
CONFIDENTIAL

APOLLO GUIDANCE COMPUTER

Information Series

ISSUE 6B

INTERPRETER AND INTERPRETIVE
INS TR UC TIONS

FR-2-106B

29 Mayl964

CONFIDENTIAL

FR-2-106B

11

CONFIDENTIAL

This document contains information affecting
the national defense of the United States with­
in the meaning of the Espionage Laws, Title
18, U.S. C., Sections 793 and 794, the trans­
mission or revelation of which in any manner
to an unauthorized person is prohibited by law.

GROUP 4

Downgraded at 3-year int e rvals;
declassified after 12 years.

CONFIDENTIAL

Paragraph

6-1

6-7

6-8
6-14
6-22
6-26
6-29

6 -31

6-33
6-38
6-43

6-50

6 -51
6-53
6-54
6-61
6-63
6-64
6-70

6-77

6-79

6-81
6-85
6-86

6-90

6-93
6-99

CONFIDENTIAL

CONTENTS

INTRODUCTION

INTERPRETIVE STRINGS

Simple Strings
Storing and Recalling of Partial Results

Indexing Operations
Binary Point
Bank Switching .

WORD FORMATS AND CODES

True and Fixed Forms
Interpretive Address Words and Store Codes

Interpretive Instruction Words and Order Codes

INTERPRETER

General Description
Dispatcher

Interpreter Entries
Exe cut ion of Dual-Quantity Instructions

Instructions Referring to Nonindexed IA W's
Partial Decoding and Mating with an IA W
Final Decoding and Execution of Group A

Instructions
Final Decoding and Execution of Group B
Instructions
De coding and Execution of Instructions
TSRT N, TSLT N, VSRT N, and VSLT N

Instructions Referring to Indexed IA W's
Instructions Referring to Pushlist Locations.

Decoding of Order Codes Which Cannot Be
Mated with an IA W
Decoding of Order Codes and Mating with
an Inactive Address

Exe cut ion of Single Quantity Instructions .

Execution of Index Register Instructions and

Miscellaneous Instructions

CONFIDENTIAL

Page

6 -1

6-3

6-3
6-5
6-9
6 -1 O

6 -11

6 -13

6-13
6-14
6-15

6-43

6-43
6-43
6-43
6-51
6 -51
6 -51

6-53

6-54

6-55
6-55
6-56

6-56

6-57
6-57

6-58

iii

CONFIDENTIAL
FR-2-106B

CONTENTS (cont)

Paragraph Page

6-102 Storing of Results 6-59
6-103 Storing a Result at a Store Address 6-59
6-108 Storing a Result in a Pushlist. 6-60
6-110 Executer 6-60

ILLUSTRATIONS

Number Page

6-1 Interpreter Address Word Formats 6-16
6-2 Interpreter Address Word and Order Code

Formats. 6-17
6-3 Dispatcher Routine Functional Flowchart

(3 sheets) 6-46

TABLES

Table Page

6-1 Interpretive Instruction Definitions 6-19
6-2 Order Codes . 6-40

ATTACHMENTS

Number

6-1 Dispatcher Routine Detailed Flowchart .

iv

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-1. INTRODUCTION

6-2. This is the sixth issue of the AGCIS, which is published to in­
form the technical staff at MIT /IL and Raytheon about the Apollo guid­
ance computer (AGC) subsystem. In Issue 15 various AGC programs
and program sections are described in paragraph 15-98 through the
end. The Interpreter and Interpretive Instruction are discussed in
paragraphs 15-6, 15-83, 15-84, 15-90 through 15-97, and 15-105.
This issue contains a description of program section Interpreter as
used in programs SUNRSE33 and SUNRSE38. The Interpreter was
originally de signed for the AGC3 by Dr. J. H. Laning of MIT /IL and
later modified by C. A. Muntz also of MIT /IL for the AGC4.

6-3. An AGC program is defined as the entire content of F memory
(paragraph 15-5) and consists of various program sections. Program
sections may consists of several major routines, which are composed
of minor routines and subroutines.

6-4. The Interpreter is a highly sophisticated program section de-
signed to execute program portions written in interpretive language
(paragraph 15-6). The Interpreter consists of approximately 1 700
Regular Instructions and constants. The Interpreter is written in ba­
sic machine language and is able to translate and execute program
portions written in interpretive language. Eleven Regular Machine
Instructions (table 15-12) can be used to write basic program portions,
and 71 Interpretive Instructions (table 15-13) with a total of 126 differ­
ent order codes are provided for writing interpretive program portions.

6-5. Regular Instructions are single address instructions consist-
ing of a 3-bit order code and a 12-bit relevant address both contained
in the same word (figure 15-12). Interpretive Instructions are single
or no address instructions consisting of a 7-bit order code and a 15-bit

relevant address if necessary. A single address Interpretive Instruc­
tion is contained in 1-1 / 2 words; the order code in an Interpretive In­
struction Word (IIW), the relevant address in an Interpretive Address
Word (IAW) as shown in figure 15-12. A no address Interpretive In­
struction is contained in half a word only, i.e. in an IIW.

6-6. Program portions expressed in basic language are written ac -
cording to the rules of parenthesis-free notation. The instructions of

6-1

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

a basic subroutine are arranged in the sequence in which they have to
be executed. Program portions expressed in interpretive language
are also written according to the rules of parenthesis-free notation.
(All program sections written either partly or completely in interpre­
tive language are situated in banks 21 through 34 which are referred
to as higher banks.) Interpretive subroutines are arranged in inter­
pretive strings. Each interpretive string consists of a group of IIW 's,
(at least one IIW) referred to as an instruction string. Each instruc­
tion string is followed by a group · of IA W's, (at least one IA W) referred
to as an address string. The order codes of an interpretive string are
arranged in the sequence in which the Interpretive Instructions have to
be executed. (The order code in bit positions 14 through 8 precedes
the order code in bit positions 7 through 1.) The relevant addresses
are arranged within the address string in the same sequence as stated
above without leaving spaces for non-address Interpretive Instructions.

6 -2

CONFIDENTIAL

CONFIDENTIAL
FR-2 - 106B

6-7. INTERPRETIVE STRINGS

6-8. SIMPLE STRINGS

6-9. A basic routine for computing a+b-c = x with single preci-
sion may be written as follows:

CS C
AD B
AD A
TS X

Instruction CS C (table 15-12) clears the accumulator (address 00000)
and enters the complement content of location C into it. Instruction
AD B adds the content of location B to the content of the accumulator.
Instruction AD A adds the content of location C to the latest content of
the accumulator. Instruction TS X transfers the result contained in
the accumulator to location X. The designations A, B, C, and X have
no relation to the name of any location; they are only used to symbo ­
lize the addresses of those locations where quantities a, b, c, and x
are stored.

6-10. An interpretive string for computing a+b-c = x with double
precision may be written as follows:

DAD
DSU

1

A
B
C

STORE X

The instruction string of this interpretive string consists of two IIW' s .
Bits 7 through 1 of the first IIW of a string always represents an in­
teger which indicates the number of llW's immediately following the
first IIW of a string (figure 15-12). Bits 14 through 8 of the first IIW
represent the order code of the first Interpretive Instruction and bits
14 through 8 of the second IIW represent the order code of the second
Interpretive Instruction. In the example discussed, bits 7 through 1
o f the second IIW contain no order code. The address string consists

6-3

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

of four IAW's; the first represents a load address, the second and
third operand addresses, and the fourth a store address.

6-11. Normally, the Interpreter loads the multiprecision accumu-
lator (MPAC) in use or the vector accumulator (VAC) in use when it

recognizes the beginning of an interpretive string. Since the Job Con­

trol (Executive, Issue 12) moves a Job for its execution into Job Area l,
only the MPAC of Job Area 1, (locations 0114 through 0ll6, table 15-15)

is accessible during the actual execution. If a Job requires the use of

a VAC, the Job Control assigns one out of five VAC 1s to the Job there­

fore, anyone of the five vector accumulators may be access able during

the execution of an Interpretive Program portion. In the example giv­

en, MPAC is loaded by instruction DAD K. Since order code DAD

represents a Dual-Quantity Instruction (paragraph 15-94), this in­

struction enters the quantity located at the load address (A) and op­

erates with the quantity located at the first operand address (B). Af­
ter entering the content of location A (and A +l) into MPAC (and MPAC

+l), the Interpreter adds the content of locations B (and B +l) to the
content of MPAC (and MPAC +l). The expressions (and A+ 1), (and

MPAC +l), etc., indicate that the double-precision quantities are
stored in two locations. Reference is normally made only to the first

location of a double-precision quantity, of a triple-precision, or of

a vector (paragraph 15-94).

6-12. Once the addition is complete, the Interpreter subtracts the

content of location C (and C + 1) from the content of MPAC (and MPAC
+ 1) and holds the final res ult in MPAC (and MPAC + 1). As the Inter -

preter recognizes word STORE X, it transfers the content of MPAC

(and MPAC + 1) to locations X (and X + 1).

6-13. An interpretive string for computing

a+ cos (6 +~)
C

= X

with double precision can be writen as follows:

L DSQ 3
L+ 1 DAD SQRT
L+ 2 DAD cos
L+3 DAD DDV
L+4 A
L+5 B
L+6 B
L+7 A
L+ 8 C
L+9 STORE X

6-4

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

This string consists of one instruction string with four IIW' s and one
address string with six !AW 's. When the Interpreter reads the word
DSQ 3, it recognizes that three more instruction words follow to com­
plete the IIW string. The Interpreter also recognizes that it has to take
the first data from address A. Address A is stored at location L + 4,
where L is the location of word DSQ 3. As the Interpreter decodes the
first IIW, it clears the MPAC and enters the double-precision quantity
a from location A into it. Since order code DSQ (table 15-13) repre­
sents a Single-Quantity Instruction (paragraph 15-95), the quantity a
in MPAC is squared and no other quantity is needed for this operation.
After squaring, the Interpreter recognizes that Interpretive Instruction
DAD B has to be executed next. Since a 2 is now contained in the MPAC,
the computer adds the quantity b to a 2 and the MPAC retains a 2 + b.
At the next step the Interpreter recognizes that it has to obtain the
square root of the MPAC content by executing the Single-Quantity In­
struction SQRT. The MPAC then retains the quantity ✓a2 + b. Next
the Interpreter recognizes that it has to add the quantity b to the MPAC
content; the MPAC retains b + ✓a2 + b after the addition. The fifth In­
terpretive Instruction to be executed, COS, is again of the single-quan­
tity type. The MPAC then contains the quantity cos (b + ✓a2 + b). Quan­
tity a is then added to the MPAC content by executing DAD A, as taken
from locations L + 3 and L + 7. When DDV C is executed, the MPAC
content is divided by quantity c and retained in the MPAC. Finally,
the MPAC content is transferred to location X (and X+ 1).

6-14. STORING AND RECALLING PARTIAL RESULTS

6-15. When ab + cd = x is computed, it is necessary to store par-
tial results before the final result can be calculated. If

DMP

STORE

0
A
B
y

is executed, the double-precision product ab = y is stored at location
Y. When the last address of the above string is omitted, i.e., when
string

DMP 0
A
B

is executed, the Interpreter automatically puts the partial result (ab)
into the next two free locations of the Pushlist in use. (Pushlists are
a series of erasable registers re served for temporary storage; refer

6-5

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

to Work Areas of table 15-15.) One of the two following methods can be
applied to recall a quantity from a Pushlist: either supplying no oper­
and address or supplying an inactive address.

6-16. If an instruction finds no address word m the address string,
it automatically takes the operand from the proper location of the Push­
list. For example, consider the following routine, which consists of
two interpretive strings (each consisting of an instruction string and
an address string):

DMP

DMP

DAD

0
A
B
1
0

C
D

After quantity a is multiplied by quantity b, the product ab is stored in
the Pushlist as described in paragraph 6 -15. After quantity c is mul­
tiplied by quantity d, the Interpreter recognizes that it has to execute
an addition. However, the Interpreter cannot find the address of the
quantity to be added to the MPAC content (product cd). Therefore, it
automatically takes the product ab, which was temporarily stored in
the Pushlist. The final result, ab + cd = x, is again stored in the Push­
list because no address is given. In fact, the final result is stored in
the same two locations where partial result ab was stored.

6-17. The Interpreter must distinguish between an address where
the result is to be stored (store address) and an address where data is
to be taken (operand address). This allows data to be recalled from
the Pushlist before the result is stored elsewhere. Therefore, a
special format is employed which is recognized by the Interpreter for
a store address. The routine:

DMP

DMP
DAD

STORE

0
A
B

1
0

C
D
X

is very similar to the routine listed in paragraph 6-16, except that
address word STORE X is added. STORE X specifies that address
X is to be used for storing the final result. No address is gi v en for

6-6

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

calling the operand when DAD is executed. For this reason the product

ab is called from the Pushlist and added to the product ed. The final

result is stored at location X.

6-18. A special code, Inactive Address (77777), references the Push-

list. A routine to compute:

can be written as follows:

DSQ

DSQ
DAD
DAD

STORE

=x

0
B
2
SQRT

A

A
X

After quantity b is squared and b 2 is placed into the Pushlist, quantity
a is squared and a2 is retained in the MPAC. Next, the Interpreter
recognizes that DAD should be executed. Address word 77777 (sym­

bolized by 0) tells the computer to take the quantity b2 from the Push­
list locations last used and add it to the MPAC content a2. After the
square root of a2 + b2 is obtained, the quantity a is added to the quan­

tity ✓a2 + b2 in the MPAC, and the final result is transferred to loca­
tion X.

6-19. Sometimes more than one set of locations in the Pushlist is
needed to store partial results. A routine to compute

can be written as follows:

DSQ

DSQ
DAD

DSQ

DSQ
DAD

STORE

= X

CONFIDENTIAL

0
D
1

C
0
B

1
DDV

A
X

6-7

CONFIDENTIAL
FR-2-106B

This routine consists of four interpretive strings. First, d 2 is com­
puted and stored in the Pushlist at location P (and P +l). Next, c 2

is calculated and r e mains in the MPAC. During the execution of the
first DAD instruction, the Interpreter cannot find an operand address
and adds the quantity d2 in location P to quantity c2. The sum c2 + d2
is again stored in location P. Thereafter, b2 is computed and stored
in location P +2 (and P +3). Next a2 is computed and retained in the
MPAC. During the exe cution of the second DAD instruction, the Inter­
preter cannot find an operand address and adds the quantity b2 in loca­
tion P +2 to the quantity a2. Quantity a2 + b2 remains in the MPAC.
The Interpreter then r e cognizes that instruction DDV has to be executed
but cannot find an address word other than STORE X. For this reason
the Interpreter takes quantity c2 + dz from location P, divides a2 + b2
by c2 + dz, and stores the quotient at X.

6-20. The Pushlist and the Interpreter are organized such that the
last quantity inserted into the Pushlist is normally the first one to be
released. Thus, the list has a last-in, fir st-out behavior. A push­
down list with a last-in, fir st-out behavior can be used to compute ex­
tremely long equations without storing partial results outside the push­
down list. Howeve r, it is sometimes more advantageous to calculate
partial results which can be used several times. This is not possible
with a common pushdown list since a stored quantity is accessible only
once. Therefore, the Interpre ter provides a modified pushdown list,
referred to as Pushlist, which allows repetitive recall of data. If the
last-used locations of Pushlist are read out, the second-last-used lo­
cations are prepared for read-out as usual. If any other location is
read out, the information in that location remains and the " last-used
locations" are kept ready for read-out.

6-21. A routine to compute

sin ab+ cos ab+ (ab) 2 = x

can be written as follows:

6- 8

DMPR

DSQ
ROUND

cos
DAD

0

A
B
1

6
1

6

-8

- 8

CONFIDENTIAL

CONFIDENTIAL

SIN
DAD

STORE

1

6
X

FR-2-106B

Let us assume that location 6 of the Pushlist is the one to be loaded
next. Since no store address is given in the first string, the product
ab is stored in location 6 (and 7) of the Pushlist as indicated by the
arrow. The second string takes the product from location 6 (and 7),
squares 1t, rounds it, and stores (ab) 2 in location 8 (and 9). The third
string computes cos ab, adds (ab)2 to it because no second operand
address is given, and stores the result again in location 8 because no
store address is given. The fourth string computes sin ab, adds
cos ab+ (ab) 2 to it, and stores the final result in location X.

6-22. INDEXING OPERATIONS

6-23. Two index re gis ters per Work Area (table 15-15) are pro-
vided for the Interpreter to increase the addressing capability. A
ONE in bit position 2 of a Dual-Quantity Instruction Order Code
(table 15-13) indicates that the respective Interpretive Instruction has
to operate with an indexed address. Bit position 1 of the Interpretive
Address Word relevant to the instruction indicates which of the two
index registers is to be used. A ZERO indicates Index Register 1;
a ONE indicates Index Register 2. The content of the indicated index
register is subtracted from the thirteen-bit quantity contained in bit
positions 2 through 14 of the relevant address word. After the sub­
traction, the address of the operand is available. Consider the follow­
ing string and assume that Index Register 1 contains the quantity - s

DAD>:, 0

a , 1
{3 , 1
s, 1

DAD>:, means instruction code DAD with a ONE in bit position 2. This
bit now specifies order code 036 instead of 034 (table 15-13). STORE':'
represents the STORE code referring to the address to be indexed.
When the Interpreter recognizes codes DAD>:< and STORE>:<, it indexes
addresses a , {3 , ands by the content of Index Register 1 as indicated
by the 1 following the comma after a , {3 , and S· The indexed addresses
are a + s = A, {3 + s = B, and s + s = C. The sum of the quantities
stored at locations A and B is computed and stored at C.

6-24. Consider the following example to demonstrate the usefulness
of the indexed string described in the last paragraph. Assume that

6-9

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

sums a+ b = c, d + e = f, and g + h = j have to be computed frequently
and that the double precision quantities a through j are stored at loca­
tions A through J. Some saving in program locations is obtained when
the string listed in the preceding paragraph is executed repeatedly and
the content of the index register is properly modified at the same time;
for instance, from - s to - ri., and to - S• The content of an index reg­
ister is not changed when a simple string such as the one listed in the
preceding paragraph is executed. Modifying the content of an index
register is accomplished by executing Index Register Instructions
(table 15-13) provided for this purpose. Such a manipulation does not
change the content of the multipr e cision or vector accumulator nor of
any temporary storage location (except the index register involved).

6-25. When the computer is operating in the interpretive mode, in­
dex registers can be used also for simple single precision 11bookkeep­
ing11. For example, if registe r COUNT is to be incremented by three,
a string is written as follows:

LXA 1
INCR 1

1
SXA 1
COUNT
3
COUNT

When the Interpreter recognizes LXA 1 and COUNT (load index regis­
ter 1 with the content of COUNT), it enters the content of COUNT into
Index Register 1. When the Interpreter recognizes INCR 1, 3 it incre­
m e nt s the content of Index Register 1 b y the quantity 3. The instruc­
tion SXA 1, COUNT returns the incremented quantity to location COUNT.

6-26. BINARY POINT

6-27. Normally, the Inte rpr e ter assumes that the binary point of
any single-precision quantity is plac e d between bit positions 15 and 14.
In other words, the Interpreter assumes that all 14 value bits are placed
imme diate ly to th e right of the binar y point. Therefore, the quantity
N c ontained in a register repres e nts the value N (2-14). For a double­
precision quantity, the Interpreter assumes that all 28 value bits are
plac e d imme diate ly to the rig ht of the binary point. For a triple-pre­
cision quantity, the Interprete r a ssumes that all 42 value bits are placed
the same way. The w e ight factors (2n, n;;; 0) give fractional quantities
th e prope r meaning s. The w e ight factors are not stored in the AGC
but ar e built into the programs. An example is given in the following
paragraph.

6 -1 0

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-28. A program to compute

abc + a + b + c = x

with weight factor 218 for quantity A, 26 for B, and 23 for C can be
written as follows:

DMPR
DMPR

TSRT
DAD
DAD
DAD

STORE

1

A
B
C
3

TSRT
TSRT
ROUND
C
3

B
12
A

9
X

Fir st the rounded product abc is computed and stored in the Pushlist.
The first TSRT instruction then enters quantity c into the MPAC and
shifts quantity c three places to the right. The shift places quantity c
in the proper weight relation to quantity b, which is then added to quan­
tity c. The second TSR T instruction shifts quantity c + b twelve places
to the right to achieve the proper weight relation to quantity a. which is
then added to quantity c + b. The third TSR T instruction shifts quan­
tity c + b + a another nine places to the right to establish the proper
relation to the product abc. The weight factor of product abc is 227.
The last DAD instruction takes product abc from the Pushlist and adds
it to the shifted sum a + b + c. The result is rounded and stored at lo­
cation X. Using TSLT instead of TSR T operations is impractical be­
cause of the overflows which might occur.

6-29. BANK SWITCHING

6-30. There is a restriction concerning program flow and bank
switching. A complete address (15-bit address) eliminates most bank
switching problems associated with the relevant addresses of Basic In­
structions. However, it is still true that program flow must not cross
bank boundaries. Control must be transferred with an ITC, for ex­
ample, to the beginning of the next bank to continue a program once it
has reached the end of a bank.

6-11/6-12

CONFIDENTIAL

6-32.
classes:

CONFIDENTIAL
FR-2-106B

6-31. WORD FORMATS AND CODES

All words used in the interpretive language fall into two major

Interpretive Instruction Words (IIW 1s)
Interpretive Address Words (IAW 1s)

An IIW contains two order codes, or one order code and an integer in­
dicating the number of IIW 1 s immediately following the first IIW of a
string (figure 15-12). This number. when incremented by one, indi­
cates the total number of instruction words contained in an instruction
string. An IAW might contain an E address, a complete higher FS
address, various codes, or a quantity to be used for indexing or shift­
ing.

6-33. TRUE AND FIXED FORM

6-34. Interpretive Instruction Words and Interpretive Address Words
(except an Inactive Address) are stored in F memory however, they are
not in their true form but in a form which makes decoding easier for
the Interpreter. Therefore, a true word, as used in the previous ex­
amples must be distinguished from the fixed word, as stored in Fixed
Memory. A fixed Interpretive Instruction Word is derived by incre­
menting (by one) and complementing a true IIW which always contains
a ZERO in bit position 15. Consequently, a fixed IIW always contains
a ONE in bit position 15. The fixed words are derived from the true
words by the Yul Programming System (Issue 13). The Interpreter
recomplements a fixed IIW and decrements it by one thus, the true IIW
is made available.

6-35. A true IAW representing a complete FS address always con-
tains a ONE in bit position 15 because interpretive program portions
operate only in the higher banks (paragraph 6-6). A fixed IA W is de­
rived from such a true IA W by incrementing the true IA W (by one) and
eliminating the ONE in bit position 15. Whenever the Interpreter rec­
ognizes that is is dealing with an FS address, it decrements the fixed
IA W and adds a ONE into bit position 15 to make the true IA W available.

6-36. A true IAW which does not represent a complete FS address or
an Inactive Address but represents an E address, a quantity, or a code

6-13

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

is transformed into a fixed IA W by incrementing only. The Interpreter
decrements the fixed IA W to make the ture IA W available. A true IA W
as well as a fixed IAW may contain a ONE in bit position 15 however,
in most cases, it contains a ZERO. An IAW which is the first (or only)

word of an address string must always contain a ZERO in bit position
15 to indicate the beginning of the address string.

6-37. The true form and the fixed form of an Inactive Address
{paragraph 6-18) are identical and do not need any transformation. In
the following paragraphs, reference is made normally to the true form
of any IIW or IAW.

6-38. INTERPRETIVE ADDRESS WORDS AND STORE CODES

6-39. The basic format of an Interpretive Address Word (true form)
is shown in figure 6-1. Fifteen bits are available for addressing a lo­
cation in the AGC {table 15-3). The following rules to be observed
when addressing is done by an IAW. As usual, all addresses are given
in octal numbers.

6-14

a. Addresses 00000 through 00052 refer to locations in a
Work Area (each consisting of 43 locations, table 15-15)
rather than to a CP register or a counter. The initial ad­
dress of the Work Area in use is provided by the Job
Control (Executive) and is stored in location WORKLOC.
By adding an address from 00000 through 00052 to the ad­
dress stored in WORKLOC, the real address of a location
in the appropriate Work Area is obtained.

b. Addresses 00053 through 00057 must not be used in an
Interpretive Program.

c. Addresses 0060 through O 1776 refer to general erasable
storage as usual. The use of address 01777 (last in E
memory) is illegal. {Incrementing 01777 results in 02000,
a code which would confuse the Interpreter.)

d. Complete addresses 42000 through 71776 refer to higher
FS storage. Addressing any lower FS storage or the last
location of any bank (43777, 45777, etc.,) is illegal.

e. An IA W which contains a quantity between 32000 and 37776
represents a Store Code Address Word composed of a
STORE code and a ten-bit address specifying a location in
E memory.

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-40. If an IAW contains ONE 1 s in bit positions 11, 13, and 14, and
ZER0 1 s in bit positions 12 and 15, then the IAW contains the STORE
code (figure 6-1; the use of this STORE code is discussed in para­
graphs 6-10 and 6-12). An IAW containing this STORE code refers di­
rectly to a location in general erasable memory or to a location in a

Work Area. In either case the location is defined by the address con­
tained in bit positions 1 through 1 O.

6-41. Many Interpretive Instructions can refer to 0ne of two index
registers to modify a given address (paragraph 6-23). Bit position 1
of the relevant IA W (true form) d efines which of the two index registers
is to be used, and bit positions 2 through 14 contain a 13-bit subaddre ss
(figure 6-1). The content of the specified index register is subtracted
from the 13-bit subaddress and thus provides an indexed address. This
address can be used in the normal fashion to address a certain memory
location. An index register may contain any quantity between +37777
and -3 7777. This allows subaddres s indexing by any binary number
with a ONE in bit position 14 to generate an address larger than 17777.

6-42. An IAW with a STORE address can refer also to an indexed
address. The STORE code in this case consists of three ONE's con­
tained in bit positions 12 through 14 and a ZERO contained in bit posi­
tion 15 (figure 6-1). Again, the index register designation is contained
in bit position 1 of the IA W. An IA W with the index STORE code always
refers to a location in E memory and is derived by indexing the sub­
address contained in bit positions 2 through 11. Any indexed STORE
address between 0000 and 0052 refers to a Work Area as described in
paragraph 6-35.

6-43. INTERPRETIVE INSTRUCTION WORDS AND ORDER CODES

6-44. The various classes of Interpretive Instructions are discussed
in paragraphs 15-90 through 15-97, and the o rder codes are listed in
table 15-13. The various order code formats (true forms) are shown
in figure 6-2. A Dual-Quantity Instruction code contains ZERO' s in
bit positions 1 and 2 if it refers to a direct address. A Dual Quantity
Instruction code contains a ONE in bit position 2 and a ZERO in bit po­
sition 1 if it refers to an indexed address. Whenever the Interprete r
recognizes these two prefix bits, it automatically indexes the subaddress
contained in the IAW as described in paragraph 6-41.

6-45. Either the r e spective direct address or the indexed address
can be used with no special precaution if: (a) a Dual-Quantity Instruc­
tion does not have to load an accumulator before calling the second

6-15

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-16

BIT POSITIONS

BIT POSITIONS

BIT POSITIONS

BASIC FORMAT &

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

---------- ADDRESS CODE ---------i

STORE CODE AND DIRECT E ADDRESS &

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

I 0 I I I I 0 I I I I I I p I
E ADDRESS CODE

ADDRESS TO BE INDEXED AND INDEX REGISTER DESIGNATION &

15 14 13 12 II 10 9 B 7 6 5 4 3 2 0

..._ _______ SUBADDRESS --------'

INDEX
REGISTER

DESIGNATION

STORE CODE, E ADDRESS TO BE INDEXED,
AND INDEX REGISTER DESIGNATION &

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

~-----SUBADDRESS-------'

INDEX
REGISTER

DESIGNATION

INDEX QUANTITY OR SHIFT COUNT &

BI T POSITIONS 15 14 13 12 II 10 9 8 7 6 5 4 3 2 0

ZERO
OR

ONE

INACTIVE ADDRESS£

BIT POSITIONS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I p I

L!::, TRUE FORM ONLY

Lg:, TRUE ANO FIXED FORM

Fiqure 6·/. Interpretive Address Word Formots

CONFIDENTIAL

BIT POSIT IONS

CONFIDENTIAL

INTERPRETIVE INSTRUCTION WORD &

15 14 13 12 11 10 9 B 7 6 5 4 3 2

f--- FIRST ORDER CODE - ----<•--+!•• SEODND ORDER CODE OR NUMBER-.l

BIT POSITIONS

BIT POSITIONS

BIT POSITIONS

BIT POS ITIONS

DUAL QUANTIT Y INSTRUCTION,

DIRECT ADDRESS&

7 6 5 4 3 2

DUAL QUANTITY INSTRUCTION

INDEXED ADDRESS&.

7 6 5 4 3 2

SINGLE QUANTITY INSTRUCTION

DIRECT ADDREss&

7 6 5 4 3 2

I I

SINGLE QUANTITY INSTRUCTION

INDEXED ADDRESS&

7 6 5 4 3 2

IND EX REGISTER AND MISCELLANEOUS INSTRUCTIONS

(DIRECT ADDRESS ONLY)&

BIT POSITIONS 7 6 5 4 3 2

I I
£ TRUE FORM ONLY

Figure 6 -2 . Interpretive Instruction Word and Order Code Formats

CONFIDENTIAL

FR-2-106B

0

6-17

CONFIDENTIAL
FR-2-106B

quantity (second instruction of paragraph 6-10) or (b) both the load ad­
dress and the operand address are either direct or indexed. If the two
addresses are not of the same type, the accumulator must be .loaded
by executing instruction DMOVE, TMOVE, or VMOVE.

6-46. Single-Quantity Instructions operate with one quantity, nor­
mally contained in the MPAC or the VAC. Their order codes can be
recognized by the two ONE' s in bit positions 1 and 2. The Single- Quan­
tity Instructions are able to enter a quantity into an accumulator if the
order code is the first one of an instruction string (paragraph 6-13).
For this reason, a third prefix bit has been added to distinguish between
direct addressing and indexed addressing. Bit position 3 of the order
code contains a ONE when indexing is required, which is then carried
out in a way similar to that mentioned in paragraph 6-41.

6-4 7. Index Register Instructions and Miscellaneous Instructions do
not enter a quantity into MPAC or VAC, and refer to direct addresses
only. Their order codes carry a ONE in bit position 1 and a ZERO in
position 2.

6-48. The 71 Interpretive Instructions provided for the AGC are de­
fined in table 6-1. Common properties of the various instructions are
indicated by notes & through ffi which are explained at the end of
the table.

6-49. Table 6-2 lists the order code bit configuration for each type of
instruction. The order code bit configuration is derived from table
15-13.

6-18

CONFIDENTIAL

n
0 z
-n -C
ffl z ... -
► r-

O'
I

1--'

....0

Initials
and Name

DAD K
DP Add

6&

TAD K
TPAdd

&&

DSU K
DP Sub-
tract

& &

TSU K
TP Sub-
tract

6 &.

BDSU K
DP Subtract
Backwards

&&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS

Definition

Adds the double precision (DP) quantity located at K to the DP quantity contained in
the MP AC. Keeps the re suit in the MPAC. Sets register OVFIND in case of
overflow or underflow.

b(MPAC, MPAC + 1) + c(K, K + 1) = c(MPAC, MPAC + 1)

Adds the triple precision (TP) quantity located at K to the TP quantity contained in
the MPAC. Keeps the result in the MPAC. Sets register OVFIND in case of
overflow or underflow.

b(MPAC, MPAC+l, MPAC+2)+ c(K, K+l, K+2) = c(MPAC, MPAC+l, MPAC+2)

Subtracts the DP quantity located at K from the DP quantity contained in the MPAC.
Keeps the result in the MPAC. Sets register OVFIND in case of overflow or under­
flow.

b(MPAC, MPAC + 1) - c(K, K + 1) = c(MPAC, MPAC + 1)

Subtracts the TP quantity located at K from the TP quantity contained in the MPAC.
Keeps the result in the MPAC. Sets register OVFIND in case of overflow or under-

flow.

b(MPAC, MPAC + 1, MPAC + 2) - c(K, K + 1, K + 2) = c(MPAC, MPAC + l, MPAC + 2)

Subtracts the DP quantity contained in MPAC from the quantity located at K. Keeps
the result in the MPAC. Sets register OVFIND in case of overflow or underflow.

c(K, K + l} -b(MPAC, MPAC + 1) = c(MPAC, MPAC + l}

~
~
I

N
I

n
0 z .,, -C
m z
-t -
► r-

0
0'
tp

n
0 z .,, -C
'" z
-t -
► ,...

O'
I

N
0

Initials

and Name

DMP K
DP Multiply

&&

DMFR K
DF Multiply
and Round

&&
DDV K
DP Divide

& &

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS(cont)

Definition

Multiplies the DP quantity contained in the MPAC by the quantity located at K. Keeps
the TP result in the MPAC. Normally, only a DP result is transferred to storage.
However, the TP result is transferred to storage if the last instruction of an instruc­
tion string is a TP instruction.

b(MPAC, MPAC + l} · c(K , K + l} = c(MFAC, MFAC + 1, MPAC + 2)

Multiplies the DP quantity contained in the MPAC by the quantity located at K. Rounds
the result to a DP quantity and keeps it in the MPAC.

b(MPAC, MPAC + 1) · c(K, K + l) = c(MPAC, MPAC + 1) rounded, c(MPAC + 2) = 0

Divides the quantity in the MPAC by the quantity of Kif the absolute value of the quan­
tity located at K is larger than the absolute value of the quantity contained in the
MPAC. Keeps the DP quotient in the MPAC and tur::-1s off the overflow indicator.

b(MPAC, MPAC + l} ---:- c(K, K + l) = c(MPAC, MPAC + l)

The Interpreter sets register OVFIND and exits the current subprogram, however,
the content of the MPAC may be unchanged if the absolute value of the quantity located
at K is equal to or smaller than the absolute value of the quantity contained in the
MPAC.

~
~
I

N
I

I-'

0
O'

to

n
0 z
"Tl -C
m z
-f -
► r-

n
0 z .,, -C
ffl z
-t -
► ,..

O'
I

N
I-'

Initials
and Name

BDDV K
DP Divide
Backwards

TSRT N
TP Shift
Right

&8

TSLT N
TP Shift
Left

118

- ------

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Divides the quantity at K by the quantity in the MPAC if the absolute value of the
quantity contained in the MP AC is smaller than the absolute value of the quantity lo­
cated at K. Keeps the DP quotient in the MPAC and re sets register OVFIND.

c (K , K + l} -:- b(MPAC, MFAC + l} = c(MFAC, MFAC + l}

Similar actions are taken as described for the second and third possibilities of DDV K
if the absolute v alue of the quantity c ontained in the MPAC is equal to or larger than
the absolute value of the quantity located at K.

Shifts the content of the MFAC N places to th e right (0 :S. N :s_ 42 d ecimal), where N is
a numb e r written into the program instead of an add r ess. K eeps the shifted content
in the MPAC. Normally, a DP quantity is transfe rred to storage after a TSRT opera­
tion . If a TP result is to b e stored, the e nd of an instruction string must b e a TP in­
struction. Similarly , if a TP quantity is to b e e nt e r ed into the MPAC fo r shifting, the
instru ction string has to start with a TMOVE instruction.

Instruction is similar to TSRT with the exception that the content of the MPAC is
shifted N places to the left. Sets register OVFIND if any ONE of a positive quantity
or any ZERO of a negative quantity is shifted out of the MPAC.

The content of the MPAC is shifted N places to the right if the number N is indexed
and if N is a negative number (-42 :S. N ::;_ -1 decimal for TP, -28 :S. N :S. -1 for DF of
vector operations).

t-rj
~
I

N
I

n
0
z .,, -C
ffl z ... -)> ,..

0
O"
tp

O'
I

N
N

n
0 z
-n -C
m z
-t -
► r-

Initials
and Name

TSLC K
TP Shift
Left and
Count

&&
SIGN K
Set Sign
into MPAC

&&
BPL K
Branch
on Plus

&&

BZE K
Branch
on Zero

&&
BMN K
Branch
on Minus

&&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS

Definition

(cont)

Shifts the content of the MPAC (and MPAC+l and MPAC+2) to the left until a ONE
within a positive quantity or a ZERO within of a negative quantity is moved into bit
position 14 of the MPAC. Stores the complement of the number of single-position
shifts carried out at K. If MPAC contains a plus or minus zero, a plus zero is
stored at K.

K must be a location in E memory. If c(K) 2:: 0, no operation. If c(K)< 0, the con­
tent of MPAC (if in DP or TP mode} or content of VAC (if VEC mode) is comple­
mented. If c(K) = 0, leave sign in MPAC unchanged.

The instruction located at K is executed next if the MPAC contains a positive quantity .
The consecutive instruction is executed normally if the MPAC contains another quan­
tity. The content of the MPAC is not stored in the Pushlist, and execution of
the next string is started immediately if the re are no more instructions in the cur­
rent string to be executed and no STORE address is given .

The instructions located at K are executed next if the MPAC contains a plus or minus
zero . All definitive statements for BPL K except the first apply to BZE K .

The instructions located at Kare executed next if the MPAC contains a negative quan ­
tity . All definitive statements for BPL K except the first apply to BMN K .

~
?:I
I

N
I

1--'

0
O'

b:l

n
0 z
-n -C
m z -
► r-

Initials
and Nam

BHIZ K
Branch on
High Order
Zero

& &
n VAD K 0 Vector Add z && -n -0
ffl z VSU K
-t - V ctor Sub-

► tract ,-
& &

BVSU K
Vector Sub-
tract Back-
wards

&&
O'
I

N
\.,-.)

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

The instructions located at Kare executed next if the MPAC (not necessarily MPAC + 1

and MPAC + 2) contains a plus or minus zero. All definitive statements for BPL K
except the first apply to BHIZ K.

Adds the vector stored at K to the vector contained in the VAC. Keeps the result in

the VAC. Sets register OVFIND in case of any overflow or underflow.

b(VAC, , VAC + 5) + c(K, , K + 5) = c(VAC, , VAC + 5)

Subtracts the vector stored at K from the vector contained in the VAC. Keeps the

result in the VAC. Sets register OVFIND in case of any overflow or underflow.

b(VAC, , VAC + 5) - c(K, , K + 5) = c(VAC, , VAC + 5)

Subtracts the vector contained in the VAC from the vector stored at K. Keeps the

result in the VAC. Sets register OVFIND in case of any overflow or underflow.

c(K, , K + 5) - b(VAC, , VAC + 5) = c(VAC, , VAC + 5)
h:j
!:Jj

I
N
I
~

n
0
z .,, -C
m z -
►

0
O'
tp

n
0 z .,, -C
ffl z
~ -
► r-

Initials
and Name

VXSC K
Vector
times
Scalar

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

The Interpreter clears the VAC and enters the vector stored at the first address of
the address string into the VAC if the instruction code is in the first of an instruc­
tion string. The vector contained in the VAC is then multiplied by the DP scalar
stored at the second address of the string. Each vector component is rounded to
DP. The result is kept in the VAC.

The vector contained in the VAC is multiplied by the DP scalar stored at K if the in­
struction code is not the first one of an instruction string and if the Interpreter is in
the vector mode. Each vector component is rounded to DP. The result is kept in the
VAC .

b(VAC, , VAC + 5) · c(K, K + 1) = c(VAC, , VAC + 5) rounded

The DP scalar contained in the MPAC is multiplied by the vector stored at K if the
instruction code is not the first one of the instruction string and if the Interpreter is
in the DP mode. Each vector component is rounded to DP. The result is kept in the
VAC .

b(MPAC, MPAC + 1) · c(K, , K + 5) = c(VAC, , VAC + 5)

The Interpreter transfers the result into storage if the instruction code is the last
one of an instruction string. Storage is at the last address of the address string or
in the Pushlist when no address is given.

~
~
I

N
I

1--'

0
O"
lJj

n
0 z -,, -C
m z
~ -
► r-

n
0 z ,, -CJ
m z
-I -
► ,..

O'
I

N
V,

Initials
and Name

Dot K
Vector Dot
Product

~

VPROJ K
Vector
Project

~~

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

The Interpreter clears the VAC and enters the vector stored at the first address of
the address string into the VAC if the instr\lction code is the first one of an instruc­
tion string. The inner product (vector dot product) is then computed from the vector
contained in the VAC and the vector stored at the second address of the address string.
The resulting TP scalar is kept in the MPAC. Sets register OVFIND in case of
overflow or underflow.

The inner product is calculated from the vector contained in the VAC and the vector
stored at Kif the instruction code is not the first of an instruction string. The re­

sulting TP scalar is kept in the MPAC. Sets register OVFIND in case of overflow
or underflow.

b(VAC, , VAC + 5) DOT c(K, , K + 5) = c(MPAC, MPAC + 1,
MPAC + 2)

Normally, only a DP scalar is transferred to storage. However, the TP scalar is
transferred to storage if the last of an instruction string is a TP instruction. The
Interpreter transfers the DP scalar to storage if the instruction code is the last one
of an instruction string. This storage is at the last address of the address string or
in the Pushlist when no address is given.

Computes the inner product (see DOT K) from the vector contained in the VAC and
the vector stored at K. Multiplies the vector contained in the VAC by the scalar of

the inner product. Keeps the result in the VAC. Sets register OVFIND in case of
overflow or underflow.

(b(VAC, , VAC + 5) DOT c(K, , K + 5)] b(VAC, , VAC + 5) =

c(VAC, , VAC + 5)

~
~
I

N
I

0
O'
tp

n
0 z ,, -C
m z -
► ,...

CJ"
I

N
CJ"

Initials
and Name

VXV K
Vector Cross
Product

& &

n MXV K

0 Matrix

z times ,, Vector - & & C
m z VXM K -4 - Vector
► ,- times

Matrix

& &

VSRT N
Vector Shift
Right

~&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Computes the outer product (vector cross product} from the vector contained in the

VAC and the vector stored at K. Keeps the result in the VAC. Sets register OVFIND
in case of any overflow.

b(VAC, , VAC + 5) CROSS c(K, , K + 5) = c(VAC, , VAC + 5)

Computes the prem':!tipli_5:ation of the vector VP contained in the VAC by the DP matrix

M stored at K (M • Vb= V c)- Keeps the result, V C ' in the VAC. Sets register
OVFIND in case of any overflow.

c(K, , K + 18) · b(VAC, , VAC + 5) = c(VAC, , VAC + 5)

Computes the post multiplication of the transposed vector Vb o!._the vectoE.._ Vb con­
tain din the VAC by the trans.e_osed DP matrix M stored at K (Vb· M' = V~). Keeps
the result, transposed vector Ve, in the VAC. Sets register OVFIND in case of

any overflow or underflow.

b(VAC, , VAC + 5) c(K, , K + 18) = c(VAC, , VAC + 5)

Shifts each vector component of the vector contained in the VAC N places to the right

(O < N :'.S 28 decimal). The quantity N is a number written into the program instead
of an address. Each vector component is rounded to DP. Keeps the shifted and
rounded vector quantities in the VAC.

~
~
I

N
I

1--'

0
CJ"
tJj

n
0
z .,, -C
m z
~ -
► ,-

Initials
and Name

VSLT N
Vector Shift
Left

&&
n
0 z
-n -CJ
ffl z
-t -
► ITC K ,..

Interpretive
Transfer
Control

&&
STZ K
Store Zero

&&
O"
I

N
--.J

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS(cont)

Definition

Shifts each vector component of the vector contained in the VAC N places to the left
(O < N < 28 decimal). The quantity N is a number written into the program instead
of an address. Keeps the shifted vector quantities in the VAC. Sets register
OVFIND if a ONE of a positive quantity or a ZERO of a negative quantity is shifted
out of VAC , VAC+2, or VAC+4. VSLT N with N = 1 must be used to double the
vector contained in the VAC. Instruction VAD VAC does not work because the con- ·
tent of VAC can not be added to the content of VAC. Instruction VXSC is not useful
either, because a scalar can never be equal to or larger than one.

The content of the MPAC is shifted N places to the right if the number N is indexed
and if N is a negative number (-42 ~ N ~ -1 decimal for TP, -28 ~ N ~ -1 for DP of
vector operations) .

Instruction ITC K must be the last (or only) instruction of an instruction string . It
causes the instructions stored at K to be executed next . The instruction stores the

beginning Interpretive address of the next instruction string at QPRET. The quan­
tity K must be an address in F memory where Interpretive Programs are stored.

The instruction stores a single - precision zero in K . The content of the MPAC or the
VAC is transferred to storage if the instruction code is the last one of an instruction
string and if no STORE address is given . Starts executing the next string of instruc­
tions without transferring the MPAC or VAC contents into the Pushlist if the in­
struction code is the last one of an instruction string and if no STORE address is
given.

1-xj
~
I

N
I

n
0 z .,, -C
m z
-t -J> ,..

0
O"
b:l

n
0 z .,, -C
m z
-t -
► ,-

O'
I

N
(X)

Initials
and Name

BOV K
Branch on
Overflow

&&

SIN
DP Sine
Function

&
cos
DP Cosine
Function

&
ASIN
DP Arcsine
Function

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS

Definition

(cont)

Resets register OVFIND if it is on and executes the instructions located at K; other­
wise the execution of the current instruction string is continued. Overflow or under­
flow during the following operations turns on the overflow indicator: DAD, TAD,
DSU, TSU, BDSU, DDV, BDDV, TSLT, VAD, VSU, BVSU, DOT, VPROJ, VXU,
MXV, VXM, and VSLT.

The MPAC or the VAC content is transferred to storage if the instruction code is the
last one of an instruction string but only if a STORE address is given . The Inter­
preter starts executing the next instruction string without transferring the MPAC or
the VAC content into the pushdown list .

Computes 1/2 sin 2rra, where a is the before (prior) DP content of the MPAC. Keeps
the DP result in the MPAC . The values lie between +1/2 and - 1/2 (+land -1 scaled) .

1/2 sin [27Tb (MPAC, MPAC + 1)] = c(MPAC, MPAC + 1)

Computes 1/2 cos 2TTa, where a is the prior DP content of the MPAC. Keeps the
DP result in the MPAC . The values lie between - 1/ 2 and +1/2 (-1 and +l scaled) .

1/ 2 cos [2rrb (MPAC, MPAC + 1)] = c(MPAC 1 MPAC + 1)

Computes 1/2 iT arcsin y, where y is the prior DP content of the MPAC. Keeps the
DP result in the MPAC . The principal values lie between -1/4 and +1/4 (- TT/2 and

+1r / 2 scaled) .

1/ 2 rr arc sin [2b(MPAC , MPAC + 1)] = c(MPAC , MPAC + 1)

~
~
I

N
I
~

0
O'
tJj

n
0 z .,, -C
m z
-t -
► ,-

n
0 z .,, -C
ffl z
-t -
► ,-

0'-
1

N
-...0

Initials
and Name

ACOS
DP Arccos
Function

&
DSQ
DP Square

&

SQRT
DP Square
Root

&

ABS
Absolut e
Value

8

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Computes 1/2 rr arccos y where y is the prior DP content of the MPAC. Keeps the
DP result in the MPAC. The principal values lie between O and 1/2 (0 and TT scaled).

l / 2tr ar c cos (Zb(MPAC, MFAC t 1)] = c(MPAC, MPAC t 1)

Squares the prior DP content of the MPAC. Keeps the TP result in the MPAC.
Normally only a DP result is transferred to storage. However, the TP result is
transferred to storage if the last of an instruction string is a TP instruction.

square (b(MPAC, MPAC t 1)] = c(MPAC, MPAC t 1)

Obtains the square root of the prior content (DP or TP) of the MPAC. Keeps a DP
result in the MPAC. A negative result is an error and a diagnostic routing is auto­
matically exe cuted.

square root (b(MPAC, MPAC t l, MPAC t 2)] = c(MPAC, MPAC t 1)

Computes the absolute value of the prior content (DP or TP) of the MPAC. Keeps
the (DP or TP) result in it. Normally only a DP result is transferred to storage.
However, the TP result is transferred to storage if the last of an instruction string
1s a TP instruction.

b(MPAC, MPAC t l, MPAC t 2) = c(MPAC, MPAC t l, MPAC t 2) ~
~
I

N
I

1--'

0
O'­
tJ:j

n
0 z .,, -C
m z
-I -
► ,-

n
0
z .,, -C
m z
-4 -
► ,..

O'
I

w
0

Initials
and Nam

DMOVE
DP Mov

TMOVE
TP Move

TP
Declar TP

VSQ
Vector
Squar

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

This instruction must be the first of an instruction string. It enters the DP quantity
locat d at the first address K of the address string into the MPAC.

c(K, K + 1) = c(MPAC, MPAC + 1), c(MPAC + 2) = 0

This instruction must be the first of an instruction string. It enters the TP quantity
located at th e first address of the address string into the MPAC.

c (K, K + l , K + 2) = c (MP AC, MP AC + l , MP AC + 2)

This instruction can not b the first of an instruction string. It causes the Interpreter
to switch to TP mode.

Th Int e rpreter clears the VAC and enters the vector stored at the first address of
th addr ss string into the VAC if the instruction code is the first one of an instruc­
tion string. The v tor contained in the V AC is then multiplied (inner product) by

the same vector. The resulting TP scalar is kept in the MPAC. Sets register
OVFIND in case of overflow or underflow.

The vector contained in the VAC is multiplied (inner product) by the same vector if
the instruction code is not the first one of an instruction string. The resulting TP

scaler is kept in the MPAC. Sets register OVFIND in case of overflow or under­

flow.

b(VAC, , VAC + 5) DOT b(VAC, , VAC + 5) = c(MPAC, MPAC + 1,
MFAC + 2)

1-rj
~
I

N
I

.......
0
O'

t:d

n
0 z .,, -C
m z
-f -
► r-

n
0 z ,, -C
m z
-t -
► ,...

Initials
and Name

ABVAL
Vector
Absolute
Value

&

UNIT
Normalize
Vector

&

VMOVE
Vector
Move

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Normally only a DP scalar is transferred to storage. However, the TP scalar is
transferred to storage if the last of an instruction string is a TP instruction. The
Interpreter transfers the DP scalar to storage if the instruction code is the last one
of an instruction string. Storage is at the last address of the address string or in
the Pushlist when no address is given.

Computes the half length of the vector Vb contained in the VAC and keeps the result

Vb
2 in the MPAC. Normally only a DP result is transferred to storage. However,

the TP result is transferred to storage if the last instruction of an instruction string
is a T P instruction. Instruction AB VAL stores the square length of vector Vb at lo­
cations 00034 and 00035.

Computes the half-~it vector of the vector Vb contained in the VAC and keeps the
V

normalized vector -
2

b in the VAC.
Vb

The magnitude of vector Vb must be greater

than 2- 21 because of squaring effect. Instruction UNIT stores the s~are length of

vb vb
vector -

2
- at locations 00034 and 00035, and the length of the vector -

2
- at locations

00036 and 00037. Location 00033 is used for temporary storage.

This instruction must be the first one of an instruction string. It enters the vector
located at K into the VAC.

c(K, , K + 5) = c(VAC, , VAC + 5)

f-zj
~
I

N
I

n
0 z .,, -C
m z -)>
r-

0
O'-
tt!

n
0 z ,, -C
m z ... -
► ,..

O'
I

v,J
N

Initials
and Nam e

VDEF
Vector
Define

&

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Enters a vector, V = (V1, Vz, V3), into the VAC. Vi is taken from the MPAC (and
MPAC + 1), V 2 from the top of the Pushlist, and V 3 from just below V 2 in the Push­
list. This instruction can be used to generate a vector whose components must be
individually computed in DP and can be stored consecutively.

For instance, a program to compute

1s written as follows:

DSQ

TSLT

cos
VDEF

0

C
0
B
l

l

A
STORE X

2 B and V 3 = c 2

The three vector components are stored at
location X by one vector storing ope ration
instead of by three DP storing operations,
thus saving two words of program. (The
vector components are entered into the VAC
prior to storage at X).

COMP The Interpreter clears the MPAC and enters the DP quantity located at the first ad-
Complement dress of the address string into the MPAC if the instruction code is the first one of

an instruction string. First VMOVE must be applied to enter a TP quantity into the
MPAC or to enter a vector into the VAC before using complementing instruction
TMOVE.

{ continued on next page)

~
~
I

N
I

I-'

0
O'

td

n
0 z
"Tl -C
m z
-t -
► r-

n
0 z .,, -C
m z
-4 -
► ,..

O'
I

v.J
v.J

Initials
and Name

SMOVE
Single
Precision
Move

AXT T, N
Address to
Index True

&
AXC T, N
Address to
Index Com­
plement

&

TABLE6-l

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

COMP complements the MPAC content and keeps the complemented quantity if the
Interpreter is in the DP or TP mode. COMP complements the VAC content and keeps
the complemented vector if the Interpreter is in the vector mode.

This instruction must be the first one of an instruction string. It enters the single
precision quantity located at the first address K of the address string into the MPAC.

c(K) = c(MPAC), c(MPAC + 1, MPAC + 2) = 0

This instruction is useful for picking up single precision quantities left by input output
routines and changing them to double precision.

Enters the quantity N into the specified index register (-37777 :S N :S +37776). The
quantity N is written into an address string instead of a relevant address K.

Enters the complemented form of the quantity N into the specified index register
(-37777 < N < +37776). The quantity N is written into an address string instead
of a relevant address K.

INCR T, N Increments the content of the specified index register by quantity N
Increment In- (-37777 :S N < +37776). The quantity N is written into an address string instead
&x Register of a relevant address K.

n
0
z .,, -C
m z
-t -
► r-

n
0 z .,, -C
ffl z -
► ,-

Initials
and Name

LXA T, K
Load Index
Direct from
Address

&
LXC T, K
Load Index
Comple­
mented from
Address

&
SXA T, K
Store Indexed
Quantity in
Address

&

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS {cont)

Definition

Enters the SP quantity located at K of E memory into the specified index register.
Instruction AXT can be used to load from F memory.

Complements the SP quantity located at K of E memory and enters the complemented
quantity into the specified index register.

Transfers the content of the specified index register to location K of E memory.

XCHX T, K Exchanges the content of the specified index register with the content of location K of
Index Regis- E memory.
ter Exchange

&
XAD T, K Adds the content of location K in E memory to content of the specified index register.
Add to Index Sets register OVFIND in case of overflow or underflow.
Register

&

~
~
I

N
I

I-'

0
O'

to

n
0 z .,, -C
m z -
► ,-

n
0 z ..,, -C
ffl z
-4 -
► ,..

O'
I

I..,.;
u,

Initials
and Name

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS {cont)

Definition

XSU T, K Subtracts the content of location K in E memory from the content of the specified
Subtract from index register. Sets register OVFIND in case of overflow or underflow.
Index Regis-
ter

&
AST T, N
Address to
Step True

&
TIX T, K
Transfer on
Index

&

EXIT
Leave Inter­
pretive Mode

&
RTB K
Return to

&sic at K

Enters the quantity N into the specified step register (-37777 < N < +37776). The
quantity N is written into an address string instead of a relevant address K.

Subtraction is performed and the instructions located at Kare executed next if the
content of step register T can be subtracted from the indicator index register T
without driving the content of the index register to zero or negative. The content
of the index register is left unchanged and no branching takes place if the content
of the indicator index register is equal to or smaller than the content of the indi­
cated step register.

This instruction must be the last or only instruction of an instruction string. Causes
the Interpreter to complete its turn immediately and switch the AGC back to executing
Basic Instructions in the basic mode.

This instruction need not be the last of an instruction string. Causes the Interpreter
to complete its turn after the execution of instructions located at Kand then switch
the AGC back to the basic mode.

A basic subroutine sequence of Basic Instructions can be called without leaving the
Interpreter by using the RTB instruction.

n
0 z
-n -C
m z -
►

n
0 z .,, -C
m z ... -
► ,-

CT"
I
w
CT"

Initials
and Name

NOLOD
No Load

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Resets register LOADIND. This instruction can be used when the MPAC or VAC
contains the de sired quantity after executioning the last instruction of the previous
instruction string.

LODON Sets register LOADIND. This instruction can be used to cause the next instruc-
Load Indica- tion to load the MPAC or VAC.
tor On

ROUND
Round to
DP

ITCQ
Inte rpr eti ve
Transfer
Control to
Address
Stored in !RET
ITA K
Interpretive
Transfer of
Address

&

Rounds the MPAC content to DP and turns on the overflow indicator 1n case of
overflow.

c(MPAC + 2) = 0

Causes the next instruction located at the address contained 1n QFRET to be executed.

Transfers the content of QPRET to location Kin E memory.

n
0 z .,, -C
m z -)>
,-

n
0 z .,, -C
m z -
► ,-

O'
I

v,)

-J

Initials
and Name

ITC! K
Interpretive
Transfer
Control In-
direct

&
SWITCH N

&
SWITCH N,

&
K

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Definition

Causes the instructions at the address contained in K to be executed next. Instruc­

tions IT A K and ITCI K enable the Interpreter to save, and later use, the return ad­

dress when a called subroutine performs any ITC K instruction.

Complements content of switch N, 1 < N ::S 15
17 < N < 31
33 < N < 47 decimal

Executes next instruction at K if switch N is set to ZERO or executes consecutive

instruction if switch N is set to ONE if address word contains l < N < 15
17 < N < 31
33 ::S N ::S 4 7 decimal

~
~
I

N
I

,-...

n
0 z ,, -C
m z
-I -
► ,-

0
c,-..
tp

n
0 z .,, -C
ffl z
-t -
► ,-

O'
I

vJ
00

NOTES:

ffi

ill

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

Address K is a direct address or an indexed address as defined by the order code.
Number N is a direct number or an indexed number as defined by the order code.

The Interpreter clears the MPAC and enters the DP quantity located at the first ad­
dress of the address string into the MPAC if the instruction code is the first one of
an inst ruction string.
The Interpreter transfers the DP result to storage if the instruction code is the last
one of an instruction string. Storage is at the last address of address string or in
the Pushlist when no address is given.

The Interpreter clears the MPAC and enters the TP quantity located at the first ad­
dress of the address string into the MPAC if the instruction code is the first one of
an instruct ion st ring.
The Interpreter transfers the TP result to storage if the instruction code is the last
one of an instruction string. Storage i _s at the last address of address string or in
the Pushlist when no address is given.

The Interpreter clears the MPAC and enters the DP quantity located at the first ad­
dress of the address string into the MPAC if the instruction code is the first one oi
an instruction string.
The Interpreter transfers the DP quantity contained in the MPAC to storage ii the in­
struction code is the last one of an instruction string but only if a STORE address is
given.

The Interpreter clears the VAC and enters the vector stored at the first address oi
the address string into the VAC if the instruction code is the first one of an instruc­
tion string.

~
~
I

N
I

........
0
O'
tp

n
0 z .,, -C
m z
-t -
►

n
0 z .., -C
m z
-t -
► ,..

NOTES:
(cont)

TABLE 6-1

INTERPRETIVE INSTRUCTION DEFINITIONS (cont)

The Interpreter transfers the result to storage if the instruction code is the last one
of an instruction string. Storage is at the last address of the address string or in
Pushlist when no address is given.

The Interpreter does not clear or enter anything in the MPAC or VAC if the instruc­
tion code is the first one of an instruction string.

Address K (if given) must be a direct address.
The instruction does not enter anything into any accumulator, does not transfer any­
thing to storage, and does not change the current mode of operation (DP, TP or
vector operation). Thus, it may be placed anywhere in an instruction string.
The content of the accumulator in use is not transferred to the Pushlist if the instruc­
tion code is the last one of an instruction string and if no STORE address is given.

t'%j
:;:t.1
I

N
I

n
0 z .,, -C

"' z
-t ->

0
O'
tp

FR-2-106B

Instructions
7

ITC K 0

VXSC K 0

VSU K

&
0

BMN K 0

STZ K 0

BOV K 0

DAD K

&
0

BHIZ K 0

DSU K 0

DBSU K 0
DMP K 0

TSLT N & 0

DDV K 0

BDDV K 0

TAD K

&
0

TSLC K l

TSRT N l

DMPR K l

TSU K

&
l

SIGN K l

MXV K l

VXM K l

VAD K

&
1

BZE K 1

BVSU K 1

VSRT N l
VSLT N l

BPL K & 1

DOT K 1

VXV K l

VPROJ K l

&
&

6 -40

CONFIDENTIAL

TABLE 6-2

ORDER CODES

Order

6 5

Code

4

Dual-Quantity Instructions

0 0 0
0 0 l

0 0 l
0 l 0
0 l 0
0 l l

0 l l

l 0 0
l 0 0
l 0 l

l 0 l

l l 0
1 l 0
l 1 l
l l l
0 0 0
0 0 0
0 0 l
0 0 l
0 l 0
0 l 0
0 l l
0 l l
l 0 0
1 0 0
l 0 l
l 0 l

l l 0
l l 0
l l l

l l l

X = 0 for dire ct addressing

Bits

x = l fo r indirect addressing

3

l

0
l

0
l

0
l

0
1
0
1
0
1
0
l
0
l
0
l
0
l
0
l
0
l
0
l

0
l
0
l

Group B Dual-Quantity Instruction

CONFIDENTIAL

2& l

X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0
X 0

Instructions
7

TMOVE 0

VMOVE 0

UNIT 0
ABVAL 0
VSQ 0
A BS 0
ASIN 0
ACOS 0
SIN l

cos l
S Q RT l
DSQ l

C OMP l

DMOVE l

S M O VE 1

V DEF l

CONFIDENTIAL

TABLE 6-2

O RDER CODE S (cont)

Order

6 5

Code Bits

4

Singl e -Quantity Instructions

0 0 0
0 0 l
0 l 0
0 l 1
l 0 0
l 0 l
l l 0
1 l l
0 0 0
0 0 l
0 l 0
0 l 1
l 0 0
l 0 1
l l 0
l l l

F R- 2 - 106B

3 2 & l

X l l
X l 1
X l l
X l l
X l l
X l l
X l l
X l l
X l l
X l l
X 1 l
X 1 l
X l l
X 1 l

X l 1
X l l

Index R egi ster Instructio ns and Misc ellane o us Instructio ns

EXIT 0 0 0 0 0 0 l

RTB K 0 0 0 0 l 0 l

AXT, TN 0 0 0 l X 0 l

LXA, T K 0 0 l 0 X 0 l

LXC, T K 0 0 l l X 0 l

SXA, T K 0 l 0 0 X 0 l

XCHX, T K 0 l 0 l X 0 l

INCR , TN 0 l l 0 X 0 j

XAD , T K 0 l l l X 0 1

XSU, T K l 0 0 0 X 0 l

AST, TN l 0 0 j X 0 l

AXC, T N l 0 l 0 X 0 1

T IX, T K l 0 l 1 X 0 1

NOLOAD 1 1 0 0 0 0 j

R OU ND l j 0 0 j 0 1

ITA K 1 l 0 j 0 0 j

ITCI l l 0 1 1 0 j

O N No r OFF N l j l 0 0 0 j

BS O N , K , or 1 l l 0 1 0 1

B SO FF
LODON 1 l 1 l 0 0 l

ITCQ 1 I l I I 0 I

& X = 0 fo r dir ect addr essing

X = l for indirect addressing.

CONFIDENTIAL
6 - 41 / 6 -4 2

CONFIDENTIAL
FR-2-106B

6-50. INTERPRETER

6-51. GENERAL DESCRIPTION

6-52. Program section Interpreter consists of two major routines:
the Dispatcher (locations 4000 through 4472, 4721 through 4727, and
4746 through 4764) and the Executer (locations 4473 through 4720, 4730
through 4745, 4765 through 5652, and 03, 6000 through 03, 7435). The
Dispatcher breaks Interpretive Instruction Words (IIW) into Interpre­
tive Instruction order codes, decodes Interpretive Instruction order
codes and Interpretive Address Words (IA W), mates the proper rele­
vant addresses with the instruction codes, enters pertinent information
into certain storage registers (table 15-15), and, finally, transfers
control to the proper subroutines in the Executer. The Executer con­
sists of a group of subroutines which execute each Interpretive Instruc­
tion. The Dispatcher and Executer enter a quantity into MPAC or VAC
whenever initial loading is required.

6-53. DISPATCHER

6-54. INTERPRETER ENTRIES

6-55. Figure 6-3 illustrates the functional flow of the Dispatcher
and some routines of the Executer which are shown in dotted lines. A
detailed flow chart for the same routines is shown in attachment 6-1.
There are three different entries into the Dispatcher which are:

a. INTPRET for processing the first IIW of the first
string of an interpretive program portion,

b. NEWSTRNG for processing the first IIW of any other
string,

c. NEWORDER for processing any other IIW or for trans­
ferring a partial or final result to the Push­
list or to another E memory location.

6-56. The Interpreter is entered by executing the Basic Instruction
TC INTPRET, which is the last instruction of a series of Basic In­
structions preceding an interpretive program portion. Executing TC
INTPRET switches the operation of the AGC from the basic mode to
the interpretive mode. Whenever the Dispatcher is entered at location

6-43

CONFIDENTIAL

CONFIDENTIAL
FR-2.-106B

INTPRET, the 12-bit address of the location of instruction TC INTPRET
is stored in register AWLOC, and the bank number of the program
portion currently executed is stored in register BANKSET. Whenever
the Dispatcher is entered at location NEWSTRNG (which is really a re­
entry following the execution of a string), the bank number of the in­
terpretive program portion currently executed is re-entered into reg­
ister BNK.

6-57. After entering the Dispatcher at minor routine INTPRET or
re-entering at minor routine NEWSTRNG, and setting registers BNK
and BANKSET, the quantity 00001 is entered into LOADIND to indicate
that the multiprecision accumulator (MPAC) or the vector. accumulator
(VAC) has to be loaded before an Interpretive Instruction is executed.
Then, the address of the location where the fir st IIW of a string is sit­
uated is stored in register IWLOC. The tn1e form of the first IIW is
stored in r egister ORDER and the address of the last IIW of the same
string is computed and entered into register AWLOC. The quantity
00000 is entered into the accumulator A indicating no second order code
ne e d be decoded for the first IIW; control is then transferred to minor
routine IPROC2. Routine IPROC2 transfers the quantity 00000 to reg­
ister ORDER and moves the order code contained in the first IIW into
bit positions 7 through 1 of the accumulator A.

6-58. Whenever the Dispatcher is entered at minor routine NEW-
ORDER (normally a re-entry following the execution of an Interpretive
Instruction or the storage of a result), the content of register NEW JOB
is tested to determine whether or not control must return to the Job
Control (Executive) to change Jobs. (The purpose of the automatic
Job breakpoint is discussed in paragraph 12-13.) If the execution of
the current string can be continued, the bank number of .the current
string is re-entered into register BNK.

6-59. After entry at NEW ORDER and the setting of register BNK,
the content of register ORDER is tested to determine whether or not a
second order code (contained in bit positions 7 through 1, figure 6- 2) o f
an IIW remain to be decoded. Whenever ORDER contains 00000, indi­
cating no second order code need be decoded, the word following the IIW
last decoded is tested to determine whether the following word is another
IIW or an IA W. If the next word is an IA W (the first IA W of that string}
this indicates that all IIW of that string have been processed; in this
case, the result has to be stored in the Pushlist or in another E mem­
ory location as described in paragraphs 6-102 through 6-107. If the
next word is another IIW, this IIW is stored in its true form in register
ORDER and its address is stored in register IWLOC. The second order
code of this IIW or 00000 is entered into accumulator A and control is

6-44

CONFIDENTIAL

INTP'RET IIEWSUNG

Store 12-bit add reu of lut word
TC INT,RET in iW\.OC

Store bank n1,1•ber of current pro­

gru portion in coapl-.nted

for ■ in UNISET

Re-enter ban k n u ■ be r of

currant progr•• portion
into IIIU

Enter 00001 into L0A0 IIID

Store 12-bit addreu of firat IIW

of string lll\.OC

Store first 11'111 i n trweforwi i11

C011pute 12-bit addreu of lut 11W

of atring and store address in

Enter 00000 into A

IPROC2

Mo~e content of l to QijOfR

"4ove first order code of I I W

fori.erlJ contained i nOROEI! into

bit pcos it ions 7 through I of A

c 0lt0[R > 00000

A HCOnd order code /lu

to be decoded

Enter 00000 into ORD[(!

Enter second order code

i nto A

CONFIDENTIAL

Continue txecution of interpretive

progr• porti,---'"---- ---{ ' htur n control to J ob Control

Re-enter bank nu111ber of

current progra ■ port ion
i nto IIIH

THt content of 0R0~t

Tut content of IIEWJOII

c(0ll'H'.1!) = 00000

llo 1econdord1r code/111

to tit! decode d

Tr 1n1 fe r cont r ol to CIU 11 i'.i2

of Job Co"ttrol

FR-2-106B

IHtxt word i I anot her l lW h;:
5

: o ;:c:t:owi ng th e It W ,_,_.,_,_.,_,_,_;_,_,_,_,._• ________ -,

Store next 11111 i n true for• in

ORDFR

Store 12-bit addreu of nnt I I•

in IWI.OC

Enter second order- code of I I W or

00000 ,nto A

I

Figure 6-3. Dispatcher Routine Functional Flowchart (Sheet I of 3)

I

CONFIDENTIAL
6-45/6-46

I

CONFIDENTIAL
FR-2-106B

9
I JUMP IT I

Ord•r code repre1ent1 • Order code doe , not represent
0111l-Q11 u1tity Instruction hit bit 1 of order code • 0 11 1l-Q111ntity l n 1tructior1

contai ned in CYR)--------------- ----- - - - ----,

Word I I an IIW

, oouss

lncre■ en t ll'II content of lWLOC
to c o ■ p,,te • i ther th 12- b i t
eddreu of •ord follo,dng
l 11t IIW of str ing or th e
12-bit 1 ddr111 of •Or d
following 10 d.coded lut

Ellter thi s word i nto A

Te1t word in A

(word i1 an In a c tive Addreu

l'USNU'2

Store 12-il t addreu of
l ocat ion where Inact iv e
Addreu i 1 1lhahd i n AWLOC

I

I UIUPIIOC I

Or d er code repre11n t 1 a
Sin'jl le- Qunt i t1 l n , t rYCt ion

c(LOAO III D) = 00000 o(LOlO"O~ l \'"' ,ootoot o f LOAOINO

UULOAD

Te a t o rd er code a nd enter

7771',, 77175. or 77111
in to MODE

Store 000~3 or ,00,3 i1utud
of ord e r cod e in CTII

Store b i ll 7 thioug h ~ of
ord e r cod• i n SL

Wo rd I 1 ,n JAW iut not
an I nactive Add r eu

Store IAW In t r11e for ■ ii,
AWOID

$tore I h 12-b It addre 11 in
AWLO C

Enter 00000 into au

Co • pute 12-b it 1ddr 111 of
proper loc1tion i n Ull,l J II MP

l i st and tr1 n1ftr control
to thi1 loc1tion

Order code repreaent, HJ ~1 ___ ,_u_,._u_, __ ___.1
otlte r Du l -Qvant l tJ
ln1traction tllen YISC a:

Te1t order code

Order code roruenh USC a:
instrwction

1
locatlo n fro ■ wh lc~ data l a
to be tak111

Store raal a4dreu ill PU SHLOC
and UDI

.... T~ >-,· ..

Addru, ~ ooosa , r,ter, to a
•ork Area

Co ■ p11ta rul addreu

cb

• Co■ pate real addreu of
locatiOII fro■ wlill c ti data 11

to •• hken
stor • real addrna in l'USKLOC
and ADDI

I
Addrua word < 17777

T•at 1a■ e addre11
word •t• lt1

A4dreu > 00060, rehra \ :: :•:::;I E ooooq' ~, ... ,. ..
..__ _______ _.,

Store reel addr111 i n ADDII

!

I

U11 IAW d l rdTnt bit 2 of order co d,

\ conta in e d i n CYI

IIIOIIIUDEJ: I

Addreu word > 20000
Tnt 1ddr11t word in .1.WOID >-------------,

!

.l.ddre11 word > 311000,
repre11nt1 STORE Code
Addrtll Wor d

,.___,_. _. ,_ .. _·_·_·_·_"_•_·_· __,~·: ' :::.:
1

31776, - ..,, ... ,. i l
~----~----,

Co■p,ll 12-bit addrtn of
STOIIE Co de Add r ut Wo rd
I oc a t Io n and ,tore it in
AWLOC

Co •po11 co11plete 1ddr111

I
!

SWADDII

Enter ban k code into IIU
Store coaplete 1dd ra11 ii

Store 12 -b,t 1dd r e11 ,n AD'H

I

Ord e r cod e repre1ent1
lnd e11 Reg i ster and

Te , t b l t 2 of order code Mi 1 ctl 1 a neous tn 1 tr11ction1

co..,t a in ed in CYR

Store address of n e1t I lW
UL OC

I MI ~C,ROC I

F 1ddr1u s •••t word i , a n t AW Te s t wo r d fol lowing the

IAW lut decoded

·•• t •O f d i I an 1111

Co 11 put e r eal 1 ddre1 1

Enter 00000 into IIU

Co ■ pwte 12-t 1 ! a ddress of
prop e r location i n ltOIIIJUMP
1 i 1t 1nd t ran I fer c ont ro I
t o this loc 1t ion

I NOEI

Mov e 1ub1 ddre11 I.Oi into
bit po1 iti on1 10 Urou1h
I of SIi

Co11pose co ■ p lell a ddre u (if
nece11ar1) a nd ,tore i t i n
co a ple11e nted fo r ■ in 11101:0

Uae 1tore addreu

ST0U 0 II

Store ST01£ Cod e Ad dress Wo rd
in tr11e f or ■ in AWO't O

Sto.re i t1 12-b it 1ddre11
.I.WLOC

Store 000'41, 000'40, or 000'42
in stead of o rder code i n CYII

Re•enllr b i ll I I throu9h I of
OOR O only

direc:tl,..1 ___ -{
Tu t STOIIE code

~,-enter 10 b it [ad dre u
o f .I.WOIID onl 7

'"'''"'~~~·'"" 1~ ,

00000 -. 1 ndered
lddreu < 37777

00000 or 77777

lnde11 1ubadd r e11 t nd 1tore
1nde11ed addre11 t n l OOR

Te, t i nde1ed address
> ,0000

I nde11 e d add r1 11 i I a c o ■ pl et,
F 1d dr e1 1

l11de xecl uldreu
represents a
11111 11 negati•e II - - - -----+----~------{ Te1 t i nd e111 d a ddr ess 191in >--------,

Sto re co•p 1 ete 1ddre11
AWOflO

lnde11 ,tore
1ddreu

Figure 6-3. Dispatcher Routine fiunctional Flowchart (Sheet 2 of 3)

CONFIDENTIAL
I

l'VSH00Wlf

Tran1f1r addre11 of avai I abl •
P111frll i1t loc at ion fro ■

P' USIILOC to ADDI

available 1'111llli1t loc ation
a nd 1tor1 I t in PVSHL0C

Co•puh 12•bit addrnt of
proper locatiofl In IJUNP'
111t and tr an t fer control
to thi 1 l ocat i on

1339

6-47/ 6 -4 8

Orde r code r e pr• ••nt,

Group A i n st ruc ti on

I

Co ■ pute 12-blt addrn1 of

proper location In 1-.IUNr

1 i 1t and tra,ufe r control

to this loca ti on

r--- -,;!;----7
1----------,
I Transfer control to OPSET I
I
'- ---,- --_J

9
JUMP

Tut bih 3 and~

of order code

Entn 00000 in to 1111

I

I
Order code re pre,ent ,
Group 8 i nstrwction

L ____________________ _. -- -·--------7

OPSET

Enter 7777 6 int o MOOE

c{LO,l,D1110) = 00000 ~ , ------ -
, -- - _j_ ---7 ~ -----~

I l '""" ;,.,,",;'" DAD' :

L_ _ ______ J

c(LOADIIID) = 00001

Tut conte11t of LOADlltO

LOAD

___ _t_ ___ '

I \
Enter 00000 i11to LOADIIID

(Tra ns fer control to I
\ NEWQROER / , ______ _ / Re-entrr for ____ _

S ingle - Quant it, Instruction ,

c{LO,lOINO) = 00000

l
Re • enter bank n11•b•r of

current pro9ra• por tion

In to BIii

l

Enter into ~PAC or ur, tne

quantit1 stored at tllelocat ion

who5e addreu is conta i ned in

.lOO~

I LO.IORET I

Testcontent ofLOUIND

•
TPS[T

Ente r 7777S i n to MOOE

Tut con tent of LO,l,D1110

c{LO ADIIIO) = 00001

ULIIET

Enter 00000 i nto LOA0/ 11D

Storebit1 7 throYgh !of order

code (conteined in SL) in bit

oositiot1S~th ro11gh I ofC'f'I!

CONFIDENTIAL
FR-2-106B

------------,

•
HCS[T

Et1 h r 77777 in to MOD[

c(L0 A0I N0} = 00001 c(LO ADI IIO} = 00000 c(LOADI IID) = 00001

l
Tut c ont ent of LDiDIIIID

l

1339

Figure 6-3. Dispatcher Routine Functional Flowchart (Sheet 3 of 3 }

CONFIDENTIAL
6-49/6-50

CONFIDENTIAL
FR-2-106B

transferred to minor routine IPROC2. Routine IPROC2 takes the IIW
from register ORDER and enters 00000 or the content of accumulator
A in its place. Routine IPROC2 also moves the first order code of the
IIW which was previously contained in register ORDER, into bit posi­
tions 7 through 1 of the accumulator.

6-60. Whenever register ORDER contains an order code upon re-
entry into the Dispatcher at location NEW ORDER, register ORDER is
set to 00000 indicating the decoding of the second order code will be
done within a few µsec, and the second order code is already entered
into accumulator A for decoding. Following the execution of IPROC2
(point @ of figure 6-3 or attachment 6-1), accumulator A always con­
tains an order code in true form which has to be decoded.

6-61. EXECUTION OF DUAL-QUANTITY INSTRUCTIONS

6-62. Dual-Quantity Instructions operate with two quantities. Nor-
mally, the fir st quantity is contained in the multiprecision or vector
accumulator and the second quantity is contained at a location which is
specified by an IAW. If a Dual-Quantity Instruction is the first one of
a string, two IAW' s are needed to specify where the two operands are
stored. The IA W's might be used directly or might be indexed as de­
fined by the order code. When no IA W is given, the Interpret e r auto­
matically refers to the Pushlist, but the Interpreter might also refer
to the Pushlist if an Inactive Address is given instead of another IAW.
Dual-Quantity Instructions can be divided into eith e r Group A or Group
B instructions as noted in tabl e 6-2. Dual-Quantity Instructions can
also be divided into instructions refe rring to a rel e vant address K or
instructions using an integer N as not e d in table 15-13. First the exe­
cution of Dual-Quantity Instructions r efe rring to nonindexed IAW' s is
described; thereafter, the execution of Dual-Quantity Instructions re­
ferring to inde xed IAW's is described. Finally, the execution of Dual­
Quantity Instructions referring to a Pushlist location is described.
Refe rence is made to the Pushlist e ither when no IAW or an Inactive
Address is given.

6-63. Instructions R efe rring to Nonindexed IA W I s

6-64. Partial Decoding and Mating with an IA W

6-65. When entering minor routine JUMPIT, the order code con-
tained in accumulator A is t e sted to d e termine whether it represents
(a) a Dual-Quantity Instruction, (b) a Single-Quantity Instruction, or
(c) an Index Register Instruction or a Miscellaneous Instruction. When­
ever the order code represents a Dual-Quantity Instruction (ZERO in

6-51

CONFIDENTIAL

CONFIDENTIAL
FR-2- 106B

bit position 1), program control is transferred to minor routine AD­
DRESS. When a reference is made to an IAW for the first time,
routine ADDRESS computes the address of the word following the last
IAW of the string (i.e. address of the first IAW of that string). When
a reference has been made previously to an IAW, routine ADDRESS
computes the address of the word following the IAW decoded last (i.e.
address of the next IAW of that string or address of the first IIW of
the next string). In either case, routine ADDRESS enters the word
into accumulator A.

6-66. If the following word is an IA W which is not an Inactive Ad­
dress (figure 6-1), the true form of the IAW is stored in register
AWORD and its location address is stored in register AWLOC. Next,
the order c ode is tested again to determine whether the order code
represents a Dual-Quantity Instruction specifying an IAW to be us e d
directly or an IAW to be indexed (bit 2, a ZERO or a ONE respectively).
In the first case, program control is transferred to minor routine
NONINDEX. In the second case, control is transferred to minor rou­
tine INDEX which is discussed in paragraph 6 -82.

6-67. Minor routine NONINDEX tests the address word (true IAW
or indexed address) contained in register A WORD to determine
whether or not it refers to E memory (addr ess< 2000). If the addr ess
word refers to E memory, a differentiation must be made between
addresses from 00000 to 00052 and those from 00060 to 01 776. Any
address between 00000 and 00052 refers to a locati on in one of the five
Work Areas. If such an address is given, the real address within a
Work Area must be computed by adding the given address to the address
of the Work Area in use. If an address between 00060 and O 1 776 is
given, this is a real E address. (Addresses 00053 through 00057 and
01777 ar e illegal , paragraph 6-39.) Either of the real addresses is
stored in register ADDR before program control is transferred to
minor routine JUMP.

6 - 68 . If the fir st test of routine NONINDE X indicates that the ad-
dress does not refer to E memory, the address is tested onc e mor e
to d e termin e if it refers to F m e mory (0 2000 < addr es s word < 31 776)
or if it r epr esents a STORE Code Address Word (34000 < address
word). If the address r efe rs to F memory, a ONE is added into bit
position 15 of the IAW to compose the complete addr ess of an F memory
location (compar e with paragraph 6-35). Finally, minor routine
SWADDR enters the bank code of the F addr es s into register BNK;
stores the complete address in register AWORD; stores the corres­
ponding 12-bit address into register ADDR; and transfers program
control to minor routine JUMP. If the address word tested represents

6-52

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

a STORE Code Address Word, its location address is computed and
stored in register AWLOC. Program control is then transferred to
minor routine PUSHUP, which is discussed in paragraphs 6-88 and
6-89.

6-69. Following the execution of routine NONINDEX and routine
SW ADDR when required (point© of figure 6-3 or attachment 6-1).
register ADDR contains a real 12-bit address within a Work Area, E
memory or F memory. Minor routine JUMP does the final decoding
of the order code.

6-70. Final Decoding and Execution of Group A Instructions

6-71. When entering minor routine JUMP, the order code is tested
the third time. If bit positions 3 and 4 contain a ONE, indicating that
the order code represents a Group A Dual-Quantity Instruction, pro­
gram control is transferred to a location in the IJUMP list. If bit
positions 3 and 4 both contain a ZERO, indicating that the order code
represents a Group B Dual-Quantity Instruction (table 6-2), program
control is transferred to minor routine DPSET.

6- 72. Bits 7 through 3 of the order code for a Group A Dual-Quantity
Instruction are used to compute the address of the proper location in
the IJUMP list. The IJUMP list is a jump list for Dual-Quantity In­
structions, store operations, and load operations. The list consists
of 35 TC instructions which transfer control to the proper routines in
the Executer for executing a particular interpretive operation. Thirty­
one TC instructions are provided for Dual-Quantity Instructions, three
for transfer operations, and one for load operations. In the case of a
Group A instruction, control is always transferred to a routine in FF
memory thereby leaving the content of register BNK unchanged.

6- 73. Assuming the Dispatcher had to decode the Order code 034,
which represents instruction DAD K referring to a direct address
(table 15-13). Since bit positions 5 through 3 contain ONE 1 s (table 6-2),
the quantity 00007 is added to address 4367 (the last address prior to
the IJUMP lists, see program listing of SUNRSE33) and control is
transferred to location 43 76 which contains instruction TC DAD2. After
control is transferred to minor routine DAD 2 {a part of the Executer),
this routine immediately transfers control to minor routine DPSET.
When the order code represents a TP or VEC operation, control is
transferred to minor routine T PSET or VECSET.

6- 74. Minor routine DPSET first enters 77776 into register MODE
which switches the operation of the Interpreter to the DP mode. Minor

6-53

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

routine TPSET enters 77775 into register MODE and minor routine
VECSET enters 77777. After setting the mode, routine DPSET,
TPSET or VECSET tests the contents of register LOADIND. If regis­
ter LOADIND contains 00000, indicating that the MPAC or the VAC
need not be loaded (already contains the proper information), program
control is returned to routine DAD2 for the actual execution of the DAD
K instruction. The address Kofa double precision quantity is contained
in register ADDR. After executing DAD K, the sum is contained in
MPAC and program control is transferred to location NEW ORDER to
decode the next order code.

6- 75. If register LOADIND contains 00001 when tested, a quantity
has to be entered into MPAC (or VAC in case of instruction V AD K)
before execution of the instruction. (For instance, the quantity 00001
is entered into register LOADIND whenever the first IIW of a string
is executed, except when the IIW contains instruction NOLOD.) If
register LOADIND contains 00001, program control is transferred to
minor routine LOAD. Routine LOAD enters 00000 into register
LOADIND and enters into MPAC or VAC the quantity stored at the
location whose address is contained in register ADDR. Minor routine
LOADRET determines whether register LOADIND contains 00000, in­
dicating it is dealing with a Dual-Quantity Instruction or contains 00001,
indicating it is dealing with a Single-Quantity Instruction. When LOAD­
IN contains 00000, routine LOADRET re-enters the bank number of
the interpretive program portion being executed into register BNK,
and transfers control to routine ADDRESS to decode the next IAW which
is now supplying the address for the second operand. If instruction
DAD K is the first one of a string, its final execution takes place after
the second pass through routine DPSET.

6- 76. The final decoding of all Group A Dual-Quantity Instructions
is alike; the execution of instruction DAD K has been discussed as an
example. The execution of other Group A Dual-Quantity Instructions
will be de scribed with the Executer.

6- 77. Final Decoding and Execution of Group B Instructions

6- 78. The execution of Group B instructions is very similar to the
execution of Group A instructions. For Group A instructions, routine
JUMP first transferred control to the IJUMP list and the Executer
before testing the content of register LOADIND, loading MPAC or VAC,
and supplying a new operand address. For Group B instruction, rou­
tine JUMP transfers control immediately to routine DPSET (never to
TPSET or VECSET) and tests the content of register LOADIND. If
register LOADIND contains 00000, control is returned to routine JUMP

6-54

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

which first enters 00000 into register BNK. Thereafter, it computes

the proper location in the IJUMP list and transfers control to this lo­

cation. Control is then transfe rr ed to the proper routines in bank 03

for the execution of the Group B instruction. The quantity 00000 is

entered into register BNK because the jump list for Group B instruc­

tions only transfers cont rol to Executer routines situated in bank 03.

If register LOADIND contains 00001, the MPA or VAC is loaded and a

new operand address is supplied before the location in the jump list is

computed.

6-79. Decoding and Exe c ution of Instructions TSRT N, TSLT N,

VSRT N, and VSLT N.

6-80. Instructions TSRT N, TSLT N, VSRT N and VSLT N do not

refer to an addr es s {K) as do all other Dual-Quantity Instructions but

refer instead to an integer {N) specifying the number of places a quan­

tity is to be shifted {paragraph 6-28). Whenever the execution of such

a shift instruction is requested, the relevant IAW does not contain an

address {K) but a small positive number {N). This numb e r is handle d

by minor routines ADDRESS and NONINDEX, the same way as an ad­

dress is handled. At point © of figure 6-3, r egiste r ADDR contains

a quantity equal to {N + Work Area address used) where 0 < N< 42.

After entering routine JUMP, the operations describ e d e arlier take

place. Executer subroutine TRUE2 {not shown on figure) subtracts

the Work Ar ea address and makes number N available b efore the
actual execution of one of the four shift instructions.

6-81. Instructions Refer ring to Indexed IA W 1 s

6-82. The de coding operations described in paragraphs 6-65 and 6-66

also apply for the decoding discussed here. If the second test of the

order code dis closes that bit position 2 contains a O NE, program con­

trol is transferred to minor routine INDEX.

6-83. Minor routine INDEX shifts the IAW one place to the right

to position the subaddress {figu r e 6 -1) in bit positions 10 through 1.

Then bit 1 of the IAW {true form, last contained in r egist e r A WORD)

is test e d to d e t e rmine whether this address has to be indexed by the
content of index r egi ster Xl or X2. Thereafter, the cont e nt of the

proper index register {Xl or X2) is subtracted from the subaddress and

the final product is an indexed address {an indexe d shift number for

instructions TSRT N, TSLT N, VSRT N, or VSLT N) which is stored

in register AW ORD.

6-55

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-84. If the indexed address is equal to 00000 or 77777, the first
register of a Work Area is addressed and program control is trans­
ferred directly to the subroutine of routine NONINDEX which computes
the real address of the first location in the proper Work Area. There­
after, the operation continues as previously de scribed. If the indexed
address is larger than 00000 but smaller than 37777, program control
is transferred to routine NONINDEX which computes the real address
(if necessary) and enters this address or shift number N into register
ADDR as described in paragraphs 6-67 and 6-80. If the indexed ad­
dress contains a ONE in bit position 15, it might re pre sent a complete
F memory address (K) or a small negative quantity (N) used for index­
ing. In the first case, the complete address is stored in register
AWORD and routine SWADDR operates as described in paragraph 6-68.
In the second case, program control is transferred to routine NONIN­
DEX which deals with the shift number (N) the same way as described
in paragraph 6-80. At point © of figure 6-3, register ADDR contains
an indexed address or a quantity equal to (N + Work Area address used),
where -43< N< 42.

6-85.

6-86.

6-87.

Instructions Referring to Pushlist Locations

Decoding of Order Codes Which Cannot Be Mated with an IAW

The decoding operation described in paragraph 6-65 also
applies for the decoding discussed here; however, the operation des­
cribed in paragraph 6-66 does not. If the word following the IAW last
used is an IIW (the first IIW of the next string, paragraph 6-65), pro­
gram control is transferred to minor routine PUSHUP.

6-88. Minor routine PUSHUP tests the order code being decoded
to determine if it represents instruction VXSC K or another Dual­
Quantity Instruction. If the order code represents any Dual-Quantity
Instruction other than VXSC K, routine PUSHUP computes the real
address of that location from which data is to be taken. This is ac­
complished by: subtracting the quantity 00002 from the content of
register PUSHLOC if the Interpreter is in the DP mode; subtracting
the quantity 0003 if the Interpreter is in the TP mode; or subtracting
the quantity 00006 if the Interpreter is in the VEC mode. When the
real address has been computed, it is stored in register PUSHLOC
and entered also into register ADDR. The real address, referring to
a Pushlist location, is then used the same as any other address entered
into register ADDR.

6-89. If the first test of routine PUSHUP indicates instruction VXSC
K has to be executed, the content of register MODE is tested. If the

6 - 56

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

Interpreter is in the VEC mode, indicating that a vector has to be

multiplied by a scalar, the quantity 00002 is subtracted from the con­

tent of register PUSHLOC. If the Interpreter is in the DP or TP mode,

indicating that a scalar has to be multiplied by a vector, the quantity

00006 is subtracted from the cont e nt of register PUSHLOC. Again, a

real address, referring to a Pushlist location, is entered into registers

ADDR and PUSHLOC and then used as an y other real addr e ss.

6-90. Decoding of Order Code and Mating with an Inactive Address

6-91. The decoding operation describ e d in paragraph 6-65 also

applies for the d ec oding discussed h e rein. If the word following the

IA W used last is an Inactive Addr e ss (figur e 6-1), program control

is transferred to minor routine PUSHUP2.

6-92. Minor routine PUSHUP2 inc r e m e nt s the cont e nt of r e gister

AWLOC to stor e in it the addr e s s location whe r e the Ina c tive Address

is situated. Thereafter, prog ram control is transferred to routine

PUSHUP which operates as described in paragraphs 6-88 and 6-89.

6-93.

6-94.

EXECUTION OF SINGLE QUANTITY INSTRUCTIONS

When ent e ring minor routine JUMPIT (paragraph 6-65) , the

order code contained in the ac c umulator A is t e st e d. Whe never the

order code repres e nts a Single-Quantity Instruction (ONE' s in bit

positions 1 and 2), bit 2 of the order code is t e st e d imm e diately and

program control is transferred to minor routin e UNAPROC.

6-95. Minor routine UNAPROC t e sts the cont e nt of r e gister LOADIND

to determin e whethe r or not MPAC or VAC has to be loaded. If reg­

ister LOADIND contains 00000, the quantity 00000 is ent e r e d into reg­

ister BNK; bits 7 through 4 of the order code ar e us e d to compute the

address of the proper location in the UNAJUMP list (jumplist for Single­

Quantity Instructions, 16 TC instructions}, and prog ram c ontrol is

transferred to this location. Control is the n transferr e d to the proper

routines in bank 03 for the exe cution of the instruc tion. The quantity

00000 is set into register BNK b e caus e most TC instructions within

the UNAJUMP list transfer control to Execut e r routin e s which are

situated in bank 03. After e x ec utin g a Single -Quantity Instruction, pro­

gram control is transferr e d to location NEWORDER to decode the next

order code.

6-96. If the t e st of routin e UNAPROC disclos e s that r eg ister LOADIND

contains 00001, program c ontrol is transferred to minor routine UNA­

LOAD. Minor routine UNALOAD t e sts the order c ode to d e termine

6 - 57

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

whether it represents a TP instruction (TMOVE), a VEC instruction
(VMOVE through VSQ of table 6-2), or a DP instruction (ABS through
VDEF). For a T P instruction, the quantity 77775 is entered into reg­
ister MODE; for a VAC instruction, the quantity 77777; and for a DP
instruction, the quantity 77776. Then the quantity 43 is stored in bit
positions 6 through 1 of register CYR and a ONE is entered into bit
position 15 if the order code represents a Single-Quantity Instruction
which is also an indexed address. Bits 7 through 4 of the order code
are stored in register SL for later use and program control is trans­
ferred to routine ADDRESS.

6-97. Minor routine ADDRESS operates as described earlier, there-
by making use of the content of register CYR to determine whether or
not an address has to be indexed. If indexing is required, minor rou­
tine INDEX is executed prior to minor routine NONINDEX; otherwise,
NONINDEX is executed immediately. If routine ADDRESS cannot find
either another IAW which is then an Inactive Address, or no IAW at
all, reference is made to the Pushlist. Regardless of the path taken
after leaving routine UNALOAD to reach point © of figure 6-3, reg­
ister ADDR contains a real address and register CYR contains the
information entered by routine UNALOAD.

6-98. After entering routine JUMP, the path for Group A Dual-
Quantity Instructions is followed. The quantity 00043 stored in regis­
ter CYR is used to transfer control to the last location of the IJUMP
list. Program control is then transfe rred to routine LOAD which now
enters a DP, a T P, or a VEC quantity {depe ndent on th e content of
register MODE) into the MPAC or V AC. Routine LOADRET tests the
content of register LOADIND, finds that it contains 00001, irrlicating
a Single-Quantity Instruction, and transfe rs control to routine ULRET.
Minor routine ULRET enters 00000 into regist e r LOADIND, stores
bits 7 through 4 of the orde r code in bit positions 4 through 1 of r eg ­
ister CYR, and transfers control to routine UNAPROC. Routine
UNAPROC operates as describ e d in paragraph 6-95 .

6-99. EXECUTION OF INDEX REGISTER INSTRUCTIONS AND
MISCELLANEOUS INSTRUCTIONS

6-100. When entering minor routine JUMPIT (paragraph 6-65), the
order code contained in the accumulator is tested. Wh e never the
order code represents an Index Register Instruction or a Miscellaneous
Instruction (a ONE in bit position 1 and a ZERO in bit position 2), bit
2 two of order code is tested immediately, the address of the next
IAW is stored in register AWLOC, and program control is transferred
to minor routine MISPROC.

6-58

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

6-101. Minor routine MISPROC tests the next IAW (true form com­
plemented) to determine whether it represents (a) an address in a
Work Area, (b) another address in E memory, or (c) an address in F
memory. For the first two possibilities a real address is entered int o
register ADDR. Otherwise, the address can only refer to the higher
banks of FS memory. If a ONE is not present in bit position 15 of the
IAW, a ONE is added to this bit position; the complete address is com­
plemented and stored in register A WORD. In any case, routine
MISPROC enters the quantity 00000 into register bank, computes the
address of the proper location in the NONJUMP list (jump list of index
Register Instructions and Miscellaneous Instructions, 16 TC instructions)
and finally transfers program control to this location. Next, control
is transferred to the proper routines i n bank 03 for the actual execution
of the instruction. After the e xecution of the instruction, program
control is transferred to location NEWORDER to decode the next
order.

6-102. STORING OF RESULTS

6-103. Storing a Result at a Store Address

6-104. Once all order codes of a string have b ee n decoded and all
Interpretive Instructions of that string have been executed, the Dis­
patcher is re-entered at location NEWORDER. First the content of
register NEW JOB is tested and regi ste r BNK is set as described in
paragraph 6-58. Then the content of r e gister ORDER, which contains
00000, is tested as described in parag raph 6-59. As the word following
the IIW decoded last is tested, it is found that the following word is the
first IAW of the string. This indicat e s all Inte rpr etive Instructions of
the string have be e n executed and the Dispatcher now looks for a loca­
tion to store the information c ontaine d in MPAC or VAC. The word
following the IAW decode d last is now test e d to d e termine if it is an
IAW (STORE CODE Addr e ss Word, fi gur e 6-1) or an IIW (first IIW
of next string). In the first cas e , program control is transferred to
minor routine STORADR to store the result at a g iven address; in the
second case, control is transferr e d to minor routine PUSHDOWN to
store the result in the Pushlist.

6-105. Minor routine STORADR e nters the true form of the STORE
Code Address Word into register AWORD and its address location into
register AWLOC. Thereafter, the quantity 00041 is stored in register
CYR if the Interpreter is in the DP mode, the quantity 00040 if in the
T P mode, or the quantity 00042, if in the VEC mode. The content of
register AWORD is replac e d by bits 11 through 1 of the STORE
address word. Next, the STORE Code Address Word is tested to deter-

6-59

CONFIDENTIAL

CONFIDENTIAL
FR-2-106B

mine whether or not the STORE code requires that the store address
be indexed. A ONE in bit position 12 of the ST ORE code address indi­
cates indexing is necessary, (figure 6-1). If no indexing of the store
address is required (a ZERO in bit position 12), the content of register
AWORD is replaced by the 10-bit E address of AWORD and program
control is transferred to routine NONINDEX. Routine NONINDEX en­
ters a real address into register ADDR as described earli er .

6-106. Routine JUMP then follows the path for Group A instructions,
makes use of the content of register CYR. c omputes the address of a
store transfer instruction in the IJUMP list and transfers control to
that location. Places 32 through 34 of the IJUMP list are provided for
store operations. Dependent upon which mode the Interpreter is in,
control is transferred to one of these three locations. From there,
control is transferred to the proper Executer routines. The se routines
transfer the cont rol of MPAC or VAC to those E registers which are
specified by the control of r eg ister ADDR. Thereafter, control is
transferred to location NEW STRIN G for the execution of the next string.

6-107. If indexing of the store address is required, program control
is transferred to routine INDEX which ope rates as described in para­
graph 6-83. Routine INDEX enters the indexed store address into reg­
ister AWORD. An indexed store address can be e qual to or larger
than 00000 (or 77777) but not larger than 17777. After the execution
of routine INDEX, program control is transfe rred to routine NONINDEX
which operates as de scribed in paragraph 6 -10 6 .

6-108. Storing a Result in a Pushlist

6-109. The operation described in paragraph 6-104 also applies for
the oper ation discussed here. In addition, minor routine PUSHDOWN
transfers the address of th e available Pushlist location from register
PUSHLOC to register ADDR and e nters a new addr es s into register
PUSHLOC. The new addr es s is equal to the old addr ess plus 2, 3, or
6, dependent upon whether the Int e rpreter is operating in the DP, T P,
or VEC mode. Finally, the addr ess of place 32 , 33 , or 34 in th e
IJUMP list is computed and program control is transferred to this
address to initiate the proper stor e operation. After completion of
the store ope ration, control is tran sferred to location NEW STRING.

6 -110.

6 -111.
later.

5 - 60

EXECUTER

The description of the Execut e r operations will be added

CONFIDENTIAL

