APOLLO GUIDANCE COMPUTER Information Series ISSUE 32 BLOCK II MACHINE INSTRUCTIONS FR-2-132 29 October 1965

CONTENTS

Paragraph	Page
32-1	INTRODUCTION
32-3	EXECUTION OF INSTRUCTIONS
32-5	Execution of Subinstructions
32-9	Control Pulses
32-16	Subinstruction STD2
32-21	Data Transfer Diagrams
32-25	Example of Instruction Executions
32-30	REGULAR INSTRUCTIONS
32-31	Sequence Changing Instructions
32-32	Instruction TC K
32-38	Instruction TCF F
32-44	Instruction CCS E
32-50	Instruction BZF F
32-56	Instruction BZMF F
32-61	Fetching and Storing Instructions
32-62	Instruction CAK
32-68	Instruction CS K
32-73	Instruction DCA K
32-79	Instruction DCS K
32-84	Instruction TS E
32-92	Instruction XCH E
32-98	Instruction LXCH E
32-103	Instruction QXCH E
32-108	Instruction DXCH E
32-114	Modifying Instructions
32-115	Instruction NDX E
32-122	Instruction NDX K
32-127	Arithmetic and Logic Instructions
32-128	Instruction AD K
32-134	Instruction SU E
32-139	Instruction MPK
32-143	Principle of Operation
32-148	Actual Execution
32-154	Instruction DV E

.

FR-2-132

CONTENTS (cont)

Paragraph

P	2	σ	Δ
+	a	R	e

32-158	Principle of Operation	2-113
32-162		2-114
32-171	Instruction ADS E	2-132
32-177		2-134
32-186	Instruction INCR E	2-138
32-192		2-141
32 - 197	Instruction DIM E	-143
32-202	Instruction MSU E	-144
32-212	Instruction MSK K	-149
32-218		-151
32-219	Instruction READ H	-151
32 -2 25	T I I I I I I I I I I I I I I I I I I I	-153
32-230		-154
32-236	T A NULARITE TI	-157
32-241		-158
32-247		-160
32-252	I DILOD II	-161
32-258		-163
32-259	T () TOTAL TOTAL	-163
32-263		-165
32-267		-166
32-271		-166
32-275		-169
		10/
32-277	INVOLUNTARY INSTRUCTIONS	-171
32-278	Interrupting Instructions	-171
32-279		-171
32-283	Traction of CO	-174
32-286		-174
32-287	In stand the DINC C	-174
32-293	In struction MINC C	-176
32-297	Instruction DINC C	-176
32-301	Instruction PCDU C	
32-305	Instruction MCDU C	
32-309	Instruction SHINC C	
32-315		-181
		-101
32-319	PERIPHERAL INSTRUCTIONS	-183
		105

CONTENTS (cont)

Paragraph Page Sequence Changing Test Instructions . 32-320 32-183 . • • . . Instruction TCSAJ K. . . . 32-321 . • • 32-183 . • . Display and Load Test Instructions 32-325 32-183 • Instruction FETCH K 32-326 . 32-183 • 32-329 Instruction STORE E 32-184 . 32-332 Instruction INOTRD H 32-187 . . • . . . Instruction INOTLD H . 32-335 32-187 . .

ILLUSTRATIONS

Figure		Page
3 2 - 1	Subinstruction STD2	32-22
32-2	Subinstruction TC0	32-55
32 - 3	Subinstruction CCS0, Branch on Quantity Greater	
	than Plus Zero	32-58
32-4		32-59
32-5	Subinstruction CCS0, Branch on Quantity Less than Minus Zero.	
32-6		32-61
32-7	Subinstruction BZF0, With Register A Containing	52-01
	a Positive Non-Zero Quantity	32-61
32-8	Subinstruction BZF0, With Register A Containing	52-04
	Plus Zero	32-65
32-9	Subinstruction CA0	32-68
32-10		32-72
32-11		32 - 73
32-12	Subinstruction TS0, Without Overflow Bit in	
	Register A	32-77
32-13	Subinstruction TS0, With Positive Overflow Bit	
	in Register A	32-78
32-14	Subinstruction XCH0	32-80
32-15		32-85
32-16	C 1 Y Y DYCIT	32-86
32-17	C 1 1	32-89
32-18		32-90
32-19		32-93
32-20		32-98

v

ILLUSTRATIONS (cont)

Figure		Page
32-21	Negative Product, Principle of Multiplication	32-99
32-22	Subinstruction MP0, With Two Positive	/ /
	Quantities	32-100
32-23	Subinstruction MP0, With Positive Quantity in A	
	and Negative Quantity in E	32-101
32-24	Subinstruction MP0, With Negative Quantity in A	
	and Positive Quantity in E	32-102
32-25	Subinstruction MP0, With Two Negative Quantities	
32-26		32-104
32-27	Subination MD2 Devit: D 1	32-105
32-28		32-106
32-29	Subin struction MD2 No wet: Down	32-107
32-30	Positive Product, Actual Multiplication	22.100
32-31	Negative Product, Actual Multiplication	0.0.1.0
32-32	Principle of Division, Manual Method	32-116
32-33	Device signals of Dissisters Marchine Marchine	32-117
32-34	Divide Instruction, Flow Diagram	20.110
32-35	Subinstruction DV0	32-123
32-36	Subinstruction DV1	32-124
32-37	Subinstruction DV3	32-125
32-38	Subinstruction DV7	32-126
32-39	Subinstruction DV6	32-127
32-40	Subinstruction DV4	32-128
32-41	Actual Division	20 100
32-42	Subinstruction ADS0	
32-43	Subinstruction DAS0	00.00/
32-44	Subinstruction DAS1	22.127
32-45	Subinstruction INCR0	
32-46	Subinstruction MSU0	
32-47	Subinstruction MSK0	
32-48	Subinstruction READ0	32-152
32-49	Subinstruction RAND0	32-156
32-50	Subinstruction ROR0.	32-159
32-51	Subinstruction RXOR0	32-162
32-52	Subinstruction STD2, Preceding Instruction EXTEND.	32-164
32-53	Subinstruction NDX0 of Instruction RESUME	32-167
32-54	Subinstruction RSM3	32-168
32 - 55	Subinstruction RUPT0	32-172
32-56	Subinstruction RUPT1	32-173

FR-2-132

ILLUSTRATIONS (cont)

Figure												Page
32 - 57	Subinstruction PINC				•							32-175
32 - 58	Subinstruction SHINC .		•	۰.	•	•	•		•	۰	•	32-180
32-59	Subinstruction FETCH0.		•		•	•	•	•	•	•	•	32-185
32-60	Subinstruction FETCH1.	•		•		٠	•	•	•	•	•	32-186

TABLES

Table

32-1	Machine	Instruc	ction [Гурез			•		•	•	•	•	•	•	32-1
32-2	Machine	Instruc	ctions.		•		•	•	•	•	•	•	٥	•	32-2
32-3	Machine	Instruc	tions.	, Alp	hab	etic	al	Lis	tin	g	•		•	•	32-13
32-4	Control	Pulses	Gener	ated	at '	Var	iou	s A	cti	on	S	٥	•	•	32-25
32-5	Control	Pulses.	•	• •	•	•	•	•	•	•	•	•	٠	•	32-47

.

32-1. INTRODUCTION

32-2. This is the thirty-second issue of the AGCIS published to inform the technical staff at MIT/IL and Raytheon about the Apollo guidance computer (AGC) subsystems. The various Block II instruction types and the order code structure of Machine Instructions are discussed in paragraphs 30-148 through 30-187 of Issue 30. Issue 32 analyzes the operations performed by the Machine Instructions. Table 32-1 (shown below) briefly reviews Machine Instruction types. Table 32-2 contains a functional description of all Machine Instructions and table 32-3 lists all Machine Instructions alphabetically for quick reference.

Group	Туре					
Regular Instructions	Basic Instructions Extra Code Instructions	Sequence changing instructions Fetching and storing instructions Modifying instructions Arithmetic and logic instructions				
	Channel Instructions Special Instructions					
Involuntary Instructions	Interrupting Instructions Counter Instructions					
Peripheral Instructions	Sequence changing test instructions Display and load test instructions					

Table 32-1 MACHINE INSTRUCTION TYPES

MACHINE INSTRUCTIONS

A Symbolic Instruction Word	🖄 Order Code	Sub- instructions Executed	Descrip	$\frac{\Lambda}{4}$					
	REGULAR INSTRUCTIONS								
	Seque	nce Changing 1	Instructions						
ТС К	00.	TCO	" Transfer Contr Takes next instru stores return ade	uction from K and					
TCF F	01.2 01.4 01.6	TCF0	"Transfer Contro Takes next instru without changing	uction from F					
CCS E	01.0	CCS0 STD2	"Count, Compard Branches accord stores in A the c by one.						
			c(E)	Transfers to					
			positive nonzer plus zero negative nonzer minus zero	I+2					
BZF F	16.2 16.4 16.6	BZF0 STD2	"Branch on Zero Branches accord	ing to c(A).					
			c(A)	Transfers to					
			plus or minus H zero non zero H	<pre>f (subinstruc- tion STD2 is not executed) +1 (subinstruc- tion STD2 is executed)</pre>					

T									
A Symbolic Instruction Word	A Order Code	Sub- instructions Executed	Description $\frac{\Lambda}{4}$						
	RE	GULAR INSTR	UCTIONS						
	Sequence Changing Instructions (cont)								
BZMF F	12.2 12.4 12.6	BZMF0 STD2	"Branch on Zero or Minus to Fixed F" Branches according to c(A). c(A) Transfers to						
			zero or nega- tive nonzero positive non- zero F (subinstruc- tion STD2 is not executed) I+1 (subinstruc- tion STD2 is .executed)						
	Fetchir	ng and Storing I	nstructions						
СА К	03.	CA0 STD2	"Clear and Add K" Enters c(K) into A. Takes next instruction from I+1.						
CS K	04.	CS0 STD2	"Clear and Subtract K" Enters the complemented c(K) into A. Takes next instruction from I+1.						
DCA K	13.	DCA0 DCA1 STD2	"Double Clear and Add K" Enters c(K, K+1) into A and L. Takes next instruction from I+1.						
DCS K	14.	DCS0 DCS1 STD2	"Double Clear and Subtract K" Enters the complemented c(K, K+1) into A and L. Takes next instruction from I+1.						

·		F							
A Symbolic Instruction Word	🖄 Order Code	<u>3</u> Sub- instructions Executed	Description $\frac{\Delta}{\Delta}$						
REGULAR INSTRUCTIONS									
Fetching and Storing Instructions (cont)									
TS E	05.4	TS0 STD2	"Transfer to Storage E" If A does not contain an overflow quantity, instruction enters c(A) into E and takes next instruction from I+1. If A contains a positive overflow, instruction enters c(A) without overflow bit into E, enters plus one into A, and takes next instruc- tion from I+2. If A contains a negative overflow, instruction enters c(A) without overflow bit into E, enters minus one into A, and takes next instruc- tion from I+2.						
XCH E	05.6	XCH0 STD2	"Exchange A and E" Exchanges c(A) with c(E). Takes next instruction from I+1.						
LXCH E	02.2	LXCH0 STD2	"Exchange L and E" Exchanges c(L) with c(E). Takes next instruction from I+1.						
QXCH Е	12.2	QXCH0 STD2	"Exchange Q and E" Exchanges c(Q) with c(E). Takes next instruction from I+1.						
DXCH E	05.2	DXCH0 DXCH1 STD2	"Double Exchange A and E" Exchanges c(A, L) with c(E, E+1). Takes next instruction from I+1.						

Symbolic Instruction Word	🔊 Order Code	<u>Sub-</u> instructions Executed	Description $\frac{\Lambda}{4}$							
	REGULAR INSTRUCTIONS									
Modifying Instructions										
NDX E	05.0	NDX0 NDX1	"Index Next Basic Instruction with E" Adds c(E) to c(I+1) and takes sum as next instruction.							
NDX K	15.	NDXX 0 NDXX1	"Index Next Extra-Code Instruc- tion with K" Adds c(K) to c(I+2) and takes sum as next instruction. Retains the ONE in bit position SQ-EXT.							
	Arithm	netic and Logic	Instructions							
AD K	06.	AD0 STD2	"Add K" Adds c(K) to c(A) and stores sum in A. Takes next instruction from I+1.							
SU E	16.0	SUO STD2	"Subtract E" Subtracts c(E) from c(A) and stores the difference in A. Takes next instruction from I+1.							
МРК	17.	MP0 MP1 MP3	"Multiply K" Multiplies c(K) by c(A) and stores double precision pro- duct in A and L (signs in A and L agree). Takes next instruction from I+1.							

	· ·		
A Symbolic Instruction Word	Order Code	Sub- instructions Executed	Description $\underline{\bigwedge}$
	RI	EGULAR INSTRU	JCTIONS
	Arithmet	ic and Logic Inst	tructions (cont)
DV E	11.0	DV0 DV1 DV3 DV7 DV6 DV4 STD2	"Divide by E" Divides double pre- cision quantity c(A, L) by c(E), stores quotient in A and remaind- er in L. Takes next instruction from I+1. Signs of b(A) and b(L) need not agree. Sign of remaind- er equals sign of dividend.
ADS E	02.6	ADS0 STD2	"Add to Storage E" Adds c(A) and c(E), stores sum with overflow bit in A and sum without overflow bit in E.
DAS E	02.0	DAS0 DAS1 STD2	"Double Add to Storage E" Adds c(A, L) and c(E, E+1) and stores sum without overflow bit in E and E+1. Enters plus one into A in case of positive overflow, minus one in case of negative overflow, and plus zero in case of no overflow. Enters plus zero into L and takes next instruction from I+1.
INCR E	02.4	INCR0 STD2	"Increment E" Adds plus one to c(E) and stores incremented quantity in E. Takes next instruction from I+1.
AUG E	12.4	AUG0 STD2	"Augment E" Increases the magnitude of the quantity con- tained in E by one and stores the augmented quantity in E. Takes next instruction from I+1.
	ε.		

r			
Symbolic Instruction Word	🖄 Order Code	Sub- instructions Executed	Description $\frac{\Lambda}{4}$
	RE	GULAR INSTR	UCTIONS
	Arithmeti	ic and Logic Ins	structions (cont)
DIM E	12.6	DIM0 STD2	"Diminish E" Decreases the magnitude of the quantity con- tained in E by one and stores diminished quantity in E. Takes next instruction from I+1.
MSU E	12.0	MSU0 STD2	"Modular Subtract E" Subtracts cyclic TWO's comple- ment number in E from cyclic TWO's complement number in A and stores difference expressed in ONE's complement number in A. Takes next instruction from I+1.
MSK K	07.	MSK0 STD2	"Mask with K" AND's c(A) with c(K) and stores logical product in A. Takes next instruction from I+1.
		Channel Instruc	ctions
READ H	10.0	READ0 STD2	"Read H" Enters c(H) into A. Takes next instruction from I+1.
WRITE H	10.1	WRITE0 STD2	"Write H" Enters c(A) into H. Takes next instruction from I+1.
RAND H	10.2	RAND0 STD2	"Read and AND H" AND's c(A) and c(H) and stores logical product in A. Takes next instruction from I+1.

	· · · · · · · · · · · · · · · · · · ·		
Symbolic Instruction Word	A Order Code	3 Sub- instructions Executed	$\frac{\triangle}{\Delta}$
	RE	EGULAR INSTR	UCTIONS
	Cł	nannel Instructi	ons (cont)
WAND H	10.3	WAND0 STD2	"Write and AND H" AND's c(A) and c(H), and stores logical product in A and H. Takes next instruction from I+1.
ROR H	10.4	ROR0 STD2	"Read and OR H" OR's c(A) and c(H), and stores logical sum in A. Takes next instruction from I+1.
WOR H	10.5	WOR0 STD2	"Write and OR H" OR's c(A) and c(H), and stores logical sum in A and H. Takes next instruction from I+1.
RXOR H	10.6	RXOR0 STD2	"Read and Exclusive OR H" Forms exclusive OR from c(A) and c(H), and stores result in A. Takes next in- struction from I+1.
	×	Special Instru	lctions
EXTEND	00.0006	STD2	"Extend" Enters a ONE into bit position SQ-EXT. The next instruction, taken from I+1, is an Extra- Code Instruction.
INHINT	00.0004	STD2	"Inhibit Interrupt" Sets inhibit interrupt switch in Interrupt Priority Control to pre- vent interruption of program execution. Takes next instruc- tion from I+1.

A Symbolic Instruction Word	Order Code	Sub- instructions Executed	Description
	R	EGULAR INSTE	RUCTIONS
	Sŗ	ecial Instruction	ons (cont)
RELINT	00.0003	STD2	"Release Inhibit Interrupt" Resets inhibit interrupt switch to allow program interruption in favor of a programmed opera- tion of higher priority. Takes next instruction from I+1.
RESUME	05.0017	NDX0 RSM3	"Resume Interrupted Program" Takes next instruction from loca- tion 0017 and enters content of location 0015 into Z. Thus, ex- ecution of the interrupted pro- gram section is resumed.
CYR	.0020		"Cycle Right" Cycles quantity, which is entered into location 0020, one place to the right.
SR	.0021		"Shift Right" Shifts quantity, which is entered into location 0021, one place to the right.
CYL	.0022		"Cycle Left" Cycles quantity, which is entered into location 0022, one place to the left.
EDOP	.0023		"Edit Operator" Shifts quantity, which is entered into location 0023, seven places to the right.

T				
A Symbolic Instruction Word	🔎 Order Code	3 Sub- instructions Executed	Description $\frac{\Lambda}{4}$	
	INVOL	UNTARY INST	RUCTIONS	
	Int	errupting Instr	ructions	
RUPT	10.7	RUPT0 RUPT1 STD2	"Interrupt Program Execution" Takes next instruction from address supplied by Interrupt Priority Control. Stores c(B) in location 0017 and c(Z) in location 0015.	
GO	00. 00. 4000	GOJ1 TC0	"Go" Takes next instruction from loca- tion 04000 in E Memory.	
	C	Counter Instruc	tions	
PINC C	none	PINC	"Plus Increment C" Adds one to c(C) and stores incremented quantity in C.	
MINC C	none	MINC	"Minus Increment C" Subtracts one from c(C) and stores decremented quantity in C.	
DINC C	none	DINC	"Diminish Increment C" De- creases the magnitude of the quantity contained in C by one and stores diminished quantity in C.	
PCDU C	none	PCDU	"Plus CDU C" Adds one to cyclic TWO's com- plement number in C and stores incremented quantity in C.	

A Symbolic Instruction Word	A Order Code	<u>Sub-</u> instructions Executed	Description
	INVOL	UNTARY INST	RUCTIONS
	Cou	inter Instructio	ons (cont)
MCDU C	none	MCDU	"Minus CDU C" Subtracts one from cyclic TWO's complement number in C and stores decremented quantity in C.
SHINC C	none	SHINC	"Shift Increment C" Shifts c(C) one place to the left and enters a ZERO into bit posi- tion 0 of C.
SHANC C	none	SHANC	"Shift and Add Increment C" Shifts c(C) one place to the left and enters a ONE into bit posi- tion 0 of C.
	P	ERIPHERAL II	NSTRUCTIONS
TCSAJ K	00.	STD2 a	'Transfer control to specified address K'' Takes next instruc- tion from address which is sup- plied by GSE.
FETCH K	none	FETCH1	'Fetch K''; displays c(K) on GSE. Address K is supplied by GSE.
STORE E	none	STORE1 i	'Store E''; data supplied by GSE is entered into E by GSE. Address E is also supplied by GSE.

MACHINE INSTRUCTIONS (cont)

A Symbolic	\triangle	3 Sub-			
Instruction Word	Order Code	instructions Executed	Description 4		
	PERIPHERAL INSTRUCTIONS (cont)				
INOTRD H	none	INOTRD	"In Out Read H"; displays c(H) on GSE. Channel address H is supplied by GSE.		
INOTLD H	none	INOTLD	"In Out Load H"; data supplied by GSE is entered into H by GSE. Channel address H is supplied by GSE.		

Address symbol K can represent any address in the Central Processor (CP), E Memory or F Memory.

Address symbol F can represent an address in F Memory only. Address symbol E can represent an address in the CP or E Memory only. Address symbol H can represent any channel address. Address symbol C can represent any counter address.

Entered into SQ, or SQ and S.

The execution of each subinstruction, except DV0 and DV4, takes one MCT or about 11.7 μ sec. DV0 and DV4 together require 1 MCT.

Address symbol I represents address of instruction described. Register symbols A, L, Q, B, S, SQ, and G refer to registers defined in table 30-1.

Expression c(K) means "content of location (or register) K".

Execution of these seven subinstructions takes only six MCT's.

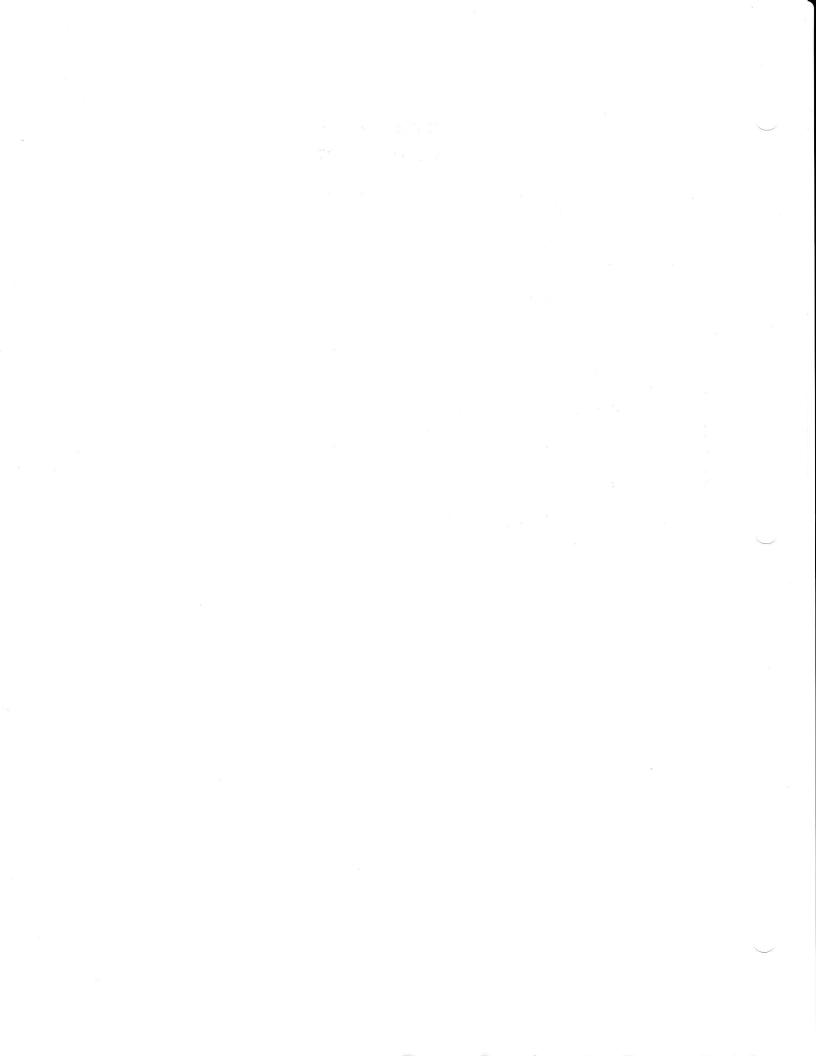
The code which can be used with any K or E instruction, is contained in register S. Whenever address 0020, 0021, 0022, or 0023 is contained in register S, register G cycles or shifts the quantity it receives from a CP register before that quantity is transferred to one of the four locations (paragraph 30-41).

 Λ

/2\

/3\

<u>/5</u>


Symbolic Instruction Word 1	Order Code	Name and Type
AD K	06.	"Add K"; an arithmetic instruction
ADS E	02.6	"Add to Storage E"; an arithmetic instruction
AUG E	12.4	"Augment E"; an arithmetic instruction
BZF F	11. 2 11. 4 11. 6	"Branch on Zero to Fixed F"; a sequence changing instruction
BZMF F	16.2 16.4 16.6	"Branch on Zero or Minus to Fixed F"; a se- quence changing instruction
CA K CAE E	03. 03.	"Clear and Add K" a fetching instruction Alternate spelling of CA K when referring to E Memory
CAF F CCS E	03. 01.0	Alternate spelling of CA K when referring to F Memory "Count, Compare, and Skip on E"; a sequence changing instruction
СОМ	04.0000	"Complement"; CS A
CS K	04.	"Clear and Subtract K"; a fetching instruction
CYL	.0022	"Cycle Left"; a Special Instruction
CYR	.0020	"Cycle Right"; a Special Instruction
DAS E	02.0	"Double Add to Storage E"; an arithmetic instruction
DCA K	13.	"Double Clear and Add K"; a fetching instruc- tion
DCS K	14.	"Double Clear and Subtract K"; a fetching in- struction
DCOM	14.0000	"Double Precision Complement"; DCS A
DDOUBL	02.0000	"Double Precision Double"; DAS A

Symbolic Instruction Word 1	Order Code	Name and Type
DIM E	12.6	"Diminish E"; an arithmetic instruction
DINC C	none	"Diminish Increment C"; a Counter Instruc- tion
DOUBLE	06.0000	"Double"; AD A
DTCB	05.2005	"Double Precision Transfer Control Both Banks"; DXCH Z
DTCF	05.2004	"Double Precision Transfer Control Fixed Bank"; DXCH FBANK
DV E	11.0	"Divide by E"; an arithmetic instruction
DXCH E	05.2	"Double Exchange A and E"; a fetching and storing instruction
EDOP	.0023	"Edit Operator"; a Special Instruction
EXTEND	00.0006	"Extend"; a Special Instruction
FETCH K	none	"Fetch K"; a Peripheral Instruction
GO	00.	"GO"; an Interrupting Instruction
INCR E	02.4	"Increment E"; an arithmetic instruction
INDEX E	05.0	Alternate spelling for NDX E
INDEX K	15.	Alternate spelling for NDX K
INHINT	00.0004	"Inhibit Interrupt"; a Special Instruction
INOTLD H	none	"In Out Load H"; a Peripheral Instruction
INOTRD H	none	"In Out Read H"; a Peripheral Instruction
LXCH E	02.2	"Exchange L and E"; a fetching and storing instruction
ΜΑSΚ Κ	07.	Alternate spelling of MSK K
MCDU C	none	"Minus CDU C"; a Counter Instruction

Symbolic Instruction Word 1	Order Code	Name and Type
MINC C	none	"Minus Increment C"; a Counter Instruction
MP K	17	''Multiply K "; an arithmetic instruction
MSK K	07.	''Mask with K ''; a logic instruction
MSU E	12.0	"Modular Subtract E"; an arithmetic instruc- tion
NDX E	05.0	"Index Next Basic Instruction with E"; a modifying instruction
NDX K	15.	"Index Next Extra-Code Instruction with K"; a modifying instruction
NOOP	03.0000	"No Operation (Erasable)"; instruction is stored in E Memory; CA A
NOOP	TCF(I+1)	''No Operation (Fixed)''; where I is address of instruction TCF (I+1) stored in F Memory
OVSK	05.4000	'Overflow Skip"; TS A
PCDU C	none	"Plus CDU C"; a Counter Instruction
PINC C	none	"Plus Increment C"; a Counter Instruction
QXCH E	12.2	"Exchange Q and E"; a fetching and storing instruction
RAND H	10.2	"Read and AND H"; a Channel Instruction
READ H	10.0	"Read H"; a Channel Instruction
RELINT	00.0003	"Release Interrupt Inhibit"; a Special In- struction
RESUME	05.0017	"Resume Interrupted Program"; a Special Instruction
RETURN	00.0002	"Return"; TC Q
ROR H	10.4	"Read and OR H"; a Channel Instruction

Symbolic	Order Code	
Instruction Word 1	À	Name and Type
RUPT	10.7	"Interrupt Program Execution"; an Interrupt- ing Instruction
RXOR H	10.6	"Read and Exclusive OR H"; a Channel In- struction
SHANC C	none	"Shift and Add Increment C"; a Counter In- struction
SHINC C	none	"Shift Increment C"; a Counter Instruction
SQUARE	17.0000	"Square"; MP A
SR	.0021	"Shift Right"; a Special Instruction
STORE E	none	"Store E"; a Peripheral Instruction
SU E	16.0	"Subtract E"; an arithmetic instruction
TCAA	05.4005	"Transfer Control to Address in A"; TS Z
тс к	00.	"Transfer Control to K"; a sequence chang- ing instruction
TCF F	01.2 01.4 01.6	"Transfer Control to Fixed F"; a sequence changing instruction
TCR K	00.	Alternate spelling of TC K (Transfer Control Setting up Return)
ТС Ѕ АЈ К	00.	"Transfer Control to Specified Address K"; a Peripheral Instruction
TS E	05.4	"Transfer to Storage E"; a storing instruction
WAND H	10.3	"Write and AND H"; a Channel Instruction
WOR H	10.5	"Write and OR H"; a Channel Instruction
WRITE H	10.1	"Write H"; a Channel Instruction
XCH E	05.6	"Exchange A and E"; a fetching and storing instruction

Symbolic Instruction Word 1	Order Code	Name and Type
ZL	02.2007	"Zero L"; LXCH ZERO
ZQ	12. 2007	"Zero Q"; QXCH ZERO
 Address symbol K can represent any address in the Central Processor (CP), E Memory or F Memory. Address symbol F can represent an address in F Memory only. Address symbol E can represent an address in the CP or E Memory only. Entered into SQ, or SQ and S. 		

32-3. EXECUTION OF INSTRUCTIONS

32-4. The execution of all Machine Instructions is under the control of the Sequence Generator (SQG). The initiation of instruction executions is described in paragraphs 30-24 through 30-27. All Machine Instructions are composed of one, two, three, or seven subinstructions, as indicated in the third column of table 32-2. All but two subinstructions consist of twelve actions. Refer to table 32-4 at the end of this section and paragraph 30-21. Subinstructions DV0 and DV4 together consist of twelve actions. An action is defined as a set of control pulses generated by the SQG and may be composed of zero, one, or several control pulses. One action occurs every 0.977 µsec and the execution of one subinstruction takes 11.7 µsec which equals one Memory Cycle Time (MCT).

32-5. EXECUTION OF SUBINSTRUCTIONS

32-6. When a Regular Instruction, instruction RUPT, instruction GO, or instruction TCSAJ K is executed, the content of register SQ and the content of the stage counter (ST) determine the subinstruction to be executed as shown in columns three and four of table 32-4. Subinstruction STD2 (standard two) is executed whenever the stage counter (ST) contains octal 2 regardless of the contents of register SQ as indicated by the X symbols. If the stage counter (ST) contains any other octal number than 2, a subinstruction is executed as defined by the content of register SQ. Subinstructions of Regular Instructions with whole order codes are determined by the content of bit positions EXT through 13 of register SQ while the content of bit positions 12 through 10 is irrelevant. Subinstructions of Regular Instructions with quarter codes are defined by the content of bit positions EXT through 11 while the content of bit position 10 is irrelevant. Subinstructions of Channel Instructions are defined by the content of bit positions EXT through 10. (Refer to paragraphs 30-153 and 30-154.)

32-7. When a Counter Instruction is executed, the contents of register SQ and the stage counter (ST) are irrelevant; the execution of Counter Instructions is determined by the setting of certain flip-flops only. When a Peripheral Instruction is executed, the setting of certain flip-flops and the content of the stage counter (ST) determine the subinstruction being executed.

32-8. The twelve actions (1 through 12) of a DV subinstruction do not occur in the same sequence as time pulses T01 through T12 are generated. Actions 1 through 3 of subinstruction DV0 are caused by time pulses 1 through 3.

Actions 4 through 12 and 1 through 3 of subinstructions DV1 through DV6 (table 30-4) are caused by time pulses 4 through 12, and 1 through 3 in that sequence. Actions 4 through 12 of subinstruction DV4 are caused by time pulses 4 through 12 and complete the last MCT. Thus, the execution of the six DV subinstructions takes only five MCT's.

32-9. CONTROL PULSES

32-10. Control pulses are signals generated by the SQG which regulates data flow within the Central Processor (CP) and the Input-Output Control. The control pulses can be grouped in five categories: read pulses, write pulses, direct read-write pulses, test pulses, and special pulses (paragraph 30-28). All control pulses are defined in table 32-5 at the end of this section.

32-11. A read pulse gates the content of a register or input-output channel into the write amplifiers (WA's). Read pulses such as RA, RB, etc., read the content of a specific register into the WA's. Read pulses RSC and RCH read the content of that CP register or input-output channel into the WA's the address of which is contained in register S. Read pulses R15, R1C, etc., enter certain octal quantities into the WA's.

32-12. A write pulse clears a register or input-output channel and gates into it the data which is present at the WA's, i.e., the data which is gated into the WA's by a read pulse at the same time. Write control pulses such as WA, WB, etc., write into a specific register. Write pulses WSC and WCH write into a register or channel which is defined by the content of register S.

32-13. Direct read-write pulses copy the content of one register into another register without using the WA's. Control pulse A2X, for example, enters the content of register A into register X.

32-14. Test control pulses test the content of certain bit positions, set the branch flip-flops accordingly and thus initiate branching operations. For instance, control pulse TSGN tests the content of WA 16 (bit 16) and sets flip-flop BR1 to ONE if WA 16 contains a ONE (minus sign).

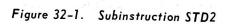
32-15. Special control pulses are used to set stage counters, certain flip-flops, to initiate certain operations, etc.

32-16. SUBINSTRUCTION STD2

32-17. Subinstruction STD2 (standard two) is used as a concluding subinstruction with most Regular Instructions and instructions RUPT and TCSAJ K. Its purpose is to increment by one the content of register Z, the program counter, and to call forward the instruction to be executed next. Subinstruction STD2 is executed when the stage counter (ST) contains 2.

32-18. Control pulses RZ and WY12 of action 1 (row 1 of table 32-4) clear the Adder and enter bits 12 through 1 contained in register Z into Adder input register Y. Pulse CI enters a carry bit into bit position 1 of the Adder, thus adding a one to the quantity entered by pulse WY12. The incremented quantity is returned to register Z by pulses RU and WZ of action 6. Before this operation, register Z contained the address of the instruction to be executed next. After the operation, register Z contains the address of the instruction to be executed thereafter which becomes the "address of the next instruction" during the execution of the next instruction.

32-19. Control pulses RSC and WG of action 2 clear register G if no CP register address (addresses 0000 through 0007) is contained in register S. If register S contains a CP register address, the content of the specified CP register is entered into register G. If register S contains an E memory address (address 0010 through 1777), the content of the specified E location is entered automatically into register G at time 4 by the E Memory (paragraph 30-52). If register S contains an F memory address (addresses 2000 and above), the content of the specified F location is entered automatically into register G is the instruction to be executed after the current STD2 subinstruction. The content of register G is returned automatically to an E memory location after time 10 if an E memory location is addressed to restore the content of the location (destroyed during readout).


32-20. Control pulse RAD of action 8 normally generates control pulse RG. Pulses RG, WB, and WS of action 8 enter the next instruction into register B and its relevant address into register S. Control pulse NISQ of action 2, causes the generation of pulses RB and WSQ at time 12, thus entering bits 15 through 10 of the next instruction into register SQ and initiating the execution of the next instruction. See example in paragraphs 32-25 through 32-29.

32-21. DATA TRANSFER DIAGRAMS

32-22. The data transfer diagrams are used to describe the operation of subinstructions. Figure 32-1, for instance, illustrates the execution of subinstruction STD2 discussed in paragraphs 32-16 through 32-20. Box F at the top represents a location in F Memory if one has been addressed, box E, a location in E Memory if one has been addressed, and box H an input-output channel if one has been addressed. The subsequent boxes represent CP registers and the Adder with input registers Y and X, output gates (U), and carry input flip-flop CI. The large box below register SQ represents the SQG. The control pulses generated at the various actions are listed in this box.

FR-2-132

	Sector States - Annual States - Annual States				
F	03000		•		
E		₽.			•
н		1			
s	2660		ws	3000	1
			003	000	
G	025252 ₩G ≜ 000000		003000 RG		
	000000		003	000)	
в	025252	2 ⁷	WB	003000	RB •
Α	025354 RSC				-
L	RSC	10.00 M	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (
Q	RSC				
z	002660 • RZ RSC	WZ	↓ 00266I		
	002660	60	2661)		(003000)
U	025354 002661	RU	F		+
Y	WY12 025252▼ 002660				
x	000102 • 000000				
CI	1•CI 1				
SQ	06.1				₩ SQ V 00.3
ACTIC	DN I 2 3 RZ RSC WYI2 WG CI NISQ		678 RU RA WZ WB WS	1D 3	
ST	2				0
BR	0	a			0
		1			27004

The 3-bit stage counter (ST) and the 2-bit branch flip-flops (BR) are represented by two small boxes at the bottom. (Branch flip-flop BR1 contains the high order bit and BR2, the low order bit.) Data shown in the registers prior to action 1 indicate starting conditions.

32-23. The information flow caused by the control pulses is indicated by vertical lines. Numbers in ellipses indicate data passing through the WA's. Information moving between memory and register G does not pass through the WA's, therefore, no ellipses are shown in the respective flow lines. When data is gated directly from one register into another, no flow line is shown. Broken flow lines are used to indicate information flow which may occur under conditions different from those pertaining to the given numeric example.

32-24. The 5-digit octal quantities used in boxes F, E, and CH represent 15 bit words (bits 15 through 1, no parity bit). Register S is able to store 12 bit addresses represented by 4 octal digits. Registers G, B, A, L, Q, Z, Y, and X are able to store 16 bit words represented by 6 octal digits and the same is true for the output gates (U) of the Adder. Register SQ is able to store 7 bits expressed in fractional octal numbers, 4 bits or 2 octal digits in front of the octal point, and 3 bits or 1 octal digit after the octal point.

32-25. EXAMPLE OF INSTRUCTION EXECUTIONS

32-26. The following sequence of instructions has been chosen as an example:

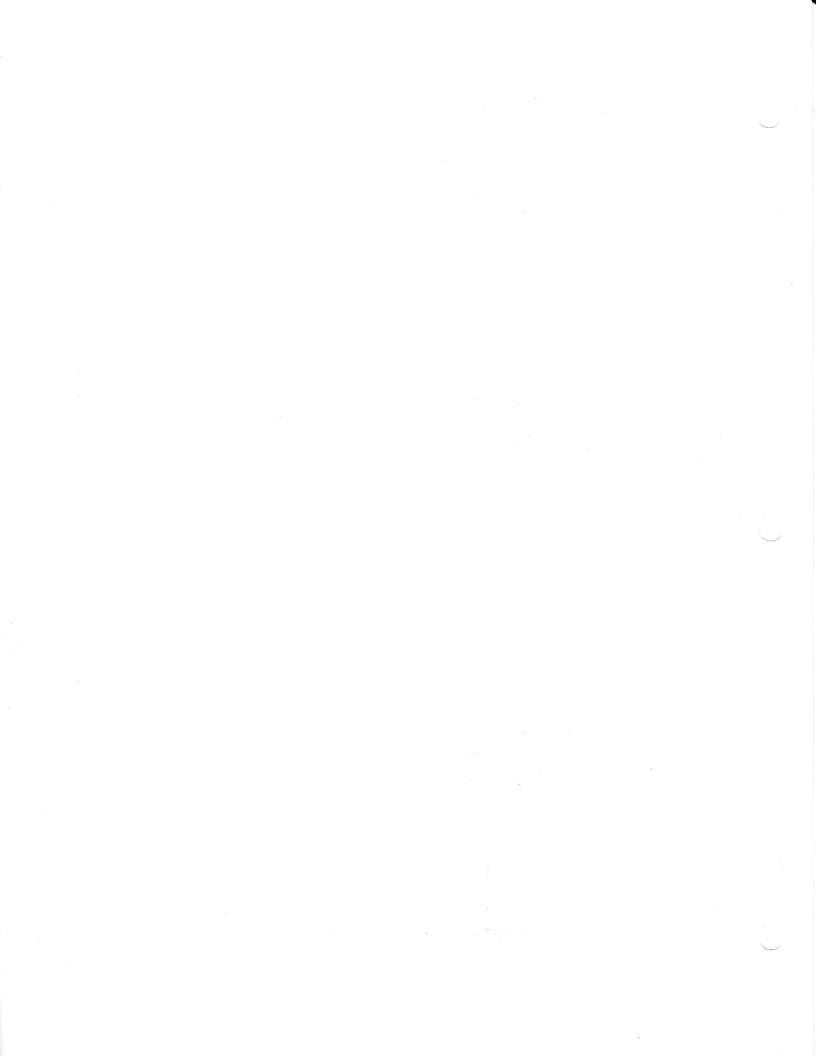
Location	Instruction	Code		
2657	AD 1213	6.1213		
2660	TC 3000	0.3000		
2661	CS 2765	4.2765		
3000	CA 0375	3.0375		

Let us assume that subinstruction AD0 has been executed and that subinstruction STD2 is being executed. Prior to time 1 of STD2, register Z and S contain 2660, the address of instruction TC 3000 to be executed next, as indicated in figure 32-1. Since address 2660 refers to F Memory, instruction TC 3000 (03000) is shown in the top box. The contents of registers G, B, A, Y, X, and SQ, which remained from the execution of subinstruction AD0, are irrelevant. The stage counter has been set to 2 at the last time 12 to initiate the execution of subinstruction STD2.

32-27. Control pulse RZ of action 1 gates address 002660 into the WA's and pulse WY12 gates the content of WA's 12 through 1 into register Y. Pulse WY12 also clears register X. Pulse CI forces a carry bit into bit position 1

of the Adder and the quantity 002661 appears at the output gates (U). Pulses RU and WZ of action 6 return the incremented address to register Z.

32-28. Since register S does not contain a CP register address, no CP register is gated for read out at the occurrence of pulse RSC of action 2, the WA's contain 000000, and pulse WG writes this quantity into register G, thus clearing register G. Since register S also does not contain an E memory address, nothing is entered into register G by E Memory at time 4. Because register S contains address 2660 of F Memory, instruction TC 3000 contained at location 2660 is entered into register G by F Memory at time 6. Since register S does not contain an E memory address prior to time 6, no data is restored in E Memory after time 10.

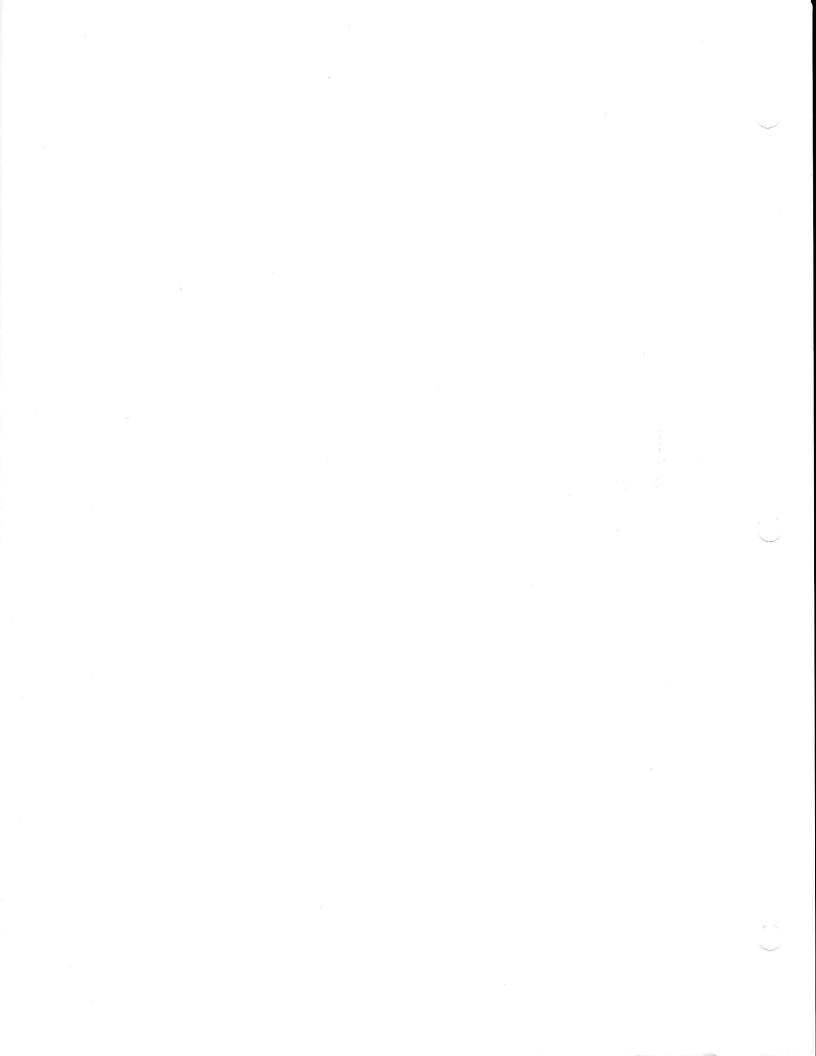

32-29. Control pulse RAD of action 8 is interpreted as RG and enters instruction TC 3000 into the WA's. Pulse WB enters the same instruction into register B while pulse WS enters the relevant address into register S. Control pulses RB and WSQ, which are caused by pulse NISQ, enter 00.3 into register SQ at time 12. The stage counter is reset to 0. Thus the execution of subinstruction TC0 has been initiated.

(text continued on page 32-53)

1.0 1.0			c (SQ)		c(ST)	р.	:	8 r 2			Acti	ons			×		2 2	Remarks
Row No.	Subinstruction Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	·
1	STD2	x	ххх	ххх	010	RZ Wy12 Ci	RSC WG NISQ				RU WZ		RAD WB WS	7				Follows any subinstruction which sets $c(ST) = 2$ with control pulse ST2. Followed by next instruction. See note A
2	TCO	0	000	ххх	000	RB WY12 CI	RSC WG NISQ	RZ WQ		5	RU WZ		RAD WB WS	-				Followed by instruction to which control is transferred. See note A.
3	TCFO	0 0 0	001 001 001	01X 10X 11X	000 000 000	RB Wy12 Ci	RSC WG NISQ	8	11 		RU WZ		RAD WB WS			2		Followed by instruction to which control is transferred. See note A.
4	CCSO	0	001	0 0 X	000	RL10BB WS	RSC WG			RG WB TSGN TMZ TPZG		RZ WY12 RZ WY12 PONEX RZ WY12 PTWOX RZ WY12 PTWOX	RU WZ WS	RB WG	↓ WY RB MONEX CI ST2 ↓ WY ST2 WY ST2 WY ST2 ST2 ↓ WY ST2 ST2 ↓ WY ST2 ST2 ↓ ST2 ↓ ST2 ↓ ST2	RU WA		$ \widehat{\square} \text{If } c(BR) = 0, c(G) \text{ is positive non-zero at time 5.} \\ \widehat{\square} \text{If } c(BR) = 1, c(G) \text{ is plus zero at time 5.} \\ \widehat{\square} \text{If } c(BR) = 2, c(G) \text{ is negative non-zero at time 5.} \\ \widehat{\square} \text{If } c(BR) = 3, c(G) \text{ is minus zero at time 5.} \\ \text{Followed by STD2.} \\ $
5	BZFO	1 1 1	001 001 001	01X 10X 11X		RA WG TSGN TMZ	TPZG	RSC WG			/		RZ WS ST2 RAD WB WS NISQ					 If c(BR) = 0 or 2, c(A) is non-zero at times 1 and 2. If c(BR) = 1 or 3, c(A) is plus or minus zero at times 1 and 2. If c(BR) = X0, BZF0 is followed by STD2. If c(BR) = X1, BZF0 is followed by instruction to which control is transferred.

CONTROL PULSES GENERATED AT VARIOUS ACTIONS

32-25/32-26



CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

Boy	Subinstruction	c (SQ)	c(ST)	T) Actions								Remarks				
Rov No		EXT 16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Reliaiks
6	BZMF0	1 110 1 110 1 110	0 1 X 1 0 X 1 1 X	000000000	RA WG TSGN TMZ	TPZG	RSC WG					RZ WS ST2 RAD WB WS NISQ					 A If c (BR) = 0, c (A) is positive non-zero at times 1 and 2. A If c (BR) = 1, c (A) is plus zero at times 1 and 2. A If c (BR) = 2, c (A) is negative non-zero at times 1 and 2. A If c (BR) = 3, c (A) is minus zero at times 1 and 2. If c (BR) = 0, BZMF0 is followed by STD2. If c (BR) ≠ 0, BZMF0 is followed by instruction to which control is transferred.
7	CA0	0 011	X X X	000		RSC WG		=			RG WB	RZ WS ST2	RB ₩G	RB WA			Followed by STD2.
8	C SO	0 100	ххх	000		RSC WG					RG WB	RZ WS ST2	RB WG	RC WA			Followed by STD2.
9	DCA0	1 011	XXX	000	RB WY12 MONEX CI	RSC WG					RG WB	RU WS	RB WG	RB WL ST1		3.	Followed by DCA1.
10	DCA1	1 011	ХХХ	001		RSC WG					RG WB	RZ WS ST2	RB WG	RB WA			Followed by STD2
11	DCSO	1 100	X X X	000	RB WY12 MONEX CI	RSC WG	· · · ·	. "			RG ∦B	RU WS	RB WG	RC WL ST1			Followed by DCS1
12	DCS1	1 100	XXX	001		RSC WG					RG WB	RZ WS ST2	RB WG	RC WA			Followed by STD2.

TABLE 32-4

32-27/32-28

Dem	Cubingtowation		c (SQ)		c(ST)	(i)					Acti	ons						
Row No.	Subinstruction Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7 -	8	9	10	11	12	Remarks
13	TSO	0	101	1 0 X	000	RL10BB WS	RSC WG	RA WB TOV	A RZ WY12 A RZ WY12 CI CI CI CI CI	A A RB1 WA MA R1C WA	RU WZ	RB WSC WG	RZ WS ST2					$ \underbrace{1}_{1} \text{ If } c(BR) = 0, \text{ A16,15} = 0 \text{ or } 3 \text{ at time } 3. $ $ \underbrace{2}_{2} \text{ If } c(BR) = 1, \text{ A16,15} = 1 \text{ at time } 3. $ $ \underbrace{3}_{3} \text{ If } c(BR) = 2, \text{ A16,15} = 2 \text{ at time } 3. $ Followed by STD2.
14	XCH0	0	101	11X	000	RL10BB WS	RSC WG	RA WB	×	RG WA		RB WSC WG	RZ WS ST2					Followed by STD2.
15	L XCH0	0	010	0 1 X	000	RL10BB WS	RSC WG	RL WB		RG WL	- 0 5 	RB WSC WG	RZ WS ST2					Followed by STD2.
S	ФХСНО	1	010	01 X	000	RL10BB WS	RSC WG	RQ WB		RG WQ		RB WSC WG	RZ WS ST2				5 ₁₀	Followed by STD2.
17	DXCH0	0	101	01 X	000	RL10BB WS WY12 MONEX CI	RSC WG	RL WB	2	RG WL	Υ.	RB WSC WG	RU WS WB		ST1			Control pulse CI at time 1 causes 000001 plus 177776 to result in 000000 instead of 177777. Followed by DXCH1.
18	DXCH1	0	101	0 1 X	001	RL10BB WS	RSC WG	RSC WB		RG WA		RB WSC WG	RZ WS ST2					Followed by STD2.
19	NDX0	0	101	0 0 X	000		RSC WG			TRSM	с	RG WB	RZ WS	RB WG	ST1			Normally followed by NDX1. Followed by RSM3 if $c(S) = 0017$ at time 5.
20	NDX1	0	101	0 0 X	001	RZ WY12 CI	RSC WG NISQ	RB WZ	RA WB	RZ WA	RU WZ	RG WY A2X	RU WS	RB ₩A	RU WB	÷		Followed by indexed Basic Instruction. See note A at end of table.
21	NDXXO	1	101	ххх	000		RSC WG					RG WB	RZ WS	RB WG	ST1			Followed by NDXX1.

TABLE 32-4

TABLE 32-4

			c(SQ)		c(ST)		8			D	Acti	ons						
Row No.	Subinstruction Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
22	NDXX1	1	101	ххх	001	RZ WY12 CI	RSC WG NISQ	RB WZ	RA WB	RZ WA	RU WZ	RG WY A2X	RU WS	RB WA	RU WB EXT			Followed by an indexed Extra Code Instruction.
23	AD0	0	110	ХХХ	000		RSC WG			1		RG WB	RZ WS ST2	RB ₩G	RB WY A2X	RU WA		Followed by STD2.
24	SNO	1	110	0 0 X	000		RSC WG			5 g.		RG WB	RZ WS ST2	RB WG	RC WY A2X	RU WA		Followed by STD2.
25	МРО	1	111	XXX	000		RSC WG	RA WB TSGN	RB WL			RG WB TSGN2	RZ WS	RB WY RB WY CI CI MY CI WY CI RC WY	RU WB TSGN NEACON ST1	A WA		$ \begin{array}{ c c c c c } \hline & \text{If } c(BR) = 0 \text{ or } 1, \text{ A16} = 0 \text{ at time } 3. \\ \hline & \hline & \text{If } c(BR) = 2 \text{ or } 3, \text{ A16} = 1 \text{ at time } 3. \\ \hline & \hline & \text{A1} c(BR) = 0, \text{ A16} = 0 \text{ and } \text{G16} = 0 \text{ at time } 7. \\ \hline & \hline & \text{A1} c(BR) = 1, \text{ A16} = 0 \text{ and } \text{G16} = 1 \text{ at time } 7. \\ \hline & \hline & \text{A1} c(BR) = 2, \text{ A16} = 1 \text{ and } \text{G16} = 0 \text{ at time } 7. \\ \hline & \hline & \text{A1} c(BR) = 3, \text{ A16} = 1 \text{ and } \text{G16} = 1 \text{ at time } 7. \\ \hline & \hline & \text{A1} c(BR) = 3, \text{ A16} = 1 \text{ and } \text{G16} = 1 \text{ at time } 7. \\ \hline & \hline & \text{A1} c(BR) = 0 \text{ or } 1, \text{ U16} = 0 \text{ at time } 10. \\ \hline & \hline & \text{A1} c(BR) = 2 \text{ or } 3, \text{ U16} = 1 \text{ at time } 10. \\ \hline & \text{Followed by MP1.} \end{array} $
26	MP1	1	111	ххх	001	ZIP	ZAP	ZIP	ZAP	ZIP	ZAP	ZIP	ZAP	ZIP	ZAP ST1 ST2	ZIP	к.	Followed by MP3.
27	MP3	1	111	X X X	011	ZAP	ZIP NISQ	ZAP	RSC WG	RZ WY12 CI	RU WZ TL15 NEACOF		RAD WB WS	RA	RL	⚠ — ⚠ RU ₩A		$ \widehat{1} \text{If } c(BR) = 0 \text{ or } 1, \ L15 = 0 \text{ at time } 6. $ $ \widehat{2} \text{If } c(BR) = 2 \text{ or } 3, \ L15 = 1 \text{ at time } 6. $ Followed by next instruction. See note A.

FR-2-132

CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

32-31/32-32

	C. Line truction		c(SQ)		c(ST)						Acti	ons						
Row No.	Subinstruction Symbol	EXT	16,14,13	12,11,10	3 ,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
28	DV0	1	001	0 0 X	000	RA WB TSGN TMZ	RC WA TMZ DVST DVST	RU WB STAGE										
29	DV1	1	001	0 0 X	001				RL WB RL WB TSGN	3 RB WY B15X A RC WY B15X Z16	RU ₩L TOV	RG RSC WB TSGN	S RA WY PONEX	RB WA RC WA Z15	RU WB	RL WYD	RU WL	$ \begin{array}{ c c c c c } \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$
29 (cont)	DV1	1	001	0 0 X	001	L2GD RB WYD A2X PIFL	RG WL TSGU DVST	RU WB STAGE										$ \begin{array}{c} \hline \\ \hline $
30	DV3	1	001	0 0 X	011				L2GD RB WYD A2X PIFL	RG WL TSGU (CLXC) (RB1F	RU WB	L2GD RB WYD A2X PIFL	RG WL TSGU (LXC) (2) RB1F	RU WB	L2GD RB WYD A2X PIFL	RG WL TSGU CLXC 2 RB1F	RU WB	$ \begin{array}{ c c c c c } \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$
30 (cont)	DV3	1	001	0 0 X	011	L2GD RB WYD A2X PIFL	RG WL TSGU DVST CLXC A RB1F	RU WB STAGE										$\overrightarrow{3} \text{If } c(BR) = 0 \text{ or } 1, \text{ U16} = 0 \text{ at time } 2.$ $\overrightarrow{4} \text{If } c(BR) = 2 \text{ or } 3, \text{ U16} = 1 \text{ at time } 2.$ Followed by DV7 after action 3.

TABLE 32-4

32-33/32-34

Row	Subinstruction		c(SQ)		c(ST)						Acti	ions			2	1		
No.	Symbol	EXT	16,14,13		3,2,1	1	2	3	4	5	6	7	8	9	10	× 11	12	Remarks
31	DV7	1	001	0 0 X	111				L2GD RB WYD A2X PIFL	RG WL TSGU CLXC RB1F	RU ₩B	L2GD RB WYD A2X PIFL	RG WL TSGU M CLXC	RU WB	L2GD RB WYD A2X PIFL	RG WL TSGU M CLXC	RU WB	✓1 If c (BR) = 0 or 1, U16 = 0 at time 5, 8, 11 or 2.
31 (cont)	DV7	1	001	0 0 X	111	L2GD RB WYD A2X PIFL	RG WL TSGU DVST CLXC 2 RB1F	RU WB STAGE										If $c(BR) = 2$ or 3, U16 = 1 at time 5, 8, 11, or 2. Followed by DV6 after action 3.
32	DV6	1	001	0 0 X	110				L2GD RB WYD A2X PIFL	RG WL TSGU CLXC	RU WB	L2GD RB WYD A2X PIFL	RG WL TSGU (LXC) (RB1F	RU WB	L2GD RB WYD A2X PIFL	RG WL TSGU CLXC	RU WB	$\cancel{1}$ If c(BR) = 0 or 1, U16 = 0 at time 5, 8, 11, or 2.
32 (cont)	DV6	1	001	0 0 X	110	L2GD RB WYD A2X PIFL	RG WL TSGU DVST ∠1 CLXC 2 RB1F	RU WB STAGE										If $c(BR) = 2$ or 3, U16 = 1 at time 5, 8, 11, or 2. Followed by DV4 after action 3.
33	DV4	1	011	0 0 X	100				L2GD RB WYD A2X PIFL	RG WB WA TSGU (1) CLXC (2) RB1F	RZ TOV	A RC ₩A ₩A ₩A ₩A	RZ WS ST2 TSGN RSTSTG	RU WB WL	KC WL A →			$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $

TABLE 32-4

32-35/32-36

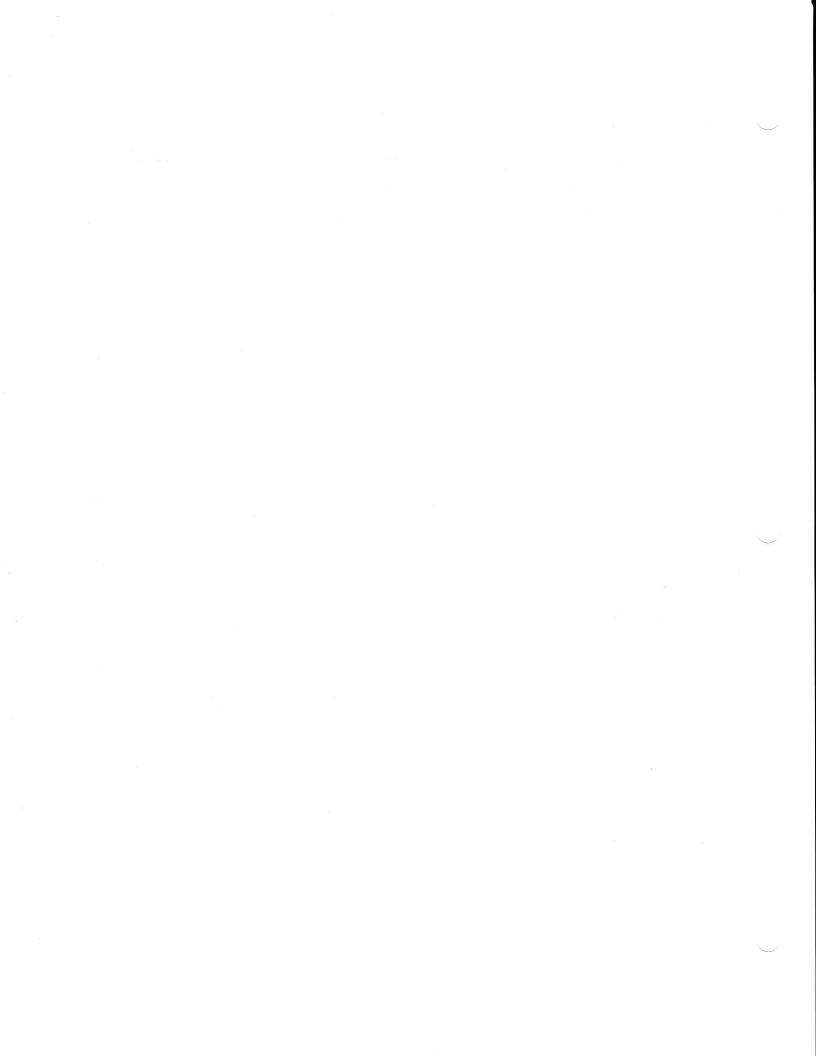
			c (SQ)		c(ST)						Actio	ons						
Row No.	Subinstruction Symbol	EXT		12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
34	ADS0	0	010	11X	000	RL10BB WS	RSC WG		5 5	RG WY A2X	RU WSC WG TOV	 ✓Î WA ✓Ž WA RB1 ✓3 WA R1C 	RZ WS ST2	RC TMZ		RU WA		
35	DASO	0	010	0 0 X	000	RL10BB WS WY12 MONEX CI	RSC WG	RA WB	RL WA	RU WL	RG WY A2X	RB WA	RL ₩B	RU WSC WG TOV	A WY ST1 RA WY PONEX ST1 A WY MONEX ST1			$ \underbrace{1}_{1} \text{ If } c(BR) = 0, \text{ U16,15} = 00 \text{ or } 11 \text{ at time } 9. $ $ \underbrace{2}_{1} \text{ If } c(BR) = 1, \text{ U16,15} = 01 \text{ at time } 9. $ $ \underbrace{3}_{1} \text{ If } c(BR) = 2, \text{ U16,15} = 10 \text{ at time } 9. $ Followed by DAS1.
36	DASI	0	010	0 0 X	001	RL10BB WS	RSC Wg	RU WA		RG WY A2X	RU WG WSC TOV	√1 wa √2 wa RB1 √3 wa R1C	RZ WS ST2	RC TMZ	<u>4</u> wL <u>√</u> 5 —	A A KU WA		$ \underbrace{ 11}_{1} \text{ If } c(BR) = 0, \text{ U16,15} = 00 \text{ or } 11 \text{ at time } 7. $ $ \underbrace{ 22}_{2} \text{ If } c(BR) = 1, \text{ U16,15} = 01 \text{ at time } 7. $ $ \underbrace{ 33}_{3} \text{ If } c(BR) = 2, \text{ U16,15} = 10 \text{ at time } 7. $ $ \underbrace{ 44}_{4} \text{ If } c(BR) = 0 \text{ or } 2, \overline{c}(B) \neq 177777 \text{ at time } 9. $ $ \underbrace{ 55}_{5} \text{ If } c(BR) = 1 \text{ or } 3, \overline{c}(B) = 177777 \text{ at time } 9. $ $ \text{Followed by STD2.} $
37	IN CRO	0	010	1 0 X	000	RL10BB WS	RSC WG			RG WY TSGN TMZ TPZG	PONEX	RU WSC WG WOVR	RZ WS ST2					TSGN, TMZ, and TPZG of action 5 have no effect. If U16,15 = 01, WOVR of action 7 requests execution of PINC 0024 if $c(S) = 0025$, or RUPT if $c(S) = 0026$, 0027, or 0030. Followed by STD2.

.

.

TABLE 32-4

32-37/32-38



Row	Subinstruction		c (SQ) -	c(ST)						Acti	ons						
No.	Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
38	AUG0	1	010	1 O X	000	RL10BB WS	RSC WG			RG WY TSGN TMZ TPZG		RU WSC WG WOVR	RZ WS ST2	н 				$ \underbrace{ 1}_{1} \text{ If } c(BR) = 0 \text{ or } 1, \text{ G16} = 0 \text{ at time } 6. $ $ \underbrace{ 2}_{2} \text{ If } c(BR) = 2 \text{ or } 3, \text{ G16} = 1 \text{ at time } 6. $ $ \underline{ MZ} \text{ and } \text{TPZG of action } 5 \text{ have no effect. If } \\ \underline{ U16}, \underline{ 15} = 11, \text{ WOVR of action } 7 \text{ requests execution of } \\ \underline{ PINC 0024 \text{ if } c(S) = 0025 \text{ or } RUPT \text{ if } c(S) = 0026, \\ 0027, \text{ or } 0030. } \\ \hline \text{Followed by STD2.} $
39	DIMO	1	010	11X	000	RL10BB WS	RSC WG			RG WY TSGN TMZ TPZG	 ⚠ MONEX ⚠ PONEX ☑ — 	RU WSC WG WOVR	RZ WS ST2					 A If c(BR) = 0, c(G) is positive non-zero at time 6. A If c(BR) = 2, c(G) is negative non-zero at time 6. A If c(BR) = 1 or 3, c(G) is plus or minus zero at time 6. WOVR at time 7 has no effect. Followed by STD2.
40	MSUO	1	010	0 0 X	000	RL10BB WS	RSC WG		×	RG WB	RC WY CI A2X	RUS WA TSGN	RZ WS ST2	RB WG	A RA WY MONEX	RUS WA		$ \begin{array}{ c c c c c } \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$
41	MSKO	0	111	X X X	000		RSC WG	RA WB	RC WA	÷	2	RG WB	RZ WS ST2	RC RA WY	RU WB	RC WA		Followed by STD2.
42	READO	1	000	000	000	RL10BB WS	RA WB	WY	RCH WB	RB WA	RA WB		RZ WS ST2					Followed by STD2.
43	WRITEO	1	000	001	000	RL10BB WS	RA WB WG	WY	RCH WB	RA WCH	RA WB	2	RZ WS ST2					See note B. Followed by STD2
44	RANDO	1	000	010	000	RL10BB WS	RA ₩B	RC WY	RCH WB	RC RU WA	RA WB	RC WA	RZ WS ST2					Followed by STD2.

°

TABLE 32-4

32-39/32-40

Row	Subinstruction		c (SQ)		c(ST)					-	Act	ions						
No.	Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
45	WANDO	1	000	011	000	RL10BB WS	RA WB	RC WY	RCH WB	RC RU WA	RA WB	RC WA WCH	RZ WS ST2			11 v 1	T.	See note B. Followed by STD2.
46	RORO	1	000	100	000	RL10BB WS	RA WB	RB WY	RCH WB	RB RU WA	RA WB		RZ WS ST2					Followed by STD2.
47	WORO	1	000	101	000	RL10BB WS	RA WB	RB WY	RCH WB	RB RU WA WCH	RA WB		RZ WS ST2					See note B, Followed by STD2.
48	RXOR0	1	000	110	000	RL10BB WS	RA WB	RC RCH WY	RCH WB	RA RC WG		RG WB	RZ WS ST2	RC WG	RU WB	RC RG WA		Followed by STD2.
49	RSM3	0	101	0 0 X	011	R15 WS	RSC WG NISQ			RG WZ	RB WG		RAD WB WS					Followed by instruction at return address. See note A.
50	RUPTO	1	000	111	000	R15 WS	RSC WG	8			÷	2		RZ WG	ST1			RSC at action 2 has no effect. Followed by STD2.
51	RUPT1	1	000	111	001	R15 RB2 WS	RSC WG	RRPA WZ			-		RZ WS ST2	RB WG KRPT			2	RSC at action 2 has no effect. Followed by STD2.
52	GOJ1	0	000	x x x	001		RSC WG					4	RSTRT WS WB					Initiated by signal GOJAM. RSC at action 2 has no effect. Followed by TC 4000.
53	PINC	X	X X X	XXX	XXX	RSCT WS	RSC WG		-	RG WY TSGN TMZ TPZG	PONEX	RU WSC WG WOVR	RB WS			а 		See note C. RSC of action 2, TSGN, TMZ, and TPZG of action 5, and WSC of action 7 have no effect. If U16,15 = 01, WOVR of action 7 requests the execution of PINC 0024 if $c(S) = 0025$, or RUPT if $c(S) = 0026$, 0027, or 0030.

TABLE 32-4

Row	Subinstruction		c(SQ)	Sdoon (Karaga (MP ang salat ang sagang salat	c(ST)	an a	classingen in Society of Social Social Social Social Society of Planta Society of Social Society of Social Society of Society of Social Society of Social Society of Social Society of Society of Social Society of S	NET IN THE OWNER OF THE OWNER OF THE OWNER OW	99999999999999999999999999999999999999		Acti	ons	ng ng paggan ng su ng			9 M H H H H H H H H H H H H H H H H H H		
No.	Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
54	MINC	X	XXX	XXX	XXX	RSCT WS	RSC WG			RG WY TSGN TMZ TPZG	MONEX	RU WSC WG WOVR	RB WS					See note C. RSC of action 2, TSGN, TMZ, and TPZG of action 5, and WSC and WOVR of action 7 have no effect.
55	DINC	X	X X X	XXX	XXX	RSCT WS	RSC WG			RG WY TSGN TMZ TPZG	A MONEX POUT PONEX MOUT 3 ZOUT	RU WSC WG WOVR	RB WS					See note C. $\widehat{11}$ If c (BR) = 0, c (G) is positive non-zero. $\widehat{22}$ If c (BR) = 2, c (G) is negative non-zero. $\widehat{3}$ If c (BR) = 1 or 3, c (G) is plus or minus zero. RSC of action 2, and WSC and WOVR of action 7 have no effect.
56	PCDU	X	XXX	XXX	xxx	RSCT WS	RSC WG	9		RG WY TSGN TMZ TPZG	CI	RUS WSC WG WOVR	RB WS					See note C. RSC of action 2, TSGN, TMZ, and TPZG of action 5, and WSC and WOVR of action 7 have no effect.
57		X	XXX	XXX	XXX	RSCT WS	RSC WG			RG WY TSGN TMZ TPZG	MONEX Ci	RUS WSC Wg Wovr	RB ₩S					See note C. RSC of action 2, TSGN, TMZ, and TPZG of action 5, and WSC and WOVR of action 7 have no effect.
58	SHINC	X	XXX	XXX	XXX	RSCT WS	RSC WG			RG WYD TSGN		RUS WSC WG WOVR	RB WS					See note C. RSC of action 2, and WSC and WOVR of action 7 have no effect. TSGN of action 5 requests RUPT if $c(S)$ is 0045 and G16 = 1.
59	SHANC	X	XXX	XXX	XXX	RSCT WS	RSC ₩G			RG WYD TSGN CI	· · · · · · · · · · · · · · · · · · ·	RUS WSC WG WOVR	RB WS					See note C. RSC of action 2, and WSC and WOVR of action 7 have no effect. TSGN of action 5 requests RUPT if $c(S)$ is 0045 and G16 = 1.
60	TCSAJ3	0	000	000	011		RSC WG						WS WZ ST2					See note D. An address is sent to the WA's from an external source at time 8. Followed by STD2.

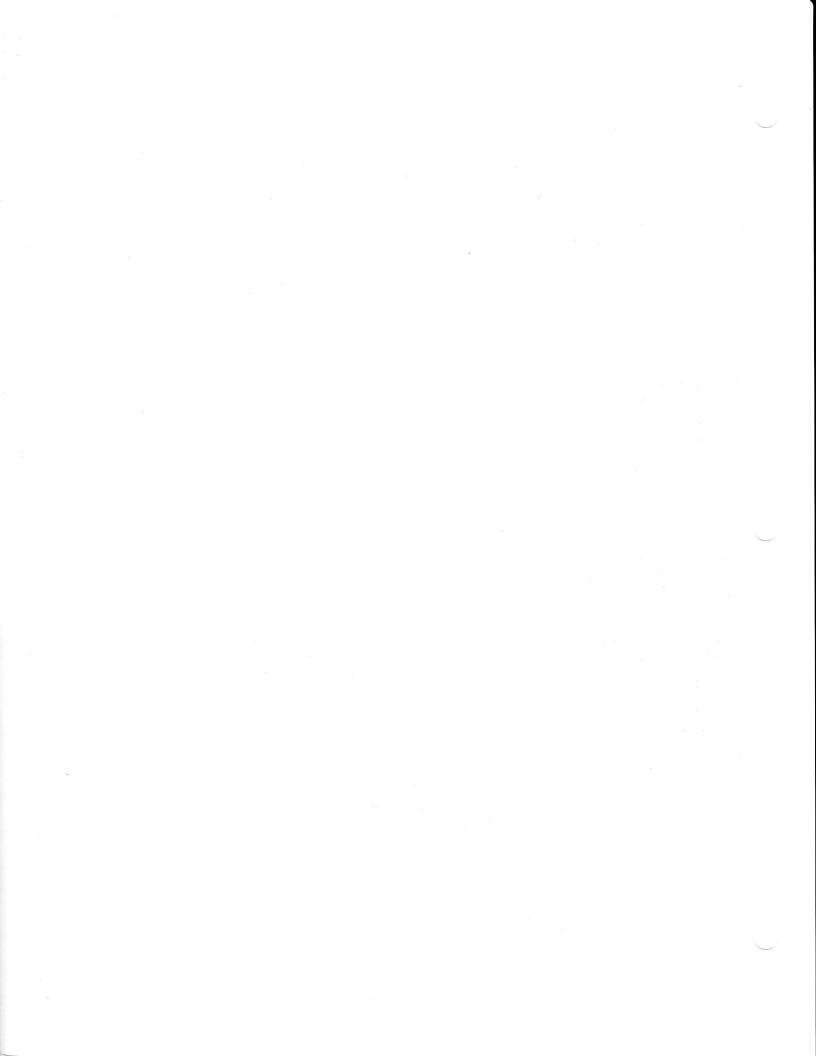
TABLE 32-4

CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

32-43/32-44

Row	Subinstruction		c (SQ)		c(ST)			******		~	Acti	ons						
No.	Symbol	EXT	16,14,13	12,11,10	3,2,1	1	2	3	4	5	6	7	8	9	10	11	12	Remarks
61	FETCHO	X	X X X	ХХХ	000	R6 WS	RSC WG WY ST1		WSC				WS					See note D. A bank number is sent to the WA's from an external source at time 4; a memory address is sent to the WA's at time 8. Followed by FETCH1.
62	FETCH1	X	ХХХ	XXX	001	r T	RSC WG			e	ж С	RG	RB WS U2BBK		RBBK		÷	See note D. The quantity contained in the WA's at time 7 and/or time 10 can be displayed on external equipment.
63	STOREO	X	XXX	XXX	000	R6 WS	RSC WG WY ST1		WSC				WS					See note D. A bank number is sent to the WA's from an external source at time 4; a memory address is sent to the WA's at time 8. Followed by STORE1.
64	STORE1	X	ХХХ	ххх	001		RSC WG		WSC	2		RG	RB WS U2BBK	WG	RBBK			See note D. A quantity is provided for loading from an external source at times 4 and 9.
65	INOTRD	X	XXX	ххх	XXX	WS	RSC WG			RCH			RB WS					See note D. A channel address is sent to the WA's from an external source at time 1; the quantity con- tained in the WA's at time 5 can be displayed on external equipment.
66	INOTLD	x	XXX	XXX	XXX	WS	RSC WG			RCH	v	WCH	RB WS	7				See note D. A channel address is sent to the WA's from an external source at time 1, and a quantity is is sent at time 7.

NOTES:


A. If c (G) = 000003 (RELINT), 000004 (INHINT), or 000006 (EXTEND), control pulse RAD causes the generation of control pulses RZ and ST2, and subinstruction STD2 is executed next. If G contains any other quantity, control pulse RAD causes the generation of control pulse RG and the next instruction is executed.

B. The ONE entered into bit position 10 of register S has no effect on addressing channel locations.

- C. Counter Instructions are executed after any time 12 provided the execution of an interrupting or Peripheral Instruction is not being requested. Each Counter Instruction delays program execution for one MCT.
- D. Peripheral Instructions are initiated by a signal from the GSE. Normally the AGC time Counter is stopped at time 12 before and after the execution of an instruction.

TABLE 32-4

32-45/32-46

CONTROL PULSES

Pulse	Purpose
A 2X	Copies bits 16 through 1 of register A directly (not through WA's) into bit positions 16 through 1 of register X.
B15X	Enters a ONE into bit position 15 of register X.
CI	Inserts carry bit into bit position l of the Adder. This adds the quantity one to the content of the Adder if no bit is carried around (from bit positions $l6$ to bit position l).
CLXC	Clears register X if flip-flop BR1 contains a ZERO. (Used in instruction DV E.)
DVST	Modifies the content of the stage counter (ST) by complementing the content of the next higher bit position as shown below:
	Binary Octal
	000 0 001 1 011 3 111 7 110 6 100 4
EXT	Enters a ONE into bit position EXT of register SQ.
G2LS 🚹	Copies bits 16, 15 through 4, and 1 of register G directly (not through WA's) into bit positions 16, 12 through 1, and 15 of register X.
KRPT	Resets interrupt priority cell.
L16	Enters a ONE into bit position 16 of register L.
L2GD	Copies bits 16 and 14 through 1 of register L directly (not through WA's) into bit positions 16 and 15 through 2 of register G; enters a ONE into bit position 1 of register G if pulse MCRO is generated.
MONEX	Clears register X and enters ONE's into bit positions 16 through 2.
MOUT	Causes the generation of one minus drive pulse.

Pulse	Purpose
NEACOF	Permits end around carry upon completion of subinstruction MP3.
NEACON	Inhibits end around carry (also during WYD) until NEACOF.
NISQ	Causes loading of next instruction into register SQ (implies RB and WSQ at time 12). Also resets the stage counter (ST) to 0; frees certain restrictions; permits execution of instruction RUPT and of all Counter Instructions.
PIFL	Prevents writing into bit position l of register Y on control pulse WYD if bit position 15 of register L contains a ONE. (Used in instruction DV.)
PONEX	Clears register X and enters a ONE into bit position 1 .
POUT	Causes the generation of one plus drive pulse.
PTWOX	Clears register X and enters a ONE into bit position 2.
R 15	Enters 000015 into WA's.
R1C	Enters 177776 (minus one) into WA's.
R6	Enters 000006 into WA's.
RA	Reads bits 16 through 1 of register A into WA's 16 through 1.
RAD	Reads address of next instruction. RAD appears at last time 8 of an instruction and is normally interpreted as RG. If the next instruction is INHINT, RELINT, or EXTEND, RAD is interpreted as RZ and ST2 instead.
RB	Reads bits 16 through 1 of register B into WA's 16 through 1.
RB1	Enters 000001 into WA's.
RBlF	Enters 000001 into WA's if flip-flop BR1 contains a ONE.
RB2	Enters 000002 into WA's.
RBBK	Reads the BB (both bank) configuration into the WA's, i.e., copies the content of bit position 16 of register FBANK into WA's 16 and 15, the content of bit positions 14 through 11 of register FBANK into WA's 14 through 11, and the content of bit positions 11 through 9 of register EBANK into WA's 3 through 1.

Pulse	Purpose
RC	Reads the complemented content of register B (bits 16 through 1 of C) into WA's 16 through 1.
RCH	Reads the content of the input-output channel specified by the contents of register S; bit 15 is read into WA's 16 and 15, and bits 14 through 1 are read into WA's 14 through 1.
RG	Reads bits 16 through 1 of register G into WA's 16 through 1.
RL	Reads bit 16 of register L into WA's 16 and 15, and bits 14 through 1 into WA's 14 through 1.
RL10BB	Reads low 10 bits, i.e., bits 10 through 1 of register B into WA's 10 through 1; replaces c(S), which includes a quarter code, by a 10 bit address.
RQ	Reads bits 16 through 1 of register Q into WA's 16 through 1.
RRPA	Enters into the WA's the address of a RUPT Transfer Routine supplied by the Interrupt Priority Control.
RSC	Reads the content of the CP register specified by the content of register S; bits 16 through 1 are read into WA's 16 through 1.
RSCT	Enters into the WA's the address of a counter address supplied by the Counter Priority Control (paragraph 30-94).
RSTRT	Enters 004000 (Block II start address) into WA's.
RSTSTG	Resets the stage counter to 0 (refer to DVST).
RU	Reads bits 16 through 1 of Adder output gates (U) into WA's 16 through 1.
RUS	Reads bit 15 of Adder out put gates (U) into WA's 16 and 15, and bits 14 through 1 into WA's 14 through 1.
RZ	Reads bits 16 through 1 of register Z into WA's 16 through 1.
ST1	Sets stage 1 flip-flop to ONE at next time 12.
ST2	Sets stage 2 flip-flop to ONE at next time 12.
STAGE	Causes the execution of next subinstruction as defined by the content of the stage counter (ST).

Pulse	Purpose
TL15	Copies bit 15 of register L into flip-flop BR1.
TMZ	Tests the content of the WA's for minus zero: if bits 16 through 1 are all ONE's, flip-flop BR2 is set to ONE; otherwise BR2 is set to ZERO.
TOV	Tests the content of WA's 16 and 15 for overflow: set flip-flops BR1 and BR2 to 01 in case of positive overflow, or to 10 in case of negative overflow.
TPZG	Tests the content of register G for plus zero: if bits 16 through 1 are all ZERO's, flip-flop BR2 is set to ONE; otherwise the content of BR2 is not changed.
TRSM	Tests signals XT1/ and XB7 of selection logic for the resume address (0017) during the execution of subinstruction NDX0: if 0017 is present, subinstruction RSM3 is executed next by setting c(ST) = 3; otherwise subinstruction NDX1 by setting $c(ST) = 1$.
TSGN	Tests content of WA 16 for sign: if a ZERO, flip-flop BR1 is set to ZERO; if a ONE, flip-flop BR1 is set to ONE without changing the content of flip-flop BR2.
TSGN2	Tests content of WA 16 for sign: if a ZERO, flip-flop BR2 is set to ZERO; if a ONE, flip-flop BR2 is set to ONE without changing the content of flip-flop BR1.
TSGU	Tests content of output gate U16 of Adder for sign: if a ZERO, flip-flop BR1 is set to ZERO; if a ONE, flip-flop BR1 is set to ONE.
U2BBK	Copies bits 16 and 14 through 11 of the Adder output gates (U) into bit positions 16 and 14 through 11 of register FBANK, and bits 3 through 1 (of U) into bit positions 3 through 1 of register EBANK. U2BBK may be inhibited by signal MONWBK, which is generated if register BBANK is addressed.
WA	Clears register A and writes the content of WA's 16 through 1 into bit positions 16 through 1.

Pulse	Purpose
WALS A	Clears register A and writes the content of WA's 16 through 3 into bit positions 14 through 1. If bit position 1 of register G contains a ZERO, the content of bit position 16 of register G is entered into bit positions 16 and 15 of register A; if bit posi- tion 1 of register G contains a ONE, the content of output gate U 16 of the Adder is entered into bit positions 16 and 15 of register A. WALS also clears bit positions 14 and 13 of reg- ister L, and writes the content of WA's 2 and 1 into these bit positions.
WB	Clears register B and writes the content of WA's 16 through 1 into bit positions 16 through 1.
WСН	Clears the output channel specified by the content of register S and writes the content of WA's 16 and 14 through 1 into bit positions 15 through 1.
WG	Clears register G and writes the content of WA's 16 through 1 into bit positions 16 through 1, except if register S contains addresses 0020 through 0023 in which case the WA content is cycled or shifted (paragraph 30-41).
WL	Clears register L and writes the content of WA's 16 through 1 into bit positions 16 through 1.
WOVR	Tests the content of WA's 16 and 15 for positive overflow: if register S contains 0025, counter 0024 is incremented; if reg- ister S contains 0026, 0027, or 0030, instruction RUPT is ex- ecuted.
WQ	Clears register Q and writes the content of WA's 16 through 1 into bit positions 16 through 1.
WS	Clears register S and writes the content of WA's 12 through 1 into bit positions 12 through 1.
wsc	Clear the CP register specified by the content of register S and writes the content of WA's 16 through 1 into bit positions 16 through 1.
wsq 🖄	Clears register SQ and writes the content of WA's 16 and 14 through 10 into bit positions 16 and 14 through 10.

Pulse				Purpo	se		5				
WΥ	Clears registers X and Y and carry flip-flop CI; writes the content of WA's 16 through 1 into bit positions 16 through 1 of register Y.										
WY12		Clears registers X and Y and carry flip-flop CI; writes the content of WA's 12 through 1 into bit positions 12 through 1 of register Y.									
WΥD	Clears registers X and Y and carry flip-flop CI, writes the content of WA's 16 and 14 through 1 into bit positions 16 and 15 through 2 of register Y; writes the content of WA 16 into bit position 1 of reg- ister Y except in SHINC sequence, or unless bit position 15 of reg- ister L contains a ONE at PIFL, or if end around carry is inhibited by control pulse NEACON.										
WΖ											
Z15	Enters	Enters a ONE into bit position 15 of register Z.									
Z16	Enters a ONE into bit position 16 of register Z.										
ZAP	Causes the generation of control pulses RU, G2LS, and WALS (used in instruction MP K).										
ZIP	tion MF	ν́К); р	erform	s read/wr:	ite operati		(used in instruc- ling on the con- nown:				
	L15	L2	L1	Read	Write	Carry	Remember				
	0	0	0	_	WΥ	-	_				
	0	0	1	RВ	WΥ	-	-				
	0	1	0	RB	WYD	-	-				
	0	1	1	RC	WΥ	CI	MCRO				
	1	0	0	RB	WΥ	_	·				
	1	0	1 .	RB	WYD	-	-				
	1	1	0	RC	WΥ	CI	MCRO				
	1	1	1		WΥ	-	MCRO				
	If MCR	O occu	rs, a C	NE is ente	ered into I	15					
ZOUT	Stops th	ne gene	eration	of drive p	ulses.						
					-	ences; refe ences; refe	er to ZAP. er to NISQ.				

F	30357		and a state of the			•					-	
E				Ť						↑		
н								1	gr. 1000000000000000000000000000000000000			
s	3000			l	95			WS 0357		l		
					2		8	030357				-
G	003000	WG	000000	¥	°.	03035	57	• RG	8 2 9	•	1 3	1
								030357		đ		
в	003000	RB	l 1 1	anna a sa		83	đ.	WB♥0303	57			RB •
	003	000 000	0000							-		
A		RSC	1 •	t.								5
L		RSC	•									-
Q		RSC	wo_0026	61								
z	002661	RSC	RZ	002661		wz 🜢 0030	01					
			a.			003001						030357
U	002661	003001				RU						
Y	002660	WYI2 003000				2					В	
x	000000	000000								4		
CI	1	CI I										
SQ	00.3					×						WSQ ♥03.0
ACTI	ON RB WY CI		2 3 SC RZ G WQ SQ	4	5	6 RU WZ	7	8 RAD WB WS	9	10	11	12
ST	0									77 B. B. A. BOR. IV	and the second	0

0 2 70i A

BRO

- (1) Retain c(Q).
- (2) Set c(B) = c(F) = f, f being the instruction stored at location F.
 Set c(S) = relevant address of f.
 Set c(SQ) = order code of f.
- (3) Set c(Z) = F + 1.

Point (2) implies that instruction f is executed next.

32-41. There are no restrictions on instruction TCF F, or special cases, except that F must represent an address in F Memory.

32-42. The execution of subinstruction TCF0 is similar to that of subinstruction TC0 except for action 3 which has no control pulse (row 3 of table 32-2). The content of register Q is not changed. The relevant address contained in register B is incremented by one and entered into register Z.

32-43. INSTRUCTION CCS E

32-44. Instruction CCS E (Count, Compare, and Skip on E) is a Basic Instruction which is represented by order code 01.0 and a 10-bit address. Instruction CCS E consists of subinstructions CCS0 and STD2, the execution of which takes two MCT's.

32-45. Instruction CCS E examines the data stored at location E in E Memory (or in a CP register) and branches accordingly. The operation CCS E with $0024 \le E \le 17777$ can be formulated as follows:

If c(E) is positive non-zero, i.e., if $00001 \le c(E) \le 37777$:

- (1) Set c(A) = c(E) 1.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction CCS E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) represent an address in E Memory.

If c(E) is plus zero, i.e., if c(E) = 00000:

- (1) Set c(A) = 000000
- (2) Set c(B) = c(I+2) = j, I being the address of instruction CCS E, and j being the instruction stored at location (I+2).
- (3) Set c(Z) = b(Z)+2 = I+3.

 (4) Restore c(E) = b(E) and c(H2) = b(H2) if E and/or (I+2) represent an address in E Memory.

If c(E) is negative non-zero, i.e., if $40000 \le c(E) \le 77776$:

- (1) Set $c(A) = \overline{c(E)} 1$, c for complemented content.
- (2) Set c(B) = c(H-3) = j, I being the address of instruction CCS E, and J being the instruction stored at location (H-3).
 Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z) + 3 = I + 4
- (4) Restore c(E) = b(E) and c(I+3) = b(I+3) if E and/or
 (I+3) represent an address in E Memory.

If c(E) is minus zero, i.e., if c(E) = 17777:

- (1) Set c(A) = 000000.
- Set c(B) = c(I+4) = j, I being the address of instruction CCS E, and j being the instruction stored at location (I+4).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+4 = I+5.
- (4) Restore c(E) = b(E) and c(I+4) = b(I+4) if E and/or
 (I+4) represent an address in E Memory.

Point (2) of all cases implies that the respective instruction j is executed next.

- 32-46. Special Cases of CCS E:
 - a. CCS A, a very useful instruction, examines the data in A; however, the b(A) is changed.
 - b. CCS L, CCS Q, and CCS Z follow the rules of paragraph 32-45.
 - c. CCS EBANK, CCS FBANK, and CCS BBANK also follow the rules of paragraph 32-45; however, the particular read and write operations must be observed.
 - d. CCS ZERO has no purpose.
 - e. Instructions CCS E with $0010 \le E \le 0017$ follow the rules of paragraph 32-45.
 - f. Instructions CCS E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-45 except that c(E) is edited during restoring.

			5						<u>, 100 - 100</u>	-					
F					-	2)									
E		03777			•00000								03777		
н					2	5	2		-		3				5
s	0300	ws 0300)	6.	в. 2				WS	6521				2	
	000	300	<u> </u>		1		norden in		z						
G	010300	w G	000000		003777	RG					w G ≜ 003	777	•		
				8	003	777				12 Det 10	(003777)				Mason 1000 - 200
в	010300	RLIOBB	 		WG	003777					RB	RB	•		
	L	000	0000									-		A	
A		RSC	•		1								WA	003776	
L		R SC	•			1								-	
Q		RSC	• •												
z	006521	RSC	•					RZ	w z	0065	21				
	•							0065	000	5521		003	777 (00:	3777	
U	006521								006521	RU			003776	• RU	
Y	0 065 20					7	w	YI 2 🕇	006521			WY	003777		
x	000000							•	000000		м	ONEX	177776		
CI	1	2							0		1	CI	2 I) T	
						2									
SQ	01.0														
ACTIO		OBB R	SC	3	4 5 RG WE TS TM TP	B GN IZ	6	7 RZ WYI	F	B RU VZ VS	9 RB WG	IC WY ST2 RB MON CI	F	II RU VA	12
ST	0						-1947 - 7 ⁻¹⁹ - 7-19 - 7-19 - 19	- <u> </u>							

0 2702A

0

BR 0

F						10							
E		00000		00000						♦ 0000	00	5	
Ĥ			5.						5	21			ninger of the second
s	0300	ws 0300						ws	6524				ii.
.,	000	300					, diase						
G	010300	wg ↓ 000000		• 000000	• RG		n yr		WG	000000	•		2* 0
				60	0000				000	0000	+3¢		
в	010300	RLIOBB		WE	• 00000	0	3		RB				: * ¹²
		000000											
А		RSC		(*** **								WA 4 000	0000
L		RSC •			a-1: //////								
Q		RSC •											ж
z	006521	RSC					RZ •	WZ	006522				2
							006	521 006	522			000000	
U	006521							006522	RU		000	000 • RU	e e
Y	006520						WY12 V	006521		WY	• 000	000	
x	000000	р. — Х.		2		4-12-141-1 	PONEX •	000001	2		• 000	000	
CI	1			44.00			•	0			•	0	
	•											22	
SQ	01.0												
ACTU	0 N	2	3	4	5	6	7	araan da araa da araa ayaa ahaa ahaa ahaa ahaa ahaa aha	8	9	10	п	12

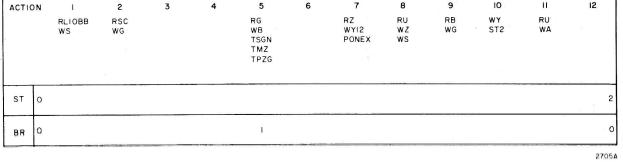


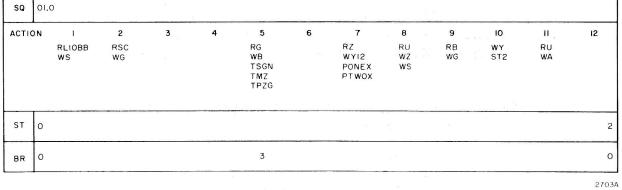
Figure 32-4. Subinstruction CCSO, Branch on Plus Zero

32-59

F												
E		76544		• 00	000				6		76544	и
н												
s	0300	ws 0300				2		ws 🛔	6523			
	000	300							×			
G	010300	wg 🛉 d	000000	▼ 176	544 • RG				WG ▲ 17	6544 •	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
					(176544)				(176544)		
в	010300	RLIOBB			WB ¥ 1765	544			RB •	RC •		4
		00000	00	14								
Α		RSC									WA 🖡	001232
L												
Q		RSC •										
z	006521	RSC 🖕		·			RZ 🕈	wz 🛦	006523			
				r			006521	0065	023	00123	2) (0012	32)
U	006521		1		с серина М		006	523	RU		001232	RU
Y	006520		7. 		s.	14	WY12 V 006	521		wy 🖡 d	001233	a
x	000000			-		I	•T₩0X ● 000	0002	Ν	ONEX • I	77776	1
CI	I	5 0		Ľ			٠	0	1	CI●	0	
						5						
SQ	01.0											
ACTIC	N I RLIO WS		3	4	5 RG WB TSGN TMZ TMZG	6	7 RZ WYI2 PTWOX	8 RU WZ WS	WG	IO WY ST2 RC MONE> CI	II RU WA	

0 2704A

2



2

ST O

BR 0

F	A					
E	7	7777	• 00000	3	2 ¹ 1	▲ 77777
н				- 115		
S	0300 🔺 ws	0300		WS ▲ 6	524	
ë. N	(000300)			e - 1 - 1		
G	010300	WG 🛔 000000	♥ 177777 ● RG		WG 🛦 17777	7 •
			(11117)		(17777)	-
в	010300 • RLI	DBB	WB ♥ 177777		RB •	E
	E a de de de	000000				
A		RSC •	. 8			WA 000000
L		RSC				
Q		RSC •				
z	006521	RSC •	RZ	• wz • c	006524	s ^e p L
			00	006521 00652	4)	000000
U	006521			006524 • F	20	000000 • RU
Y	006520		WY12	♥ 006521	v	VY • 000000
x	000000		PONEX PTWOX	• 000003		• 000000
			and a second	• 0	2	• 0

32-61

32-47. When instruction CCS E is executed, action 1 of subinstruction CCS0 (row 4 of table 32-2) enters the relevant address of instruction CCS E into register S. At time 1 of the first subinstruction, register B always contains the instruction to be executed. At time 2 or 4, the quantity to be tested is entered into register G. Action 5 enters the quantity into register B and sets the branch flip-flops accordingly. Actions 7 and 8 increment the content of register S. Action 9 returns the tested quantity to register G for restoring in memory. Action 10 diminishes the tested non-zero quantity by one and action 11 enters the diminished quantity into register A. Subinstruction STD2 increments the content of register Z by one and calls forward the instruction defined by the previous content of register Z.

32-48. The execution of subinstruction CCS0 of CCS 0300, with location 0300 containing a quantity greater than plus zero, is illustrated in figure 32-3. Figures 32-4, 32-5, and 32-6 illustrate the execution of the same instruction with location 0300 containing different quantities (plus zero, less than minus zero, and minus zero).

32-49. INSTRUCTION BZF F

32-50. Instruction BZF F (Branch on Zero to Fixed F) is an Extra Code Instruction which is represented by order code 11.2, 11.4, or 11.6 and a 12 bit address. The address contains a ONE in bit position 11 or 12 or in both. The order code is composed of 11. plus the two address bits mentioned. Instruction BZF F must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. (Code 1. is taken from bit positions 16, 14, and 13 of register B, and entered into the corresponding bit positions of register SQ.) Instruction BZF F consists of subinstruction BZF0 only if branching occurs, and of subinstructions BZF0 and STD2 if no branching occurs; consequently, the execution of instruction BZF F may take one or two MCT's.

32-51. Instruction BZF F examines the data contained in register A and takes the next instruction from location F in F memory if register A contains zero. The operation BZF F with $2000 \le F \le 7777$ can be formulated as follows:

If c(A) is nonzero, i.e., if $000001 \le c(A) \le 077777$ or $100000 \le c(A) \le 177776$:

- (1) Retain c(A)
- (2) Set c(B) = c(I+1) = j, I being the address of instruction BZF F, and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j. Set c(SQ)= order code of j.

- (3) Set c(Z) = b(Z)+1=I+2
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

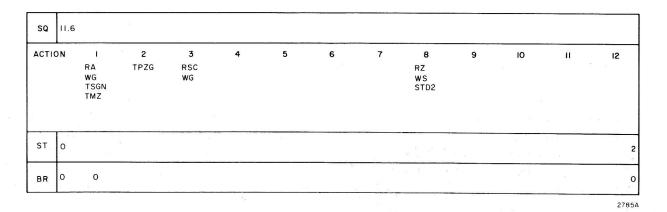
Point (2) implies that instruction j is executed next.

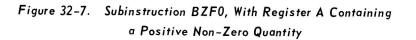
If c(A) is zero, i.e., if c(A) = 000000 or c(A) = 177777:

- (1) Retain c(A)
- (2) Set c(B) = c(F) = f, f being the instruction stored at location F.
 - Set c(S) = relevant address of f.
 - Set c(SQ) = relevant address of f.
- (3) Set c(Z) = F+1.

Point (2) implies that instruction f is executed next.

32-52. There are no restrictions on instruction BZF F, or special cases, except that F must represent an address in F Memory.


32-53. When instruction BZF F is executed, action 1 of subinstruction BZF0 (row 5 of table 32-2) enters the content of register A into register G. Actions 1 and 2 set the branch flip-flops (BR) to 0 or 2 if a non-zero quantity has been entered, or to 1 or 3 if the quantity zero has been entered into register G. If a non-zero quantity has been entered, the address of the next instruction is copied from register Z into register S by action 8 and subinstruction STD2 increments the content of register Z and calls forward the next instruction. If registers A and G contain 000000 or 177777 at time 2, the relevant address F of instruction BZF F contained in register B is incremented by one by action 5 and entered into register Z by action 6. (Compare with actions 1 and 6 of subinstruction TCO.) At time 6, the instruction stored at location F is entered into register G and copied into register B by action 8. Action 8 also enters the relevant address of the instruction into register S and enters its order code into register SQ at time 12.


.32-54. The execution of subinstruction BZF0 of BZF 6055, with A containing 004765, and location 6055 containing instruction CA 0221 (30221), is illustrated in figure 32-7. Figure 32-8 illustrates the execution of the same instruction when A contains 000000. When A contains any negative quantity such as 176543, BR is set to 2 by control pulse TSGN. Otherwise, figure 32-7 applies. When A contains 17777, BR is set to 3 by control pulses TSGN and TMZ; otherwise figure 32-8 applies.

FR-2-132

F 30221 • Ε н 6055 WS 🛔 0437 S 016055 🛔 WG 004765 030221 G WG • 000000 016055 в (004765) (006437) 004765 • RA Α L Q z 006437 RZ 🌢

U	006437			
Y	006436	2	6	
×	006000			
CI	E -	2		

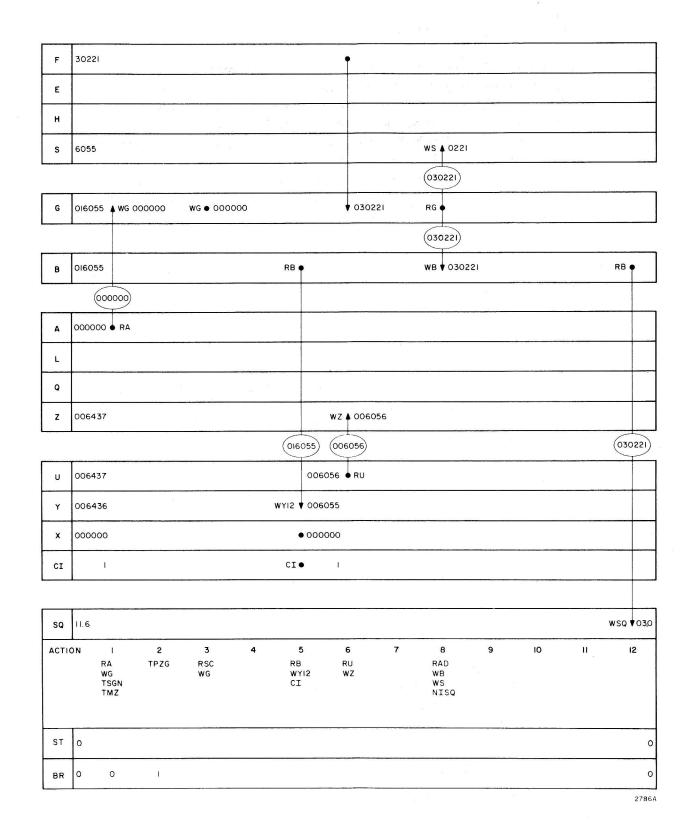


Figure 32-8. Subinstruction BZF0, With Register A containing Plus Zero

FR-2-132

32-55. INSTRUCTION BZMF F

32-56. Instruction BZMF F (Branch on Zero or Minus to Fixed F) is an Extra Code Instruction which is represented by order code 16.2, 16.4, or 16.6 and a 12 bit address. The address contains a ONE in bit position 11 or 12, or in both. The order code is composed of 16. plus the two address bits mentioned. Instruction BZMF F must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction BZMF F consists of subinstruction BZMF0 only if branching occurs, and of subinstruction BZMF0 and STD2 if no branching occurs; consequently, the execution of instruction BZMF F may take one or two MCT's.

32-57. Instruction BZMF F examines the data contained in register A and takes the next instruction from location F in F Memory if register A contains zero or a negative non-zero quantity. The operation BZMF F with $2000 \le F \le 7777$ can be formulated as follows:

If c(A) is positive non-zero, i.e., if $000001 \le c(A) \le 077777$:

- (1) Retain c(A).
- (2) Set c(B) = c(I+1) = j, I being the address of instruction BZF F, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

If c(A) is not positive non-zero, i.e., if c(A) = 000000 or $100000 \le c(A) \le 177777$:

- (1) Retain c(A)
- (2) Set c(B) = c(F) = f, f being the instruction stored at location F.
 Set c(S) = relevant address of f.
 Set c(SQ) = relevant address of f.
- (3) Set c(A) = F+1.

Point (2) implies that instruction f is executed next.

32-58. There are no restrictions on instruction BZMF F, or special cases, except that F must represent an address in F Memory.

32-59. The execution of instruction BZMF F is similar to that of instruction BZF F. Both subinstructions BZF0 and BZMF0 set the branch flip-flops by actions 1 and 2; however, depending on the content of the branch flip-flops, actions 5, 6, and 7 operate differently. Refer to rows 5 and 6 of table 32-4. When A contains a positive non-zero quantity, subinstruction BZMF0 sets BR to 0 and no branching occurs. When A contains plus zero, a negative non-zero quantity, or minus zero, BR is set to 1, 2, or 3, respectively, and branching occurs.

32-60. FETCHING AND STORING INSTRUCTIONS

32-61. INSTRUCTION CA K

32-62. Instruction CA K (Clear and Add K) is a Basic Instruction which is represented by order code 03. and a 12 bit address. Instruction CA K consists of subinstructions CA0 and STD2, the execution of which takes two MCT's. Alternate spelling CAF K is permitted when K refers to a location in F Memory, and CAE K when K refers to a location in E Memory or a CP register.

32-63. Instruction CA K clears register A and enters into it the data stored at location K. The operation CA K with $0024 \le K \le 7777$ can be formulated as follows:

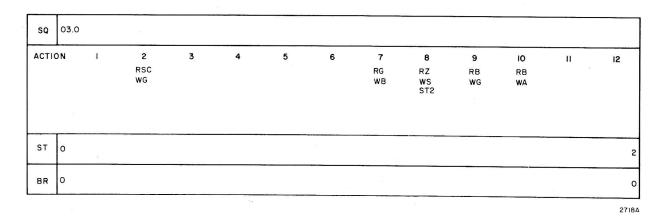
- (1) Set c(A) = c(K)
- (2) Set c(B) = c(I+1) = j, I being the address of instruction CA K, and j being the instruction stored at location (I+1).

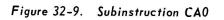
Set c(S) = relevant address of j.

Set c(SQ) = order code of j.

- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or
 (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.


32-64. Special Cases of CA K:


- a. CA A (alternate code NOOP, for no operation) has no effect.
- b. CAL, CAQ, and CAZ follow the rules of paragraph 32-63.
- c. CA EBANK, CA FBANK, and CA BBANK can be used; however, the particular read and write operations have to be observed.
- d. CA ZERO enters 000000 into A.

FR-2-132

F		5		•			
E	4444		• 00000	l			44444
н		-					
s	0400				ws	6000	
G	030400	wg ▲ 000000	▼ 144444	¥	RG •	WG 🛉 1444	44
	_				(144444	(144444	
в	030400			~	WB ♥ 144444	RB •	RB •
		000000			006	000	(144444)
A		RSC					WA V 144444
L		RSC					
٩		RSC •					
z	006000	RSC •	a.		RZ)	

U	006000
Y	005777
x	000000
CI	

- e. Instructions CA K with $0010 \le K \le 0017$ follow the rules of paragraph 32-63.
- f. Instructions CA K with $0020 \le K \le 0023$ also follow the rules of paragraph 32-63, except that the c(K) is edited during restoring.

32-65. When instruction CA K is executed, action 2 of subinstruction CA0 (row 7 of table 32-4) enters the desired quantity into register G if this quantity is stored in a CP register. Otherwise, register G is cleared and the desired quantity is entered by E Memory at time 4, or by F Memory at time 6. Action 7 copies this quantity into register B, and action 10 copies the quantity (from register B) into register A. Action 9 returns the quantity to register G for restoring in E Memory. Subinstruction STD2 increments the content of register Z by one and calls forward the instruction defined by the previous content of register Z.

32-66. The execution of subinstruction CA0 of CA0400, with location 0400 containing 44444, is illustrated in figure 32-9.

32-67. INSTRUCTION CS K

32-68. Instruction CA K (Clear and Subtract K) is a Basic Instruction which is represented by order code 04. and a 12 bit address. Instruction CS K consists of subinstructions CS0 and STD2, the execution of which takes two MCT's.

32-69. Instruction CS K clears register A and enters into it the complemented data stored at location K. The operation CS K with $0024 \le K \le 7777$ can be formulated as follows:

- (1) Set c(A) = c(K), c for complemented content.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction CS K, and j being the instruction stored at location E(I+1).
 Set c(S) = relevant address of j.

Set c(SQ) = order code of j.

- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or
 (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-70. Special Cases of CS K:

- a. CS A (alternate code COM, for complement) complements the content of A.
- b. CS L, CA Q, and CA Z follow the rules of paragraph 32-70.
- c. CS EBANK, CA FBANK, and CA BBANK can be used; however, the particular read and write operations must be observed.
- d. CS ZERO enters 177777 into A.
- e. Instructions CS K with $0010 \le K \le 0017$ follow the rules of paragraph 32-69.
- f. Instructions CS K with $0020 \le K \le 0023$ also follow the rules of paragraph 32-69, except that the c(K) is edited during restoring.

32-71. The execution of instruction CS K is similar to that of instruction CA K (compare instructions CA 0 and CS 0 in rows 7 and 8 of table 32-4). Action 10 of CA0 takes the desired quantity from the normal read side of register B and enters this quantity into register A. Action 10 of CS0 takes the desired quantity from the complement read side of register B and enters the complement read side of register B and enters the complement read side of register A.

32-72. INSTRUCTION DCA K

32-73. Instruction DCA K (Double Clear and Add K) is an Extra Code Instruction which is represented by order code 13. and a 12 bit address. Instruction DCA K must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. (Code 3. is taken from bit positions 16, 14, and 13 of register B and entered into the corresponding bit positions of register SQ.) Instruction DCA K consists of subinstructions DCA0, DCA1, and STD2, the execution of which takes three MCT's.

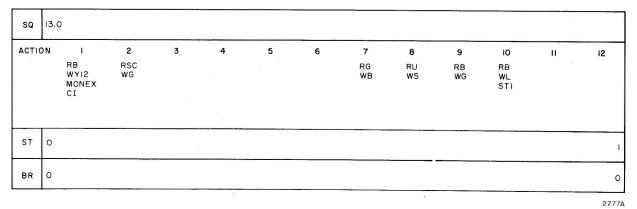
32-74. Instruction DCA K clears registers A and L and enters into them the data stored at locations K and K+1, respectively. The operation DCA K with $0024 \le K \le 7776$, excluding the last address of any E or F Memory bank, (tables 30-3 and 30-4) can be formulated as follows:

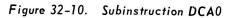
- (1) Set c(A) = c(K)
 - Set c(L) = c(K+1)Set c(B) = c(H+1) = j. I bein
- Set c(B) = c(I+1) = j, I being the address of instruction DCA K and j being the instruction stored at location (I+1).
 - Set c(S) = relevant address of j.

Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+1 = I+2.

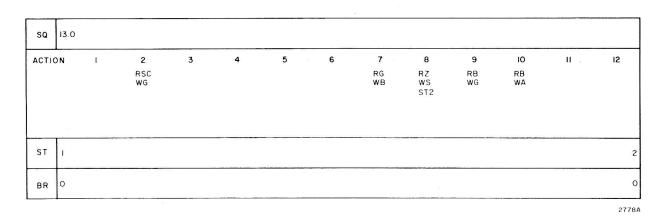
(4) Restore c(K) = b(K), c(K+1) = b(K+1), and c(I+1) = b(I+1) if K, (K+1) and/or (I+1) represent an address in E Memory.

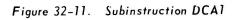

Point (2) implies that instruction j is executed next.


- 32-75. Special cases of DCA K:
 - a. DCA A has no purpose.
 - b. DCA 0010 (DCA ARUPT) and DCA 0013 (table 30-4) are useful and follow the rules of paragraph 32-74.
 - c. Any DCA K with $0000 \le K \le 0022$ must be used with extreme care so as not to destroy stored data; K must not be 0023 in order to prevent destruction of data in counter T2. Whenever locations 0020 through 0023 are involved, the content is edited during the restoring operation.

32-76. When instruction DCA K is executed, first the content of location (K+1) is entered into register L by subinstruction DCA0, then the content of location K is entered into register A by subinstruction DCA1. The Yul Programming System accomplishes this by replacing instruction DCA K with code DCA (K+1) which is wired into the program. As the AGC executes sub-instruction DCA0, relevant address (K+1) is available first and decremented by one. Subinstructions DCA1 then uses the decremented address K. For execution of subinstructions DCA0 and DCA1, refer to rows 9 and 10 of table 32-4. When double precision quantities are taken from memory, K must not be equal to the last address of any E or F memory bank in order to allow K+1 to be a legal address.

32-77. The execution of instruction DCA 0132 is illustrated in figures 32-10 and 32-11. It is assumed that this instruction is stored at location 2103. Location 0132 contains quantity 33461 and location 0133 contains quantity 11231. Note that registers B, G, and S contain relevant address 0133 at the start of subinstruction DCA0 instead of 0132. Thus, E Memory enters the quantity 11231 into register G at time 4 and actions 7 and 10 bring the quantity into register L. Action 1 decrements address 0133 and action 8 enters the decremented address 0132 into register S. At time 4 of subinstruction DCA1, E Memory enters the quantity 33461 into register G and actions 7 and 10 bring this quantity into register A. Action 8 enters the address of the next instruction stored in register Z into register S as usual, and subinstruction STD2 increments the content of register Z and calls forward the next instruction.


	T					
F			а	•		
E	11231		• 00000		▲ 23	
н						
S	0133			ws 🜢	0132	
G	030133	WG 🛔 000000	♥ 011231	RG 🕈	WG ▲ 011231 ●	
				011231)	011231	
в	030133	RB		WB ♥ 011231	RB • RB •	
	030	0133 000000		000	32 011231	
Δ		RSC •				
L		RSC •			WL ♥ 011231	
Q		RSC •		т.	-	
z	002103		A	4		
			3			đ.
U	002103	000132		RU •		
Y	002102	WY12 000133	2		1.00	
x	000000	MONEX 177776				
сі	1	CI I				
	1965				Anna III Ann	



F				•				
E	33461		• 00000		. *		≜	33461
н	4	-						
s	0132				ws 🛦	0103		2
								1
G	011231	wg ≜ 000000	♥ 033461	+ 1	₹G ●	WG ▲ 033	461	
				(033461	033461		
в	011231			1	NB ♥ 03346I	R₿●	RB	
		000000			000	103	0334	461)
Α		RSC	а				wA 🖡	033461
L		RSC						
Q		RSC •						
z	000103	RSC			RZ●			

Ū	000132
Y	000133
x	177776
CI	1

32-78. INSTRUCTION DCS K

32-79. Instruction DCS K (Double Clear and Subtract K) is an Extra Code Instruction which is represented by order code 14. and a 12 bit address. Instruction DCS K must be preceded by special instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction DCS K consists of subinstructions DCS0, DCS1, and STD2, the execution of which takes three MCT's.

32-80. Instruction DCS K clears registers A and L, complements the data stored at locations K and K+1, and enters this data into registers A and L, respectively. The operation DCS K with $0024 \le K \le 7776$, excluding the last address of any E or F memory bank (tables 30-3 and 30-4), can be formulated as follows:

- (1) Set $c(A) = \overline{c}(K)$ Set $c(L) = \overline{c}(K+1)$
- Set c(B) = c(H1) = j, I being the address of instruction DCA K and j being the instruction stored at location (H1).
 - Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z) + 1 = I + 2.
- (4) Restore c(K) = b(K), c(K+1) = b(K+1) and c(I+1) = b(I+1) if K, (K+1), and/or (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-81. Special cases of DCS K:

- a. DCS A, (alternate code DCOM, for double precision complement) complements the contents of registers A and L.
- b. DCS 0010 and DCS 0013 (table 30-4) may be useful and follow the rules of paragraph 32-80.
- c. Any other DCS K with $0000 \le K \le 0022$ must be used with extreme care so as not to destroy stored data; K must not be 0023 in order to prevent destruction of data in counter T2. Whenever locations 0020 through 0023 are involved, the content is edited during the restoring operation.

32-82. The execution of instruction DCS K is similar to that of instruction DCA K. Compare rows 11 and 12 of table 32-4 with rows 9 and 10.

In action 10 of subinstructions DCS0 and DCS1, the control pulse RB is replaced by pulse RC to read the complemented quantity instead of the noncomplemented quantity out of register B.

32-83. INSTRUCTION TS E

32-84. Instruction TS E (Transfer to Storage E) is a Basic Instruction which is represented by order code 05.4 and a 10 bit address. Instruction TS E consists of subinstructions TS0 and STD2, the execution of which takes two MCT's.

32-85. Instruction TS E enters the content of register A into location E of E Memory (or a CP register) and skips if A contains an overflow bit. The operation TS E with $0024 \le E \le 17777$ can be formulated as follows:

If register A does not contain an overflow bit:

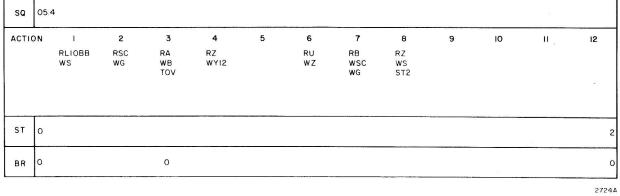
- Set c(E) = c(A).
 Retain c(A).
- (2) Set c(B) = c(I+1) = j, I being the address of instruction TS E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

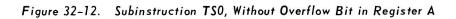
If register A contains an overflow bit:

- Set c(E) = c(A) except for overflow bit.
 Set c(A) = 000001 if A contained a positive overflow.
 Set c(A) = 177776 if A contained a negative overflow.
- (2) Set c(B) = c(I+2) = j, I being the address of instruction TS E, and j being the instruction located at (I+2) Set c(S) = relevant address of j. Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+2 = I+3.
- (4) Restore c(I+2) = b(I+2) if (I+2) represents an address in E Memory.

Point (2) of both cases implies that the respective instruction j is executed next.

32-86. Special Cases of TS E:

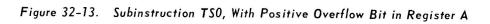

- a. TS A (alternate code DVSK, for overflow skip) retains c(A), including any overflow bit.
- b. TS L and TS Q are useful. Registers L and Q also store an overflow bit contained in A; however, bits 16 through 13 of c(Z) are cleared during the execution of STD2.
- c. TS Z (alternate code TCAA, for transfer control to address in A) is similar to TS L and TS Q.
- d. TS EBANK, TS FBANK, and TS BBANK can be used; however, the particular write operations must be observed.
- e. TS ZERO has no purpose.
- f. Instructions TS E with $0010 \le E \le 0017$ follow the rules of paragraph 32-56.
- g. Instructions TS E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-85 except that the data to be stored is edited as it is entered into location E.


32-87. When instruction TS E is executed, action 1 of subinstruction TS0 (row 13 of table 32-4) replaces the quantity contained in register S by the 10 bit address, thus erasing the quarter code contained in register S. Action 3 enters the content of register A into register B, and sets the branch flip-flops if the quantity entered contains an overflow bit. If no overflow bit is contained, actions 4 and 6 do not change the address contained in register Z. This address is entered into register S by action 8 and made available for subinstruction STD2. If an overflow bit is contained in register Z and action 8 enters this incremented address into register S. In this case, sub-instruction STD2 calls forward the instruction stored at the "second next" location.

32-88. If the quantity originally contained in register A does not include an overflow bit, this quantity is copied from register B into register G by action 7. If the relevant address E of instruction TS E represents a CP register address, action 7 also copies the quantity into the addressed CP register. If address E represents an E Memory location, the quantity is entered into the addressed location at time 10.

32-89. If the quantity originally contained in register A includes an overflow bit, this quantity is also entered into register G by action 7, and into a CP register if required. Otherwise, the same quantity (but without the overflow bit) is entered into E Memory at time 10. Furthermore, action 5 replaces the overflow quantity in register A by quantity 000001 in case of positive overflow, or by 177776 in case of negative overflow.

			-					- -	
F									
Е		00411)	• 00000				▲ 10460
н									
s	4200	ws 0200				AU - 200	ws	2754	
	000	200							
G	054200	WG .	000000		▼ 000411 WG ▲ 010460				•
	1					(0	010460		
в	054200	RLIOBB	WB	010460		F	ВФ		
	•	000	000 000	460	an a	(0	00460 002	2754	
A	010460	RSC	RA	•			∳ wsc		
L		RSC	•				∳ wsc		19 10 10 10 10 10 10 10 10 10 10 10 10 10
Q		RSC ¢					∳ wsc		
z	002754	RSC		RZ	•	WZ 🛔 002754	WSC RZ	•	2
				002	2754	002754			
U	002754					RU •			
Y	002753			WYI2	002754	-			
x	000000				000000				
CI	Î				• 0			A	, 9
							-		
	1			a aa 2	1	I Sur Substant S			


32-77

FR-2-132

F	-			12			2	2	5		5	
E		00411		• 00	000			*****		▲ 035	511	6. 10
н	~									15	<u> </u>	
s	4200	WS 0200				1		ws 4 275	5			
	000	200	2 2			25 51		1				
G	054200	wG≰G	000000	• 000)411	8	WG ▲ 0435	511		•		
		1				т _{.:}	043511				2	
в	054200	RLIOBB	WB ≜ 043	511			RB					
		0000	00 (043511)		000001)	043511	002755				
A	043511	RSC 🔶	RA		WA ¥000	1000	∳ wsc					
L		RSC					∳wsc					
Q		RSC 🛉	°,				∳wsc			ii.		
z	002754	RSC♠		RZ		wz ▲ 002	755 ∳ wsc	• RZ	æ .			5
				002754		002755						
U	002754			002	755	RU						8 2
Y	002753		l.	WY12 002	754							
x	000000			• 000	000							
CI	L			CI •	I							
sq	05.4											
ACTIC	N I RLIC WS		3 RA WB TOV	4 RZ WYI2 CI	5 RBI WA	6 RU WZ	7 RB WSC WG	8 RZ WS ST2	9	10	н,	12

0 2725A

2

ST 0

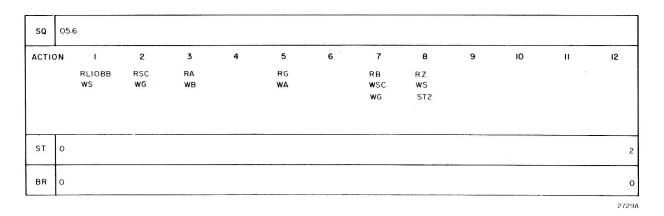
BR 0

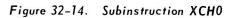
L

32-90. The execution of subinstruction TSO of TS 200, with A containing no overflow bit, is illustrated in figure 32-12. Figure 32-13 illustrates the execution of the same instruction when A contains a quantity with positive overflow. In case of negative overflow, control pulse R1C replaces pulse RB1 of action 5.

32-91. INSTRUCTION XCH E

32-92. Instruction XCH E (Exchange A and E) is a Basic Instruction which is represented by order code 05.6 and a 10 bit address. Instruction XCH E consists of subinstructions XCH0 and STD2, the execution of which takes two MCT's.


32-93. Instruction XCH E exchanges the data contained in register A with the data stored at location E of E Memory (or in a CP register). The operation XCH E with $0024 \le E \le 1777$ can be formulated as follows:


- (1) Set c(A) = b(E)
 - Set c(E) = b(A) except the overflow bit which is lost.
- Set c(B) = c(I+1) = j, I being the address of instruction XCH E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

- 32-94. Special Cases of XCH E:
 - a. XCH A has no purpose.
 - b. XCH L, XCH Q, and XCH Z exchange data without losing an overflow bit.
 - c. XCH EBANK, XCH FBANK, and XCH BBANK can be used, but the particular read and write operations must be observed.
 - d. XCH ZERO sets c(A) = 000000.
 - e. Instructions XCH E with $0010 \le E \le 0017$ follow the rules of paragraph 32-93.
 - f. Instructions XCH E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-94 except that b(A) is edited as it is transferred to location E.

F									
E		43336		• 00000		2		▲ 66345	
н									
s	6430	WS 0430				WS	3744		
	000	430							
G	056430	w6 ∳ 0000	000	▼143336	€RG	WG € 066345	5	•	0
L						066345			
в	056430	RLIOBB	₩₿▲066345	ò		RB			
	-	000000	066345	(143	3336	066345 00	3744	-	
A	066345	RSC	RA●	WA	023336	wsc			
L		RSC				wsc			
٩	<u>,</u>	RSC				wsc			
z	003744	RSC				wsc∳ Rz	•		
					2		1		
	T								

U	003744
Y	003743
×	000000
CI	

32-95. When instruction XCH E is executed, action 1 of subinstruction XCH0 (row 14 of table 32-3) replaces the quantity contained in register S by the 10 bit address, thus erasing the quarter code contained in register S. The quantity stored at location E is entered into register G at time 2 or 4 and into register A by action 5. The quantity originally contained in register A is entered into register B by action 3 and transferred to location E at time 7. Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-96. The execution of subinstruction XCH0 of XCH 0430 is illustrated in figure 32-14. The overflow bit originally contained in register A is lost on the way to location 0430 in E Memory. The sign bit originally contained in location 0430 moves into bit position 16 as the quantity is entered into register G.

32-97. INSTRUCTION LXCH E

32-98. Instruction LXCH E (Exchange L and E) is a Basic Instruction which is represented by order code 02.2 and a 10 bit address. Instruction LXCH E consists of subinstructions LXCH0 and STD2, the execution of which takes two MCT's.

32-99. Instruction LXCH E exchanges the data contained in register L with the data stored at location E of E Memory (or in a CP register). The operation LXCH E with $0024 \le E \le 1777$ can be formulated as follows:

- (1) Set c(L) = c(E).
 - Set c(E) = b(L) except the overflow bit which is lost.
- (2) Set c(B) = c(H+1) = j, I being the address of instruction LXCH E, and j being the instruction stored at location (I+1).
 - Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

- 32-100. Special Cases of LXCH E:
 - a. LXCH A exchanges c(L) and c(A) and retains the overflow bit.
 - b. LXCH L has no purpose.

- c. LXCH Q and LXCH Z also exchange data and retain the overflow bit.
- d. LXCH EBANK, LXCH FBANK, and LXCH BBANK can be used, but the particular read and write operations must be observed.
- e. LXCH ZERO (alternate code ZL, for Zero L) sets c(L) = 000000.
- f. Instructions LXCH E with $0010 \le E \le 0017$ follow the rules of paragraph 32-99.
- g. Instructions LXCH E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-99 except that b(L) is edited as it is transferred to location E.

32-101. The execution of instruction LXCH E is similar to that of instruction XCH E except for actions 3 and 5. (Compare rows 14 and 15 of table 32-4.) Subinstruction LXCH0 enters the content of register L (instead of A) into register B and enters the content of register G into register L instead of into A.

32-102. INSTRUCTION QXCH E

32-103. Instruction QXCH E (Exchange Q and E) is an Extra Code Instruction which is represented by order code 12.2 and a 10 bit address. Instruction QXCH E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. (Code 2.2 is taken from bit positions 16 and 14 through 11 of register B and entered into the corresponding bit positions of register SQ.) Instruction QXCH E consists of subinstructions QXCH0 and STD2, the execution of which takes two MCT's.

32-104. Instruction QXCH E exchanges the data contained in register Q with the data stored at location E of E Memory (or in a CP register). The operation QXCH E with $0024 \le E \le 1777$ can be formulated as follows:

- (1) Set c(Q) = c(E)
 - Set c(E) = b(Q) except the overflow bit which is lost.
- Set c(B) = c(I+1) = j, I being the address of instruction LXCH E, and j being the instruction stored at location (I+1).
 - Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

32-105. Special Cases of QXCH E:

- a. QXCH A exchanges c(Q) and c(A) and retains the overflow bit.
- b. QXCH L exchanges c(Q) and c(L) and retains the overflow bit.
- c. QXCH Q has no purpose.
- d. QXCH Z exchanges c(Q) and c(Z).
- e. QXCH EBANK, QXCH FBANK, and QXCH BBANK can be used, but the particular read and write operations must be observed.
- f. QXCH ZERO (alternate code ZQ, for Zero Q) sets c(Q) = 000000.
- g. Instructions QXCH E with $0010 \le E \le 0017$ follow the rules of paragraph 32-104.
- h. Instructions QXCH E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-104 except that b(Q) is edited as it is transferred to location E.

32-106. The execution of instruction QXCH E is similar to that of instructions XCH E and LXCH E except for actions 3 and 5. (Compare rows 14, 15, and 16 of table 32-4.) Subinstruction QXCH0 takes data from and enters data into register Q instead of register A.

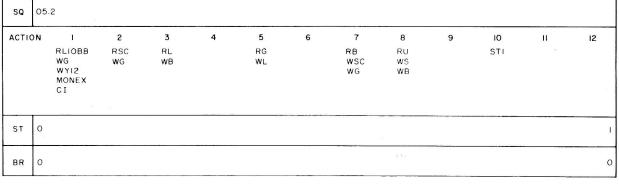
32-107. INSTRUCTION DXCH E

32-108. Instruction DXCH E (Double Exchange A and E) is a Basic Instruction which is represented by order code 05.2 and a 10 bit address. DXCH E consists of subinstructions DXCH0, DXCH1, and STD2, the execution of which takes three MCT's.

32-109. Instruction DXCH E exchanges the double precision quantity contained in registers A and L with the double precision quantity stored at locations E and (E+1) of E Memory (or in two CP registers). The operation DXCH E with $0024 \le E \le 1776$ excluding the last address of any E memory bank (table 30-2) can be formulated as follows:

(1) Set $c(A) = c(E)$.	
Set $c(L) = c(E+1)$.	
Set $c(E) = b(A)$	except any overflow bit which is lost.
Set $c(E+1) = b(L)$	except any overnow bit which is tost.
(2) Set $c(B) = c(I+1) =$	j, I being the address of instruction DXCH E,
and j being the in	struction stored at location (I+1).
Set $c(S) = relevant$	address of j.
Set c(SQ) = order c	ode of j

- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.


Point (2) implies that instruction j is executed next.

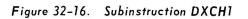
- 32-110. Special cases of DXCH E:
 - a. DXCH A has no purpose
 - b. DXCH 0010 (DXCH ARUPT) and DXCH 0013 (table 30-4) are useful and follow the rules of paragraph 32-110.
 - c. DXCH FBANK (alternate code DTCF for double precision transfer control fixed bank) and DXCH Z (alternate code DTCB for double precision transfer control both banks) can be used to change the content of register Z and of a bank register. These double precision transfer control instructions can be used to "jump" banks and store a return address plus its bank code in registers A and L.
 - d. Any DXCH E with $0000 \le E \le 0022$ must be used with extreme care so as not to destroy stored data; E must not be 0023 in order to prevent destruction of data in counter T2. Whenever locations 0020 through 0023 are involved, a quantity entered into any of these locations is edited.


32-111. The execution of instruction DXCH E is similar to the execution of instructions DCA K, XCH E, and LXCH E. When instruction DXCH E is executed, first the contents of register L and location (E+1) are exchanged by subinstruction DXCH0, then the contents of register A and location E are exchanged by subinstruction DXCH1. The Yul Programming System accomplishes this by replacing instruction DXCH E with code DXCH (E+1) which is wired into the program. As the AGC executes subinstruction DXCH0, relevant address (E+1) (available first) is decremented by one. Subinstruction DXCH1 then uses the decremented address E. For execution of subinstructions DXCH0 and DXCH1 refer to rows 17 and 18 of table 32-4. When double precision information is exchanged with memory, E must not be equal to the last address of any E memory bank to allow E+1 to be the next address in the same bank.

32-112. The execution of instruction DXCH 0132 is illustrated in figures 32-15 and 32-16. Location 0132 contains quantity 21217 and location 0133 contains quantity 34677.

-										
F			-							
E		34677		• 00	0000				▲ 73660	
н										
s	2133	WS 0133				*	WS,	0132		
	600	1 DI 33								
G	052133	wg 🛉	000000	▼ 03	4677 • RG	wG ♠	173660		•	
					2	(1736	60)			
в	052133	RLIOBB	WB ≜ I	73660		RB 🗕	WB ,	000132	E	
2	000	0000	000 (17366)	0	034677	(17366	50 (000	0132	2	
A	023615	RSC •				wsc 🛉				х. Жа
L	173660	RSC •	RL •		WL V034677	wsc 🛉				
Q		RSC 🔶				wsc 🛉				
z	002233	RSC 🔶		5		wsc ↓				
						2				21
U	002233	oc	0132				RU	000132		-
Y	002232	WY12 00	00133						N.	
x	000000	MONEX 17	7776					1	2	
CI	1	CI	I						5K	
		2003 - L								

2722A



FR-2-132

F			5			-			
E		21217		• 00000			23615		
н						2			
S	0132	WS 0132				WS	1233		
	. 0003	777				24			
G	173660	wg ≜ o	00000	021217	• RG	WG ▲ 023615		•	
				9 (9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9		023615 00	1233		
в	000132 •	RLIOBB	WB ▲ 023	615		RB			
	-	00000	0 023615	02	1217	023615			
Α	023615	RSC •	RA	AW	021217	wsc 🛡			
L	034677	RSC •				wsc			
Q		RSC •		ч ж. ф	-	wsc 🔻			
z	002233	RSC 🖌				wsc 🕈 RZ	001233		

U	000132
Y	000133
x	177776
CI	

SQ	05.2					.5						
ACTIC	DN I	2	3	4	5	6	7	8	9	10	п	12
	RLIOBB WS	RSC WG	RA WB		R G WA		RB WSC WG	RZ WS ST2			e. D	~
ST	0		1			· · · · · · · · · · · · · · · · · · ·					- House	2
BR	0			· • • •								0
		200 - See 1960 (200					and any output of the second se					2723A

32-113. MODIFYING INSTRUCTIONS

32-114. INSTRUCTION NDX E

32-115. Instruction NDX E (Index Next Basic Instruction with E) is a Basic Instruction which is represented by order code 05.0 and a 10 bit address. The alternate spelling for NDX E is INDEX E. Instruction NDX E consists of subinstructions NDX0 and NDX1, the execution of which takes two MCT's.

32-116. Instruction NDX E takes as the next instruction the arithmetic sum of the instruction located at the next location plus the quantity stored at location E. The operation NDX E with $0024 \le E \le 1777$ can be formulated as follows:

- Derive a new Basic Instruction (j) by adding the c(E) to the c(I+1). The address of location I+1 is initially contained in Z, I being the address of instruction NDX E.
- (2) Set c(B) = j. Set c(S) = relevant address of j. Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) represent an address in E Memory.

- 32-117. Special Cases of NDX E:
 - a. NDX A, NDX L, NDX Q, and NDX Z are useful. Registers A, L, Q, and Z are able to store a 4 bit order code besides a 12 bit address.
 - b. NDX EBANK, NDX FBANK, and NDX BBANK may be used; however, the particular read and write operations must be observed.
 - c. NDX ZERO has no purpose.
 - d. Instructions NDX E with $0010 \le E \le 0016$ follow the rules of paragraph 32-116.
 - e. NDX 0017 = RESUME. See paragraph 32-271.
 - f. Instructions NDX E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-116 except that c(E) is edited during restoring.

The instruction derived by instruction NDX E may be similar to 32-118. the instruction stored at location (I+1) or may be quite different. If the quantity at location E is equal to or smaller than the complement of the relevant address stored in location (I+1), then the order code of the new instruction is equal to the order code of the instruction contained at (I+1). If the quantity at location E is larger, then the order code of the new instruction differs from the order code at (I+1). For example, if NDX E with c(E) = 100is followed by TC 2000, then the new instruction becomes TC 2100. If c(E) = 5777, then the new instruction is TC 7777. However, if c(E) = 6000or larger, the new instruction is CCS 0000, or any instruction other than TC K. In general, the new instruction can be expressed as c(I+1), c(E). If the quantity at location E is equal to or small than the complement of the relevant address K of instruction OC K stored at location I+1, then the new instruction can be expressed as OC[K+c(E)] where OC stands for order code. The derived instruction is always a Basic Instruction, not an Extra Code Instruction as explained in paragraphs 32-125 and 32-126.

32-119. When instruction NDX E is executed, subinstruction NDX0 (row 19 of table 32-4) enters the quantity stored at location E into registers G and B and enters the address of the location following instruction NDX E (address I+1 stored in register Z) into register S. Subinstruction NDX1 (row 20) then enters the instruction from location I+1 into the Adder, together with the quantity from location E, and uses the sum as the next instruction. (The quantity from location E is moved from register B via registers Z and A into register X by actions 3, 5, and 7 while the quantity originally contained in register A is temporarily stored in register B by action 4 and returned to A by action 9.) Action 8 enters the relevant address of the new instruction into register S, action 10 enters the new instruction into register B, and action 12 enters its order code into register SQ.

32-120. The execution of instruction NDX 0300 is illustrated in figures 32-17 and 32-18. It is assumed that the instruction is stored at location 2577, that instruction AD 0420 is stored at location 2600, and that the indexing quantity 00003 is stored at location 0300. The modified instruction is as follows: AD[0420+c(0300)] = AD 0423.

32-121. INSTRUCTION NDX K

32-122. Instruction NDX K (Index Next Extra Code Instruction with K) is an Extra Code Instruction which is represented by order code 15 and a 12-bit address. The alternate spelling for NDX K is INDEX K. Instruction NDX K must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction NDX K consists of subinstructions NDXX0 and NDXX1, the execution of which takes two MCT's.

	r		2 · · ·			
F						
E	00003		00000		7	00003
н						
s	0300			WS	2600	
•	.					
G	150300	wg ≜ 000000	♥ 000003	RG♥	WG ♦ 000003	
				000003	000003	
в	150300	1		WB ▼000003	RB	-
L		000000		002	600	
A	137771	RSC		Υ.		
L.		RSC				
Q		RSC				
z	002600	RSC♦		RZ		
υ	002600					

Y	002577
×	000000
CI	1

SQ 5.0 2 3 5 6 7 8 9 10 П 12 ACTION 1 4 RSC TRSM RG RZ RB STI WВ WS WG WG ST 0 Ĩ 0 0 BR 2720A

FR-2-132

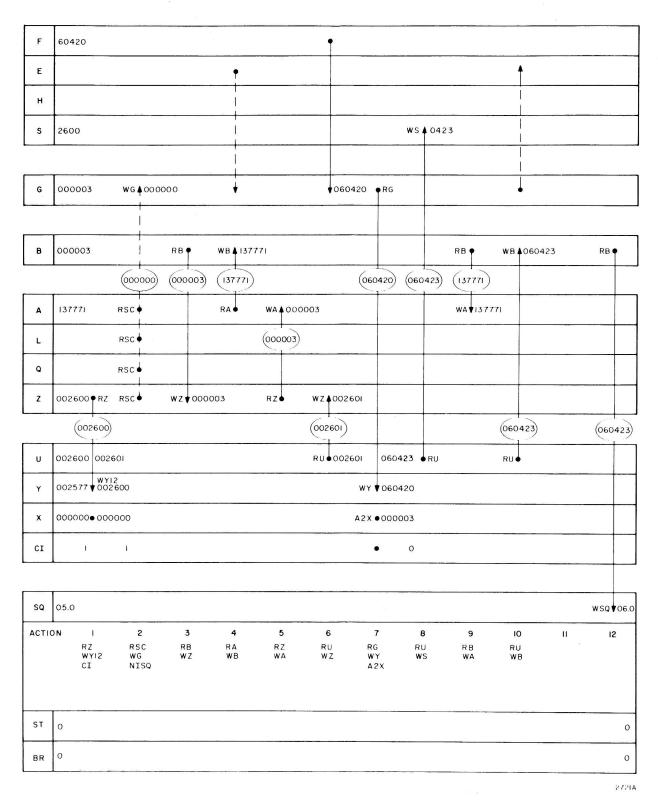


Figure 32-18. Subinstruction NDX1

32-123. Instruction NDX K takes as the next instruction the arithmetic sum of the instruction located at the next location plus the quantity stored at location E. The operation NDX K with $0024 \le K \le 7777$ can be formulated as follows:

- Derive a new Extra Code Instruction (j) by adding c(K) to c(I+1). The address of location (I+1) is initially contained in Z, I being the address of instruction NDX K.
- (2) Set c(B) = j. Set c(S) = relevant address of j. Set c(SQ) = order code of j. Set c(EXT) = ONE.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) represent an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-124. Special Cases of NDX K:
 - a. NDX A, NDX L, NDX Q, and NDX Z are useful. Registers
 A, L, Q, and Z are able to store a 4-bit order code beside
 a 12 bit address.
 - b. NDX EBANK, NDX FBANK, and NDX BBANK may be used; however, the particular read and write operations must be observed.
 - c. NDX ZERO has no purpose.
 - d. Instructions NDX K with $0010 \le K \le 0017$ follow the rules of paragraph 32-124.
 - e. Instructions NDX K with $0020 \le K \le 0023$ also follow the rules of paragraph 32-124 except that c(K) is edited during restoring.

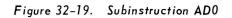
32-125. Instructions NDX E (Index Next Basic Instruction) and NDX K (Index Next Extra Code Instruction) are similar. In table 32-4 compare rows 21 and 22 with rows 19 and 20. The main difference is that action 10 of subinstruction NDXX1 re-enters a ONE into bit position EXT of register SQ while action 10 of subinstruction NDX1 does not enter a ONE. A programmer is not concerned with which of the two instructions he should use; for this reason both instructions can be represented by the same mnemonic code, i.e., NDX or INDEX. The Yul Programming System automatically enters the proper instruction into the program. 32-126. The instruction derived by an NDX instruction is of the same type as the instruction stored after the NDX instruction, i.e., the derived and the following instructions are both Basic Instructions or Extra Code Instructions. The EXT bit cannot be generated by the addition of action 7 of the second subinstruction. Basic Instructions can be indexed with a quantity stored in E Memory (or a CP register) only except location 0017. Extra Code Instructions can be indexed with a quantity stored anywhere in memory, including location 0017. (Action 5 of subinstruction NDX0 does test for address 0017, subinstruction NDXX0 does not.)

32-127. ARITHMETIC AND LOGIC INSTRUCTIONS

32-128. INSTRUCTION AD K

32-129. Instruction AD K (Add K) is a Basic Instruction which is represented by order code 06. and a 12 bit address. Instruction AD K consists of subinstructions AD0 and STD2, the execution of which takes two MCT's.

32-130. Instruction AD K adds the content of location K to the content of register A. The operation AD K with $0024 \le K \le 7777$ can be formulated as follows:


- Set c(A) = b(A)+c(K). When A and/or K contains an overflow bit, the result may be erroneous.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction AD K, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) represent an address in E Memory.

Point (2) implies that instruction j is executed next.

32-131. Special Cases of AD K:

- a. AD A (alternate code DOUBLE) doubles the content of A.
- b. AD L, AD Q, and AD Z are useful.
- c. AD EBANK, AD FBANK, and AD BBANK can be used, however, the particular read and write operations must be observed.
- d. AD ZERO has no purpose.
- e. Instructions AD K with $0010 \le K \le 0017$ follow the rules of paragraph 32-130.

F		17				f				2			
E	25252			• 00000							25252		
н								0					
s	1213		*		1			ws 🛦 a	2660				
	E	a.			3 2								
G	161213	wg 🛉 00000	00	♥ 025252	2	ł	RG ●		WG ▲ 025	252	025252		
-							025252	a.	025252				10
в	161213						WB ♥ 0252	252	RB	RB	025252	el.	
		000000	an a					00266	50)				
A	000102	RSC				5			51 II.		WA	025354	
L		RSC											
٩		RSC 🔶		-									
z	002660	RSC						RZ 🖣 (002660				
		3. 								025	252 025	354	
U	002660										025354	• RU	
Y	002657		5	-						WY	025252		
×	000000							10- 10-14-9 COM2		A2X •	000102		
CI	I.									•	• 0		
sq	06.1												
ACTIC	DN I	2 RSC WG	3	4	5	6	7 RG WB	8 RZ WS ST2	9 RB WG	IC RB W1 A2	r r w	U A	12
ST	0	а				÷	~						2
BR	0		5	200									0
													2727A

f. Instructions AD K with $0020 \le K \le 0023$ also follow the rules of paragraph 32-130 except that the sum is edited as it is entered into K.

32-132. When instruction AD K is executed, the quantity from location K is entered into register G at time 2, 4, or 6 of subinstruction AD0 (row 23 of table 32-4). Action 7 enters the quantity into register B and action 9 reenters the quantity into register G for restoring in E Memory at time 10. Action 10 enters the quantities in register B and register A into the Adder and action 11 transfer the sum to register A. Action 8 takes the address of the next instruction from register Z and enters it into register S. Subinstruction STD2 then calls forward the next instruction and increments by one the content of register Z as usual.

32-133. Figure 32-19 illustrates the execution of subinstruction AD0 of instruction AD 1213 stored at location 2657. This is the first subinstruction of the example discussed in paragraph 32-26. Location 1213 contains quantity 25252 and register A the quantity 000102. The sum finally provided is 025354.

32-134. INSTRUCTION SU E

32-135. Instruction SU E (Subtract E) is an Extra Code Instruction which is represented by order code 16.0 and a 10 bit address. Instruction SU E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction SU E consists of subinstructions SU0 and STD2, the execution of which takes two MCT's.

32-136. Instruction SU E subtracts the content of location E from the content of register A. The operation SU E with $0024 \le E \le 1777$ can be formulated as follows:

- Set c(A) = b(A)+c(E). When A and/or E contains an overflow bit, the result may be erroneous.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction SU E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) represent an address in E Memory.

32-137. Special Cases of SU E:

- a. SU A clears register A.
- b. SU L, SU Q, and SU Z are useful.
- c. SU EBANK, SU FBANK, and SU BBANK can be used, but the particular read and write functions must be observed.
- d. SU ZERO has no purpose except replacing 000000 in A by 177777.
- e. Instructions SU E with $0010 \le E \le 0017$ follow the rules of paragraph 32-136.
- f. Instructions SU E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-136 except that the difference is edited as it is entered into E.

32-138. The execution of instruction SU E is very similar to that of instruction AD K. (Compare rows 23 and 24 of table 32-4.) Control pulse RB of action 10 of subinstruction AD0 is replaced by control pulse RC for subinstruction SU0.

32-139. INSTRUCTION MP K

32-140. Instruction MP K (Multiply K) is an Extra Code Instruction which is represented by order code 17. and a 12 bit address. Instruction MP K must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction MP K consists of subinstructions MP0, MP1, and MP3, the execution of which takes three MCT's.

32-141. Instruction MP K multiplies the content of register A by the content stored in location K and stores the double precision result in registers A and L. The operation MP K with $0024 \le K \le 7777$ can be formulated as follows:

- Set c(A, L) = b(A) x c(K). Sign of c(L) agrees with sign of c(A). When b(A) and/or b(K) contain an overflow bit, the result is erroneous.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction MP K and j being the instruction stored at location I+1.
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z) + 1 = 1 + 2.

(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) represent an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-142. Special Cases of MP K.
 - a. MP A (alternate code SQUARE) squares the content of register A.
 - b. MP L, MP Q, and MP Z are useful.
 - c. MP EBANK, MP FBANK, and MP BBANK may be useful; the particular read and write operations must be observed.
 - d. MP ZERO clears registers A and L.
 - e. Instructions MP K with $0010 \le K \le 0017$ follow the rules of paragraph 32-141.
 - f. Instructions MP K with $0020 \le K \le 0023$ also follow the rules of paragraph 32-141 (the content of K is not edited when being restored).

32-143. Principle of Operation

32-144. A multiplication as performed by instruction MP K is carried out in TWO's complement arithmetic and in a way similar to a multiplication done manually with quaternary numbers (to the base four). Let us first assume that a positive 16 bit number as used in the CP of the AGC is to be multiplied by another positive 16 bit number. The first quantity (a_8) may be 016344, the other, (k_8) 010101 when expressed in octal numbers. The two quantities can also be expressed in binary (a_2k_2) or quaternary (a_4 , k_4) form as shown in figure 32-20.

32-145. Multiplying quantity (k_4) by (a_4) , starting with the lowest order digit of (a_4) , the quantity zero can be taken first, or added to the starting quantity zero. At step two, the quantity (k_4) must be moved one place to the left and added to the subtotal (zero in the given example). At step three, the quantity $(2k_4)$ has to be added in a similar way because the third last digit of (a_4) is 2. In the fourth step, the quantity $(3k_4)$ could be added; however, subtracting the quantity (k_4) and adding the quantity (k_4) at step five has the same effect $(1x4^{N+1} - 1x4^N = 3x4^N)$. At step six, the quantity (k_4) is subtracted for the same reason as in step four because the sixth lowest digit is a 3 like the fourth lowest. At step seven, the quantity $(2k_4)$ instead of (k_4) must be added to make up for the carry over of step six. The product has been translated into binary and octal notation. To prove the result, the multiplication (a)x(k) has been carried out with octal numbers in the simplest way. Both results agree as shown. 32-146. In the second example, figure 32-21, (a) is a positive quantity and (k) is a negative quantity. The quantity (k) is the TWO's complement of quantity (k) of the first example. The correctness of the second example can be proved by comparing its results with those of the first examples. The binary, quaternary, and octal products of the second example are all TWO's complement numbers of the first example.

32-147. Adding 0's in front of a positive TWO's complement quaternary number does not change its value; adding 3's (minus zeroes) in front of a negative number does not change its value. Adding 0's at the end of a positive or a negative TWO's complement quaternary number does not change its value.

32-148. Actual Execution

32-149. When instruction MP K is executed, the quantity from location K is entered into register G at time 2, 4, or 6 of subinstruction MP0 (row 25 of table 32-4 and figures 32-22 through 32-25). The quantity from K is later used as the multiplicand (k). Action 3 enters the quantity from register A into register B; this quantity is used as the multiplier (a). Action 4 enters the multiplier (a) always in its positive form into register L. Action 7 enters the multiplicand (k) into register B. The branch flip-flops have been set by actions 3 and 7 as stated by notes 3 through 6 in the last column of row 25 in table 32-4. According to this setting of the branch flip-flops, the multiplicand (k) is re-entered by actions 9 and 10 into register B either in its positive or in its negative TWO's complement form.

32-150. After time 10, register L always contains the multiplier (a) in its positive form. Register B contains the multiplicand (k) in its positive form if (a) and (k) have the same sign, or in its negative form if (a) and (k) have opposite signs. In case of equal signs, register A is set to zero at time 11 and later accumulates the product. In case of different signs, the quantity 177777 (minus one, TWO's complement) is entered into register A as a starting quantity to make the final product a ONE's complement number; furthermore, a ONE is entered into bit position 16 of register L by action 11 to indicate that the final product must be negative.

32-151. Eleven actions of subinstruction MP1 and the first three actions of subinstruction MP3 (rows 26 and 27 of table 32-4) perform the actual multiplication. In figures 32-26 and 32-27, the multiplication with multiplicand and multiplier of equal sign (figure 32-22 and figure 32-25) is continued. In figures 32-28 and 32-29 the multiplication with two quantities of opposite sign (figure 32-23 and 32-24) is continued. The same multiplications are also illustrated in figures 32-30 and 32-31 to explain the individual operations. The results of figure 32-31 are the ONE's complement of the results of figure 32-30.

a ₈ = 0 1 6 3 4						۲ <mark>8</mark>										
$a_2 = 000111001110010$						²										
a ₄ = 0 1 3 0 3 2 1	0				1	4	= 0	1	00	1	0 0	1	•			
k ₄ x a ₄ :																
								0	0	0	0	0	0	0	0	
+C \times k ₄								0	0	0	0		0		0	
10 A 14							0	0								
									0	0	0	0	0		0	
+1 x k_4							0	1	0	0	1	0	0	1		
						0	0	1	0	0	1	0	0	1	0	
$+2 \times k_4$						0	2	0	0	2	0	0	2			
					0	0	2	1	0	2	1	0	2	1	0	
$-1 \times k_4$					3	2	3	3	2	3	3	3				
				3	3	3	2	0	3	2	0	3	2	1	0	
+1 x k ₄				0	1	0	0	1	0	0	1					
			0	0	0	3	2	1	3	2	1	3	2	1	0	
-1 x k ₄			3	2	3	3	2	3	3	3						
1		3	3	3	0	3	1	1	3	1	1	3	2	1	0	
+2 x k ₄		0	2	0	0	2	0	0	2					-		
$k_4 \times a_4$	0	0	1	3	1	1		2		1	1	3	2	1		
	0 0															0.0
-	0															
(k x a) ₈	0	1	•	6		5		2	1		2		7	4		4
Proof: a ₈ x k ₈	1	6	1	3 1	4	4										
			8	1	6	3 1	4	4		4	4					
					2		6	3			4					
	1	6	5)	3	1	2	7	4	1	4					

Figure 32-20. Positive Product, Principle of Multiplication

 $a_8 = 0 \ 1 \ 6 \ 3 \ 4 \ 4$ $a_2 = 0001110011100100$ $a_4 = 0 \ 1 \ 3 \ 0 \ 3 \ 2 \ 1 \ 0$

 $k_8 = 1 \ 6 \ 7 \ 6 \ 7 \ 7$ $k_2 = 1110111110111111$ $k_4 = 3 \ 2 \ 3 \ 3 \ 2 \ 3 \ 3 \ 3$

$k_4 \times a_4$:										0	0	0	0	0	0	0	0	
	+0k4									0	0	0	0	0	0		0	
									0	0	0	0	0	0	0	0	0	í.
	+1k4								3	2	3	3	2	3	3	3		
	+2k4							3 3	3 1	2 3	3 3	3 1	2 3	3 3	3 2	3	0	
	4																	8
	11						3 0	3 1	1	2	3	1	2	3	1	3	0	
	-1k ₄								0	0	1	0	0	1				
	a 11-					0	0	0	1	3	0	1	3	0	1	3	0	
	+1k ₄					3	2	3	3	2	3	3	3					
					3	3	3	0	1	2	0	1	2	0	1	3	0	
	-1k ₄				0	1	0	0	1	0	0	1						
				0	0	0	3	0	2	2	0	2	2	0	1	3	0	
	+2k4			3	1	3	3	1	3	3	2							
	$k_4 \ge a_4$		3	3	2	0	2	2	2	1	2	2	2	0	1	3	0	
	(k x a) ₂	1	1 1	1 1	0 (0 0	1 0	1 0	1 0	0]	1	0 1	0 1	0 0	0	0 1	1 1	0 0
	(k x a) ₈		7	6	1		2	4	6	5		0	3	4				

Figure 32-21. Negative Product, Principle of Multiplication

FR-2-132

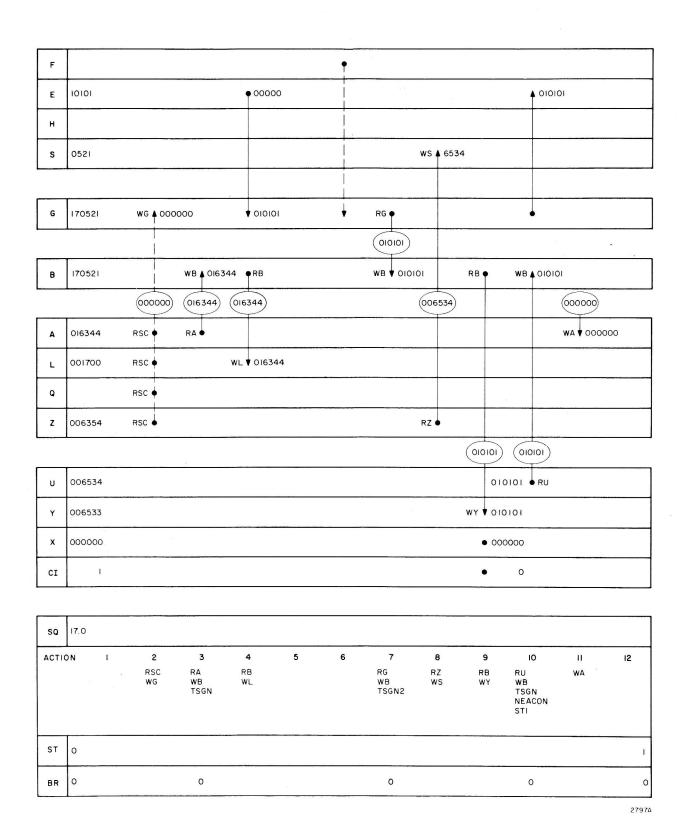
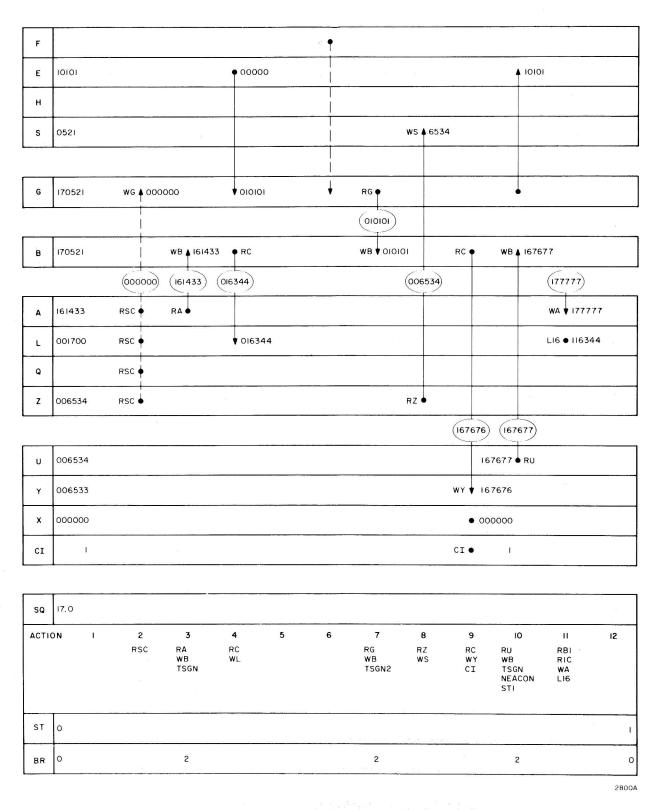


Figure 32-22. Subinstruction MPO, With Two Positive Quantities


F						•				- 9		
E	67676		-	• 0000	0					≜	67676	
н					- -					2		
s	0521		×					ws≬e	6534			
] .				ŧ		
G	170521	wg ≜ oc	00000	♥ 16767	6	¥	RG			•	- 2	
				11			167676)		101 - 2 - 2 10		
в	170521		WB ▲ 0163	344 • RB			WB ♥ 16	7676	RB	WB 🛓	67677	
		000000	016344	016344				00653	34)		(17777)	
A	016344		RA		6			8	ħ		177	777
L	001700			WL V 01634	4		12				L16 • 1163	44
Q												
z	006534							RZ ●				
				-					1676	76 (6767	677	
U	006534							4.8		167677	RU	
Y	006533			2					WY V	167676		
x	000000								•	000000		
CI	1								CI •	T		
				2								
SQ	17.0											
ACTIO	ON I	2 RSC	3 RA	4 RB	5	6	7 RG	8 RZ	9 RE	B RU	II RB1	12

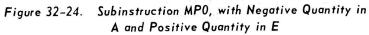

		RSC WG	RA WB TSGN	RB WL	RG WB TSGN2	RZ WS	RB WY CI	RU WB TSGN NEACON STI	RBI RIC WA LI6	
ST	0	a				-			2	ļ
BR	0		0		I			3		o

Figure 32–23. Subinstruction MPO, With Positive Quantity in A and Negative Quantity in E

2799A

FR-2-132

F					f		8.8				3
Е	67676			• 00000						67676	
н											
s	0521						ws 🛦	6534			
			(1, 1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								e bygette orden på er benær P
G	170521	we 🛉 oc	00000	▼ 167676	ł	RG •			-	•	
						167676					
в	170521		WB A 161433	• RC		WB 🕇 16	7676	RC	• wв	010101	
5		000000) (161433) (0	16344		9	00653	34		000	000
A	161433	RSC 🔶	RA							WA 1	000000
L	001700		w	L V 016344	,						
Q		RSC •		т.							1
z	006534	RSC 🜢					RZ •				9
								010		0101	
U	006534								010101	• RU	
Y	006533							WY	010101		
x	000000		1. 1.						• 000000		
CI	I								• 0		
SQ	17.0										
ACTIC	DN I	2 RSC	3 RA	4 RC	5 6	7 RG	8 RZ	R		0 II W	

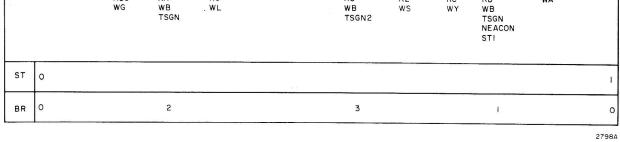


Figure 32-25. Subinstruction MPO, With Two Negative Quantities

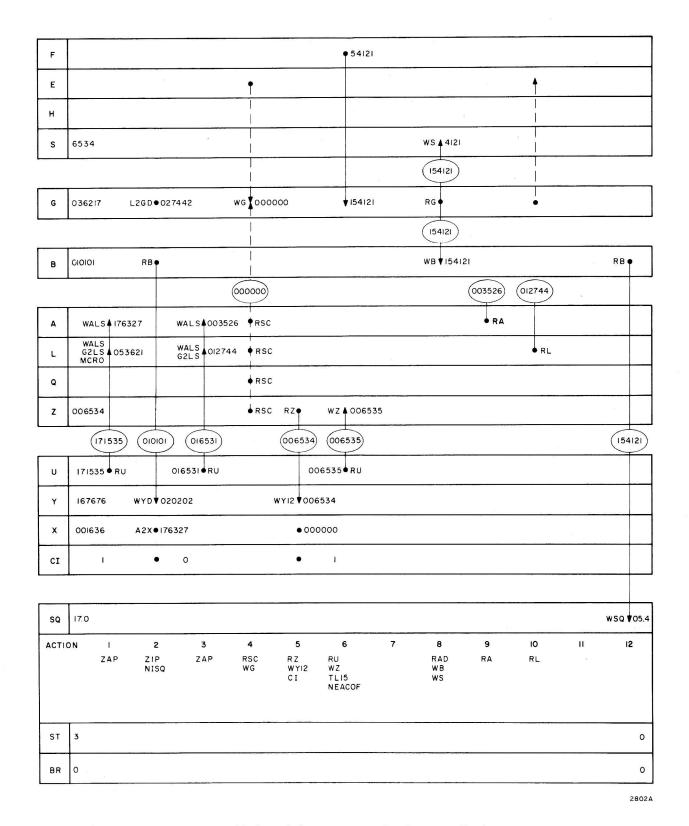
32-103

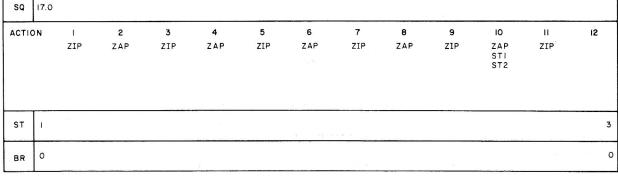
FR-2-132

_		and the second
F		<u>्र</u>
Е	ik.	рала <mark>рокан</mark> ара на се
E		
н		
s	6574	
5	6534	

G	010101	L2GD 034710	L2GD	007162	L2GD	021634	L2GD MCRO	044347	L2GD	0710 7 0	L2GD MCRO	036217
в	010101	a da anta	RB	1	RB	•	RC	•	RB	•	RC	•
	2 2	2 X					9			 A 		
A	000000	WALS	000000	WALS	002020	WALS	004444	WALS	177070	WALS	001636	
L	016344	WALS G2LS	003471	WALS G2LS	01076	WALS G2LS	022163	WALS G2LS MCRO	074434	WALS G2LS	017107	
Q											e.	
z	006534	an four cool granding (C			5							
	000	000 000	000 010	000 . (101	101 020	202 022	222 (167	676 (1743	343 (010	101 007	171 (167	676
U	010101	000000	RU	010101	RU	022222	RU	174343	RU	007171	RU	171535
Y	010101	WY 000000	WY V	010101	WYD 1	020202	WY 1	167676	WY 1	010101	WY	167676
x	000000 •	A2X 000000	A2X •	000000	A2X (002020	A2X (004444	A2X	177070	A2X	001636
CI	0	• 0	•	0		0	CI	•			CI	• 1

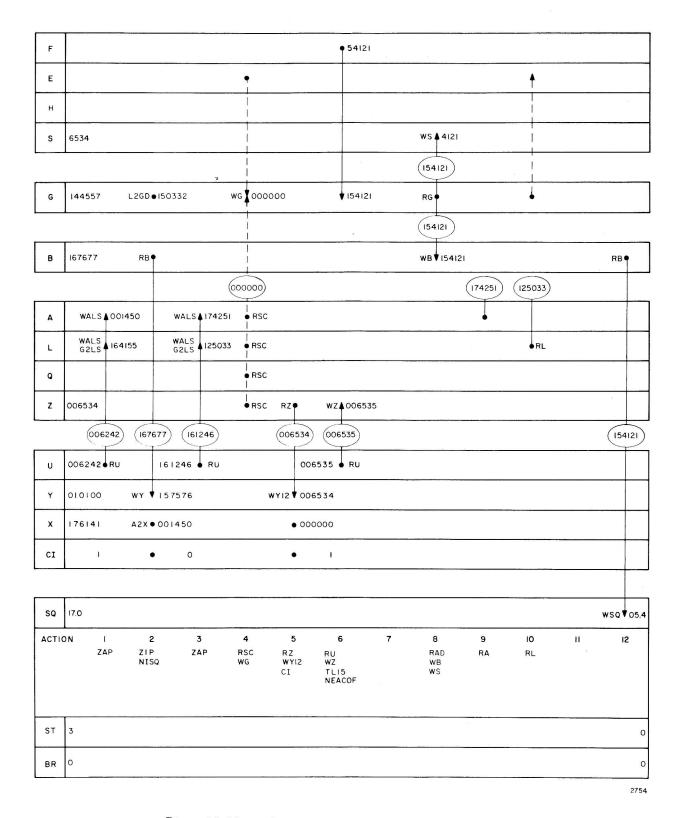
SQ	17.0											19. 19. 19.	
ACTIC	DN	l	2	3	4	5	6	7	8	9	10	П	12
		ZIP	ZAP	ZIP	ZAP	ZIP	ZAP	ZIP	ZAP	ZIP	ZAP STI ST2	ZIP	
ST	1						8					1	3
BR	0					a .	0. B	8 I 14					0
					3		··· 2.1 8	8 8	188.81	12			28014




Figure 32-27. Subinstruction MP3, Positive Product

32-105

FR-2-132


F	2.	
E		и.
сн		
s	6534	

G	010101	L2GD 134710	L2GD	167162	L2GD	●155634	MCRO L2GD	133347	L2GD	106670	L2GD	●144557
в	167677		RB	•	RB		RC		RB	2	RC	•
A	177777	WALS	177777	WALS	175757	WALS	173333	WALS	000707	WALS	176141	5
L	116344	WALS G2LS	177777	WALS G2LS	126716	WALS G2LS	115563	WALS G2LS	103334	WALS G2LS	120667	·
Q												
z	006534											
	000	000 (177	177 (167	677 (167	676 (157	576 (155:	555 010	100 003	434 (167	677 (170	606 (010	000
υ	010101	177777	RU	167676	RU	155555	RU	003434	RU	170606	RU	006242
Y	010101	WY 000000	WY Y	167677	WYD	157576	WY	010100	WY	167677	WY	•010100
x	000000	A2X 177777	A2X	177777	A2X	0175757	A2X	173333	A2X	000707	A2X	●176141
CI	0.		0 0	• 0		• 0	CI	• I			CI	• 1
45												
SQ	17.0											

2753

Initial Con	ditions:	c(A) c(E)		016344 10101	a ₄ =01303210
After MP0	<u>;</u>		Ξ	010101 016344 000000	
<u>Step 1</u> MP1-1,2	L2GD A2X WY RU, WALS, G2LS	c(Y)	ни	034710 000000 000000 000000 000000	c(L)=003471
<u>Step 2</u> MP1-3,4	L2GD A2X RB, WY RU,WALS,G2LS	c(Y)	и и	007162 000000 010101 010101 002020	c(L)=010716
<u>Step 3</u> MP1-5,6	L2GD A2X RB,WYD RU,WALS,G2LS	c(X) c(Y)	н н	021634 002020 020202 022222 004444	c(L)=022163
<u>Step 4</u> MP1-7,8	L2GD, MCRO A2X RC,WY CI RU,WALS,G2LS, MCRO	c(X) c(Y) c(U) c(CI)	н н н н	167676 174343 1	c(L)=074434
Step 5 MP1-9,10	L2GD A2X RB,WY RU,WALS,G2LS	c(G) c(X) c(Y) c(U) c(A)	н и и и	071070 177070 010101 007171 001636	c(L)=017107

Figure 32-30. Positive Product, Actual Multiplication (Sheet 1 of 2)

Step 6	L2GD, MCRO	c(G) =	=	036217	
MP1-11,12	A2X	c(X) =	=	001636	
MP3-1	RC,WY	c(Y) =		167676	
	CI	c(U) = c(CI) =	=	171535 1	
	RU, WALS, G2LS,	c(A) =		176327	c(L)=053621
	MCRO				
Step 7	L2GD	0(-)		027442	
MP3-2, 3	A2X	c(X) :	=	176327	
	RB,WYD	c(Y) :	=	020202	
		c(U) :	=	016531	
	RU, WALS, G2LS	c(A) :	=	003526	c(L)=012744
	Ouantitu	in (A	τA	- 165312744	as integer or

Quantity in (A, L) = 165312744 as integer or 0.0725453620 as fraction

Figure 32–30. Positive Product, Actual Multiplication (Sheet 2 of 2)

Initial Con			0 16344 67676	a ₄ =01303210	
After MP0		c(L)	Ξ	167677 116344 177777	(Two's complement) (Two's complement minus one to make final product a ONE's complement number)
Step 1 MP1-1,2	L2GD A2X WY RU,WALS,G2LS	c(X) c(Y)	н н н	134710 177777 000000 177777 177777	c(L)=133471
<u>Step 2</u> MP1-3,4	L2GD A2X RB, WY RU,WALS,G2LS	c(X) c(Y) =	н Н П	167162 177777 167677 167676 175757	c(L)=126716
<u>Step</u> 3 MP1-5,6	L2GD A2X RB, WYD RU, WALS, G2LS	c(X) c(Y) c(U)	=	155634 175757 157576 155555 173333	c(L)=115563
Step 4 MP1-7,8	L2GD, MCRO A2X RC, WY CI RU, WALS, G2LS,	c(X) = c(Y) = c(CI) = c(U) =	=	133347 173333 010100 1 003434 000707	c(L)=103334
<u>Step 5</u> MP1-9,10	MCRO L2GD A2X RB, WY RU, WALS, G2LS	c(X) = c(Y) = c(U) =	нииии	106670 000707 167677 170606 176141	c(L)=120667

Figure 32–31. Negative Product, Actual Multiplication (Sheet 1 of 2)

Step 6	L2GD,MCRO	c(G) =	144557	
MP1-11	A2X	c(X) =	176141	
MP3-1	RC,WY	c(Y) =	010100	
	CI	c(CI) =	1	
		c(U) =	006242	
	RU,WALS,G2LS,	c(A) =	001450	c(L)=164155
	MCRO			
Step 7	L2GD	c(G) =	150332	
MP3-2,3	A2X	c(X) =	001450	

AP3-2,3	A2X	c(X)	Ξ	001450	
	RB,WYD	с (Ү)	×	157576	
		c (U)	Ξ	161246	
	RU,WALS,G2LS	c(A)	=	174251	c(L)=125033

Quantity in (A, L)=612465033 as integer or

.7052324157 as fraction

Figure 32-31. Negative Product, Actual Multiplication (Sheet 2 of 2)

32-152. Actions 4 through 12 of subinstruction MP3 conclude the operation of instruction MP K. At time 4 of 6, the next instruction is called forward from E or F Memory, respectively, action 8 enters the relevant address into register S and the whole instruction into register B. At time 12, the order code is entered into register SQ. Actions 5 and 6 increment by one the content of register Z. All these operations are normally performed by subinstruction STD2.

32-153. In case bit position 15 of register L contains a ONE at time 6 of subinstruction MP3, indicating that a carry over from the last step remained, the multiplicand is once more added to the product by actions 7 and 11.

32-154. INSTRUCTION DV E

32-155. Instruction DV E (Divide by E) is an Extra Code Instruction which is represented by order code 11.0 and a 10 bit address. Instruction DV E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction DV E consists of subinstructions DV0, DV1, DV3, DV7, DV6, DV4, and STD2, the execution of which takes six MCT's. Subinstruction DV0 has only three actions (1 through 3); subinstruction DV1, DV3, DV7, and DV6 each have 12 actions (4 through 12, 1 through 3), and subinstruction DV4 has nine actions (4 through 12).

32-156. Instruction DV E divides the fractional double-precision quantity contained in registers A and L by the fractional single-precision quantity stored at location E of E Memory (or in a CP register). The quantity in E must not include an overflow bit. The absolute value of the fractional quantity contained in (A, L) must always be smaller than the absolute value of the fractional quantity contained in E. (This implies that A cannot contain an overflow bit.) The operation DV E with $0024 \le E \le 1776$ can be formulated as follows:

 Set c(A) = b(A, L) + c(E), signs in A and L need not agree, L must not contain an overflow bit. Set c(L) = remainder.

If c(E) = 00000 or 77777, c(A) = 037777 or 140000, respectively.

- (2) Set c(B) = c(I+1) = j, I being the address of instruction DV E, and j being the instruction stored at location I+1. Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z+1) = I+2.
- (4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) represent an address in E Memory.

Point (2) implies that instruction j is executed next.

32-157. Special Cases of DV E:

- a. DV A divides b(A, L) by b(A) but the sign is reversed if b(A) is positive. DV L is not possible.
- b. DV Q and DV Z can be used if Q and Z do not contain a positive or negative overflow bit.
- c. DV EBANK, DV FBANK, and DV BBANK could be used but are not very useful.
- d. DV ZERO results in 037777 or 140000.
- e. Instructions DV E with $0010 \le E \le 0017$ follow the rules of paragraph 32-156.
- f. Instructions DV E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-156 (the content of E is not edited when being restored).

32-158. Principle of Operation

32-159. A division as performed by instruction DV E is carried out in ONE's complement arithmetic and in a way similar to a division done manually with binary numbers. Assume first that registers A and L, and location E, contain the positive quantities indicated in figure 32-32. The dividend consists of 28 bits stored in registers A and L, the divisor of 14 bits stored in location E. Because the value of the dividend is smaller than that of the divisor, the division can be started by writing down the first 15 bits of the dividend. Since the 15 bit number is larger than the divisor, the divisor can be subtracted and a ONE can be written into the quotient immediately following the binary point. The division can then be continued conventionally, except that binary, instead of decimal numbers are used. To prove the correctness, the division has been carried out in octal numbers and the quotient has been multiplied by the divisor to result in the dividend.

32-160. In figure 32-32, the same division is carried out but in a way resembling the operation of instruction DV E. Instead of subtracting the divisor from partial remainders, the divisors are added to the complemented remainders. Thus, the subtractions are carried out in inverted form. As a starting step, the first 15 value bits of the dividend (contained in registers A and L), are complemented and written down. Then the divisor is added to the first number in ONE's complement arithmetic which is the same as subtracting the divisor from the recomplemented form of the first number. The ONE's complement sum is a negative number indicating that the divisor has been successfully subtracted; the first remainder is expressed in ONE's complement form and a ONE can be written as the first bit of the quotient. After adding the next complemented bit of the dividend to the remainder, the divisor is added again. This time the sum is positive indicating that the divisor is too large for subtraction, therefore a ZERO must be entered into the quotient. For the next addition, the previous remainder, plus the added bit, plus the next complemented bit of the dividend, must be used.

32-161. The division can be continued as shown in the figure. Whenever an inverse subtraction is successful, a ONE must be written into the quotient and the next complemented bit of the dividend has to be added to the remainder. Whenever a subtraction is unsuccessful, a ZERO must be written into the quotient and the next complemented bit of the dividend has to be added to that remainder which resulted from the last successful subtraction together with bits which had been added already.

32-162. Actual Execution

32-163. When instruction DV E is executed, the three actions of subinstruction DV0 (row 28 of table 32-4) and the first nine actions (4 through 12) of subinstruction DV1 (row 29) prepare the registers for the actual division. The last three actions (1 through 3) of subinstruction DV1, all actions of subinstructions DV3, DV7, and DV6 (rows 30 through 32) and the first two actions (4 and 5) of subinstruction DV4 (row 33) perform the actual division. The remaining actions (6 through 12) of subinstruction DV6 place the results in the proper registers.

32-164. Actions 1 through 3 of subinstruction DV0 and actions 4 through 12 of subinstruction DV1 do the following:

- a. Establish sign agreement of c(L) with c(A).
- b. Complement c(A) and enter the complemented quantity into B if c(A, L) represents a positive number. Enter c(A) into B if c(A, L) represents a negative number. Thus, a negative quantity, (the high order part of the dividend) is always entered into B; or zero is entered into B if A contains zero.
- c. Shift c(L) one place to the left and enter the shifted quantity into L if c(A, L) represents a positive number. Complement c(L) and shift it one place to the left, and enter the complemented shifted quantity into L if c(A, L) represents a negative number. Thus, a positive quantity (low order part of dividend) is always entered into L; or zero is entered into L if applicable.
- d. Enter c(E) into A if c(E) is a positive quantity. Complement c(E) and enter the complemented quantity into A if c(E) is a negative quantity. Thus, a positive divisor is always entered into A.

e. A ONE is entered into bit position 16 of register Z if c(A, L) represents a negative number. A ONE is entered into bit position 15 of register Z if c(E) represents a negative number. Thus, the quotients will be positive if bits 16 and 15 are identical; or will be negative if the two bits are not identical.

32-165. When the signs in A and L do not agree, the sign agreement can be established by adding 177776 (minus 1) to c(A) and adding 040000 to c(L), or by adding 000001 to c(A) and adding 137777 to c(L).

For instance c(A, L) = (012346, 173377) = (012345, 033400)or c(A, L) = (165431, 004400) = (165432, 144377)

The method by which instruction DV E establishes sign agreement is based on the same mathematical principle but is implemented in a different way.

32-166. If c(A, L) represents a positive quantity, the quantity 040000 is always added to c(L). If L did contain a positive quantity, a ONE is entered into bit position 15 by the addition; however, the content of the other bit positions is left unchanged. When c(L) is read out, bit position 16 is read into WA's 16 and 15, thus eliminating the ONE in bit position 15. If L did contain a negative quantity (without overflow bit), the ONE added to the ONE contained in bit position 15 changes it to a ZERO, changes the sign bit to a ZERO, and causes end around carry. For instance, adding 040000 to 173377 results in 033400. When c(L) is read out, bit 15 is lost again, but this does not change the quantity.

32-167. If c(A, L) represents a negative number, the quantity 040000 is added to the complemented c(L) to provide the same end effect.

32-168. Figure 32-34 describes how actions 1 through 3 of subinstruction DV0 and actions 4 through 12 of subinstruction DV1 set the registers. First the original content (a) of register A is entered into register B and tested for sign and minus zero. If quantity (a) is positive, it is complemented and again entered into register B; quantity (a) is then tested for plus zero. If it is not equal to zero, the sign originally stored in register A defines the sign of c(A, L). If the quantity (a) is equal to zero, the sign of c(A, L).

32-169. Once the sign of (a, 1), the quantity originally contained in registers A and L, has been defined, the operation branches in one of two directions.

(text continued on page 32-132)

c(A) = 012345

.010100111001011101110000000	$0 \div .10001010001010 = .10011010111001$
010100111001011	a far y a series a far y and series
10001010001010	c(A) = 023271
00011101000001101	· · · · · · · · · · · · · · · · · · ·
10001010001010	
010111100000111	
10001010001010	
0011000111110110	
10001010001010	
0011110110110000	
10001010001010	
011011001001100	
10001010001010	
010011110000100	
10001010001010	
0001001111101000	0
1000101000101	0
0001010100011	c(L) = 002506
Proof	
$2471356000 \div .42424 = .46562$.46562 x .42424
212120	232710
350156	115344
317170	232710
307660	115344

232710

012430
2471.356000

2471343350

c(L) = 033400

c(E) = 21212

Figure 32-32. Principle of Division, Manual Method

254544

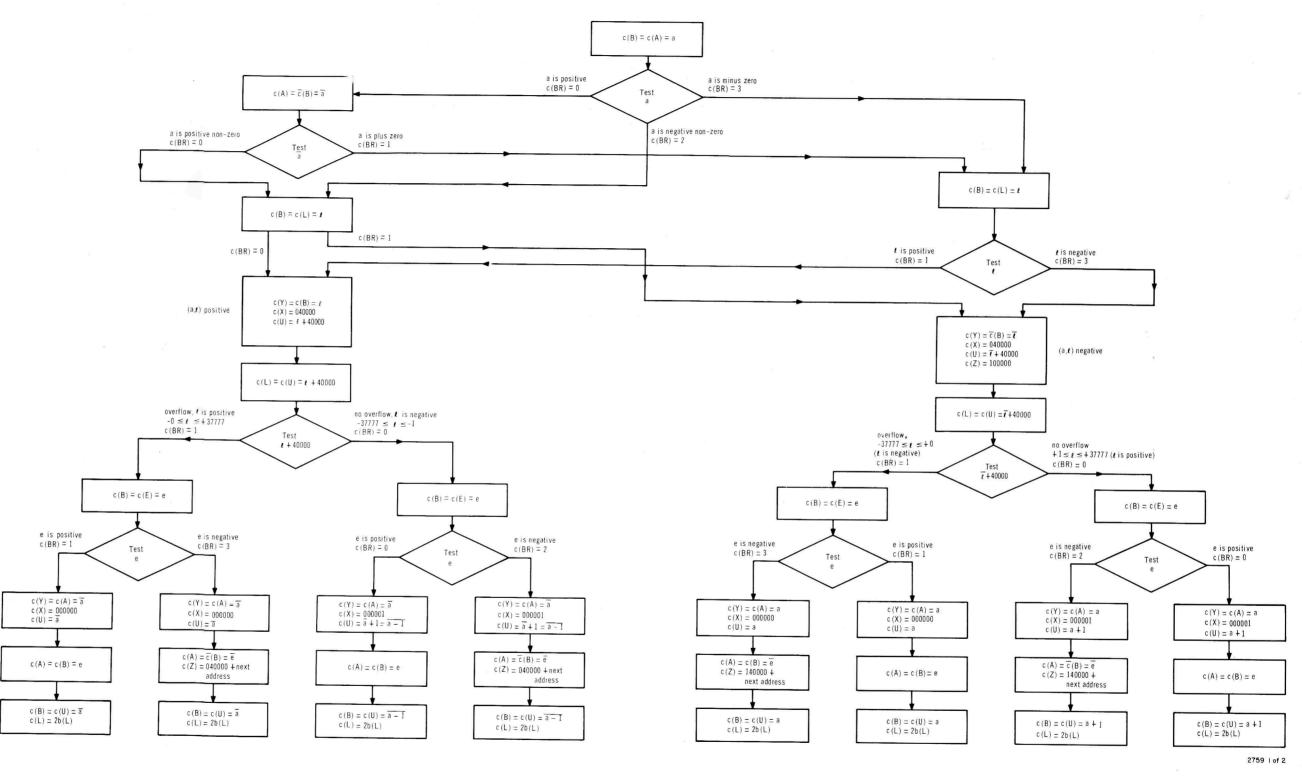
331140

317170

 $\begin{array}{r}
 117500 \\
 105050 \\
 \overline{012430}
 \end{array}$

033400	c(E) = 021212
11011100000000	c(E) = 10001010001010
	Quotient = 10011010111001 c(A) = 023271
	l's indicate successful subtractions O's indicate unsuccessful subtractions

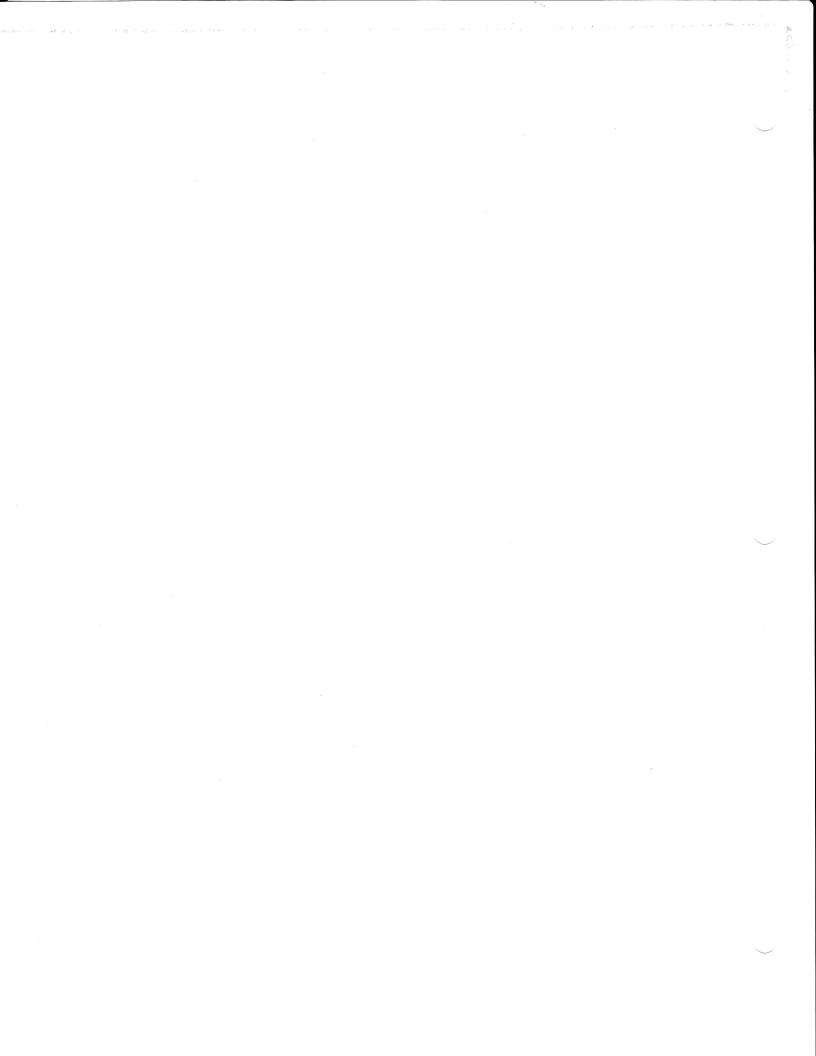
c(A)) = 012345	c(L)	=	03
c(A)	= 01010011100101	c(L)		
	1101011000110100			
	0010001010001010			
1	11110001011111100			
	0010001010001010			
0	000101000000111			
	1110001011111001			
	0010001010001010			
0	0000010110000100			
	1100010111110010			
	0010001010001010			
1	1101000011111000			
	0010001010001010			
1	111001110000010			
	001000101000101			
0	000010011000111			
	11001110000010			
	00100010100010			
1	1 1110000100100			
	0010001010001	Contraction of the local division of the loc		
	0000001110110			
0	110000100100			
	001000101000			
1	111001001101			
	10100010100			
1	11101100001			
	0010001010			
1	111101100			
	001000101			
0	000110001			
	11101100	0001	11	11


Remainder

c(L) = 002506

Figure 32-33. Principle of Division, Machine Method

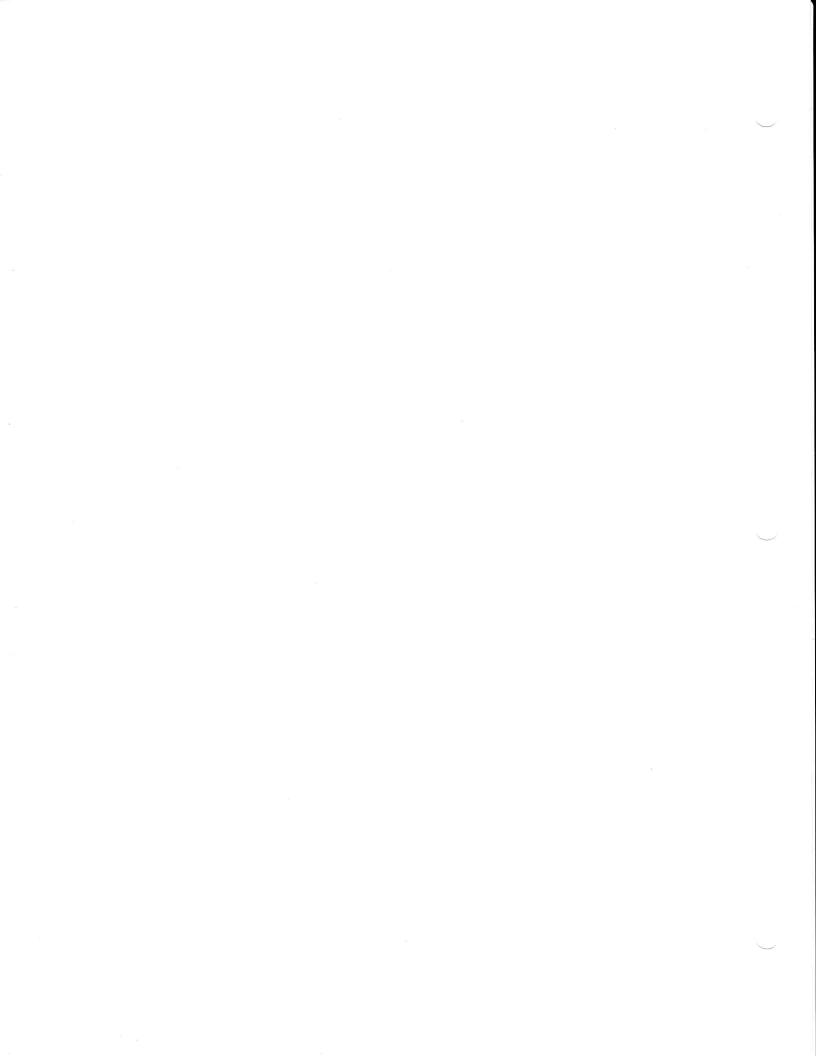
. .

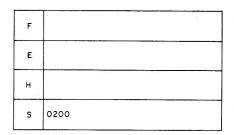

.

6

Figure 32–34. Divide Instruction, Flow Diagram (Sheet 1 of 2)

32-119/32-120


1. $a = 012345$ t = 033400 e = 021212	2. a = 012345 & = 033400 e = 156565	3. $a = 0.12346$ $\ell = 1.73377$ e = 0.21212	4. a = 012346 e = 173377 e = 156565	5. a = 165432 ℓ = 144377 e = 156565	6. a = 165432 ℓ = 144377 e = 021212
c(B) = 165432 c(L) = 067000 c(A) = 021212 c(Z) = next address	c (B) = 165432 c (L) = 067000 c (A) = 021212 c (Z) = 040000 + next address	c(B) = 165432 c(L) = 067000 c(A) = 021212 c(Z) = next address	c (B) = 165432 c (L) = 067000 c (A) = 021212 c (Z) = 040000 + next address	c(B) = 165432 c(L) = 067000 c(A) = 021212 c(Z) = 140000 4 next address	c(B) = 165432 c(L) = 067000 c(A) = 021212 c(Z) = 100000 + next addre
9. a = 000000 or 177777 ℓ = 005162 e = 021212	10. a = 000000 or 177777 e = 005162 e = 156565			11. a = 000000 or 177777 \$\mathcal{k} = 172615 e = 156565	12. a = 000000 or 17777 ℓ = 172615 e = 021212
c(B) = 000000 or 177777 c(L) = 012344 c(A) = 021212 c(Z) = next address	c(B) = 000000 or 177777 c(L) = 012344 c(A) = 021212 c(Z) = 040000 + next address			c(B) = 000000 or 177777 c(L) = 012344 c(A) = 021212 c(Z) = 140000 + next address	c(B) = 000000 or 177777 c(L) = 012344 c(A) = 021212 c(Z) = next addre


Figure 32–34. Divide Instruction, Flow Diagram (Sheet 2 of 2)

7. a = 165431	 a = 165431
e = 004400	$\ell = 004400$
e = 156565	e = 026212
c(B) = 165432	c(B) = 165432
c(L) = 067000	c(L) = 067000
c(A) = 021212	c(A) = 021212
c(Z) = 140000 +	c(Z) = 100000 +
next address	next address

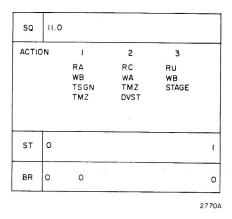
2759 2 of 2

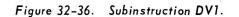
32-121/32-122

G 010200

в	010200 ▲ 012345 ● RC	▲ 006135
	012345 (165432)	
A	012345 • RA WA 165432	
L	033400	
Q	00	6135
z	002135	
	2	
	T	1

U	002 135	RU
Y	0 02 34	
x	000000	
CI	I	

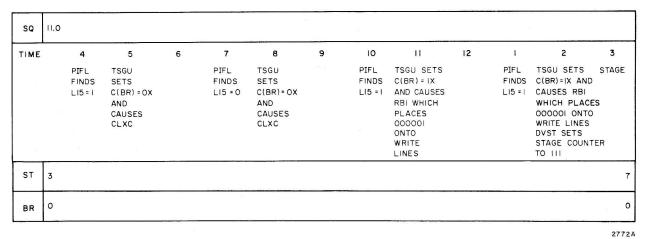


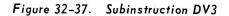

Figure 32-35. Subinstruction DV0

FR-2-132

F											
E	21212 00000	999				21212					
н		8		-		an in the					
S	0200										
G	010200 🕈 021212	RC	•			•		L2GD	056000	• RG	
		02	1 2 12								
в	WB 006135 ▲033400	•RB WE	021212	RB	WB.	165432		RB	ſ	174276	wG
	033400 033	3 400	N A	021212	-			165	432 050	5001	
A	165432		RSC RA	WA 0212	12						
L	033400 • RL	WL ▲073400	• RSC	3		RL	WL	♦067000	WL	056001	
Q			RSC			3 13					
z	002 35		• RSC		2	2					
)	073400	(165 4	32	(165	432 033	400 (167	000		(174 2	276
υ	002135	073400 • RU		165432	RU		067000	• RU	174276	RU	
Y	002134 WY	0334 00	W Y V	165432		WYD	067000	WYD	153064		
x	000000 BI5X	• 040000	•	000000			000000	A2X	021212		
CI	Ļ	• 0	2	0			• 1	(• 0		Record Color
							3				
sq	11.0										

RG RSC WB TSGN R L W B R B W Y BI5X R U WL TOV RA WY R B W A RU WB RL WYD L2GD RB PIFL WYD A2X RG RBIF WL TSGU DVST RU WL RU WB STAGE ST ī. 3 0 BR Ì. 3 3 0

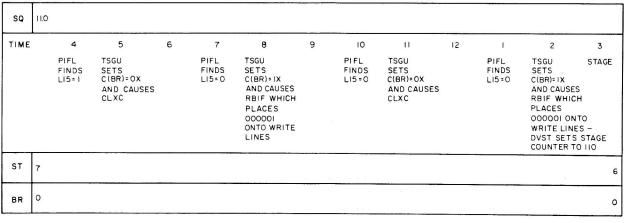

277IA



FR-2-132

F	
E	
Н	
s	0200

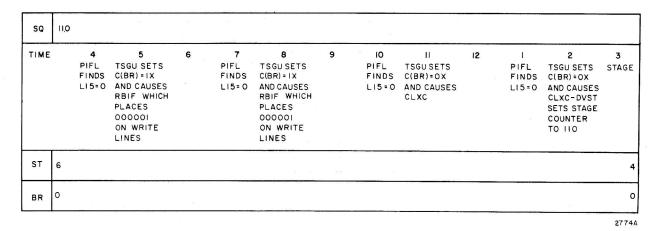
G	056000	L2GD •034002	RG	L2GD	070004	RG	L2GD • 060010 • RG L2GD • 040022 • RG						
L	- I	2											
в	174276	● RB	WB 4	170574	RB	WBA	161371	RB	WB	164174	RB	171602	WB
	(174	276 034	002	(170	574 070	0004	(161	371 060		(164	174 040	023	
A	021212												
L	056001	WL	034002		WL	▼070004		WL	060011		WL	040023	
Q						5							-
z	006135												
•			(170)	574		(161	371		164	174		171	602
υ	174276	012007	RU	170574	002604	RU	161371	164174	RU	164174	171602	171602	RU
Y	153064	WYD ▼ 170574	a kana dage o	WYD	161371		WYD	142762		WYD	150370		
x	021212	A2X • 021212	CLXC 000000	A2X	021212	CLXC 000000	A2X (021212		A2X (021212		
CI	0	0			0			0			0		

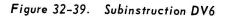


FR-2-132

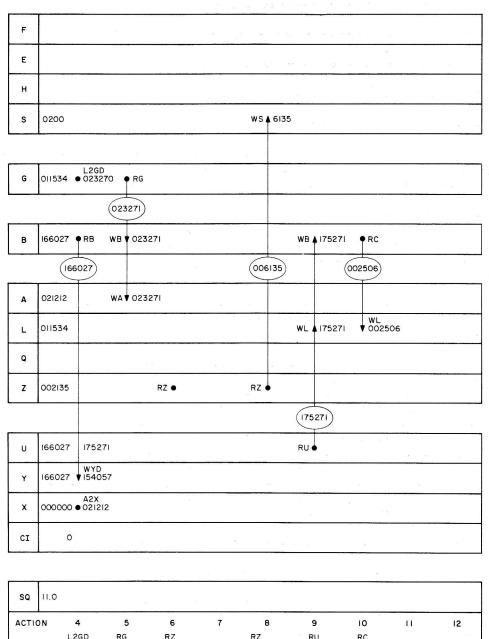
F	
E	
н	
s	0200

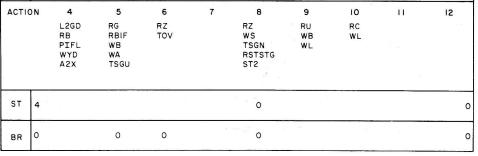
G	040022 • 000046 • RG L2GD • 000114 •			Ī	L2GD	●000232	₽RG	L2GD	●000464	● RG			
8	171602	● RB	wв	163404	●RB	WB .	170223	RB	WB.	160447	₽RB	WB 162331	
	171	602 0000	46	(163	404 000	0115	(170	223 000	232	(160	447 000	0465	
A	021212												
L	040023	WLV	000046		WL	WL 000115			WL 000232			WL♥000465	
Q						~							
z	006135												
			(1634	404		(170223)			160447		16233		
U	171602	004617	RU	163404	170223	RU	170223	001662	RU	160447	162331	RU 162331	
Y	150370 WYD 163404 WYD 147011					WYD	160447		WYD	141117			
x	021212	A2X • 021212 • 1	CLXC 0000	000 A2X	021212		A2X	021212	CLXC 0000	000 A2X	021212		
сі	0	Reconstruct	a sa ti		Ľ				billio fi a l'				





2773A


						and the second second
F		- <u>H. 12</u>	e e se e	- ₂ - 2 ₁₂		2
E		2			р. ч. л. р.	
н	с. Х					
s	0200					


G	000464	L2GD 001152	RG	RG L2GD ● 002326 ● RG L2GD ● 004656 ●					RG L2GD●011534 ●RG			
		а			5	e 8	2		s			
8	162331	RB	WB	166075	● RB	WB A	175405	• RB	WB	173013	• RB	WB 166027 ▲
×	(162	331 001	153	(166	6075 002	327	(17)	3013 004	656	(166	5027 00	1154
A	021212											
L	000465	WL	001153		WL	002327		WL 1	004656		WL	♥011534
Q	а 1									2		5
z	006135		1			dranto en dara	3					
			(1660	075		(1754	405		(173	013		166027
U	162331	166075	RU	166075	175405	RU	175405	014226	RU	173013	007242	RU 166027 ●
Y	141117	WYD 144663	2 2	WYD	▼154173		WYD	173013		WYD	166027	
x	021212	A2X 021212	2	A2X	021212	5	A2X	• 021212	CLXC 000000	A2X	• 021212	CLXC • 000000
CI	0		4			16		0ez				

FR-2-132

2775A

Figure 32-40. Subinstruction DV4

Initial Conditions:	a, 1 = 012345; 033400 e = 21212
After DV1-12:	c(B) = 165432 c(L) = 067000 c(A) = 021212
$\begin{array}{ccc} Step 1 \\ \hline DV1-1 \\ RB, WYD, PIFL, L15=1 \\ A2X \\ \hline DV1-2 \\ RG, WL, set c(BR1) = 1, RB1F \\ DV1-3 \\ RU, WB \end{array}$	c(G) = 056000 c(Y) = 153064 c(X) = 021212 c(U) = 174276 c(L) = 056001 c(B) = 174276
Step 2	c(G) = 034002
DV3-4 L2GD	c(Y) = 170574
RB, WYD, PIFL, L15=1	c(X) = 021212
A2X	c(U) = 012007
DV3-5 RG, WL, set c(BR1) = 0, CLXC	c(U) = 170574
DV3-6	c(L) = 034002
RU, WB	c(B) = 170574
Step 3	c(G) = 070004
DV3-7 L2GD	c(Y) = 161371
RB, WYD, PIFL, L15=0	c(X) = 021212
A2X	c(U) = 002604
DV3-8 RG, WL, set $c(BR1) = 0$, CLXC DV3-9 RU, WB	c(U) = 161371 c(L) = 070004 c(B) = 161371
Step 4	c(G) = 060010
DV3-10 L2GD	c(Y) = 142762
RB, WYD, PIFL, L15=1	c(X) = 021212
A2X	c(U) = 164174
DV3-11 RG, WL, set c(BR1) = 1, RB1F	c(L) = 060011
DV3-12 RU, WB	c(B) = 164174

Figure 32–41. Actual Division (Sheet 1 of 3)

Step 5 DV3-1	L2GD RB, WYD, PIFL, L15=1 A2X	c(G) = 040022 c(Y) = 150370 c(X) = 021212 c(U) = 171602
DV3-2 DV3-3	RG, WL, set c(BR1) = 1, RB1F RU, WB	c(L) = 040023 c(B) = 171602
Step 6 DV7-4	L2GD RB, WYD, PIFL, L15=1 A2X	c(G) = 000046 c(Y) = 163404 c(X) = 021212 c(U) = 004617
DV7-5	RG, WL, set $c(BR1) = 0$, $CLXC$	c(U) = 163404
DV7-6	RU, WB	c(L) = 000046 c(B) = 163404
Step 7 DV7-7	L2GD RB, WYD, PIFL, L15=0 A2X	c(G) = 000114 c(Y) = 147011 c(X) = 021212 c(U) = 170223
DV7-8 DV7-9	RG, WL, set c(BR1) = 1, RB1F RU, WB	c(L) = 170223 c(L) = 000115 c(B) = 170223
Step 8 DV7-10	L2GD RB, WYD, PIFL, L15=0 A2X	c(G) = 000232 c(Y) = 160447 c(X) = 021212 c(U) = 001662
DV7-11	RG, WL, set c(BR1) = 0, CLXC	c(U) = 160447
DV7-12	RU, WB	c(L) = 000232 c(B) = 160447
Step 9 DV7-1	L2GD RB, WYD, PIFL, L15=0 A2X	c(G) = 000464 c(Y) = 141117 c(X) = 021212
DV7-2 DV7-3	RG, WL, set c(BR1) = 1, RB1F RU, WB	c(U) = 162331 c(L) = 000465 c(B) = 162331

Figure 32-41. Actual Division (Sheet 2 of 3)

Ster 10		
Step 10 DV6-4	L 2CD	c(G) = 001152
DV0-4	L2GD	c(Y) = 144663
	RB, WYD, PIFL, L15=0	c(X) = 021212
	A2X	$c(\mathbf{U}) = 021212$ $c(\mathbf{U}) = 166075$
		• •
	RG, WL, set $c(BR1) = 1$, RB1F	c(L) = 001153
DV6-6	RU, WB	c(B) = 166075
Step 11		
DV6-7	L2GD	c(G) = 002326
	RB, WYD, PIFL, L15=0	c(Y) = 154173
	A2X	c(X) = 021212
		c(U) = 175405
DV6-8	RG, WL, set $c(BR1) = 1$, $RB1F$	c(L) = 002327
DV6-9	RU, WB	c(B) = 175405
D V 0-7		0(2)
Step 12		
DV6-10	L2GD	c(G) = 004656
	RB, WYD, PIFL, L15=0	c(Y) = 173013
	A2X	c(X) = 021212
		c(U) = 014226
DV6-11	RG, WL, set $c(BR1) = 0$, $CLXC$	c(U) = 173013
		c(L) = 004656
DV6-12	RU, WB	c(B) = 173013
Ct - m 12		
Step 13 DV6-1	L2GD	c(G) = 011534
Dv0-1	RB, WYD, PIFL, L15=0	c(Y) = 166027
	A2X	c(X) = 021212
	ALA	$c(\mathbf{U}) = 0.07242$
DV4 2	PC WI and $PB(1) = 0$ CLVC	c(U) = 166027
DV0-2	RG, WL, set $c(BR1) = 0$, $CLXC$	c(L) = 011534
DV(2		c(B) = 166027
DV0-3	RU, WB	C(D) = 100027
Step 14		
DV4-4	L2GD	c(G) = 023270
	RB, WYD, PIFL, L15=0	c(Y) = 154057
	A2X	c(X) = 021212
		c(U) = 175271
DV4-5	RG, WB, WA, set $c(BR1) = 1$, $RB1F$ $c(B$	=c(A) = 023271
Final Se		
DV4-6	RZ, set $c(BR) = 00$	
	no effect $(DD) = 0$ $(DD) = 00$ $(C) = 0$	1 / 77 \
	RZ, WS, set $c(BR1) = 0$, $c(BR) = 00$, $c(S) =$	
		(B)=c(L)=175271
DV4-10	RC, WL	c(L) = 002506
		c(A) = 023271

Figure 32-41. Actual Division (Sheet 3 of 3)

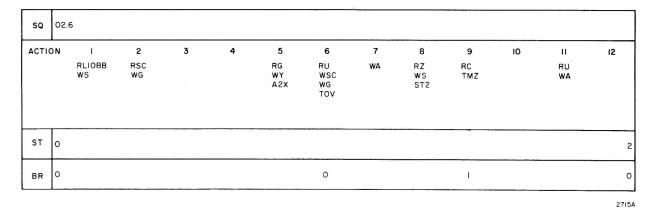
From there on the flow chart is self explanatory. Examples for the various branches are shown on sheet 2. Figure 32-35 through 32-40 demonstrate the execution of the first example. The quotient is entered into register L bit by bit as the low order part of the dividend is shifted (and complemented) bit by bit into register B via register Y and adder output gates (U). For details refer to figure 32-41.

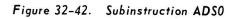
32-170. Action 7 of subinstruction DV4 complements the quotient if the quotient must be negative. Actions 9 and 10 recomplement the remainder if the remainder must be positive. Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next subinstruction as usual.

32-171. INSTRUCTION ADS E

32-172. Instruction ADS E (Add to Storage E) is a Basic Instruction which is represented by order code 02.6 and a 10 bit address. Instruction ADS E consists of subinstructions ADS0 and STD2, the execution of which takes two MCT's.

32-173. Instruction ADS E adds the quantity in register A to the quantity in location E of E Memory (or a CP register), stores the sum in A with overflow bit, and stores the sum in E without overflow bit if E represents an address in E Memory. The operation ADS E with $0024 \le E \le 1777$ can be formulated as follows:


- Set c(E) = b(E) + b(A) except positive or negative overflow bit.
 Set c(A) = b(E) + b(A) with positive or negative overflow bit.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction ADS E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.


Point (2) implies that instruction j is executed next.

32-174. Special Cases of ADS E:

- a. ADS A doubles the content of register A whereby any overflow bit is included in the new content of A.
- b. ADS L, ADS Q, and ADS Z also enter an overflow bit into registers L, Q, and Z, respectively.

r	r		//	and the state of the								
F												
Е		00030	~	• 00000		♦ 07530						
н							1					
s	6200 🔺 ws 0200					ws	2633					
(000200)												
G	G 026200 WG ♠ 000000			♥ 000030	RG WG▲OC	07530		•				
	•			×								
в	026200	RLIOBB						e Maria generalizati e da c				
	L	000	000	000	030	000000 002						
Α	007500	RSC			wsc	WA ¥ 000000	RC •	WA ▲ 007530				
L	1	RSC	•		wsc 🛦							
Q		RSC (wsc 🔺							
z	002633	RSC (•		wsc 🔺	RZ						
				a.	007530)	an a	007530				
U	002633				007530 • RL	RU						
Y	002632			WY T	(▼ 000030							
x	000000			A2X G	007500							
CI	J				• 0		**************************************					

- c. ADS EBANK, ADS FBANK, and ADS BBANK can be used but the particular read and write operations must be observed.
- d. ADS ZERO has no purpose.
- e. Instructions ADS E with $0010 \le E \le 0017$ follow the rules of paragraph 32-173.
- f. Instructions ADS E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-173 except that the sum is edited as it is entered into E.

32-175. When instruction ADS E is executed, action 1 of subinstruction ADS0 (row 34 of table 32-4) replaces the quantity contained in register S with the 10 bit address thus erasing the quarter code contained in S. The quantity from location E is entered into register G at time 2 or 4. Action 5 adds the quantities in G and A, and action 6 enters the sum into register G or into another CP register. At time 10, the sum without any overflow bit is entered into an E Memory location if one was addressed. If positive or negative overflow occurred during the addition, 000001 or 177776, respectively, is entered into register A by action 7, however, action 11 replaces this quantity by the sum including an overflow bit. Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-176. Figure 32-42 illustrates the execution of subinstruction AD0 of instruction ADS 0200. Initially, location 200 contains quantity 00030 and register A contains quantity 007500.

32-177. INSTRUCTION DAS E

32-178. Instruction DAS E (Double Add to Storage E) is a Basic Instruction which is represented by order code 02.0 and a 10 bit address. Instruction DAS E consists of subinstructions DAS0, DAS1, and STD2, the execution of which takes three MCT's.

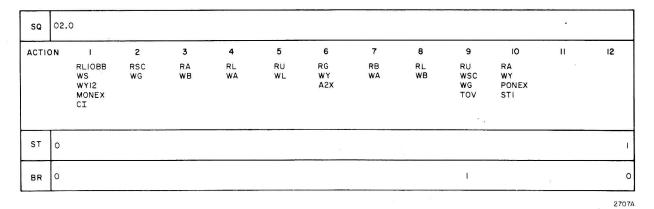
32-179. Instruction DAS E adds the double precision quantity contained in registers A and L to the double precision quantity stored at locations E and E+1 of E Memory (or two CP registers) and stores in A the overflow resulting from the addition as a whole. The operation DAS E with $0024 \le E \le 1776$ excluding the last address of any E Memory bank (table 32-2) can be formulated as follows:

Set c(E, E+1) = b(E, E+1) + c(A, L) where c(E) includes any overflow resulting from b(E+1) + c(L) but not any overflow resulting from the addition as a whole.

- Set c(A) = 000000 if no net overflow occurred. Set c(A) = 000001 if net positive overflow occurred. Set c(A) = 177776 if net negative overflow occurred. Set c(L) = 000000.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction DAS E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

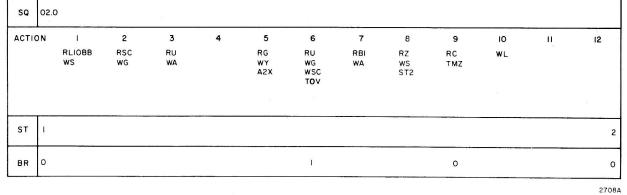
32-180. If an overflow occurs during the addition of b(E+1)+c(L), b(A) is incremented by one (in case of positive overflow), or decremented by one (negative overflow) before b(E) and c(A) are added. If positive or negative overflow occurs during the second addition, the quantity 000001 (positive overflow) or 177776 (negative overflow) is stored in A, otherwise the quantity 000000 is stored in A. The c(L) is set to 000000. The sum which is stored at E and E+1 may contain two different sign bits and 28 value bits.

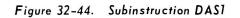

32-181. Special Cases of DAS E:

- a. DAS A, (alternate code DDOUBL for double precision double) doubles the double precision quantity contained in registers
 A and L whereby the final content of A includes any overflow bit resulting from the second addition, i.e., b(A) + [b(A) + overflow of first addition]. The b(A) must not include an overflow bit.
- b. DAS 0010 and DCA 0013 (table 30-4) are useful and follow the rules of paragraph 32-182.
- c. Any DAS E with $0000 \le E \le 0022$ must be used with extreme care so as not to destroy stored data; E must not be 0023 in order to prevent destruction of data in counter T2. Whenever locations 0020 through 0023 are involved, the sum is edited as it is stored.

32-182. When instruction DAS is executed, first the sum c(L)+c(E+1) is computed by subinstruction DAS0 which also stores the sum in location E+1, adds 000001 or 177776 to the b(A) if an overflow occurred, and stores this new quantity in the Adder. Thereafter, subinstruction DAS1 computes the sum c(A)+c(E) and stores it in location E.

FR-2-132


	r							
F							-	
E		20045		00000		2		▲ 17123
н		4 (1997) 4						
s	0143	WS 0143					3	
	000	0143				2		
G	020143	wg ▲ 00	0000	020045	RG •		WG 4 05712	23 •
						r F		
в	020143	RLIOBB	WB ▲ 00273I			RB ● WB ▲ O	00142	
	000	000000) (002731)		020	045 002731 00014	2)	2
A	002731	RSC •	RA • 037056	• 037056)	WA V 002731	wsc 🛦	RA
L	037056	RSC 🔶	RL	•	WL 000142	RL •	wsc 🛦	-
Q		RSC 🔶					wsc 🛓	
z	005345	RSC 🔶					wsc	
				000	0142		057123	002731
υ	005345	000142		RU	000142	057123	RU	
Y	005344	WY12 000143			WY	020045		WY V 002731
x	000000 • MONEX 177776					037056		• 000001
CI		●CI	1				11 11	• 0



FR-2-132

							-		
F			2				э		
E		36666		• 00000		<i>B</i>			▲01620
н							107	*	6
s	S 0143 WS 0142						WS ▲ 534	5	
	00	0142							
G	057123	WG	000000	♥036666	•RG WG	041620		P	•
	•	22							
в	000142	RLIOBB				2		RC	
		000	000			000001	005345	000142	000000
Α	002732	RSC	WA 00273	32	wsc	WA ¥ 000	0001		
L	000142	RSC			wsc	VSC WL1			w∟▼000000
Q		RSC			wsc				2 2 2
z	005345	RSC			wsc		RZ •		
			002732	03	6666 (04)	620			
υ	002732		●RU		041620	RU	-		
Y	00273I WY♥ 036666								
x	00000I A2X • 002732								
CI	0	0 • 0							
		24 B							

32-137

The Yul Programming System accomplishes this by replacing instruction DAS E with code DAS (E+1) which is wired into the program. As the AGC executes subinstruction DAS0, relevant address (E+1) is available first and is decremented by one. Subinstruction DAS1 then uses the decremented address E. For execution of subinstructions DAS0 and DAS1 refer to rows 35 and 36 of table 32-4. When double precision quantities are added to storage, address E must not be equal to the last address of any E Memory bank in order to allow (E+1) to be the next address in the same bank.

32-183. The execution of instruction DAS 0142 is illustrated in figures 32-43 and 32-44. The instruction is stored at location 5344. Location 0142 contains quantity 36666 and location 0143, quantity 20045 to which quantities 002731 and 037056, contained in registers A and L, are to be added. Note, that registers B, G, and S contain relevant address 0143 instead of 0142 at the start of subinstruction DAS0. Thus, E Memory enters quantity 20045 into register G at time 4 and action 6 enters the quantity into the Adder together with quantity 037056 which was temporarily stored in register A. Action 9 transfers the sum 057123 to register G from where it is entered into location (E+1) at time 10. Action 9 also tests the sum, finds a positive overflow bit and sets the branch flip-flops to 01. Because of this, the quantity 000001 is added to the original content of register A. (If no overflow had occurred, the quantity 000000 would have been added; if negative overflow had occurred, the quantity 17776 would have been added.)

32-184. Action 1 of subinstruction DAS0 decrements address (E+1) to obtain address E = 0142 which is temporarily stored in registers L and B before it is entered into register S by action 1 of subinstruction DAS1. The quantity 36666 is entered into register G at time 4 and entered into the Adder by action 5 together with the incremented quantity of A. The final sum is transferred to location E via register G. Because a positive overflow occurred during the second addition, action 7 enters the quantity 000001 into register A. (Otherwise, quantity 000000 or 177776 would have been entered.) Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-185. If address E has been 0000 (A), the first sum, 057123, would have been entered into register L by action 9 of DAS0 and action 10 of DAS1 would not have entered 000000 into L. Furthermore, action 11 of DAS1 would have replaced the quantity 000001 in A by the second sum 041620.

32-186. INSTRUCTION INCR E

32-187. Instruction INCR E (Increment E) is a Basic Instruction which is represented by order code 02.4 and a 10 bit address.

Instruction INCR E consists of subinstructions INCR0 and STD2, the execution of which takes two MCT's.

32-188. Instruction INCR E increments by one the quantity stored at location E in E Memory (or a CP register). The operation INCR E with $0024 \le E \le 1777$ can be formulated as follows:

(1) Set c(E) = b(E)+1 except overflow bit which is lost.

If overflow occurs when a certain counter is addressed, one of the following operations is requested by the Counter Priority Control:

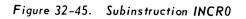
Counter A	ddressed	Operation
0025	тl	Instruction PINC 0024 or PINC T2 is executed. Δ
0026	Τ3	Instruction RUPT and RUPT Trans- fer Routine 3 are executed.
0027	Τ4	Instruction RUPT and RUPT Trans- fer Routine 4 are executed. \triangle
0030	Τ5	Instruction RUPT and RUPT Trans- fer Routine 5 are executed.

A Refer to table 30-4, EMA's 0024 and 0025.

2 Refer to tables 30-4 and 30-6.

- (2) Set c(B) = c(I+1) = j, I being the address of instruction INCR E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.


- 32-189. Special Cases of INCR E:
 - a. INCR A, INCR L, INCR Q, and INCR Z are useful. An incremented quantity entered into A, L, Q, or Z may also contain an overflow bit.

FR-2-132

F	a.		-		2					
E	22222		•00000					2222	3	
н										
s	4300	WS 0300				ws	2201			
	(0003	00)								
G	024300	wg ≬ 000000	022222	• RG	wo	022223		02222	23	
80		000000								
в	024300 •	RLIOBB								6
			(02	2222)	(02	2223 (022	2201			
A		RSC ●			wso	•				
L		RSC			wsc					
٩		RSC			wsc	•				
z	002201	RSC			wso	RZ	•			
							8			
U	002201				022223	●RU				
Y	002200		WY	▼022222		<				
×	000000			•000000	PONEX ● 000001					
CI	I	1 - 100 - Jan - Ja		• 0	• 0					
	T									
SQ	02.4									
ACTIO	ON I RLIC WS		R W T: T		NEX RU W	J R SC W	8 9 Z /S T2	10	Ш.	12

ST 0 2 BR 0 0

2714A

- b. INCR EBANK and INCR FBANK have no purpose. INCR BBANK can be used to increment the content of register EBANK.
- c. INCR ZERO has no purpose.
- d. Instructions INCR E with $0010 \le E \le 0017$ follow the rules of paragraph 32-188.
- e. Instructions INCR E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-188 except that the incremented quantity is edited as it is entered into location E.

32-190. When instruction INCR E is executed, action 1 of subinstruction INCR0 (row 37 of table 32-4) replaces the quantity contained in register S by the 10 bit address thus erasing the quarter code contained in S. The quantity from location E is entered into register G at time 2 or 4 and entered into the Adder by action 5. Action 6 adds the quantity 000001 to the content of the Adder. Action 7 enters the sum into register G from where it is transferred to location E in E Memory at time 10. If a CP register is addressed, the incremented quantity is entered by action 7. Action 7 also tests the incremented quantity for overflow and signals the Counter Priority Control if a certain counter is addressed. Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-191. Figure 32-45 illustrates the execution of subinstruction INCR0 of instruction INCR 0300. Location 0300 initially contains quantity 22222.

32-192. INSTRUCTION AUG E

32-193. Instruction AUG E (Augment E) is an Extra Code Instruction which is represented by order code 12.4 and a 10 bit address. Instruction AUG E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction AUG E consists of subinstructions AUG0 and STD2, the execution of which takes two MCT's.

32-194. Instruction AUG E increases by one the absolute value of the quantity stored at location E in E Memory (or a CP register). The operation AUG E with 0024 $\leq E \leq 1777$ can be formulated as follows:

(1) If c(E) is positive, set c(E) = b(E)+1, except overflow bit which is lost.
If c(E) is negative, set c(E) = b(E)-1, except overflow bit which is lost.

If overflow occurs when a certain counter is addressed, one of the following operations is requested by the Counter Priority Control:

Counter A	ddressed	Operation
0025	Τl	Instruction PINC 0024 or PINC T2 is executed. \triangle
0026	Τ3	Instruction RUPT and RUPT Trans- fer Routine 3 are executed.
0027	Τ4	Instruction RUPT and RUPT Trans- fer Routine 4 are executed. \triangle
0030	Τ5	Instruction RUPT and RUPT Trans- fer Routine 5 are executed.

 \triangle Refer to table 30-4, EMA's 0024 and 0025

Refer to tables 30-4 and 30-6.

- (2) Set c(B) = c(I+1) = j, I being the address of instruction AUG E, and j being the instruction stored at location (I+1). Set c(S) = relevant address of j. Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-195. Special Cases of AUG E

- a. AUG A, AUG L, AUG Q, and AUG Z are useful. An augmented quantity entered into A, L, Q, or Z may also contain an over-flow bit.
- b. AUG EBANK and AUG FBANK have no purpose. AUG BBANK can be used to increment or decrement the content of register EBANK if bit 16 of register FBANK is known.
- c. AUG ZERO has no purpose.
- d. Instructions AUG E with $0010 \le E \le 0017$ follow the rules of paragraph 32-194.

e. Instructions AUG E with $0024 \le E \le 0023$ also follow the rules of paragraph 32-194 except that the augmented quantity is edited as it is entered into location E.

32-196. The execution of instruction AUG E is similar to that of instruction INCR E. Action 6 of subinstruction INCR0 (row 37 of table 32-4) always adds the quantity 000001 (plus one) to the content of location E. Action 6 of subinstruction AUG0 (row 38) adds the quantity 000001 to the content of E only if location E contains a positive quantity and enters 177776 (minus one) if E contains a negative quantity.

32-197. INSTRUCTION DIM E

32-198. Instruction DIM E (Diminish E) is an Extra Code Instruction which is represented by order code 12.6 and a 10 bit address. Instruction DIM E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction DIM E consists of subinstructions DIM0 and STD2, the execution of which takes two MCT's.

32-199. Instruction DIM E decreases by one the absolute value of the quantity stored at location E in E Memory (or a CP register). The operation DIM E with $0024 \le E \le 1777$ can be formulated as follows:

- (1) If c(E) is positive nonzero, set c(E) = b(E)-1.
 If c(E) is negative nonzero, set c(E) = b(E)+1.
 If c(E) is plus or minus zero, set c(E) = b(E).
- (2) Set c(B) = b(I+1) = j, I being the address of instruction DIM E, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-200. Special Cases of DIM E:
 - a. DIM A, DIM L, DIM Q, and DIM Z are useful.
 - b. DIM EBANK and DIM FBANK have no purpose. DIM BBANK can be used to decrement or increment the content of register EBANK if the content of bit position 16 of register FBANK is known.
 - c. DIM ZERO has no purpose.

- d. Instructions DIM E with $0010 \le E \le 0017$ follow the rules of paragraph 32-199.
- e. Instructions DIM E with $0020 \le E \le 0023$ also follow the rules of paragraph 32-199 except that the augmented quantity is edited as it is entered into location E.

32-201. The execution of instruction DIM E is similar to that of instructions INCR E and AUG E. Action 6 of subinstruction DIM0 (row 39 of table 32-4) adds the quantity 177776 to the content of location E if E contains a positive nonzero quantity, adds the quantity 000001 if E contains a negative nonzero quantity, and adds the quantity 000000 if E contains plus or minus zero.

32-202. INSTRUCTION MSU E

32-203. Instruction MSU E (Modular Subtract E) is an Extra Code Instruction which is represented by order code 12.0 and a 10 bit address. Instruction MSU E must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction MSU E consists of subinstructions MSU0 and STD2, the execution of which takes two MCT's.

32-204. Instruction MSU computes the ONE's complement difference from the cyclic TWO's complement numbers stored in register A and location E. The operation MSU E with $0024 \le K \le 1777$ can be formulated as follows:

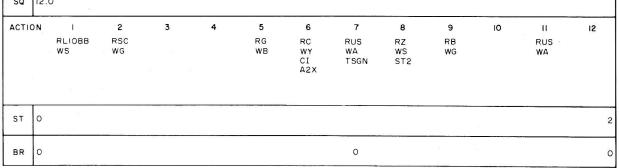
- Set c(A) = b'(A)-c'(E) where b'(A) and c'(E) are cyclic TWO's complement numbers and c(A) is a ONE's complement number.
- Set c(B) = c(I+1) = j, I being the address of instruction MSU E and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
- Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) represent an address in E Memory.

Point (2) implies that instruction j is executed next.

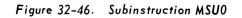
- 32-205. Special Cases of MSU E
 - a. MSU A enters 000000 into A whether bits 16 and 15 of b(A) agree or not.
 - b. Register L, Q, Z, EBANK and FBANK normally do not contain cyclic TWO's complement numbers.

- c. MSU ZERO does not change the content of register A if bit position 16 of A contains a ZERO but decrements by one the c(A) if bit position 16 of A contains a ONE.
- d. Locations 0010 through 0024 normally do not contain cyclic TWO's complement numbers.

32-206. Many navigational computations require the calculation of the difference of two angles. Angular information stored in several counters (table 30-4) is expressed in cyclic TWO's complement numbers. Instruction MSU E is provided to calculate the difference of two cyclic TWO's complement numbers and to supply the angular difference in a ONE's complement number for use in further calculations.


32-207. Cyclic TWO's complement numbers contained in a memory location E indicate angular quantities as shown below.

c(E)	angle	c(A)
00000	00	000000
10000	450	010000
20000	900	020000
30000	135°	030000
40000	$180^{\circ} = -180^{\circ}$	140000
50000	$225^{\circ} = -135^{\circ}$	150000
60000	$270^{\circ} = -90^{\circ}$	160000
70000	$315^{\circ} = -45^{\circ}$	170000
00000	$360^{\circ} = 0^{\circ}$	000000


When these quantities are transferred from a location E to register A, the quantities shown in the third column appear in A.

32-208. Before instruction MSU E is executed, one cyclic TWO's complement number, the minuend, is entered into register A. When instruction MSU E is executed, the subtrahend is transferred from location E to register G at time 4 of subinstruction MSU E (row 40 of table 30-4). Action 6 enters the minuend into register X of the Adder, the complemented subtrahend into register Y, and forces a carry bit into bit position one, thus performing the addition in TWO's complement arithmetic (as during instruction MP). Action 7 enters bit 15 (normally the overflow bit) provided by the output gates into bit positions 16 and 15 of register A while the other bits provided by the Adder are entered into the corresponding bit positions of register A.

F			- dentrador de la composición de la comp		A 21	2				
E		35555 00000				5	2		♦ 035555	
н					2	а 	9 11 12			5. S. S. S. S.
s	0500	WS 0500					ws 🛦	1330	2	
	000	500								
G	020500	WG 🖡	000000	♥ 035555	RG			WG ▲ 03555	5 •	
	035555 001330 000032									
в	020500	RLIOBB		WB V	035555	• RC		RB •		
n.	•	6000								
А	143333	RSC	1			WA	005556		WA	005556
L		RSC								
Q		RSC	8	2						
z	001330	RSC					RZ ●			
					(142	222 004	412		005	556
U	001330					105556	RUS		RUS)
Y	001327				WY	142222	H			
x	000000	000000 A2x • 143333								
CI	Į į									
		a.								
sq	12.0									in indraadaa

2783A

32-209. Action 7 also tests bit 15 provided by the Adder. If bit 15 is a ZERO, indicating that the difference angle is positive (smaller than 180°) no action is taken at time 10 and the c(A) is the final angle difference. If bit 15 is a ONE, indicating that the difference angle is negative (180° or larger), the quantity one is subtracted from the c(A) to convert the cyclic TWO's complement number to a ONE's complement number. Action 9 returns the subtrahend to register G for restoring in E Memory and action 8 enters the address of the next instruction into register S. Subinstruction STD2 calls forward the next instruction as usual.

32-210. Figure 32-46 illustrates the execution of subinstruction MSU0 of instruction MSU 0500. The minuend is 43333, c(A) = 143333, and the sub-trahend is 35555. The remainder is 05556.

32-211. Further examples are given to demonstrate various operational conditions.

a. Assume $c(E1) = 30000 (135^{\circ})$ and $c(E2) = 20000 (90^{\circ})$. By transferring c(E1) to register A and executing MSU E2, the following computation is performed:

c(Y) = c(A = 030000 $c(X) = \overline{c(E2)} = 157777$ CI = 1 c(U) =010000 no carry around because of control pulse CI 010000 (45°) final c(A) =010000 if the result is transferred to location E3. c(E3) =Assume $c(E1) = 70000 (315^{\circ})$ and $c(E2) = 60000 (270^{\circ})$ and b. the same operation is performed. c(Y) = c(A) = 170000 $c(X) = \overline{c(E)} = 017777$ CI = = 010000c(U)final c(A) = $010000 (45^{\circ})$ c(E3) = 010000Assume $c(E1) = 50000 (225^{\circ})$ and $c(E2) = 30000 (135^{\circ})$ с. c(Y) = c(A) = 150000 $c(X) = \overline{c(E2)} = 147777$ CI = 1 = 120000c(U)final c(A) = 020000 c(U15) is entered into A16 and A15 as in all examples c(E3) = 020000

Assume $c(E1) = 10000 (45^{\circ})$ and $c(E2) = 70000 (315^{\circ})$. d. c(Y) = c(A) = 010000 $c(X) = \overline{c}(E2) = 017777$ CI = 1 c(U)= 020000final c(A) = 020000 = 020000c(E3) Assume $c(E1) = 20000 (90^{\circ})$ and $c(E2) = 30000 (135^{\circ})$. e. c(Y) = c(A) = 020000 $c(X) = \overline{c(E2)} = 147777$ CI = 1 = 170000c(U)c(A) = 170000177776 because a ONE was entered into A16 plus = 167777c(U)final c(A) = 167777 $= 67777 = -10000 (-45^{\circ})$ c(E3) f. Assume $c(E1) = 60000 (270^{\circ})$ and $c(E2) = 70000 (315^{\circ})$. c(Y) = c(A) = 160000 $c(X) = \overline{c}(E2) = 007777$ CI = 1 c(U)= 170000= 170000c(A) 177776 plus c(U)= 167777= 167777final c(A) $= 67777 = -10000 (-45^{\circ})$ c(E3) g. Assume $c(E1) = 30000 (135^{\circ})$ and $c(E1) = 30000 (135^{\circ})$ and $c(E2) = 50000 (225^{\circ})$ c(Y) = c(A) = 030000 $c(X) = \overline{c(E2)} = 027777$ CI = 1 c(U)= 060000 = 160000c(A)plus 177776 = 157777c(U)= 157777final c(A) $= 57777 = -20000 (-90^{\circ})$ c(E3)

h. Assume $c(E1) = 70000 (315^{\circ})$ and $c(E2) = 10000 (45^{\circ})$.

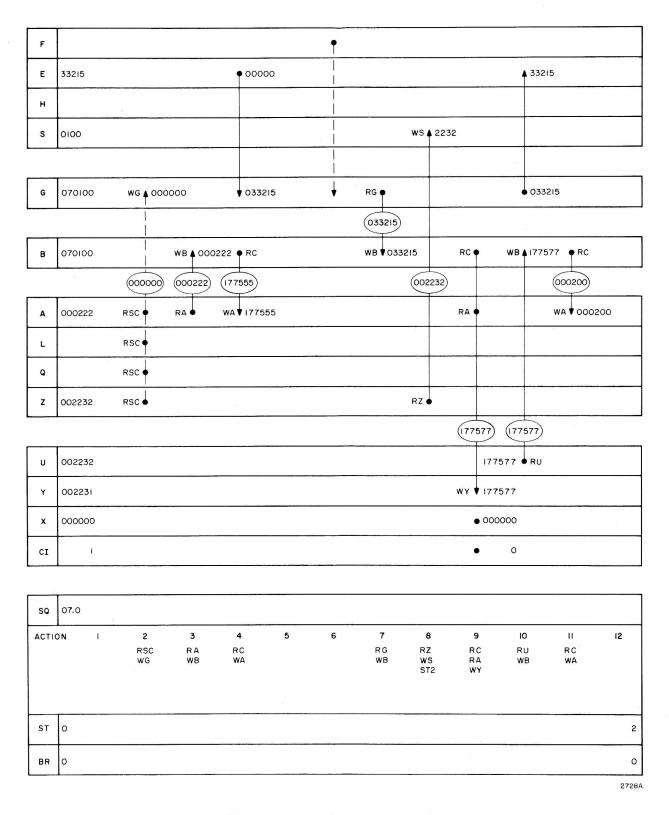
c(Y) = c(A) = 170000 $c(X) = \overline{c}(E2) = 167777$ CI Ξ 1 = 160000c(U)= 160000c(A)plus 177776 = 157777c(U)final c(A) = 157777c(E3) $= 57777 = -20000 (-90^{\circ})$

32-212. INSTRUCTION MSK K

32-213. Instruction MSK K (Mask with K) is a Basic Instruction which is represented by order code 07. and a 12 bit address. The alternate spelling of MSK K is MASK K. Instruction MSK K consists of subinstructions MSK0 and STD2, the execution of which takes two MCT's.

32-214. Instruction MSK performs the Boolean operation AND (symbol \wedge) with the content of register A and the data stored at location K. The truth table for each bit position of A and K is shown below.

А	K	AvK
0	0	0
0	1	0
1	0	0
1	1	1


The operation MSK K with $0024 \le K \le 7777$ can be formulated as follows:

- Set c(A) = b(A) ∧ c(K) whereby bit 15 of c(K) is AND'd with bits 16 and 15 of c(A).
- Set c(B) = c(I+1) = j, I being the address of instruction MSK K, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
- Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) represent an address in E Memory.
- 32-215. Special Cases of MSK K.

a. MSK A has no purpose.

b. MSK L, MSK Q, and MSK Z also AND the overflow bits.

FR-2-132

- c. MSK ZERO sets c(A) = 000000.
- d. Instructions MSK K with $0010 \le K \le 0023$ follow the rules of paragraph 32-17. (The content of K is not edited when being restored.)

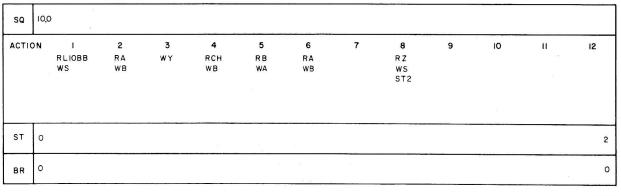
<u>32-216.</u> Instruction MSK K in reality performs the Boolean OR operation $\overline{b}(A) \vee \overline{c}(K)$ instead of the AND operation $b(A) \wedge c(K)$, both having the same effect. When instruction MSK K is executed, the quantity from location K is entered into register G at time 2, 4, or 6 of subinstruction MSK0 (row 41 of table 32-4), and into register B by action 7. Actions 3 and 4 complement the content of register A. Action 9 enters the complemented content of register B (control pulse RC) and the complemented content of register A (control pulse RA) onto the WA's and into register Y. The quantity $\overline{b}(A) \vee \overline{c}(K)$ is provided by the output gates of the Adder. Actions 10 and 11 complement this quantity, enter the complemented quantity, which is the final result $\overline{b}(A) \vee \overline{c}(K) =$ $b(A) \wedge c(K)$, into register A. Action 8 enters the address of the next instruction into register Z and subinstruction STD2 calls forward the next instruction as usual.

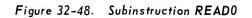
32-217. Figure 32-47 illustrates the execution of subinstruction MSK0 of instruction MSK 0100. The quantities AND'd are 000222 and 033215.

32-218. CHANNEL INSTRUCTIONS

32-219. INSTRUCTION READ H

32-220. Instruction READ H (Read H) is a Channel Instruction which is represented by order code 10.0 and a 9 bit channel address (table 30-5). Instruction READ H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction READ H consists of subinstructions READ0 and STD2, the execution of which takes two MCT's.


32-221. Instruction READ H enters the content of channel H into register A. The operation READ H with $005 \le H \le 033$ can be formulated as follows:


- Set c(A) = c(H) whereby bit H15 is entered into bit positions A16 and A15.
 Retain c(H).
- (2) Set c(B) = c(I+1) = j, I being the address of instruction READ H and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.

FR-2-132

					and the second second			
F								
E		5		2 K (2)		5		
н		00011	RCH					
s	0015	WS 0015	2			ws	2333	
P	000	0015	000	011				
G	000015							
			5		2	002	333	2
в	000015	RL1088 WB 033412	₩В 🔻	000011 • RB WB	▲000011			
		033412		000011 00	0011			
A	033412	RA •		WA ¥ 000011	• RA			
L	a							
Q								
z	002333		2			RZ	002333	

U	002333	• 000000	
Y	002332	₩Y ● 000000	
×	000000	• 000000	
CI	I		

2830A

- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-222. Special Cases of READ H:
 - a. READ L and READ Q enter all sixteen bits of c(L) or c(Q) into A.
 - b. READ 003 and READ 004 enter fourteen bits of c(SCALER2) or c(SCALER1) into A.
 - c. Instructions READ H with $005 \le H \le 033$ follow the rules of paragraph 32-221.
 - d. Channels 034 and 035 (downlink channels) cannot be read by a Channel Instruction, therefore 000000 is entered into A.

32-223. When instruction READ H is executed, the quantity from channel H is entered into register B by action 4 of subinstruction READ0 (row 42 of table 30-4), and action 5 transfers the quantity to register A. Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-224. Figure 32-48 illustrates the execution of subinstruction READ0 of instruction READ 015, channel 15 containing the quantity 00011, a keycode from the keyboard of the main panel DSKY.

32-225. INSTRUCTION WRITE H

32-226. Instruction WRITE H (Write H) is a Channel Instruction which is represented by order code 10.1 and a 9 bit channel address (table 30-5). Instruction WRITE H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction WRITE H consists of subinstructions WRITE0 and STD2, the execution of which takes two MCT's.

32-227. Instruction WRITE H enters the content of register A into channel H. The operation WRITE H with $005 \le H \le 014$ can be formulated as follows:

 Set c(H) = c(A) whereby bit A15 is entered into bit position H15 and bit A15 is not transferred.
 Keep c(A).

- (2) Set c(B) = c(I+1) = j, I being the address of instruction WRITE H, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z) + 1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-228. Special Cases of WRITE H
 - a. WRITE L and WRITE Q enter all sixteen bits of c(A) into L or Q.
 - b. SCALER2 and SCALER1 cannot be written into by a Channel Instruction.
 - c. Instruction WRITE H with $005 \le H \le 014$ follow the rules of paragraph 32-327.
 - d. Channels 15 through 33 cannot be written into by a Channel Instruction.
 - e. WRITE 034 and WRITE 035 enter bits A16, A14 through A1, and a parity bit into channel 034 or 035.

32-229. The execution of instruction WRITE H is similar to that of instruction READ H. (Compare rows 42 and 43 of table 30-4.) Action 5 of subinstruction READ0 transfers the channel information from register B to register A. Action 5 of subinstruction WRITE0 transfers the content of register A to the addressed channel.

32-230. INSTRUCTION RAND H

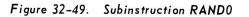
32-231. Instruction RAND H (Read and AND H) is a Channel Instruction which is represented by order code 10.2 and a 9 bit channel address (table 30-5). Instruction RAND H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction RAND H consists of subinstructions RAND0 and STD2, the execution of which takes two MCT's.

32-232. Instruction RAND H performs the Boolean operation AND (symbol \wedge) with the contents of register A and channel H and stores the logical product in A. The truth table for each bit of c(A) and c(H) is shown below.

А	Н	A∧H
0	0	0
0	1	0
1	0	0
1	1	1

The operation RAND H with $005 \le H \le 033$ can be formulated as follows:

- (1) Set c(A) = b(A) ∧ c(H) whereby bits A16 and A15 are AND'd with bit H15.
 Retain c(H).
- Set c(B) = c(I+1) = j, I being the address of instruction RAND H, j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.


Point (2) implies that instruction j is executed next.

- 32-233. Special Cases of RAND H:
 - a. RAND L and RAND Q make use of all sixteen bits in L or Q to form the logical product.
 - b. RAND 003 and RAND 004 can be used to form a logical product with the fourteen bits in SCALER2 or SCALER 1.
 - c. Instructions RAND H with $005 \le H \le 033$ follow the rules of paragraph 32-236.
 - d. RAND 034 and RAND 035 cannot form a logical product because downlink channels cannot be read by a Channel Instruction; 000000 is entered into A.

32-234. Instruction RAND H in reality performs $\overline{b}(A) \vee \overline{c}(H) = m$; $c(A) = \overline{m}$ which supplies the same result. When instruction RAND H is executed, action 1 of subinstruction RAND0 (row 44 of table 32-4) replaces the quantity in register S by a 10 bit address, thus erasing two bits of the eighth code. Actions 2 and 3 complement the b(A) and enter the complemented quantity into the Adder which supplies the $\overline{b}(A)$ at its output gates (U). Action 4 enters c(H) into register B. Action 5 reads $\overline{c}(H)$ from the complement side of register B and $\overline{b}(A)$ from the output gates both onto the WA's and into register A thus forming $\overline{b}(A) \vee \overline{c}(H)$. Actions 6 and 7 complement the content of A to provide the desired logical product.

		2							
F				17					
E									
н	54321	RCH	27				8 - 10070510		
s	2010 • WS 0010					WS 2033			
	000010	1543	321						
G	002010								
	1		3		n.				
в	002010 ● RL 10BB	RC	WB RC 154321 •	₩B 167476	RC	1			
	012345 (16	5432	023456 (167476 (0)	0301 001	033			1
A	012345 RA		WA 167456	6 • RA W	010301				
L						s			
Q									
z	002033				RZ	002033			
L			(165432)						J
U	002033	165432	RU						
Y	002032 W	Y ♥165432			a - 1997 - 1995 - 9 - 19 - 19 - 19 - 19 - 19 - 1	20			
x	000000	• 000000		and a second			·····		
CI	l	• 0							
L									
SQ	10.2					1. 5360		z	
ACTIC	I N I 2	3 4	5	6	7 4	8 9	10	U U	12
		RC RC WY WE		RA		z vs			
	ws we	WE WE	WA	WD	11A W				
9									
ST	0							- 1.57	2
BR	0				- de o e				0
	1				83- S. S. S.	20.00			

2832A

Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-235. Figure 32-49 illustrates the execution of subinstruction RAND0 of instruction RAND 010, AND'ing quantities 012345 and 154321, the logical product being 010301.

32-236. INSTRUCTION WAND H

32-237. Instruction WAND H (Write and AND H) is a Channel Instruction which is represented by order code 10.3 and a 9 bit channel address (table 30-5). Instruction WAND H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction WAND H consists of subinstructions WAND0 and STD2, the execution of which takes two MCT's.

32-238. Instruction WAND H forms the logical product described in paragraph 32-232 and stores it in register A and in channel H. The operation WAND H with $005 \le H \le 014$ can be formulated as follows:

- (1) Set c(H) = c(A) = b(A) ∧ b(H) whereby bits Al6 and Al5 are AND'd with bit H15.
 Retain c(H).
- (2) Set c(B) = c(I+1) = j, j being the address of instruction WAND H, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-239. Special Cases of WAND H:
 - a. WAND L and WAND Q make use of all sixteen bits in L or Q to form the logical product.
 - b. WAND 003 and WAND 004 cannot enter the logical product into SCALER2 or SCALER1.
 - c. Instructions WAND H with $005 \le H \le 014$ follow the rules of paragraph 32-238.
 - d. Instructions WAND H with $015 \le H \le 033$ cannot enter the logical product into these channels.

e. WAND 034 and WAND 035 cannot form a logical product because downlink channels cannot be read by a Channel Instruction; 000000 is entered into A and H.

32-240. The execution of instruction WAND H is similar to that of instruction RAND H. (Compare rows 44 and 45 of table 32-4.) Action 7 of subinstruction WAND0 also enters the logical product into the addressed channel.

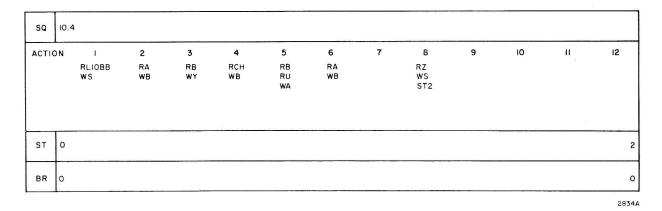
32-241. INSTRUCTION ROR H

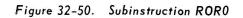
32-242. Instruction ROR H (Read and OR H) is a Channel Instruction which is represented by order code 10.4 and a 9 bit channel address (table 30-5). Instruction ROR H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction ROR H consists of subinstructions ROR0 and STD2, the execution of which takes two MCT's.

32-243. Instruction ROR H performs the Boolean operation OR (symbol v) with the contents of register A and channel H, and stores the logical sum in A. The truth table for each bit of c(A) and c(H) is shown below.

A	Н	AvH
0	0	0
0	1	1
1	0	1
1	1	1

The operation ROR H with $005 \le H \le 033$ can be formulated as follows:


- Set c(A) = b(A) v c(H) whereby bits A16 and A15 are OR'd with bit H15.
 - Retain c(H).
- Set c(B) = c(I+1) = j, I being the address of instruction ROR H, and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 - Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.


Point (2) implies that instruction j is executed next.

- 32-244. Special Cases of ROR H:
 - a. ROR L and ROR Q make use of all sixteen bits in L or Q to form the logical sum.

32-158

	Γ	approx proves					
F							
E							
н	54321	RCH					
s	4030 WS 0030 WS 1346						
	000030 (154321)						
G	004030						
в	B 004030 ●RLI0BB ▲012345 ●RB WB♥154321 ●RB WB▲156365						
	012345 012345 154321 156535 001346						
A	012345 RA	WA	156535 • RA				
L							
Q							
z	002346		RZ ● 002346				
	•	012	2345				
U	002346	012345 RU					
Y	002345 WY	012345					
x	000000	000000					
CI	ī	• 0					

- b. ROR 003 and ROR 004 can be used to form a logical sum with the fourteen bits in SCALER2 or SCALER1.
- c. Instructions ROR H with $005 \le H \le 033$ follow the rules of paragraph 32-243.
- d. ROR 034 and ROR 035 cannot form a logical sum because downlink channels cannot be read by a Channel Instruction; b(A) is retained in A.

32-245. When instruction ROR H is executed, action 1 of subinstruction ROR0 (row 45 of table 32-4) replaces the quantity in register S by a 10 bit address plus erasing two bits of the eighth code. Actions 2 and 3 enter the content of register A into the Adder which supplies the c(A) at its output gates (U). Action 4 enters c(H) into register B. Action 5 reads b(A) from the Adder and c(H) from register B into the WA's and into register A, thus forming b(A) v c(H). Action 8 enters the address of the next instruction into register S and subinstruction STD2 calls forward the next instruction as usual.

32-246. Figure 32-50 illustrates the execution of subinstruction ROR0 of instruction ROR 030, OR'ing quantities 012345 and 154321, the logical sum being 156365.

32-247. INSTRUCTION WOR H

32-248. Instruction WOR (Write and OR H) is a Channel Instruction which is represented by order code 10.5 and a 9 bit channel address (table 30-5). Instruction WOR H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction WOR H consists of subinstructions WORO and STD2, the execution of which takes two MCT's.

32-249. Instruction WOR forms the logical sum described in paragraph 32-243 and stores it in register A and in channel H. The operation WOR H with $005 \le H \le 013$ can be formulated as follows:

- (1) Set $c(H) = c(A) = b(A) \vee b(H)$ whereby bits A16 and A15 are OR'd with bit H15.
- Set c(B) = c(I+1) = j, I being the address of instruction WOR H and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z)+1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

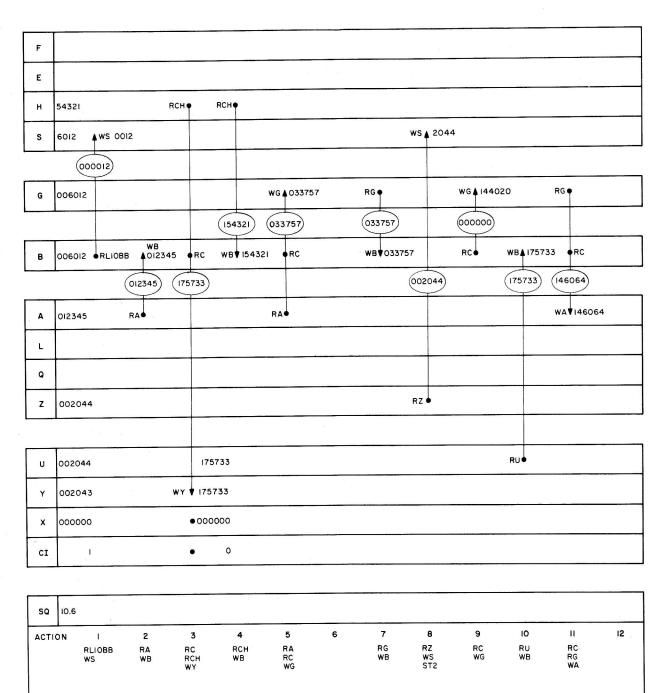
32-250. Special Cases of WOR H:

- a. WOR L and WOR Q make use of all sixteen bits in L or Q to form the logical sum.
- b. WOR 003 and WOR 004 cannot enter the logical sum into SCALER2 or SCALER1.
- c. Instructions WOR H with $015 \le H \le 014$ follow the rules of paragraph 32-249.
- d. Instructions WOR H with $015 \le H \le 033$ cannot enter the logical sum into these channels.
- e. ROR 034 and ROR 035 cannot form a logical sum because downlink channels cannot be read by a Channel Instruction, b(A) is entered into A and H.

32-251. The execution of instruction WOR H is similar to that of instruction ROR H. (Compare rows 46 and 47 of table 32-4.) Action 5 of subinstruction WOR0 enters the logical sum into the addressed channel also.

32-252. INSTRUCTION RXOR H

32-253. Instruction RXOR H (Read and Exclusive OR H) is a Channel Instruction which is represented by order code 10.6 and a 9 bit channel address (table 30-5). Instruction RXOR H must be preceded by Special Instruction EXTEND which enters a ONE into bit position EXT of register SQ. Instruction RXOR H consists of subinstructions RXOR0 and STD2, the execution of which takes two MCT's.


32-254. Instruction RXOR H performs the Boolean Operation Exclusive OR (symbol \forall) with the contents of register A and channel H, and stores the logical result in A. The truth table for each bit of c(A) and c(H) is shown below.

А	Н	A+H
0	0	0
0	1	1
1	0	1
1	1	0

The operation RXOR H with $005 \le H \le 033$ can be formulated as follows:

(1) Set c(A) = b(A) + c(H) whereby bits A16 and A15 are XOR'd with bit H15. Retain c(H).

FR-2-132

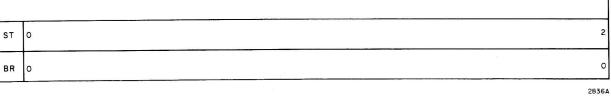


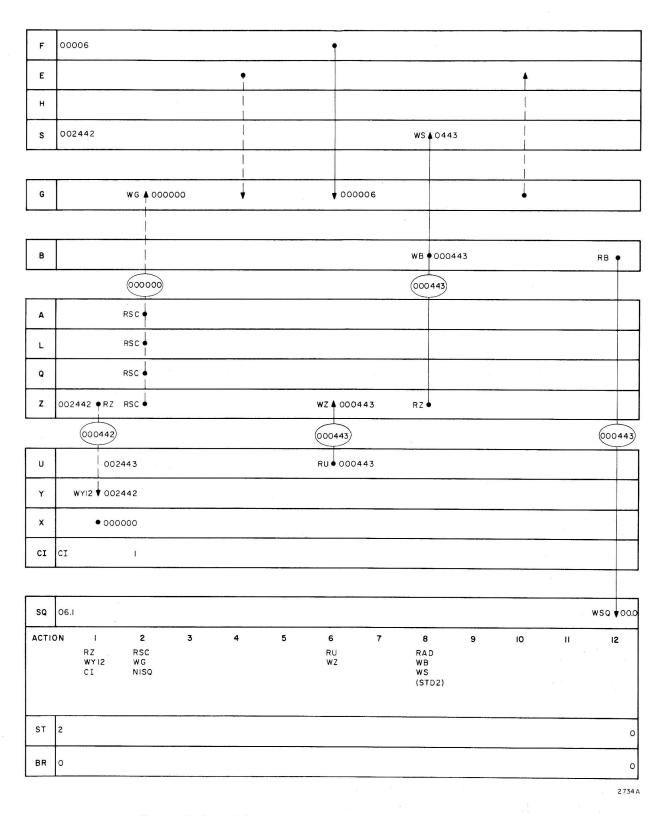
Figure 32-51. Subinstruction RXOR0

- (2) Set c(B) = c(I+1) = j, I being the address of instruction RXOR H and j being the instruction stored at location (I+1).
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = b(Z) + 1 = I+2.
- (4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

- 32-255. Special Cases of RXOR H:
 - a. RXOR L and RXOR Q make use of all sixteen bits in L or Q to form the Exclusive OR.
 - b. RXOR 003 and RXOR 004 can be used to form an Exclusive OR with the fourteen bits in SCALER2 or SCALER1.
 - c. Instructions RXOR H with $005 \le H \le 033$ follow the rules of paragraph 32-254.
 - RXOR 034 and RXOR 035 cannot form an Exclusive OR because downlink channels cannot be read by a Channel Instruction; b(A) is retained in A.

32-256. Instruction RXOR H in reality performs $b(A) \vee c(H) = m$, $\overline{b}(A) \vee c(H) = n$, $c(A) = \overline{m} \vee \overline{n}$, which supplies the same result. When instruction RXOR H is executed, action 1 of subinstruction RXOR0 (row 48 of table 32-4) replaces the quantity in register S by a 10 bit address, thus erasing two bits of the eighth code. Actions 2 and 3 form $\overline{b}(A) \vee c(H) = n$ which is entered into the Adder. Actions 4 and 5 form $b(A) \vee \overline{c}(H) = m$ which is entered into register G. Actions 7 and 9 form \overline{m} which is stored in register G, and actions 10 and 11 form $\overline{m} \vee \overline{n}$ which is entered into register S and subinstruction STD2 calls forward the next instruction as usual.


32-257. Figure 32-51 illustrates the execution of subinstruction RXOR0 of instruction RXOR 012, XOR'ing the quantities 012345 and 154321 and providing 146064.

32-258. SPECIAL INSTRUCTIONS

32-259. INSTRUCTION EXTEND

32-260. Instruction EXTEND is a Special Instruction which is represented by order code 00.0006. Instruction EXTEND causes the execution of subinstruction STD2 which takes one MCT.

FR-2-132

32-261. Instruction EXTEND enters a ONE into bit position EXT of register SQ to execute next an Extra Code Instruction. The operation EXTEND can be formulated as follows:

- Enter a ONE into bit position EXT of register SQ and set flipflip INHINT/RELINT.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction RELINT, and j being the instruction stored at location I+1.
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = c(Z+1) = I+2.
- (4) Restore c(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-262. As the instruction preceeding EXTEND is executed, its last subinstruction (STD2, TC0, BZF0, BZMF0, MP3, or RSM3) enters the order code of instruction EXTEND into register G at time 2, 4, or 6. (Compare figure 32-52 with figures 32-1, 32-2, 32-8, and 32-27.) Register G recognizes the presence of code 0.0006 and control pulses RZ and ST2 are generated at time 8 instead of control pulse RG in reply to control pulse RAD. Furthermore, a ONE is entered into bit position EXT of register SQ, and flip-flop INHINT/RELINT is set. Action 8 transfers the address of the next instruction from register Z to registers B and S, and the order code 00.0 is transferred to register SQ at time 12. Thereafter, subinstruction STD2 is executed to call forward the Extra Code Instruction following instruction EXTEND. During the execution of the last subinstruction of the Extra Code Instruction, except for instruction NDX K, bit position EXT and flip-flop INHINT/RELINT are reset.

32-263. INSTRUCTION INHINT

32-264. Instruction INHINT (Inhibit Interrupt) is a Special Instruction which is represented by order code 00.0004. Instruction INHINT causes the execution of subinstruction STD2 which takes one MCT.

32-265. Instruction INHINT commands the Sequence Generator (SQG) to refuse to accept any request for the execution of instruction RUPT. The operation INHINT can be formulated as follows:

- (1) Set flip-flop INHINT/RELINT.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction RELINT, and j being the instruction stored at location I+1.
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.

(3) Set c(Z) = c(Z+1) = I+2.

(4) Restore c(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-266. The execution of instruction INHINT is similar to that of instruction EXTEND described in paragraph 32-262. When register G recognizes the presence of code 00.0004, control pulses RZ and ST2 are generated instead of control pulse RG at time 8, flip-flop INHINT/RELINT is set, but bit position EXT of register SQ is not set.

32-267. INSTRUCTION RELINT

32-268. Instruction RELINT (Release Interrupt Inhibit) is a Special Instruction which is represented by order code 00.0003. Instruction RELINT causes the execution of subinstruction STD2 which takes one MCT.

32-269. Instruction RELINT commands the Sequence Generator (SQG) to accept any request for the execution of a RUPT instruction. The operation RELINT can be formulated as follows:

- (1) Reset flip-flop INHINT/RELINT.
- (2) Set c(B) = c(I+1) = j, I being the address of instruction RELINT, and j being the instruction stored at location I+1.
 Set c(S) = relevant address of j.
 Set c(SQ) = order code of j.
- (3) Set c(Z) = c(Z+1) = I+2.
- (4) Restore c(I+1) if (I+1) represents an address in E Memory.

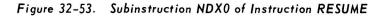
Point (2) implies that instruction j is executed next.

32-270. The execution of instruction RELINT is similar to that of instructions EXTEND and INHINT described in paragraphs 32-262 and 32-266. When register G recognizes the presence of code 00.0003, control pulses RZ and ST2 are generated instead of control pulse RG at time 8, flip-flop INHINT/RELINT is reset, and bit position EXT of register SQ is not set.

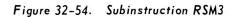
32-271. INSTRUCTION RESUME

32-272. Instruction RESUME (Resume Interrupted Program) is a Special Instruction which is represented by order code 05.0017. Instruction RESUME consists of subinstruction NDX0 and RSM3, the execution of which takes two MCT's.

FR-2-132


F						
E	31234		•00000		▲31234	
н						
s	0017			WS ≜ 2064		
		-	ē			
G	050017	wG4000000	₹031234	RG●	WG▲031234 ●	
	8 N	000000	da de la composición	031234 00206	031234	
в	050017			WB▼03I234	RB	
A	2	RSC	5			
L		RSC				
Q		RSC				
z	002064	RSC	10 m	RZ •		
	8		an a			
υ	002064		2.	en de la constante de la consta		
Y	002063	Ale Ale a construction and a construction of the construction of t	and the second	· · · · · · · · · · · · · · · · · · ·		
x	000000					

SQ 05.0 7 ACTION 1 2 3 4 5 6 8 9 10 П 12 RSC WG RG WB RZ WS RB WG TRSM STI ST O 3 BR O 0


CI

1

2716**A**

	1				e come à com								
F						a				••••••			
E	02	531		• 00	000		-				▲ 31	234	
н							·						
S	ws≰oc	015				0		WS 🛦 1234					9
	000015)						031234					
G	031234	WG 4 000	000	▼ 02	531 • RG	WG ▲0312	34	RG •	ja.	11 K ⁵⁰		3	1
					02531	031234		031234					
в	031236					RB •		WB 0312	34			RB	•
		000000										(03	1234)
Α											и н тара н		F
L	,	RSC •									(- 1., - 1., - 1 ., - 1.)		
Q		RSC •		,		•				2. 2.			
z	002064				wz ♥025	31					i)		
U	002064				23-3-36 a (1997)							1990 (
Y	002063							n ang salat sa sa salat sa salat	***** ,				
x	0 00000							a dha					
CI	1												
							÷			- W		-	┝
	0.5.0			and the second second	-1								+
ACTI	05.0 DN I	2	3	4	5	6	7	8	9	10			♥03.1 2
ACTI	RI5 WS	RSC WG NISQ	3	•	RG WZ	RB WG	Ţ	RAD WB WS	5	10	"		2
ST	3							in an					0
BR	0												0
	1												2717

32-273. Instruction RESUME commands the Sequence Generator to accept any RUPT request, returns pertinent data of the interrupted program from memory to CP registers, and resumes the execution of the interrupted program section if no RUPT request has been made. The operation RESUME can be formulated as follows:

- (1) Reset flip-flop INHINT/RELINT.
- (2) Set c(B) = c(BRUPT) = c(0017).
 - Set c(S) = relevant address of instruction contained in B. Set c(SQ) = order code of instruction contained in B.
- (3) Set c(Z) = b(ZRUPT) = c(0015).
- (4) Restore c(BRUPT) = b(BRUPT).Set c(ZRUPT) = c(BRUPT).

Point (2) implies that the instruction which was stored in BRUPT will be executed next.

32-274. At the time instruction RUPT was executed the last time, flip-flop IIP was set to prevent the interruption of an interrupting program section, the next instruction of the interrupted program section was transferred from register B to location BRUPT = 0017, and the address of the second-next instruction was transferred from register Z to location ZRUPT = 0015. (Refer to paragraphs 30-123 and 32-282.) By returning c(BRUPT) and c(ZRUPT) to registers B and Z, respectively, the execution of the interrupted program section is continued. Subinstruction NDX0 of instruction RESUME (NDX 0017) returns the c(BRUPT) to register B. Subinstruction RSM3 returns c(ZRUPT) to register Z and enters the relevant address and the order code of the returned instruction now contained in register B into registers S and SQ, respectively. (Refer to row 49 of table 32-4 and figures 32-53 and 32-54.)

32-275. INSTRUCTIONS CYR, SR, CYL and EDOP

32-276. Instruction CYR (Cycle Right) is a Special Instruction which is represented by code .0020, SR (Shift Right) by .0021, CYL (Cycle Left) by .0022, and EDOP (Edit Operator) by .0023. These codes can be used with most Basic and Extra Code Instructions. Whenever one of these codes is used, the quantity being entered into register G is edited as listed below (refer to paragraph 30-41 and table 30-1).

CYRcycled one place to the rightSRshifted one place to the rightCYLcycled one place to the leftEDOPshifted seven places to the right

The effect of codes .0020 through .0023 is described under special cases with each Basic or Extra Code Instruction.

32–277. INVOLUNTARY INSTRUCTIONS

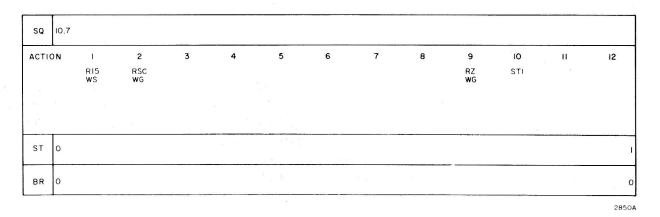
32-278. INTERRUPTING INSTRUCTIONS

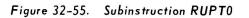
32-279. INSTRUCTION RUPT

32-280. Instruction RUPT (Interrupt Program Execution) is an Interrupting Instruction which is executed at the occurrence of certain events (paragraph 30-131) by entering order code 10.7 into register SQ. Instruction RUPT initiates certain programmed operations (paragraph 30-132 and table 30-6) and consists of subinstructions RUPT0, RUPT1, and STD2, the execution of which takes three MCT's. The execution of instruction RUPT is inhibited if a RUPT was executed after the last RESUME or if an INHINT was executed after the last RELINT.

32-281. Instruction RUPT commands the Sequence Generator (SQG) to refuse to accept any other RUPT request (until instruction RESUME is executed), transfers pertinent data of the program section being interrupted to memory, and transfers program control to the requested programmed operation. The operation RUPT can be formulated as follows:

- (1) Set flip-flop INHINT/RELINT.
- (2) Set c(BRUPT) = c(0017) = c(B).
- (3) Set c(ZRUPT) = c(0015) = c(Z).
- (4) Set c(Z) = address of RUPT Transfer Routine provided by Interrupt Priority Control.
- (5) Set c(B) = first instruction of desired RUPT Transfer Routine.
 Set c(S) = relevant address of instruction contained in B.
 Set c(SQ) = order code of instruction contained in B.


Point (5) implies that the first instruction of the desired RUPT Transfer Routine will be executed next.


32-282. When instruction RUPT is executed, subinstruction RUPT0 (row 50 of table 32-4 and figure 32-55) transfers c(Z) to location ZRUPT = 0015 in memory (table 30-4). Subinstruction RUPT1 (row 51 of table 32-4 and figure 32-56) transfers c(B) to location BRUPT = 0017, and enters the address of the RUPT Transfer Routine into registers Z and S. Subinstruction STD2 calls forward the first instruction of the RUPT Transfer Routine.

FR-2-132

F ♦ 02034 • 00000 Е 04321 н S 7433 **♦**WS 0015 (000015) 037433 ₩G ● 000000 004321 wG≰002034 . G 037433 B (002034) A L Q Z 002034 RZ • 002034 υ

Y	002033
×	000000
CI	

F			
E	65201	• 00000	037433
н			
s	0015 AWS 0017	ws	▲04004
	000017		
G	002034 WG • 000000	▼165201	WG▲037433 ●037433
21			037433
в	037433		RB
	-	04	004
A			
L			
Q	а 		
z	002034 WZ▲04004	RZ	
	04004		
U	002034		
Y	002033		
×	00000		
CI		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
SQ	10.7	-	
ACTIO	DN I 2 3 4 RI5 RSC RRPA RB2 WG WZ WS	R. W	B 9 IO II I2 Z RB S WG T2 KRPT
ст			
			2
BR	0		0

Figure 32-56. Subinstruction RUPT1

2851A

32-283. INSTRUCTION GO

32-284. Instruction GO is an Interrupting Instruction which is executed at the occurrence of certain errors (if signal GOJAM is generated) by entering order code 00. into register SQ and entering 1 into the stage counter (ST). Instruction GO initiates the execution of the restart sequence (table 30-6) and consists of subinstructions GOJ1 and TC0, the execution of which takes two MCT's.

32-285. Instruction GO enters TC 4000 into registers B and S, 4000 being the address of RUPT Transfer Routine GO. (Refer to row 52 of table 32-4.) Instruction TC 4000 is executed after instruction GO.

32-286. COUNTER INSTRUCTIONS

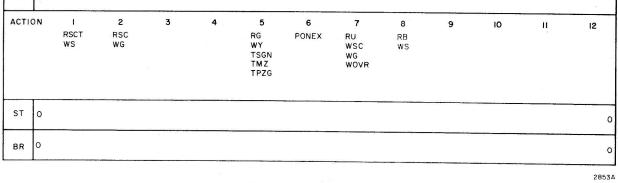
32-287. INSTRUCTION PINC C

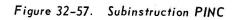
32-288. Instruction PINC C (Plus Increment C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction PINC C consists of subinstruction PINC, the execution of which takes one MCT.

32-289. Instruction PINC C increments by one the content of that E Memory counter C the address of which is supplied by the Counter Priority Control. The operation PINC C can be formulated as follows:

- (1) Set c(C) = b(C)+1 except for overflow bit.
- (2) Retain c(B).Retain c(S).Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.


32-290. Special Cases of PINC C.


- a. PINC 0024 causes the execution of PINC 0025 in case of overflow of c(0024).
- b. PINC 0026, PINC 0027, or PINC 0030 causes execution of RUPT in case of an overflow.

32-291. When instruction PINC C is executed, action 1 of subinstruction PINC (row 53 of table 32-4) enters into register S the counter address C provided by the Counter Priority Control.

FR-2-132

F		2					
Е	00102	• 00000 • 00103					
н							
s	0234 A WS 0025	WS ▲ 0234					
	000025	010234			4		
G	010234	♥ 000102	RG WS	000103	a	000103	a
-		000	102				y g
в	010234			RB •			
A							
L							
Q					<	антар сурбала (1999) а	
z	002371						1
			000	103			لمرجعه
U	002371	000103 • RU					
Y	002370 WY 000102						
x	000000 PONEX • 000001						
CI	I				anna a' an		
					••••••••••••••••••••••••••••••••••••••		
sq	01.0					· · · · · · · · · · · · · · · · · · ·	

The content of the addressed counter is transferred to register G at time 4. Actions 5, 6, and 7 add the quantity 000001 to the content of register G. At time 10, the incremented quantity is returned to the addressed counter in E Memory. Action 8 re-enters into register S the relevant address contained in register B to establish the original conditions.

32-292. Figure 32-57 illustrates the execution of instruction PINC 0025. Counter 0025 contains quantity 00102 which becomes 00103 after being incremented. If the counter contained 37777, it would contain 00000 after being incremented, and the execution of PINC 0024 would be requested. If the addressed counter was counter 0026, 0027, or 0030, the execution of instruction RUPT would be requested in case of overflow of the addressed counter.

32-293. INSTRUCTION MINC C

32-294. Instruction MINC C (Minus Increment C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction MINC C consists of subinstruction MINC, the execution of which takes one MCT.

32-295. Instruction MINC C decrements by one the content of that E Memory counter C the address of which is supplied by the Counter Priority Control. The operation MINC C can be formulated as follows:

- (1) Set c(C) = b(C)+1 except for overflow bit.
- (2) Retain c(B). Retain c(S).
- Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-296. There are no special cases of MINC C. Instructions PINC C and MINC C are identical except for action 6 (compare rows 53 and 54 of table 32-4). Control pulse MONEX of subinstruction MINC replaces PONEX of subinstruction PINC.

32-297. INSTRUCTION DINC C

32-298. Instruction DINC C (Diminish Increment C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction DINC C consists of subinstruction DINC, the execution of which takes one MCT.

32-299. Instruction DINC C diminishes (decreases magnitude) by one the content of that E memory drive counter C the address of which is supplied by the Counter Priority Control. The operation DINC C can be formulated as follows:

 If c(C) is positive non-zero, set c(C) = b(C)-1, and generate one plus drive pulse.

If c(C) is negative non-zero, set c(C) = b(C)+1 and generate one minus drive pulse.

If c(C) is plus or minus zero, set c(C) = b(C) and generate no drive pulse.

- (2) Retain c(B).
 Retain c(S).
 Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-300. There are no special cases of DINC. Instruction DINC C is identical to instructions PINC C and MINC C except for action 6. (Compare rows 53 through 55 of table 32-4.) The main difference is that instruction DINC C is used with drive operations as described in paragraphs 30-90 through 30-104.

32-301. INSTRUCTION PCDU C

32-302. Instruction PCDU C (Plus CDU C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction PCDU C consists of subinstruction PCDU, the execution of which takes one MCT.

32-303. Instruction PCDU C increments by one the content of that CDU counter C in E Memory the address of which is supplied by the Counter Priority Control. The incrementing is carried out in TWO's complement arithmetic since CDU counters contain cyclic TWO's complement numbers (paragraphs 30-46 and 30-47). The operation PCDU C can be formulated as follows:

- Set c'(C) = b'(C)+1 where c'(C) and b'(C) are cyclic TWO's complement numbers.
- (2) Retain c(B). Retain c(S). Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-304. There are no special cases of PCDU C. Instruction PCDU C is similar to instruction PINC C. (Compare rows 53 and 56 of table 32-4.) Control pulse PONEX of subinstruction PINC is replaced by CI of PCDU, and RU is replaced by RUS. If the ONE's complement quantity 37777 (plus 37777) contained in a counter is incremented by PINC C, the resulting quantity is 00000 (plus zero) because the overflow bit was lost during the storing of the incremented quantity. If the TWO's complement quantity 37777 (nearly 180° as shown in paragraph 32-209) is incremented by PCDU C, the resulting quantity is 40000 (180°) because of control pulse RUS which placed the overflow bit into bit position 15 of the counter. If the ONE's complement quantity 77777 (minus zero) is incremented by PINC C, the resulting quantity is 00001 (plus one). If the cyclic TWO's complement quantity 77777 (maximum, i. e. nearly 360°) is incremented by PCDU, the resulting quantity is 00000 (360° or zero).

32-305. INSTRUCTION MCDU C

32-306. Instruction MCDU C (Minus CDU C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction MCDU C consists of subinstruction MCDU, the execution of which takes one MCT.

32-307. Instruction MCDU C decrements by one the content of that CDU counter C in E Memory the address of which is supplied by the Counter Priority Control. The decrementing is carried out in TWO's complement arithmetic since CDU counters contain cyclic TWO's complement numbers (paragraphs 30-46 and 30-47). The operation MCDU C can be formulated as follows:

- (1) Set c'(C) = b'(C)-1 where c'(C) and b'(C) are cyclic TWO's complement numbers.
- (2) Retain c(B). Retain c(S).
- Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-308. There are no special cases of MCDU C. Instruction MCDU C is similar to instructions MINC C and PCDU C. (Compare rows 53, 56, and 57 of table 32-4.) Action 6 of subinstruction MCDU consists of control pulses MONEX and CI which together add the TWO's complement quantity 77777 (minus one) to 00000 (zero or 360°) if this quantity is contained in an addressed counter. If a counter contains 40000 (180°) 37777 is contained after the decrementing due to control pulse RUS.

32-309. INSTRUCTION SHINC C

32-310. Instruction SHINC (Shift Increment C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction SHINC C consists of subinstruction SHINC, the execution of which takes one MCT.

32-311. Instruction SHINC C shifts one place to the left the content of that E Memory counter (0045 or 0046) the address of which is supplied by the Counter Priority Control. The operation SHINC C can be formulated as follows:

- Set c(C) = 2b(C) where b(C) is always a positive quantity and c(C) includes an overflow bit (instead of a sign bit) in bit position 15 incase of overflow.
- (2) Retain c(B).
 Retain c(S).
 Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-312. Instruction SHINC C is used for serial to parallel conversion. If SHINC 0045 is executed and an overflow occurs, the execution of instruction RUPT is requested.

32-313. When instruction SHINC C is executed, action 1 of subinstruction SHINC (row 58 of table 32-4) enters into register S the counter address C provided by the Counter Priority Control. The content of the addressed counter is transferred to register G at time 4. Action 5 doubles the quantity and enters this doubled quantity into the Adder. Action 7 enters the doubled quantity into register G whereby any overflow bit is entered into bit positions 16 and 15 of G. At time 10 the content of register G is entered into the addressed counter. Action 8 re-enters into register S the relevent address contained in register B to re-establish the original conditions.

32-314. Figure 32-58 illustrates the execution of instruction SHINC 0045. Originally, counter 0045 which contained 05530 before the shifting operation, contains 013260 after the shifting operation. If quantity 25530 were contained originally, 53230 would be contained after shifting and the execution of instruction RUPT would be requested.

FR-2-132

F										
E	05530 •00000 •13260									
н										
S	2123 AWS 0045		₩S 4 2123							
	000045		(152123)							
G	152123 WG • 000000	♥005530	RG	wo	6 013260			013260		
		005	530		e.					
в	152123			8		RB●				
5 - 10 5 - 4	•									
A										
L										
Q										2
z	002664									
а 10 —	£ 1	e 2	013260							
υ	002664		013260	RU	5.					
Y	002663 WYD ♥013260									
×	000000 • 000000									
сі	• 0									
						12 10				
sq	05.2	0								
ACTI	DN I 2 3 RSCT RSC WS WG	RG WY	5 7D GN	W	7 US VSC VG VOVR	8 RB WS	9	10	U .	12
ST		3	22							0

2857A

0

2

BR O

32-315. INSTRUCTION SHANC C

32-316. Instruction SHANC C (Shift and Add Increment C) is a Counter Instruction which is executed at the occurrence of certain events (paragraph 30-137) without entering an order code into register SQ and is independent of the content of register SQ. Instruction SHANC C consists of subinstruction SHANC C, the execution of which takes one MCT.

32-317. Instruction SHINC C shifts one place to the left the content of that E Memory counter (0045 or 0046) the address of which is supplied by the Counter Priority Control and adds a ONE into bit position 1. The operation SHANC C can be formulated as follows:

- Set c(C) = 2b(C)+1 where b(C) is always a positive quantity and c(C) includes an overflow bit (instead of a sign bit) in bit position 15 in case of overflow.
- (2) Retain c(B). Retain c(S). Retain c(SQ).
- (3) Retain c(Z).

Point (2) implies that instruction stored in B is executed next.

32-318. Instruction SHANC C is also used for serial to parallel conversion similarly to instruction SHINC C. (Compare rows 58 and 59 of table 32-4.) Control pulse CI of action 5 adds the ONE into bit position 1 of the Adder; this ONE is later transferred to bit position 1 of the counter. If SHANC 0045 is executed and an overflow occurs, the execution of instruction RUPT is requested.

32–319. PERIPHERAL INSTRUCTIONS

32-320. SEQUENCE CHANGING TEST INSTRUCTIONS

32-321. INSTRUCTION TCSAJ K

32-322. Instruction TCSAJ K (Transfer Control to Specified Address K) is a test instruction which is executed on command from Ground Support Equipment (GSE) such as the Computer Test Set (CTS) or the Program Analyzer Console (PAC). The address K is supplied by the CTS or PAC. Instruction TCSAJ K consists of subinstructions TCSAJ3 and STD2, the execution of which takes two MCT's.

32-323. Instruction TCSAJ K takes the next instruction from location K. The operation TCSAJ K with $0024 \le K \le 7777$ can be formulated as follows:

- (1) Retain c(Q).
- (2) Set c(B) = c(K) = k, k being the instruction stored at location K.
 Set c(S) = relevant address of k.

Set c(SQ) = order code of k.

- (3) Set c(Z) = K+1.
- (4) Restore c(K) = b(K) if K represents an address in E Memory

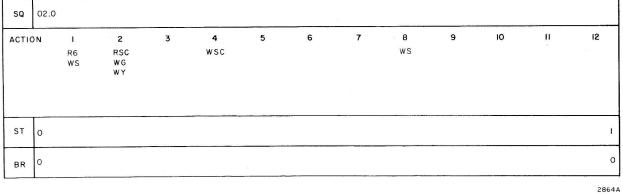
Point (2) implies that instruction k is executed next.

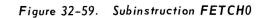
32-324. The special cases of TCSAJ K are the same as for TC K (paragraph 32-35). Instruction TCSAJ K is similar to instructions TC K and TCF F in effect but differs in the number of subinstructions. Action 8 of subinstruction TCSAJ3 (row 60 of table 32-4) enters the address K supplied by the GSE into registers S and Z. Subinstruction STD2 then increments by one the content of register Z and calls forward the instruction located at K.

32-325. DISPLAY AND LOAD TEST INSTRUCTIONS

32-326. INSTRUCTION FETCH K

32-327. Instruction FETCH K is a display instruction which is executed on command of the GSE. The address K is supplied by the GSE. Instruction FETCH K consists of subinstructions FETCH0 and FETCH1, the execution of which takes two MCT's.

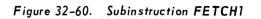

Instruction FETCH K enters into either register EBANK or FBANK, 32-328. a bank number received from the GSE; enters into register S an address K received from the GSE, and provides for display at the WA's the content of that location K and the final content of BBANK. Thereafter, the before contents of BBANK and S are restored. The operation of instruction FETCH K is illustrated on figures 32-59 and 32-60. Action 1 of subinstruction FETCH0 (row 61 of table 32-4) enters the quantity 000006 into register S to simultaneously address registers EBANK and FBANK. In the example, register FBANK contains F bank number 1 (a ONE in bit position 11 as shown in table 30-3) and register EBANK contains E bank number 6 (ONE's in bit positions 11 and 10 as shown in table 30-2). If both registers are addressed and their contents are read into the WA's, the quantity 020006 appears because the content of register EBANK is shifted eight places to the right (table 30-1). Action 2 stores this quantity in the Adder. Action 4 enters a new bank number into register EBANK or FBANK or both. Action 8 enters the address of the required location (0343) into register S. At time 4 of subinstruction FETCH1 (row 62 of table 32-4) the content 76543 of location 0343 is entered into register G at time 4. (In case a CP register or an F Memory location is addressed, the quantity is entered into register G at time 2 or 6, respectively.) Action 7 places the same quantity into the WA's for display. Action 8 restores the original contents of register S, EBANK, and FBANK. Thus, program execution can be continued after the execution of instruction FETCH K. Restoring the contents of registers EBANK and FBANK may be inhibited. Action 10 places the content of registers EBANK and FBANK into the WA's for display. At time 10, the original content of location K is restored.


32-329. INSTRUCTION STORE E

32-330. Instruction STORE E is a load instruction which is executed on command of the GSE. The address E is supplied by the GSE. Instruction STORE E consists of subinstructions STORE0 and STORE1, the execution of which takes two MCT's.

32-331. Instruction STORE E enters into either register EBANK or FBANK, a bank number received from the GSE, enters into register S an address E received from the GSE, and enters into that location E the quantity provided by the GSE. Thereafter the before content of BBANK is restored unless E = BBANK. The before content of S is always restored. The operation of instruction STORE E is similar to that of instruction FETCH K. (Compare rows 62 and 63 of table 32-4 with rows 61 and 62.) Subinstruction STOREO is identical to subinstruction FETCHO in that both address a specific location. Action 4 and action 9 of subinstruction STORE1 enter the quantity, which is entered into the WA's by the GSE into the addressed location. If $0020 \le E \le$ 0023, the quantity entered is edited.

F		
E		
н	020006	RSC WSC
s	0300 ♦ 000006	WS ≜ 0343
	000006 020	006 EXTERNAL INPUT EXTERNAL INPUT EXTERNAL INPUT
G	020300 WG	020006
в	020300	
A		
L	e e e e e e e e e e e e e e e e e e e	
Q		
z	002664	
	<u> </u>	
U	002664	020006
Y	002663 WY	020006
x	000000	• 000000
CI	1	• 0
	A	
· · · · · · · · · · · · · · · · · · ·	·	



FR-2-132

	the second strategy of the second strategy of the second strategy of the second strategy of the second strategy	denerative sector and the sector of the	a second a s				
F	the second se		•				
E	76543	•00000					
BB		U2BBK 020006					
s	0343		v	VS 0300	1. 1.		
				20300			
G	030006 WG ≬ 000000	₹176543	RG		●176543		
8			176543	EXTERNAL OUTPUT	006 EXTERNAL OUTPUT		
в	020300	e e e	F	RB•			
ж 	000000			3			
A	RSC	5	n e - ^d	800 B	5		
Ļ	RSC						
Q	RSC			ж.			
z	002664 RSC		· · · · · · · · · · · · · · · · · · ·				
	а. -						
U	020006		1 1997 - 1998 - 1999 1				
Y	020006						
x	000000						
CI	0						
		đ					
SQ	02.0						
ACTI	DN I 2 3 RSC WG	4 5	6 7 RG		10 II I2 RBBK		
ST	_ is]	2 '9 9 9 -	 a b b c c				

0 2865A

BR 0

32-332. INSTRUCTION INOTRD H

32-333. Instruction INOTRD H is a channel display instruction which is executed on command of the GSE. The channel address H is supplied by the GSE. Instruction INOTRD H consists of subinstruction INOTRD, the execution of which takes one MCT.

32-334. Instruction INOTRD H provides at the WA's for display the content of channel H, which is specified by the GSE. Action 1 of subinstruction INOTRD (row 65 of table 32-4) enters into register S the address of channel H, address H being supplied by the GSE. Action 5 enters the content of the addressed channel into the WA's for display. Action 8 restores the original content of register S.

32-335. INSTRUCTION INOTLD H

32-336. Instruction INOTRD H is a channel load instruction which is executed on command of the GSE. The channel address H is supplied by the GSE. Instruction INOTRD H consists of subinstruction INOTRD, the execution of which takes one MCT.

32-337. Instruction INOTLD enters into channel H, as specified by the GSE, the quantity provided by the GSE. The operation of instruction INOTLD is similar to that of instruction INOTRD. (Compare rows 65 and 66 of table 32-4.) Action 7 of subinstruction INOTLD enters the quantity provided into channel H.

