RESTART, TEMP CA ${ }^{\wedge}$, TION, CIRCUIT, and ISS WARNING

COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

	Line or Signal Number	Connecting Pins at			Name Used on Drawings 1		Name Used in DD Memo 185		Signal Description
		$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY					
	$\begin{aligned} & 452 \mathrm{~A} \\ & 452 \mathrm{C} \\ & 452 \mathrm{O} \end{aligned}$		$\begin{array}{ll} 81 & 2 \\ 82 & 2 \\ 80 & \boxed{2} \\ \hline \end{array}$		$\left.\begin{array}{l} \text { SD452A } \\ \text { WD452C } \\ \text { WD452O } \end{array}\right\}$	ISS WARNING	ISS WARNING None None	$\begin{aligned} & \text { NC } \\ & \text { NC } \\ & \text { NC } \end{aligned}$	Connections to contacts of relay ISS WARNING which is operated by signal 229.
	$\begin{aligned} & 453 \mathrm{~A} \\ & 453 \mathrm{C} \\ & 453 \mathrm{O} \end{aligned}$		$\begin{aligned} & 35 \\ & 59 \\ & 58 \end{aligned}$		$\left.\begin{array}{l} \text { SD453A } \\ \text { WD453C } \\ \text { WD453O } \end{array}\right\}$	-	STANDBY None None	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	Connections to contacts of relay STBY which is operated by signal 231.
	801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816	$\begin{aligned} & 209 \\ & 109 \\ & 610 \\ & 510 \\ & 410 \\ & 310 \\ & 210 \\ & 110 \\ & 611 \\ & 511 \\ & 411 \\ & 311 \\ & 211 \\ & 111 \\ & 612 \\ & 512 \end{aligned}$			RC $+\mathrm{X}+\mathrm{P}$ RC+X-P RC+X+Y RC+X-Y RC-X+P RC-X-P RC-Y+X RC-X-Y R C+Y+R RC+Y-R RC-Y+R RC-Y-R RC+Z+R RC+Z-R RC-Z+R RC-Z-R	CB801 CB802 CB803 CB804 CB805 CB806 CB807 CB808 CB809 CB810 CB811 CB812 CB813 CB814 CB815 CB816	$\begin{aligned} & \text { +X/+PCH, +PC } \\ & \text { +X/-PCH, -PC } \\ & \text { +X/+YAW, +YA } \\ & \text { +X/-YAW, -YA } \\ & \text {-X/+PCH, +PC } \\ & \text {-X/-PCH, -PC } \\ & \text {-X/+YAW, +YA } \\ & \text {-X/-YAW, -YA } \\ & \text { +Y/+RLL } \\ & \text { +Y/-RLL } \\ & \text {-Y/+RLL } \\ & \text {-Y/-RLL } \\ & \text { +Z/+RLL, +RL } \\ & \text { +Z/-RLL, -RL } \\ & -\mathrm{Z} /+\mathrm{RLL},+\mathrm{RL} \\ & -\mathrm{Z} /-\mathrm{RLL},-\mathrm{RL} \end{aligned}$	YAW $+\mathrm{PCH}$ $+\mathrm{PCH}$ YAW $-\mathrm{PCH}$ $-\mathrm{PCH}$ +Z) +Z) -z) -Z	Bit positions 1 through 8 of channels 5 and 6 (gates 43105, 43111, 43117, 43123, 43129, 43135, 43141, 43147, 43259, 43254, 43249, 43244, 43239, 43224, 43223, and 43205) gene rate signals $R C+X+P$ through $\mathrm{RC}-\mathrm{Z}-\mathrm{R}$ (column 5) which control interface circuits 5 C through 1 C of A25 and 34C through 24C of A26 which operate the reaction control system in the SM (first signal name in column 6) or the CM (second name).
	$\begin{aligned} & 817 \\ & 818 \\ & 819 \\ & 820 \\ & 821 \\ & 822 \end{aligned}$	$\begin{aligned} & 158 \\ & 258 \\ & 157 \\ & 257 \\ & 156 \\ & 256 \\ & 155 \\ & 255 \\ & 154 \\ & 254 \\ & 153 \\ & 253 \end{aligned}$			$\left.\begin{array}{l} \text { YG817H } \\ \text { YG817L } \\ \text { YG818H } \\ \text { YG818L } \\ \text { YG819H } \\ \text { YG819L } \\ \text { YG820H } \\ \text { YG820L } \\ \text { YG821H } \\ \text { YG821L } \end{array}\right\}$	BMGXP BMGXM BMGYP BMGYM BMG ZP BMG ZM	+PITCH BMAG - PITCH BMAG +ROLL BMAG -ROLL BMAG +YAW BMAG -YAW BMAG		Interface circuits 1 Y through 6 Y of A29 receive pulses from the body-mounted acceleration gyros and feed gates 46337, 46338, 46346, 46347, 46356, and 46357 of the BMAG/RHC Control (par 30-110 through 30-112).
$\begin{aligned} & \text { W} \\ & \$ \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 831 \\ & 832 \end{aligned}$	$\begin{aligned} & 643 \\ & 543 \end{aligned}$	-	-	$\begin{aligned} & \text { DE831 } \\ & \text { DE832 } \end{aligned}$	TRST9 TRST10	$\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$		Interface circuits 5D and 6D of A28 are able to receive DC signals and feed bit position 7 and 8 (gates 44239 and 44241) of channel 32 (table 30-5F).

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1		Name Used in DD Memo 185		Signal Description	
	A51 of AGC	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			3			
840	621	-	-	DE840	IN3301		SPARE CHN 33-01	NC	Interface circuit 17D of A27 is able to receive DC signals and feeds bit position 1 (gate 44102) of channel 33 (table 30-5G). Not used, spare.
841	213	-	-	MROLGT	CB84 1	NC		Bit position 12 (gate 43450) of channel 12 (table 30-5A) generates signal MROLGT which controls interface circuit 15C of A26. The interface circuit is able to control external equipment.	
$\begin{aligned} & 842 \\ & 843 \end{aligned}$	$\begin{aligned} & 532 \\ & 632 \end{aligned}$		-	$\begin{aligned} & \text { DE842 } \\ & \text { DE843 } \end{aligned}$	$\begin{aligned} & \text { PCHGOF } \\ & \text { ROLGOF } \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$		Interface circuits 16 D and 15D of A28 are able to receive DC signals and feed bit positions 9 and 10 (gates 44243 and 44245) of channel 32 (table 30-5F).	
$\begin{aligned} & 844 \\ & 845 \end{aligned}$	-		-	$\begin{aligned} & \text { DE844 } \\ & \text { DE845 } \end{aligned}$	$\begin{aligned} & \text { IN3214 } \\ & \text { IN3216 } \end{aligned}$	SPARE CHN 32-14 SPARE CHN 32-16	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	Interface circuits 5D of A26 and 10D of A26 are able to receive DC signals and feed bit positions 14 and 15 (gates 44140 and 44143) of channel 32 (table 30-5F). Not used, spares.	
848 850 851 852 853 854 855				OT1108 OT1110 OT1111 OT1112 OT1113 OT1114 OT1116	CB848 CB850 CB851 CB852 CB853 CB854 CB855	SPARE CHN 11-08 SPARE CHN 11-10 SPARE CHN 11-11 SPARE CHN 11-12 SPARE CHN 11-13 SPARE CHN 11-14 SPARE CHN 11-16	NC NC NC NC NC NC NC	Bit positions 8 and 10 through 15 (gates 48422, 49252, $49253,49254,48427,48432$, and 48437) of channel 11 (table 30-5) generate signals OT1108 and OT1110 through OT1116 (column 5) which control interface circuits 6 C through 1 C and 9C of A26. Not used, spares.	
$\begin{aligned} & 858 \\ & 859 \\ & 860 \end{aligned}$	$\begin{aligned} & 142 \\ & 242 \\ & 141 \\ & 241 \\ & 140 \\ & 240 \end{aligned}$		- - -	$\left.\begin{array}{l} \text { A-858H } \\ \text { A-858L } \end{array}\right\}$		NC NC NC		Each line is connected to an RHC converter (one each in A27, A28, and A29). Each feeds the BMAG/RHC Control (figure 30-6 and par 30-113 through 30-115). Not used.	

TABLE 30A-1
COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

		Connecting Pins at			Name Used on Drawings \square 1	Name Used in DD Memo 185	Signal Description
	Line or Signal Number	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
$\begin{aligned} & 5 \\ & \stackrel{5}{4} \\ & \stackrel{\circ}{\circ} \end{aligned}$	861 863 865 866 867 868 869 870 874 875 876 877 878 879	$\begin{aligned} & 520 \\ & 637 \\ & 539 \\ & 635 \\ & 535 \\ & 634 \\ & 642 \\ & 619 \\ & 658 \\ & - \\ & 633 \\ & 656 \\ & 533 \\ & 519 \end{aligned}$			+28 COM RD861 +28 COM RD863 +28 COM RD865 +28 COM RD866 +28 COM RD867 +28 COM RD868 +28 COM RD869 +28 COM RD870 +28 COM RD874 - - +28 COM RD876 +28 COM RD877 +28 COM RD878 +28 COM RD879	66 SPARE NC $4 / 7 / 68$ $4 / 7 / 68$ NC SPARE NC SPARE NC SPARE NC	
	901	$\begin{aligned} & 324 \\ & 424 \end{aligned}$	-	-	$\left.25 \mathrm{KPPS} \quad \begin{array}{l}\text { XC901H } \\ \text { XC901L }\end{array}\right\}$	25.6 KPPS (PWR SUP SYNC)	Gate 49220 of the Timer generates 25 KPPS pulses which control interface circuit 8XT of A26. Pulses are provided to operate power supplies in the spacecraft.
	902	212	-	-	DISDAC CB902	DISENGAGE OPTICS DAC	Bit position 11 (gate 43342) of channel 12 (table 30-5A) generates signal DISDAC which controls interface circuit 21 C of A26. The interface circuit operates the Optics.
	$\begin{aligned} & 903 \\ & 904 \end{aligned}$	$\begin{aligned} & 521 \\ & 542 \end{aligned}$			+28 COM RD903 +28 COM RD904	14VB (AGC OPERATE) NC 171-174/188/189	Resistors 5R of A27 and 4R of A28 provide +28VDC.
	906	113	-	-	ZEROPT CB906	ZERO OPTICS	Bit position 10 (gate 43340) of channel 12 (table 30-5A) generates signal ZEROPT which controls interface circuit 14C of A26. The interface circuit operates the Optics.
	907	556	-	-	+28COM RD907	102-104/107/106/182/183	Resistors 4R and 5R of A29 in parallel provide +28 VDC .
ω 0 0 1 N	908	-	-	-	- -	102-104/106/107/182/183	

COMMAND MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at			Name Used on Drawings 1	Name Used in DD Memo 185 B	Signal Description
	$\begin{gathered} \text { A51 } \\ \text { of } \\ \text { AGC } \end{gathered}$	J9 of Main Panel DSKY	J9 of Nav Panel DSKY			
909	114	-	-	ISSTDC CB909	ISS TURN ON DELAY CMPLT	Bit position 15 (gate 48445) of channel 12 (table 30-5A) generates signal ISSTDC which controls interface circuit 8 C of A26. The interface circuit operates the ISS.
$\begin{aligned} & 910 \\ & 911 \end{aligned}$	$\begin{aligned} & 216 \\ & 215 \end{aligned}$			$\begin{aligned} & W-910 \\ & W-911 \end{aligned}$	CNTRL 1 (ACE) (LOW) CNTRL 2 (ACE) (HIGH)	
912	214	-	-	D-912 NHVFAL	INHIBIT POWER FAIL	Interface circuit 1D of A26 receives DC signal from spacecraft and feeds gates 41204 and 41205 of the Alarm Control (par 30-141R).

INPUT CIRCUIT D

OUTPUT CIRCUIT C

PULSES FROM A GATE WITHIN AGC

$+28 \mathrm{VDC}$

Figure 30A-1. Interface Circuits

ISSUE 30
APPENDIX B

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS

All input and output lines or signals passing through connector A5l of the AGC and connector J9 of the DSKY are listed in table 30B-1 of this appendix. Information is arranged by order of line or signal numbers frequently referred to in the main body of this issue. The numbers of the connecting pins of connectors A51 and J9 are given in columns 2 and 3 of the table while various signal names are listed in columns 4 and 5 . The various types of interface circuits provided are described in figure 30B-1. A short description of the signals is contained in the last column of table 30B-1. Numbers preceded by an A or B indicate module numbers.

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at		Name Used on Drawings 1\qquad	Name Used in DD Memo 185	Signal Description
	A51 of AGC	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \end{gathered}$			
017	$\begin{aligned} & 352 \\ & 452 \end{aligned}$	-	DKDATA $\quad\left\{\begin{array}{l}\mathrm{X}-017 \mathrm{H} \\ \mathrm{X}-017 \mathrm{~L}\end{array}\right.$	DLNK DATA	Gate 47256 of the Downlink Converter (par 30-126 and 30-127) generates signal DKDATA which controls interface circuit 1 XT of A28. The serial data pulses are fed into the NA Programmer.
$\begin{aligned} & 018 \\ & 019 \\ & 020 \\ & 021 \\ & 022 \\ & 023 \end{aligned}$	$\begin{aligned} & 655 \\ & 555 \\ & 654 \\ & 554 \\ & 653 \\ & 553 \end{aligned}$		DE018 TRAN+X DE019 TRAN-X DE020 TRAN+Y DE021 TRAN-Y DE022 TRAN+Z DE023 TRAN-Z	$\begin{aligned} & \text { +X TRANS COMM (MAN) } \\ & \text {-X TRANS COMM (MAN) } \\ & \text { +Y TRANS COMM (MAN) } \\ & \text { - Y TRANS COMM (MAN) } \\ & \text { +Z TRANS COMM (MAN) } \\ & \text { - Z TRANS COMM (MAN) } \end{aligned}$	Interface circuits 4D through 9D of A29 receive DC signals from the manual translation control and feed bit positions 7 through 12 (gates 44216 through 44220 , and 44232) of channel 31 (table 30-5E).
$\begin{aligned} & 024 \\ & 025 \end{aligned}$	$\begin{aligned} & 129 \\ & 229 \\ & 128 \\ & 228 \end{aligned}$	-	$\left.\begin{array}{l}\left.\begin{array}{l}\text { YG024H } \\ \text { YG024L }\end{array}\right\} \quad \text { UPL0 } \\ \text { YG025H } \\ \text { YG025L }\end{array}\right\} \quad$ UPL1	ULNK0 ULNK 1	Interface circuits $4 Y$ and $5 Y$ of A27 receive serial data pulses from the uplink equipment and feed gates 46304 and 46305 of the Inlink Control (par 30-116 through 30-119).
028	413	-	ALTSNC CB028	ALT METER SYNC NC	Gate 46132 of the Altitude Meter Control (par 30-123 through 30-125) generates signal ALTSNC which controls interface circuit 17C of A26.
029 030	$\begin{aligned} & 350 \\ & 450 \\ & 349 \\ & 449 \end{aligned}$	-	$\begin{array}{ll} \text { EMS }+ & \left\{\begin{array}{l} \text { XA029H } \\ \text { XA029L } \end{array}\right. \\ \text { EMS- } & \left\{\begin{array}{l} \text { XA030H } \\ \text { XA030L } \end{array}\right. \end{array}$	$\begin{array}{ll} \text { MONITOR INCR (+) } & \text { NC } \\ \text { MONITOR INCR (-) } & \text { NC } \end{array}$	Gates 46254 and 46258 of the EMS and Thrust Drive Control (par 30-100 through 30-104) generate signals EMS+ and EMS- which control interface circuits 10XT and 11 XT of A29.
$\begin{aligned} & 031 \\ & 032 \end{aligned}$	$\begin{aligned} & 127 \\ & 227 \\ & 126 \\ & 226 \end{aligned}$	-	$\left.\begin{array}{l}\text { YG031H } \\ \text { YG031L }\end{array}\right\} \quad$ RRIN0 $\left.\begin{array}{l}\text { YG032H } \\ \text { YG032L }\end{array}\right\} \quad$ RRIN1	RRDR INO RRDR IN1	Interface circuits $6 Y$ and $7 Y$ of A27 receive serial data pulses from the rendezvous radar and feed gates 45349 and 44347 of the Radar Control (par 30-105 through 30-109).
$\begin{aligned} & 033 \\ & 034 \end{aligned}$		-		$\begin{array}{ll}\text { SPARE CHN } 32-12 & \text { NC } \\ \text { SPARE CHN 32-13 }\end{array}$	Interface circuits 3 D and 4 D of A26 are able to receive DC signals and feed bit positions 12 and 13 (gates 44134 and 44137) of channel 32 (table 30-5F).
039	630	-	DE039 LVDAGD	LRDR VEL DATA GOOD	Interface circuit 17D of A28 receives a DC signal from landing radar and feeds bit position 8 (gate 44123) of channel 33 (table 30-5G).
040	641	-	DE040 HOLFUN	AUTO THROTTLE	Interface circuit 7D of A28 receives DC signal and feeds bit position 13 (gate 44233) of channel 31 (table 30-5E).

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUT PUT SIGNALS (cont)

$\begin{aligned} & \text { é } \\ & \underset{O}{1} \\ & \vdots \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	Line or Signal Number	Connecting Pins at		Name Used on Drawings 1		Name Used in DD Memo 185	Signal Description
		A5 1 of AGC					
	041 042 043 044 045 046 047 048 051 052	$\begin{aligned} & 348 \\ & 448 \\ & 347 \\ & 447 \\ & 344 \\ & 444 \\ & 343 \\ & 443 \\ & 342 \\ & 442 \\ & 341 \\ & 441 \\ & 346 \\ & 446 \\ & 345 \\ & 445 \\ & 340 \\ & 440 \\ & 339 \\ & 439 \end{aligned}$		RRRANG RRRARA LRXVEL LRYVEL LR ZVEL LRRANG RRSYNC RRRST LRSYNC LRRST	$\begin{aligned} & \left\{\begin{array}{l} \text { XA041H } \\ \text { XA041L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA042H } \\ \text { XA042L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA043H } \\ \text { XA043L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA044H } \\ \text { XA044L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA045H } \\ \text { XA045L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA046H } \\ \text { XA046L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA047H } \\ \text { XA047L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XC048H } \\ \text { XC048L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XA051H } \\ \text { XA051L } \end{array}\right. \\ & \left\{\begin{array}{l} \text { XC052H } \end{array}\right. \end{aligned}$	RRDR RANGE GATE RRDR RANGE RATE GATE LRDR XA VELOCITY GATE LRDR YA VELOCITY GATE LRDR ZA VELOCITY GATE LRDR RANGE GATE RRDR SYNC FOR READOUT RRDR GATE RESET LRDR SYNC FOR READOUT LRDR GATE RESET	Gates 45328 through 45333,45345 , and 45346 of the Radar Control (par 30-105 through 30-109) generate control signals (90 msec bursts of 100 kpps) RRRANG, RRRARA, LRXVEL, LRYVEL, LRZVEL, LRRANG, RRSYNC, and LRSYNC which control interface circuits 4XT through 11 XT of A28. Gates 49218 and 49219 generate timing signals (3.2 kpps) RRRST and LRRST which control interface circuits $2 X T$ and $3 X T$ of module A25.
	060	523	-	DE060	LEMATT	ATTITUDE HOLD MODE	Interface circuit 14D of A27 receives DC signals and feeds bit position 11 (gate 44131) of channel 32 (table 30-5F).
	061	530	-	DE061	LRRLSC	LR RANGE LOW SCALE	Interface circuit 18D of A28 receives DC signals from the landing radar and feeds bit position 9 (gate 44126) of channel 33 (table 30-5G).
	064	629	-	DE064	RRPONA	RR POWER ON/AUTO	Interface circuit 1D of A27 receives DC signal from the rendezvous radar and feeds bit position 2 (gate 44105) of channel 33 (table 30-5G).
$\begin{aligned} & \text { O} \\ & 0 . \\ & 0.0 \\ & 0.0 \\ & \text { B. } \end{aligned}$	065	541	-	DE065	FREFUN	AUTO STABILIZATION	Interface circuit 8D of A28 receives DC signal and feeds bit position 14 (gate 44233) of channel 31 (table 30-5E).
$\begin{aligned} & \text { e. } \\ & \text { 帚 } \\ & \text { yy } \end{aligned}$	066 067 068	$\begin{aligned} & 640 \\ & 540 \\ & 557 \end{aligned}$		DE066 DE067 DE068	S4BSAB SMSEPR GUIREL	ABORT STAGE STAGE VERIFY DISPLAY INERTIAL DATA	Interface circuits 9D, 10D of A28, and 3D of A29 receive DC signals from the spacecraft and feed bit positions 4, 2, and 6 (gates 44110, 44104, and 44116) of channel 30 (table 30-5D).

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B－1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS（cont）

	Line or Signal Number	Connecting Pins at		Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
		A5 1 of AGC				
	$\begin{aligned} & 112 \\ & 113 \end{aligned}$	$\begin{aligned} & 525 \\ & 625 \end{aligned}$	－	DE112 OPCDFL DE113 ISSTOR	RR CDU FAIL ISS TURN ON REQUEST	Interface circuits 10 D and 9D of A27 receive DC sig－ nals from the rendezvous radar CDU＇s and the ISS， and feed bit positions 7 and 14 （gates 44119 and 44139 ） of channel 30 （table 30－5D）．
	114 115 116 117	$\begin{aligned} & 338 \\ & 438 \\ & 337 \\ & 437 \\ & 336 \\ & 436 \\ & 335 \\ & 435 \end{aligned}$	- - - -	SHFTDP $\left\{\begin{array}{l}\text { XA } 114 \mathrm{H} \\ \text { XA } 114 \mathrm{~L}\end{array}\right.$ SHFTDM $\left\{\begin{array}{l}\text { XAl15H } \\ \text { XA } 115 \mathrm{~L}\end{array}\right.$ TRNDP $\left\{\begin{array}{l}\text { XA116H } \\ \text { XAl16L }\end{array}\right.$ TRNDM $\left\{\begin{array}{l}\text { XA117H } \\ \text { XAl17L }\end{array}\right.$	＋RR SHAFT －RR SHAFT ＋RR TRUNNION －RR TRUNNION	Gates $48348,48349,48336$ ，and 48339 of the CDU Drive Control（par 30－90 through 30－94）generate drive pulses SHFTDP，SHFTDM，TRNDP，and TRNDM which control interface circuits 8 XT through 11 XT of A27．The output pulses drive the rendezvous radar CDU＇s．
	$\begin{aligned} & 118 \\ & 119 \\ & 120 \\ & 121 \\ & 122 \\ & 123 \end{aligned}$	$\begin{aligned} & 148 \\ & 248 \\ & 147 \\ & 247 \\ & 146 \\ & 246 \\ & 145 \\ & 245 \\ & 144 \\ & 244 \\ & 143 \\ & 243 \end{aligned}$		$\left.\left.\begin{array}{ll}\left.\begin{array}{l}\text { YG118H } \\ \text { YG118L }\end{array}\right\} & \left.\begin{array}{l}\text { CDUXP } \\ \text { YG119H } \\ \text { YG119L }\end{array}\right\} \\ \text { YG120H } \\ \text { YG120L }\end{array}\right\} \quad \begin{array}{l}\text { CDUXM } \\ \text { YG121H } \\ \text { YG121L }\end{array}\right\} \quad$CDUYP $\left.\begin{array}{l}\text { YG122H } \\ \text { YG122L }\end{array}\right\}$ $\left.\begin{array}{l}\text { YG123H } \\ \text { YG123L }\end{array}\right\}$$\quad$CDUZP	+X CDU（OUT GMBL） －X CDU（OUT GMBL） +Y CDU（INN GMBL） -Y CDU（INN GMBL） $+Z \mathrm{CDU}$（MID GMBL） －Z CDU（MID GMBL）	Interface circuits 11 Y of module A29，and 1Y through $5 Y$ of A28 receive incremental pulses from the IMU CDU＇s and feed the counter priority control gates $31102,31109,31115,31124,31202$ ，and 31209，and the alarm control gates 49437 and 49438 （par 30－141L）．
	124	624	－	DE124 CDUFAL	CDU FAIL（ISS）	Interface circuit llD of A27 receives DC signals from the CDU＇s and feeds bit position 12 （gate 44133）of channel 30.
	125	524	－	DE125 TEMPIN	TEMP WITHIN LIMITS	Interface circuit 12D of A27 receives DC signals from the IMU and feeds bit position 15 （gate 44142）of chan－ nel 30 and gate 45262 of the Alarm Control．
$\begin{gathered} \omega \\ \substack{0 \\ \hline 1 \\ \hline} \end{gathered}$						

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B－1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS（cont）

Line or Signal Number	Connec	Pins at	Name Used on Drawings $\widehat{1}$	Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \mathrm{A} 51 \\ \text { of } \\ \text { AGC } \end{gathered}$	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \end{gathered}$			
$\begin{aligned} & 142 \\ & 143 \\ & 144 \\ & 145 \\ & 146 \\ & 147 \\ & 148 \end{aligned}$	$\begin{aligned} & 121 \\ & 221 \\ & 120 \\ & 220 \\ & 119 \\ & 219 \\ & 118 \\ & 218 \\ & 321 \\ & 421 \\ & 320 \\ & 420 \\ & 318 \\ & 418 \end{aligned}$		GYXP $\left\{\begin{array}{l}\text { XB142H } \\ \text { XB142L }\end{array}\right.$ GYXM XB143H XB143L GYYP $\left\{\begin{array}{l}\text { XB144H } \\ \text { XB144L }\end{array}\right.$ GYYM $\left\{\begin{array}{l}\text { XB145H } \\ \text { XB145L }\end{array}\right.$ GYZP $\left\{\begin{array}{l}\text { XB146H } \\ \text { XB146L }\end{array}\right.$ GYZM XB147H XB147L GYRRST XA148H XA148L	＋X GYRO SELECT －X GYRO SELECT ＋Y GYRO SELECT －Y GYRO SELECT ＋Z GYRO SELECT －Z GYRO SELECT GYRO RESET	Gates 46424 through $46427,46432,46433$ ，and 46443 of the Gyro Drive Control（par 30－95 through 30－99） generate drive pulses GYXP through GYZM（column 4）and reset pulses GYRRST which control interface circuits 2 XT and 3 XT of A27，A28，and A29，and 5 XT of A27．The output pulses drive and reset the gyros in the IMU．
$\begin{aligned} & 149 \\ & 150 \end{aligned}$	$\begin{aligned} & 323 \\ & 423 \\ & 322 \\ & 422 \end{aligned}$	－	$\begin{array}{ll} 800 \mathrm{SET} & \left\{\begin{array}{l} \mathrm{XC} 149 \mathrm{H} \\ \mathrm{XC} 149 \mathrm{~L} \end{array}\right. \\ 800 \mathrm{RST} & \left\{\begin{array}{l} \mathrm{XC} 150 \mathrm{H} \\ \mathrm{XC} 150 \mathrm{~L} \end{array}\right. \end{array}$	800 PPS SET 800 PPS RESET	Gates 49209 and 49210 of the Timer generate 800 pps signals which control interface circuits 10XT and 11XT of A26．The timing pulses are provided for ex－ ternal equipment．
$\begin{aligned} & 151 \\ & 152 \\ & 153 \\ & 154 \end{aligned}$	$\begin{gathered} 316 \\ 416 \\ 315 \\ 415 \\ - \\ - \\ - \\ - \end{gathered}$		3200 A $\left\{\begin{array}{l}\mathrm{XC} 151 \mathrm{H} \\ \mathrm{XC} 151 \mathrm{~L}\end{array}\right.$ 3200 B $\left\{\begin{array}{l}\mathrm{XC152H} \\ \text { XC152L }\end{array}\right.$ 3200 C $\left\{\begin{array}{l}\mathrm{XC153H} \\ \text { XC153L }\end{array}\right.$ 3200 D $\left\{\begin{array}{l}\text { XC154H } \\ \text { XC154L }\end{array}\right.$	3．2 KPPS A 3．2 KPPS RESET B 3．2 KPPS RESET C NC 3．2 KPPS RESET D NC	Gates 49211 through 49213 and 49215 of the Timer gen－ erate 3200 pps signals which control interface circuits 4XT through 7XT of A26．The timing pulses are pro－ vided for external equipment．
155	$\begin{aligned} & 117 \\ & 217 \end{aligned}$	－	$12 \mathrm{KPPS} \quad\left\{\begin{array}{l} \mathrm{XC} 155 \mathrm{H} \\ \mathrm{XC} 155 \mathrm{~L} \end{array}\right.$	12．8 KPPS PWR SUP SYNC	Gate 49217 of the Timer generates 12 kpps signals which control interface circuit 9XT of A26．The tim－ ing pulses are provided for external equipment．
158 159	534 536	－	DE158 CTLSAT DE159 GCAPCL	GUID．RELEASE NC G／N CONTROL OF S／C	Interface circuits 18D of module A27 and 14D of A28 receive DC signals from the spacecraft and feed bit position 10 （gate 44128）of channel 30 （table 30－5D） and bit position 15 （gate 44235）of channel 31 （table 30－5E）．

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connec	Pins at	Name Used on Drawings 1		Name Used in DD Memo 185	Signal Description
	$\begin{gathered} \mathrm{A} 51 \\ \text { of } \\ \mathrm{AGC} \end{gathered}$	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \end{gathered}$				
$\begin{aligned} & 182 \\ & 183 \\ & 184 \end{aligned}$	$\begin{aligned} & 548 \\ & 547 \\ & 622 \end{aligned}$	-	DE182 DE183 DE 184	MRKREJ STRPRS IMUOPR	RATE OF DESCENT (-) LR POSITION 2 (HOVER) IMU OPERATE	Interface circuits 15D and 16D of A29 and 15D of A27 receive DC signals from the radars and the IMU and feed bit position 7 (gate 45229) of channel 16 (table 30-5J), bit positions 7 (gate 44120) of channel 33 (table $30-5 \mathrm{G}$), and bit position 9 (gate 44125) of channe1 30 (table 30-5D).
$\begin{aligned} & 185 \\ & 186 \end{aligned}$	$\begin{aligned} & 313 \\ & 614 \end{aligned}$	- -	ZOPCDU ENEROP	CB185 CB186	ZERO REN RDR CDU ERR CNTR ENABLE REN RDR	Bit positions 1 and 2 (gates 43302 and 43310) of channel 12 (table 30-5A) gene rate signals ZOPCDU and ENEROP which control interface circuits 16 C and 13C of A26. The interface circuits operate the rendezvous radar CDU's and the rendezvous radar.
$\begin{aligned} & 188 \\ & 189 \end{aligned}$	$\begin{aligned} & 644 \\ & 544 \end{aligned}$		$\begin{aligned} & \text { DE188 } \\ & \text { DE189 } \end{aligned}$	MNIM+R MNIM-R	THRUSTER 1D/1S FAIL THRUSTER 1U/1F FAIL	Interface circuits 3D and 4D of A28 receive DC signals from the spacecraft and feed bit positions 5 and 6 (gates 44244 and 44237) of channel 32 (table 30-5F).
191	$\begin{aligned} & 515 \\ & 615 \end{aligned}$	-	CDUCLK	$\left\{\begin{array}{l} \mathrm{XC} 191 \mathrm{H} \\ \mathrm{XC} 191 \mathrm{~L} \end{array}\right.$	CDU CLOCK (51.2 KPPS)	Gate 49223 of the Timer generates pulses CDUCLK which control interface circuit 8 XT of A25. The 51.2 kpps signals are provided for the CDU's.
192	$\begin{aligned} & 317 \\ & 417 \end{aligned}$	-	GYENAB	$\left\{\begin{array}{l} \text { XB192H } \\ \text { XB192L } \end{array}\right.$	GYRO COMM ENABLE	Gate 46434 of the Gyro Drive Control (par 30-95 through 30-99) generates pulses GYENAB which control interface circuit 1 XT of A26. Output pulses control gyros in the IMU.
193	522	-	DE193	IMUCAG	IMU CAGE	Interface circuit 16D of A27 receives DC signal from IMU and feeds bit position 11 (gate 44130) of channel 30 (table 30-5D).
$\begin{aligned} & 194 \\ & 195 \\ & 196 \end{aligned}$	$\begin{aligned} & 514 \\ & 414 \\ & 314 \end{aligned}$		COARSE ZIMCDU ENERIM	$\begin{aligned} & \text { CB194 } \\ & \text { CB195 } \\ & \text { CB196 } \end{aligned}$	COARSE ALIGN ENABLE ZERO IMU CDU'S ERR CNTR ENABLE IMU	Bit positions 4, 5, and 6 (gates 43320, 43322, and 43330) of channel 12 (table $30-5 \mathrm{~A}$) generate signals COARSE, ZIMCDU, and ENERIM which control interface circuits 12C, 11C, and 10C of A26. The interface circuits operate the IMU mode control.
197	$\begin{aligned} & 325 \\ & 425 \end{aligned}$	-	PIPDAT	$\left\{\begin{array}{l} \mathrm{XC} 197 \mathrm{H} \\ \mathrm{XC} 197 \mathrm{~L} \end{array}\right.$	PIPA DATA PULSE 3200SB2	Gate 49206 of the Timer generates PIPDAT pulses which control interface circuit 11XT of A25. The 3.2 kpps signal is fed into PIPA's.

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connecting Pins at		Name Used on Drawings 1		Name Used in DD Memo 185	Signal Description
	A5 1 of AGC					
198	$\begin{aligned} & 319 \\ & 419 \end{aligned}$	-	GYRSET	$\left\{\begin{array}{l}\text { XA198H } \\ \text { XA198L }\end{array}\right.$	GYRO SET	Gate 46442 of the Gyro Drive Control (par 30-95 through 30-99) generates pulses GYRSET which control interface circuit 4 XT of A27. Output pulses operate gyros.
199	$\begin{aligned} & 102 \\ & 202 \end{aligned}$	-	RD199H RD199L		TEMP MON 1	Connected only to pins 309 and 409 of both plugs A62 and B62.
$\begin{aligned} & 201 \\ & 202 \\ & 203 \\ & 204 \\ & 205 \end{aligned}$	$\begin{aligned} & 601 \\ & 501 \\ & 401 \\ & 301 \\ & 201 \end{aligned}$	-	DE201 DE 202 DE203 DE204 DE205	NKEY 1 or KEY1 NKEY2 or KEY2 NKEY3 or KEY3 NKEY4 or KEY4 NKEY5 or KEY5	NC NC MARK X (AOT) MARK Y (AOT) REJECT MARK (AOT)	DC signals DE201 through DE205 are received by interface circuits 4D through 8D of A25 which feed bit positions 1 through 5 (gates 45201, 45205, 45209, 45213, and 45217) of channel 16 (table 30-5J).
$\begin{aligned} & 206 \\ & 207 \\ & 208 \\ & 209 \end{aligned}$	$\begin{aligned} & 103 \\ & 502 \\ & 402 \\ & 101 \end{aligned}$	49 28 48	D-206 D-207 D-208 D-209	MAINRS or KEYRST SBYBUT or STBY CAURST or RSET NAVRST or KEYRST	KYBD RESET STANDBY RESET (LGHT) MARK RESET (AOT)	DC signals D-206 through D-209 are generated by the keyboard of the DSKY and the spacecraft, and received by interface circuits 1D, 2D, 3D, and 9D of A25. Signal D-207 is caused by pressing the STBY key and operates the Standby Control (gate 45141, par 30-141AJ through 30-141AM). Signal D-208 is caused by press ing the RSET key and operates the start-stop logic (gate 45222) to reset the restart flip-flop (gates 41237/ 41238, par 30-131B). Signal D-206 is caused by press ing any key on the DSKY, except key STBY, and resets channel 15. Signal D-209 resets bit positions 1 through 5 of channel 16 (table 30-5J).
210	115	75	W-210		SPARE	Spare connection.
211	302	30	+28COM	RD211	+28 KYBD	Resistors 1R, 2R, and 3R of A25 in parallel provide +28VDC for the DSKY.
212	504	-	ELSNCN	CC212	NC	Gate 49249 of the Timer generates signal ELSNCN (800 pps) which controls interface circuit 34C of A25.
213	-	74	W-213		SPARE	Spare pin in DSKY.

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

Line or Signal Number	Connec	Pins at	Name Used on Drawings 1		Name Used in DD Memo 185	Signal Description
	A5 1 of AGC					
214	404	2	RLYB01	CE214	CHN 10-1	Bit positions 1 through 15 (gates 44305, 44311, 44317,
215	304	9	RLYB02	CE215	CHN 10-2	44323, 44329, 44335, 44341, 44347, 44353, 44359,
216	204	22	RLYB03	CE216	CHN 10-3	44405, 44411, 44417, 44423, and 44429) of channel 10
217	605	41	RLYB04	CE217	CHN 10-4	(table 30-5) generate signals RLYB01 through RYWD16
218	505	66	RLYB05	CE218	CHN 10-5	(column 4) which control interface circuits 33C through
219	405	3	RLYB06	CE219	CHN 10-6	19 C of A25. The output DC signals operate the relay
220	305	10	RLYB07	CE220	CHN 10-7	matrix in the DSKY (par 30-145A and 30-145B).
221	205	23	RLYB08	CE221	CHN 10-8	
222	606	42	RLYB09	CE222	CHN 10-9	
223	506	67	RLYB10	CE223	CHN 10-10	
224	406	12	RLYBll	CE224	CHN 10-11	
225	306	11	RYWD12	CE225	CHN 10-12	
226	206	24	RYWD13	CE226	CHN 10-13	
227	607	43	RYWD14	CE227	CHN 10-14	
228	507	68	RYWD16	CE228	CHN 10-15	
229 230	$\begin{aligned} & 407 \\ & 307 \end{aligned}$	27 26	ISSWAR COMACT	CB229 CB230	ISS WARNING COMPUTER ACTIVITY	Bit positions 1 and 2 (gates 43401 and 43412) of channel 11 (table 30-5) generate signals ISSWAR and COMACT which control interface circuits 18 C and 17C of A.25. The interface circuits operate relays ISS WARNING and COMP ACTY (par 30-145C).
231	207	25	$\begin{aligned} & \text { SBYLIT } \\ & \text { or STBY } \end{aligned}$	CB231	STANDBY LGGHT	Gate 45157 of the Standby Control generates signal SBYLIT which controls interface circuit 16 C of A25. The interface circuit operates relay STBY (par 30145C).
232	608	44	RESTRT	C-232	RESTART	Gate 41240 of the start-stop logic (par 30-131B) generates signal RESTRT which controls interface circuit 15C of A25. The interface circuit operates relay RESTART (par 30-145C).
233 234	508 408	69 18	S4BSEQ S4BOFF	$\begin{aligned} & \text { CB233 } \\ & \text { CB234 } \end{aligned}$	LRDR POS CMD RR ENABLE LOCK ON	Bit positions 13 and 14 (gates 43451 and 43460) of channel 12 (table $30-5 \mathrm{~A}$) generate signals S 4 BSEQ and S4BOFF which control interface circuits 14 C and 13C of A25. The interface circuits operate relays INJ SEQ START and CUTOFF (par 30-145C).

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUT PUT SIGNALS (cont)

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

		Connecting Pins at		Name Used on Drawings 1	Name Used in DD Memo 185	Signal Description
	Signal Number	$\begin{gathered} \text { A5 } 1 \\ \text { of } \\ \text { AGC } \end{gathered}$	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \\ \hline \end{gathered}$			
	452A 452C 4520	-	$\begin{array}{ll} 81 & 2 \\ 82 & 2 \\ 80 & 2 \end{array}$	$\left.\begin{array}{l} \text { SD452A } \\ \text { WD452C } \\ \text { WD452O } \end{array}\right\} \quad \text { ISS } \quad \text { WARNING }$	ISS WARNING (LMP) NC None None	Connections to contacts of relay ISS WARNING which is operated by signal 229.
	453A 453C 4530	-	$\begin{aligned} & 35 \\ & 59 \\ & 58 \end{aligned}$	SD453A WD453C WD453O	STANBY NC None NC None NC	Connections to contacts of relay STBY which is operated by signal 231.
	801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816	209 109 610 510 410 310 210 110 611 511 411 311 211 111 612 512		CB801 $R C+X+P$ CB802 $R C+X-P$ CB803 $R C+X+Y$ CB804 $R C+X-Y$ CB805 $R C-X+P$ CB806 $R C-X-P$ CB807 $R C-Y+X$ CB808 $R C-X-Y$ CB809 RC+Y+R CB810 $R C+Y-R$ CB811 $R C-Y+R$ CB812 $R C-Y-R$ CB813 $R C+Z+R$ CB814 $R C+Z-R$ CB815 $R C-Z+R$ CB816 $R C-Z-R$	$\begin{array}{lll} -X /-P /+R, & 4 U & \text { No. } 1 \\ +X /-R /-P, & 3 D & \text { No. } 6 \\ -X /+P /-R, & 2 U & \text { No. } 9 \\ +X /+R /+P, & 1 D & \text { No. } 14 \\ -X /+R /+P, & 3 U & \text { No. } 5 \\ +X /+P /-R, & 4 D & \text { No. } 2 \\ -X /-R /-P, & 1 U & \text { No. } 3 \\ +X /-P /+R, & 2 D & \text { No. } 10 \\ +Y /+Y A W, & 2 S & \text { No. } 12 \\ +Y /-Y A W, & 1 S & \text { No. } 16 \\ -Y /+Y A W, & 4 S & \text { No. } 4 \\ -Y /-Y A W, & 3 S & \text { No. } 8 \\ +Z /+Y A W, & 3 F & \text { No. } 7 \\ +Z /-Y A W, & 2 F & \text { No. } 11 \\ -Z /+Y A W, & 1 F & \text { No. } 15 \\ -Z /-Y A W, & 4 F & \text { No. } 3 \end{array}$	Bit positions 1 through 8 of channels 5 and 6 (gates 43105, 43111, 43117, 43123, 43129, 43135, 43141, 43147, 43259, 43254, 43249, 43244, 43239, 43234, 43223, and 43205) gene rate signals $R C+X+P$ through RC-Z-R (column 4) which control interface circuits 5 C through 1 C of A25 and 34C through 24C of A26 which operate the reaction control system.
	817 818 819 820 821 822	$\begin{aligned} & 158 \\ & 258 \\ & 157 \\ & 257 \\ & 156 \\ & 256 \\ & 155 \\ & 255 \\ & 154 \\ & 254 \\ & 153 \\ & 253 \end{aligned}$		$\left.\begin{array}{ll}\text { YG817H } \\ \text { YG817L }\end{array}\right\}$ BMGXP $\left.\begin{array}{l}\text { YG818H } \\ \text { YG818L }\end{array}\right\}$ BMGXM $\left.\begin{array}{l}\text { YG819H } \\ \text { YG819L }\end{array}\right\}$ BMGYP $\left.\begin{array}{l}\text { YG820H } \\ \text { YG820L }\end{array}\right\}$ BMGYM $\left.\begin{array}{l}\text { YG821H } \\ \text { YG821L }\end{array}\right\}$ BMGZP $\left.\begin{array}{l}\text { YG822H } \\ \text { YG822L }\end{array}\right\}$ BMGZM	NC NC NC NC NC NC	Interface circuits 1 Y through 6Y of A29 receive pulses from the body-mounted acceleration gyros and feed gates 46337, 46338, 46346, 46347, 46356, and 46357 of the BMAG/RHC Control (par 30-110 through 30-112).
©	$\begin{aligned} & 831 \\ & 832 \end{aligned}$	$\begin{aligned} & 643 \\ & 543 \end{aligned}$	-	DE831 TRST9 DE832 TRST10	THRUSTER 2U/2S FAIL THRUSTER 2D/2F FAIL	Interface circuits 5D and 6D of A28 receive DC signals from the spacecraft and feed bit position 7 and 8 (gates 44239 and 44241) of channel 32 (table 30-5F).

LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

TABLE 30B-1
LUNAR EXCURSION MODULE AGC SUBSYSTEM INPUT AND OUTPUT SIGNALS (cont)

	Line or Signal Number	Connecting Pins at		Name Used on Drawings 1\square	Name Used in DD Memo 185	Signal Description
		A 51 of AGC	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \end{gathered}$			
	$\begin{aligned} & 874 \\ & 875 \\ & 876 \\ & 877 \\ & 878 \\ & 879 \end{aligned}$	658 633 656 533 519		+28 COM RD874 - - +28 COM RD876 +28 COM RD877 +28 COM RD878 +28 COM RD879	$\begin{aligned} & 104 / 64 / 69 \\ & 104 / 64 / 69 \\ & 106 / 107 / 183 \\ & 842 / 843 \\ & 39 / 61 \\ & 7 / 158 \end{aligned}$	Resistor $1 R$ and $2 R$ of A29 in parallel $-\quad$ Resistor $3 R$ of A27 Resistor $3 R$ of A29 Resistor 4R of A27 Resistor $9 R$ of A27 \quadprovide +28 VDC
	901	$\begin{aligned} & 324 \\ & 424 \end{aligned}$	-	$25 \mathrm{KPPS} \quad\left\{\begin{array}{l}\text { XC901H } \\ \text { XC901L }\end{array}\right.$	25.6 KPPS (PWR SUP SYNC)	Gate 49220 of the Timer generates 25 KPPS pulses which control interface circuit 8XT of A26. Pulses are provided to operate power supplies in the spacecraft.
	902	212	-	DISDAC CB902	+ROLL GIMBAL TRIM	Bit position 11 (gate 43342) of channel 12 (table 30-5A) generates signal DISDAC which controls interface circuit 21C of A26. The interface circuit operates the IMU.
	$\begin{aligned} & 903 \\ & 904 \end{aligned}$	$\begin{aligned} & 521 \\ & 542 \end{aligned}$		+28 COM RD903 +28 COM RD904	$\begin{aligned} & \text { 14VB (AGC OPERATE) } \\ & 171 / 172 \end{aligned}$	Resistors 5 R of A27 and 4R of A28 provide +28VDC.
	906	113	-	ZEROPT CB906	-PITCH GIMBAL TRIM	Bit position 10 (gate 43340) of channel 12 (table 30-5A) generates signal ZEROPT which controls interface circuit 14C of A26. The interface circuit operates the IMU.
	907	556	-	R D907 +28 COM	18-23	Resistors 4R and 5R of A29 in parallel provide +28 VDC .
	908	-	-	- -	18-23	
	909	114	-	ISSTDC CB909	ISS TURN ON DELAY CMPLT	Bit position 15 (gate 48445) of channel 12 (table 30-5A) generates signal ISSTDC which controls interface circuit 8 C of A26. The interface circuit operates the ISS.
	$\begin{aligned} & 910 \\ & 911 \end{aligned}$	$\begin{aligned} & 216 \\ & 215 \end{aligned}$		$\begin{aligned} & \mathrm{W}-910 \\ & \mathrm{~W}-911 \end{aligned}$	CNTRL 1 (ACE) (LOW) CNTRL 2 (ACE) (HIGH)	
W						

Line or Signal Number	Connecting Pins at		Name Used on Drawings 1	Name Used in DD Memo 185	
	A51 of AGC	$\begin{gathered} \text { J9 } \\ \text { of } \\ \text { DSKY } \end{gathered}$			Signal Description
912	214	-	D-912 NHVFAL	INHIBIT POWER FAIL	Interface circuit 1 D of A26 receives DC signals from spacecraft and feeds gates 41204 and 41205 of the Alarm Control (par 30-141R).

© Pin numbers and signal names were taken from NASA drawings 2005020, 2005021, 2005900, and 2005950; and from the AGC block if COMPUTER WIRE LIST.

2 For DSKY's $200 \mathrm{~B}, 200 \mathrm{C}, 200 \mathrm{M}$, and 600 M , pin numbers apply to 85 pin connector of adapter cable.
(1) NC means AGC not connected to external equipment.

INPUT CIRCUIT Y

Figure 30B-1. Interface Circuits

ISSUE 30
 APPENDIX C

TEST CONNECTOR SIGNALS

All lines or signals passing through connector A52 of the AGC are listed in table $30 \mathrm{C}-1$ of this appendix. Information is arranged in alphabetical order of signal names. The numbers of the connecting pins are given in column 2 while signal descriptions are contained in the last column.

TABLE 30C-1
TEST CONNECTOR SIGNALS

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
ALGA	507	Line is connected to gate 37227 of the start-stop logic and can be used to ground the ALGA input to prevent stop-start operations due to computer failure.
B PLSSW	801	BPLSSW power provided by AGC.
CNTRL1	701	$\begin{aligned} & \text { Lines are connected to the Power Supply (modules A } 30-31 \text {) and } \\ & \text { can be used to control them. } \end{aligned}$
CNTRL2	702	
DBLTST	811	Line is connected to gate 30057 of the Alarm Control and can be used to test the double frequency alarm (paragraph 30-141Y).
DOSCAL	810	Line is connected to gate 32258 of the Alarm Control and can be used to test the scaler alarm circuits.
MBR1	501	\} Signals are generated by gates 36260 and 36262 of the branch
MBR2	502	fflip-flops (BR) when the flip-flops contain a ONE.
MCTRAL/	504	Signal is generated by gates 41144 and 41145 of the Alarm Control when a counter alarm occurs.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MDT01	101	
MDT02	102	
MDT03	103	
MDT04	104	
MDT05	105	
MDT06	106	
MDT07	107	Lines are connected to gates $51158,51258,51458,51358$,
MDT08	108	$52158,52258,52458,52358,53158,53258,53458,53358$,
MDT09	109	$54158,54258,54458$, and 54358 of the WA's and can be used
MDT 10	110	to insert information into the AGC.
MDT 11	111	
MDT 12	112	
MDT 13	113	
MDT 14	114	
MDT 15	115	
MDT 16	116	J
MGOJAM	510	Signal is generated by gate 37251 of the start-stop logic when signal GOJAM occurs.
MGP /	612	Signal is generated by gate 34241 of the Parity Block when a parity bit CP15 is generated.
MIIP	503	Signal is generated by gate 30112 of the Interrupt Priority Control when signal IIP (interrupt in progress) occurs.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MINHL	511	Signal is generated by gate 30111 of the Interrupt Priority Control when the inhibit interrupt flip-flop is set.
MINKL	512	Signal is generated by gate 32253 of the Counter Priority Control when signal INKL occurs.
MLDCH	611	Line is connected to gate 32220 of the Counter Priority Control and can be used to request the execution of instruction INOTLD.
MLOAD	713	Line is connected to gate 32204 of the Counter Priority Control and can be used to request the execution of instruction STORE E.
MNHNC	604	Line is connected to gate 32240 of the Counter Priority Control and can be used to inhibit counter incrementations.
M NHRPT	605	Line is connected to gate 30117 of the Interrupt Priority Control and can be used to inhibit interrupt.
M ${ }^{\text {H }}$ S BF	603	Line is connected to gate 42122 of the F memory cycle timer and can be used to inhibit strobe F.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings 1	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MNISQ	710	Signal is generated by gate 49238 when signal NISQ/ occurs.
MONPAR	707	Line is connected to gate 34245 of the Parity Block and can be used to enter a parity bit.
MONWBK	708	Line is connected to gate 39426 in the SQG and can be used to prevent the generation of control pulse U2BBK.
MONWT	514	This 1.024 Mpps clock signal is generated by gate 37136 of the Timer and is similar to signal CLK (001).
MON800	715	This 800 pps signal is generated by gate 49238 if the Timer is similar to signal FS07A.
MOSCAL/	815	Signal is generated by gate 41231 when signal STRT2 occurs.
MPAL/	508	Signal is generated by gate 34252 of the Parity Control when a parity alarm occurs.
MPIPAL/	716	Signal is generated by gate 41106 of Alarm Control when signal PIPAFL occurs.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC	Signal Description
MRAG	616	Signal is generated by gate 33326 when signal RAG/ occurs.
MRCH	706	This signal is generated by gate 49335 when signal RCH/ occurs.
MRDCH	610	Line is connected to gate 32224 of the Counter Priority Control and can be used to request the execution of instruction INOTRD H.
MREAD	714	Line is connected to gate 32211 of the Counter Priority Control and can be used to request the execution of instruction FETCHK.
MREQIN	711	Signal is generated to gate 32230 of the Counter Priority Control when the request for the execution of instruction FETCH K, STORE E, INOTRH H, or INOTLD H has been received.
MRGG	614	Signal is generated by gate 33320 when signal RGG/ occurs.
MRLG	516	Signal is generated by gate 33335 when signal RLG/ occurs.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description 2
MRPTAL/	506	Signal is generated by gates 41114 and 41115 of the Alarm Control when a RUPT alarm occurs.
MRSC	515	Signal is generated by gate 36459 of SQG when control pulse RSC/ occurs.
MRULOG	313	Signal is generated by gate 33347 when signal RUG/, RUSG/, or RULOG/ occurs.
MSBST P	609	Not connected.
MSCAFL/	814	Signal is generated by gate 41222 when signal SCAFAL occurs.
MSCDBL /	808	Signal is generated by gate 34254 when signal SCADBL occurs.
MSP	613	Signal is generated by gate 34244 of the Parity Block when a parity bit is entered from memory.
MSQ10	410	
MSQ 11	411	
MSQ12	412	Signals are generated by gates $30140,30139,30138,30028$,
MSQ13	413	30025,30123 , and 30022 of register SQ when the respective
MSQ14	414	bit positions contain a ONE.
MSQEXT	415 416	

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MSTP	608	Line is connected to gate 37235 of the start-stop logic and can be used to stop computer operation.
MST PIT /	509	Signal is generated by gate 37244 of the start-stop logic when signal STOP occurs.
MSTRT	607	Line is connected to gate 41101 of the start-stop logic and can be used to start computer operation.
MST 1	401	\} Signals are generated by gates 36116,36125 , and 36143 of
MST2	402	\} the stage flip-flops (ST) when the flip-flops contain a
MST3	403	\int ONE.
MTCAL/	505	Signal is generated by gates 41127 and 41128 of the Alarm Control when a TC alarm occurs.
MTCSA	404	Signal is generated by gate MTCSA of the SQG when subinstruction TCSAJ3 is executed.
MTCSAI	606	Line is connected to gate 30101 of the Interrupt Priority Control and gates 36112 and 36130 of the SQG and can be used to execute instruction TCSAJ K.
MTHI	703	\} Lines are connected to the temperature sensor within the
MTL0	704	\int oscillator (module B07) and can be used to check temperature.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MT01	301	
MT02	302	
MT03	303	
MT04	304	
MT05	305	Signals are generated by gates 37404, 37407, 37411, 37415,
MT06	306	$37422,37427,37432,37437,37442,37447,37450$, and 37454
MT07	307	of the Time Pulse Generator when time pulses T0l through
MT08	308	Tl2 occur.
MT09	309	
MT10	310	
MT11	311	
MT12	312	
MVFAIL/	816	Signal is generated by gate 41207 when signal STRT1 occurs.
MW AG	615	Signal is generated by a $B N$ gate 33255 when signal WAG/ occurs.
MW ARNF/	812	Signal is generated by gate 41223 when signal FLTOUT occurs.
MWATCH/	712	Signal is generated by gate 49118 when signal WATCH occurs.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
MWBBEG	316	Signal is generated by gate 33315 when information is written into both registers EBANK and FBANK (address 0006).
MWBG	409	Signal is generated by gate 33135 of register B when information is written into this register.
MWCH	705	Signal is generated by gate 49334 when signal WCH/ occurs.
MWEBG	315	Signal is generated by gate 33303 when information is written into register EBANK (0003).
MWFBG	314	Signal is generated by gate 33311 when information is written into register FBANK (0004).
MWG	709	Signal is generated by gate 33139 when information is written into register G.
MWLG	513	Signal is generated by gate 33218 when signal WLG/ occurs.

TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC \qquad	Signal Description 2
MWL0 1	201	7
MWL02	202	
MWL03	203	
MWL04	204	
MWL05	205	
MWL06	206	
MWL07	207	
MWL08	208	Signals are generated by gates 51153, 51253, 51453, 51353,
MWL09	209	\} $21153,52253,52453,52353,53153,53253,53453,53353$,
MWL10	210	$54153,54253,54453$, and 54353 when the WA's contain a ONE.
MWL11	211	
MWL12	212	
MWL13	213	
MWL14	214	
MWL 15	215	
MWL16	216	
MWQG	408	\} Signals are generated by gates 33241, 33115, and 33251,
MWSG	405	\} of registers S, Y, and Q when information is written
MWYG	407	\int into the respective registers.

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont.)

Signal Name Used on Drawings	Connecting Pin of Connector A52 of AGC	Signal Description
MW ZG	406 .	Signal is generated by gate 33207 of register Z, when information is written into this register.
NHALGA	809	Line is connected to gate 41118 of the Alarm Control and can be used to inhibit the generation of signal ALGA.
OUTCOM	813	Signal is generated by gate 49339 when signal FFllo9/ is present (bit position 9 of channel 11 contains a ONE.
STRT1	601	Both lines are connected to gate 37228 of the start-stop logic and can be used to ground the STRT1 or STRT2 input to
STRT2	602	$\begin{aligned} & \text { prevent stop-start operations due to power supply or oscillator } \\ & \text { failure. } \end{aligned}$
+4SW	802	+4 SW power power provided by AGC.
	803	$\} \text { Spare pins }$
	804	

(cont)

TABLE 30C-1
TEST CONNECTOR SIGNALS (cont)

Signal Name Used on Drawing	Connecting Pin of Connector A52 of AGC \qquad	Signal Description
	$\begin{aligned} & 805 \\ & 806 \\ & 807 \end{aligned}$	$\} \quad \text { Spare pins }$

1 Pin numbers and signal names were taken from NASA drawings 2005020, 2005021, 2005900, and 2005950; and from the AGC BLOCK II COMPUTER WIRE LIST.
(2) Numbers in () refer to signals listed in table 30A-1.

UNCLASSIFIED

[^0]: (cont)

