
APOLLO GUIDANCE COMPUTER

Information Series

ISSUE 6

INTERPRETER AND INTERPRETIVE
INSTRUCTIONS

FR-2-106A

25 September 1963

C I

FR-2-106A

TABLE OF CONTENTS

Paragraph Page

6 - 1 INTRODUCTION 6-1

6-3 GENERAL 6-1

6-5 BASIC DESCRIPTION OF INTERPRETIVE
PROGR AMS 6-2

6 -6 Interpretive AGC Programs Versus
Common Programs 6-2

6-12 Storing and Recalling of Partial Result s 6-4
6-20 Indexing Operations 6-9
6-24 Binary Point 6-11

6-27 WORD FORMATS AND ADDRESSES 6-12

6-42 INTERPRETIVE INSTRUCTIONS 6-19

6-44 REGISTER ASSIGNMENTS 6-19

6-46 INTERPRETER OPERATION 6-20

ii

. '

Figure

6-1
6-2

6-3

Table

6-1
6-2
6-3

LIST OF ILLUSTRATIONS

Interpretive Address Word Formats .
Interpretive Instruction Word and Order

Code Formats .
Interpretive Flow Chart .

LIST OF TABLES

Interpretive Instruction Definitions
Order Codes .
Register Assignments.

FR-2-106A

Page

6-15

6-18
6-21

Page

6-26
6-47
6-49

iii

AGC INFORMATION SERIES

ISSUE 6

INTERPRETER AND INTERPRETIVE INSTRUCTIONS

FR-2- 106A

6-1. INTRODUCTION

6-2. This is the sixth issue of the AGCIS published to inform members of

the technical staff at MIT and Raytheon about the AGC and the Apollo G & N

system . The Interpreter , Interpretive Instructions, and word formats were

described briefly in Issue 1 . A basic description of the Interpretive Programs

and a more detai led description of the operation of the Interpreter are pre ­

sented in this issue . Information contained in this issue was taken from 11 A

List Process ing Interpreter for AGC 11
, AGC Memo No . 2 , by C . A . Munt z

or received from Mr . Muntz verb ally .

6-3 . GENERAL

6-4. The Interpreter i s a h i ghly sophi sticated program consisting of ap-

proximately 1500 words stored in Fixed - Fixed (FF) memory and Bank 3 of

Fixed - Switchable (FS) memory (table 1 - 3). The Interprete r executes Inter­

pretive Program s stored elsewhere in t he computer . Inter pretive Programs

are composed of Interpretive Instructi on Words and Interpretive Address

Words which are arranged in accordance with certain rules . There are 126

different order codes pr ovided f or the var i ous Inter p retive Instructions

(table 1 - 2) , The notation to be used when an In erpreti ve Prog ram is written

is similar to the II par enthesis - free " notati on intr o duced by Lukasiewicz

(sometimes referred to as P olish notati on) . The format or arrangement of

an Interpretive Program va r ies considerably from that of most programs of

general - purpose computers . A bas i c description of Interpretive Programs

is presented below pr i or to a d i scussion of the Interpreter .

6 - 1

. '
FR- 2 - 106A

6-5 . BASIC DESCRIPTION OF INTERPRETIVE PROGRAMS

6-6 . INTERPRETIVE AGC PROGRAMS VERSUS COMMON PROGRAMS

6-7 . For many computers the following program can be written for com-

puting a + b = x :

CA
AD
TS

A
B
X

Instruction CA A (clear and add A) clears the accumulator and enters into it

the quantity a stored at location A . Instruction AD B (add B) adds the quan ­

tity b located at B to the content of the accumulator . Instruction TS X (trans -

fer to storage X) transfers the content of the accumulator (the sum a + b) to

location X . The Basic Programs of the AGC are written i n a manner similar

to the program illustrated a bove .

6-8. An Interpretive Program for the AGC to compute a+ b = x with

double precision can be written as follows :

DAD 0
A
B

STORE X

This program consists of one Inte rpretive Instruction Word (IIW) and three

Interpretive Addre ss Words (IA W). (For word formats , refer to figure 1- 6 .)

The IIW consist s of th e ord e r code DAD and a zero . The code DAD represents

the instruction doubl e - precision add , which is a Dual - Quantity Ins truction

(paragraph 1 - 48). The z ero (a ll ZERO' s in b i t positions 7 through l) indicat es

that no other IIW immediately foll ows the first (o r only) IIW and also that the

first IA W immediately follows the first IIW . As the Interpreter (interpreting

program of the A G C) d ecode s the IIW , it automatically clears the MPAC

(multi pre cision accumulator , consisting of three locations in E memory) and

6-2

FR-2-106A

enters into it the double -precision quantity a stored at locations A (and A+ 1) .

The re after, the Interpreter causes the double - precision quantity b stored at

B (and B+ 1) to be added to the content of the MPAC . As the Interpreter rec­

ognizes the word STORE X , it transfers the content of the MPAC (the sum

a + b) to location X (and X+ 1) .

6-9 . The designations A , B , and X have no relation to the name of any cen -

tral register or to special locations in E memory . The expressions (and A+ 1) ,

(and B+l) , and (and X + l) indicate that the double - precision quantities are

stored in two memory locations (E or F memory). Reference is normally

made only to the first location of a double - precision quantity, of a triple ­

precision quantity, or of a vector . Double - and triple - precision calculations

are carried out with the MPAC (locations MPAC , MPAC+l , and MPAC+2) and

vector operation with the VAC (ve ctor accumulator , consisting of six locations

in E memory, VAC through VAC+S) .

6-10. The string of IIW ' s in the program of paragraph 6-8 consists of only

one word , as indicated b y the zero in the first , and only , IIW . The string of

IAW ' s consists of three addresses : a load address , which is always repre­

sented by the first IAW of a string; an operand address; and a store address,

which is identified by the code STORE .

6-11 . A program written for the AGC to compute

a + cos (b + ~)
C

with double precision can be written as follows :

L
L + 1
L + 2
L + 3
L+4

DSQ
DAD
DAD
DAD

= X

3
SQRT
cos
DDV
A

6 - 3

• 1

FR-2-106A

L+S B
L+ 6 B
L + 7 A
L+8 C
L + 9 STORE X

This program consists of one instruction string with four IIW ' s and one ad ­

dress string with six IA W ' s . When the Interpreter reads the word DSQ 3, it

recognizes that three more instruction words follow to complete the string of

IIW's . The Interpreter recognizes also that it has to take the first data from

address A; A is stored at location L + 4, where L is the location of word DSQ

3 . As the Interpreter decodes the first IIW, it clears the MPAC and enters

the double-precision quantity a from location A into it . Since order code DSQ

(table 1-2) represents a Single-Quantity Instruction (paragraph 1 - 49), the

quantity a in MPAC is squared and no other quantity is needed for this opera­

tion. After squaring , the Interpreter recognizes that Interpretive Instruction

DAD B has to be executed next. Since a2 is now contained in the MPAC, the

computer adds the quantity b to a 2 and the MPAC retains a2 + b . At the next

step the Interpreter recognizes that it has to obtain the square root of the

MPAC content by executing the Single-Quantity Instruction SQRT . The MPAC

then retains the quantity ~ - The Interpreter next recognizes that it has

to add the quantity b to the MPAC content; the MPAC retains b + ~ after

the addition . The fifth Interpretive Instruction to be executed, COS, is again

of the single-quantity type . The MPAC then contains the quantity:

cos (b + ~) . Now quantity a is added to the MPAC content by executing

DAD A, as taken from locations L + 3 and L + 7 . When DDV C is executed,

the MPAC content is divided by quantity c and retained in the MPAC . Finally,

the MPAC content 1s transferred to location X (and X+ 1) .

6-12 . STORING AND RECALLING OF PARTIAL RESULTS

6-13 . When ab+ cd =xis computed, it is necessary to store partial results

before the final result can be calculated. When

6-4

DMP

STORE

0

A
B
y

FR-2-106A

is executed, the double-precision product ab = y 1s stored at location Y .

When the last address of the above program 1s omitted, i.e ., when program

DMP 0
A
B

is executed, the Interpreter automatically puts the partial re sult into the next

free location of a pushdown list . Pushdow n lists are se ries of erasable reg ­

isters reserved for temporary storage .

6-14 . One of three methods can b e appl ied to recall a quantity from the push­

down list ; these methods are di scussed in this and the following two paragraphs .

If an instruction finds no address word in the address string, i t automatically

takes the operand from the proper location of the pushdown list . For example,

consider the following program, which consists of two Interpretive Strings

(each consisting of an instruction string and an address string) :

DMP

DMP
DAD

0

A
B
1
0
C
D

After quantity a is multiplied by quantity b , the product ab is stored in the

pushdown list as described in paragraph 6 - 13 . After quantity c is multiplied

by quantity d , the Interpreter recognizes that it ha s to execute an addition .

However, the Interpreter cannot find an address of the quantity to be added

to the MPAC content (product cd) . Therefore, it automatically takes the pro ­

duct ab , which was temporarily stored in the pushdown list . The final result ,

6 - 5

; '

FR-2-106A

ab + cd = x, is again s t ored in the pushdown list because no a ddress is given.

6-15 . The Interpreter must d is tingui sh between an address in w hich the

result is to be stored (sto re address) and an address from w h ich data i s to

be taken (op erand address) . This is o allow data to b e recalled from the

pushdown list just b efore the result is stored elsewhere . Therefore , a spec­

ial f ormat for a store address which i s recognized by the Interpreter 1s em ­

ployed . The program

DMP

DMP
DAD

ST ORE

0
A
B
1
0

C
D
X

is very similar to the program listed in paragra ph 6 - 14 , except that a ddress

word STORE Xis added . STORE X specifies that address Xis t o be use d for

stori ng the final result. No address is given for calling the operand w hen

DAD is executed. For this reas o n the product ab i s called from the pushdown

list and added to the p roduct e d . The final result is writte n i nto lo cation X .

6- 16 . A special code , Inacti v e A ddress (77777) , references the pu s hdown

list by a ce r tain signal. A program to compute

can b e written as follows :

D S Q

DSQ
DAD
D AD

STORE

0
B
2

SQRT

A

A
X

6 - 6

' '

FR- 2 - 106A

After quantity b is squared and b 2 1s place d i nto the push d own l ist , quantity a

is squared and a 2 i s reta i :ied in he MPAC . Next , the Inter pr e t e r recogni z es

that DAD should b e executed. Address word 77777 (symboli z ed by -) tells the

computer to take the quan i ty b 2 from the pushd o n list and a dd i t to the MPAC

content , a2 . After the s quare root of a 2 + b 2 :. s obtai ned , the quantity a is

added to the quantity ✓a2 + b2 i n the MPAC , and the final r esult is transfe rr e d

to location X . T h i s i s he Inacti ve Address method for re calli n g a partial

re sult .

6 - 17 . Sometimes m ore than one locat i on is neede d t o store partial result s .

A program to compute

can be wr itten as follow s :

DSQ

DSQ
DAD

D S Q

DSQ
DAD

ST ORE

0

D
1

C
0

B
1
DDV
A

X

This progra m cons i sts o f four nte rpretive S rings First d 2 is computed

and stored in the p shdo rm Es Next , c2 i s calcul a ted and ke pt in t he MPAC .

After the exe cu ion of he f irs DAD instruction , the quantity c2 + d2 i s stored

in the pu shd o w n l i st . The quan i y a 2 + b 2 i s c om pute d i n the s a me w ay . After

the execution of the seco nd DAD i ns ruction, the quantity a 2 + b 2 i s contained

in the MPAC . The In er preter then re c ogniz es that i nstruction DDV has to be

executed but cannot fi nd an a ddress w rd othe r than ST ORE X . For this

6 - 7

. '
FR-2-106A

reason the Interpreter takes quantity c2 + d2 from the pushdown list, divides

a2 + b2 by c2 + d2 , and stores the quotient at X .

6-18 . The pushdown list and the Interpreter are organized so that normally

the last quantity inserted into the pushdown list is the first one to be released .

Thus, the list has a last - in , first-out behavior . With the type of pushdown

list de scribed so far , extremely long equations can be computed without par­

tial results stored outside the pushdown list. However, it is sometimes more

advantageous to calculate partial results which can be used several times .

This is not possible with this pushdown list since a stored quantity is accessi­

ble only once . Therefore , the Interpreter provides a modified pushdown list

which has repetitive recall of data . If the last-used location of the modified

pushdown list is read out , the pushdown list information moves as usual. If

any other location is read out , the information in that location remains and

the modified pu shdown list does not change .

6 -19 . Assuming that location 6 of the pushdown list is to be loaded next , a

program to compute

sin ab + cos ab + (ab}2 = x

can b e written as follows :

DMPR

NOLOD
DSQ
cos
DAD

SIN
DAD

STORE

0

A
B
l

ROUND
1

6
1

6
X

6 - 8

• I

FR-2-106A

Since no store address is given , the product ab is stored in locations 6 and 7

in the pushdown list . Instruction NOLOD keeps the product ab in the MPAC .

The product ab is squared , rounded, and stored in locations 8 and 9 of the

pushdown list , the next free locations , since no relevant address is given for

this instruction string . Instruction COS takes the product ab from locations

6 and 7 in the pushdown list and computes ab . The first DAD instruction takes

(ab) 2 from locations 8 and 9 , adds it to cos ab , and puts cos ab+ (ab)2 back

into locations 8 and 9 . Instruction SIN takes the product ab from locations 6

and 7 and computes sin ab . The se c ond DAD instruction takes cos ab+ (ab) 2

from locations 8 and 9 and adds it to sin ab . The final result is transferred

to location X .

6-20 . INDEXING OPERATIONS

6-21 . Two index registers per Work Area (table 6 - 3) are provided for the

Interpreter to increase the addressing capability . A ONE in bit posit ion 2 of

a Dual-Quantity Instruction Order Code (table 1 - 2) indicates that the re spec­

tive Interpretive Instruction has to operate with an indexe d address . Bit

position 1 of the Interpretive Address Word (relevant to the instruction) indi­

cates which of the two i ndex registers is to be used . A ZERO i ndicates Index

Register l; a ONE indicates Index Register 2 . The content of the indica ted

index register is subtracted from the thirteen - bit address contained in bit

positions 2 through 14 of the relevant address word . After the subtraction,

the final address of the data to be w orked with is available . Consider the

following program and assume that index register 1 contai ns the quantity 2 :

0

a.' 1

~ ' 1
STORE ':' -y, 1

In the program , 1 indicates index register 1 . DAD ,:, means instruction code

DAD with a ONE in bit position 2 . This bit now specifies order code 036

6- 9

FR-2-106A

instead of 034 (table 1-2) . When the Interpreter recognizes code DAD >:,, it

indexes addresses a and ~ by the content of the appropriate index register.

The indexed add res se s are a - 2 = D and ~ - 2 = E . Consequently, the sum

of the quantities stored at locations D and Eis c omputed and retained in

MPAC . In a similar way, the address contained in the Store Code Address

Word is indexed and becomes 'Y - 2 = F when the sum is stored .

6-22 . The usefulness of indexing an operation is demonstrated by another

example. Consider the following locations, A through J, in E memory :

A
B
C
D
E
F
G
H
J

Assume that a + b = c, d + e = f, and g + h = j have to be computed frequently.

Some saving in program lo cation is obtained when the program listed in the

preceding paragraph is repeatedly executed and the content of the index reg ­

ister 1s prope rly in c remented at the same time. The content of an index reg­

ister 1s not changed when a simple program such as the one listed in the pre­

ceding paragraph is executed . Modifying the content of an index register is

accomplished by exe cuting Index Register Instru ctions (table 1-2) provi ded

for this purpose . Such a manipulation does not change the content of an ac ­

cumulator nor of any temporary storage location . Therefore, the manipula ­

tions can be carried out when required by a program .

6-23 . When the computer is operating in the interpretive mode , index reg­

isters are used also for simple precision 11 bookke e ping 11
• Such bookkeeping

operations are very useful for carrying out repetitive computations such as

6 - 10

'I

FR-2-106A

those described in paragraph 6-22 . For example, if a c ounter is to be incre­

mented by three and the new quantity is to be used as an address, a program

is written as follows :

LXA, l
!NCR, l

1
SXA , l
z
II 3 II

z

When the Interpreter r ecognizes LXA, 1 and COUNT (load index register 1

with the content of Z), it e nters the content of Z into index register l . When

the Interpreter recognizes !NCR, 1 and 11 3", it increments the content of index

register 1 by the quantity 3 (not by the quantity located at address 3) . The in­

struction SXA, 1 Z return s the incremented quantity to lo cation Z .

6-24 . BINARY POINT

6-25 . Normally, the Interpreter assumes that the binary point of any single­

precision quantity is placed between bit positions 15 and 14 . In other words,

the Interpreter assumes that all 14 v alue bits are placed immediately to the

right of the binary point . Therefore , the quantity N containe d in a registe r

represents the quantity N (2 - 14) . For a double-pr ecision quantity th e Inter ­

preter assumes that a ll 28 value bits are pla ce d immediately to the right of

the binary point . For a triple-precision quantity the Interpreter assumes

that all 42 value bits are placed the same way . The weight factors (2n , n § 0)

give the fractional quantities the proper meanings . The weight factors are

not stored in the AGC; they are built into the programs . . An example is given

in the following paragraph.

6-26. A program to compute

abc + a + b + c = x

with weight factor 218 for quantity A, 2 6 for B, and 2 3 for C can be written

as follows :

6- 11

• f

DMPR
DMPR

TSRT
DAD
DAD
DAD

STORE

1

A
B
C
3

TSRT
TSRT
ROUND
C
3
B
12
A

9
X

FR-2-106A

First the rounded product abc is computed and stored in the pushdow n list .

The first TSRT instruction then enters quantity c into the MPAC and shifts

quantity c three places to the right . The shift places quantity c in the proper

weight relation to quantity b, which is then added to quantity c . The second

TSRT instruction shifts quantity c + b twelve places to the right to achieve

the proper weight relation to quantity a, which is then added to quantity c + b .

The third TSRT instruction shifts quantity c + b + a another nine places to the

right to establish the proper relation to the product abc . The weight factor

of product abc is 2 27 . The last DAD instruction takes product abc from the

pushdown list and adds it to the shifted ·sum a + b + c . The result is rounded

and stored at location X . Using TSLT instead of TSRT operations is imprac ­

tical because of the overflows which might occur .

6-27 . WORD FORMATS AND ADDRESSES

6-28. All words written into an interpretive program (paragraph 1-52) fall

into two major classes : Interpretive Instruction Words, which compose in ­

struction strings , and Interprefrve Address Words , w h ich compose address

strings . Interpretive Instruction Words (figure 1-6) . contain two order codes

6- 12

, '

FR-2-106A

or one order code and a number indicating the number of Interpretive Instruc­

tion Words immediately following the first instruction word . This number,

when incremented by one, indicates the total number of instruction words con­

tained in an instruction string . An Interpretive Address Word might contain

an address, v arious codes , or a quantity to be used for indexing or shifting .

6-29 . Interpretive Instruction Words and Interpretive Address Words (except

Inactive Address} a re stored in F memory not in their true form b u t in a form

which makes decoding easier for the Interpreter . For this reason one has to

distinguish between a true word (as used in the examples on the previous pages)

and the fixed word (the word as it is stored in fixed memory} . A fixed Inter­

pretive Instruction Word is derived by incrementing {by one) a true Interpre ­

tive Instruction Word (which always contains a ZERO in bit position 15} and

complementing. Consequently, a fixed Interpretive Instruction Word always

contains a ONE in bit position 15 . The Interpreter recomplements a fixed in­

struction word and decrements it by one . In this way the true Interpretive

Instruction Word is made ava ilable .

6-30. A fixed Interpretive Address Word is derived by incrementing the true

Interpretive Address Word {which normally contains a ZERO in bit position 15)

by one. Consequently, a fixed Interpretive Address Word also normally con­

ta i ns a 7.E R O in bit po s ition 15 . A fixed Address Word which is the first {or

only} word of an address string must always contain a ZERO in bit position 15 .

A fixed Address Word which is not the first word of an address string may

also contain a ONE in bit position 15. The Interpreter decrements a fixed

Address Word and makes the true Interpretive Address Word available . {The

true and the fixed forms of the Inactive Address are identical and do not need

incrementing or decrementing .) In the following paragraphs , reference is

made normally to the true form of any Instruction or Address Word.

6 - 13

. '
FR-2-106A

6-31. The basi c format of an Interpretive Address Word (true form) is

shown in figure 6-1 . Fourteen bits are available for direct addressing of a

location in the AGC (table 1-6) . The following rules have to be observed

when addressing is done by means of an Interpretive Address Word. All ad­

dresses are given in octal numbers as usual.

a . Addresses 00000 through 00052 refer to locations in a Work Area

rather than t o a flip - flop register or counter . Memory space for

five Work Areas (each consisting of 43 locations) is provi ded to

enable the computer to run five programs alternately . The initial

address of the Work Area in use is provided by the Executive Pro ­

gram and is stored in location 00 l 05 (W ORKLOC). By adding an

address from 00000 through 00052 to the address sto red in WORK­

LOC , the address of a location in the appropriate Work Area is

obtained.

b . Addresses 00053 through 00057 must not be used in an Interpre ­

tive Program.

c . Addresses 0060 through 01776 refer to general erasable storage

as usual. The use of address 01777 (last of E memory) is illegal.

(Incrementing O 1777 results in 02000 , a code which would confuse

the Interpreter .)

d . No reference may be made to any location in FF memory by an

Interpretive Address Word except for an Address Word associated

with the Interpretive Instruction RTB (return to basic mode).

e. Addresses 06000 through 3177 6 refer to FS storage as usual. The

use of address 31777 (last of Bank 14) is illegal.

f. An Interpretive Address Word which contains a quantity betw een

32000 and 37776 is a Store Code Address Word composed of a

code STORE and a ten - bit address specifying a location in E

memory .

6-14

..
FR-2-106A

BASIC FORMAT &

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2

I O I
t+--------- ADDRESS CODE --------"'I

STORE CODE AND DIRECT E ADDRESS ill

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 I I I I 0 I I I I I
E ADDRESS CODE

ADDRESS TO BE INDEXED AND INDEX REGISTER DESIGNATION ill

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 p I
SUBADDRESS

IND E X
REGISTER

DE SIGNATION

STORE CODE, E ADDRESS TO BE INDEXED,
AND INDEX REGISTER DESIGNATION Lr'>

BIT POSI TI ONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I I I I p I
SUBADDRESS

INDEX
REGISTER

DESIGNATION

INDEX QUANTITY OR SHIFT COUNT &

BIT POSI TI ONS 15 14 13 12 II 10 9 8 7 6 5 4 3 2 0

ZERO
OR

ONE

INACTIVE ADDRESS _&

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I p I

ffi TRUE FORM ONLY

& TRUE AND F IXED FORM

Figure 6-1. Interpretive Address Word Formats

6-15

FR-2-106A

g . No reference may be made to any location in Banks 21 through

34 by an Interpretive Address Word except for an Address Word

associated with the Interpretive Instructi on R TB .

6-32 . If an Interpretive Address Word has a ONE in bit positions 11, 13 ,

and 14 and a ZERO in bit positions 12 and 15 , then the Address Word contains

the code STORE . Code STORE is discussed in paragraph 6 - 12 and i s shown

in figure 6-1 . An Interpretive Address Word containing the code STORE re ­

fers to a location in general erasable memory or to a location in a Work Area .

In either case the location is defined by the address contained in bit positions

1 through 10.

6-33 . Many Interpr e ti ve In s tru ctions can r e f e r to one o f two inde x registers

to modify a given addres s (paragraph 6 - 21) . Bit position 1 of the Address

Word defines which of the two index regist e rs is to b e used , and bit positions

2 through 14 contain a 13 - bit subaddre s s (figure 6 - 1) . The content of the

specified index register is subtracted from the 13-bit subaddress and thus

provides a true Interpretive Address . This address can be used in the nor ­

mal fashion to address a certain memory location . An index register may

contain any quantity between +37777 and - 37777 . This allow s subaddress in ­

dexing by any binary number w ith a ONE in bit position 14 in order to gener ­

ate an Interpretive Address larger than 17777 .

6-34 . An Interpretive Instruction operating with a STORE address can refer

also to the index registers . The STORE code in this case consists of three

ONE' s contained in bit positions 12 through 14 . Again the Index Register des -

ignation is contained in bit position l of the Address Word . An Interpretive

Address referring to a location in E memory is de rived by indexing the sub ­

address contained in bit positions 2 through 11. (This is similar to the way

described in paragraph 6 - 24 .) Any indexed STORE address between 0000 and

0052 refers to a Work Area as described in paragraph 6 - 31.

6 - 16

• I

FR-2-106A

6-35 . An Interpretive Address Word may contain an Index Quantity (positive

or negative quantity used for indexing) or a Shift Count (positive quantity indi­

cating the number of po s itions an information has to be shifted) . The fixed

forms of Index Quantity and Shift Count are identical to the true w ords incre ­

mented by one, as they are for the address words discussed previously .

6-36 . The Inactive Address , which has been discussed adequately in para­

graph 6 - 11, is the only Interpretive Address Word of which the true and fixed

forms are identical.

6-37 . There is a restriction concerning program flow and bank switching .

A 14-bit address eliminates most bank switching problems associated w ith

Basic Instructions . Howeve r , it is still true that program flow must not

cross bank boundaries . Control must be transferred with an ITC , for ex­

ample, to the beginning of the next bank to continue a program once it has

reached the end of a bank.

6-38. The various classes of Interpretive Instructions are discussed in Iss ue

1, and the order codes are listed in table 1 - 2 . The vari ous order code formats

(true forms) are shown in figure 6 - 2 . A Dual - Quanti ty Instruction code con­

tains ZERO' s in bit positions 1 and 2 if it refers to a direct address . A Dual­

Quantity Instruction code contains a ONE in bit position 2 and a ZERO in bit

position 1 if it refers to an indexed address . Whenever the Interpreter rec ­

ognizes these t w o prefix bits , it automatically indexes the subaddress con­

tained in the Address Word , as described previously .

6-39 . Either the respective direct address or the indexed address can be

used with no special precaution if (a) a Dual - Quantity Instruction need not

load an accumulator before calling the second quantity (paragraph 6 - 8) or (b)

both the load address and the operand address are either direct or indexed .

6 - 17

Bl T POS ITIONS

INTERPRETIVE INSTRUCTION WORD &

15 14 13 12 II 10 9 8 7 6 5 4 3 2 0

I 0

~1◄--- ORDER CODE---- ORDER CODE OR NUMBER ---/

BIT POSIT ION S

BIT POSITIONS

BIT POSITIONS

DUAL QUANTIT Y INSTRUCTION,

DIRECT ADDRESS &

7 6 5 4 3 2

DUAL QUANTITY INSTRUCTION

INDEXED ADDRESS &

7 6 5 4 3 2

SINGLE QUANTITY INSTRUCT ION

DIRECT ADDRESS &

7 6 5 4 3 2

SINGLE QUANTITY INSTRUCTION

INDEXED ADDRESS &

BIT POSI T ION S 7 6 5 4 3 2

INDEX REGISTER AND MISCELLANEOUS INSTRUCTIONS

(DIRECT ADDRESS ONLY)&

BIT POSITI ONS 7 6 5 4 3 2

I I
& TR UE FORM ONLY

Figure 6 ·2 . Interpretive Instruction Word and Order Code Formats

FR-2-106A

6-18

. .
l

FR-2-106A

If the two addresses are not of the same type , the accumulator must be loaded

by executing instruction DMOVE , TMOVE, or VMOVE .

6-40 . Single - Quantity Instructions operate with one quantity , normally con ­

tained in the MPAC or the VAC . Their order codes can be recognized by the

two ONE ' sin bit positions 1 and 2 . The Single - Quantity Instructions are able

to enter a quantity into an accumulator if the order code is the first one of an

instruction string (pa ragraph 6 - 8) . For this reason a third prefix bit has

been added to distinguish betw een dire ct addressing and indexed addressing .

Bit position 3 of the order code contains a ONE when i ndexing is required ,

which is then carried out in a w ay similar to that mentioned in paragraph 6 - 32 .

6-41. Because Index Register Instructions and Miscellaneous Instructi ons

do not enter a quantity into MPAC or VAC , they refer to direct addresses

only. Their order codes carry a ONE in bit position 1 and a ZERO in position

2 .

6-42 . INTERPRETIVE INSTRUCTIONS

6-43 . The 71 Interpretive Instructions provided for the AGC are defined in

table 6 - 1 (see pages 6 - 26 through 6 - 46) . Common properties of the various

instructions are indicated by ffi through ffi and a;e explained at the end

of the table . Table 6 - 2 (pages 6 -47 and 6 -48) indicates the order code bit

configuration as derived from table 1 - 2 .

6-44 . REGISTER ASSIGNMENTS

6-45 . The assignments of E memory registers are listed in table 1 -5 . The

names and purposes for locations 0100 to 0615 w h ich are reserved for the In­

terpreter , Executive, and Waitlister are given in table 6 - 3 (pages 6 -49 through

6-55) .

6 - 19

''
. . .

FR-2-106A

6-46. INTERPRETER OPERATION

6-47 . The Interpreter consists of two major parts, the Dispatcher (314

words in FF memory} and the Executer (616 words in FF memory and 784

words in Bank 3 of FS memory) . The Dispatcher breaks Interpretive Instruc­

tion Words (IIW) into Interpretive Instruction order codes, de c odes Int e rpre­

tive Instruction order codes and Interpretive Addr ess Words (IAW }, mates

the proper r e levant addresses with the instruction c odes , enters pertinent

information into certain storage registers (table 6 - 3), and, finally, transfers

control to the proper subroutines in the Executer . The Executer consists of

a field of subroutines which execute each Interpretive Instruction . The Di s­

patcher and Executer enter a quantity into MPAC or VAC whenever initial

loading is required .

6-48 . Three different entries into the Dispatcher are provided as shown rn

figure 6-3 :

INTPRET :

NEWSTRNG :

NEW ORDER:

for processing the first IIW of the first string of an
Interpretive Program ,

fo r processing the first IIW of any other string,

for processing any other IIW or for transferring a
partial (or final result} to E memory or the push­
down list .

6-49. Normally , the Interpreter is entered by executing instruction TC

INTPRET, which pre cedes an Interpretive Program and switches the opera ­

tion of the AGC from the basic mode to the interpretive mode . Whenever

the Interpreter is entered at subroutine INTPRET or re - entered at NEW ­

STRNG after the execution of a string , the number of the bank in which the

Interpretive Program is stored is set into register BNK . The quantity 00001

is set into LOADIND to indicate that the MPAC or VAC has to be loaded before

6 - 20

PUSHUP 2

TRANSFER TO
l NCAOR

I NCAOR

CALCULATE TH E
ADDRE SS OF THE

NEXT JAW

PUSHUP

TRANSFER TD
PUSHUP 1

PUSHUP I
DETERMINE THE ADDRESS
OF THE LOCATION tN THE

PUSHDOWN L IST FROM
WHICH AN INTERMEDIATE
RESULT IS TO BE TAl<EN

TRANSFER PROGRAM
CONTROL TO THE
RETURN ADDRESS

1NTPRET

CHANGE AGC
TO INTERPRETIVE

MOOE

STORE THE
COMPLEMENTED

BANK NUMBER OF
CURRENT PROGRAM

SET
LOAD INDICATOR

TO I

ENTER FIRS T IJW
OF STRING INTO

INTERPRE TER

IPROC 2

OBTAIN FIRST
ORDER CODE

OF AN IIW

JU MP!T

NE WSTRING

PROCESS NEW
INTERPRET IVE

STR ING

NO

LOWWD

SET UP SE COND
ORDE R CODE FOR

DECODING

YES

ENT E R
BANK NUMBER
INT O STORAGE

HAS 2 ND HS
ORDE R CODE

BEEN DECODED

YES

IPR OC
SET UP HIG H

BIT ORDER CODE
OF NEXT I\W

F OR DECODING

NEW ORDER

CO NTINU E WITH NO
PRES EN T ST RI NG

IS WORD FOLLOWING
LAST DECODED HW

NO

AN OT HER f!W

TRA NSFER TO
EX ECUTIVE
PROGRAM

FR-2-106A

YES 1S WORD FOLLOWING NO
~--~ "-< II W LAST OECOOEO >-~ - ­

I T IS A
STORE CODE

ADDRES S WORD

AN !AW

0R0l;A;~~N°l0P63~~E l---'N~o _ ____ _ _ _ _ __________ _ _____ ___ _ _ _

QUANTITY INSTRUCTION

YES

YES

< S1 L~SSSTHT~:io::sgR > 60

R ATER THAN 60

TRANSFER TO
DPSET

PS E T

SET DOU BLE
PRECIS ION MOOE

ENTER THE ADDRESS
INTO STORAGE

FROM DP INSTRUCTIONS

DOES THE YES
LOAD INDICATOR \.--='----~

CONTAIN I

NO

LOAD

SET THE
LOAD IND ICATOR

TO ZERO

ENTER QUANT JT)'
FROM THE LOCAT ION
SPECIFIED BY THE

LOAD ADDRESS
INTO THE MPAC OR VAC

LOAORET

DOES THE
LOAD INDI CATOR

CONTA IN 1

EXECU TE
DUAL QUANTITY

INSTRUCTIONS BY
TRANSFERR IN G
CONTROL TO

IJUMP LIST

YES

ULRE T

ENTER ZERO
1N TO THE

LOA D INDICATOR

OBTAIN THE TRUE
FOF!M OF THE !AW

NO

STO RE RE SUL TS
BY TRAN SFERRING

CON TROL TO
STORJU MP LI ST

TRANSF£ R TO
LOAD RO.HINE

FOR SINGL E
QUANTIT Y

IN STRUCTIO NS

NO

TRA NSF ER
PROGRA M

CONT ROL TO THE
RETURN AOORES5

___ Y~E~s__, SINGLJSo~1NTITY \.--"N,cO _ _ _ _ _ _______ ~

INSTRU CTI ON INDE X REG OR

UNAPROC MI SC INSTRUCTION S 1NCADR

___ ccN0'--1 HA S MPAC OR '>--"YE'-'S'--~ CALCU L ATE
ADDRE SS

OF NEXT ! AW

3 THAU 7

FR OM
TP INS TRUCTIONS

TPSET

SE T T RIPL E

PRECISIO N MO DE

OD ES T HE
LOAD IN DICATOR

CON TAIN 1

YE S

YES

VAC BEEN LOADED

WHAT BAN K
IS THE IAW

REFERR ING TO

TRAN SFER
PROG RAM

CONTRO L TO THE
RE TURN ADDRE SS

EXECU TE SI N GLE
QUANTITY

INSTRUCTION S BY
TRANSFERRING

u~~~0 ~i,L LT~ T

10 T HRU 14

NO

FRO M
VEC TOR IN STRUCTIONS

VE CSET

SE T

VECT OR MOOE

DOE S T H E
LOA D IN DICATOR

C NTAIN I

YES

MISCPROC

> 6 0 L ESS
1
~H~~Eo cicit1 OR ,_o_<.;_O'-._T _ _ _

GRE ATER THAN 00060

ADD THE AODRESS
OF THE FIRST

LOCATION IN THE
WOR KI NG AREA

TO THE IAW

DETERMINE
CONTENT OF

INDEX REGI STER 1

Figure 6-3. Interpreter Flow Chart

IN
DOES THE STORE

ADDRESS SPECIF Y
INDEX REGISTER

I OR 2

DETERMINE
CONTE NT OF

INDEX REGISTER Z

OBTAIN REAL
ADDRESS OF

E MEMORY LOCATION
FROM DIRECT STORE

CODE ADDRESS

6- 21

FR-2-106A

an Interpretive Instruction is executed . The order code contained in the first

IIW (bits 14 through 8) is obtained (in its true form} for decoding . The quan­

tity 00000 is set into ORDER to indicate that no second order code is contained

in the first IIW; i.e ., that no other order code contained i n the first IIW has

to be decoded . The number (bits 7 through 1) indicating how many IIW ' s of

that string follow the first IIW is used to compute the lo cation of the first IAW

of the string .

6-50 . If the Interpreter is re - entered at NEWORDER, the Bank number of

the program is also set into BNK . The first order code (bits 14 through 8) of

the second, third , etc IIW is obtained (in its true form} and the second order

code or zero (bits 7 through 1) is stored in ORDER. After the first order

code of an IIW is processed , the second order code is proces se d , and a zero

is set into ORDER to indicat e that all order c ode s of that IIW had been obtained

for processing . Whenever the Interpreter is re - entered at NEWORDER and

it detects an IA W instead of another IIW , this indicates that all IIW ' s of that

string have been processed . Consequently , the Interpreter looks for a loca ­

tion where ~t can store the partial (or final} re s ult . When a Store Code Ad ­

dress is given , the result will be stored at that address which is c ontai ned in

the Store Code Address Word . When no Store Code Addre ss is given, the r e­

sult is stored in the proper location i n the proper pu s hdown list .

6-51. Whenever an order code has been obtained for decoding , it is tested

first to determine whether it represents (a} a Dual - Quantity Instruction , (b} a

Single-Quantity Instruct i on , or (c} an Index Register or Miscellaneous Instruc ­

tion .

6-52 . If the orde r code represents a Dual - Quantity Instructi on , the Inter ­

preter looks for an addre ss from w h ich it can take data . When an IA W i s

given, the order code is tested again to determine whether the IAW h as to be

6 - 22

FR-2-106A

indexed at this time and used from now on ins te a d of the original IAW . There­

after, the IAW which did not requi re indexing or the indexed IAW is tested to

determine if it represents a location in E or F memory . If the location is in

E memory, a differentiation must be made between addresses from 00000 to

00052 and those from 00060 to 01 776 . Any add res s between 00000 and 00052

refers to a location in one of the fi ve Wo rk Areas . If this is the cas e , then

the address must have the a ddress of the initial location of the particular

Word Area a dded to it to form a re al addres s , If the address refers to a

location in F memory, the Bank number must be subtracted from the IAW

and ONE's h ave to be set in bit pos itions 12 and 1 to f o rm an address code

which can be entered into reg i ster S for selec t ing the proper location for

read out .

6-53 . If the order code represents a Dual -Quantity Instruction and the Inter ­

preter cannot find an IAW for obtaining data , the Interpreter refers to the

pushdown list to obtain a re a l a ddres s (with i n the pushdown list) from which

it can take data "

6-54 . Once the locati on from which data is to be t aken has been determined

(during the earlier decoding of a Dual - Quantity Order Code}, the order code

is further examined . When it repre sent s a Group A Dual - Quantity Instruction

(first ten instructions of table 1 - 2) or a Vector Dual - Quantity Instruction,

control is transferred to the proper TC instruction in the !JUMP list . This

TC instruction transfers control to a proper subroutine in the Executer initi ­

ating the actual execution of a particular Dual - Qua ntity Instruction .

6-55 . During the actual execution of a Group A or Vector Dual - Quanti ty

Instruction , f1 .-s t the DP , TP , or Vector mode i s set by entering the quantity

77776, 77775 , o r 77777 , respectively, into MODE " Thereafter , the content

of LOADIND is tested. When it is 00001 (as dur i ng the execution of an

6 - 23

.. '

FR-2-106A

instruction which is the first one of a string) , the quantity stored at the loca­

tions specified by the f i rst IAW of the string is loaded i nto MPAC or VAC .

The LOADIND is set to 00000 , and control is returned to the Dispatcher in

order to search for another address from which the second quantity can be

taken . Once this address has been determined (similar to the way described

in paragraphs 6 - 52 and 6 - 65), control is agai n transferred to the Exe c uter to

continue the actual execut i on of that instruction. Again , the DP, TP , or Vec ­

tor mode is set . When the sontent of LOADIND is tested , the quantity 00000

becomes apparent , which indicates that loading MPAC or VAC is not neces -

sary. The actual execut ion of the instruction is cont inued and completed ,

Thereafter, the Dispatcher i s re - entered at NEW ORDER ,

6-56 . In case the LOADIND contains 00000 during the first test (as is nor ­

mally the situation during the execution of a Group A or Vector Dual - Quantity

Instruction which is not the first one of a string), no loading of MPAC or VAC

is necessary . The quantity located at that address which has been specified

by the Dispatcher is c a lled , and the actual execution of the particular instruc -

tion is carried out by the Executer without interruption. Thereafter , the

Dispatcher is re - entered again at NEWORDER .

6 - 57 . When the test of paragraph 6- 54 indicates that the order code repre ­

sents a Group B Dual - Quantity Instruction (BMN K, BHIZ K , TSLT K , TSLC K ,

SIGN K, BZE K, OR BPL K), the DP or TP mode is set and the MPAC is

loaded immediately if LOADIND contains 00001 , If LOADIND contains 00000 ,

the DP or TP mode is set and control is transferred to the proper TC instruc ­

tion in the IJUMP list , as described in paragraph 6 - 54 .

6-58 . When the test of paragraph 6-51 indicates that the order code repre ­

sents a Single - Quantity Instruct i on, the content of LOADIND is tested immed ­

iately , If LOADIND contains 00001 , the loc ation from which data is to be taken

6 - 24

FR-2-106A

(and entered into MPAC or VAC) is determined in the same way as described

in paragraphs 6 - 52 and 6-53 . Once the data location has been defined , MPAC

or VAC is loaded and LOADIND is set to 00000 . Whenever LOADIND con ­

tains 00000 (during the test mentioned earlier in this par ag r a ph or after

loading), control is tr ansferred to the proper TC instruction in the UNAJUMP

list . This TC instruction transfers control to a proper subroutine in the Exe ­

cuter initiating the actu al execution of a particular Single -Quantity Instruction ,

6-59 . When the test of paragra ph 6 - 51 indicates that the order code repre ­

sents an Index Re gister or Miscellaneous Instruction , the next IAW is decoded

to obtain the address from which the index quanti ty has to be taken , and the

Index Register (Xl or X2 of one of the five Work Areas) to be used for index ­

ing is defined . There after , control is transferred to the proper TC instruc ­

tion in the NONJUMP list . This TC instruction transfers control to a proper

subroutine in the Executer initiating the actual execution of a p a rticul a r Index

Register or Miscell aneous Instruction .

6-60 . In p a r agraph 6- 50 it was mentioned that a res ult is transferred to a

Store Address or into a pushdown list. When a Store Code Address Word

is given, it is tested to determine whether it has to be indexed or not and if

by means of Index Register Xl or X2 . Once a re a l Store Address has been

obtained , control is transferred to the proper TC instruction (TC DTSl,

TC TTSl, or TC VTSl) in the STORJUMP list. This TC instruction transfers

control to the proper subroutine (DP, TP , or Vector transfer to storage) in

the Executer initiating the actual transfer of a result . When no Store Code

Address Word is given (as indicated by the appearance of the first IIW of the

next string inste a d of a Store Code Address Word during testing of the word

following the IAW last decoded), the next free loaction in the proper pushdown

list is determined a nd the result stored there ,

6-25

CJ'
I

N
CJ'

Initials
and Name

DAD K
DP Add

&&

TAD K
TP Add

&8

DSU K
DP Sub­
tract

&&
TSU K
TP Sub­
tract

&8
BDSU K
Backwards
DP Subtract

&&

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS

Definition

Adds the double precision (DP) quantity located at K to the DP quantity contained in
the MPAC. Keeps the result in the MPAC. Turns on the overflow indicator in case
of overflow or underflow.

b(MPAC, MPAC + 1) + c(K, K + 1) = c(MPAC, MPAC + 1)

Adds the triple precision (TP) quantity located at K to the TP quantity contained in
the MPAC. Keeps the result in the MPAC. Turns on the overflow indicator in case
of overflow or underflow.

b(MPAC, MPAC+l, MPAC+2)+ c(K, K+l, K+2) = c(MPAC, MPAC+l, MPAC+2)

Subtracts the DP quantity located at K from the DP quantity contained in the MPAC.
Keeps the result in the MPAC. Turns on the overflow indicator in case of overflow
or underflow.

b(MPAC, MPAC + 1) + c(K, K + 1) = c(MPAC, MPAC + 1)

Subtracts the T P quantity located at K from the TP quantity contained in the MPAC.
Keeps the result in the MPAC. Turns on the overflow indicator in case of overflow
or underflow.

b(MPAC, MPAC+l, MPAC+2) - c(K, K+l, K+2) = c(MPAC, MPAC+l, MPAC+2)

Subtracts the DP quantity contained in MPAC from the quantity located at K. Keeps
the result in the MPAC. Turns on the overflow indicator in case of overflow or
underflow.

c{K, K + 1) -b(MPAC, MPAC + 1) = c(MPAC, MPAC + 1)

~
:;o

I

N
I
~

0
CJ'

►

CJ'
I

N
-J

Initials

and Name

DMP K
DP Multiply

&8

DMPR K
DF Multiply
and Round

Lt&
DDV K
DP Divide

&8

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Multiplies the DP quantity contained in the MPAC by the quantity located at K. Keeps

the TP result in the MPAC. Normally, only a DP result is t ransferr e d to storage.

Howeve r, the TP result is transferred to storage if the last instruction of an instruc­

tion st ring is a T P in st ruction.

b(MPAC, MPAC + 1) · c(K, K + l} = c(MPAC, M F AO + 1 , MPAC + 2)

Multiplies the DP quantity contained in the MPAC by the quantity located at K. Rounds

the result to a DP quantity and keeps it in the MPAC.

b(MPAC, MPAC + 1) · c(K, K + 1) = c (MPAC, MPAC + l} rounded, c(MPAC + 2) = 0

Divides the quantity in the MPAC by the quantity of Kif the absolute value of the quan­

tity located at K is larger than the absolute value of the quantity contained in the

MPAC. Keeps the DP quotient in the MPAC and turns off the ove rflow indicator.

b(MPAC, MPAC + 1) ~ c(K, K + 1) = c(MPAC, MPAC + l}

The interpreter turns on the overflow indicator and exits the current subprogram,

not necessarily leaving the content of the MPAC unchanged, if the absolute value of

the quantity located at K is equal to or smaller than the absolute v alue of the quantity

contained in the MPAC.

l"Ij

?=J
I

N
I

......
0
CJ'

►

O"

N
00

Initials
and Name

BDDV K
Ba ckwards
DP Divide

&&

TSRT N
TP Shift
Right

&&

TSLT N
TP Shift
L eft

&&

TABLE 6-1

INTERPRET IVE INSTRUCTION DEFINITIONS (continued)

Definition

Divi des the quantity at K by the quantity in the MFAC if the absolute value of the quan­
tity contained in the MPAC is smaller than the absolute value of the quantity located at
K . Keeps the DP quotient in the MFAC and turns off the overflow indicator.

c (K, K + 1) -:- b (MP AC , MP AC + 1) = c (MFA C , MF AC + 1)

Similar actions are taken as described for the second and third possibilities of DDV K
if the absolute value of the quantity cont ained in th e MPAC i s equal to or larger than
the absolute value of the quantity located at K.

Shifts the content of the MPAC N pla es to the right (0 :s._ N :s._ 42 decimal), wh r N is
a number written into the program instead of an address. Keeps the shifted cont nt
in the MPAC. Normally, a DP quantity is transferred to storage after a TSRT opera­
tion. If a TP result is to b e stored, the end of an instruction string must be a TP in­
struction. Similarly, i f a TP quantity is to be entered into the MPAC for shifting, the
instruction string has to start with a TMOVE instruction.

Instruction is similar to TSRT with the exception that the cont ent of the MPAC is
shifted N places to th e l eft. Turns on o ve rflow indicator if any ONE of a positive
quantity or any ZERO of a negative quantity is shifted out o f the MFAC .

The c ontent of the MPAC is shifted N places to the right if the number N is indexed
and if N is a negative number (-42 :s._ N :::;_ -1 decimal for TP , - 28 :s._ N :s_ -1 for D F of
vector operations).

1-rj
~

I
N
I

.......
0
O"

>

0'--
1

N

'°

Initials
and Name

TSLC K
TP Shift
Left and
Count

&&
SIGN K
Set Sign
into MPAC

&&
BPL K
Branch
on Plus

&&

BZE K
Branch
on Zero

&&
BMN K
Branch
on Minus

&&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Shifts the content of the MPAC (and MPAC+ 1 and MPAC+2) to the left until a ONE of

a po sitive quantity or a ZERO of a negative quantity is moved into bit position 14 of

the MPAC o Stores the complement of the number of single - position shifts carried

out at K . If MPAC contains a plus or minus zero , a plus zero i s stored at K .

K must be a location in E memory . If c(K) > 0 , sets sign in MPAC to plus . If

c(K) < 0 , sets sign in MPAC to minus . If c(K) = 0 , leaves sign in MPAC unchangedo

The instruction located at K is executed next if the MPAC contains a positive quantity .

The consecutive instructi on is executed normally iE the MPAC contains another quan ­

tity . The content of the MPAC is not stored in the pushdown list , and execution of

the next string is started immediat ely if the re are no more instructions i n the cur ­

rent string to be executed and no STORE address is given .

The instructions located at Kare executed next if the MPAC contains a plus or minus
zero . All definitive statements for BPL K except the first apply to BZE K o

The instructions located at Kare executed next if the MPAC contains a negative quan ­

tity . All definitive statements for BPL K except the first apply to BMN K . ~
~

I
N

I
.......
0
0---

►

0'-
1

vJ
0

Initials
and Name

BHIZ K
Branch on
High Order
Quantity
Zero

&~
VAD K
Vector Add

&lb

VSU K
V ecto r Sub­
tract

~ 8

BVSU K
Backwards
Vector Sub­
tract

& IA

TABLE 6-1

INTERPRETIVE INSTRUCTION D EFINITIONS (continued)

Definition

The instructions located at Kare executed next if the MPAC (not necessarily MPAC + 1
and MPAC + Z) contains a plus or minus zero. All definitive statements for BPL K
except the first apply to BHIZ K.

Adds the vector stored at K to the vector contained in the VAC. Ke ps the result in
the VAC. Turns on the overflow indicator 1n case of any overflow or underflow.

b(VAC, , VAC + 5) + c(K, , K + 5) = c(VAC, , VAC + 5)

Subtracts the vector stor ed at K from the vector contained in the VAC. Keeps the
result in the VAC. Turns on the ove rflow indicator in case of any overflow or
underflow.

b{VAC, , VAC + 5) - c {K, , K + 5) = c(VAC, , VAC + 5)

Subtracts the vector contained in th VAC from the vector stored at K. Keeps the
result in the VAC. Turns on the o ve rflow indicator in case of any overflow or
underflow.

c{K, , K + 5) - b{VAC, , VAC + 5) = c(VAC, , VAC + 5)

~
~

I

N
I

......
0
O'-

►

O"
I

w
......

Initials
and Name

VXSC K
Vector
times
Scalar

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued}

Definition

The Interpreter clears the VAC and enters the vector stored at the first address of
the address string into the VAC if the instruction code is in the first of an instruc­
tion string. The vector contained in the VAC is then multiplied by the DP scalar
stored at the second address of the string. Each vector component is rounded to
DP. The result is kept in the VAC.

The vector contained in the VAC is multiplied by the DP scalar stored at Kif the in­
struction code is not the first one of an instruction string and if the Interpreter is in
the vector mode. Each vector component is rounded to DP. The result is kept in the
VAC.

b(VAC, , VAC + 5) · c{K, K + 1) = c(VAC, , VAC + 5) rounded

The DP scalar contained in the MPAC is multiplied by the vector stored at Kif the
instruction code is not the first one of the instruction string and if the Interpreter is
in the DP mode. Each vector component is rounded to DP. The result is kept in the
VAC.

b(MPAC, MPAC + 1) · c{K, , K + 5) = c(VAC, , VAC + 5)

The Interpreter transfers the result into storage if the instruction code is the last
one of an instruction st ring. Storage is at the la st address of the address string or
in the push-down list when no address is given.

1-tj

~
I

N
I

I-'

0
O'

►

....

O'
I

w
N

Initials
and Name

Dot K
Vector Dot
Product

&

VPROJ K
Vector
Project

&~

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

The Interpreter clears the VAC and enters the vector stored at the first address of
the address st ring into the VA C if the inst r-uction code is the fir st one of an inst rue -
tion string. The inner product {vector dot product) is then computed from the vector
contained in the VAC and the vector stored at the second address of the address string.
The resulting TP scalar is kept in the MPAC. Turns on the overflow indicator in case
of overflow or underflow.

The inner product is calculated from the vector contained in the VAC and the vector
stored at Kif the instruction code is not the first of an instruction string. The re­
sulting TP scalar is kept in the MPAC. Turns on the overflow indicator in case of
ave rflow or underflow.

b(VAC, , VAC + 5) DOT c{K, , K + 5) = c(MPAC, MPAC + 1,

MPAC + 2)

Normally only a DP scalar is transferred to storage. However, the TP scalar is
transferred to storage if the last of an instruction string is a TP instruction. The
Interpreter transfers the DP scalar to storage if the instruction code if the last one
of an instruction string. This storage is at the last address of the address string or
in the push-down list when no address is given.

Computes the inner product (see DOT K) from the vector contained in the V AC and
the vector stored at K. Multiplies the vector contained in the VAC by the scalar of
the inner product. Keeps the result in the VAC. Turns on the overflow indicator
in case of overflow or underflow.

[b(VAC, , VAC + 5) DOT c(K, , K + 5)] b(VAC, , VAC + 5) =

c(VAC, , VAC + 5)

~
~

I
N
I

......
0
O'

►

0--
1

w
w

Initials
and Name

VXV K
Vector Cross
Product

&&
MXV K
Matrix
times
Ve tor

&&
VXMK
Vector
times
Matrix

&&
VSRT N
Vector Shift
Right

~&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued}

Definition

Computes the outer product (vector cross product) from the vector contained in the
VAC and the vector stored at K. Keeps the result in the VAC. Turns on the overflow
indicator in case of any overflow.

b(VAC, , VAC + 5) CROSS c{K, , K + 5) = c(VAC, , VAC + 5)

Computes the premultiplication of the vector Vb contained in the VAC by the DP matrix
M stored at K (M · Vb= Ve}. Keeps the result, V C' in the VAC. Turn on the overflow
indicator in case of any overflow.

c{K, , K + 18) · b(VAC, , VAC + 5) = c(VAC, , VAC + 5)

Computes the post multiplication of the transposed vector V-b 0£._the vecto.E_ Vb con­
tained in the VAC by the transposed DP matrix M stored at K (Vb · M' = V~). Keeps
the result, transposed vector V c, in the VAC. Turns on the overflow indicator in
case of any overflow or underflow.

b(VAC, VAC + 5) · c(K, , K + 18) = c(VAC, , VAC + 5)

Shifts each vector component of the vector contained in the VAC N places to the right
(0 s.. N s.. 28 decimal). N is a number written into the program instead of an address.
Each vector component is rounded to DP. Keeps the shifted and rounded vector quan­
tities in the VAC.

~
~
I

N
I

I-'

0
0--

►

- H

Initials
and Name

VSLT N
Vector Shift
Left

&&

IT C K
Inter pr eti ve
Transfer
Control

&&
STZ K
Sto re Zero

&&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Shift each vector component of the vector contained in the VAC N pla ces to the left
(0 ~ N ~ 28 decimal) . N is a number ritten into the program instead of an address .
Keeps the shifted vector quantities in the VAC . Turns on overflow indicator if a
ONE of a positive quantity or a ZERO of a negative quantity is shifted out of VAC,
VAC+2 , or VAC+4 . VSLT N with N = 1 must be used to double the vector containe d
in the VAC . Instruction VAD VAC does not work because the content of VAC can
not be added to the content of VAC . Instruction VXSC is not useful either, because
a scalar can never be equal to or larger than one .

The content of the MPAC is shifted N places to the right if th numb r N is indexed
and if N is a negative number (- 42 ~ N ~ - 1 decimal for TP, - 28 ~ N ~ - 1 for DP of
vector operations) .

Instruction ITC K must be the last (or only) instruction of an instruction string . It
cause s the instructions stored at K to be executed next . The instruction stores the
beginning Interpretive address of the next instruction string at QPRET . K must be
an address in F memory where Interpretive Programs are store d .

The i nstruction stores a single - precision zero in K . The content of the MPAC or the
VAC is transferred to storage if the instruction code is the last one of an instruction
st ring and i f no STORE address is given . Starts executing the next st ring of instruc ­
tions w i thout trans ferring the MPAC or VAC contents into the pushdown list if the
i nstruction code is the last one of an instruction string and if no STORE address is
g iven .

f:rj
~

I
N

O'
I

vJ
V,

Initials
and Name

BOV K
Branch on
O verflow

&&

SIN
DP Sine
Function

&
cos
DP Cos ine
Funct i on

&
ASIN
DP Arc s ine
Function

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Turns off the overflow indicator if it is on and executes the instructions located at K;
otherwise the execution of the current instruction s tring is continued. Overflow or
underflow dur ing the follow ing operations turns on the overflow i ndicator : DAD , TAD ,
DSU , TSU , BDSU , DDV , BDDV , TSLT , VAD , vsu} BVSU , DOT , VPROJ , vxu ,
MXV , VXM , and VSLT .

The MPAC or the VAC content is transferred to storage if the inst ruction code is the
last one of an instruction st ring but only if a STORE address is given. The Inter ­
preter starts executing the next instruction string without transferring the MPAC or
the VAC content into the pushdown list .

Computes 1/2 sin 2,ru , where a. is the DP before {prior) content of the MPAC . Keeps
the DP result i n the MPAC . The values lie betwee n + 1/2 and - 1/2 {+land - 1 scaled) .

1/2 sin [2.rb {MPAC , MPAC + l)] = c (MPAC , MPAC + 1)

Computes 1/2 cos 2.ra. , w here a. is t he DP before content of the MPAC . Keeps the
DP result in the MPAC . The values l i e between - 1/2 and +1/2 (- 1 and + l scaled) .

1/2 cos [2.rb (MPAC , MPAC + 1)] = c(MPAC } MPAC + l}

Compu es 1/ 2 . .rarcs in y , where y is the DP before content of the MPAC . Keeps the
DP result in the MPAC . The pri ncipal values lie between - 1/ 4 a nd + 1/4 (- .r/2 and

+.r/2 scaled) .

1/ 2 .r arcsin [2b{MPAC , MPAC + l}] = c(MPAC , MPAC + l}

.. ..

O'
I

w
O'

Initials
and Name

ACOS
DP Arccos
Function

8
DSQ
DP Squar

8

SQRT
DP Square
Root

8

ABS
Absolute
Value

8

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued}

Definition

Computes l/21r arccos y where y 1s the DP before content of the MPAC. Keeps the
DP result in the MPAC. The principal values lie between O and 1/2 (0 and TT scaled).

l/21r arccos [2b(MPAC, MPAC + l} J = c(MPAC, MPAC + 1)

Squares the DP before content of the MPAC. Keeps the TP result in the MPAC.
Normally only a DP result is transferred to storage. However, the TP result is
transferred to storage if the last of an instruction string is a TP instruction.

square [b(MPAC, MPAC + l} J = c(MPAC, MPAC + l}

Obtains the square root of the before content (DP or TP} of the MPAC. Keeps a DP
result in the MPAC. A negative result is an error and a diagnostic routing is auto­
matically executed.

square root [b(MPAC, MPAC + 1, MPAC + 2) J = c(MPAC, MPAC + 1)

Computes the absolute value of the before content (DP or TP) of the MPAC. Keeps
the (DP or TP) result in it. Normally only a DP result is transferred to storage.
However, the T P result is transferred to storage if the last of an instruction string
1 s a T P inst ruction.

b(MPAC, MPAC + 1, MPAC + 2) = c(MPAC, MPAC + l, MPAC + 2)

~
~

I

N
I -0
O'

►

...

O'
I

vJ
-..J

Initials
and Name

DMOVE
DP Move

TMOVE
TP Move

TP
Declar e TP

VSQ
Ve ctor
Squar e

~

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

This instruction must be the first of an instruction string. It enters the DP quantity
located at the first address K of the address string into the MPAC.

c(K, K + 1) = c(MPAC, MPAC + 1), c(MPAC + 2) = 0

This instruction must be the first of an instruction string. It enters the TP quantity
located at the first address of the address string into the MPAC.

c(K, K + 1, K + 2) = c(MPAC, MPAC + 1, MPAC + 2)

This instruction can not be the first of an instruction string. It causes the Interpreter
to switch to TP mode.

The Interpreter clears the VAC and enters the vector stored at the first address of
the address string into the VAC if the instruction code is the first one of an instruc­
tion string. The vector contained in the VAC is then multiplied (inner product) by
the same vector. The resulting TP scalar is kept in the MPAC. Turns on overflow
indicator in case of overflow or underflow.

The vector contained in the VAC is multiplied (inner product) by the same vector if
the instruction code is not the first one of an instruction string. The resulting TP
scaler is kept in the MPAC. Turns on the o ve rflow indicator in case of overflow or
underflow.

b(VAC, , VAC + 5) DOT b(VAC, , VAC + 5) = c(MPAC, MPAC + l,
MPAC + 2)

~
?::J

I

N
I

,___.
0
O'

►

O'
I

w
00

Initials
and Name

ABVAL
Vector
Absolute
Value

&

UNIT
Normalize
Vector

&

VMOVE
Vector
Move

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Normally only a DP scalar is transferred to storage. However, the TP scalar is
transferred to storage if the last of an instruction string is a T P instruction. The
Interpreter transfers the DP scalar to storage if the instruction code is the last one
of an instruction string. Storage is at the last address of the address string or in
the push-down list when no address is given.

Computes the half length of the vector Vb contained in the VAC and keeps the result

Vb
2 in the MPAC. Normally only a DP result is transferred to storage. However,

the TP result is transferred to storage if the last instruction of an instruction string
is a TP instruction. Instruction ABVAL stores the square length of vector Vb at lo­
cations 00034 and 00035.

Computes the half-unit vector of the vector Vb contained in the VAC and keeps the
V

normalized vector -
2

b in the VAC.
Vb

The magnitude of vector Vb must be greater

than 2-..:..1 because of squaring effect. Instruction UNIT stores the square length of

vb vb
vector 2 at locations 00034 and 00035, and the length of the vector -

2
- at locations

00036 and 00037. Location 00033 is used for temporary storage.

This instruction must be the first one of an instruction string. It enters the vector
located at K into the VAC.

c(K, , K + 5) = c(VAC, , VAC + 5)

t-rj
~

I
N
I

......
0
O'

►

- ..

Initials
and Name

VDEF
Vector
Define

~

COMP
Complement

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Enters a vector, V =(Vi, Vz, v 3), into the VAC. Vi is taken from the MPAC (and
MP AC + 1), V 2 fr om the top of the push-down list, and V

3
from just below V

2
in the

push-down list. This instruction can be used to generate a vector whose components
must be individually computed in DP and can be stored consecutively.

For instance, a program to compute

V = (V1, Vz, V 3) with V1 = cos A, Vz = 2 Band V 3 = c 2

is written as follows:

DSQ

TSLT

cos
VDEF

0
C
0
B
1
1

A
STORE X

The three vector components are stored at
location X by one vector storing operation
instead of by three DP storing operations,
thus saving two words of program. (The
vector components are entered into the VAC
prior to storage at X).

The Interpreter clears the MPAC and enters the DP quantity located at the first ad­
dress of the address string into the MPAC if the instruction code is the first one of
an instruction string. First VMOVE must be applied to enter a TP quantity into the
MPAC or to enter a vector into the VAC before using complementing instruction
TMOVE.

......
0
O'

►

O'
I

~
0

Initials
and Name

SMOVE
Single
Precision
Move

AXT, TN
Address to
Index True

&
AXC, TN
Address to
Index Com­
plement

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

COMP complements the MPAC content and keeps the complemented quantity if the
Interpreter is in the DP or TP mode. COMP complements the VAC content and keeps
the complemented vector if the Interpreter is in the vector mode.

This instruction must be the first one of an instruction string. It enters the single
precision quantity located at the first address K of the address string into the MPAC.

c(K) = c(MPAC), c(MPAC + l, MPAC + 2) = 0

This instruction is useful for picking up single precision quantities l eft by input/ output
routines and changing them to double precision.

Enters the interpretive address N into the specified index register (-37777 ~ N ~
+37776). N is written into an address string instead of a relevant address K.

Enters the complemented form of the interpretive address N into the specified index
register (-37777 ~ N ~ +37776). N is written into an address string instead of a rele­
vant address K.

INCR, T N Increments the content of the specified index register by quantity N
Increment In- (-37777 ~ N ~ +37776). N is written into an address string instead of a relevant ad­& Register dress K.

~
::0

I
N
I

......
0
O'

►

- ...

Initials
and Name

LXA, T K
Load Index
Direct from
Address

&
LXC, T K
Load Index
Comple­
mented from
Address

&
SXA, T K
Store Indexed
Quantity 1n
Address

&

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (continued}

Definition

Enters the SP quantity located at K of E memory into the specified index register.
Instruction AXT can be used to load from F memory.

Complements the SP quantity located at K of E memory and enters the complemented
quantity into the specified index register.

Transfers the content of the specified index register to location K of E memory.

XCHX, T K Exchanges the content of the specified index register with the content of location K of
Index Regis- E memory.
ter Exchange

&
XAD, T K Adds the content of lo cation K in E memory to content of the s pe cifie d index re gi ste r.
Add to Index Turns on the overflow indicator in case of overflow or underflow.
Register

&

rrj
?:1

I

N

O'
I

~
N

Initials
and Name

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

XSU, T K Subtracts the content of location K in E memory from the content of the specified
Subtract from index register. Turns on the overflow indicator in case of overflow or underflow.
Index Regis-
ter

&
AST, TN
Address to
Step True

&
TIX, T K
Transfer on
Index

&

EXIT
Leave Inter­
pretive Mode

&
RTB K
Return to

Asic at K

Enters the quantity N into the specified step register (-37777 ~ N ~ +37776). N is
written into an address string instead of a relevant address K.

Subtraction is performed and the instructions located at K are executed next if the
content of step register T can be subtracted from the indicator index register T
without driving the content of the index register to zero or negative. The content
of the index register is left unchanged and no branching takes place if the content
of the indicator index register is equal to or smaller than the content of the indi­
cated step register.

This instruction must be the last or only instruction of an instruction string. Causes
the Interpreter to complete its turn immediately and to switch the AGC back to exe­
cuting Basic Instructions in the basic mode.

This instruction need not be the last of an instruction string. Causes the Interpreter
to complete its turn after the execution of instructions located at K and then to switch
the AGC back to the basic mode.

A basic subroutine sequence of Basic Instructions can be called without leaving the
Interpreter by using the RTB instruction.

~
~
I

N

r-'

0
O'

►

O"
I

~
vJ

Initials
and Name

NOLOD
No Load

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Turns off the load indicator. This instruction can b e used when the MPAC or VAC

contains the desired quantity after execution of the last instruction of the previous

instruction string.

LODON Turns on the load indicator. This instruction can b e used to cause the next instruc-

Load Indica- tion to load the MPAC or VAC.

tor On

ROUND
Round to
DP

ITCQ
Interpretive
Transfer
Control to
Address
Stored in

%RET
ITA K
Interpretive
Transfer of
Address

&

Rounds the MPAC content to DP and turns on the overflow indicator in case of

overflow.

c(MPAC t 2) = 0

Causes the next instruction located at the address c ontained 1n QPRET to be executed.

Transfers the content of QPRET to location Kin E memory.

~
~

I

N
I

t-'

0
O"

►

Initials
and Name

ITCI K
Interpretive
Transfer
Control In­
direct

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Definition

Causes the instructions at the address contained in K to be executed next. Instruc­
tions ITA Kand ITCI K enable the Interpreter to save, and later use, the return ad­
dress when a called subroutine performs any ITC K instruction.

ON N Sets switch N to ONE if the address word contains 10000 + N (1 ::;_ N ::;_ 45).
Turn Switch
On or OFF N Sets switch N to ZERO if the address word contains 30000 + N (1 ::;_ N ::;_ 45).
Turn Switch
Off

&
BSON N, K
Branch on
Switch ON

or
BSOFF N, K
Branch on
Switch OFF

&

Executes next instruction at Kif switch N is set to ONE or executes consecutive in­
struction if switch N is set to ZERO if address word contains 10000 + N (1 ~ N ~ 45).

Executes next instruction at Kif switch N is set to ZERO or executes consecutive in­
struction if switch N is set to ONE if address word contains 30000 + N (1 ~ N ~ 45).

O'
I

.p..
(Jl

NOTES:

ffi

ill

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

Address K is a direct address or an indexed address as defined by the order code.
Number N is a direct number or an indexed number as defined by the order code.

The Interpreter clears the MPAC and enters the DP quantity located at the first ·ad­
dress of the address string into the MPAC if the instruction code is the first one of
an inst ruction string.
The Interpreter transfers the DP result to storage if the instruction code is the last
one of an instruction string. Storage is at the last address of address string or in
the push-down list when no address is given.

The Interpreter clears the MPAC and enters the TP quantity located at the first ad­
dress of the address string into the MPAC if the inst ruction code is the fir st one of
an instruction string.
The Interpreter transfers the TP result to storage if the instruction code is the last
one of an instruction string. Storage i _s at the last address of address string or in
the push-down list when no address is given.

Th e Interprete r clears the MPAC and enters the DP quantity lo cated at the first ad­
dress of the address st ring into the MP AC if the in st ruction code is the fir st one oi
an instruction string.
The Interpreter transfers the DP quantity contained in the MPAC to storage if th e in­
struction code is the last one of an instruction string but only if a STORE address 1s
given.

The Interpreter clears the VAC and enters the vector stored at the first address oi
the address string into the VAC if the instruction code is the first one of an instruc­
tion st ring.

0'-
1

~
O'-

NOTES:
{cont)

ffi

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (continued)

The Interpreter transfers the result to storage if the instruction code is the last one
of an instruction string. Storage is at the last address of the address string or in
push- down list when no address is given.

The Interpreter does not clear or enter anything in the MPAC or VAC if the instruc­
tion code is the first one of an instruction string.

Address K must be a direct address.
The instruction does not enter anything into any accumulator, does not transfer any­
thing to storage I and does not change the current mode of operation {DP, T P or
vector operation). Thus, it may be placed anywhere in an instruction string.
The content of the accumulator in use is not transferred to the push-down list if the
instruction code is the last one of an instruction string and if no STORE address is
given.

~
~

I
N
I

......
0
O'-

►

., ..

Instructions
7

ITC K 0
VXSC K 0

VSU K 0
BMNK 0
STZ K 0
B O V K 0
DAD K 0
BHI Z K 0
DSU K 0
DBSU K 0
DMP K 0
T S LT N 0
DDV K 0
BDDV K 0
TAD K 0
TSLT K l
TSRT K 1
DMPRK 1
T SU K 1
S IGN K 1
MXV K 1
VXM K 1
VAD K 1
B ZE K 1
BVSU K 1
VSRT N l
VSLT N 1
B PL K l

DOT K l
VXV K 1
V P R OJ K 1

&

TABLE 6 -2

ORDER CODES

Order

6 5

Code Bits

4

Dual - Quantity Instructions

0 0 0
0 0 l
0 0 l
0 l 0
0 l 0
0 l l
0 l l
l 0 0
l 0 0
l 0 l

l 0 l

l l 0
l 1 0
l 1 1
l 1 l
0 0 0
0 0 0
0 0 1
0 0 l
0 l 0
0 l 0
0 l l
0 l l
1 0 0
l 0 0
l 0 l
l 0 1
l l 0
l l 0
1 1 1
l l l

X = 0 for dire ct addressing
X = l for indirect addressing.

FR-2-106A

3 2& l

l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
1 X 0
0 X 0
l X 0
0 X 0
1 X 0
0 X 0
1 X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
l X 0
0 X 0
1 X 0

6 - 47

FR-2-106A

TABLE 6 -2

O RDER CODES (continued)

Order Code Bits

Ins true tions
2 & 7 6 5 4 3 1

Single -Quantity ·rnst ructions

TMOVE 0 0 0 0 X 1 1

VMOVE 0 0 0 1 X 1 1

UNIT 0 0 1 0 X 1 1

ABVAL 0 0 1 1 X 1 1

VSQ 0 1 0 0 X 1 1

ABS 0 1 0 1 X 1 1

ASIN 0 1 1 0 X 1 1

ACOS 0 1 1 1 X 1 1

SIN 1 0 0 0 X 1 1

cos l 0 0 l X 1 1

SQRT l 0 1 0 X 1 l

DSQ l 0 1 1 X 1 1

COMP l l 0 0 X l l

DMOVE 1 1 0 1 X 1 1

SMOVE l l 1 0 X l l

VDEF l l l l X l l

Index Register and Mis cellaneous Instructions

EXIT 0 0 0 0 0 0 l

RTB K 0 0 0 0 1 0 l

AXT, TN 0 0 0 l X 0 l

LXA, T K 0 0 l 0 X 0 1

LXC, T K 0 0 l l X 0 l

SXA, T K 0 l 0 0 X 0 l

XCHX, T K 0 l 0 l X 0 l

!NCR, TN 0 l l 0 X 0 1

XAD , T K 0 l 1 l X 0 1

XSU, T K l 0 0 0 X 0 l

AST, TN l 0 0 l X 0 l

AXC, TN l 0 l 0 X 0 1

TIX,T K l 0 l l X 0 l

NOLOAD l l 0 0 0 0 1

ROUND l l 0 0 l 0 1

!TAK l l 0 l 0 0 l

IT C! l l 0 1 l 0 l

O N Nor OFF N l l l 0 0 0 1
BSON N, K, or l 1 l 0 1 0 l

BSOFF
LODON l l 1 l 0 0 l

ITCQ l l l 1 l 0 l

& X = 0 for dir ect addressing
X = 1 for indirect addressing.

6-48

Octal
Address

Initials &

TABLE 6-3

E REGISTER ASSIGNMENTS

Name and Purpose

1--------- - --t-----------t---------------------------------------

00100

101

102

103

104

105

106

I

BANKSET

ADDR
(ADDRWD)

ORDER

TEMll

MODE

WORKLOC
(FIXLOC)

VACLOC

Holds complemented number of the Bank in which the cur ­
rent program is stored.

Holds real address (nine bits) in a Work Area . Holds any
10 - bit address refer ring to E memory . Holds any 12 - bit
address for addressing F memory by means of register S .
(Holds first Address Word in its true form temporarily .)
Holds number N after decoding an Address Word .

Holds Instruction Word to be d e coded (in its true form) .
Holds second order code of a de oded Inst ruction Word .
Holds 00000 if no second order code exists or processing
of it has been started.

Temporary storage used by subroutines DOT2 and
INCRT4 .

Holds 77776 when Interpreter is in DP mode . Holds 77775
when Interpreter is in TP mode . Holds 77777 when Inter ­
preter is in Vector mode .

Holds initial address of Work Area currently used . One
out of five addresses is entered by the Executive Program .

Holds initial address of VAC currently used . VACLOC =
WORKLOC + 32D . One out of five addresses is entered
by the Executive Program .

& Initials in parentheses are used in MIT listing s .

rrj
~
I

N
I

I-'

0
O'

►

O'
I

V,
0

Octal
Address

00107 - 114

107

110

111

113

113

113

114

114

115 - 117

117

TABLE 6-3

E REGISTER ASSIGNMENTS (continued)

Initials &

VBUF

TEMQS

BANKTEM

TEMB
(B)

TAGl

ESCAPE2

PUSHIND

AWORD
(POLISH)

TEMQ3

BUF

SGNDMAX

Name and Purpose

Temporary storage (six locations) for vector operations .

Temporary storage used by subroutine SWCALL.

Temporary storage used by s ubroutine SWCALL.

Argument storage used by subrout · ne ARCCOS .

Holds ini ial addre of Work Area currently used: plus
zero or one depe ndent u pon wh ther Index Register Xl or
X2 is to be used , o r plus wo or three dep ndent upon
whether Step Register Sl or SZ is to be used .

Negative Argument Swit ch , Contains a TC K instruction
during execution of ARCCOS .

Holds 00001 during VXSC K ; 00000 dur ing the execution
of all other Interpretive Inst ructions .

Holds an Address Word in its true form .
Holds l0 =b it E addres of Store Code Address Word.

H olds return addre ss entered by subroutine DDV K and
SQRTDIV.

Temporary storage (three lo cations) for DP and T P
operations .

Temporary storage used by subroutine TPAGREE.

& Initials in parentheses are used in MIT listings .

rrj
~

I

N
I

1--'

0
O'

►

Octal
Address

00120

121

121

122

122

122

123

123

124

125

125

O"
I

u,
I-'

TABLE 6-3

E REGISTER ASSIGNMENTS (continued)

Initials &

TEM2

TEM4

TEM Q

TEM5

TEM Q2

BASE

TEM6

TEM8

TEM9

TEMl0

IND

Name and Purpose

Temporary storage 2 used by subroutines TRAD, DADl,
STD2, DMPl , DDV , DOT2, INCRT2, STB , and CROSSL

Temporary s torage 4 used by subroutines DMP 1, INCR T4,
and CROSSl.

Holds return address during executi on of sub routine
TPAGREE .

Temporary storage 5 used by subroutines TRAD , DMP ,
DAD , and VACCOM .

Holds return address during the execution of subroutine
SQRT3 .

Tempo rary storage used by subroutine CROSSl .

Tempo rary s torage 6 used by subroutine CROSSl .

Temporary storage 8 u ed by subroutines STO2 , DOT2,
and ROUND .

Temporary storage 9 used by subroutines POLY, MXV,
and VXM.

Temporary storage 10 used by subroutines POLY , MXV ,
and VXM.

Temporary storage s ed by subroutine CROSSl .

Ini tials i n parentheses are use d in MIT l is tings .

1-rj
~

I
N
I

.......
0
Ci'

►

O'
I

\.)1

N

Octal
Address

00126

127 - 136

127 - 131

132

133

134

135

136

137 =146

TABLE 6-3

E REGISTER ASSIGNMENTS (continued)

Initials &

LOADIND
(NEWEQIND)

Job Area 1

MPAC

IWLOC
(LOC)

AWLOC
(ADRLOC)

OVFIND

PUSHLOC

PRIORITY

Job Area 2

Name and Purpose

Holds 00001 if MPAC or VAC has to be reloaded; holds
00000 if the present content of MPAC or VAC is to be oper ­
ated with.

As defined below .

Multi precision Accumulator (MPAC) (three locations) .

Holds address of Instruction Word to be decoded.

Holds address of last TC INTPRET . Holds address of last
Instruction Word in current string . Holds address of any
Address Word in current string .

Overflow Indicator . Holds normally 00000 . Holds 00001
or 7777 6 in case of overflow or underflow .

Holds address of next avai lable location i n the pushdown
I.is .

Holds 77777 when this Job Area is available . When this
J ob Area is in use , the register holds a ZERO in bit posi ­

tion 15 , the priority code of the Job using this Job Area in
bit positions 14 through 10 , and the address of the as signed

Work Area in bit positions 9 through 1 . Information is en =
tered by the Executive Program .

Similar to Job Area 1 .

& Initials in parentheses are used in MIT listings .

~
~

I

N

........
0
O'

►

O'
i

lJ1
l.,.)

Octal
Address

00147 - 156

157 - 166

167 - 176

177 - 206

207 - 216

217 - 226

227 - 233

234 =241

242

243

244

245

246 - 320

246 - 305

TABLE 6-3

E REGISTER ASSIGNMENTS (continued)

Initials &

Job Area 3

Job Area 4

Job Area 5

Job Area 6

Job Area 7

Job Area 8

LSTl

LST2

EXECTEMl

EXECTEM2

EXECTEM3

VACI USE

Work Area 1

PUSHLIST

Name and Purpose

Similar to Job Area 1.

Similar to Job Area 1.

Similar to Job Area 1 .

Similar to Job Area 1 .

Similar to Job Area 1.

Similar to Job Area 1 .

T ime List (five locations) holds t i mes when next Tasks
have to be execu ed .

Addres s List (five locations} , holds addresses of Task
programs to be executed.

Temporary storage used by EXECUTIVE .

Temporary storage used by EXECUTIVE

Temporary storage used by EXECUTIVE .

Holds 00000 when Work Area l is muse . Holds 00245
when Work Area 1 is available .

A s defined below .

Modifie d pushdown list (thirty - two locat i ons) .

& Initials in parentheses are used in MIT listings .

1-rj
~

I
N
I

I-'

0
O'

►

Octal
Address

00306 - 313

314 - 315

316 - 317

320

321

322 - 374

37 5

376 450

451

452 - 524

525

526 - 600

TABLE 6-3

E REGISTER ASSIGNMENTS (continued}

Initials &

VAC

Xl , X2

Sl , S2

QPRET

VAC2USE

Work Area 2

VAC3USE

Work Area 3

VAC4USE

Work Area 4

VAC5USE

Work Area 5

Name and Purpose

Vector Accumulator (VAC) (six locations) (Work Area ad­
dress 0040) .

Index Registers 1 and 2 (Work Area addresses 0046 and
0047) .

Step Registers 1 and 2 (Work Area addresses 0050 and
0051) .

Holds return address .

Holds 00000 when Work Area 2 is i n us e . Holds 00321

when Work Area 2 is available .

Similar to Work Area 1 .

Holds 00000 if Work Area 3 is in use . Holds 0037 5 if

Work Area 3 is available .

S imilar to Work Area 1 .

Hold s 00000 if Work Area 4 is i n use . Holds 00451 if
Work Area 4 is available .

S imilar to Work Area 1 .

Holds 00000 if Work Area 5 is in use . Holds 00525 if
Work Area 5 is avai lable .

S imilar to Work Area 1 .

& Ini t i als in pa renthese s are u s ed i n M I T l i stings .

~
~

I
N
I

.......
0
O"

►

... --

O'
I

u,
u,

Octal
Address

00601

602 - 604

605

606

607

610

611

612

613

614

615

616

TABLE 6-3

E REGISTER ASSIGNMENTS (continued)

Initials &

NEWJOB

STATE

BANKRUPT

NEWPRIO

WTEXIT

LOCCTR

DVSW

BRANCH Q

COMPON

ARETURN

ESCAPE

RUPTAGN

Name and Purpose

A multiple of eight is entered (into bit positions 6 through
4) by Executive Program to signal Interpretive Rupt .

Holds 45 - bit switch word entered by Interpreter (three
registers) .

Holds Bank Code for interrupted program entered by in ­
terrupting program .

Holds priority of new Job entered by EXECUTIVE .

Temporary storage for Interrupt Programs .

Temporary storage for Interrupt Programs .

Divide Switch, holds 0000 for normal divide or any other
quantity for backward divide .

Holds the return address for a branch ope ration.

Component counter for UNIT operation.

Holds return address during the execution of Inst ructions

ASIN and ACOS .

Return Address Switch contains a TC instruction during
the execution of Instructions ASIN and ACOS .

Temporary storage used by Waitlister .

& Initials in parentheses are used in MIT listings .

~
~

I

N
I

I-'

0
O'

►

