
\

APOLLO GUIDANCE COMPUTER

Inforrnation Serie s

ISSUE 32

BLOCK II MACHINE INSTRUCTIONS

FR-2 - 132

29 October 1965

\:

r.R-z - 132

Paragraph

32-L

3Z-3

32-5
32-g
3Z-r6
32-Zl
3Z-25

32-30

32-31
32-32
32 -38
32-44
32-50
32-56
32 -61
32-62
32-68
32 -73
32-79
32-84
?) -a),a

32-98
32 - r03
3Z-r08
32-rl4
32 -1 t5
32-lZZ
3Z-LZ7
32-128
3a*134
3Z-r39
3?*143
3Z- I48
37,-t54

CONTENTS

]NTRODUCTION

EXECUTION OT' INSTRUCTIONS.

Execution of Subinstructions.
Control PuIses
Subinstruction STDz
D at a T r an sfer Diagrarns
Exarnple of fnstruction Executions

REGULAR INSTRUCTIONS.

Sequence Changing Instructions.
fnstruction TC K
Instruction TCF F
Instruction CCS E
Instruction BZF F
Instruction BZMF F

Fetching and Storing Instructions
Instruction CA K
Instruction CS K
Instruction DCA K
lnstruction DCS
Instruction TS E

K.

Instruction XCH E
lnstruction LXCH E
Instruction QXCH E
Instruction DXCH E

Modifying In structions
Instruction NDX E
lnstruction NDX K

Arithrnetic and Logic Instructions .

Instruction AD K
Instruetion SU E
Instruetion il4P K .

Prineiple of Operation
Aetual Exeeution

Instructlon DV E .

Page

32-L

32-19

32-tg
32-20
32-20
32.ZI
3Z-23

32-53

32-53
32-53
32-54
32-56
32-62
32-66
32 -67
32-67
32-69
32-72
32-74
32-75
32-79
32-81
32-82
3Z-83
32-87
32-87
3Z -88
32-gZ
32-92
3Z-94
32*95
32*96
3Z-97
3?.LL?,

111

FR-Z- I32

Paragraph

32-158
32-r6?
32-t7 L

32-177
32-186
32-rg2
32-197
3Z-Z0Z
32-ZLZ
3Z-ZL8
32-Zt9
32-225
32-230
32-236
32-Z4L
32-247
32-Z52
32-258
32-Z59
32-263
3Z-267
32-27 L

3Z-275

32-277

32-278
32-Z7g
32-283
32-286
3Z-287
32-293
3Z-Zg7
32-30t
32-305
32-309
32-315

32-3t9

CONTENTS (cont)

Principle of Operation.
Actual Execution

Instruction ADS E.
Instruction DAS E.
Instruction INCR E
Instruction AUG E
Instruction DIM E
Instruction MSU E
Instruction MSK K

Channel Instructions
Instruction READ H
Instruction WRITE H.
Instruction RAND H
Instruction WAND H .
Instruction ROR H
Instruction'W-OR H
Instruction RXOR H

Special Instructions
Instruction EXTEND
Instruction INHINT
Instruction RELINT
Instruction RESUME.
Instructions CYR, SR, CYL, and EDOP

Page

3Z-tL3
3Z-rr 4
3Z-t3Z
3Z-134
3Z-138
3 Z-t 4L
3Z-t43
3Z-144
3 2.-r 49
3 Z-L 5L

3Z-t5L
3 Z-153
3Z-154
3 Z-r57
3z-158
3 z-160
3Z-L6L
3Z-163
3Z-t63
3z-r65
3Z-166
32-166
3Z-t69

3 Z-r7 |

32-r7 |
3 Z-17 L

3 Z-t7 4
3z-r7 4
3 z-r7 4
3 Z-r7 6
3 z-tT 6
3z-r77
3 2-r7 I
3 Z-r7 g

3 2-i 8r

3Z-r83

INYOLUNTAR Y INSTRUC TIONS

Interrupting Instructions . .

Instruction RUPT
Instruction GO.

Counter Instructions
Instruction PINC C
Instruction MINC C
Instruction DINC C
Instruction PCDU C
Instruction MCDU C
Instruction SHINC C .

Instruction SHANC C.

1V

PERI PHERAL INSTRU C T IONS

FR-Z- 132

Paragraph

32-3ZA
3Z-3Zr
3Z-325
3Z-326
32-3Zg
3Z-332
32-335

Figure

3Z-r
32-Z
32-3

32-4
32-5

32-6
32-7

32-8

3Z-g
32-10
32-Lt
32-tZ

32-13

32-14
32-t5
32*Lb
32-17
3?-18
32*Lg
32-ZO

CONTENTS (cont)

Sequence Changing Test Instructions .

Instruction TCSAJ K
Display and Load Test Instructions

Instruction FETCH K
Instruction STORE E
Instruction INOTRD H
Instructlon INOTLD H

ILLUSTRA"TIONS

Subinstruction STDZ
Subinstruction TC0
Subinstruction CCSO, Branch on Quantity Greater

than Plus Zero

Page

3Z-183
3 Z-t 83
3 Z-t 83
3 Z-L 83
3Z-t84
3Z-t87
3 z-L87

Subinstruction CCSO,
Subinstruction CCSO,

than Minrs Zero.

on Plus Zero
on Quantity Less

Branch
Branch

Page

32-22
32-55

3Z-58
3Z-59

3Z-60
32.61

3Z-64

32-65
3?-68
3Z-7 Z

3Z-73

3Z-77

3Z-78
3 2-80
3Z-85
32-86
3 e-89
3Z-90
32-93
32*98

V

Subinstruction CCSO,
Subinstruction BZE0,

a Positive Non-Zero
Subinstruction BZFl,

Branch on Minus
With Register A

Zero. .

Containing
Quantity
*."n. *'.uo

".t"'.
o

."":' ":"t:uPlus Z ero .

Subinstruction
Subinstruction
Subin struction
Subinstruction

Register A

c"b
DCAO
DCAl
TSO, Without Overflow Bit in

Subinstruction TS0, With Positive Overflow Bit
in Register A"

Subinstruction XCH0
Subinstruction DXCH0
Subinstruetion DXeHI
Subingtruetion NDXO. . .

SubinstructionNDXI . . .

Subinstruetion ADO , ,

PoEitive Produet, Prineiple of

atrat

aaaa

Multiplication\:

FR-Z-132

Figure

3Z.ZT
32-22

32-23

3Z-24

32-25
32-26
32-27
3Z-28
32-Zg
32-30
32-31
32-32
3Z-33
32-34
32-35
32-36
32-37
3Z-38
32,-39
32-40
3Z-4r
3Z-42
32-43
32-44
32-45
3Z-46
32-47
3Z-48
32-49
32-50
32-51
3Z-52
32-53
3Z-54
32-55
32-56

ILLUSTRATI0NS (cont)

Negative Product,Principle of Multiplication.
Subinstruction MPO, With Two Positive

Quantitie s .
Subinstruction MP0, With Positive

and Negative Quantity in E
Subinstruction MPO, With Negative

Quantity in A

Quantity in A

Page

3Z-99

. 32-100

.32-L0L

and Positive Quantity in E
Subinstruction MPO, With Two Negative Quantities.
Subinstruction MPl, Positive Product .
Subinstruction MP3, Positive Product . .
Subinstruction MPI, Negative Product. .
Subinstruction MP3, Negative Product. .
Positive Product, Actual Multiplication
Negative Product, Actual Multiplication
Principle of Division, Manual Method
Principle of Division, Machine Method.
Divide Instruction, Flow Diagrarn

32-L0Z
3Z-103
3Z-r04
3Z-t05
3Z-t06
3Z-r07
3 Z-r 08
32-i10
3Z-LI6
3 Z-tL7
3Z-ttg
3Z-L23
3Z-124
3Z-125
3Z-r26
3Z-t 27
3z-r28
3Z-rzg
3Z-r33
3z-r36
3Z-L37
3?-t40
3Z-r46
32-t50
3Z-r52
3Z-156
3 Z-r 59
3?.-L62
3Z-r64
3Z-r67
3Z-168
3Z-17 Z

3Z-r73

Subinstruction DVO
Subinstruction DVI
Subinstruction DY3
Subinstruction DV7
Subinstruction DV5
Subinstruction DV4
Actual Divi sion
Subinstruction ADS0
Subinstruction DAS0
Subinstruction DASI
Subinstruction INCR0
Subinstruction MSUO.
Subinstruction MSKO.
Subinstruction READ0
Subinstruction RANDO
Subinstruction ROR0
Subinstruction RXORO
Subinstruction STD2, Preceding Instruction EXTEND.
Subinstruction NDX0 of Instruction RESUME.
Subinstruction RSM3.
Subinstruction RUPT0
Subinstruction RUPT I

V1

FR-2- I32

ILLUSTRATI0NS (cont)

Figure

32-57
32-58
32-59
32-60

Table

32-l
32-Z
32-3
32-4
32-5

Subin struction
Subinstruction
Subin struction
Subinstructlon

PINC
SHINC
FET CHO
FET CHl

TABLES

Instruction Types .

In struction s,
lnstructions, Alphabetical Listing
Pulses Generated at Yarious Actions
Pu1 se s.

Page

32-17 5

3 Z-l 80
32-185
3Z-r86

Machine
Machine
Machine
Control
Control

Page

3Z-r
37-z
3Z-13
32-25
3Z*47

v11

I.R-Z-L3Z

32-1. INTRODUCTION

3Z-2. This is the thirty-second issue of the AGCIS published to inforrn the
technical staff at }y'rlT /IL and Raytheon about the Apollo guidance cornputer
(AGC) subsysterns. The various Block II instruction types and the order
code structure o{ Machine Instructions are discussed in paragraphs 30-148
through 30-187 of Issue 30. Issue 32 analyzes the operations perforrned b,y
the Machine Instructrons. Table 3Z-L (shown below) briefly reviews Machine
Instruction types" Table 32-Z contains a functional description of all Machine
Instructions and table 3Z-3 lists all Machine Instructions alphabetically for
quick reference.

Table 3 2- I
MACHINE INSTRUCTION TYPES

Group TyPe

R egular
Instructions

B;a-s ic Instructions
Extra Code Instructions

Sequence changing instructions
Fetching and storing instructions
Modifying instructions
Arithrnctic and logic instructions

Channel Instructions
Special Instructions

Involuntary
Instructions

Interrupting Instructions
Counter Instructions

Peripheral
Instructions

Sequence changing test instructions
Display and load test instructions

\-

3Z-l

FR. -2- 132

TABLE 3Z-Z

MACHINE INSTRUCTIONS

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

instructions
Executed

Description A
A

REGULAR INSTRUCTIONS

Sequence Changing Instructions

TCK

TCF' F

CCS E

BZF F

00

01.2
01. 4
01.5

01. 0

t6. z
16.4
r6. 6

TCO

T CFO

CCSO
STDZ

BZFO
STDZ

tt Transfer Control to Ktl
Takes next instruction frorn K and
stores return address (I+1) in Q.

rrTransfer Control to Fixed
Takes next instruction frorn
without changing c (0).

F,'
F

rrCount, Cornpare, and Skip on E"
Branches according to c (E) and
stores in A the l. (n)ldi.rrirrished
by one.

C(E) I fransters to
positive nonz ero
plus zero
negative nonzero
rninus zera

I+I
7+z
I+3
I+4

rrBranch on Zeyo to Fixed F'r
Branches according to c(A).

C(A) Transfers to

plus or rninus
zeTo

non zero

(subinstruc-
tion STD2 is
not executed)
(subinstruc-
tion STD2 is
executed)

I+1

3Z-Z

TABLE 3Z-Z

MACHINE INSTRUCTIONS (cont)

I.R.Z.I3Z

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub -

in struction s

Executed
Description A

A
REGULAR INSTRUCTIONS

Sequence Changing Instructions (cont)

BZMF I' lz. z
LZ.4
12.6

BZMFO
S TDz

rrBranch on Zero or Minus to
Fixed F" l3ranches accoiding to
C(A).

C(A) Transfers to

zeto or nega-
tive nonzero

positive non-
zero

F (subinstruc-
tion STD2 is
not executed)

I*l (subinstruc-
tion STDZ is

. executed)

Fetching and Storing Instructions

CAK

CSK

DCA K

DCS K

03

04

13

L4

CAO
STD2

CSO

STD2

DCAO
DCAl
STD2

DCSO
DCSI
STDZ

'rClear and Add K'l
Enters c(K) into A.
Takes next instruction frorn 1*I

"CIear and Subtract Ktf
Enters the cornplernented c(K)
into A. Takes next instruction
frorn I*1.

I'Double Clear and Add K "
Enters c(It K+l) into A and L.
Takes next instruction frorn I*l

'rDouble CIear and Subtract Krr
Enters the complemented c(K,
K+1) into A and t.
Takes next instruetion from I*l

*-

3Z-3

FR -Z- 132

TABLE 3Z-Z

MACHINE INSTRUCTIONS (cont)

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

instructions
Executed

Description A.A
REGULAR INSTRUCTIONS

Fetching and Storing Instructions (cont)

TS E

XCH E

LXCH E

QXCH E

DXCH E

05.4

05.5

02.2

LZ. Z

05. z

XCHO
STD2

LXCHO
STD2

QXCHO
STD2

DXCHO
DXCHl
STDZ

TSO
STD2

rrTransfer to Storage E"
lf A does not contain an overflow
quantity, instruction enters c(A)
into E and takes next instruction
frorn I*I.
If A contains a positive overflow,
instruction enters c(A) without
overflow bit into E, enter s plus
one into A, and takes next instruc-
tion frorn I*2.
If A contains a negative overflow,
instruction enters c(A) without
overflow bit into E, enters rninus
one into A, and takes next instruc-
tion frorn I*2.

rrExchange A and Err
Exchanges c(A) with c(E).
Takes next instruction frorn I*1 .

rrExchange L and Etr
Exchanges c(L) with c(E).
Takes next instruction frorn I*1.

'rExchange Q and E"
Exchanges c(Q) with c(E).
Takes next instruction frorn I*1.

'rDouble Exchange A and E'r
Exchanges c(A, L) with c(E, E+l).
Takes next instruction frorn I*1.

3Z-4

FR.-Z-132

\--

TABLE 3Z-Z

MACHINE INSTRUCTIONS (cont)

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

instructions
Executed

ADescription
A

REGULAR INSTRUCTIONS

Modifying Instructions

NDX E

NDX K

05.0

I5.

NDXO
NDXl

NDXXO
NDXXI

"Index Next Basic Instruction
with E" Adds c(E) to c(I+l) and
takes surn as next instruction.

"Index Next Extra-Code Instruc-
tion with K'1
Adds c(K) to c(I+Z) and takes surn
as next instruction.
Retains the ONE in bit position
SQ -EXT.

Arithrnetic and Logic Instructlons

ADK

SUE

MPK

06

L6

t7

ADO
STDz

SUO

STDZ

MPO
MPl
MP3

,'Add K rl

Adds c(K) to c(A) and stores
surn in A.
Takes next instruction
frorn I*1.

"subtract E'r
Subtracts c(E) frorn c(A) and
stores the difference in A.
Takes next instruction
frorn IfI.

"Multip1y Ktt
Multiplies c(K) by c(A) and
stores double precision pro-
duct in A and L (signs in A
and L agree)"
Takes next instruction
frorn I*1.

32-5

FR-Z- 132

TABLE 3Z.Z

MACHINE INSTRUCTIONS (cont)

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

instructions
Executed

D,:scription A
A

REGULAR INSTRUCTIONS

Arithrnetic and Logic Instructions (cont)

DYE

ADS E

DAS E

INCR E

AUG E

02.4

t2

1t

0z

OZ

ADSO
STDZ

DASO
DASI
STDZ

INCRO
STDZ

AUGO
STD2

DVo I
DVl I

DV3 I

DV7 IA
DV6 I

DV4 la
srD4

"Divideby E" Divides double pre-
cision quantity c(A,L) by c(E),
stores quotient in A and rernaind-
er in L. Takes next instruction
frorn Itl. Signs of b(A) and b(L)
need nol agree. Sign of rernaind-
er equals sign of dividend.'

ttAdd to Storage E "
Adds c(A) and c(E), stores surn
with overflow bit in A and
surn without overflow bit in E"

'rDouble Add to Storage E"
Adds c(A, L) and c(E, E*1) and
stores surrr without overflow bit
in E and E*1. Enters plus
one into A in case of positive
overflow, rninus one in case of
negative overflow, a^nd plus zero
in case of no overflow. .Enters
plus zero into L and takes next
instruction frorn I*1.
trlncr ern ent E tl

Adds plus one to c(E) and stores
incrernented quantity in E.
Takes next instruction frorn I*1.

"Augrnent E'r Increases the
rnagnitude of the quantity con-
tained in E by one and stores the
augrnented quantity in E. Takes
next instruction frorn I*1.

3?.-6

TABLE 3Z-Z

MACI-IINE INSTRUCTIONS (cont)

FR"-Z- 13Z

A
Syrntrollc

Ins truction
Word

A
Order Code

A
Sub-

instructions
Executed

Description A
A

REGULAR INSTRUCTIONS

Arithmetic and Logic Instructions (cont)

DIM E

MSU E

MSK K

LZ

IZ

07

DIMO
STD2

MSUO
STDZ

MSKO
STDZ

"Dirninish E" Decrcases the
rnagnitude of the quantity con-
tained in E by one and stores
dirninished quantity in E.
Takes next instruction frorn I*1.

ttModular Subtract E't
Subtracts cyclic TWOrs cornpLe-
rnent nurnber in E frorn cyclic
TWO' s cornplernent nurnber in A
and stores difference expressed
in ONEts cornplernent nurnber in
A. Takes next instruction frorn
I+I.

rrMask with K'r
AND's c(A) with c(K) and stores
loglcal product in A" Takes
next instruction frorn I*1.

Channel Instructions

READ H

WRITE H

RAND H

r0.0

10.

LA, Z

READO
STD2

\MRITEO
STD2

RANDO
STDZ

"Read H "
Enters c(H) into A.
Takes next instruction frorn l-ll"

"Write Hrt
Enters c(A) into H.
Takes next instruction frorn I*1.

rrRead and AND Hrl
ANDis e (A) and e(F{) and Etoree
logical product in A. Takee
nerrt lnstruction from I*1.

3Z-7

FR-2-132

TABLE 32.2

MACHINE INSTRUC TIONS (cont)

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

instructions
Executed

A
De s cription.A

REGULAR]NSTRUCTIONS

Channel Instructions (cont)

WAND H

ROR H

woR

RXOR H

10.

10. 4

10. 5

r0.6

WANDO
STD2

RORO
STDZ

woRo
STDZ

RXORO
STDZ

'r'Wrlte and AND H'r
ANDts c(A) and c(H), and stores
logical product in A and H. Take
next instruction frorn Itl.

rrRead and OR H"
ORts c(A) and c(H), and stores
logical surn in A. Takes next
in struction f rorn I* 1 .

rrWrite and OR H"
ORts c(A) and c(H), and stores
logical surn in A and H.
Takes next instruction frorn I*1.

"Read and Exclusive OR H''
Forrns exclusive OR frorn
c(A) and c(H), and stores
result in A. Takes next in-
struction frorn I+1.

Special Instructions

EXTEND

INHINT

00. 0006

00.0004

STD2

STDZ

'rExtend'r
Enters a ONE into bit position
SQ-EXT. The next instruction,
taken frorn I*I, is an Extra-
Code Instruction"

"Inhibit Interrupt "
Sets inhibit interrupt switch in
Interrupt Prlority Control to pre-
vent interruption of prograrn
exetrution. Takes next instruc- .

tion frorn I*1.

3Z-3

TABLE 3Z.Z

MACHINE INSTRUCTIONS (cont)

I.R-Z-L3Z

A
Syrnbolic

Ins truction
Word

A
Order Code

A
Sub-

instructions
Executed

A
Description

A

REGULAR INSTRUCTIONS

Special Instructions (cont)

RELINT

RESUME

CYR

SR

CYL

EDOP

00.0003

05. 001 7

.0020

002 I

OOZZ

0023

STDZ

NDXO
RSM3

A

A

A

A

"R elease Inhibit Interrupt'r
Resets inhibit interrupt switch
to allow prograrn interruption
in favor of a prograrnrned opera-
tion of higher priority. Takes
next instruction frorn I*1.

"Re surne Interrupted Prograrn'r
Takes next instruction frorn loca-
tion 0017 and enters content of
location 0015 into Z. Thus, €X-
ecution of the interrupted Pro-
grarn section is resurned.

rrCycle Rightrl
Cycles quantity, which is entered
into location 0020, one place to
the right.

trShlft Rightrl
Shifts quantity, which is entered
into location 0021, one place to
the right.

'rCycle Leftrl
Cycles quantity, which is entered
into location OOZZ. one place to
the left.

rrEdlt Operator'l
Shlfts quantity, which is entered
lnto location 0023, seven places
to the right"

?2 _A

I.lr.-Z-I3Z

TABLE 3Z-Z

MACHINE INSTRUCTIONS (cont)

A
Syrnbolic

Instruction
Word

A
Order Code

A
Sub-

in struction s

Executed

A
Dt: s c ription

A
INV OLUNTARY INSTRUCTIONS

Interrupting In struction s

RUPT

GO

10

00.
00. 4000

RUPTO
RUPTI
STDz

GOJI
TCO

"Inte. rupt Prog rarn Exe cution'l
Takes next instruction frorn
address supplied by Interrupt
Priority Control. Stores c(B)
in location 0017 and c(Zl in
location 0015.

il Goil
Takes next instruction frorn loca
tion 04000 ln E Mernory.

Counter Instruct 10ns

PINC C

MINC C

DINC C

PCDU C

none

none

none

none

PINC

MINC

DINC

PCDU

rrPlus Incrernent C "
Adds one to c(C) and
store s incrernented quantity
in C.

I'Minus Incrernent C'l
Subtracts one frorn c(C) and
store s decr ernented quantity
in C.

"Dirninish Incrernent C'r De-
creases the rnagnitude of the
quantity contained in C by one and
stores dirninished quantity in C.

t'Plus CDU C"
Adds one to cycllc TWOis corn-
plernent nurnber in C and
stores incrernented quantity in
C"

3Z- IO

TABLE 3Z.Z

MACHINE INSTRUCTIONS (c ont)

r.B.-Z- 132

A
Syrnbolic

Ins truction
Word

A
Order Code

A
Sub-

in struction s

Executed

A
De s cription.A

INY OLUNTARY INST RU CTIONS

Counter lnstructions (cont)

MCDU C

SHINC C

SHANC C

none

none

MCDU

SHINC

SHANC

I'Minus CDU C"
Subtracts one frorn cyclic
TiMO' s cornplernent nurnber
in C and stores decremented
quantity in C.

'rshift Incrernent C'r
Shifts c(C) one place to the left
and enters a ZERO into bit posi-
tion 0 of C.

'rShift and Add Incrernent C'r
Shifts c(C) one place to the left
and enters a ONE into bit posi-
tion 0 of C.

PERIPHERAL INSTRUCT IONS

TCSAJ K

FETCH K

STORE E

00.

none

none

T CSAJ3
STD2

rrTransfer control to specified
address K'r Takes next instruc-
tion frorn address which is sup-
plied by GSE.

FETCHO
FET CHl

-ST OREO
ST ORE }

I'Fetch K'r; displays c(K) on GSE.
Address K is supplied by
GSE.

rrStore E"; data supplied by GSE
is entered into E by GSE. Address
E is also supplied by GSE.

3Z- LI

none

FR-Z-132

'TABLE 3Z-Z

M,\CHINE INSTRUC'TIONS (cont)

A
Syrnbolic
Instruction

Word

A
Orcler Code

A
Sub-

instructions
Executed

A
Des cription'n /A

PERIPHERAL INSTR UC TIONS (cont)

INOTRD H

INOTLD H

none

non()

INOTRD

INOTLD

'tn Out Read H"1 displays c(H)
oie GSE. Channel address H is
supplied by GSE.

'tn O,rt Load H'r; data supplied
by GSE is entered into H by GSE.
Channel address H is supplied
by GSE.

A
A

A
A

A Address syrnbol K can represent any address in the Central Processor
(CP), E Mernory or F Mernory.
Address syrnbol F can represent an address in F Mr-:rnory only.
Address syrnbol E can represent an address in the CP or E Mernory only.
Address syrnbol H can represent any channel address.
Address syrnbol C can represent any counter address.

Entered into SQ, or SQ and S.

The execution of each subinstruction, except DVO and DV4, takes one
MCT or about ll.7 p.sec. DVO and DV4 together require l MCT.

A Address syrnbol I represents add.ress of instruction described.
Register syrnbols A, L, Q, B, S, SQ, and G refer to registers defined
in table 30- 1.

Expression c(K) rneans "content of location (or register) K ".

Execution of these seven subinstructions takes only six MCTts.

The code which can be used with any K or E instruction, is contained
in register S. Whenever address 0020, O0ZI, 0022, or 0023 is con-
tained in register S, register G cycles or shifts the quantity it receives
frorn a CP register before that quantity is transferred to one of the
four locations (paragraph 30-41).

37*L?

Table 3Z-3

M-ACHIN.E INSTRUCTIONS, ALPHABETICAL LISTING

I.P.-Z-t3Z

Syrnbolic
Instructiop
Wcrd A

Order Code

A
Narne and Type

ADK
ADS E

AUG E

BZF F

BZMF F

CAK
CAE

CAF

CCS

COM

CSK

CYL

CYR

DAS

DCA

DCS

DCOM

DDOUBL

E

F

E

r.

K

K

06.

02.6

LZ.4

LL. Z
Ll. 4
1r. 6

L6. Z

L6.4
16. 6

03.
03.

03.

0I.

04.0000

c4.

. o0zz

.0020

02.0

I3.

L4.

14. 0000

02.0000

"Add K "; an arithrnetic instruction

"Add to Storage Ett; an arithrnetic instruction

"Augrnent E "; an arithrnetic instruction

"Branch on Zero to Fixed F"; a sequence
changing instruction

"Branch on Zero or Minus to Fixed
quence changing instruction

se-

a fetching instruc-

Ft'; a

"Ctear and Add K'r a fetching instruction
Alternate spelling of CA K when referring to

E Mernory
Alternate spelling of CA K when referring to

F Mernory
"Count, Cornpare, and Skip on E"; a sequence

changing instruction

"Cornplernent'l; CS A

"Clear and Subtract K'r; a fetching instruction

"Cycle Left"; a Special Instruction

"Cycle Right'r; a Special Instruction

"Double Add to Storage E'r; an arithrnetic
in struction

'rDouble Clear and Add K ";
tion

"Double Clear and Subtract K' '; a fetching in-
s truc tion

"Double Precision Cornplernent'r; DCS A

'rDouble Precision Double't; DAS A

32- L3

FR-2-132

Table 3Z-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Syrnbolic
Instruction.\[ord A

Order Code

A Narne and Type

DIM E

DINC C

DOUBLE

DTCB

DTCF

DVE
DXCH E

EDOP

EXTEND

F.CTCH K

GO

INCR E

INDEX E

INDEX K

INHINT

INOTLD H

INOTRD H

LXCH E

MASK

MCDU

K

C

tz.6
none

06. 0000

05. 2005

05. zoo4

11.

05.

.0023

00. 0006

none

00.

02.4

05. 0

L5.

00. 0004

none

none

oz. z

07.

none

0

,

"Dirninish Ett; an arithrnetic instruction
t'Dirninish Incrernent C"i a Counter Instruc-
tion

"Dcuble "; AD A

'rDouble Precision Transfer Control Both
Banksff ; DXCH Z

"Double Precision Transfer Control Fixed
Bankrt; DXCH FBANK

"Divide by E "; "., arithrnetic instruction

"Double Exchange A and E"; " fetching and
storing instruction

"Edit Operator "; a Speciat Instruction

t'Extend"; a Special Instruction

"tr-etch K "; a Peripheral Instruction
'GC"; an Interrupting Instruction

"Incrernent E'r; an arithrnetic instruction
Alternate spelling for NDX E

Alternate spelling for NDX K
I'Inhibit Interrupt"; a Special Instruction

'In Out Load FI"; a Peripheral Instruction

"In Out Read H"; a Peripheral Instruction

"Exchange T.. and E "; a fetching and storing
instr uction

Alternate spelling of MSK K

"Minus CDU C "; a Counter Instruction I

32-14

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (CONt)

I.P'-Z.I3Z

Syrnbolic
Instruction

word A
Order Code

A
Narne and Type

MINC C

MPK
MSK K

MSU E

NDX

NDX

NOOP

NOOP

OVSK

PCDU C

PINC C

QXCH E

RAND H

READ H

RELINT

RESUME

RETURN

ROR H

E

K

none

L7

07.

t?,.0

05.

15.

03.0000

TCF(r+1)

05.4000

none

none

LZ, Z

LO. Z

10.0

00.0003

05. 00 l7

00.0002

10. 4

ttMinus Incrernent C "; a Counter Instruction

"Multiply K "; an arithrnetic instruction

'Mask with K "; a logic instruction

"Modular Subtract E "; an arithrnetic instruc-
tion

"Index Next Basic Instruction with E "; a
rnodifying ins truction

"Index Next Extra-Code Instruction with K'r;
a rnodifying instruction

'b{o Operation (Erasable)'r; instruction is
stored in E Mernory; CA A

"No Operation (Fixed) "; where I is address
of instruction TCtr' (I+1) stored in F Mernory

"Overflow Skip "; TS A

'tslus CDU C"i a Counter Instruction

'tslus Incrernent C "; a Counter Instruction

'rExchange Q and E "; a fetching and storing
instruction

"Read and AND H"; a Channel lnstruction

"Read H"; a Channel Instruction
rrRelease Interrupt Inhibitrr; a Special In-

struction

"Resurne Interrupted Prograrn"; a Special
Ins truc tion

"Return"; TC Q

"Read and OR H "i a e hannel Instruction

3Z-15

FR-Z-132

Table 3Z-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Syrnbolic
Instruction
Word A

Order Code

A
Narne and Type

RUPT

RXOR H

SHANC C

SHINC C

SQUARE

SR

STORE E

SUE

TCAA

TCK

TCF F

TCR K

TCSAJ

TSE

WAND

I^IOR H

WRITE

XCH E

K

H

H

10.

10.

none

none

17. 0000

.0021

none

16.0

05.4005

00.

01.
01.
01.

00.

00.

05.4

10. 3

10. 5

10. I
05. 6

z
4
6

"Interrupt Prograrn Execution"; an Interrupt-
ing Instruction

"Read and Exclusive OR
struction

'Shift and Add Incrernent
struction

FI "; a Channel In-

C"i a Counter In-

'Shift Incrernent C "; a Counter Instruction

'Square"; MP A

"Shift Right"; a Special Instruction

"Store E "; a Peripheral Instruction

'rsubtract E "; an arithrnetic instruction

"Transfer Control to Address in A'ti TS Z

"Transfer Control to K"; a sequence chang-
ing instruction

"Transfer Control to Fixed F"; a sequence
changing instruction

Alternate spelling of TC K (Transfer Control
Setting up Retuin)

"Transfer Control to Specified Address K ";
]

a Peripheral Instruction
i

"Transfer to Storage E"; a storing instructionl

"'Write and AND H"; a Channel Instruction
I

"Write and OR H "; " Channel Instruction
IrVrite H "; a Channel Instruction I

"Exchange A and E "; a fetching and. storing
I

in struction I

32.16

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (CONt)

I.R,.Z-L3Z

Syrnbolic
Instruction
word A

Order Code

A
Narne and Type

ZL

ZQ

02.2007

Lz.2007

"Zero Lrr; LXCH ZERO

"Zero Q"; QXCH ZERO

A Address symbol K can represent any address in the Central Pro-
cessor (CP), E Mernory or F Mernory.

Address syrnbol F can represent an address in F Mernory only.
Address syrnbol E can represent an address in the CP or E Mernory

only.

A Entered into SQ, or SQ and S.

32-17 /32-18

r.R -Z- 132

_

32-3. EXECUTION OF INSTRUCTIONS

32-4. The execution of all Machine Instructions is under the control of the
Sequence Generator (SaG). The initiation of instruction executions is
described in paragraphs 30-24 through 30-27. A11 Machine Instructions are
cornposed of one, two, three, or seven subinstructions, as indicated in the
third colurnn of table 3Z-2. Al1 but two subinstructions consist of twelve
actions. Refer to table 3Z-4 at the end of this section anC paragraph 30-ZL,
Subinstructions DVO and DV4 together consist of twelve actions. A,n acrion
is defined as a set of coirtrol pulses generated by the SQG and rnay be co'.rr-
posed of zero, one, or several control pulses, One action occurs every
0.977 ;rsec and the execution of one subinstruction takes 11.7 p"sec which
equals one Mernory Cycle Tirne (MCT).

32-5, EXECUTION OT' SUBINSTRUCTIONS

32-6. When a Regular Instruction, instruction RUPT, instruction GO, or
\.- instruction TCSAJ K is executed, the content of register SQ and the content

of the stage counter (ST) deterrnine the subinstruction to be executed as shown
in colurnns three and four of table 3Z-4. Subinstruction STDZ (standard two)
is executed whenever the stage counter (ST) corrtains octal 2 regardless of the
contents of register SQ as indicated by the X syrnbols. If the stage counter
(ST) contains any other octal nurnber than2, a subinstruction is executed as
defined by the content of register SQ. Subinstructions of Regular Instruc-
tions with whole order codes are deterrnined by the content of bit positions
EXT through 13 of register SQ while the content of bit positions 1Z through
10 is irrelevant. Subinstructions of Regular Instructions with quarter codes
are defined by the content of bit positions EXT through 1l while the content
of bit position l0 is irrelevant. Subinstructions of ChanneL lnstructions are
defined by the content of bit positions EXT through 10. (Refer to paragraphs
30 - I 53 and 30 -1,54,)

32'7. When a Counter Instruction is executed, the contents of register SQ
and the stage counter (ST) are irrelevant; the execution of Counter Instruc-
tions is deterrnined by the setting of certain flip-flops only. When a Periph-
eral Instruction is executed, the setting of certain ftip-flops and the content
of the stage counter (ST) deterrnine the subinstruction being executed.

3Z-8. The twelve actions (I through 1Z) of a DV subinstruction do not occur
in the sarrle sequence as tirne pulses T01 through TIZ are generated. Actions
I through 3 of subinstruction DVO are caused by tirne pulses 1 through 3.

32- L9

FR- 2- 13 2

Actions 4 through 12 and l through 3 of subinstructions DVI through DV6
(table 30-4) are caused by tirne pulses 4 through 12, and I through 3 in that
sequence. Actions 4 through lZ of sublnstruction DV4 are caused by tirne
pulses 4 through l2 and cornplete the last MCT. Thus, the execution of the
six DV subinstructions takes only five MCTts.

32-9. CONTROL PULSES

3Z-LO. Control pulses are signals generated by the SQG which regulates data
flow within the Central Processor (CP) and the Input-Output Control. The
control pulses can be grouped in five categories: read pulses, write pulses,
direct read-write pulses, test pulses, and special pulses (paragraph 30-28).
A11 controt pulses are defined in table 3Z-5 at the end of this section.

3Z-LL. A read pulse gates the content of a register or input-output channel
into the write arnplifiers (WAts). Read pulses such as RA, RB, etc., read
the content of a specific register into the WArs. Read putses RSC and RCH
read the content of that CP register or input-output channet into the WArs the
address of which is contained in register S. Read pulses R15, RlC, etc.,
enter certain octal quantities into the .WArs.

32-L?.. A write pulse clears a register or input-output channet and gates
into it the data which is present at the WAts, i."., the data which is gated
into the WAts by a read pulse at the sarne tirne. 'Write control pulses such
as'WA, WB, etc., write into a specific register. '\4/rite pulses WSC and
WCH write into a register or channel which is defined by the content of reg-
ister S.

32-13. Direct read-write pulses copy the content of one register into an-
other register without using the 'WA!s. Control pulse AZX., for exarnple,
enters the content of register A into register X.

32-14. Test control pulses test the content of certain bit positions, set the
branch flip-flops accordingly and thus initiate branching operations. For
instance, control pulse TSGN tests the content of WA 16 (bit f6) and sets flip-
flop BRI to ONE if WA 16 contains a ONE (rninus sign).

32-15. Special controt pulses are used to set stage counters, certain flip-
flops, to initiate certain operations, etc.

3Z-16. SUBINSTRUCTION STDZ

3Z-17. Subinstruction STDZ (standard two) is used as a concluding subin-
struction with rnost Regular Instructions and instructions RUPT and TCSAJ K.
Its purpose is to incrernent by one the content of register Z, t}:,e Prograrrl

3Z-zA

I-F.-Z-I3Z

counter, and to call forward the instruction to be executed next. Subinstruc-
tion STDZ is executed when the stage counter (ST) contains Z.

3?-L8. Control pulses RZ and WYLZ of. action I (row I of table 3Z-4\ clear
the Adder and enter bits 12 through I contained in register Z into Adder input
register Y. Pulse CI enters a carry bit into bit position I of the Adder, thus
adding a one to the quantity entered by pulse ltrYI2. The incrernented quan-
tity is returned to register Z by pulses RU andWZ of action 6. Before this
operation, register Z contained the address of the instruction to be executed
next. After the operation, register Z corfiair,s the address of the instruction
to be executed. thereafter which becornes the 'raddress of the next instructionrl
during the execution of the next instruction.

3Z-L9. Control pulses RSC and'WG of action Z clear register G if no CP
register address (addresses 0000 through 0007) is contained in register S.
If register S contains a CP register address, the content of the specified CP
register is entered into register G. If register S contains an E rnernory
address (address 0010 through L777), the content ofthe specified E location
is entered autornatically into register G at tirne 4 by the E Mernory (para-
graph 30-52). If register S contains an F rrrerrrory address (addresses 2000
and above), the content of the specified F location is entered autornatically
into register G at tirne 6 by the F Mernory (paragraph 30-53). The inforrna-
tion being entered into register G is the instruction to be executed after the
current STDZ subinstruction. The content of register G is returned auto-
rnatically to an E rnernory location after tirne l0 if an E rnernory location is
addressed to restore the content of the location (destroyed during readout).

3Z-?0. Control pulse RAD of action B norrnally generates control pulse RG.
Pulses RG, WB, and'\{S of action B enter the next instruction into register B
and its relevant address into register S. Control pulse NISQ of action 2,
causes the generation of pulses RB and WSQ at tirne lZ, thus entering bits 15

through 10 of the next instruction into register SQ and initiating the execution
of the next instruction. See exarnple in paragraphs 3Z-25 through 32-29.

3Z-ZL. DATA TRANSFER DIAGRAMS

32-ZZ. The data transfer diagrarns are used to describe the operation of
subinstructions. Figure 32-L, for instance, illustrates the execution of sub-
instruction STDZ discussed in paragraphs 32- 16 through 32-20. Box f- at
the top represents a location in F Mernory if one has been addressed, box E,
a location in E Mernory if one has been addressed, and box H an input-output
ehannel if one hae been addressed, The subsequent boxes represent CP reg-
istere and the Adder with input registers Y and X, output gates (U), and
earry input flip-f1op CI. The large box belsw regicter SQ represente the SQG.

\- The eontrol pulaes gcnerated at the variouc actions are lieted in this box.

3Z-7.1

FR-z-l3Z

025252 WG+OOOOOO

RSCJ

ACT|ONt234567a9tolt t2
RZ RSC RU RAD
wYt2 wG wz wBCI N lSQ WS

7,) _? ?

Figure 32-l . Su6insfrucfion STD2

*..J

The 3-bit stage counter (ST) and the Z-bit
sented by two srnall boxes at the bottorn.
high order bit and BRZ, the low order bit.
to action I indicate starting conditions.

FR-Z - 132

branch flip-flops (BR) are rePre-
(Branch flip-flop BRI contains the
) Data shown in the registers Prior

Code

6. LZL3
0.3000
4.2765

3. 0375

32-23. The inforrnation flow caused by the control pulses is indicated by
vertical Iines. Nurnbers in ellipses indicate data passing through the WArs.

Inforrnation rnoving between mernory and register G does not pass through
the'WA's, therefore, no ellipses are shown in the respective flow lines.
Wl.ren data is gated directly frorn one register into another, no flow line is
shown. Broken flow lines are used to indicate inforrnation flow which rnay
occur und.er conditions different frorn those pertaining to the given nurneric
exarnple.

3Z-24" The 5-digit octal quantities used in boxes F, E, and CH represent
15 bit words (bits 15 through I, no parity bit). Register S is able to store
LZbit add.resses represented by 4 octal digits. Registers G, B, A, L, Q,
Z, y, and X are able to store t6 bit words represented by 6 octal digits and

the sarne is true for the output gates (U) of the Adder. Register SQ is able

to store ? bits expressed in fractional octal nurnbers, 4 bits ot Z octal digits
in front of the octal point, and 3 bits or I octal digit after the octal point.

32-25.

32-26"

EXAMPLE OF INSTRUCTION EXECUTIONS

of instructions has been chosen as an exarnple:The following sequence

Location
'2657

2660
z66L

30 00

Instruction
AD LZL3
TC 3000
CS 2765

cA 0375

\-

Let us assurne that subinstruction ADO has been executed and that subinstruc-
tion STDZ is being executed. Prior to tirne I of STD2, register Z and S con-
tar1- 2660, the address of instruction TC 3000 to be executed next, as indicated
in figure 3Z-L. Since address 2660 refers to F Mernory, instruction TC 3000

(03000) is shown in the top box. The contents of registers G, B, A, Y, X,
and SQ, which rernained frorn the execution of subinstruction ADO, are ir-
relevant. The stage counter has been set to Z at |ne last tirne LZ to initiate
the execution of subinstruction STDZ.

32-27. Control pulse RZ of. action I gates add.ress 002660 into the WArs and

pulse WylZ gates the content of WArs 1Z through 1 into register Y. Pulse
WylZ also clears register X. Pulse CI forces a carry bit into bit position I

3Z-23

FR-2-i3Z

of the Adder and the quantity 002661 appears at the output gates (U). Pulses
RU and WZ of. action 6 return the incrernented address to register Z.

32-28. Since register S does not contain a CP register address, no CP reg-
ister is gated for read out at the occurrence of pulse RSC of action Z, the
WArs contain 000000, and pulsel[G writes this quantity into register G, thus
clearing register G. Since reglster S also does not contain an E lnernory
address, nothing is entered into register G by E Mernory at tirne 4. Because
register S contains addres s 2660 of F Mernory, instruction TC 3000 contained
at location 2660 is entered into register G by F Mernory at tirne 6. Since
register S does not contain an E rnernory address prior to tirne 6, no data
is restored in E Mernory after tirne 10.

32-29, Control pulse RAD of action 8 is interpreted as RG and enters in-
struction TC 3000 into the WArs. Pulse'WB enters the sarne instruction into
register B while pulse'WS enters the relevant address into register S. Con-
trol pulses RB and'WSQ, which are caused by pulse NISQ, enter 00. 3 into
register SQ at tirne 12. The stage counter is reset to 0. Thus the execution
of subinstruction TCO has been initiated.

(text continued on page 32,-53l,

3Z-24

Table 3Z-5

CONTROL PULSES

FR-z - l3 2

Pulse Purpose

AZX

B l5X

CI

CLXC

DVS T

EXT

GZLS

KRPT

L16

LZGD

MONEX

MOUT

A

Copies bits 16 through I of register A directly (not through
WArs) into bit positions 15 through I of register X.

Enters a ONE into bit position l5 of register X.

Inserts carry bit into bit position I of the Adder. This adds
the quantity one to the content of the Adder if no bit is carried
around (frorn bit positions 16 to bit position l).

Clears register X if flip-flop BRI contains a ZERO. (Used in
instruction DV E.)

Modifies the content of the stage counter (ST) by cornplernenting
the content of the next higher bit position as shown below:

Binary Octal

000 0

00I I t

011 3

11I 7

rlo 6 '
100 4

Enters a ONE into bit position EXT of register SQ.

Copies bits 16, 15 through 4, and 1 of register G directly (not
through WArs) into bit positions 16, 12 through 1, and 15 of
register X.

Resets interrupt priority ceIl.

Enters a ONE into bit position 16 of register L.

Copies bits 16 and 14 through I of register L directly (not
through WArs) into bit positions 16 and 15 through Z of register
G; enters a ONE into bit position I of register G if pulse MCRO
is generated.

Clears register X and enters ONEts into bit positlons 16 through
Z.

Causes the generation of one rninus drive pulse.

3Z -47

FR-Z- t 3Z

Table 3Z-5

CONTROL PULSES (cont)

Pulse Purpose

NEACOF

NEACON

NISQ

PIFL

P OI\EX

POUT

PTWOX

R15

RlC

R6

RA

RAD

RB

RBl
RBIF
RB2

RBBK

Perrnits end around carry upon cornpletion of subinstruction
MP3.

Inhibits end around carry (aLso during WYD) until NEACOF.

Causes Loading of next instruction into register SQ (irnplies RB
and WSQ at tirne 12). Also resets the stage counter (ST) to 0;
frees certain restrictions; perrnits execution of instruction RUPI
and of all Counter Instructions.

Prevents writing into bit position I of register Y on control
pulse WYD if bit position l5 of register L contains a ONE.
(Used in instruction DV.)

Clears register X and enters a ONE into bit position 1.

Causes the generation of one plus drive pulse.

CIears register X and enters a ONE into bit position 2.

Enters 000015 into WArs.

Enters L77776 (rninus one) into'WArs.

Enters 000006 into .WAts.

Reads bits 15 through I of register A into WArs 15 through 1.

Reads address of next instruction. RAD appears at last tirne
8 of an instruction and is norrnally interpreted as RG. If the
next instruction is INHINT, RELINT, or EXTEND, RAD is
interpreted as RZ and STZ instead.

Reads bits 16 through I of register B into WA's 16 through l.
Enters 000001 into WArs.

Enters 000001 into 'WArs if flip-flop BRI contains a ONE.

Enters 000002 into WArs.

Reads the BB (both bank) configuration into the'WArs, i. e.,
copies the content of bit position 15 of register FBANK into
WArs 15 and 15, the content of bit positions 14 through ll of
register FBANK into'WArs 14 through ll, and the content of
bit positions 1l through 9 of register EBANK into'WArs 3

through I.

3Z-48

Table 3Z-5

CONTROL PULSES (cont)

FR-z - 132

Pul se Purpose

RC

RCH

RG

RL

RLlOBB

RQ

RRPA

RSC

RSCT

RSTRT

RSTSTG

RU

US

RZ

STl

ST2

S TAGE

R

Reads the cornplernented content of register B (bits 16 through
I of C) into 'WAts 16 through 1.

Reads the content of the input-output channel specified by the
contents of register S; bit 15 is read into \MA's 16 and 15, and
bits 14 through l are read into WArs 14 through 1.

Reads bits 16 through I of register G into WArs 16 through 1.

Reads bit 16 of register L into WArs 16 and 15, and bits 14
through I into WArs 14 through l.
Reads low 10 bits, i. e., bits 10 through 1 of register B into
'WArs 10 through 1; replaces c(S), which includes a quarter code,
by a l0 bit address.

Reads bits 16 through I of register Q into WA's 16 through 1.

Enters into the WAts the address of a RUPT Transfer Routine
supplied by the Interrupt Priority Control.

Reads the content of the CP register specified by the content of
register S; bits 16 through l are read into WArs 16 through 1.

Enters into the WArs the address of a counter address supplied
by the Counter Priority Control (paragraph 30-94).

Enters 004000 (Block II start address) into WArs.

Resets the stage counter to 0 (refer to DVST).

Reads bits 16 through I of Adder output gates (U) into WArs 16
through 1.

Reads bit 15 of Adder ortput gates (U) into WAts 16 and 15, and
bits 14 through I into 'WA's 14 through 1.

Reads bits 16 through I of register Z into WArs 15 through I.

Sets stage I flip-flop to ONE at next ttrne LZ,

Sets stage 2 flip-flop to ONE at next tirne 12.

Causes the execution of next subinstruction as defined by the
content of the stage counter (ST).

32-49

r.R-Z- 132

Table 3Z-5

CONTROL PULSES (cont)

Pulse Purpose

TLI5
T]!/dZ

TOV

TPZG

TRSM

TSGN

TSGNz

TSGU

U ZBBK

WA

Copies bit 15 of register L into flip-flop BR1.

Tests the content of the WArs for rninus zeroi if bits 15 through
I are all ONErs, flip-flop BRZ is set tp ONE; otherwise BRZ is
set to ZERO.

Tests the content of WArs I6 and I5 for overflow: set fllp-flops
BRI and BR2 to 0l in case of positive overftow, or to 10 in case
of negative overflow.

Tests the content of register G for plus zero: if bits 16 through
l are all ZEROts, flip-flop BRZ is set to ONE; otherwise the
content of BR2 is not changed.

Tests signals XTLf and XB7 of selection logic for the resurrle
address (0017) during the execution of subinstruction NDX0: if
0017 is present, subinstruction RSM3 is executed next by setting
c(ST) = 3; otherwise subinstruction NDXI by setting c(ST) = l.
Tests content of WA L6 f.or sign: if a ZERO, flip-flop BR I is
set to ZERO; if a ONE, flip-flop BRI is set to ONE without
changing the content of flip-flop BR2.

Tests content of 'WA 15 for sign: if a ZERO, flip-flop BRZ is
set to ZERO; if a ONE, flip-flop BR2 is set to ONE without
changing the content of flip-flop BRl.
Tests content of output gate U16 of Adder for sign: if a ZERO,
flip-flop BRI is set to ZERO; if a ONE, flip-flop BRI is set to
ONE.

Copies bits 16 and 14 through 1I of the Adder output gates (U)
into bit positions 16 and 14 through ll of register FBANK, and
bits 3 through I (of U) into bit positions 3 through I of register
EBANK. UZBBK rnay be inhibited by signal MONWBK, which is
generated if register BBANK is addressed.

Clears register A and writes the content of WAts 16 through I
into bit positions 16 through 1.

32-50

Table 3Z-5

CONTROL PULSES (cont)

FR-Z-132

Pulse Purpose

WALS

WB

WCH

WG

WL

WOVR

WQ

ws

WSC

WSQ

A

A

Clears register A and writes the content of '\trArs 16 through 3

into bit positions 14 through l. If bit position I of register G

contains a ZERO, the content of bit position 16 of register G
is entered into bit positions 16 and 15'of register A; if bit posi-
tion I of register G contains a ONE, the content of output gate
U 16 of the Adder is entered into bit positions 16 and 15 of
register A. WALS also clears bit positions 14 and 13 of reg-
ister L, and writes the content of 't[Ats 2 and I into these bit
positions.

Clears register B and writes the content
into bit positions 16 through 1.

Clears the output channel specified by the
and writes the content of WArs 15 and 14

positions 15 through l.

Clears register G and writes the content of 'WArs 16 through I
into bit positions 16 through 1, except if register S contains
addresses 0020 through 0023 in which case the WA content is
cycled or shifted (paragraph 30-4I).

Clears register L and writes the content of 'WAts 16 through I
into bit positions l6 through l.
Tests the content of WArs 15 and 15 for positive overflow: if
register S contains 0025, counter OOZ4 is incrernented; if reg-
ister S contains 0026 , 0027, or 0030, instruction RUPT is ex-
e cuted.

Clears register Q and writes the content
into bit positions 16 through 1.

CIears register S and writes the content
into bit positions l2 through l.
Clear the CP register specified by the content of register S and
writes the content of \trArs 16 through I into bit positions 16

through 1.

Clears register SQ and writes the content of ltrAts 16 and 14

through 10 into bit positions 16 and 14 through 10.

of WAts 16 through I

content of register S

through I into bit

of WArs 15 through I

of WAts LZ through I

32-51

FR-2-132

I'able 3Z-5

CON'IROL PULSES (cont)

PurposcPu1 se

L15

0

0

0

0

I
I
I
1

Write

WY
WY
WYD
WY
WY
WYD
WY
.WY

Carry

"l

CI

Clears rcgisters X and Y and carry flip-flop CI; writes the content
of WArs 16 through I into bit positions 16 throtrglr I o{ register Y.

Clears registcrs X and Y and carry Ilip-flop C,I; writes the content
of WA's L'Z through 1 into bit positions lZ through I of register Y.

Clcars registers X and Y and carry flip-flop Ci, writcs the content
of l,VAts 16 and 14 through I into bit positions 16 and 15 through Z

of register Y; wtites the content o{ WA 16 into irit position I o{ reg-
ister Y cxcept in SI{INC sequence, or unlcss lr,- position 15 ol reg-
ister L contains a ONE at PIFL, or il'cnd aror:,rd carry is inhibited
by control pulse NEACON.

Clears register Z and writes the content of W-4,',; 16 through I into
bit positions 16 through l.

Enters a ONE into bit position 15 of register 7'.

Enters a ONE into bit position 16 of regtstar Z.

Causes the generation o{ control pulses ItU, GZLS, and WALS
(used in instruction MI) K).

Causes generation o{ control pulses AZX and LZGD (used ln instruc-
tion MP K); perforrns read /write operations clepending on the con-
tent of bit positions 15, Z, and 1 of register L as shown:

LZ Ll Ilcad

00
O I RI]
I 0 ltrl
I I IiC
0 0 R.rl
0 t lrr]
I O RC
11

R ernernbe r

vrcno

rracno
MCRO

If MCRO occurs, a ONE is entered into L15

Stops thc generation of drive pulses.

A This pulse does not appear inthe pulse sequences; refer to ZAP.

A T'his pulse does not appear in the pulse sequences; 'refer to NISQ.

WY

wY 1z

WYD

WZ,

Z.L5

ZL6

ZAP

Z7P

ZOUT

32-52

FR-Z- t3Z

wB I 030357
I

RBt
I

I

Rsc t

RZ}-----{0O266|) wz I oo3oor

456789tO||t?
RU RADwz wB

WS

32-55

Figurc 32*2, SubinsfrucllEn fCO

tsc ,l

FR-Z - I32

(1) Retain c(a).
(Z) Set c(B) = c(F) = f , f being the instruction stored at location F.

Set c(S) = relevant address of f.
Set c(SQ) = order code of f.

(3) Setc(Z)=F*I.

Point (2) irnplies that instruction f is executed next.

32-41 . There are no restrictions on instruction TCF F, or special cases,
except that F rnust represent an address in F Mernory.

32-42. The execution of subinstruction TCFO is sirnilar to that of subinstruc-
tion TCO except for action 3 which has no control pulse (row 3 of table 32-Z).
The content of register Q is not changed. The relevant address contained in
register B is incrernented by one and entered into register Z.

32-43. INSTRUCTION CCS E

32-44. Instruction CCS E (Count, Cornpare, and Skip on E) is a Basic
Instruction which is represented by order code 01.0 and a 10-bit address.
Instruction CCS E consists of subinstructions CCS0 and STDZ, the execution
of which takes two MCT's.

32-45. Instruction CCS E exarnines the data stored at location E in E Mern-
ory (or in a CP register) and branches accordingly. The operation CCS E
with 0024 <E <17777 can be forrnulated as follows:

If c(E) is positive non-zero, i. e., if 00001 = c(E) < 377'77:

(r) Set c(A) = c(E) -1.
(Zl Set c(B) = c(I+l) = j, I being the address of instruc-

tion CCS E, and j being the instruction stored at
location (I+I).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Zl+r = I*2.
l4l Restore c(E) - b(E) and c(I+l) = b(I+l) if E and/or

(I+l) represent an address in E Mernory.

If c(E) is plus zero,i. e., if c(E) - 00000:

(1) Set c(A) = 000000
(Zl Set c(B) = c(I+Z) = j, I being the address of instruc-

tion CCS E, and j being the instruction stored at
location (I+Z).

(3) Set c(Z) = b(Zl+Z = I*3.

32-56

r.R-Z - 132

(4) Restore c(E) = b(E) and c(I+Z) = b(I+Z) if. E andf ot
(I+2) represent an address in E Mernory.

If c(E) is negative non-zero, i.e., if 40000 =c(E) <77776:

(1) Set c(A) = E(e) -1, ; for cornplernented content.
(Zl Set c(B) = c(I+3) = j, I being the address of instruc-

tion CCS E, and J being the instruction stored at
location (I+3).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c (Z) = b(Zl +3 = W4
(41 Restore c(e) = b(E) and c(I+3) = b(I+3) if. E andf or

(I+3) represent an address in E Mernory.

If c(E) is rninus zero' i. e., if c(E) = L7777'.

(I) Set c(A) = 000000'
(Z) Set c(B) = c(I+4) = j, I being the address of instruc-

tion CCS E, and J being the instruction stored at
location (I+4).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Zl+4 = I*5'
(4) Restore c(E) - b(E) and c(I+4) = b(I+4) if E and/or

(I+4) represent an address in E Mernory.

Point (Z) of all cases irnpLies that the respective instruction j is
executed next.

32-46. Special Cases of CCS E:

a. CCS A, a very useful instruction, exarnines the data in A;
however, the b(A) is changed.

b. CCS L, CCS Q, and CCS Z f.oLlow the rules of paragraph 32-45.

c. CCS EBANK, CCS FBANK, and CCS BBANK also folIow the
rules of paragraph 3Z-45; however, the particular read and
write operations rnu.st be observed.

d. CCS Z.ERO has no purpose.

e. lnstructions CCS E with 0010 < E < 0017 follow the rules of
paragraph 3Z-45.

f. Instructions CCS E with 0020 < E < 0023 aLso follow the rules
of paragrapln 32-45 except that c(E) is editeC during restoring.

32*67

FR-2- l32

F

E Q3777
1

oo0oo
1o3777

H

S o3oo
t

ws o3o0 wst 652r

@
G orosoo I wctoooooo loo.tr,

1*o
*n1oo.rrr,l

@ @D
B ;;I-..* wo looszzz

^rl
*t?

@
A n sc{ wA

t003776

L n scl
I

0
I

nsc{

z 00652r ns.l ruI wz oo652 r

GD@ @.D @
U 006s2 r ooaua,I,, ooarra I a,

Y o 065 20 nrr,. l oo.u. *rI oorr,

x oo0000 . oooooo MoNEx. I 77776

CI I o CI I

SQ ot.o

ACT|oNt23456789rOnt2
RLIOBB RSC
WS WG

RG
WB
TSGN
.|-MZ

rPZG

RZ RU RB WY RUwYrz wz wc sT2 wa
WS RB

MONEX
CI

ST o

BR o o o

2702A

3Z-58

Figure 32-3. Subinstruction CCS0, Bronch on Quontity Greater thon Plus Zero

FR-2-t32

F

E ooooo
1

ooooo
t

ooooo

H

s 03oo t ws o3oo

@ I

or0300 wG a oooooo loo,ooo0
?RG

wG
toooooo

B o,o.oo l *.,0* i
*, J oooooo ^rl

A nsc { wa
t

oooooo

L

l

RSc t
o

I

RSC
?

z 00652 r *.. I

@@
U 00652 r oo.u.. I *, oooooo,l *,

Y oo6520 *r,, J oour. wY . oooooo

x oooooo PONEX . OOOOOI . 000000

CI I ao.o

SQ ol.o

ACT|ONt?34567g9lOll 12

RLIOBB RSC RG RZ RU RB WY RU

WS WG WB WYIz W Z WG ST? WA
TSGN PONEX WS

IMZ
TPZG

ST o 2

BR 0 I 0

?7OaA

Figure 32-4, Subinstruction CC50, Branch on Plus Zero

3Z-59

ws
t

6524

*r l *,
{
oour..

I

6ooooo)

r.R-Z-132

o3oo I ws o3oo

wGtoooooo tr76s44
?*n

q?6s41

oo6s2l RSC I Rz i wz

wYr2 v oo652t wY I ool233

PTWOX . OOOOO2 MONEX. t77776

. o ct. o

SO ol.o

ACT|ONt234567e9to |t2
RLIOBB RSC RG RZ RU RB WY RUWS WG WB WYIz WZ WG ST2 WA

TSGN PTWOX WS RC
rMZ MONEX
TMZG Cr

ST o
2

BR o 2 o

27044

32-60

Figure 32-5. Subinsfruction CCS0, Bronch on Quontity Less thon Minus Zero

F

E 76544
1

ooooo i 76s44

H

S ws
t

6523

ioo.ii)

G cro300 *n
l,ruroo

,L

1r7554,

B ,,o.oo I *.,or" I

l

*u J ,ruroo *u l *.1

ioonA

A
^ra

J
I

wA
t

oor232

L nsc I
I

RSC

7. oo6523

cos:z) (cssz.) (o,z:) (o,zl

U lo65 2 r oo"u.. I *, oo,r.. J
^,

Y)06520

x)ooooo

CI I

I.P..Z-132

77777 ooooo I 77777

ws A 6524

wGtoooooo 1177777
lRG

wc I177777

777 77 t7777

oro3ooaRLroBB I wBlt77777

RSC t
RSC I

oo652t RSC a RZ Q wZ

wYr2 i 00652r

[![![o ooooor

SO ot.o

ACT|ONt?3456789rOilt2
RLIOBB RSC RG RZ RU RB WY RU
WS WG WB WYI2 WZ WG ST2 WA

TSGN PONEX WS
IMZ PTWOX
IPZG

0 2

BR o 3 o

2/O3A

Figure 32-6. Subinstruction CCS0, Bronch on Minus Zero

32-6r

FR-2 - l 32

32-47. When instruction CCS E is executed, action I of subinstruction CCSO
(row 4 of table 32-Zl enters the relevant address of instruction CCS E into
register S. At tirne I of the first subinstruction, register B always contains
the instruction to be executed. At tirne Z or 4, the quantity to be tested is
entered into register G. Action 5 enters the quantity into register B and sets
the branch flip-flops accordingly. Actions 7 and 8 incrernent the content of
register Z by 0, l, Z, or 3 to specify a new rrnext address'r and enter it into
register S. Action 9 returns the tested quantity to register G for restoring
in rnernory. Action I0 dirninishes the tested non-zero quantity by one and
action l1 enters the dirninished quantity into register A. Subinstruction STDz
incrernents the content of register Z by one and calls forward the instruction
defined by the previous content of register Z.

32-48. The execution of subinstruction CCS0 of CCS 0300, with location
0300 containing a quantity greater than plus zeto, is illustrated in figure
32-3, Figures 32-4, 32-5, and 32-6 illustrate the execution of the sarne
instruction with location 0300 containing different quantities (plus zero, less
than rninus zero, and rninus zero).

32-49. INSTRUCTION BZI" F

3Z-5O. InstructionBZF F (Branch onZero to Fixed F) is an Extra Code
Instruction which is representedby order code 11.2, LL.4, or 11.6 and a LZ
bit address. The address contains a ONE in bit position 1l or 12 or in both.
The order code is cornposed of I1. plus the two address bits rnentioned.
Instruction BZF F rnust be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. (Code f . is taken frorn
bit positions 15, 14, and l3 of register B, and entered into the corresponding
bit positions of register S0.) Instruction BZF F consists of subinstruction
BZFO only if branching occurs, and of subinstructions BZF0 and STDZ if no
branching occurs; consequently, the execution of instruction BZI. F rnay take
one or two MCTrs.

32-51. Instruction BZF F exarnines the data contained in register A and
takes the next instruction frorn location F in F rrrerrrory if register A contains
zero. The operation BZF F with 2000 < F = 7777 can be forrnulated as fol-
lows:

000001 s c(A)= 077777 orIf c(A) is nonzero, i. e., if
100000=c(A) <L777762

(t) Retain c(A)
(Zl Set c(B) = c(I+t) =

tion BZF F, and
1oc ation (I+ I).

j, I being the address of instruc-
j being the instruction stored at

32-62

I.R-z- 132

Set c(S) = relevant address of j.
Set c(SQ)= order code of j.

(3) Set c(Z) = b(Zl+L=I*2
(4) Restore c(I+I) = b(I+1) if (I+1) represents an address

in E Mernory.

Point (2) irnplies that instruction j is executed next.

If c(A) is zero, i. e., if c(A) = 000000 or c(A) = 177777:

(I) Retain c(A)
(Zl Set c(B) = c(F) - f, f being the instruction stored at

location F.
Set c(S) = relevant address of f.
Set c(SQ) = relevant address of f.

(3) Set c(z) = r+t.

Point (2) irnplies that instruction f is executed next.

32-52. There are no restrictions on instruction BZF F, or special cases,
except that F rnust represent an address in F Mernory.

_ 32-53. When instruction BZF F is executed, action 1 of subinstruction BZFO
(row 5 of table 32-Zl enters the content of register A into register G. Actions
I and 2 set the branch flip-flops (BR) to 0 or Z if. a non-zero quantity has been
entered, or to 1 or 3 if the quantity zero has been entered into register G.
If a non-zero quantity has been entered, the address of the next instruction is
copied frorn register Z into register S by action 8 and subinstruction STDZ
incrernents the content of register Z and calls forward the next instruction.
If registers A and G contain 000000 or 177777 at tirne Z, the relevant address
F of instruction BZF F contained in register B is incrernented by one by
action 5 and entered into register Z by action 6. (Cornpare with actions I
and 6 of subinstruction TC0.) At tirne 5, the instruction stored at location F
is entered into register G and copied into register B by action 8. Action 8

also enters the relevant address of the instruction into register S and enters
its order code into register SQ at tirne 12.

32-54. The execution of subinstruction BZF0 of. BZF 6055, with A contain-
ing 004765, and location 6055 containing instruction CA 0ZZl (3022I), is illus-
trated in figure 32-7. Figure 32-B illustrates the execution of the sulrrre

instruction when A contains 000000. When A contains any negative quantity
such as 176543, BR is set to 2 by control pulse TSGN. Otherwise, figure
32-7 applies. W.hen A contains 177777, BR is set to 3 by control pulses TSGN
and.TMZ; otherwise figure 32-8 applies.

32-63

F 30??t
?

E

H

s 6055 ws
t

0437

G
I

)16055 A wG 004765 WG . OOOOOO t O3O22l
I

I

B o r 6055

@@e
A co4765 I RA

L

o

7. o06437 RZJ

r.R-2 - t 32

Figure 32-7. Subinstruction BZF|, With Register A Contoining
o Posifive Non-Zero Quontity

32-64

U oo6437

Y 006436

x o06000

CI I

SQ I t.6

ACT|ONt23456
RA TPZG RSC
WG WG
TSGN
TMZ

78
RZ
WS
STD2

9toil t2

o 2

BR oo o

27a54

I.P.-Z-L3Z

F 30221
1

E

H

S 6055 ws
t

022r

@
G 016055 a wG oooooo wG . oooooo I oror, -''f

6.or.)

B o16055 tt? *, I ouo.., *t?

@
A oooooo Lo

L

o

z oo6437 *. r oo.ouu
I

<
ou) (oo.ori)-/\-/

U oo6437 006056 I RU

Y o06435 *r,. J oououu

x 000000 . oooooo

CI I cIa I

SQ I t.6 *ro {o.o

ACTION I

RA
WG
TSON
TMZ

2

rPZG

34567
RSC R8 RU

wG wYr2 wz
CI

I
RAD
WB
WS
NI SQ

9 to il l?

ST 0 o

BR ool o

2786A

Figure j2-8. Subinsfrucf ion BZFI, Wirfi Regisrer A contoining Plus Zero

32-65

FR-Z- 132

32-55. INSTRUCTION BZMF F

32-56. Instruction BZMF F (Brancir, on Zero or Minus to Fixed F) is an
Extra Code Instruction which is represented by order code 15.2, L6.4, or
16.6 and a 12 bit address. The address contains a ONE in bit position 11 or
L2, ot in both. The order code is cornposed of 16. plus the two address bits
rnentioned. Instruction BZMF F rnust be preceded by Special hstruction
EXTEND which enters a ONE into bit position EXT of register SQ. Instruc-
tion BZMF F consists of subinstruction BZMtr'O only if branching occurs, and
of subinstruction BZMf'0 and STDZ if no branching occurs; conseguently, the
execution of instruction BZMF F rnay take one or two MCT's.

32-57. Instruction BZMF F exarnines the data contained in register A and
takes the next instruction frorn location F in F Mernory if register A contains
zeto or a negative non-zero quantity. The operation BZMF F with 2000 = F
= 7777 can be forrnulated as follows:

If c(A) is positive non-zero, i. e., if 000001 s c(A) = 077777:

(1) Retain c(A).
(Zl Set c(B) = c(I+l) = j, I being the address of instruc-

tion BZF F, and j being the instruction stored at
location (I+1),

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Zl = b(Zl+t = I*2.
(4) Restore c(I+1) = b(t+1) if (I+1) represents an address

in E Mernory.

Point (2) irnplies that instruction j is executed. next.

If c(A) is not positive non-zero, i. e., if c(A) = 000000 or
100000=c(A)<177777:-

(1) Retain c(A)
(Z) Set c(B) = c(F) = f, f being the instruction stored at

location F.
Set c(S) = relevant address of f.
Set c(SQ) = relevant address of f.

(3) Set c(A) = F*1.

Point (2) irnplies that instruction f is executed next.

32-58. There are no restrictions on instruction BZMF F, or special cases,
except that F rnust represent an address in F Mernory.

3Z-66

F.P.-z-r32

32-59. The execution of instruction BZMF F is sirnilar to that -of instruc-
tion BZF F. Both subinstructions BZFl and BZMFO set the branch flip-flops
by actions 1 and 2; however, depending on the content of the branch flip-flops,
actlons 5, 6, and 7 operate differently. Refer to rows 5 and 5 of table 3Z-4.
'When A contains a positive non-zero quantity, subinstruction BZMFO sets
BR to 0 and no branching occurs. When A contains plus zero, a negative
non-zero quantityror rninus zero, BR is set to 1, Z, or 3, respectively, and
branching occurs.

32.60. FETCHING AND STORING INSTRUCTIONS

32-61. INSTRUCTION CA K

32-52. Instruction CA K (Clear and Add K) is a Basic Instruction which is
represented by order code 03. and a 1Z bit address. Instruction CA K con-
sists of subinstructions CAO and STDZ, the execution of which takes two
MCT's. Alternate spel"ling CAF K is perrnitted when K refers to a location
in F Mernory, and CAE K when K refers to a location in E Mernory or a CP
regi ster.

32-63. Instruction CA K clears register A and enters into it the data stored
at location K. The operation CA K with 0024 < K < 7777 can be forrnulated
as follows:

(1) Set c(A) = c(K)
(2) Set c(B) = c(I+l) = j, I being the address of instruc-

tion CA K, and j being the instruction stored at
location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
Set c(Z) =b(Zl+l =I12.
Restore c(X) = b(K) and c(I+t) = b(I+I) if K andfor

(I+l) represents an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-64. Special Cases of CA K:

CA A (alternate code NOOP, for no operation) has no effect.

CA L, CA Q, and CA Z f.ollow the rules of paragraph 3Z-53.

c. CA EBANK, CA FBANK, and CA BBANK can be used; however,
the particular read and write operations have to be observed.

d. CA ZERO enters 000000 into A.

(3)
(4)

a.

b.

3?-67

FR-z- 132

F

T

E

?
ooooo

|
44444

H

s 0400 ws
t

6000

G o3o4oo wG t oooooo f ,ooooo Ln
1

*o
1,*ooo

I
I

B o30400 I wB 1144444 fr. -"
?

A *.. I *o I ,ooooo

L *..
{

o *ra {

z oo6000 ... J ,.J

U oo6000

Y oo5777

x 000000

CI I

SQ o3.0

ACTIONt23456789tollt2
RSC
WG

RG RZ RB RB
w8 ws wG wA

ST2

5t o

BR o o

27 t8A

32-68

Figure 32-9. Subinstruction CAO

I

I

I

I

@ @

il;}=':2 qTig qi

FR-z - 132

e. lnstructions CA K with 0010 < K < 0017 follow the iules of
paragraph 32-63.

f.. Instructions CA K with 0020 < K < 0023 also follow the ruLes
of paragraph 32-63, except that the c(K) is edited during
r estoring.

32-65. ,When instruction CA K is executed, action 2 of subinstruction CAO
(row 7 of table 32-41 enters the desired quantity into register G if this quan-
tity 1s stored in a CP register. Otherwise, register G is cleared and the
desired quantity is entered by E Mernory at tirne 4, or by F Mernory at tirne
6. Action 7 copies this quantity into register B, and action I0 copies the
quantity (frorn register B) into register A. Action 9 returns the quantity to
register G for restoring in E Mernory. Subinstruction STDZ incrernents the
content of register Z by one and cal1s forward the instruction defined by the
previous content of register Z.

32-66. The execution of subinstruction CAO of CA0400, with location 0400
containing 44444, is illustrated in figure 32-9.

3Z-67. INSTRUCTION CS K

i\- 32-68. Instruction CA K (Clear and Subtract K) is a Basic Instruction which
is representedby order code 04. and a 12 bit address. Instruction CSK
consists of subinstructions CSO and STDZ, the execution of which takes two
MCT's.

32-69. Instruction CS K clears reglster A and enters into it the cornplernent-
ed data stored at location K. The operation CS K with 0024 < K < 7777 can
be forrnulated as' follows:

(1) Set c(A) = t(X), E fo" cornplernented content.
(2) Set c(B) = c(I+t) = j, I being the address of instruc-

tion CS K, and j being the instruction stored at
Iocation E(I+ I).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+l = I+2.
(4) Restore c(K) = b(K) and c(I+l) = b(I+1) if K andf or

(I+1) represents an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-70. Special Cases of CS K:

3Z-69

FR-z - t 32

CS A (alternate code COM, for cornplernent) cornplernents the
content of A.

CS L, CA Q, and CA Z follow the rules of paragraph 32-70.

CS EBANK,CA FBANK, and CA BBANK can be used; however,
the particular read and write operations rnust be observed.

CS ZERO enter s 177777 into A.

Instructions CS K with 0010 = K < 0017 follow the rules of
paragrapln 32-69.

Instructions CS K with 0020 < K < 0023 also follow the rules of
paragraph 32-69, except that the c(K) is edited during restorlng.

32-71. The execution of instruction CS K is sirnilar to that of instruction
CA K (cornpare instructions CA 0 and CS 0 in rows 7 and 8 of table 3Z-4).
Action t0 of CAO takes the desired quantity frorn the norrnal read side of
register B and enters this quantity into register A. Action 10 of CSO takes
the desired quantity frorn the cornplernent read side of register B and enters
the cornplernented quantity into register A.

32-72. INSTRUCTION DCA K

32-73. Instruction DCA K (Double C1ear and Add K) is an Extra Code Instruc-
tion which is represented by order code 13. and a 12 bit address. Instruc-
tlon DCA K rnust be preceded by Special Instruction EXTEND which enters a
ONE into bit position EXT of register SQ. (Code 3. is taken frorn bit posi-
tions 15, 14, and 13 of register B and entered into the corresponding bit
positions of register SQ.) Instruction DCA K consists of subinstructions
DCAO, DCAl, and STD2, the execution of which takes three MCTrs.

32-74. Instruction DCA K clears registers A and L and enters into thern the
data stored at locations K and K+1, respectively. The operation DCA K with
0OZ4 < K < 7776, excluding the last address of any E or F Mernory bank,
(tables 30-3 and 30-4) can be forrnulated as follows:

(1) Set c(A) = c(K)
Set c(L) = c(K+1)

(Z) Set c(B) = c(I+1) = j, I being the address of instruction
DCA K and j being the instruction stored at Location
(r+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Zl = b(Z)+l = I*2.

a.

b.

c.

d.

e.

f.

32-70

FR-Z-132

(4) Restore c(K) - b(K), c(K+t) = b(K+1), and c(I*1) = b(I+l)
if K, (K+1) andf or (I+l) represent an address in
E Mernory.

Point (2) irnplies that instruction j is executed next.

32-75. Special cases of DCA K:

DCA A has no purpose.

DCA 0010 (DCA ARUPT) and DCA 0013 (table 30-41 are useful
and follow the rules of paragraph 32-74.

Any DCA K with 0000 < K = 00ZZ rnust be used with extrerne
care so as not to destroy stored datai K rnust not be 0023 in
order to prevent destruction of data in counter T2. Whenever
locations 0020 through 0023 are involved, the content is edited
during the restoring oPeration.

32-76- When instruction DCA K is executed, first the content of location
(K+l) is entered into register L by subinstruction DCAO, then the content of
location K is entered into register A by subinstruction DCAl. The Yul Pro-
grarnrning Systern accornplishes this by replacing instruction DCA K with
code DCA (I(+1) which is wired into the prograrn. As the AGC executes sub-
instruction DCAO, relevant address (K+1) is available first and decrernented
by one. Subinstruction DCAI then uses the decrernented address K. For
execution of subinstructions DCA0 and DCA1, refer to rows 9 and 10 of table
32-4. When double precision quantities are taken frorn rrlernory, K rnust not
be equal to the last address of any E or F rnemory bank in order to allow K*l
to be a legal address.

32-77. The execution of instruction DCA Ol32 is illustrated in figures 32-10
and 3Z-Ll. It is assurned that this instruction is stored at location 2103.
Location 0132 contains quantity 33461 and location 0133 contains quantity
ll13l. Note that registers B, G, and S contaln relevant address 0133 at the
start of subinstruction DCA0 instead of 0132. Thus, E Mernory enters the
quantity llz3l into register G at tirne 4 and actions 7 and l0 bring the quantity
into register L. Action I decrernents address 0133 and action 8 enters the
decrernented address 0132 into register S. At tirne 4 of subinstruction DCAl,
E Mernory enters the quantity 33461 into register G and actions 7 and 10

bring this quantity into register A. Action 8 enters the address of the next
instruction stored in regi ster Z into register S as usual, and subinstruction
STDZ incrernents the content of register Z and calls forward the next instruc-
tion.

a.

b.

C.

32-7 L

FR-2- t32

F
?

E r23r
1

oooo0
t

r23r

H

s or33 ws
t

or32

G o3or33 wG t oooooo I o,,r., I *n
1

wc
t

orz3r I

@ @
B ' *' J o"tt'o3or33

I
RB

I

*rl *t?

@@ @@
A *.. {
L ".{ *. J o,,r.,

o ".. {
z oo2 r o3 *.. I

U oo2ro3 ooor 32 ",J
Y ooa,oa I *r,, ooor33

x oooo00 MoNEx 177776

CI I CI I

SQ r3.o

ACT|oN t 2 3 4 5 6 7 A 9 to il t2
RB RSC RG RU RB RBWYIz WG WB WS WG WLMoNEx srt
L1

ST o
I

BR o o

27 77A

32-72

Figure 32-10. Subinsfruction DCA0

I

I

F ?

E

?
ooooo

t
3346r

H

S or32 ws
t

oro3

G or r23r wG + oooooo J o..o., *ol *01 o..ou, J

| ,o:sqo, r p..ou)

I or r?3r I w" I orrou,
I

*ul *"7

3 fo:sqJ

FR-Z-132

A nsc { *o I o..ou,

L nsc {

o nsc {
I

z oooro3 nsc J *a rI,

U ooor32

Y toot 33

X t77776

LI I

SQ r30

ACTIONt234557A9lOlll?
RSC RG RZ RB RB
WG WB WS WG WA

ST2

ST I 2

BR o o

27744

Figure 32-ll. Subinsfrucrion DCAI

32 -73

r.R-Z- l3Z

32-78. INSTRUCTION DCS K

32-79. Instruction DCS K (Double Clear and Subtract K) is an Extra Code
Instruction which is represented by order code 14. and a LZ bit address.
Instruction DCS K rnust be preceded by special instruction EXTEND which
enters a ONE into bit position EXT of register SQ. fnstruction DCS K con-
sists of subinstructions DCS0, DCSl, and STD2, the execution of which takes
three MCT's.

32-80. Instruction DCS K clears registers A and L, cornplernents the data
stored at locations K and K*1, and enters this data into registers A and L,
respectively. The operation DCS K with 0024 < K < 7776, excluding the last
address of any E or F rnernory bank (tables 30-3 and 30-4), can be forrnulated
as follows:

(l) set c(A) = Etx)
Set c(L) = c(K+1)

(Zl Set c(B) = c(I+l) = j, I being the address of instruction
DCA K and j being the instruction stored at location
(I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z) *1 = I*2.
(4J Restore c(K) = b(K), c(K+t) = b(K+l) and c(I+1) = b(I+l)

if K, (K+1), andf or (I+l) represents an address in
E Mernory.

Point (2) irnplies that tnstruction j is executed next.

32-81. Special cases of DCS K:

DCS A, (alternate code DCOM, for double precision cornplernent)
cornplernents the contents of registers A and L.

DCS 0010 and DCS 00I3 (tabIe 30-4) rnay be useful and follow
the rules of paragraph 32-80.

Any other DCS K with 0000 < K < 0022 rnust be used with extrerne
care so as not to destroy stored data; K rnust not be 0023 in
order to prevent destruction of data in counter T2. Whenever
locations 0020 through 0023 are involved, the content is edited
during the restoring operation.

32-82. The execution of instruction DCS K is sirnilar to that of instruction
DCAK. Cornpare rows 11 and L2 of. table 3Z-4 with rows 9 and 10.

a.

b.

c.

32-74

FR-z - I3 2

In action l0 of subinstructions DCS0 and DCSI, the control pulse RB is re-
placed by pulse RC to read the cornplernented quantity instead of the non-
cornplernented quantity oui of register B.

32-83.]NSTRUCTION TS E

32-84. Instruction TS E (Transfer to Storage E) is a Basic Instruction which
is representedby order code 05.4 and a l0 bit address. Instruction TS E
consists of subinstructions TS0 and STDZ, the execution of which takes two
MCT's.

32-85. Instruction TS E enters the content of register A into location E of
E Mernory (or a CP register) and skips if A contains an overflow bit. The
operation TS E with 0024 < E < 17777 can be formulated as follows:

If register A does not contain an overflow bit:
(1) Set c(E) = c(A).

Retain c(A).
(Z) Set c(B) = c(I+l) = j, I being the address of instruction

TS E, and j being the instruction stored at loca-
tion (I+I).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(z)+l = I*2.
(4) Restore c(I+t) = b(I+1) if (I+l) represents an address

in E Mernory.

If register A eontains an overflow bit:
(1) Set c(E) = c(A) except for overflow bit.

Set c(A) = 000001 if A contained a positive overflow.
Set c(A) = 177776 if A contained a negative overflow.

(Z) Set c(B) = c(I+Z) = j, I being the address of instruc-
tion TS E, and j being the instruction located at (I+Z)

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+z = I+3.
(4) Restore c(I+Z) = b(I+Z) if (I+Z) represents an address

in E Mernory.

Point (Z) of both cases irnplies that the respective instruction j is
exeeuted next.

32-86, Spectal e asee of TS El
'\-

32-75

FR-2- 132

TS A (alternate code DVSK, for overflow skip) retains c(A),
including any overflow bit.

TS L and TS Q are useful. Registers L and Q also store
an overflow bit contained in A; however, bits 16 through 13 of
clZ\ are cleared during the execution of STDZ.

TS Z (alternate code TCAA, for transfer control to address in
A) is sirnilar to TS L and fS Q.

TS EBANK, TS FBANK, and TS BBANK can be used; however,
the particular write operations rru-Ist be observed.

TS ZERO has no purpose.

Instructions TS E with 0010 < E < 0017 follow the rules of
paragraph 3Z-56.

Instructions TS E with 0020 < E < 0023 also follow the rules of
paragraple 3Z-85 except that the data to be stored is edited as it
is entered into location E.

32-87. When instruction TS E is executed, action I of subinstruction TS0
(row 13 o{ table 32-41 replaces the quantity contained in register S by the l0
bit address, thus erasing the quarter code contained in register S. Action 3

enters the content of register A into register B, and sets the branch flip-
flops if the quantity entered contains an overflow bit. If no overflow bit is
contained, actions 4 and 6 do not change the address contained in register Z.
This address is entered into register S by action 8 and rnade available for
subinstruction STDZ. If an overflow bit is contained in register A at tirne 3,
actions 4 and 5 incrernent by one the address contained in register Z ar,d
action B enters this incrernented address into reglster S. In this case, sub-
instruction STDZ calls forward the instruction stored at the ttsecond next't
Iocation.

3Z-BB. If the quantity originally contained in register A d.oes not include an
overflow bit, this quantity is copied frorn register B into register G by
action 7. If the relevant address E of instruction TS E represents a CP
register address, action 7 also copies the quantity into the addressed CP reg-
ister. If address E represents an E Mernory location, the quantity is entered
into the addressed location at tirne 10.

3Z-8g. If the quantity originally contained in register A includes an overflow
bit, this quantity is also entered into register G by action '1, artd into a CP
register if required. Otherwise, the sarrre quautity (but without the overflow
bit) is entered into E Mernory at tirne 10. Furtherrnore, action 5 replaces
the overflow quantity in register A by quantity 000001 in case of positive over-
flow, or by I77776 in case of negative overflow.

32-76

a.

b.

C.

d.

e.

f.

5.

FR-z - I32

ooooo I 10460

wG
t
o0oooo l ooo4il wG

t
010460

RLToBB I wBt010460

010460 Rsc+ RAI twsc

nsc { | wsc

nsc I t wsc

Rz ? wz I oo2754 t wsc nz

wYr2 I 002754

SQ o5.4

ACTION t23456
RLIOBB RSC RA RZ RU

WS WG WB WYIz WZ
TOV

7

RB
WSC WS
WG ST2

I
RZ

9 to t2il

ST o 2

BR o o

2724 A

Figure 32-12. Subinstruction TS0, Vlithout Overf low Bit in Regisrer A

3Z-77

F

E oo4 il

H

42Oo t WS o2oo ws
t

2754

)oo2oo)

I

I

6'oo.i)

B

I

RB+

:@ 6:;D (l:jD err

L

z Jozt54 nsc I

@ (oozts

U JO2754 *rl

Y 00275 3

x cooooo . oooooo

CI I ao

FR-z- t32

oo4r ? ooooo

ws | 2755

wG +oooooo tooo4il wcto435il

o435r r

os4200 aRLtoBB I wBl0435I

o455il RSc+ RAa wAiooooor t wsc

RSC+ fwsc

RSc I I wsc

wz loo27s5 | wsc

wYr2 too2754

6-r35il 0435il

SQ o5.4

ACTI ON t23456789to'|t?
RLIOBB RSC RA R7 RBI RU RB RZ
WS WG WB WYIz WA WZ WSC WS

TOV CI WG ST2

ST o 2

BR o I o

27254

32-78

Figure 32-13. subinstruction rs0, wirh Posirive overllow Bit in Regisfer A

F

E
t o3s[

H

42oo
tws

o2oo

,-oori)

G J

I

A

L

o

z)0?754 RSCa trl

)o2754\ (oo2 7 51

U)o2754 oo2755 *rl

Y oo2753

X oooooo .OOOOOO

CI I cI . I

FR-z- r32

32-90. The executlon of subinstruction TS0 of TS 200, with A containing no
overflow bit, is lllustrated in figure 32-lZ. Figure 32-L3 illustrates the
execution of the sarne instruction when A contains a quantity with positive
overflow. In case of negative overflow, control pul se RIC replaces pulse
RBI of action 5.

32-9T. INSTRUCTION XCH E

32-92. Instruction XCH E (Exchange A and E) is a Basic fnstruction which
is represented by order code 05.6 and a 10 bit address. Instruction XCH E
consists of subinstructions XCHO and STD2, the execution of which takes two
MCT' s.

32-93, Instruction XCH E exchanges the data contained in register A with
the data stored at location E of E Mt:rnory (or in a CP register). The oPera-
tionXCH E with 0024 < E < L777 carr be forrnulated as follows:

(1) Set c(A) = b(E)
Set c(E) = b(A) except the overflow bit which is lost.

(2) Set c(B) = c(I+l) = j, I being the address of instruc-
tion XCH E, and j being the instruction stored at
location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+L = I*2.
(4) Restore c(I+t) = b(I+I) if (I+1) represents an address in

E Mernory.

Point (2) irnplies that instruction j is executed next.

32-94. Special Cases of XCH E:

a. XCH A has no purpose.

b. XCH L, XCH Q, and XCH Z exchange data without losing an
overflow bit.

c. XCH EBANK, XCH FBANK, and XCH BBANK can be used, but
the particular read and write operations rnust be observed.

d. XCH ZERO sets c(A) = 000000.

e. Instructions XCH E with 0010 < E < 0017 follow the rules of
paragraph 3Z-93.

f.. Instructions XCH E with 0020 < E = 0023 also follow the rules
of paragr aph 32-$4 except that b(A) is edited as it is transferred
to location E.

37,*79

I

FR-z-l3Z

F

E 433 36
T

ooooo
t

66345

H

S 6430
tws

o43o ws
t

3744

@
G o56430 wcloooooo l,o...u

I*n
wcio6634s J

B 056430 lRLroBB
I

wB

106634:
RB

I

?

@@ @GD
A

I

066345 RSC? ^ol walozrrre wscy

L

ll

R5(. WSCItt

o
I

RSCt wsc t
I

I oo3744 asc I *sc * ,.I

U oo3744

Y o03743

x oooooo

CI I

so o5.6

ACTION I 456

RG

WA

78

RB RZ
WSC WS

WG ST2

RLIOBB RSC

WS WG

RA

WB

+
BR o o

32-80

Figure 32-l 4. Subinsfrucfion XCHA

9 to il t?

FR-z- i32

32-95. 'When instruction XCH E is executed, action 1 of subinstruction
XCH0 (row i4 of table 32-3) replaces the quantity contained in register S by
the 10 b,it address, thus erasing the quarter code contained in register S.

The quantity stored at location E is entered into register G at tirne Z or 4 and
into register A by action 5" The quantity originally contained in register A
is entered into register B by action 3 and transferred to location E at tirne 7.
Action B enters the address of the next instruction into register S and subin-
struction STDZ calls forward the next instruction as usual.

32-96. The execution of subinstruction XCH0 of XCH 0430 is illustrated in
figure 32-14. The overflow bit originally contained in register A is lost on
the way to location 0430 in E Mernory. The sign bit originally contained in
location 0430 rnoves into bit position 16 as the quantity is entered into regis-
ter G.

32-97. INSTRUCTION LXCH E

32-98. Instruction LXCH E (Exchange'L and E) is a Basic Instruction which
is represented by order code 02. 2 and a 10 bit address. Instruction LXCH E
consists of subinstructions LXCHO and STDZ, the execution of which takes
two MCTts.

32-99. Instruction LXCH E exchanges the data contained in register L with
the data stored at location E of E Mernory (or in a CP register). The opera-
tion LXCH E with 0OZ4'< E < I777 can be forrnulated as follows:

(1) Set c(L) = c(E).
Set c(E) = b(L) except the overflow bit which is lost.

(Zl Set c(B) = c(I+1) = j, I being the address of instruction
LXCH E, and j being the instruction stored at loca-
tion (I+ I).

Set c(S) = r"levant address of j.
Set c(SQ) = order code of j.

(3) Set c (Z) = b(Z)+l = I*2.
(4) Restore c(I+t) = b(I+1) if (I+I) represents an address in

E Mernory.

Point (2) irnplies that instruction j is executed next.

32-100. Special Cases of LXCH E:

ALXCH

LXCH

exchanges c(L) and c(A) and retains the overflow bit.

has no purpose.b. L

3Z-81

FP.-Z-L3Z

c. LXCH Q and LXCH Z aLso exchange data and retain the over-
fLow bit.

d. LXCH EBANK, LXCH FBANK, and LXCH BBANK can be used,
but the particular read and write operations rnust be observed.

e. LXCH ZERO (alternate cod.e ZL, for Zero L) sets c(L) - 000000.

f.. Instructions LXCH E with 00i0 = E < 0017 follow the rules of
paragraph 32-99.

g. Instructions LXCH E with 0020 = E < 0023 also folLow the rules
of paragr aph 32-99 except that b(L) is edited as it is transferred
to location E.

32-101. The executlon of instruction LXCH E is sirnilar to that of instruction
XCH E except for actions 3 and 5. (Cornpare rows 14 and 15 of table 3Z-4.)
Subinstruction LXCH0 enters the content of register L (instead of A) into
register B and enters the content of register G into register L instead of
into A.

32-LOZ. INSTRUCTION QXCH E

3Z-L03. Instruction QXCH E (Exchange Q and E) ls an Extra Code Instruc-
tion which is represented by order code 12.2 and a 10 bit address. Instruc-
tion QXCH E rnust be preceded by Special Instruction EXTEND which enters
a ONE into bit position EXT of register SQ. (Code 2,2 is taken frorn bit
positions l6 and 14 through I1 of register B and entered into the correspond-
ing bit positions of register SQ.) Instruction QXCH E consists of subinstruc-
tions QXCH0 and STD2, the execution of which takes two MCTrs.

3Z-L04. Instruction QXCH E exchanges the data contained in register Q with
the data stored at location E of E Mernory (or in a CP register). The opera-
tion QXCH E with 0024 < E s 1777 can be forrnulated as follows:

(1) Set c(Q) = c(E)
Set c(E) = b(Q) except the overflow bit which is 1ost.

(Z) Set c(B) = c(I+t) = j, I being the address of instruction
LXCH E, and j being the instruction stored at location
(r+1).

Set c(S) = ".Luvant
address of j.

Set c(SQ) = order code of j.
(3) Set c(Z) ;,b(Z)+l = I*2.
(41 Restore c(Itl).: b(I+1) if (I+1) represents an add.ress

in E Mernory.

Point (2) irnplies that instruction j is executed next.

3Z-82

r.R-2- 132

32-105. Special Cases of QXCH E:

QXCH A exchanges c(Q) and c(A) and retains the overflow bit.

QXCH L exchanges c(Q) and c(L) and retains the overflow bit.

QXCH Q has no purpose.

QXCH Z exchanges c(Q) and c(Z).

QXCH EBANK, QXCH FBANK, and QXCH BBANK can be used,
but the particular read and write operations rnust be observed.

QXCH ZERO (alternate code ZQ, for Zero Q) sets'c(Q) = 000000.

Instructions QXCH E with 0010 < E < 0017 follow the rules of
paragrapir' 32-L04.

h. Instructions QXCH E with 0020 < E < 0023 also follow the rules
of paragrapln32-104 except that b(a) is edited as it is trans-
ferred to location E.

3Z-L06. The execution of instruction QXCH E is similar to that of
instructions XCH E and LXCH E except for actions 3 and 5' (Cornpare
rows 14, 15, and i6 of table 3Z-4.) Subinstruction QXCH0 takes data
frorn and enters data into register Q instead of register A.

3Z-L07. INSTRUCTION DXCH E

3?-108. Instructlon DXCH E (Double Exchange A and E) is a'Basic Instruc-
tion which is represented. by order code 05. Z and a I0 bit address. DXCH E
corlsists of subinstructions DXCHO, DXCHl, and STDZ, thd executlon of which
takes three MCTts.

3Z-L09. Instructlon DXCH E exchanges the double precision quantity con-
tained in registers A and L with the double precision quantity stored at loca-
tions E and (E+f) of E Mernory (or in two CP registers). The operation
DXCH E with 0024 < E < L776 excluding the last address of any E rnernory
bank (table 30-Z\ can be forrnulated as follows:

(1) Set c(A) = c(E).
Set c(L) = c(EtI).

3:: :[;i; itil",] except anv overnow r.,it which is losr.

(Z) Set c(B) = c(I+l) = j, I being ihe address of instruction DXCH E,
"')' j'and j being the instruction stored at location (I+l).

Set c(S) = relevant address cf j.
Set c(SQ) = order code of j

a.

b.

c.

d.

e.

f..

g.

3Z-83

FR-Z-132

(3) Set c(Z) = b(z)+l = l*2.
(4) Restore c(I+l) = b(I+l) if (I+1) rePresents an address in E

Mernory.

Point (2) irnplies that instruction j ls executed next.

3Z-LLO. Special cases of DXCH E:

DXCH A has no purpose

DXCH 0010 (DXCH ARUPT) and DXCH 0013 (table 30-4) are
useful and {olIow the rules of paragraph 3Z-LI0.
DXCH I'BANK (alternate code DTCF for double precision trans-
fer control fixed bank) and DXCH Z lalternate code DTCB for
double precision transfer control both banks) can be used to
change the content of register Z ar:d of a bank register. These
double precision transfer control instructions can be used to
"jor.rp" banks and store a return address plus its bank code in
registers A and L.

Any DXCH E with 0000 < E < 00 ZZ rnust be used with extrerne
care so as not to destroy stored data; E rnust not be 0023 in
order to prevent destruction of data in counter T2. Whenever
locations 0020 through 0023 are involved, a quantity entered
into any of these locations is edited.

3Z-Lll. The execution of instruction DXCH E is sirnilar to the execution of
instructions DCA K, XCH E, and LXCH E. When instruction DXCH E is
executed, first the contents of register L and location (E+l) are exchanged
by subinstruction DXCH0, then the contents of register A and location E are
exchanged by subinstruction DXCH1 . The Yul Prograrnrning Systern accorn-
plishes this by replacing instruction DXCH E with code DXCH (E+I) which is
wired into the prograrrr. As the AGC executes subinstruction DXCHO, relevant
address (E+I) (available first) is decrernented by one. Subinstruction DXCHI
then uses the decrernented address E. For execution of subinstructions
DXCH0 and DXCHI refer to rows 17 and I8 of table 3Z-4, When double pre-
ci.sion inforrnation is exchanged with rrlernory, E rnust not be equal to the last
address of any E merrrory bank to allow E*l to be the next address in the sarne
bank.

3Z-LLZ. The execution of instruction DXCH 0132 is illustrated in figures
32-I5 and 32-16 . Location 0L3Z contains quantity ZIZLT and location 0133
contains quantity 34677

a.

b.

c.

d.

3Z-84

FR-z-132

ooooo I 73660

2t33 A WS Or33

wG
t

oooooo i 034677 l| RG wG
t

173660

"sc + RL J *. J o.our, *r. I
*r. { *t.

t
*r. I *r. I

oo??3?l WYtz 000133

OOOOOO. MONEX 177776

(ooo r ea)

s:) (oooooo) (rzrooo)

SQ o5.2

ACTTON I 2 3 4 5 6 7 A 9 tO I t2

RLIOEB RSC RL RG R8 RU STI
WG WG WB WL WSC WS
wYlz wG wB
MONEX
CI

SI o I

BR o o

Figure 32-l 5. Subinsfruclion DXCH0

3Z-85

F

E

H

S ws
t

or32

G o52 r 33 i
I

I

B *.,oru I wBt173660 RB. WB oool 32

o236 r 5 *u. { WSC

L I 7 3660

0

z oo2233

U)o2233 ooo r 32 ", I ooo,.,

Y

x

CI I' CI I

FR-z- I3Z

F

E ztzt7
?

ooooo
t

236r5

H

S ol32
t

ws ol32 ws
t

1233

@D
G r73660 wc

t
oooooo I o.,r,,

1
*u wG

t
023615 I

@@
B ooo,., I *,-,o* wB

t
oa36r5 -,+

@@@
A o236rs ,.. { "o

i *ol or,r,, *r. t
L .,3467r .r. { *r. t
o "r. | *.. I
z oo??33 *.. J *r. I *rJoo,...

U ooor 32

Y ooo I 33

X t77776

CI I

SQ 05.2

ACTTONI?345678IrOilt2
RLIOBB RSC RA RG RB RZ
ws wG wB wA wsc ws

WG ST2

ST o 2

BR o o

27?3A

3Z-86

Figure 32-l 6. Subinsfrucfion DXCHI

li

3Z.LL3. MODIT-YING INSTRUCTIONS

3Z-L14" INSTRUCTION NDX E

3Z-LL5. Instruction NDX E (Index
Instruction which is represented by
The alternate spelllng for NDX E is
of subinstructions NDXO and NDXl,

FR-z - I32

Next Basic Instructlon with E) is a Basic
order code 05.0 and a 10 bit address.
INDEX E. Instruction NDX E consists
the execution of which takes two MCTts"

3Z-LL6. Instruction NDX E takes as the next instruction the arlthrnetic surn
of the instruction located at the next location plus the quantity stored at 1o-
cation E. The operation NDX E with OOZ4 < E < L77'7 can be forrnulated as
follows:

(1) Derive a new Basic Instruction (j) by adding the c(E) to the
c(I+1). The address of location I+1 is initially contained in
Z, Ibei.ng the address of instruction NDX E.

(z)

(3)
(4)

Point (Z) irnplies that instruction j is executed next.

3Z-1L7. Special Cases of NDX E:

f.

Set c(B) = j.
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
Set c(Zl = blZ\+L = I+2.
Restore c(E) = b(E) and c(I+I) = b(I+l) if E and/or (I+1) repre-

sent an address in E Mrlfiror)/.

a. NDX A, NDX L, NDX Q, and NDX Z are useful. Registers A,
L, Q, and Z are able to store a 4bit order code besides a I2
bit address.

NDX EBANK, NDX FBANK, and NDX BBANK rnay be used; however,
the particular read and write operations rnust be observed.

NDX ZERO has no purpo6e.

Instructions NDX E with 0010 < E < 0016 follow the rules of
paragrapln 3Z-LL6.

NDX C017 = RESUME. See paragraph 3Z-27L.

Instructions NDX E with 0020 < E = 0023 aLso follow the rules
of paragraph 32-LL6 except that c(E) is edited during restoring.

b.

c.

d.

e.

3Z-87

FR-Z- 132

32-118. The instruction derived by instruction NDX E rnay be sirnilar to
the instruction stored at location (I+1) or may be quite different. If the
quantity at location E is equal to or srnaller than the cornplernent of the rele-
vant address stored in location (I+1), then the order code of the new instruc-
tion is equal to the order code of the Instruction contained at (I+l). If the
quantity at location E is larger, then the order code of the new instruction
differs frorn the order code at (I+1). For exarnple, if NDX E with c(E) = 166
ls {ollowed by TC 2000, then the new instruction becornes TC 2100. If.
c(E) = 5777, then the new instruction is TC 7777. However, if c(E) = 5000
or larger, the new instruction is CCS 0000, or any instruction other than
TC K. In general, the new instruction can be expressed as c(I+1),c(E). If
the quantity at location E is equal to or srnall than the cornplernent of the
relevant address K of instruction OC K stored at location I*1, then the new
instruction can be expressed as OCIK+c(E)] where OC stands for order code.
The derived instruction is always a Basic Instruction, not an Extra Code
Instruction as explained in paragraphs 3Z-lZ5 and 3Z-L26.

3Z-1L9. 'When instruction NDX E is executed, subinstruction NDX0 (row 19
of table 3Z-4\ enters the quantity stored at location E into registers G and B
and enters the address of the location following instruction NDX E (address
I*l stored in register Z) into register S. Subinstruction NDXI (row Z0) then
enters the instruction frorn location Itl into the Adder, together with the
quantity frorn location E, and uses the surn as the next instruction. (The
quantity frorn location E is rnoved frorn register B via register s Z and A
into register X by actions 3, 5, and 7 while the quantity originally contained
in register A is ternporarily stored in register B by action 4 and returned
to A by action 9.) Action 8 enters the relevant address of the new instruc-
tion into register S, action l0 enters the new instruction into register B,
and action 12 enters its order code into register SQ.

3Z-L20. The execution of instruction NDX 0300 is illustrated in figurea 3Z-L7
and 3Z-L8. It is assurned that the instruction is stored at location 2577, ilnat
instruction AD 0420 is stored at location ?600, and that the indexing quantity
00003 is stored at location 0300. The rnodified instruction is as follows:
ADI 0420+c(0300)] = AD 0423.

3Z-IZL. INSTRUCTION NDX K

3Z-LZZ. Instruction NDX K (Index Next Extra Code Instruction with K)
is an Extra Code Instruction which is represented by order code l5 and a
lZ-bit address. The alternate spelling for NDX K ls INDEX K. Instruction
NDX K rnust be preceded by Special Instruction EXTEND which enters a
ONE into bit position EXT of register SQ. Instruction NDX K consists of
subinstructions NDXX0 and NDXX1, the execution of which takes two MCTts.

32-88

I.P.-2-132

r5o3oo wc+oooooo iooooor RG

I

l

r50300

t37771 RSC ?

nscl RZ

U oo2600

Y ooz57 7

x oooooo

CI I

ACTIONt234567B9lOll 12

RSC TRSM RG RZ RB STI

WG WB WS WG

ST o I

BR o o

27 2aA

Figure 32-17. Subinsfruction NDXO

32-89

FR-Z- l3Z

ws I 0423

ooooo3 wG+oooooo + +060420 ?RG

ooooo3 I na? wBari777r

t3z77t nsc I RAa wAlooooo3 wAl t 37trt

oo2600? R1 nsc J wz { ooooor nzl wz loo2bor

A2X.OOOOOS

ACT|ONt?3456789ton12
RZ RSC RB RA RZ RU RG RU RB RU
WYI2 WG WZ WB WA WZ WY WS WA WB
CI NISO AzX

1,,r) (oooqzi) (osoq z) \t 17?7t)

3Z-90

F igure 32-l 8. Su6instruction NDX I

lao

FP.-Z-132

3Z-L23. Instruction NDX K takes as the next instruction the arithrnetic surn
of the instruction located at the next location plus the quantity stored at 1o-
cation E" The operation NDX K with 0AZ4 < K < 7777 can be forrnulated as
follows:

(l) Derive a new Extra Code Instruction (j) by adding c(K) to
c(i+1). The address of location (I+l) is initially contained
n Z, I being the address of instruction NDX K.

(Z\ Set c(B) = j.
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
Set c(EXT) = ONE"

(3) Set c(Z\ = b(2,)+1 = I+2.
(4) Restore c(e) = b(E) and c(I+l) = b(I+l) if. E and./or (I+l) rep-

resent an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-124. Special Cases of NDX K:

NDX A, NDX L, NDX Q, and NDX Z are useful. Registers
A, L, Q, and Z are able to store a 4-bit order code beside
a 1Z bit acldress.

NDX EBANK, NDX FBANK, and NDX BBANK rnay be used;
however, the particular read and write operations rnust be
observed.

NDX ZERO has no purpose.

Instructions NDX K with 0010 < K < 0017 follow the rules of
paragrapln 3Z-L24.

Instructions NDX K with 0020 < K < 0023 also follow the rules
of paragraph 3Z-124 except that c(K) is edited during restoring.

3Z-725. Instructions NDX E (Index Next Basic Instruction) and NDX K
(Index Next Extra Code Instruction) are sirnilar. In table 3Z-4 cornpare rows
21 and ZZ wit]n rows 19 and 20. The rnain difference is that action l0 of sub-
instruction NDXXI re-enters a ONE into bit position EXT of register SQ
while action 10 of subinstruction NDXl does not enter a ONE" A prograrnrrler
is not concerned with which of the two instructions he should use; for this
reason both instructions can be represented by the sarne rnnernonic code,
i. e. , NDX or INDEX. The Yul Prograrnrning Systern autornatically enters
the proper instruction into the prograrn.

a.

b.

C.

d.

e.

\-

3Z -91

FR-Z-132

3Z-L26. The instruction derlved by an NDX instruction is of the sarne type
as the instruction stored after the NDX instruction, i. e. , the derived and
the following instructions are both Basic Instructions or Extra Code Instruc-
tions. The EXT bit cannot be generated by the addition of action 7 of the
second subinstruction. Basic Instructions can be indexed with a quantity
stored in E Mernory (or a CP register) only except location 0017. Extra
Code Instructions can be indexed with a quantity stored anywhere in rnernory,
including location 0017. (Action 5 of subinstruction NDXC does teet for ad-
dress 0017, subinstruction NDXX0 does not.)

32-I27. ARITHMETIC AND LOGIC iNSTRUCTIONS

32-L28. INSTRUCTION AD K

3Z-129. Instruction AD K (Add K) is a Basic Instruction which is represented
by order code 06. and a 12 bit address. Instruction AD K consists of sub-
instructions ADO and STDZ, the execution of which takes two MCTrs.

32-L30. Instruction AD K adds the content of location K to the content of
register A. The operation AD K with 0024 <K < 7777 can be forrnulated as
follows:

(1) Set c(A) = b(A)+c(K). 'When A arrd/or K contains an overflow
bit, the result rnay be erroneous.

(Z) Set c(B) = c(I+l) = i, I being the address o{ instruction AD K,
and j being the instruction stored at location (I+1).

Set c(S) = retevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z'l+l = la/.
(4) Restore c(X1 = b(K) and c(I+l) = b(I+l) if K arrd./or (I+1) rep-

resent an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

3Z-13I. Special Cases of AD K:

a. AD A (alternate code DOUBLE) doubles the content of A.

b. AD L, AD Q, and AD Z are useful.

c" AD EBANK, AD I'BANK, and AD BBANK can be used, how-
ever, the particular read and write operations rnust be observed..

d" AD ZERO has no purpose.

e" Instructions AD K with 0010 < K < 0017 follow the rules of
paragrap}n 3Z-L30.

3Z-gZ

I.F.-Z-l3Z

ooooo 125252

161213 wG t oooooo I orrr* I
^n

wG A 025252 aO2525Z

161213 | *a 1025252

oooroz RSc t

a2x . ooo to2

SQ c6.r

ACT|ONtZ3456789toI|t2
RSC RG RZ RB RB RU
WG WB WS WG WY WA

sr2 A2X

ST o 2

BR o o

?7?7 a

Figure 32-19. Su6insfrucfion ADl

3Z-93

FR-Z - 13 2

f. Instructions AD K with 0020 < K < 0023 also follow the rules
of paragraph 3Z-l3O except that the surn is edited as it is
entered into K.

3Z-I32. When instruction AD K is executed, the quantlty frorn location K
is entered into register G at tirne Z, 4, or 6 of subinstruction ADO (row 23

of table 3Z-4\. Action 7 enters the quantity into register B and action 9 re-
enters the quantity into register G for restoring in E Mernory at tirne 10.
Action 10 enters the quantities in register B and register A into the Adder
and action ll transfer the surn to register A. Action 8 takes the address of
the next instruction frorn reglster Z arrd enters it lnto register S. Subinstruc-
tion STDZ then calls forward the next instruction and incrernents by one the
content of register Z aa usual.

32-133. Figure 32- 19 illustrates the execution of subinstruction ADO of
instruction AD 1213 stored at location 2657. This is the first subinstruction
of the exarnple discussed in paragraph 32-26. Locatlon 1213 contains quan-
tity Z5Z5Z ar,d register A the quantity 000102. The surn finally provided is
025354.

32-134. INSTRUCTION SU E

32-135. Instruction SU E (Subtract E) is an Extra Code Instruction which
is represented by order code 16. 0 and a l0 bit address. Instruction SU E
rnust be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction SU E consists of subinstructions
SUO and STDZ, the execution of which takes two MCTts.

3Z-L36. Instruction SU E subtracts the content of tocation E frorn the con-
tent of register A. The operationSU E with 0024 < E < 1777 can be forrnu-
lated as follo'ws:

(1) Set c(A) = b(A)+E(E). When A arrd/or E contains an overflow
bit, the result rnay be erroneous.

(Z\ Set c(B) = c(t+l) = i, I being the address of instruction SU E,
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+l = I*2.
(4) Restore c(K) = b(K) and c(I+l) = b(I+l) if.K and/or (I+l) rep-

resent an address in E M,ernory.

Point (2) inrplies that instruction j is executed next.

32-94

FR-Z- 132

3Z-L37. Special Cases of SU E:

a. SU A clears register A.

b. SU L, SU Q, and SU Z are useful.

c. SU EBANK, SU tr'BANK, and SU BBANK can be used, but the
particular read and r.vrite functlons rnust be observed.

d. SU ZERO has no purpose except replacing 000000 in A by
t77777.

e. Instructions SU E with 0010 < E < 0017 follow the rules of
paragrapln 3Z-L36.

f. Instructions SU E with 0020 < E < 0023 also follow the rules
of paragraph 3Z-L36 except that the difference is edited as it
is entered into E.

32-L38. The execution of instruction SU E is very sirnilar to that of instruc-
tion AD K. (Cornpare rows 23 an.d 24 of. table 3Z-4,) Control pulse RB of
action 10 of subinstruction ADO is replaced by control pulse RC for subinstruc-
tion SUO.

: 3z-L39, INSTRUCTIoN MP K

3Z-L40. Instruction MP K (Multiply K) is an Extra Code Instruction which
is represented by order code 17. and a 12 bit address. Instruction MP K
rnust be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction MP K consists of subinstructions
MP0, MP1, and MIr3, the execution of which takes three MCTts.

32-141. Instruction MP K rnultiplies the content of register A by the con-
tent stored in location K and stores the double precision result in registers
A and L. The operation MP K with 0024 <K < 7777 can be forrnulated as
foLlows:

(1) Set c(A, L) = b(A) x c(K). Slgn of c(L) agrees with sign of
c(A). ltrhen b(A) and/or b(K) contain an overflow bit, the
result is erroneous.

(2) Set c(B) = c(I+l) = i, I being the address of instruction MP K
and j being the instruction stored at location I+1.

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = blz)+Io= I+2.

32-95

FR-Z- I3 2

(4) Restore c(K) = b(K) and c(I+l) = b(I+l) if I(and/or (I+l) rep-
resent an address in E Mernory.

Point (Z) irnplies that instruction j ls executed next.

3Z-142. Speclal Cases of MP K.

MP A (alternate code SQUARE) squares the content of reg-
ister A.

MP L, MP Q, and MP Z are useful.

MP EBANK, MP FBANK, and MP BBANK rnay be useful; the
particular read and write operations rnust be observed.

MP ZERO clears registers A and L.

Instructions MP K with 0010 < K < 0017 follow the rules of
paragrapln 3Z-L41.

Instructions MP K wlth 0020 < K < 0023 aLso follow the rules
of paragraph 3Z-l4L (the content of K is not edited when being
r e stor ed) .

3Z-143. Principle of Operation

32-L44. A rnultiplication as perforrned by instruction MP K is carried out
in T'\4rCrs cornplernent arithrnetic and in a way sirnilar to a rnultiplication
done rnanually with quaternary nurnbers (to the base four). Let us first
assurne that a positive 15 bit nurntrer as used in the CP of the AGC is to be
rnultiplied by anolher positive 15 bit nurnber. The first quantity (ag) rnaV
be 016344, the other, (kg) 010101 when expressed in octal nurnbers. The
two quantities can also be expressed in binary (^ZFZ) or quaternary (a4,k4l
forrn as shown ln figure 3Z-20.

32-145. Multiplying quantity (k+) by (aa), starting with the lowest order
digit of (a4), the quantity zero can be taken first, or added to the starting
quantity zero. At step two, the quantity (k4) rnust be rnoved one place to the
left and added to the subtotal (zero in the given exarnple). At step three, the
quantity (Zka) has to be added in a sirnllar way because the third last digit
of (a4) is 2. In the fourth step, the quantity (3ka) could be added; however,
subtracting the quaqrtity (k+) and adding the quantity (k+) at step five has the
sarne effect (lx4t\+r - l*4N = 3x4N). At step six, the quantity (ka) ls sub-
tracted for the sarrre reason as in step four because the sixth lowest digit is
a 3 like the fourth lowest. At step seven, the quantity (Zka) instead of (ka)
rnust be added to rnake up for the carry over of step six. The product has
been translated into binary and octal notation. To prove the result, the
rnultiplication (a)x(k) has been carried out with octal nurnbers in the sirnplest
way. Both results agree as shown.

3Z-96

a.

b.

c.

d.

e"

f..

I.P'-z-L3Z

3Z-L45. In the second exarnple, figure 3Z-ZL, (a) is a positive quantity and
(k) is a negative quantity. The quantity (k) is the T'WOrs cornplernent of
quantity (k) of the first exarnple. The correctness of the second exarnple can
be proved by cornparing its resutts with those of the first exarnples. The
binary, quaternary, and octal products of the second exarnple are all T'WOts
cornplernent nurnbers of the first exarnple.

3Z-147. Adding 0rs in front of a positive TWOrs cornplernent quaternary
nurnber does not change its value; adding 3rs (rninus zeroes) in front of a
negative nurnber does not change its value. Adding 0rs at the end of a positive
or a negatlve T'WOrs cornplernent quaternary nurnber does not change its
value.

3Z-148. Actual Execution

3Z-L49. When instruction MP K is executed, the quantity frorn location K
is entered into register G at tirne Z, 4, or 6 of subinstruction MP0 (row 25
of table 3Z-4 arrd figures 32-ZZ through 32-25). The quantity frorn K is later
used as the rnultiplicand (k). Action 3 enters the quantity frorn register A
into register B; this quantity is used as the rnultiplier (a). Action 4 enters
the rnultiplier (a) always in its positive forrn into register L. Action 7 enters
the rnultiplicand (k) into register B.^ The branch^flip-flops have been set by
actions 3 and 7 as stated by notes ,/3\ through /6\ in the last colurnn of
row 25 in table 3Z-4. According to this setting of the branch flip-flops, the
rnultiplicand (k) is re-entered by actions 9 and 10 into register B either in
its positive or in its negative TWOrs cornplernent forrn.

3Z-L50, After tirne I0, register L always contains the rnultiplier (a) in its
positive forrn. Register B contains the rnultiplicand (k) in its positive forrn
if (a) and (k) have the sarne sign, or in its negative forrn if (a) and (k) have
opposite signs. In case of equal signs, register A is set to zero at tirne ll
and later accurnulates the product. In case of different signs, the quantity
L77777 (rninus one, TWOrs cornplernent) is entered into register A as a
starting quantity to rnake the final product a ONEts cornplernent nurnber;
furtherrnore, a ONE is entered into bit position L6 of. register L by action 11

to indicate that the final product rnust be negative.

3Z-L57. E1even actions of subinstruction MPI and the first three actions of
subinstruction MP3 (rows 26 an.d Z7 of. table 32-4) perforrn the actual rnul-
tiplication. In figures 32-26 and 3Z-27, the rnultiplication with rnultiplicand
and rnultiplier of equal sign (figure 32-ZZ and figure 32-Z5l is continued. In
figures 32-28 and 3Z-29 t}:e rnultiplication with two quantities of opposite sign
(figure 32-23 and 3Z-24) is continued. The sarne rnultiplications are also
illustrated in figures 3Z-30 and 3Z-3L to explain the individual operations.
The results of figure 3Z-3L are the ONErs cornplernent of the results of fig-
ure 3Z-30.

(text continued on page 3Z-l1Z) 32-97

FR-2- 132

"8-0 l6 3 4 4

^z = 000111001I100100

^4 =01303210

k4't4t

*C x 1...

*I x k.
+

+Zxk -̂t

-I x k.4

ng-OI0101
kz - 0001000001000001

k+ = Q 100 I00 I

00000000
00000000

000000000
01001001

00100I0010
0z00zooz

00zLoz10zL0
32332333

0013ItLZll13Zr0
00000 1 I 10 10 10 I I00 10 10 1 1 1 I00 100

0165312744

333203203210
+lxk4 0 I 0 0 I 0 0 I

0003zt3zt3zr0
-1xk4 3 Z 3 3 Z 3 3 3

*Z xkn
k4xa4
(k x a),

(k x a),

33303I13113210
oz00z00z

Proof: agxk, I 5 3 4 4
16344

r6344
t65312744

3Z-98

Figure 32-20. Posifive Product, Principle o(Multiplicotion

FR-2- t3Z

tg=016344
uz = 0001110011100100

u4 = 01303210

kr=167677
k, = lll0lllIl0llIlll
k+ = 3z 33233 3

kn x an:

+0k
4

4|kz

+2k
4

00000000
00000000

000000000
323323i3

3323323330
31331332

00030220220r30
31331332

33r23123130
-lk, 0 1 0 0 I 0 0 I+

000i30130r30
+lk, 3 Z 3 3 Z 3 3 3

=
3330t20I20I30

-rk. 0 1 0 0 I 0 0 r4

+zk
4

k4*^4 3 3 2 0 Z Z 2) Z Z Z O I 3 0

(kxa), 1tttt000t0l0l00tI0t0I0000rir00

(kxa), 7 6 L Z 4 6 5 0 3 4

Figure 32-21 . Negofive Producl, Principle o{ Multiplicotion

32-99

r.R-Z- 132

ooooo | | ororor

t7o5zt wG t oooooo I o,o,o, I
^n

wB l 016344

oi6344 nsc d RA
I

oorToo nsc r| wr i otoleq

006354 ts. I

otolor

wY ? otorot

SO r7. o

ACTI O N t23456
. RSC RA RB

WG WB WL
TSGN

7

RG

WB
TSGN2

89tO||t?
RZ RB RU WA
WS WY WB

TSG N

NEACON
STI

o I

BR o o o o o

3Z-i00

Figure 32-22. Subinstrucrion MPO, Vlith Two Posifive Quonfifies

2797A

r.R-z -I32

Figure 32-23. Subinsfruclion MP0, Ylith Positive Quontity in
A ond Negotive Quontity in E

ooooo
I

tTos?t wc
t
oooooo L.ruru I *n

rzo5ar | *, r 016344 ? RB *r l ,.r.r. RB? WBlt67677

oorToo *.. | *. I o,u.oo Lt6 a il6344

"..
J

wY I r67676

SQ t7.O

ACTION I ?

RSC
WG

3456
RA RB
WB WL
TSGN

7

RG

WB
TSGN2

I
RZ
WS

I
RB

UI

to

RU
WB
TSGN
NEACON
STI

It2
RBl
Rrc
WA
Lr6

ST o
I

BR 0 o I 3 o

2799A

32-101

FR-Z-I32

t,u orl l6,e:aq) (1o"'.1

Figure i2-24. Subinstrucfion MPO, 'wif[Negofive Quontity in
A ond Posif ive Quantity in E

I
ooooo

I

r7o52r wG t oooooo I o,o,o, I *n

r7oszr I we I ror+sn ? RC wa i orotot RCa WB 167677

161433 nsc { RA wa I i7777

oorToo nscf loror+q Lr6 a |6344

("..i
t 67677

wY t r67G76

SQ 17. o

ACTION I z3
RSC RA

WB
TSGN

4 5 6 7

RG
WB
TSGN2

I
RZ
WS

9toil
RC RU RBI
WY WB RIC
CT TSGN WA

NEACON LI6
STI

t2

RC

ST o I

BR o 2 2 2 o

2 8004

32 - t0z

F ?

E i roror

H
I

s 052 l
I

ws i 6534

I

G I

I
o,o,o)

B

A

L

o nsc {

z lo6s34 nsc I ,rl

U 306534

Y co6 533

x looooo a oooooo

CI I cIO I

FR-Z- 132

t7o5?t wG
t oooooo j ,.r.r. I *n

161433 nsc { RA

oorToo nsc { wl I oreae+

orororaRU

wY I ororor

SQ t7.o

ACTION I 23456
RSC RA RC
WG WB .WL

TSGN

7

RG

WB
TSGN2

I
RZ
WS

9t0il
RC RU WA
WY WB

TSGN
NEACON
STI

l?

ST 0
I

BR 0 2 I o

2794A

\- Figure 32-25. Subinstruction MPl, With Two Negotive Quonfities

32 -r03

FR-Z-132

F

E

H

6 534

I L2GD
G I ototot . o347to L2Go.oo7t62 L2GD.021634 L2G0.044347 LzGD.o7ro7o LzGD.o362t7

MCRO MCRO

B 0 toro r *'1 oul
^'1 ^'l "1

A oooooo wALstoooooo wALst0o2o2o waLS
too4444

waLS
t

r77o7o waLstoor636

L o,G344 tllSlooro.
WALS I

ozusloroze
WALS I

czlslozzrer
wars i

ozls { ozaar+
MCRO I

WALS
G2LS o17r07

Z 0065 34

@@@D@@D@@D@@D@€
U olorol oooooo I *, o,o,o, J RU orr.r" t RU , ,oaoa J

^,
oor, r, I

^,
r71535

Y ororor {BJoooo rrrJo,o,o, *ro I oro.o. *., I ,urutu *,, lo,o,o, ,r, {,ur.ru

x
A2X

cooooo . oo0000 Azx . 000000 A2x. 002020 Azx. oo4444 Azx. t77070 A2x. oot636

CI 0. 0 . o . o cI . I cta I

SQ r7.o

ACTTON t Z 3 4 5 6 7 I 9 rO I t2

zIP ZAP ZIP ZAP ZIP ZAP ZIP ZAP ZIP ZAP Z.IP
srl
sT2

ST I

BR o o

32 -104

F igwe 32-26. Subinsfructi on Mpl , positive product

280ra

FR-2-l32

F
1s4r2r

E
? t

H
I

S 6534
I

ws
t

412r

@ I

G o352r7 L2GO.O?7442 WG oooooo ".- ;T
I t54tzt

B orotot *'l I

I

*r l,uo,r, *'l

@ @@
A waLS

t
r76s27 warsfoorszs tasc lro

L
WALS I

czus lossozr
ucno I

Ulf3 io,,,oo f nsc l*,

o I nsc
I

z oo6534 I nsc *rl wz
t

oo6s3s

6D 6.D e@ @@ @
U ,a,rau J ru o,"ua, ,l *, oourarl

^,

Y t67676 nrol ororot *r,. loo...o

x oor636 a?x.t76327 .000000

CI I a 0 a I

SQ t7.o nro lor.o

ACT|ONt23456789lOll 12

ZAP ZIP ZAP RSC RZ RU RAD RA RL
NtsQ wG wYr2 WZ WB

CI TLI5 WS
N EACOF

ST 3 o

BR o o

Figure 32-27. Subinsrruction MP3, Positive Product

32-105

FR-Z-132

F

E

CH

S 6534

G
L2GD

ororor . 1347ro L2GD.t67t62 L2GD. r55634
MCRO
L2GD. r33347 L2G D. r O6670 L?GD.144557

B 167677 *t .| *r1 *tl *t? *tl

A t7???7 waLs
|177777

wALS
t

r75757 wALS
t

r73333 wALs
t

ooo7o7 wALS
t

r7614r

L
WALS I

il6344 GztS+n777?
WALS I

c 2Ls I r267t6
WALS I

G2LS1il5563
WALS I

G2LS+ rO3334
WALS I

G2LS+ t20667

z 00 5534

@@@ry@tril@@D@@'9 V"9 Qo'9
U orolor ,rr'rrr l*u ,arura,lru , rraa, I *, oo.o.o,i*, ,.o.o.l *,)o6242

Y o,o,o, I UJoooo *, l, u..r, * r, l, r rrr. *r lo,o,oo *, J,.r.r, *rlo,o,oo

x
A2X

ooooooa 177777 A2x.t77777 A?X.175757 A2X.173333 A2X.000707 A2x.r76t4r

CI o. o . 0 . o cI. I cl. I

SQ t7.o

ACT|ONt?3456789rO'|12
ZIP ZAP ZTP ZAP ZTP ZA? ZIP ZAP ZlP ZAP ZTP

sTt
ST2

ST I 3

BR 0 o

2753

32-r06

Figure 32-28. Subinsfrucfion MPI , Negofive Product

F
154r2r

E ? t
H

I

5534 ws
t
4r2r

I

I

I @l
G 144557 L2GD.|5O332 WG oooooo ry

I (ts+tzt

FR- Z - I32

I

B 167677 *rl I

I *r l ,ro,r,
"uJ

@D @@
waLS

t
oor4so wals

t
r7425r RSC I

L
WALS
G2LS t64 r55

WALS
G 2LS l*.

RSC

7 oo6534
I. RSc

^.1
wzt oo6s3s

,oi i,ur.rl i., ?] @D@ @
U ooa, o, J *, ,a , aoa ,L RU ooara, I RU

Y otoloo *, {,rrrr. *r,, J oo.u.o

X I76t4I A2X. OO I 450 . OOOOOO

CI I a 0 a I

SQ t7.o *.0I or.o

ACTIONt?3456789t0ilt2
ZAP ZIP ?AP RSC Rz RU RAD RA RL

NISO WG WYI2 WZ WB
CI TLI5 WS

N EACOF

ST 3

BR o

2754

Figure 32-29. Subinsfructi on MP3, Negof ive product

3Z-107

FR-Z - I3 Z

Initial Conditions:

After MPO:

c(A) =
c(E) =

C(B)
C(L)
C (A)

c(G)
c(x)
c(Y)
C(U)
c (A)

c(G)
c(x)
C(Y)
c(u)
c(A)

c(G)
c(x)
C(Y)
C(U)
C(A)

c(G)
c(x)
C(Y)
C(U)
c(CI)
c(A)

C(G)
c(x)
C(Y)
C(U)
c (A)

016344
10I0t

010101
016344
000000

0347 L0

000 000
000000
000 000
000 000

007 L62
000000
0i0r0i
010I0I
002 0 20

021634
002020
020202
OZZZZZ
004444

044347
004444
167676
174343

I
177070

071070
177 070
01010I
007 t 71

00 I 536

u4 =ol3o32lo

c(L)-00347I

c(L)-010716

c(Ll=922163

c (L)-0 74434

c(L)-0 r7107

Step 2

MPl -3,

Step 3

Imr --3,

Step 4
MP1-7,

Step 5

IFpt-9,r0

LZGD
AZ)(
WY

RU, WALS, G 2LS

LZGD
AZ){
RB, WY

RU, WALS, G 2LS

LZGD
AZX
RB, WYD

RU,WALS,G2LS

LZGD, MCRO
AZX
RC, WY

CI
RU, WALS, G2LS,

MCRO

LZGD
AZ){
RB, WY

RU, WALS, G2LS

3Z-t08

Figure 32-30. Positive Product, Actuol Multiplicotion (Sheet I o{ 2)

Step I
WT:I,

4

step 6 LZGD, MCRO c(G) = 0362L7
t[FrJr,rz Azx c(x) = 001536
MP3-t RC, WY c(Y) = 167676

cr E[8ll = r7I535

RU. WALS, GZLS, c(A) = 176327 c(L)=653521
MCRO

FR-2-132

Step 7 LZGD
,3 AZx

RB, WYD

c(G) = 027442
c(X) = 176327
c(Y) = 0Z0Z0Z
c(U) = 015531

RU, WALS, GZLS c(A) = 003526 c(I,)=g 12744

Quantity in (A,L) = 16531?,744 as integer or
0. 0725453620 as fraction

_ Figure 32-30. Positive Product, Actuol Multip,licotion (Sfieet 2 of 2)

3?,-109

FR-2-132

Initial Conditions:

After MPO:

Step i
ffiTrt, z

Step Z

ffi:,+

Step 3

Mm,6

Step 4
ffiTJ,8

Step 5

MPI-9, l0

LZGD
AZX
WY

RU, WALS, GZLS

LZGD
AZX
RB, WY

RU, WALS, GzLS

LZGD
AZX
R B, WYD

RU, WALS, GZLS

LZGD, MCRO
AZX
RC, WY
CI

RU, WALS, G2LS,
MCRO

LZGD
AZX
RB, WY

RU, WALS, GzLS

c(A) =
c(E) =

C (B)
C(L)
C(A)

C(G)
c(x)
C (Y)
C(U)
c(A)

C(G)
c(x)
C(Y)

C(U)
C(A)

c(G)
c (x)
C(Y)
C(U)
C(A)

C(G)
c(x)
C(Y)
c(CI)
C(U)
C(A)

C (G)
c(x)
c(Y)
c(u)

C(A)

016344
67676

167 677
t16344
177777

t347 tO
177777
00000 0

L77777
177777

167 162
t77777
167 67 7

167 67 6
17 57 57

t55634
L7 57 57
157576
I 55555
t7 3333

r33347
17 3333
010100

I
003434
0007 07

r0667 0

000 707
167 677
17 0606
17 6 t4r

a =013032I04

(Two's cornplernent)

(Twors cornplernent
rninus one to rnake
final product a ONE|s
cornplcrnent nurnber)

c (L)= 13347 L

c(L)= 126716

c(t-1=1I5563

c(L)= 103334

c (L)= 120667

32-LLO

Figure 32-31. Negolive Product, Actuol Multiplicotion (Sfieet I ol 2)

Step 6 LZGD,MCRO c(G) = L44557
MPI-lt AZ]K c(X) = 17614I
MP3-1 RC, WY c(Y) = 010100

CI c(CI) - I
c(U) = 006242

RU, WALS, CZLS, c(A) = 001450 c(L)= 164155
MCRO

c(G) = I5O33Z
c(X) = 001450
c(Y) = I57576
c(U) = 161246

I.R-2- t 32

Step 7 LZGD
]MP3 -2, 3 AZX

RB, WYD

RU, WALS, GZLS c(A) = 174251 c(L)=125033

Quantity in (A,L)=6t2465033 as integer 6y

.7 052324L57 as fraction

Figure 32-31. Negofive Product, Actuol Multiplicorion (Sfieet 2 o{ 2)

3Z-l I I

FR-z - l32

3Z-152. Actions 4 through LZ oi subinstruction MP3 conclude the operation
of instruction MP K. At tirne 4 of 6, the next instruction is called forward
frorn E or F Mernory, respectively, action 8 enters the relevant address lnto
register S and the whole instruction into register B. At tirne lZ, the order
code is entered into register SQ. Actions 5 and 6 incrernent by one the con-
tent of register Z. A1l these operations are norrnally perforrned by subin-
struction STD2"

32-153. In case bit position 15 of register L contains a ONE at tirne 6 of
subinstruction MP3, indicating that a carry over frorn the last step rernained,
the rnultiplicand is once rnore added to the product by actions 7 and I 1.

3Z-L54. INSTRUCTION DV E

3Z-155. Instruction DV E (Divide by E) is an Extra Code Instruction which
is represented by order code 11.0 and a 10 bit address. Instruction DV E
rnust be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction DV E consists of subinstructions
DVO, DVI, DV3, DV7, DV6, Dy4, and STDZ, the execution of which takes
six MCTrs. Subinstruction DVO has only three actions (l through 3); subin-
struction DVl, DV3, DV7, and DV6 each have l2 actions (4 througln LZ, 1

through 3), and subinstruction DV4 has nine actions (4 through IZ).

32-L55. Instruction DV E divides the fractional double-precision quantity
contained in registers A and L by the fractional single-precision quantlty
stored at location E of E Mernory (or in a CP register). The quantity in E
rnust not include an overflow bit. The absolute value of the fractional quant-
ity contained in (A, L) rnust always be srnaller than the absolute value of the
fractional quantity contained in E. (This irnplies that A cannot contain an
overflow bit.) The operation DV E with 0024 < E < L776 can be forrnulated
as {o11ows:

(1) Set c(A) = b(A, L) + c(E), signs in A and L need not agree,
L rnust not contain an overflow bit.

Set c(L) = rernainder.
If c(E) = 00000 or 77777, c(A) = 037777 or 140000, respectively.

(Z) Set c(B) = c(t+l) = j, I being the address of instruction DV E,
and j being the instruction stored at location I*1.

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b{Z+I) = I+2.
(4) Restore c(E) = b(E) and c(I+l) = b(I+l) if E a..d./or (I+l) rep-

resent an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-t LZ

r.R-2-132

3Z-L57. Special Cases of DV E:

DV A divides b(A, L) by b(A) but the sign is reversed if b(A)
is positive. DV L is not possible.

DV Q and DV Z car: be used if Q and Z do not contain a positive
or negative overflow bit.
DV EBANK, DV FBANK, and DV BBANK could be used but
are not very useful.

DV ZERO results h 037777 or 140000.

Instructions DV E with 0010 < E < 0017
paragrapln 3Z-L56.

Instructions DV E with 0020 < E < 0023
of paragraph 3Z-L56 (the content of E is
restored).

a.

b.

c.

d.

e.

f.

follow the rutes of

also follow the rules
not edited when being

32-158. Principle of Operation

32-L59. A division as perforrned by instruction DV E is carried out in
ONErs cornplernent arithrnetic and in a way sirnilar to a division done rnan-
ually with binary nurnbers. Assurne first that registers A and L, and loca-
tion E, contain the positive quantities indicated in figure 3Z-32. The dividend
consists of. 28 bits stored in registers A and L, the divlsor of. 14 bits stored
in location E. Because the value of the dividend is srnaller than that of the
divisor, the division can be started by writing down the first 15 bits of the
dividend. Since the 15 bit nurnber is larger than the divisor, the divlsor
can be subtracted and a ONE can be written into the quotient irnrnediately
following the binary point. The division can then be continued conventionally,
except that binary, instead of decirnal nurnbers are used. To prove the cor-
rectness, the division has been carried out in octal nurnbers and the quotient
has been rnultiplied by the divisor to result ln the dividend.

3Z-L50. In figure 32-32, the sarne division is carried out but in a way re-
sernbling the operation of instruction DV E. Instead of subtracting the di-
visor frorn partial rernainders, the divisors are added to the cornplernented
rernainders. Thus, the subtractions are carried out in inverted forrn. As
a starting step, the first 15 value bits of the dlvidend (contained in registers
A and L), are cornplernented and written down. Then the divisor is added
to the first nurnber in ONErs cornplernent arithrnetic which is the sarne a6
subtracting the divisor frorn the recornplernented forrn of the first nurnber.
The ONEts cornplernent surn is a negative nurnber indicating that the divisor
has been successfully subtracted; the first rernainder is expressed in ONErs
complernent forrn and a ONE can be written as the first bit of the quotient.

32-Lt3

FR-Z-132

After adding the next cornplernented bit of the divldend to the rernainder, the
divisor is added again. This tirne the surn is positive indicating that the
divisor is too large for subtraction, therefore a ZERO rnust be entered into
the quotient. For the next addition, the previous rernainder, plus the added
bit, plus the next cornplernented bit of the dividend, rnust be used.

3Z-L6L. Tire division can be continued as shown in the figure. 'Whenever

an inverse subtraction is successful , a ONE rnust be written into the quotient
and the next cornplernented bit of the dividend has to be added to the rernainder.
Whenever a subtraction is unsuccessful, a ZERO rnust be written into the
quotient and the next cornplernented h'it of the dividend has to be added to that
rernainder which resulted frorn the last successful subtraction together with
bits which had been added already.

3Z-L62. Actual Execution

3Z-L63. When instruction DV E is executed, the three actions of subinstruc-
tion DVO (row ZB of. table 3Z-4) and the first nine actions (4 through LZ) of.
subinstruction DVI (row 29) prepare the registers for the actual division.
The last three actions (l through 3) of subinstruction DV1, all actions of
subinstructions DV3, DV7, and DV6 (rows 30 through 3Z't and the first two
actions (4 and 5) of subinstruction DV4 (row 33) perforrn the actual division.
The rernaining actions (6 through lzl, of subinstruction DV6 place the results
in the proper registers.

32-164. Actions l through 3 of subinstruction DVO and actions 4 through 1Z
of subinstruction DVI do the following:

C.

Establish sign agreernent of c(L) with c(A)"

Cornplernent c(A) and enter the corlplernented quantity into B
if c(A, L) represents a positive nurnber. Enter c(A) into B
if c(A, L) represents a negative nurnber. Thus, a negative
quantity, (tne hign order part of the dividend) is always entered
into B; or zero is entered into B if A contains zero.

Shift c(L) one place to the left and enter the shi{ted quantity
into L if c(A, L) represents a positive nurnber. Cornplernent
c(L) and shift it one place to the left, and enter the cornplernented.
shifted quantity into L if c(A, L) represents a negative nurn-
ber. Thus, a positive quantity (low order part of dividend) is
always entered into L; or zero is entered into L if appiicable.

Enter c(E) into A if c(E) is a positive quantity. Cornplernent
c(E) and enter the cornple,rt-rented quantity into A if c(E) is a
negative quantity. Thus, a positive divisor is always entered
into A.

a.

b.

32 -L L4

d.

FR-2- I3Z

A ONE is entered into bit position 15 of reglster Z if. c(A, L)
represents a negative nurnber. A ONE is entered into bit
position l5 of register Z if c(E\ represents a negative nurnber.
Thus, the quotlents will be positive if bits 16 and 15 are ident-
ical; or will be negatlve lf the two blts are not identical.

3Z-L65. When the signs in A and L do not agree, the sign agreernent can be
established by adding L77776 (rninus I) to c(A) and adding 040000 to c(L), or
by adding 000001 to c(A) and adding L37777 to c(L).

e.

For instance c(A, L) = (OL2346, L73377\

or c(A, L) = (L65431, 004400)

(oL2345, 033400)

(L65432, 144377)

The rnethod by which instruction DV E establishes sign agreerlent is based
on the sarne rnathernatical principle but is irnplernented in a different way.

3Z-L66. If c(A, L) represents a positive quantity, the quantity 040000 is
always added to c(L). If L did contain a positive quantity, a ONE is entered
into bit position l5 by the addition; however, the content of the other bit po-
sitions is left unchanged. When c(L) is read out, bit position 16 is read into
'WArs 16 and 15, thus elirninating the ONE in bit position 15. If L did contain
a negative quantity (without overflow bit), the ONE added to the ONE contained
in bit position 15 changes it to a ZERO, changes the sign bit to a ZERO, and
causes end around carry. For instance, adding 040000 to L73377 results in
033400. When c(L) is read out, bit 15 is lost agaln, but this does not change
the quantity.

3Z-L67. If c(A, L) represents a negative nurnber, the quantity 040000 is
added to the cornplernented c(L) to provide the sarne end effect.

3Z-L68. Figure 32-34 describes how actions I through 3 of sublnstruction
DVO and actions 4 through LZ of subinstruction DVI set the registers. First
the original content (a) of register A is entered into register B and tested
for sign and rninus zero. If quantity (a) is positive, it is cornplernented and
again entered into register B; quantity (a) is then tested for plus zero. If it
is not equal to zero, the sign originally stored in register A defines the sign
of c(A, L). If the quantity (a) is equal to zero, the sign originally contained
in register L defines the sign of c(A, L).

32-L69. Once the sign of (a, l), the quantity originally contained in registers
A and L, has been defined, the operation branches in one of two directions.

(text continued on page 3Z-l3Z)

3Z-LL5

FR-Z- 132

c(A) = 0L2345 c(L) = 033400 c(E) = ZIZIZ

. 0 l0 100 1 I 10010 I I I0 I I 100000000 + . 1000 101000 10 10 = . 100 I I0 i0 t I 100 I
0I0i001II00I0lI

1000 10 1000 10 t0
.

c(A) = OZ3Z7 L

000 t I l0 I00000 I l0 I
1000 t0 1000 l0 I0
010111r00000111

1000 10 I000 10 10

00I1000lllll0lI0
1000 I0 I000 l0 I0
oo rl rTo r ro r roooo

1000 10 I000 t0 l0
orrorrooloorroo

1000 I0 I000 10 10

oloorrrrooooloo
1000 10 1000 10 10

ffioo
1000 l0 1000 10 10

000 10 t0 1000 I l0 c(L) = 002506

Proof

.2471356000 + .42424 = .46562 .46562 x .42424
ZLZTZO
:so rso
3 17 170
zotoeo
254544
:: t t+o
3 L7 170

I 17500
I 050 50
o 12430

zln to
115344
z3z7 t0

115344
z3z7 LO

247 1343350
0 L2430

247 1.356000

32-LL6

Figure 32-32. Principle of Division, Monuol Method

FR-2-I32

\- c(A) = OIZ345 c(L) = 033400 c(E) = OZnn.
c(A) = 0I01001I l00I0l c(1,) = 11011100000000 c(E) = 100010 t00O I0I0

1 10 r0 I 1000 1 10 100
00 1000 10 1000 10 i0

r 1I110001011I1100
00 1000 t0 1000 I0 100 m
ffir

00 1000 l0 1000 I0 r0
0 ffi

ffio
00 1000 r0 1000 l0 t0

t@
00 1000 I0 1000 10 10

I@
00 1000 10 1000 10 10

O M
ffir

00 1000 10 1000 10 i0
r @i

00 1000 10 1000 t0 10

000000 I I 10r 100 10

I 10000 i00 100 I I I I
00 1000 10 1000 10 10

/r100100i10r100rr
l0 1000 10 1000 10 10

@r
00 1000 l0 1000 l0 10

@r
00 1000 10 1000 10 t0
M
ffir

00 1000 l0 1000 10 10

0000 I 1 10 10 i000 I0
11011000001011r1
00 1000 10 1000 10 r0

i 1111101010111001

Rernainder 000010101000110

Quotient = 100 1 l0 10 I I 100 t
c(A) = 023271

1's indicate successful
subtractions

0 rs indicate unsuccessful
subtractions

c(L) = 002506

Figure 32-33. Principle o{ Division, Mochine Method

32-tr7 /32-tL8

0

F

E

H

S o200

G lOrO20O

FR-z- 132

wB wB
0ro2oo I ot2345 ?RC I OO6t35

or234s a RA

QOzt34

SQ il.o

ACTION 23
RC RU
WA WB
TMZ STAGE
DVST

I

RA
WB

TS GN
TMZ

ST o I

8R o o 0

27704

Figure 32-35. Subinstrucfion DV0

32-tZ3

FR-Z- i32

r2r2 ?ooooo

oto?oal o2t2t2 L2GD.056000 ?RG

006E5 lO334O0 ?RB

RSC RA? walO2t2t2

033400a RL wLto734oo
I

RSc

067000 a RU 174276

aozt34 wYl 033400 wY I 165432 wyDio6Tooo wyDi 153064

oooooo Br5x. 04oooo .oooooo .ooooo0 a2x.o2t2t2

0al.o

SQ r,o

ACTION 4

RL
WB

5

RB

Br5 X

6

RU

TOV

7

RG

RSC
WB
TS GN

8

RA

9

RB
WA

r0

RU
WB

t1

RL
WYD

t2

RU

I

L2GD
RB
PIFL
WYD
A2X

?

RG

RBI F
WL
TSGU

DVST

3

RU
WB
STAGE

ST I

BR o I 3 ?

32-lZ4

F igure 32-36. Subinstructi on DYI .

277 tA

-t

FR-z - 13 2

F

E

H

S o200

G
L2GD

056000.034002 aRG
I

LzGD.o7oOO4
lRc

L2GD.060010
lRG

L2GD.040022 aRG
I

B

A o2t2t2

L o5600t *,- I o.ooo. *. I oroooo *. louoo,,

o

z oo6t35

@ @ @ 17t602

U 174276 orzooT
^rl,rorro

002604 *, l,a,a. t64tr4 *u l,uo,ro t7t602 ,r,"o, I au

Y

I w'ro
rssooc i rzosz+ *rr l ,u,.r, *ro I ,orr., *rr l ,ro.ro

x
AzX CLXC CLXC

o?t?tz .o2t2t2 . oooooo azx.o?lzt? aoooooo a?x.o?1212 a?xao?l?t?

CI oo o o 0

SQ I t.o

TI ME 45
PIFL TSGU

F INDS SETS

Lt5= r c(BR) =OX
AND
CAUSES
cLxc

78
P]FL TSGU

FINDS SETS

Ll5.O C(BR)=Ox
AND

CAUSES
cLxc

ro rl

PIFL TSGU SETS
FINDS C(BR) = IX

Ll5=l AND CAUSES

RBI WHICH
PLACES
oooool
ONTO
WRITE
LINES

t? 123
PIFL TSGU SETS STAGE
FINDS C(BR)=lX AND

Ll5: I CAUSES RBI

WHICH PLACES

ooooot oNTo
WRITE LINES
DVST SETS
STAGE COUNTER
TO rr

ST 3 7

BR 0 o

27724

Figure 32-37. Subinsfrucfion DY3

32-LZ5

FR-z- 132

F

E

H

0200

l4oo22 . 000046
I

Rc LzGD . OOO| 14
?

L2GD.ooo232
fRG

L2GD.ooo464
?RG

B r7r602
I

RB wBt163404 tR8 wB
t

r70223
?*t

wBtr60447
IRB

wB r6233r i

@@ @@ @@ @@
A o2t?t?

L 140023 *,-l ooooo. *.looo,,, n Jooo... *rloooo".

a

z 106r35

@ @ @D @
U r7 t602 004617 *rJ,..ooo t7ozz3 *rl,ro... oo1662

",
l,.ooo, t6233t *r

'Ua..'l

Y r5os7o lwYD r63404 *rof,oro,, *r, f,.ooo, ,'rr1,o,,,,

X
a2x

)212t2 .Oztztz .CLXC OOOOOO A?Xaoalzl? AzX.O2l2l2 .CLXCOOOOOO A?X.Ozt?t?

LA o

SQ ILO

TIME 45
PIFL TSGU
FINDS SETS
Lts= | c(BR).Ox

AND CAUSES
cL xc

7e
PIFL TSGU
FINDS SETS
Lr5. O C(8R)= tx

AND CAUSES
RBIF WHICH
PLACES
ooooot
ONTO WRITE
LINES

roI
PI FL TSGU
FINDS SETS
Ll5 =O C(BR)'Ox

AND CAUSES
cLxc

t? t23
PIFL TSGU STAGE
FINDS SETS
Lr5=O C(BR), rX

AND CAUSES
RBIF WHICH
PLACES
ooooot oNTo
WRITE LINES _
DVST SETS STAGE
COUNTER TO I IO

ST 7 6

BR o o

3Z-t26

Figure 32-38. Subinstrucfion DY7

9

FR-2-132

F

E

H

s 0200

G
L2GD

000464. ooils2
? ^n

LzGD.002326
?RG

LzGO .004656
I

RG LzGD.0[534 l.u

B 16233r
I

R B wBt 166075 I RB wBtrTs4os
?RB

wBtr73or3
?*t

W8
r66o27 t

cD@ @@ @@ @!.) @
A o?t?t?

L)oo465 *.1oo,,r. *. l oorr., *. Jooo.u. *.- lo,,r.o

0

z o06r35

d;;) @ @ q'9
U t6233r r66o7s ,, Laao^ r7s4os *rl,raoo, ot4z26 *, l,r.o,. oo??42 Ltorr,L

Y
I wvo

r4llt7 I r44663 n,rol,uo'r. *ro l,-,.o,. *ro 1,..0.,

x
A2X

Q2t2t? . O?t?t? azx a o2t2t2
cLxca?x.o2t?t2 aoooooo

cL xc
a?x.o2t?12 ooooooo

CI o

SO I t,o

TiME456789tO'|t2 123
PIFL TSGU SETS PIFL TSGU SETS PIFL TSGU SETS PIFL TSGU SETS STAGE
FINDS C(tsR)=lx FINDS C(BR). lx FTNDS C(BR).OX F|NoS C(BR).OX
Ll5=o AND CAUSES Ll5=O ANDCAUSES L15=O AND CAUSES Ll5"o ANDCAUSES

RBIF WHICH RBIF WHICH CLXC CLXC-DVST
PLACES PLACES SETS STAGE
ooQool oooool couNTER
0N wRiTE 0N WR|TE TO ilO
LINES LINES

ST 6 4

BR 0 o

2774A

Figure 32-39. Subinsfrucrion DV6

3Z-LZ7

FR-z- 132

F

E

H

0200 ws
t

6r35

G
L2GD

)il534 .o2327o
I

RG

02327l,

B 166027
?RB

wB1o2327r wBtr7s27r (|*.

€D @ @
A o?1212 *o I o...r,

L 0il534 WL
lwL

tszTt i oozsos

o

z 002r35 RZ. *,J

t75Z7t

U t66027 175?7t *r,l

Y
I wvo

r66027 t r54057

x
a2x

oooooo a02t2t2

CI o

SQ r r.o

ACTTON 4 5 6 7 I 9 t0 il t2

L2GO RG RZ RZ RU RC
RB RBIF TOV WS W8 WL
PIFL WB TSGN WL
WYD WA RSTSTG
A2X TSGU ST2

ST 4 0 o

BR o o o o

2??5A

32-128

Figure 32-40. Su6insfrucfion DY4

Initial Conditions:

After DVl-IZ:

Step I
fvr-t

RB,

DVI-Z RG,
DVI-3 RU,

Step_2
DV3 -4

RB,

DV3 -5 RG,
DV3 -6

RU,

RB,

DV3 -8 RG,

DV3 -9 RU,

LZGD
wYD, PrFL, L15=l

AZX

WL, set c(BRl) = l,
WB

LZGD
wYD, PIFL, Ll5=l

AzX

WL, set c(BRl) = Q,

WB

LZGD
wYD, PIFL, Ll5=0

AZX

WL, set c(BR I) = 0, CLXC

wts

I.P.-Z-L3Z

&,1=012345;033400
e = ZIZIZ

c(B) = 165432
c(t) = 067000
c(A) = OZIZIZ

c(G) = 056000
c(Y) = 153064
c(X) = OZLZIZ
c(U) = L74276
c(L) = 056001
c(B) = 174276

c(Gi = 034OoZ
c(Y) = 170574
c(X) = OZIZIZ
c(U) = 012007
c(U) = 170574
c(L) = 034002
c(B) = 170574

c(G) = 070004
c(Y) = 161371
c(X) = 0ZIZIZ
c(U) = 002604
c(U) ; t61371
c(L) = 070004
c(e) = L6I37 L

c(G1 = 060010
c(V1 = 142762
c(X) = 0ZIZLZ
c(U) = 164174
c(L) = 0600I1
c(B) = 164174

RBIF

CLXC

RB,

DV3-I1 RG,
DV3 - IZ RU,

LZGD
'wYD, PIFL, Ll5=l

AZX

WL, set c(BRl) = l, RBIF
WB

Figure 32-41. Actuol Division (Sheet I o{ 3)

32-LZg

Step 3bfr

FR-z-132

DV3 -Z
DV3 -3

DV7-5

DV7 -6

DV7-B
DV7.9

Step B

ffiio

DV? -Z
DV7--3

DV7-11 RG, WL, set c(BR1) = Q, CLXC

DV7 _ 7Z RU, WB

LZGD
RB, WYD, PIFL, L15=1

AzX

RG, WL, set c(BRl) = l, RBIF
RU, WB

LZGD
RB, WYD, PIFL, L15=l

AZy'

RG, WL, set c(BR 1) = Q, CLXC

RU,'WB

LZGD
RB, WYD, PII.L, Ll5=0

AZl{

RG, WL, set c(BRl) = l, RBIF
RU, WB

LZGD
lllJ, wYD, PIFL, L15=0

AzX

LZGD
RB, WYD, PIFL, L]5=0

AZX

RG, WL, set c(BRl) = l, RBIF
RU, WB

c(G) = 040022
c(Y) = 150370
c(X) = 0ZIZIZ
c(U) = L7 L60Z
c(L) = 040023
c(B) = 177602

c(G) = 000046
c(Y) = 163404
c(X) = 1ZLZLZ
c(U) = 004617
c(U) = 163404
c(L) = 000046
c(B) = 163404

c(G) = 000114
c(Y) = 147011
c(X) = 1ZIZLZ
c(U) = L70ZZ3
c(L) = 000i15
c(e) = l70ZZ3

c(G) = 0A0Z3Z
c(Y) = 160447
c(X) = 0ZIZIZ
c(U) = 001662
c(U) = 160447
c(L) = O00Z3Z
c(B) = 150447

c(G) = 000464
c(Y1 = L4IIl7
c{X) = 1ZIZLZ
c(U) = 16Z33L
c(L) = 000465
c(B) = 162331

3Z-130

Figure 32-41. Actuol Division (Sheet 2 o{ 3)

Step 5

DV3- 1

Step 6

ffii-+

Step I0
DTE- L2GD

RB, WYD, PII.L, Ll5=0
AzX

DV6-5 RG, WL, set c(BRI) = l,
DV5-6 RU, WB

Step I I
ffi6:7 LzGD

RB, WYD, PrFL, LI5=0
AzX

DV6-1r

RB 1F

c(G) = 00tI52
c(Y) = 144663
c(x) - lzLzLz
c(U) = 166075
c(L) - 001 153
c(B) - L66o7s

c(C) = 002326
c(Y) = 154173
c(X) = A7'LZLZ
c(U) = L75405
c(L) = 002327
c(B) = 175405

c(C) = 004656
c(Y) = I73013
c(X) = 0ZIZLZ
c(U) = 014226
c(U) - I730I3
c(L) = 004656
c(B) = 1730I3

c(G) - 01i534
c(Y) = 166027
c(x) - 1zLZLz
c(U) = 007242
c(u) = 166027
c(L) = 0I1534
c(e) = ft6027

c(G) = 023270
c(Y) = 154057
c(x) - 1ZLZLZ
c(U) - L75z7L

c(B)="141 = 0Z3Z7L

c(BR) = 00, c(S) = 6121
c(e)="11,1 = L7527L

c(L) - 002506
c(A) = 02327L

DV6-8 RG, WL, set c(BRl) = l, RBIF
DV5-9 RU, WB

Step l2
DTU:TO L2GD

RB, WYD, PIFL, LI5=0
AzX

RG, WL, set c(BRI) = 0, CLXC

DV5- 12 RU, WB

Step l3
bTffi LZGD

RB, WYD, PIFL, Ll5=0
AZX

DY6-Z RG, WL, set c(BRl) = 0, CLXC

DV5-3 RU, WB

Step 14
DT?[T LzGD

RB, WYD, PIFL, L I5=0
AZX

DV4-5 RG, WB, WA, set c(BRI)

Final Sequence
DY4-6 RZ, set c(BR) = gg

DV4-7 no effect
DV4-8 RZ, WS, set c(BRi) = 0,
DV4-g RU, WB, W'L
DV4- 10 RC, WL

= 1, RB1F

r.R-Z-132

Figure 32-41. Actual Division (Shee, 3 of 3)

32-L3 L

FR-Z-t3Z

Frorn there on the flow chart is self explanatory. Exarnples for the various
branches are shown on sheet 2. Figure 32-35 through 3Z-4O derno:rstraLe
the execution of the first exarnple. The quotient is entered into register L
bit by bit as the low order part of the dividend is shifted (and cornplernented)
bit by bit into register B via register Y and adder output gates (U). For de-
tails refer to figure 3Z-4L.

3Z-L70. Action 7 of subinstruction DV4 cornplernents the quotient if the
quotient rnust be negative. Actions 9 and 10 recornplernent the rernainder if
the rernainder rnust be positive. Action 8 enters the address of the next in-
struction into register S and subinstruction STDZ calls forward the next sub-
instruction as usual.

32.L7L. INSTRUCTION ADS E

32-172. Instruction ADS E (Add to Storage E) is a Basic Instruction which
is represented by order code 02.6 ard a 10 bit address. Instruction ADS E
consists of subinstructions ADSO and STDZ, the execution of which takes two
MCTrs.

3Z-173. Instruction ADS E adds the quantity in register A to the quantity in
location E of E M,:rnory (or a CP register), stores the surn in A with over-
flow bit, and stores the surn in E without overflow bit if E represents an
address in E Mernory. The operation ADS E with 0024 < E < 1777 can be
forrnulated as follows:

(1) Set c(E) = b(E) + b(A) except positive or negative overflow bit.
Set c(A) = b(E) + b(A) with positive or negative overflow bit.

(Z\ Set c(B) = c(t+l) = j, I being the address of instruction ADS E,
and j being the instruction stored at location (I+t).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+l = I*2.
(4) Restore c(I+1) = b(I+l) if (I+1) represents an address in E

Mr)ITIorf .

Point (2) irnplies that instruction j is executed next.

3Z-L74. Special Cases of ADS E:

ADS A doubles the content of register A whereby any overflow
bit is included in the new content of A.

ADS L, ADS Q, and ADS Z also enter an overflow bit into
registers L, Q, and Z, respectively.

a,

32-132

b"

FR-z - i 32

F

E 00030
1

ooooo
t

o753o

H

6200 t ws o2oo ws
t

2633

@
G 026200 I wG t oooooo J oooo.o

1
*n wG

t
oo753o J

B o.uroo I*.,o*

@ @ @@ ao
I

ooTsoo nsc t wsc wa J oooooo *.J wAiooz'ro

L nsc t wsc

o
I

RSC I wsc

z oo263s nsc i wsc *rl

@ @
U 002633 oorr.o ,L *, *, J

Y oo2632 *, I oooouo

x oo0000 a2x . oo7500

CI I ao

SQ o2.6

ACT|oNt23456789rOnt2
RLIOBB RSC RG RU WA RZ RC RU
WS WG WY WSC WS lMZ WA

AzX WG ST2
TOV

ST o 2

BR o o I o

Figure 32-42. Subinsfruction ADS0

32-L33

27154

FR-z - I32

c. ADS EBANK, ADS FBANK, and ADS BBANK can be used but
the particular read and write operations rnust be observed.

ADS ZERO has no purpose.

Instructions ADS E with 0010 < E < 0017 follow the rules of
paragrap}' 32-173.

f. Instructions ADS E with 0020 < E < 0023 also follow the rules
of paragraph 3Z-L73 except that the surn is edited as it is
entered into E.

3Z-L75. When instruction ADS E is executed, action I of subinstruction
ADS0 (row 34 o{ table 3Z-4) replaces the quantity contained in register S with
the l0 bit address thus erasing the quarter code contained in S. The quantity
frorn location E is entered into register G at tirne Z or 4, Action 5 adds the
quantities in G and A, and action 6 enters the surn into register G or into
another CP register. At tirne 10, the surn without any overflow bit is entered
into an E Mernory location if one was addressed. If positive or negative
overflow occurred during the addition, 000001 or 177776, respectively, is
entered into register A by action 7, however, action 1l replaces this quantity
by the surn including an overflow bit. Action B enters the add.ress of the next
instruction into register S and subinstruction STDZ calls forward the next
instruction as usual.

32-176. Figure 32-42 illustrates the execution of subinstruction ADO of in-
struction ADS 0200. Initially, location 200 contains quantity 00030 and reg-
ister A contains quantity 007500.

32-177, INSTRUCTION DAS E

d.

e.

32-178. Instruction DAS E (Double Add
which is represented by order code 02.0
DAS E consists of subinstructions DASO,
which takes three MCTrs.

to Storage E) is a Basic Instruction
and a 10 bit address. Instruction
DASl, and STDZ, the execution of

32-179, Instruction DAS E adds the double precision quantity contained in
registers A and L to the double precision quantity stored at locations E and
E+I of E Mernory (or two CP registers) and stores in A the overflow result-
ing frorn the addition as a whole. The operation DAS E with 00 24 < E < L776
excluding the last address of any E Mernory bank (table 3Z-Z) can be forrnu-
lated as follows:

(1) Set c(E, E+l) = b(E, E+1) + c(A, L) where c(E) includes any
overflow resulting frorn b(E+1) + c(L) but not any overflow
resulting frorn the addition as a whole.

32-134

F.P'-z-t32

Set c(A) = 000000 if no net overflow occurred.
Set c(A) = 00000I if net positive overflow occurred.
Set c(A) = L77776 if net negative overflow occurred.
Set c(L) = 000000'

(Zl Set c(B) = c(I+l) = j, I being the address of instruction DAS E,
and j being the instruction stored at location (I+l).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z')+l = I*2.
(4) Restore c(I+I) = b(I+1) if (I+f) represents an address in E

Mr:rnory.

Point (2) irnplies that instruction j is executed next.

3Z-180. If an o.rerflow occurs during the addition of b(E+1)+c(L), b(A) is
incrernented by one (in case of positive overftow) , or decrernented by one
(negative overflow) before b(E) and c(A) are added. If positive or negative
overflow occurs during the second addition, the quantity 000001 (positive
overflow) or 177776 (negative overflow) is stored in A, otherwise the quantity
000000 is stored in A. The c(L) is set to 000000. The surn which is stored
at E and E'l-l rnay contain two different sign bits and 28 value bits.

32-181. Special Cases of DAS E:

DAS A, (alternate code DDOUBL for double precision double)
doubles the double precision quantity contained in registers
A and L whereby the final content of A includes any overflow
bit resulting frorn the second addition, i.e., b(A)+ [b(A) +
overflow of first addition]. The b(A) rnust not include an over-
flow bit"

DAS 0010 and DCA 0013 (table 30-4) are useful and follow the
rules of paragraph 3Z-LBZ.

Any DAS E with 0000 < E < 00ZZ rrlust be used with extrerne
care so as not to destroy slored data; E rnrrst not be 0023 in
order to prevent destruction of data in counter T2. W'henever
locations 0020 through 0023 are involved, the surn is edited as
it is stored.

3Z-LBZ. W'hen instruction DAS is executed, first the surn c(L)+c(E+I) is
cornputed by subinstruction DAS0 which also stores the surn in location E+l,
adds 00000I or 177775 to the b(A) if an overflow occurred, and stores this
new quantity in the Adder. Thereafter, subinstruction DASt cornputes the
surn c(A)+c(E) and stores it in location E.

a.

b.

c.

3Z-135

FR-Z-I32

F

E 2004 5
1

ooooo
t

r7r23

H

s or43
t

ws or43

ooo r 43

G o20143 wG
t

oooooo I o.ooou *n? wG
t

o57rz3 I

B o.,".
i1":'1 I ,,,too,,., *r 1 wB

t
ooo r42

@@@
A oo273 r *.. i rol o.ro!t*@ noloo.r., | *..{ -^l

L o37056
lwr

nsc t RL+
iooor42

,. J wsc

I

RSC i wsc

z oo5345
I

nsc I wsc

@ 0s7123) (oo2 3t

U 005345 ooor4z *, looo,oa osTr 23
^u

I

Y ar.oo J wYrz ooor43 ,r., { orooo, *, I oorr.,

x ooooo0 . MoNEx r77776 A2X. 037056 . 00000t

CI I .CI I aO

SQ 02.0

ACTION I

RLI OBB
WS
wYl2
MONEX

56789
RU RG RB RL RU
WL WY WA WB WSC

AzX WG
TOV

to

RA

PONEX
STI

t?2r
RSC RA
WG WB

4

RL

II

5t 0 I

BR o I o

27074

3Z-136

Figure 32-43. Subinsfruction DAS0

I

i

I"P"-Z-t32

F

E 36666
?

ooooo
t

o162o

H

s 0143
t

ws or42 ws
t

534s

i*;)
G)57123 wGtoooooo Jo.".".

1"0
v/Gto4r62o I

B aaa-, I; *tl

{;.) @@ 6.D @,D @@
A ooz732 nscl waioo2732 wsc *o J ooooo,

L
Iooor42 RSc? wsc *.- J oooooo

o
I

RSc t wsc

z oos345 nscl wsc
^.J

@@@
U oo273? lr, oo,".o,l ",
Y lo27 3 I *rl o.uu..

00000r Azx . OO27 32

CI o a o

so o2.o

ACTTONt?3456789tOilt2
RLIOBB RSC RU RG RU RBI RZ RC WL
WS WG WA WY WG WA WS TMZ

AzX WSC Sr2
TOV

ST I 2

BR o I o o

2708A

_ Figure 32-44. Subinstruction DASI

3Z-137

FR-2- I32

The Yu1 Prograrnrning Systern accornplishes this by replacing instruction
D..q,S E with code DAS (E-l-l) which is wired into the prograrn. As the AGC
executes subinstruction DAS0, relevant address (E+1) is available first and
is decrernented by one. Subinstruction DASI then uses the decrernented ad-
dress E. For execution of subinstructions DAS0 and DASI refer to rows 35
and 35 of table 3Z-4. When double precision quantities are added to storage,
address E rnust not be equal to the last address of any E Mernory bank in
order to allow (E+l) to be the next address in the sarne bank.

3Z-L83. The execution of instruction DAS 0L4Z is illustrated in figures 32-43
and 3Z-44. The instruction is stored at locatiot 5344. Location 0L4Z con-
tains quantity 35666 and location 0143, quantity 20045 to which quantities
O0Z73l and 037056, contained in registers A and L, are to be added. Note,
that registers B, G, and S contain relevant address 0143 instead of.0L4Z at
the start of subinstruction DAS0. Thus, E Mernory enters quantity 20045 i,nto
register G at tirne 4 and action 6 enters the quantity into the Adder together
with quantity 037056 which was ternporarily stored in register A. Action 9
transfers the surn 057L23 to register G frorn where it is entered into location
(E+1) at tirne I0. Action 9 also tests the surn, finds a positive overflow bit
and sets the branch flip-flops to 01. Because of this, the quantity 000001 is
added to the original content of register A. (If no overflow had occurred,
the quantity 000000 would have been added; if negative overflow had occurred,
the quantity L77776 would have been added.)

32-L84. Action I of subinslruction DASO decrernents address (E+1) to obtain
address E = 0l4Z which is ternporarily stored in registers L and B before it
is entered into register S by action I of subinstruction DASI. The quantity
36666 is entered into register G at tirne 4 and entered into the Adder by
action 5 together with the incrernented quantity of A. The final surn is trans-
ferred to location E via register G. Because a positive overflow occurred.
during the second addition, action 7 enters the quantity 000001 into register A.
(Otherwise, quantity 000000 or L77776 would have been entered.) Action 8
enters the address of the next instruction into register S and subinstruction
STDZ calls forward the next instruction as usual.

3Z-L85. If address E has been 0000 (A), the first surrl, O57lZ3, would have
been entered into register L by action 9 of DAS0 and action 10 of DASl would
not have entered 000000 into L. Furtherrnore, action ll of DASl would have
replaced the quantity 000001 in A by the second surn 04L6ZO.

3Z-L86. INSTRUCTION INCR E

3Z-L87. Instruction INCR E (Incrernent E) is a Basic Instruction which is
represented by order code 02.4 and a 10 bit address.

32-t38

FR-Z- i 32

Instruction INCR E consists of subinstructions INCR0 and STDZ, the execu-
tlon of which takes two MCTts.

32-188. Instruction INCR E incrernents by one the quantity stored at loca-
tion E in E Mernory (or a CP register). The operation INCR E wlth
OAZ4 < E < L777 can be forrnulated as follows:

(1) Set c(E) = b(E)+I except overflow bit which is lost.

If overflow occurs when a certain counter is addressed, one
of the following operations is requested by the Counter Priority
Control:

Cr:unter Addressed Operation

Instruction PINC OOZ4 or PINC TZ
is executed. A
Instruction RUPT and RUPT Trans-
fer Routine 3 dre executed. A
Instruction RUPT and RUPT Trans-
fer Routine 4 are executed. A
Instruction RUPT and RUPT Trans-
fer Routine 5 are executed.. A

0025

0026

0027

00 30

TI

T3

T4

T5

Refer to table 30-4, EMArs 0024 ar..d 0025.

Refer to tables 30-4 and 30-5.

(Z) Set c(B) = c(I+l) = j, I being the address of instruction INCR E,
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+l = 1+2.
(4) Restore c(I+1) = b(I+l) if (I+f) represents an address in E

Mernory.

Point (Z) irnplies that instruction j is executed next.

3Z-L89. Special Cases of INCR E:

a, INCR" A, INCR L, INCR Q, and INCII Z are useful. An incre-
rnented quantity entered into A, L, Q, or Z rnay al so contain
an overflow bit.

A
A

32-L3g

r.R-2- 132

?22?2

43OO lwS O3OO

wGtoooooo 1022222 ?*o wclo22?23

o22223

PO NEX
aoooooo.oooool

o"22o)

SQ o2.4

ACTTON I ? 3 4 5 6 7 I 9 rO il t2

RLIOBE RSC RG PONEX RU RZ
WS WG WY WSC WS

TSGN WG ST2
TMZ WOVR
TPZG

ST 2

BR o

32-140

Figure i2-45. Subinstruction INCRO

2/t4A

FR-z- 132

b. INCR EBANK and INCR FBANK have no purPose. iNCR BBANK
can be used to incrernent the content of register EBANK.

c.

d.

INCR ZERO has no purpose.

Instructions INCR E with 0010 < E <
paragraph 3Z-188.

Instructions INCR E with 0020 < E <
rules of paragraph 3Z-188 except that
is edited as it is entered into location

0017 folIow the rules of

0023 a.lso follow the
the incrernented quantity
E.

e.

3Z-L90. When instruction INCR E is executed, action I of subinstruction
INCR0 (row 37 of table 3Z-4\ replaces the quantity contained in register S

by the 10 bit address thus erasing the quarter code contained in S. The
quantity frorn location E is entered into register G at tirne Z or 4 and entered
into the Adder by action 5. Action 6 adds the quantity 00000I to the content
of the Adder. Action 7 enters the surn into register G frorn where it is trans-
ferred to location E in E Mernory at tirne 10. If a CP register ls addressed,
the incrernented quantity is entered by actior' 7, Action 7 also tests the in-
crernented quantity for overflow and signals the Counter Priority Control if
a certain counter is addressed. Action 8 enters the address of the next ln-
struction into register S and subinstruction STDZ calls forward the next in-
struction as usual.

32-L9L. Figure 32-45 illustrates the execution of subinstruction INCR0 of
instruction INCR 0300. Location 0300 initially contains quantity ZZZZZ.

3Z-L92. INSTRUCTION AUG E

3Z-193. Instruction AUG E (Augrnent E) is an Extra Code lnstruction which
is represented by order code 12.4 and a l0 bit address. Instruction AUG E
rnust be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction AUG E consists of subinstruc-
tions AUG0 and STDZ, the execution of which takes two MCTrs.

32-L94, Instruction AUG E increases by one the absolute value of the quant-
ity stored at location E in E Mernory (or a CP register). The operation
AUG E with OOZ4 < E < 1777 car. be forrnulated as follows:

(1) If c(E) is positive, set c(E) =
which is lost.

if c(E) is negative, set c(E) =
which is lost.

b(E)+l, except overflow blt

b(E)-1, except overflow bit

3Z-t4L

FR-2-132

Counter Addressed

If overflow occurs when a certain counter is addressed, one
of the followtng operations is requested by the Counter Priority
Control:

0025

0026

oozT

00 30

TI

T3

T4

T5

Operation

Instruction PINC 0024 or PINC T2/\is executed. l\
Instruction RUPT and RUPT Trans-
fer Routine 3 are executed. A
Instruction RUPT and RUPT Trans-
fer Routine 4 are executed. A
Instructlon RUPT and RUPT Trans-
fer Routine 5 are executed. A

Refer to table 30-4, EMArs 0024 ar,.d OOZ5

Refer to tables 30-4 and 30-6.

(Z) Set c(B) = c(t+l) = j, I being the address of instruction AUG E,
and j being the instruction stored.at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Zl+L = I+2.
(4) Restore c(I+l) = b(I+1) i{ (I+1) represents an address in E

Mernory.

Point (2) irnplies that instruction j is executed next.

32-L95. Special Cases of AUG E

a. AUG A, AUG L, AUG Q, and AUG Z are useful. An augrnented
quantity entered into A, L, Q, or Z rnay also contain an over-
flow bit.

b. AUG EBANK and AUG FBANK have no purpose. AUG BBANK
can be used to incrernent or decrernent the content of register
EBANK if bit 16 of register FBANK is known.

c. AUG ZERO has no purpose.

d. Instructions AUG E with 00I0 < E < 0017 follow the rules of
paragrapil, 32-194.

A
A

32-r42

FR-z - 13 Z

Instructions AUG E with 0024 < E < 0023 also follow the rules
of paragraph 3Z-L94 except that the augrnented quantity is
edited as it is entered into location E.

3Z-L96. The execution of instruction AUG E is sirnilar to that of instruction
INCR E. Action 6 of subinstruction INCR0 (row 37 of table 3Z-4) always adds
the quantity 000001 (plus one) to the content of location E. Action 5 of sub-
instruction AUG0 (row 38) adds the quantity 000001 to the content of E only
if location E contains a positive quantity and enters L77776 (rninus one) if E
contains a negative quantity.

32-L97. INSTRUCTION DIM E

3Z-L98. Instruction DIM E (Dirninish E) is an Extra Code Instruction which
is represented by order code 12.6 and a 10 bit address. Instruction DIM E
rnust be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction DIM E consists of subinstruc-
tions DIMO and STD2, the execution of which takes two MCTrs.

3Z-L99. Instruction DIM E decreases by one the absolute value of the quant-
ity stored at location E in E Mr:rnory (or a CP register). The operation
DIM E with 0024 < E < 1777 can be forrnulated as follows:

(1) If c(E) is positive nonzero, set c(E) = b(E)-1.
If c(E) is negative nonzero, set c(E) = b(E)+1.
If c(E) is plus or rninus zeto, set c(E) = b(E).

\Z) Set c(B) = b(f+I) = j, I being the address of instruction DIM E,
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+L = l*2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E

Mernory.

Point (2) irnplies that instruction j is executed next.

32-200. Special Cases of DIM E:

DIM A, DIM L, DIM Q, and DIM Z are useful.

DIM EBANK and DIM FBANK have no purpose. DIM BBANK
can be used to decrernent or incrernent the content of register
EBANK if the content of bit position 16 of register FBANK is
known.

DIM ZERO has no purpose.

e.

d..

b.

c.

32-143

FR-Z-132

d. Instructions DIM E with 0010 < E < 0017 follow the rules of
paragraph 3Z-L99.

e. Instructions DIM E with 0020 < E < 0023 aLso follow the rules
of paragraph 3Z-L99 except that the augrnented quantity is
edited as it is entered into location E.

3Z-20L. The execution of instruction DIM E is sirnilar to that of instructions
INCR E and AUG E. Action 6 of subinstruction DIM0 (row 39 of. table 3Z-4)
adds the quantity L77776 to the content of location E if E contains a positive
nonzero quantity, adds the quantity 000001 if E contains a negative nonzero
quantity, and adds the quantity 000000 if E contains plus or rninus zero.

3Z-ZOZ. INSTRUCTION MSU E

32-203. Instruction MSU E (Moduiar Subtract E) is an Extra Code Instruc-
tion which is represented by order code 12.0 and a 10 bit address. Instruc-
tion MSU E rnust be preceded by Soecial Instruction EXTEND which enters
a ONE into bit position EXT of register SQ. Instruction MSU E consists of
subinstructions MSU0 and STDZ, the execution of which takes two MCTrs.

32-204. Instruction MSU cornputes the ONErs cornplernent difference frorn
the cyclic TWCrs cornplernent nurnbers stored in register A and location E. v
The operation MSU E with 0024 < K < L777 can be forrnulated as follows:

(1) set c(A) = b'(A)-c'(E) where b'(A) and c'(E) are cycLic T\4/o's
cornplernent nurnbers and c(A) is a ONE's cornplernent nurn-
ber.

(Z\ Set c(B) = c(I+I) = j, I being the address of instruction MSU E
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z\+L = l+2.
(4) Restore c(E) = b(E) and c(I+l) = b(I+l) if E and'/ot (I+I) rep-

resent an address in E Mernory.

Point (Z) irnplies that instruction j is executed next.

32-205. Special Cases of MSU E

a. MSU A enters 000000 into A whether bits 16 and 15 of b(A) agree
or not.

b. Register L, Q, Z, EBANK and FBANK norrnally do not con-
tain cyclic T'WOts cornplernent nurnbers.

32-144

FR-Z- 132

c. MSU ZERO does not change the content of register A if bit
position 16 of A contains a ZERO but decrernents by one the
c(A) if bit position 16 of A contains a ONE.

d. Locations 0010 through 0024 norrnally do not contain cyclic
TWO I s cornplernent nurnber s.

3Z-206. Many navigational cornputations requlre the calculation of the dlf-
ference of two angles. Angular inforrnation stored in several counters
(table 30-4) is expressed in cyclic T\MOrs cornplernent nurnbers. Instruction
MSU E is provided to calculate the difference of two cyclic TWOts cornple-
rnent nurnbers and to supply the angular difference in a ONErs cornplernent
nurnber for use in further calculations.

3--207. Cyclic TWCts cornplernent nurnbers contained in a rnernory location
E indicate angular quantities as shown below.

c(E) angle C(A)

00000 00 000000
10000 450 0 10000
20000 900 020000
30000 1350 030000
40000 lB00 - -1800 140000
50000 zz5o = -1350 150000
60000 2700 = -900 l500oo
70000 3150 = -450 170000
ooooo 3600 = oo oooooo

"W'hen these quantities are transferred frorn a location E to register A, the
quantities shown in the third colurnn appear in A.

32-208. Before instruction MSU E is executed, one cyclic T'WOrs cornple-
rnent nurnber, the rninuend, is entered into register A. W'hen instruction
MSU E is executed, the subtrahend is transferred frorn location E to register
G at tirne 4 of subinstruction MSU E (row 40 of. table 3A-4\. Action 6 enters
the rninuend into register X of the Adder, the cornplernented subtrahend into
register Y, and forces a carry bit into bit position one, thus perforrning the
addition in TWOts cornplernent arithrnetic (as during instruction MP). Action
7 enters bit 15 (norrnally the overflow bit) provided by the output gates into
bit positions 15 and 15 of register A while the other bits provided by the
Adder are entered into the corresponding bit positions of register A.

3Z-145

r.R- 2 - 132

I

E
?

ooooo
t

035555

H

s o5oo
t

ws o50o ws
t

r33o

@
G o20500 wctoooooo lo.uuuu

1*u
*n

1
o.rru, I

@ @@
B ;;;I".-.* ;l;.;;;i-. ;l

143333 ".. I wa
i

005556 wa
t

005556

L *.. {
o *'. {
z OO,33O "r.J ,rl

c;^ (6;;b r6;h.____/ __-/ ___/
U oor 330 ,ouu.u l rr. *r, J

Y oot327 *, l,orr*

X oooooo A2x a r43333

CI I I

SQ t2.o

ACTTON I 2 3 4 5 6 7 I 9 tO I t2

RLIOBB RSC RG RC RUS RZ RB RUS
WS WG WB WY WA WS WG WA

CI TSGN ST2
a2x

ST o ?

BR o o o

?7434

32-r46

Figure 32-45. Subinstruction MSUO

'YD

FR-Z-132

3?.-209. Action 7 also tests bit 15 provided by the Adder. If bit 15 is a
ZERO, indicating that the difference angle is positive (srnaller than l80o) no
action is taken at tirne 10 and the c(A) is the final angle difference. If bit
15 is a ONE, ind.icating that the difference angle is negative (1800 or larger),
the quantity one is subtracted frorn the c(A) to convert the cyclic TWOts
cornpLernent nurnber to a ONErs cornplernent nurnber. Action 9 returns the
subtrahend to register G for restoring in E Mernory and action B enters the
address of the next instruction into register S. Subinstruction STDZ calls
forward the next instruction as usual.

3Z-ZLO. Figure 32-46 illustrates the execution of subinstruction MSUO of
instruction MSU 0500. The rninuend is 43333, c(A) = L43333, and the sub-
trahend is 35555. The rernainder is 05556.

3Z-ZLL, Further exarnples are given to dernonstrate various operational
conditions.

a. Assurne c(E1) = 30000 (1350) and c(EZl = ZOOO0 (901. By
transferring c(El) to register A and executing MSU EZ, tlne
following cornputation is perforrned:

c(Y) =916 =030000
c(x) = E(e z) = L57777
Ci=
c(U) = 010000 no carry around because of control pulse CI
final c(A) = 0l0OO0 (45o)

c(E3) = 010000 if the result is transferred to location E3.

b. Assurne c(El) = 70000 (315o) and c(EZ) = 6OOO0 (2700) and
the sarne operation is perforrned.

c(V) =c(A) =170000
c(X) =c(E)=0L7777
CI=
c(U) = 010000
final c(A) = 010000 (45o)

c(E3) = 010000

c. Assurne c(El) = 50000 (ZZ_5\ and c(E2) = 30000 (1350)

c(V)=s141 =150000
c(X) =Eez) = 147777
CI=
c(u) = Dooob-
final c(A) = 020000 c(U15) is entered into A16 and A15 as in

all exarnples
c(E3) = 020000

3Z-t47

r.R-2-132

d. As surne

c(v) = .141
c(x1 = E(Bz)
CI=
c(u)
final c(A)
c(E3)

e. Assurne

c(Y) = 6141

c(X) = .(nZ)
CI-
C(U)
c(A)
plus
C(U)
final c(A)
c(E3)

{. Assurne

c(v) = .161
c(X) = E(Ez)
CI=
C(U)
C(A)
plus
C(U)
final c(A)
c(E3)

g. Assurne
c(EZ) =

c(Y) = q141

c(x) = E(rz)
UI

C(U)
C(A)
plus
C(U)
final c(A)
c(E3)

c(EI) = 10000 (45o) and

= 010000
= 0L7777

I
= 020000
= 020000
= 020000

c(El) = 20000 (VOo1 ancl c(EZ)

= 020000
= L47777

1

= 17o6oo
= 170000

L77776 because a ONE was entered into A16
= L6t7t7
= L67777
= 67777 = -10000 (-45")

c(El) = 60000 (Z7oo) and c(E2) = 70000 (315o).

= 160000
= 007777

1

= lJbobb-
= 170000

177776
= L67777
= L67777
= 67777 = -10000 (-45o)

c(Ef) = 30000 (I350) and c(El)
5oooo (zz5ol

= 030000
= 027777

I

= 30000 (1350) and

06000 0

16 0000
177776
1577 7 7

L57777
57777 = -20000 (-10"1

c(EZ) = 70000 (315o).

= 30000 (1350).

3Z-t48

tr'R-z- 132

h. Assurne c(EI) = 70000 (3151 and c(EZ) = 1OOO0 (45o).

c(V) ="161 =170000
c(X) =e(Ez) =L67777
CI_1
c(U) = I6OOOO

c(A) = 160000
plus 177776
c(u) = T{1717
final c(A) = L57777
c(E3) = 57777 = -20000 (-lOo;

3Z-ZLZ. INSTRUCTION MSK K

3Z-2L3. Instruction MI}K K (Mask with Ki is a Basic Instruction which is
represented by order code 07. and a 1Z bit address. The alternate spelling
of MSK K is MASK K. Instruction MSK K consists of subinstructions MSK0
and STD2, the execution of which takes two MCT's.

3Z-2L4. Instruction MSK perforrns the Boolean operation AND (syrnbol n)
with the content of register A and the data stored at locationK. The truth
table for each bit position of A and K is shown below.

A^K

0

0

0

I

The operation MSK K with 0024 < K < 7777 can be forrnulated as follows:

(1) Set c(A) = b(A) n c(K) whereby bit 15 of c(K) is ANDrd with
bits 16 and 15 of c(A).

(Z) Set c(B) = c(I+l) = j, I being the address of instruction MSK K,
and j being the instruction stored at location (I+l).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = blZ)+L = I*2.
(4) Restore c(K) = b(K) and c(I+I) = b(I+}) if K a.nd/or (I+1) rep-

resent an address in E Mernory.

3Z-2L5. Special Cases of MSK K.

a. MSK A has no purpose.

b. MSK L, M;SK Q, and MSK Z also AND the overflow bits.

K

0

I
0

I

A

0

0

I
I

\-

3Z-L4g

FR-2- 132

Iooooo
I

oToroo wG
t
oooooo I o.u.,u J *n

RC r) WB a 177577 ? RC

oooz?? *.. | ^o
I *oJ,rru..

*..{

*ra {
,aa J

17757 7

wY I t7?s?T

SQ 07.o

ACTTON t 2 3 4 5 6 7 I I lO tt t?

RSC RA RC RG RZ RC RU RC
WG WB WA WB WS RA WB WA

SI2 WY

ST o ?

BR o o

272AA

32-150

Figure 32-47. Subinsfruction MSK0

FR-z-t3Z

MSK ZERO sets c(A) = 000000.

Instructions MSK K with 0010 < K < 0023 follow the rules of
paragrapln 32-L7. (The content of K is not edited when being
restored.)

3Z-2L6. Instruction MSK K in reality perforrns the Boolean OR operation
m) "@) instead of the AND operation b(A) n c(K), both having the sarne
effect. When instruction MSK K is executed, the quantity frorn location K is
entered into register G at tirne Z, 4, or 6 of subinstruction MSK0 (row 4L of.

table 3Z-41, and into register B by action 7. Actions 3 and 4 cornplernent the
content of register A. Action 9 enters the cornplernented content of register
B (control pulse RC) and the cornplernented content of register A (control
pulse RA) onto the WArs and into register Y. The quantity b(A) v c(K) is
provided by the output gates of the Adder. Actions l0 and ll cornplenlenl_lhis
quantity, enter the cornplernented quantity, which is the final result b(A) v E(K) =
b(A) n c(K), into register A. Action 8 enters the address of the next instruc-
tion into register Z arrd subinstruction STDZ calls forward the next instruc-
tion as usual.

3Z-2L7. Figure 32-47 illustrates the execution of subinstruction MSK0 of
instruction MSK 0100. The quantities ANDtd are 000ZZZ and 0332L5.

32-218, CHANNEL INSTRUCTIONS

3Z-219. INSTRUCTION READ H

32-220. Instruction READ H (Read H) is a Channel Instruction which is
represented by order code 10.0 and a 9 bit channel address (table 30-5).
Instruction READ H rnust be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction READ H con-
sists of subinstructions READ0 and STDZ, the execution of which takes two
MCT ts.

3Z-ZZL. Instruction READ H enters the content of channel H into register A.
The operation READ H with 005 < H < 033 can be forrnulated as follows:

(1) Set c(A) = c(H) whereby bit H15 is entered into bit positions
A16 and A15.

R etain c(H) .

(Z\ Set c(B) = c(t+l) = j, l beiag the address of instruction READ H
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

C.

d.

32-L5L

FR-Z- 132

F

E

H oooll RcH
1

s oor5
i

ws 0or5 ws t 2333

@@9
G oooor5

@D
B oooor5 JRLToBB

twBo334r2
, loooo,, l, wBtoooo,

@@@
A 033412 *o I *o Joooo,, I

^o

L

z 002 333

U o o2 333 . oooooo

Y oo2 332 w Y . o00000

x 000000 . oooooo

CI I a o

SQ r0.o

ACTION I

RLIOBB
WS

2

RA
WB

3 456789t0ilt2
RCH RB RA RZ
WB WA WB WS

ST2

ST o 2

BR 0 0

2830A

32-L52

Figure 32-48. Subinstrucfion READO

FR-z- 132

(3) Set c(Z) = b(Z)+l = I+Z.
(4) Restore c(I+1) = b(I+I) if (I+1) represents an address in E

Mernory.

Point (2) irnplies that instruction j is executed next.

3Z-ZZZ. Special Cases of READ H:

a. READ L and READ Q enter all sixteen bits of c(L) or c(Q) into
A.

b. READ 003 and READ 004 enter fourteen bits of c(SCALERZ)
or c(SCALERl) into A.

c. Instructions READ H with 005 < H < 033 follow the rules of
paragrapln 3Z-ZZL.

d. Channels 034 and 035 (downlink channels) cannot be read by a
Channel Instruction, therefore 000000 is entered into A.

32-223. When instruction READ H is executed, the quantity frorn channel H
is entered into register B by action 4 of subinstruction READO (row 42 of.
table 30-4l', and action 5 transfers the quantity to register A. Action B enters

\ the address of the next instruction into register S and subinstruction STDZ
calls forward the next instruction as usual.

3Z-224. Figure 32-48 illustrates the execution of subinstruction READO of
instruction READ 015, channel 15 containing the quantity 00011, a keycode
frorn the keyboard of the rnain panel DSKY.

32-225.]NSTRUCTION WRITE H

32-226. Instruction WR.ITE H (Write H) is a Channel Instruction which is
represented by order code 10. I and a 9 bit channel address (table 30-5).
Instruction 'WRITE H rnust be preceded by Special lnstruction EXTEND which
enters a ONE into bit position EXT of register SQ. lnstruction WRITE H
consists of subinstructions WRITE0 and STDZ, the execution of which takes
two MCTts.

32-227. Instruction WRITE H enters the content of register A into channel H.
The operation WRITE H with 005 < H < 0L4 can be forrnulated as follows:

(1) Set c(H) = c(A) whereby bit Al5 is entered into bit position
H15 and bit A15 is not transferred.

Keep c(A).

32-r53

FR-Z - 132

(Z) Set c(B) = c(l+l) = j, I being the address of lnstruction WRITE H,
and j being the instruction stored at location (I+1).

Set c(S) = retevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z\ * I = I*2'
(4) Restore c(I+1) = b(I+1) if (I+r) represents an address in E

Mernory.

Point (2) irnplies that instruction j is executed next.

3Z-228. Special Cases of 'VfRITE H

a. WRITE L and 1MRITE Q enter all sixteen bits of c(A) into L
or e.

b. SCALERZ arld SCALERI cannot be written into by a Channel
Instruction.

c. Instruction WRITE H with 005 < H < 014 follow the rules of
paragrapln 32-327,

d. Channels 15 through 33 cannot be written into by a Channel
Instruction.

e. y;RITE 034 and WRITE 035 enter bits A15, A14 through A1, .-
and a parity bit into channel 034 or 035.

32-229. The execution of instruction WRITE H is sirnilar to that of instruc-
tion READ H. (Cornpare rows 42 and 43 of. table 30-4.) Action 5 of subinstruc-
tion READ0 transfers the channel inforrnation frorn register B to register A.
Action 5 of subinstruction WRITE0 transfers the content of register A to the
addressed channel.

32-230. INSTRUCTION RAND H

32-231. Instruction RAND H (Read and AND H) is a Channel Instruction
which is represented by order code 10. Z and a 9 bit channel address (tab1e 30-5).
Instruction RAND H rnust be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction RAND H con-
sists of subinstructions RAND0 and STDZ, the execution of which takes two
MCT rs.

32-232. Instruction RAND H perforrns the Boolean operation AND (syrnbol
n) with the contents of register A and channel H and stores the logical product
in A. The truth table for each bit of c(A) and c(H) is shown below.

32-154

AH
00
01
l0
11

RAND H with 005 < H

FR-Z-132

AnH

0

0

0

I
< 033 can be forrnulated as follows:

c(H) whereby bits A16 and A15 are ANDfd

The operation

(1) Set c(A) = b(A) n
with bit H15.

Retain c(H).
(z)Setc(B)=c(I+l)=j,Ibeingtheaddressofinstruction

j being the instruction stored at location (I+1)'
Set c(S) = relevant address of j'
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Zl+L = l+2.
(4) Restore c(I+I) = b(I+I) if (I+1) re presents an address in E

Mernory.

Point (z) irnplies that instruction j is executed next.

32-233. Special Cases of RAND H:

RAND L and RAND Q rnake use of all sixteen bits in L or Q to
forrn the logical Product.

RAND 003 and RAND 004 can be used to forrn a logical product
with the fourteen bits in SCALERZ or SCALER 1.

Instructions RAND H with 005 < H < 033 fo110w the rules of
paragraph 32-236.

RAND C34 and RAND 035 cannot forrn a logical product be-
cause downlink channels cannot be read by a Channel Instruc-
tion; 000000 is entered into A.

3i,-?"34. Instruction RAND H in reality perforrns 51a) v E(u) = rn; c(A)= rn

which supplies the sarne result. 'When instructlon RAND H is executed,
action 1 of subinstruction RANDO (row 44 of. table 3Z*4\ replaces the quantity
in register S by a 10 bit address, thus erasing two bits of the eighth code.

Actions Z and.3 cornplernent the b(A) and enter the cornplernented quantity into
the Adder which supplies the 6(A) at its output gates (U). Action 4 enters
c(H) into register B. Actlon 5 reads E(U) frorn the cornplernent side of reg-
ister B andE(e) frorn the output gates both onto the WArs and into register A

thus forrning U(a) , E(H). Actions 6 and 7 cornplernent the content of A t<>

provide the desired logical product.

RAND H,

a.

b.

C.

d.

32-155

r.R-2- 132

F

E

H 5432 r RcHl

2oro
tws

ooto
I

ws eors

@ @
oo20 r o

I
WB RC WB

15432r
RC WB

t67476
RC

oo20ro a RL roBB 345

ot2345 t5543 2 023456) (t67476) (OrO30r) (OO|O33

A OtZ345 * O ,l
I

WA . 167456
I

I *o *olo,o.o,

L

o

z oo2033 I ,r,Looro..
I

U oo2033 t65432 *rl

Y oo2032 *, I ,..ou,

x 000000 o OOOOO0

CI I a o

SQ 14.2

ACTION I 2

RLI OBB RA RC RCH
WY WB

4 567A9tO'|t2
RC RA RC RZ
RU WB WA WSWBWS

ST 2

BR o

32-156

Figure 32-49. Subinstrucfion RANDO

@

24324

FR-z - 132

Action B enters the address of the next instruction into register S and sub-
instruction STDZ calls forward the next instruction as usual.

32-235. Figure 32-49 illustrates the execution of subinstruction RANDO of
instruction RAND 010, AND'ing quantities 0L2345 and l543ZL, the logical
product being 010301.

32-236. iNSTRUCTION WAND H

3Z-237. Instruction W-AND H (Write and AND H) is a Channel Instruction
which is represented by order code 10.3 and a 9 bit channel address
(table 30-5). Instruction'WAND H rnust be preceded by Special Instruction
EXTEND which enters a ONE into bit position EXT of register SQ. Instruc-
tion WAND H consists of sublnstructions WANDO and STDZ, the execution of
which takes two MCTis.

32-238. Instruction WAND H forrns the logical product described in para-
graph 3Z-Z3Z and stores it in register A and in channel H. The operation
WAND H with 005 <H < 014 can be forrnulated as follows:

(1) Set c(H) = c(A) = b(A) n b(H) whereby bits A16 and Al5 are
ANDrd with bit H15.

Retain c(H).
(Z\ Set c(B) = c(I+l) = i, i being the address of instruction WAND H,

and j being the instruction stored at location (I+l).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Zl = b(Z)+L = I+2.
(4) Restore c(I+1) = b(I+1) if (t+1) represents an address in E

Mr:rnory.

Point (Z) irnplies that lnstruction j is executed next.

32-239. Special Cases of WAND H:

a. WAND L and WAND Q rnake use of all sixteen blts in L or Q
to forrn the logical product.

t). WAND 003 and \MAND 004 cannot enter the logical product into
SCALER2 or SCALERl.

c. Instructions WAND H with 005 < H < 014 follow the rules of
paragrapln 3Z-238.

d. Instructions WAND H with 015 < H < 033 cannot enter the
logical product into these channels.

32-r57

r.R-2- I3Z

\MAND 034 and WAND 035 cannot forrn a logical product be-
cause downlink channels cannot be read by a Channel Instruc-
tion; 000000 is entered into A and H.

3Z-240. The execution of instruction WAND H is sirnilar to that of instruc-
tion RAND H. (Cornpare rows 44 and 45 of. table 3Z-4.) Action 7 of subin-
struction WANDO also enters the logical product into the addressed channel.

3Z-24L. INSTRUCTION ROR H

32-242. Instruction ROR H (Read and OR H) is a Channel Instruction which
is representedby order code 10.4at:rd a 9 bit channel address (table 30-5).
Instruction ROR H rnust be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction ROR H con-
sists of subinstructions RORO and STDZ, the execution of which takes two
MCTrs.

32-243. Instruction ROR H perforrns the Boolean operation OR (syrnbol v)
with the contents of register A and channel H, and stores the logical surn in
A. The truth table for each bit of c(A) and c(H) is shown below.

e.

The operation ROR H with 005 < H <

AvH

0

I
t
I

033 can be forrnulated as follows:

H

0

I
0
I

A

0

0

I
I

(1) Set c(A) = b(A) v c(H) whereby bits ,{16 and A15 are ORrd wirh
bit H15.

Retain c(H).
(Z) Set c(B) = c(I+I) = j, I being the address of instruction ROR H,

and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j'
Set c(SQ) = order code of j.

(3) Set c(Zl = b(Z)+L = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E

Mernory.

Point (Z) irnplies that instruction j is executed next.

3Z-244. Special Cases of ROR H:

a. ROR L and ROR Q rnake use of all sixteen bits in L or Q to
forrn the logical surn.

32-r58

F

E

H 54321 RcH
J

4o3o
tws

oo3o ws li r346

@ @
G oo4030

B 004030 IOBB
WB
o r 2345

or2345) (O12345 I 5432 r l 56535 oo I 346

012345 RAJ *o!,u"u.u ,l*o
I

L

I oo2346 *. I oo..o.

@D
U oo2345 or 2345 *,I

Y oo2345 *r J o,r.o,

x oooooo . o00000

CI I a o

FR-z- 132

Sq ro.4

ACTION I

RLIOBB
WS

234567
RA RB RCH RB RA
WB WY WB RU WB

WA

B

RZ

ST2

9 to t2il

ST o ?

BR o o

2834A

Figure 32-50. Subinsfrucfion R0R0

32-t59

FR-Z- 132

C.

ROR 003 and R.OR 004 can be used to forrn a logical surn with
the fourteen bits in SCALERZ or SCALERl.

Instructions ROR H with 005 < H < 033 follow the rules of
paragraph 32-243.

ROR 034 and ROR 035 cannot forrn a logical surn because
downlink channels cannot be read try a Channel Instruction;
b(A) is retained in A.

32-245. When instruction ROR H is executed, action I of subinstruction
ROR0 (row 45 of. table 3Z-4) replaces the quantity in register S by a l0 bit
address plus erasing two bits of the eighth code. Actions Z and 3 enter the
content of register A into the Adder which supplies the c(A) at its output
gates (U). Action 4 enters c(H) into register B. Action 5 reads b(A) frorn
the Adder and c(H) frorn register B into the'WArs and into register A, thus
forrning b(A) v c(H). Action 8 enters the address of the next instruction into
register S and subinstruction STDZ calls forward the next instruction as
usual.

32-246. Figure 3Z-50 lllustrates the execution o{ subinstruction ROR0 of
instruction ROR 030, ORting quantities 012345 and L543ZL, ti,e logical surn
being L56365.

32-247 . INS TRUC TION \MOR H

3Z-248. Instruction WOR (Write and OR H) is a Channel Instruction which
is represented by order code 10.5 and a 9 bit channel address (table 30-5).
Instruction'\4rOR H rnust be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction WOR H con_
sists of subinstructions WORO and STDZ, the execution of which takes two
MC T rs.

32-249. Instruction WOR forrns the logical surn described in paragraph 3 2-243
and stores it in register A and in channel H. The operation WOR H with
005 < H < 013 can be forrnulated as follows:

(1) Set c(H) = c(A) = b(A) v b(H) whereby bits 416 and At5 are
oR'd with bit H15.

(z) set c(B) = c(t+l) = i, I being the address of instruction woR H
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z\ = b(Z\+L = I+2.
(4) Restore c(I+1) = b(I+1) if (I+I) represents an ad.dress in E

Mernory.

Pcint (Z) irnplies that instruction j is executed next.

b.

d.

32-t60

FR-Z-r32

32-250. Special Cases of WOR H:

a. WOR L and WOR Q rnake use of all sixteen bits in L or Q to
forrn the logical surn.

b. woR 003 and woR 004 cannot enter the logical surn into
SCALERZ or SCALERI.

c. Instructions'woR H with 015 < H < 014 fo110w the rules of
paragrapln 3Z-249.

d. Instructions'woR H with 015 < H < 033 cannot enter the 1og-
ical surn into these channels.

e. ROR 034 and ROR 035 cannot forrn a logical surn because down-
link channels cannot be read by a Channel Instruction, b(A)
is entered into A and H.

3Z-25L. The execution of instruction'WOR H is sirnilar to that of instruction
ROR H. (Cornpare rows 46 and 47 of table 3Z-4.) Action 5 of subinstruction
WOR0 enters the logical surn into the addressed channel aIso.

3Z.Z5Z. INSTRUCTION RXOR H

32-253. lnstruction RXOR H (Read and Exclusive OR H) is a Channel In-
struction which is represented by order code 10.5 and a 9 bit channel ad-
dress (table 30-5). Instruction RXOR H rnust be preceded by Special Instruc-
tion EXTEND which enters a ONE into bit position EXT of register SQ. In-
struction RXOR H consists of subinstructions RXORO and STDZ, the execu-
tion of which takes two MCTrs.

32-254. Instruction RXOR H perforrns the Boolean Operation Exclusive OR
(syrnbolv) with the contents of register A and channel H, and stores the
logical result in A. The truth table for each bit of c(A) and c(H) is shown
below.

A

0

0

t
I

0

I
0

I

0

I
I
0

H AVH

The operation RXOR H with 005 < H < 033 can be forrnulated as follows:

(1) Ser c(A) = b(A) v c(H) whereby bits A16 and A15 are XORrd
with bit H15. Retain c(H).

32-L6L

FR-2- 132

F

E

H i43?t RcH
1

RcHl

S 60r2
iws

o0l2 wst 2oaa

oooo I 2

G)o60r 2 wcto33757
^uI

wGi r44o2o tnl

@@ @ @
B oouo', l.r,or,

15B.ou
:f*., {^. .,,i...,',

I

@D@ @@
A or2345 *ol ;t *ol,ououo

L

0

z oo2044 *.1

U oo2044 I 7573 3 arl

Y 102043 *, I ,rur..

x loo000 . oooooo

CI I a 0

SQ ro.6

ACTI O N 6789lOlll?
RG RZ RC RU RC
W8 WS WG WB RG

ST2 WA

12345
RLIOBB RA RC RCH RA
WS WB RCH WB RC

WY WG

ST 2

BR 0 o

2836A

32-L62

Figure 32-51. Subinstruction RX0R0

l

I-P--2-132

(Z\ Set c(B) = c(I+l) = j, I being the address of instruction RXOR H
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z\ + L = 1*Z'
(4) Restore c(I+I) = b(I+1) if (I+1) represents an address in E

Mernory.

Point (Z) irnplies that instruction j is executed next.

32-255. Special Cases of RXOR H:

RXOR L and RXOR Q rnake use of all
to forrn the Exclusive OR.

RXOR 003 and RXOR 004 can be used
with the fourteen bits in SCALERZ or

Instructions RXOR H with 005 < H <
paragrap}i. 3Z-254.

d. RXOR 034 and RXOR 035 cannot forrn an Exclusive OR because
downlink channels cannot be read by a Channel Instruction;
b(A) is retained in A.

3Z-2b6. Instrucrion RXOR H in reality perforrns b(A) v E(ff) = rn, 6(A) v c(H)
n, c(A) = ffi v E, which supplies the sarne result. When instruction RXOR H
is executed, action I of subinstruction RXORO (row 48 of table 3Z-4) replaces
the quantity in register S by a 10 bit address, thus erasing two bits of the
eighth code. Actions 2 and 3 forrn 6(a) v c(H) = n which is entered into the
Adder. Actions 4 arld 5 forrn b(A) v E(H) = rn which is entered into register
G, Actions 7 and 9 forrn rn which is stored in register G, and actions I0
and llforrn rn v n which is entered into register A. Action B enters the ad-
dress of the next instruction into register S and subinstruction STDZ calls
forward the next instruction as usual.

3Z-257. Figure 3Z-5L illustrates the execution of subinstruction RXOR0 of
instruction RXOR 012, XORring the quantities 0L2345 and 154321 and pro-
viding L46064.

3Z-258. SPECIAL INSTRUCTIONS

32.259. INSTRUCTION EXTEND

3Z-260. Instruction EXTEND is a Special Instruction which is represented
by order code 00. 0006. Instruction EXTEND causes the execution of sub-
instruction STDZ which takes one MCT.

a.

b.

C.

sixteen bits in L or Q

to forrn an Exclusive OR
SCALER I.

033 follow the rules of

U

32-163

FR-z- I32

wGtoooooo + looooo6

OOO443 RB

RSc i
RSC J

I

RSc.ll

Ioo2442 aRZ RSC a wz I ooo443 RZ

I oozoot

wYtzf ooz442

I
RAD
WB
WS
(STD2)

32-t64

Figure 32-52. Su6instrucfion STD2, Preceding lnstruction EXIEND

F rooo6
1

E I
I t

H I I

I

S co?442 I

I

ws
t

0443 I

I I

G I

I

B I WB

D @
A

L

z

D @D @

U ,r,l ooooo.

Y

x . oooo00

CI]I I

SQ)6, r *ro foo

ACTION I ?

RZ RSC
w\ t2 wG
cl Nlso

5 4

ST (

BR (

2734 A

FR-2- 132

3Z-26L. Instruction EXTEND enters a ONE into bit position EXT of reg-
ister SQ to execute next an Extra Code Instruction" The operation EXTEND
can be forrnulated as follows:

(t) Enter a ONE into bit position EXT of register SQ and set flip-
flip TNHINT/RELINT',.

(Z) Set c(B) = c(I+l) = j, I being the address of instruction RELINT,
and j being the instruction stored at location It1.

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = c(Z+I) = ItZ.
(4) Restore c(I+1) if (I+I) represents an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-262. As the instruction preceeding EXTEND is executed, its last subin-
struction (STDZ, TCO, BZI.}, BZMF0, MP3, or RSM3) enters the order code
of instruction EXTEND into register G at tirne Z, 4, or 6, (Cornpare fig-
ure.3Z-52 witin figures 3Z-L, 3Z-2, 32-8, arrd 32-27.) Register G recognizes
the presence of code 0.0006 and control pulses RZ and STZ are generated at
tirne B instead of control pulse RG in reply to control pulse RAD. Further-

, ffiore, a ONE is entered into bit position EXT of register SQ, and flip-flop
\-' INHINT/RELINT is set. Action B transfers the address of the next instruction

frorn register Z to registers B and S, and the order code 00.0 is transferred
to register SQ at tirne 12. Thereafter, subinstruction STDZ is executed to call
foru,ard the Extra Code Instruction {ollowing instruction EXTEND. During
the execution of the last subinstruction of the Extra Code Instruction, except
for instruction NDX K, bit position EXT and flip-flop INHINT/RELINT are
reset.

3Z-263. INSTRUCTIONINHINT

3Z-264. Instruction INHINT (Inhibit Interrupt) is a Special Instruction which
is represented by order code 00. 0004. Instruction INHINT causes the ex-
ecution of subinstruction STDZ which takes one MCT.

3Z-265. Instruction INHINT cornrnands the Sequence Generator (SQG) to re-
fuse to accept any request for the execution of instruction RUPT. The op-
eration INHINT can be forrnulated as follows:

(1) Ser flip-flop INHINT/RELINT.
(Z) Set c(B) = c(I+l) = j, I being the address of instruction RELINT,

and j being the instruction stored at location I*1.
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

32 -165

FR-z - r 32

(3) Set c(Z) = c(Ztl) = I*2.

(4) Restore c(I+1) if (I+l) represents an address in E Mernory.

Point (2) irnplies that instruction j is executed next.

32-266. The execution of instruction INHINT is sirnilar to that of instruc-
tion EXTEND described in paragraph 32-262. 'When register G recognizes
the presence of code 00.0004, control pulses RZ and STZ are generated in-
stead of control pulse RG at tirne 8, flip-flop iNHINT/RELINT is set, but bit
position EXT of register SQ is not set.

32.267. INSTRUCTION RELINT

32-268. Instruction RELINT (Release Interrupt Inhibit) is a Special Instruc-
tion which is represented by order code 00.0003. Instruction RELINT causes
the execution of subinstruction STDZ which takes one MCT.

32-269. Instruction RELINT cornrnands the Sequence Generator (SQG) to
accept any request for the execution of a RUPT instruction. The operation
RELINT can be forrnulated as follows:

(1) Reset flip-flop INHiNT/RELINT.
(Z\ Set c(B) = c(l+l) = j, I being the address of instruction RELINT,

and j being the instruction stored at location It1.
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = c(Z+l) = I+2.
(4) Restore c(I+1) if (I+l) represents an address in E Mernory.
Point (2) irnplies that instruction j is executed next.

32-270. The execution of instruction RELINT is sirnilar to that of instruc-
tions EXTEND and INHINT described in paragraphs 32-26z and 3z-266.
'When register G recognizes the presence of code 00.0003, control pulses
RZ and ST2 are generated instead of control pulse RG at tirne 8, flip-flop
INHINT/RELINT is reset, and bit position EXT of register SQ is not set.

32-27I. INSTRUCTION RESUME

32'272. lnstruction RESUME (Resurne Interrupted Prograrn) is a Special
Instruction which is represented by order code 05.0017. Instruction RESUME
consists of subinstruction NDXO and RSM3, the execution of which takes two
MCTrs.

3Z-166

I.P"-Z-13Z

ooooo 131234

osoorT wc+oooooo lo3l234

I

RSC?

Rsca
I

U co2064

Y co2053

x cooooo

CI I

SQ o5.o

ACT|ONt23456789lOttt2
RSC TRSM RG R7 RB STI
WG WB WS WG

ST o

BR o o

27164

Figure 32-53. Subinstrucrion NDX0 of lnstruction RESUME

32-167

FR-2-132

ws l0or5

31234 wG + OOOoOo I 02531
?

RG wG fo3l234 RG

o2s3r

RB a wB to3t234

RSC I

32-168

Figure 32-54. Subinsfrucfion RSM3

r.R-2- I32

3Z-273. Instruction RESUME cornrnands the Sequence Generator to accept
any RUPT request, returns pertinent data of the interrupted prograrrr frorn
fiIernory to CP registers, and resurrres the execution of the interrupted pro-
grarn section if no RUPT request has been rnade. The operation RESUME
can be forrnulated as follows:

(l) Reset flip-flop INHINT/RELINT.
(Z) Set c(B) = c(BRUPT) = c(0017).

Set c(S) = relevant address of instruction contained in B.
Set c(SQ) = order code of instruction contained in B.

(3) Set c(Zl = b(ZRUPT) = c(0015).
(4) Restore c(BRUPT) = b(BRUPT).

Set c(ZRUPT) = c(BRUPT).

Point (2) irnplies that the instruction which was stored in BRUPT
will be executed next.

3Z-2,74. At the tirne instruction RUPT was executed the last tirne, flip-flop
IIP was set to prevent the interruption of an interrupting prograrn section,
the next instruction of the interrupted prograrn section was transferred frorn
register B to location BRIIPT = 0017, and the address of the second-next in-
structiorr was transferred frorn register Z to location ZRUPT = 0015. (Refer
to paragraphs 30 -LZ3 and 3Z-ZBZ.) By returning c(BRUPT) and c(ZRUPT) to
registers B and Z;espectively, the execution of the interrupted prograrl
section is continued. Subinstruction NDX0 of instruction RESUME (NDX 0017)
returns the c(BRUPT) to register B. Subinstruction RSM3 returns c(ZRUPT)
to register Z ar:d enters the relevant address and the order code of the re-
turned instruction now contained in register B into registers S and SQ, re-
spectively. (Refer to row 49 of. table 32-4 and figures 32-53 arrd 32-54.\

32-275. INSTRUCTIONS CYR, SR, CYL and EDOP

32-276. Instruction CYR (Cycle Right) is a Special Instruction which is
represented by code .0020, SR (Shift Right) by .0021, CYL (Cycle Left) by
.0O?2, and EDOP (Edit Operator) by.0023. These codes can be used with
rnost Basic and Extra Code Instructions. Whenever one of these codes is
used, the quantity being entered into register G is edited as listed below
(refer to paragraph 30-41 and table 30-I).

one place to the right
one place to the right
one place to the left
seven places to the right

The effect of codes . 0020 through .0023 is described under special cases
with each Basic or Extra Code Instruction.

CYR cycled
SR shifted
CYL cycled
EDOP shifted

32-t69 /32-17O

FR-z- i3Z

32-277. INVOLUNTARY INSTRUCTIONS

3Z-27 B, INTERRUP TING INS TRUCTIONS

32-279. INSTRUCTION RUPT

3Z-280. Instruction RUPT (Interrupt Prograrn Execution) is an Interrupting
Instruction which is executed at the occurrence of certain events (para-
graph 30-131) by entering order code 10.7 into register SQ. Instruction
RUPT initiates certain prograrrrned operations (paragraph 30-l3Z an.d
table 30-6) and consists of subinstructions RUPT0, RUPTI, and STD2, the
execution of which takes three MCTrs. The execution of instruction RUPT
is inhibited if a RUPT was executed after the last RESUME or if an INHINT
was executed after the last RELINT.

3Z-ZBL. lnstruction RUPT cornrnands the Sequence Generator (SQG) to refuse
to accept any other RUPT request (until instruction RESUME ls executed),
transfers pertinent data of the prograrn section being interrupted to rneryrory,

_ and transfers prograrrl control to the requested prograrnrned operation. The
operation RUPT can be forrnulated as follows:

(1) Set flip-flop INHINT/RELINT.
(Z) Set c(BRUPT) = c(0017) = c(B).
(3) Set c(ZRUPT) = c(0015) = clz).
(4) Set c(Z) = address of RUPT Transfer Routine provided by

Interrupt Priority Control.
(5) Set c(B) = first instruction of desired RUPT Transfer Routine.

Set c(S) = relevant address of instruction contained in B.
Set c(SQ) = order code of instruction contained in B.

Point (5) irnplies that the first instruction of the desired RLIPT
Transfer Routine will be executed next"

3Z-ZBZ. When instruction RUPT is executed, subinstruction RUPT0 (row 50
of table 3Z-4 and figure 3Z-55) transfers c(Z) to location ZRUPT = 0015 in
rylernory (table 30-4). Subinstruction RUPTl (row 5I of table 3Z-4 arid f.\g-
ure 32-56) transfers c(B) to location BRUPT = 0017, and enters the address
of the RUPT Transfer Routine into registers Z and S. Subinstruction STDZ
calls forward the first instruction of the RUPT Transfer Routine.

32-L7l

r.R-Z- 132

7433 IWS OOl5

037433 WG.OOOOOO YOO432!

U co2034

Y lo2 033

x oooooo

CI I

SO to.7

ACTTON t ? 3 4 5 6 7 A 9 tO l t2

RI5 RSC AZ STI
WS WG WG

ST

BR o

32-L7Z

Figure 32-55. Subinsfruction RUPTl

I.P'-2-132

F

E 65201
1

ooooo
t

037433

H

S oor5
i

ws oorT wsto4oo4

)ooot7

G oozo34 wc.oooooo l,.rro, wGt0374rs lo.ro..

@
B o37433

^r,l

04004

A

L

o

z 002034 wz
t

o4oo4 ..,1

o4004

U oo2034

Y oo2033

x oooooo

ct I

SQ to.7

t234567A9tOilt2
R 15 RSC RRPA AZ RB
RB2 WG WZ ws wG
WS ST2 KRPT

ACTION

ST 2I

BR oo

285tA

32-t73

Figure 32-56. Su6instruction RUPf I

FR-Z - 132

32-283. INSTRUCTION GO

32-284. Instruction GO is an Interrupting Instruction which is executed at
the occurrence of certain errors (if signal GOJAM is generated) by entering
order code 00. into register SQ and entering I into the stage counter (ST).
Instruction GO initiates the execution of the restart sequence (table 30-6) and
consists of subinstructions GOJI and TC0, the execution of which takes two
MCT f s.

32-285. Instruction GrJ enters TC 4000 into registers B and S, 4000 being
the address of RUPT Transfer Routine GO. (Refer to row 52 of. table 3Z-4.)
Instruction TC 4000 is executed after instruction GO.

3Z-286. COUNTER INSTRUCTIONS

32-287. INSTRUCTION PINC C

32-288. Instruction PINC C (Plus Incrernent C) is a Counter Instruction
v.zhich is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction PINC C consists of subinstruction PINC, the
execution of which takes one MCT.

32-289. Instruction PINC C incrernents by one the content of that E Mernory
counter C the address of which is supplied by the Counter Priority Control.
The operation PINC C can be forrnulated as follows:

(1) Set c(C) = b(C)+1 except for overflow bit.
(Z) Retain c(B).

Retain c(S).
Retain c(SQ).

(3) R etain clz\ .

Point (Z) irnplies that the instruction stored in B is executed next.

32-290. Special Cases of PINC C.

a. PINC 0024 causes the execution of PINC 0025 in case of over-
flow of c(0024).

b. PINC 0025, PINC 0027, or PINC 0030 causes execution of
RUPT in case of an overflow.

3Z-29L. When instruction PINC C is executed, action I of subinstruction
PINC (row 53 of table 3Z-4') enters into register S the counter address C
provided by the Counter Priority Control.

32-174

FR.-z - 132

o0o0o I oolo3

oro234 t oooroz g no ws I oooto3

SQ ol.o

ACT|ONt234567s9tolt t2
RSCT RSC RG PONEX RU RBws wG wY wsc ws

TSGN WGTMZ WOVR
TPZG

ST o
0

BR o
0

2853 A

Figure 32-57. Subinsfruction PINC

3Z-175

FR-z - 13 2

The content of the addressed counter is transferred to register G at tirne 4.
Actions 5, 6, and 7 add the quantity 000001 to the content of register G. At
tirne 10, the incrernented quantity is returned to the addressed counter in
E Mernory. Action 8 re-enters into register S the relevant address contained
in register B to establish the orlginal condltions.

32-292. Figure 32-57 illustrates the execution of instruction PINC 0025.
Counter 0025 contains quantity 00102 which becornes 00103 after being incre-
rnented. If the counter contained 37777, it would contain 00000 after being
incrernented, and the execution of PINC OOZ4 would be requested. If the
addressed counter was counter 0026, 0027, or 0030, the execution of instruc-
tion RUPT would be requested in case of overflow of the addressed counter.

32-293. INSTRUCTION M:NC C

32-294. Instruction MINC C (Minus Incrernent C) is a Counter Instruction
which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction MINC C consists of subinstruction MINC, the
execution of which takes one MCT.

32-295. Instruction MINC C decrernents by one the content of that E Mernory
counter C the address of which is supplied by the Counter Priority Control.
The operation MINC C can be forrnulated as follows:

(1) Set c(C) = b(C)+1 except for overflow bit.
(Z) Retain c(B).

Retain c(S).
Retain c(SQ).

(3) Retain c(Z) .

Point (2) irnplies that the instruction stored in B is executed next.

32-296. There are no special cases of MINC C. Instructions PINC C and
MINC C are identical except for action 6 (cornpare rows 53 and 54 of. table 3Z-4).
Control pulse MONEX of subinstruction MtNC replaces PONEX of subinstruc-
tion PINC.

32-297. INSTRUCTION DINC C

32-298. lnstruction DINC C (Dirninish Incrernent C) is a Counter Instruction
which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction DINC C consists of subinstruction DINC, the
execution of which takes one MCT.

32-176

FR-2 - 132

32-299. Instruction DINC C dirninishes (decreases rnagnitude) by one the
content of that E rnernory drive counter C the address of which is supplied by
the Counter Priority Control. The operation DINC C can be forrnulated as
follows:

(I) If c(C) is positive non-zero, set
one plus drive pulse.

If c(C) is negative non-zero, set

c(C) = b(C)-I, and generate

c(C) = b(C)+1 and generate
one rninus drive pulse.

If c(C) is plus or rninus zero, set c(C) = b(C) and generate no
drive pulse.

(Z) Retain c(B).
Retain c(S).
Retain c(SQ).

(3) Retain c(Z).

Point (2) irnplies that the instruction stored in B is executed next.

32-300, There are no special cases of DINC. Instruction DINC C is identical
to instructions PINC C and MINC C except for action 6. (Cornpare rows 53

through 55 of. table 32-4.) The rnain difference is that instruction DINC C is
used with drive operations as described in paragraphs 30-90 through 30-104.

32-301. INSTRUCTION PCDU C

3Z4AZ. Instruction PCDU C (PIus CDU C) is a Counter Instruction which is
executed at the occurrence of certain events (paragraph 30-137) without enter-
ing an order code into register SQ and is independent of the content of reg-
ister SQ. Instruction PCDU C consists of subinstruction PCDU, the execu-
tion of which takes one MCT.

32-303. Instruction PCDU C incrernents by one the content of that CDU
counter C in E Mernory the address of which is supplied by the Counter Pri-
ority Control. The incrernenting is carried out in TWO|s cornplernent arith-
rnetic since CDU counters contain cyclic TWOts cornplernent nurnbers (para-
graphs 30-46 and 30-47\. The operation PCDU C can be forrnulated as follows:

(1) set c'(c) = bt(c)+1 where ct(c) and b'(c) are cyclic TWo's
cornplernent nurnbe r s.

(Zl Retain c(B).
Retain c(S).
Retain c(SQ).

(3) Retain c(Z).

Point (Z) irnplies that the instruction stored in B is executed next.

32-177

FR-Z- 132

32-304. There are no special cases of PCDU C. Instruction PCDU C is
sirnilar to instruction PINC C. (Cornpare rows 53 and 56 of. table 32'4.\
Control pulse PONEX of subinstruction PINC is replaced by CI of PCDU, and
RU is replaced by RUS. If the ONErs cornplernent quantity 37777 (plus 377771

contained in a counter is incrernented by PINC C, the resulting quantity is
00000 (plus zero\ because the overflow bit was lost during the storing of the_

incrernented quantity. If the TWOts cornplernent quantity 37777 (nearly 1800

as shown in paragraph 32-209) is incrernented by PCDU C, the resulting
quantity is 40000 (f80o) because of control pulse RUS which placed the over-
flow bit into bit position 15 of the counter. If the ONErs cornplernent quantity
77777 (rninus zero) is incrernented byPINC C, the resulti.ng quantity is 00001
(plus one). If the cyclic T\MOrs cornplernent quantity 77777 (rnaxirnurn, i.e.
nearly 3601 is incrernented by PCDU, the resulting quantity is 00000 (360o
or zero) .

3Z-3O5. INSTRUCTION MCDU C

3Z-306. Instruction MCDU C (Minus CDU C) is a Counter Instruction which
is executed at the occurrence of certain events (paragraph 30-137) without
entering an order code into register SQ and is independent of the content of
register SQ. Instruction MCDU C consists of subinstruction MCDU, the ex-
ecution of which takes one MCT.

3Z-307. Instruction MCDU C decrernents by one the content of that CDU
counter C in E Mernory the address of which is supplied by the Counter Pri-
ority Control. The decrernenting is carried out in T'WOrs cornplernent arith-
rnetic since CDU counters contain cyclic TWOrs cornplernent nufi]bers (para-
graphs 30-46 and 30-47), The operation MCDU C can be forrnulated as follows:

(1) Set c'(C) = b'(C)-l where ct(c) and b'(c) are cyclic TWors
cornplernent nurnber s.

(Z) Retain c(B).
Retain c(S).
Retain c(SQ).

(3) R etain c(Z) .

Point (2) irnplies that the instruction stored in B is executed next.

32-308. There are no special cases of MCDU C. Instruction MCDU C is
sirnilar to instructions MINC C and PCDU C. (Cornpare rows 53, 56, and 57
of table 3Z-4.) Action 5 of subinstruction MCDU consists of control pulses
MONEX and CI which together add the TWOrs cornplernent quantity 77777
(rnlnus one) to 00OOO (zero or 360o) if this quantity is contained in an ad.dress-
ed counter. Ifa counter contains 40000 (1801 37777 is contained after the
decrernenting due to control pulse RUS.

3Z-L7B

FR-z- I32

3Z-3O9. INSTRUCTION SHINC C

3Z-3L0. Instruction SHINC (Shift Incrernent C) is a Counter Instruction which
is executed at the occurrence of certain events (paragraph 30-I37) without
entering an order code into register SQ and is independent of the content of
register SQ. Instruction SHINC C consists of subinstruction SHINC, the ex-
ecution of which takes one MCT.

32-3LL. Instruction SHINC C shifts one place to the left the content of that
E Mernory counter (0045 or 0046) the address of which is supplied by the
Counter Priority Control. The operation SHINC C can be forrnulated as
follows:

(t) Set c(C) = zb(C) where b(C) is always a positive quantity and
c(C) includes an overflow bit (instead of a sign bit) in bit
position 15 inc ase of overflow.

(Z) Retain c(B).
Retain c(S).
Retain c(Sa).

(3) Retain c(Z) .

Point (Z) irnplies that the instruction stored in B is executed next.

32-3L2. Instruction SHINC C is used for serial to parallel conversion. If
SHINC 0045 is executed and an overflow occurs, the execution of instruction
RUPT is requested.

3Z-313. When instruction SHINC C is executed, action I of subinstruction
SHINC (row 58 of table 3Z-4) enters into register S the counter address C
provided by the Counter Priority Control. The content of the addressed
counter is transferred to register G at tirne 4. Action 5 doubles the quantity
and enters this doubled quantity into the Adder. Action 7 enters the doubled
quantity into register G whereby any overflow bit is entered into bit positions
15 and 15 of G. At tirne 10 the content of register G is entered into the ad-
dressed counter. Action 8 re-enters into register S the relevent address
contained in register B to re-establish the original conditions.

3Z-3L4. Figure 32-58 illustrates the execution of instruction SHINC 0045.
Ori.ginally, counter 0045 which contained 05530 before the shifting operation,
contains 0L3260 after the shifting operation. If quantity 25530 were contained
originally, 53230 would be contained after shifting and the execution of in-
struction RUPT would be requested.

32-L7g

FR-Z- I32

F

E o5530
?0oooo

,f r3260

H

S 2t?3 ws oo45 2t23

152t23

G 152123 wG.o0OO0o 30 oRG wG or 3260

I 52t23

A

L

o

z 002664

@
U oo2654 013260 RUsl

Y)o265 3 *r, lo,..uo

x loo000 . oooooo

CI I a o

SO 45.2

ACTIONtZ34567A9rO||t?
RSCT RSC RG RUS RB
WS WG WYD WSC WS

TSGN WG
wovR

ST o

BR 2

2457 A

32- t 80

Figure 32-58. Subinsfrucfion SHINC

*rl

FR-2 - 132

3Z-3L5. INSTRUCTION SHANC C

3Z-316. Instruction SHANC C (Shift and Add Incrernent C) is a Counter In-
structionwhich is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction SHANC C consists of subinstruction SHANC C,
the execution of which takes one MCT.

3Z-3L7. Instruction SHINC C shifts one place to the left the content of that
E Mernory counter (0045 or 0046) the address of which is supplied by the
Counter Priority Control and adds a ONE into bit position l. The operation
SHANC C can be forrnulated as follows:

(1) Set c(C) = Zb(C)+1 where b(C) is always a positive quantity and
c(C) includes an overflow bit (instead of a sign bit) in bit
position l5 in case of overflow.

(Z) Retain c(B).
Retain c(S).
Retain c(SQ).

(3) R etain c(Z) .

Point (2) irnplies that instruction stored in B is executed next.

!- 3Z-3L8. Instruction SHANC C is also used for serial to parallel conversion
similarly to instruction SHINC C. (Cornpare rows 58 and 59 qf table 3Z-4,)
Control pulse CI of action 5 adds the ONE into bit position I of the Adder;
this ONE is later transferred to bit position I of the counter. If SHANC 0045
is executed and an overflow occurs, the execution of instruction R.UPT is
requested.

\.-

32-tgL /32-L82

FR-2-l32

32-3I9. PERIPHERAL INSTRUCTIONS

32-320. SEQUENCE CHANGING TEST INSTRUCTIONS

3Z.3ZL. INSTRUCTION TCSAJ K

3Z-322. Instruction TCSAJ K (Transfer Control to Specified Address K) is
a test instruction which is executed on cornrnand frorn Ground Support Equip-
rnent (GSE) such as the Cornputer Test Set (CTS) or the Prograrn Analyzer
Console (PAC). The address K is supplied by the CTS or PAC. Instruction
TCSAJ K consists of subinstructions TCSAJ3 and STDZ, the execution of
which takes two MCTrs.

32-323. Instruction TCSAJ K takes the next instruction frorn location K.
The operation TCSAJ K with 0024 <K < 7777 can be forrnulated as follows:

(t) Retain c(Q).
(Zl Set c(B) = c(K) = k, k being the instruction stored at location

K.
Set c(S) = relevant address of k.
Set c(SQ) = order code of k.

(3) Set c(Z) = K*1.
(4) Restore c(K) = b(K) if K represents an address in E Mernory

Point (2) irnplies that instruction k is executed next.

32-324. The special cases of TCSAJ K are the sarne as for TC K (para-
graph 32-35\. Instruction TCSAJ K is sirnilar to instructions TC K and
TCF F in effect but differs in the nurnber of subinstructions. Action 8 of
subinstruction TCSAJ3 (row 60 of table 32-4) enters the address K supplied
by the GSE into registers S and Z. Subinstruction STDZ then incrernents by
one the content of register Z and calls forward the instruction located at K.

32.325. DISPLAY AND LOAD TEST INSTRUCTIONS

32-326.]NSTRUCTION FETCH K

3Z-327. Instructiorr FETCH K is a display instruction which is executed on
cornrnand of the GSE. The address K is supplied by the GSE. Instruction

. FETQH K consists of subinstructions FETCH0 and FETCHl, the execution of\' which takes two MCTts.

32- t83

FR-2- 132

32-328. Instruction FETCH K enters into either register EBANK or FBANK,
a bank nurnber received frorn the GSE; enters into register S an address K
received frorn the GSE, and provides for display at the WAts the content of
that location K and the final content of BBANK. Thereafter, the before con-
tents of BBANK and S are restored. The operation of instruction FETCH K
is illustrated on figures 32-59 and 3Z-60. Action I of subinstruction FETCH0
(row 61 of table 32-41 enters the quantity 000006 into register S to sirnultan-
eously address registers EBANK and FBANK. In the exarnple, register
I'BANK contains F bank nurnber I (a ONE in bit position 1l as shown in
table 30-3) and register EBANK contains E bank nurnt:er 5 (ONEts in bit po-
sitions 1l and 10 as shown in table 30-Z\. If both registers are ad.dressed
and their contents are read into the'WArs, the quantity 020005 appears be-
cause the content of register EBANK is shifted eight places to the right
(table 30-1). Action 2 stores this quantity in the Adder. Action 4 enters a
new bank nurnber into register EBANK or FBANK or both. Action 8 enters
the address of the required location (0343) into register S. At tirne 4 of sub-
instruction FETCHI (row 62 of. table 3Z-4) the conterrt 76543 of location 0343
is entered into register G at tirne 4. (In case a CP register or an F Mernory
location is addressed, the quantity is entered into register G at tirne Z or 6,
respectively.) Action 7 places the sarne quantity into the WAts for display.
Action B restores the original contents of register S, EBANK, and FBANK.
Thus, program. execution can be continued after the execution of instruction
FETCH K. Restoring the contents of registers EBANK and FBANK rnay be
inhibited. Action 10 places the content of registers EBANK and FBANK into
the .WArs for display. At tirne 10, the original content of location K is restored.

32.329. INSTRUCTION STORE E

32-330. Instruction STORE E is a load instruction which is executed. on
cornrnand of the GSE. The address E is supplied by the GSE. Instruction
STORE E consists of subinstructions STOREO and STOREI, the execution of
which takes two MCTf s.

3Z-33I. Instruction STORE E enters into either register EBANK or FBANK,
a bank nurnber received frorn the GSE, enters into register S an address E
received frorn the GSE, and enters into that Iocation E the quantity provicied
by the GSE. Thereafter the before content of BBANK is restored. unless
E = BBANK. The before content of S is always restored. The operation of
instruction STORE E is sirnilar to that of instruction FETCH K. (Cornpare
rows 62and63 of. table 32-4 with rows 61 and 62.) SubinstructionSTORE6
is identical to subinstruction FETCHO in that both address a specific location.
Action 4 and action 9 of subinstruction STOREI enter the quantity, which is
entered into the WArs by the GSE into the addressed location. If 0OZ0 < E <
0023, the quantity entered is edited.

32-184

FR*Z-L32

ws I 0343

EXTERNAL+tNPUT EXTERNAL*
ttrtPUT

SQ 02.o

ACT|ONt?34567A9lolll2
R6 RSC WSC WS

ws wG
WY

ST o I

BR o o

2864A

Figure 32-59. Subinstruction FETCHO

32-L85

F

E

H 020006
I

RSc wsct

S o3oo
133ooo"

6;D 6;
G o20300 o20006

B o20300

A

L

o

z oo2654

U oo2654 020005

Y o0256 3 *., J orooo.

X oooooo . OOOOOO

CI I .O

FR-2- 132

wcloooooo *,r.uo. { *o

nscl
I

I

RSC?

EXTERNAL
OUTPUT

U o20005

Y 020006

x o00000

UI o

SO o2.o

ACT|ONt23456789tOlr l2

RSC RG RB RBBK
WG WS

U2BBK

ST I 0

BR

2865A

3Z-r86

Figure 32-60. Subinstrucfion FETCHI

FR-2-13Z

\V 32-332. INSTRUCTION INOTRD H

3Z-333. Instruction INOTRD H is a channel display instruction which is ex-
ecuted on cornrnand of the GSE. The channel address H is supplied by the
GSE. Instruction INOTRD H consists of subinstruction INOTRD, the execu-
tion of which takes one MCT.

32-334. Instructlon INOTRD H provides at the WAts for display the content
of channel H, which is specified by the GSE. Action I of subinstruction
INOTRD (row 65 of. table 3Z-4) enters into register S the address of channel
H, address H being supplied by tle GSE. Action 5 enters the content of the
addressed channel into the'WArs for display. Action B restores the original
content of register S.

32-335, INSTRUCTION INOTLD H
\

3Z-336. Instruction INOTRD H is a channel load instruction which is executed \
on cornrnand of the GSE. The channel address H is supplled by the GSE. In-
struction INOTRD H consists of subinstructlon INOTRD, the execution of
which takes one MCT.

3Z-337. Instruction INOTLD enters into channel H, as specified by the GSE,
. the quantlty provided by the GSE. The operation of instruction INOTLD isr!-' sirnilar to that of instruction INOTRD. (Cornpare rows 65 and 66 of. table 3Z-4.)

Actlon 7 of subinstruction INOTLD enters the quantity provided into channel
H.

32-187 /32- I 88

