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Analysis of a Pulse Restrained Accelerometer

Abstract

This report is concerned with the analysis of a pendulum torqued with
pulses through the mechanism of a sample data contactor feedback loop.
Such a system, called a pulse restrained accelerometer, can be used to
provide incremental velocity information in an inertial navigation system.

The presence of the contactor causes the pendulum to oscillate
continuously. The particular mode of oscillation (i.e., limit cycle
frequency) depends on the loop parameters, initial conditions, hysteresis
in the contactor and forcing functions. This report presents an analytic
procedure for determining the oscillatory modes of the accelerometer for
zero inputs and small acceleration step inputs., |

A small amount of elastic restraint in the accelerometer, which can
either be caused by gravitational force acting on the pendulum as it
deflects from the vertical position or by a physical spring effect, will
produce a deadzone within whose bounds input acceleration cannot be

detec’ted. This effect is also analyzed in this report.



CHAPTER 1

Introduction

The restrained pendulum accelerometer illustrated in Figure 1.l has a
cylindrical float supported concentrically in a sealed cylindrical case with
a high density fluid filling the gap between the case and the float. The
density of the fluid is such that the float is supported to neutral buoyancy;
the output axis bearings serving mainly to center the float.

An unbalance mass is attached to the float rendering it pendulous, hence an
acceleration applied along the input axis results in a deflection of the float
about the output axis, Damping action is provided by the fluid. If the reference
axis of the pendulum is oriented vertically, gravitational force acting upon the
deflected pendulous mass will provide elastic restraint.
| The deflection of the float about the output axis is detected by the signal
generator and a feedback signal is provided to the torque generator which restores
the accelerometgr to its reference position. The feedback signal is, therefore, a
measure of the acceleration input.

The accelerometer used in an inertial navigation system should accurately
indicate the acceleration along its sensitive axis, of the vehicle in which it is
mounted, over a measurement ranée of about IO-Sg's to 10 g's. The acceleration
should also be in a form’which can be readily integrated with respect to time to

give vehicle velocity.,
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The feedback signal can either be in a digital form or in an analog form.

The digital method has three distinct advantages.

l,

It is desirable to measure the feedback signal to an accuracy of
better than one part in 100,000. This exceeds the capability

with which most analog quantities can be readily measured. Since
time can be measured more accurately than most analog quantities,
the digital method consists of discrete time measurements and counting.
The accelerometer which has a feedback signal consisting of positive
and negative pulses of constant magnitude and of discrete duration is
called a pulse restrained accelerometer and the analysis of such a
system is the subject of this report. An open-loop analog-to-digital
conversion of the analog feedback signal would not improve the

accuracy because the conversion still requires the measurement of

an analog quantity other than time.

Since the pulses would be of constant amplitude in the digital method,
there would be no need for a linear torque generator and power amplifier;
instead, only a constant current supply would be required. The measure-
mez;lt of the feedback torque would be easily achieved over the desired
range with such an accelerometer since it would not exhibit the nonlinear
characteristics typical of electromagnetic devices.

The amplitude of pulses, M, is proportional to a constant amount of
input acceleration. Since the pulse duration, T, is also a constant;

then each pulse is proportional to an increment of velocity,& V, where
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AV=MT, The process of integrating acceleration now consists of merely
counting the pulses which represent the incremental velocity. Generally,
the integration in the analog system is accomplished with a motor-tach—
ometer combination, The accuracy of this method is limited by the
tachometer null characteristics and the linearity of the motor, tachometexf,
and drive amplifier,
One other possible advantage of the pulse restrained pevndulum is
that the limit cycle oscillation can provide the "dithering" required to
overcome any static friction which may be present in the systém. On
the ?ther hand, a disadvantage of the digital system is that the presence
" of an elastic restraint torque may prevent the pendulum from attaining the
angle required in order to produce a sensible output in response to an
acceleration input. | Fortunately, this deadzone can be reduced to a
negligible value by increasing the sampling frequency. | .
The pulse restrained accelerometer with its nonlinear feedback control
system is potentially more accurate and less complex than the accelerometer o
which incorporates a linear feedback control system. In order to realize
the maximum capabilities of such a system this report develops, through
the application of various nonlinear techniques, procedures for predicting
the dynamic behairio} of a pulse restrained accelerometer system. The

main purpose of this report is to (1) present a method for determining the

oscillatory modes (i.e., limit cycles) which exist during zero and small
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input conditions and (2) determine the deadzone resulting from the
presence of elastic restraint in the system.

The following chapter contains a description of a pulse restrained
accelerometer and a development of the basic equations of the
system.

In Chapter III, the sample data contactor feedback control system
of the pulse restrained accelerometer is analyzed by the phase plane
method, the describing function method and a piecewise linear
analysis method fclr zero input acceleration.

In Chapter IV, the response of the system to step inputs is
discussed. The performance of the system is predicted by a
heuristic extension of the analysis in Chapter III since no rigorous
t echnique exists for the transient analysis of a sample data
contactor feedback control system. The results of the analysis are
supplemented by an analog computer simulation and some laboratory
tests with an experimental accelerometer.

Based upon the analysis, design criteria for the synthesis of
a pulse restrained accelerometer are presented in Chapter V,

Thé final chapter presents the conclusions of the investigation

and recommendations for further study.
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CHAPTER II

System Description and Equations

2.1 Description of Accelerometer System

The complete pulse restrained accelerometer system is shown in Figure 2.1.
Under the influence of an input acceleration, a, the pendulum rotates from its
reference position. The output of the signal generator indicates the angle of the
pendulum, 8. When the pendulum angle exceeds a threshold angle, 46, the
polarity switch changes to the opposite state. At the next sampling instant, the '
state of the torque s§vitch changes and gates the constant current source in the
opposite direction through the torque generator. The sense of the torque generator
output is such that it tends to drive the pendulum back to its reference position.

In addition to gating the sense of the constant current source to the torque
generator, the torque switch also gates the clock pulses to the up-and-down
counter. The contents of the up-and-down counter are periodically transferred
to an accumulator and the counter is reset to zero. The up-and-down counter
essentially acts as a filter which removes the limit cycle oscillation from the
velocity information.

Since the feedback torque does not have a zero state (i.e., its onlyv
output is i M), the steady state condition of the accelerometer loop is a
continuous self-sustained oscillation of some definite amplitude and frequency.
The presence of sampling and hysteresis in the loop tends to increase the
amplitude of the "hunting" or limit cycling. Typical waveforms generated in
the system during the limit cycling are also shown in Figure 2.1.

When the pendulum experiences an acceleration input, the time required

for the pendulum to swing on one side of its reference position is longer than
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the time required to swing on the other side. Therefore, the number of sampling
pulses existing during one half of a térque cycle exceeds those existing during
the other half cycle. The difference between the number of sa‘mp;ing pulses in
the two half cycles is proportional to the change in the vehicle Yélocity.

A simplified block diagram of the accelerometer system is shown in
. Figure 2.2. The polarity switch of Figure 2.1 is represented by the contactor
which has an input-output characteristic that includes hysteresis. This
hysteresis results from the fact that some finite deflection of the péndulum is
required to trigger the polarity switch. Generally the sensitivity of the signal
generator is not increased beyond the point where the polarity switch is
triggered by noise. The sampler represents the positive and negative pulse
gates. The torque switch provides the feedback gain while also acting as a
zero order hold following the sampler.

The fact that the pendulum is not at its reference position at the end of
the torque cycle constitutes an instantaneous velocity error. The velocity
error is bounded by the "self-correcting" action of the feedback loop so that
this portion of the velocity information is not lost but rather it just temporarily

stored in the pendulum position.

2.2 Pendulum Transfer Function

The acceleration sensing instrument can be considered as consisting of
the simple pendulum showr in Figure 2.3. The moment of inertia I is the
polar mement of inertia of the float and pendulous mass about the output axis
which is directed into the plane of the paper. The damping coefficient C is

afforded by the fluid separating the case and the float, The elastic restraint
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K may exist in the system (1) due to the presence of a spring with a spring
constant K'or (2) if the instrument is oriented such that the gravitational

acceleration acts upon the pendulous mass P of the deflected pendulum to

. produce the restraining torque Pg sin® . The feedback torque during a torque

half cycle is constant and in a direction such that it tends to drive the

. pendulum toward its reference position (i.e.,8=0). Therefore, the

pendulum dynamics during a torque half cycle can be described by a linear

.~ differential equation.

Applying the rotational form of Newton's second law to the pendulum
in Figure 2.3, the rate of change of the angular momentum is equal to the

summation of torques about the pivot 0.

[6

Ztorctues 2.1

-Cé 'Ké‘Pgstn6+Pac0561M 2.2
When the accelerometer is operating in a closed loop fashion, the

pendulum remains in the vicinity of its reference position and small angle

approximations can be made (i.e., sin€=86, cos@=1 ), Letting K + Pg =K,

the total elastic restraint, equation 2.2 can be written as follows during

the interval where 6 is positive:

K Pa M
16 T - 71 2.3

re C ,
+ =0 +

6 16 |
Considering the feedback torque M as being of constant magnitude and

sign, the Laplace transform of equation 2.3 from the t-domain into the

s-domain is:

(sa*‘(':f's "’b_.x(')e‘s, = —?—Q(S)- ::% +éo+<3+ 'EI')ec 2.4

The left member of equation 2.4 can be factored and the equation can
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be written in terms of the time constants?Z,, andeas follows:

Pas) _ M A . [ i >
s(ti+T,)C * 907 (S+ T+ e°

9(9: T K 5 T 2.5
(s 't.)(s et
I 1
wh T = Ze A -
‘nere (= 1 2= : i
4K]T |1 K1 |&
= [1- C;]z T [1—%]2
In most cases, we find
i
4K1 . [y KLz 2KI
Cl <<l P -e Cz - 1 - -E.z_ +oo'enr
and the time constants can be approximated as
C
T = K (integrator time constant)
I 2.6

T, = ¢ (pendulum time constant)
2.3 Periodicity of Limit Cycle

Since the torque switch output cannot be zero, the pendulum output cannot
remain at zero at all times. Therefore, the response of the system to zero
acceleration inputs is such that the average value of both, the pendulum and the
torque switch, is zero.

From the standpoint of symmetry, the torque switch output must be a square
wave and the pendulum output must be the response of the pendulum to this square
wave. Since the torque switch can change state only when a clock pulse is gated
to its input, the square wave output of the torque switch is constrained to have
a period which is an integer multiple of the sampling period, 2T (T is the time
interval between sampling pulses).

The self-sustaining oscillation of the pendulum in the closed loop is known
as a limit cycle. The torque feedback signal, however, has a period which
consists of n positivé pulses followed by n negative pulses. The cyclic
characteristic of the loop operation will be referred to in this report as being an

n:n mode. The term Gn,mwill signify the pendulum angle at the mth sampling

instant of a torque half cycie which has a duration of n pulses.

——— -
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2.4 Normalization of Loop Parameters
It is convenient in the derivation of general equations which describe the

dynamic behavior of the pendulum to normalize time with respect to the sampling

. interval, T. Using T as the basis time unit, the following dimensionless quan-

tities are defined,

m= ;r- (dimensionless time)
—%-= :E(-i (dimensionless pendulum time constant)
1 _ T , .
-6—5'= T (dimensionless integrator time constant)
9:‘=Té._ (dimensionless time derivative of 8)
6=T"0 (dimensionless second time derivation of 6 )
/a:IEﬂ(l-& B) dimensionless value of maximum rate of change of 6 )
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CHAPTER III

Prediction of the Oscillatory Modes with Zero Input

~ 3.1 Discussion of Non-linear System Behavior

The response of a linear system can be determined by obtaining the
inverse Laplace transform. After the transient response due to the initial

conditions and forcing functions has decayed exponentially to a negligible

~value, there exists the stearly state response which is independent of initial

conditionis. A non-linear system with a saturating element (i.e., a contactor)
can be considered as having a variable gain. = The loop "gain" approaches
infinity for small amplitude oscillations and becomes low for large amplitude
oscillations. Depending on the order of the system, small oscillations(high
gain) could be unstable and would grow larger while large oscillations (low
gain) could be stable and would grow smaller. In between these extremes
there would be an amplitude of oscillation just small enough to give the value
of gain required to keep the system on the verge of instability. The system
will eventually settle down into this so-called limit cycle, independent of
the initial conditions.

Sample data contactor feedback control systems can exhibit the property
of having more than one limit cycle. As a result, when an input is applied, the

system steady-state response can be different, depending on the initial conditions.

3.2 Methods of Analysis-Review of Literature

The first approach to determining the dynamic behavior of contactor servos

2 Laplace transform

was the use of the classical differential equation by Hazen.
theory was applied by Kahn3 to develop a semigraphical method of solution for

*Superscripts refer to the bibliography at the end of the report.
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- determining the transient behavior, rclative stability, and oscillatory condition

of the non-linear contactor servo. Bergen4 adds to the use of the Z-transform to
this type of piecewise linearization to account for the presence of a sampler in
the loop. A similar approach is the method proposed by Torng and Meserve5 using
difference equations.

We'iss6 and McColl7 applied the phase plane method employed by
Minbrsky8 and by Andronow and Chaikin9 in other problems concerning nonlinear
systems. In more recent years, the combination of sample data and contactors

in a nonlinear system have been analyzed by Kalman 11

10 ang by Mullin and Jury

with the use of the phase plane.
!

12

The describing function technique developed by K_ochenburger has

15
- , and Gelb to present a graphical repre-

been employed by Chow 13, Chao
sentation of the contactor servo.

All three general analytic methods: piecewise linearization, phase plane
analysis and describing function analysis will be used to investigate the behavior
of the sample data contactor feedback control system. Although each method has
its limitations, some insight is contributed by each to a better understanding of
the nonlinear system. In this report, the various portions of the system analysis
will be performed in each case, by the most suitable method available.

The bibliography at the end of this report should provide sufficient informa-
tion to indicate the major Yvork don_e in this field of sample data contactor servo
analysis.

3.3 Describing Function Method

The first method of analysis to be used in this report is the describing
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function technique because of its simplicity. The various modes of oscillation
which can possibly exist are readily determined by this method.

3.3.1. Describing Function of Contactor with Hysteresis

The contactor will invariably have some hysteresis associated with it
because the gain of the amplifier which drives the polarity switch in Figure 2.1
s normally never increased beyond the point where the polarity switch is triggered
})y the noise present in the signal generator output.

The describing function for the nonlinear element shown in Figure 3.1

= — Sin (6}

.where the gain of the contactor is the ratio of the fundamental component of the
square wave output, j,r , to the amplitude of the sinusoidal input, [el. The
phase shift contributed by the hysteresis is - sind—léog‘ .

The basic assumption of the describing function method, that only the
fundamental of the output need be considered, is a valid one for two reasons:
(1) the frequency spectrum of a square wave consists of progressively smaller
amplitudes for increasing order of the harmonic frequency components and (2)
the pendulum acts as a low pass filter to the square wave so that the signal fed
back to the input of the nonlinear element is essentially sinusoidal.

The quasi-linearization by means of the describing function allows the

frequency response of the dccelerometer system shown in Figure 2.2 to be

approximated by:
Otiw _ GG 3.2

- N

a(w) 1+GowGe

where Gp = describing function

G(j.n)-.- frequency sensitive portion of system
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f'\ The system will be critically stable in a particular n:n mode when the
denominator is zero or i.e., when
- = G(J“;) 3.3
Gy
When equation 3.3 is satisfied, the system will have a sustained oscillation of
the amplitude and frequency which satisfy the equation. The intersections of
--é— and G(jw)on a log magnitude-angle diagram would indicate the oscillatory
[
modes which are possible in the system. G ()w) would include the pendulum
and the effective phase shift of the sampler while, according to equation 3.1,
i ni{6 e -1 58 =
-—G—D: —%—'/‘?C "Siﬂ‘ 161 3.9

A plot of log I8l versus phase-shift as a function of frequency would be

very useful, particularly if the variation of the pendulum parameters or the
™ ’ effect of compensation were to be investigated. However, if the linear portion
\_/ _
- of the loop is assumed to remain fixed, a simpler plot of phase shift vs. log
frequency can be used. to determine the moding characteristics.
. 3.3.2. Effective Phase Shift of Sampler
| An effective phase shift can be ascribed to the sampler when the acceler-
ometer loop, shown in Figure 2.1, is operating in a particular n:nmode of
oscillation. The sampler represents the gates which exist between the polarity
switch and the torque switch. The outputs of the two switches are square waves
having the same period.
There can be a delay’ybetween the time the polarity switch changes its

state and the time when the next clock pulse is gated to the torque switch to

change its state. This time delay between the outputs of the two switches would

S~

-

be zero if the clock pulse was gated to the torque switch immediately after the



-14-
[

polarity switch changed state. If the polarity switch changed state immediately
after a clock pulse, there would be a time delay equal to one sample interval, T,
before the torque switch changed state. Thus, the length of the time delay is
between 0 and T seconds.

In the describing function analysis to follow, the feedback torque being applied
to the pendulum will be consi(iered as consisting of only the fundamental component
of the square wave. In this regard, a time delay of T seconds betwcen the two
switch outp;uts during ann:nmode of oscillation can be considered as a phase shift
of —2— degrees between the fundamental components of the outputs.

3.3.3. Phase Angle vs, Log Frequency Curve

The expression for the response of the linear portion of the system to a

sinusoid according to Figure 2.2, is

K
(jvoT. -+ 1)(]\0'1’;*' 1)

Therefore, the phase shift due to the pendulum is:

-i -1
¢PENDU'..UM = =tan Wl =~ tan Wiz 35
The possible effective phase shift of the sampler was shown in section 3.3.2

to be:

< s
o = ¢$AMPL£R£ e 3.6

The phase angle of- according to section 3.3.1., is

&6
-4 =180~ sin' — 3.7
¢ GD {01 ot
where ‘el - 4 3.8

v iR oo
The experimental accelerometer used in the laboratory tests supporting this

analysis has the following parameters:

T, = = =125 sec
Tz= %’ 43xi0 *sec

%:‘] where K= Pg+K’ 39
M:SPg

a46= system variable
7= System variable
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The phase angles given by equations 3.5, 3.6, and 3.7 are shown in Figure
3.2 for the parameters in equations 3.9 and various valuesof 46 . Since the clock
pulse rate is 104 pps, T= 10-4 sec. Although the pendulum phase shift curve is

continuous over the entire frequency spectrum, the presence of the sampler con-

strains the modes of oscillation to ben:n modes where n is an integer, Since the

- period of ann:nmode is 2nT seconds, the frequency of anh:n mode is:

T .
Wn:n= nt 3.10

The possible effective phase shift which can be contributed by the sampler
can range from 0 to-?;- radians. The maximum value is shown in Figure 3.2. The
actual amount of phase shift can be determined from the intersection of ¢G(,‘u.)
and <;$,.é_b.

For the case where 48 = 1 second of arc, the 9:9 and 10:10 modes of
oscillation are both possible. The initial conditions and the interval bet(rveen the
time the loop :Nas closed and the time that the first clock pulse appeared deter- .
mined which of the two possible modes would be attained in the steady-state
condition. The data obtained from the laboratory experiments and thé analog
computer simulation agreed very well with this graphical prediction of the possible
modes .

Figure 3.3 shows the phase angle curves which exist when the clock pulse
rate is 2 x 103 pps. The change from 104 pps to 2 x 103 pps clock rat e results
in changes of the effective phase shift of the sampler and the possible limit cycle
frequencies. The 2:2 and 3:3 modes are possible when the hysteresis is Tt
second of arc.

The oscillatory modes which are capable of being sustained by the acceler-

ometer loop have been determined by (1) assuming the existance of a particular

oscillatory mode at the output, (2) following the signal around the loop, account-
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ing for all possible p}:ase-shift, and (3) observing whether enough phase shift is
provided for the particular nnmode to be sustained. The effect of amplitude change
as the signal is followed around the loop is not considered since the sampler out-
put is a function of only the polarity of the pendulum output. In this regard, the

4:4 mode is shown to be impossible in Figure 3.3 because insufficient phase

" shift is provided. In this particular case, the 1:1 mode is impossible, not because

of too much phase shift but rather because the- -é-bcurve never reaches the 1:1
frequency indicating that the amplitude of the 1:1 mode is less than 1 second of arc.

3.3.‘4. Effect of Sampling Rate on Moding

The highest possible mode of oscillation in the system without any contactor
hysteresis occurs when the pendulum phase shift and the maximum effective phase

shift of the sampler equal = m radians, according to Figure 3.3.

Thus, " -
tan ~wl +*tan -uwT; - % = =T 3.11
Normalizing w¥,and wT;, equation 3,11 can be written as:
-t - 0
tan' S * tan = -n* 342

Since the summation of angles in the right member of equation 3.12 equals

the summation of angles in the left member, the tangents of the two members are

also equal. -l ~TX n o
q tan (cm 88!\ +tan -8-: = Tan (’,.T" |BO) = -—'tan 1:-; 3.13

Using the trignometric identity

tan(X+Y) tan)\ + tany
{ - tanxtany

equation 3.13 can be written as follows:

n, oo

35?\ 5h - t ™
2 & sance

1 - “ia’Zﬁ

Regrouping yields

¥y Yri (1+8) . 0 "
nBtan nig ‘ -t
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s %

{ Solving for ¥ in equation 3.14,
: oL
e [1 e <1 G '3(1’1;;;"” ) 315
Equation 3,15 is the expression for the largest value of ¥ which will allow
a particularn:n mode to be self sustaining in a loop without hysteresis. Since
= "Ir; , it follows that a decrease in the sampling frequency (i.e., an increase
in T) or a shorter pendulum time constant would cause this n:n mode to be in-
capable of being sustained. Only lower values of n would then be possible.
On the basis of equation 3.15, the possible modes are plotted as a
function of ¥ in Figure 3.4. For n=l, tan-’;‘;=0 and the denominator of the
right member of equation 3.15 must equal zero. Therefore, the largest value of
¥ for n = 1 is &, which means that the 1:1 mode is possible at all sampling
/~  frequencies. For n = 2, tanp= oo and the middle term of the left member of

\
—’

equation 3.14 must equal zero and

16
3""‘2_:}—-73' (‘orn--z) >

For n23 , the quantity under the radical sign in equation 3.15 can be

approximated by the first two terms of the series expansion:

an < 2m
(1+ 48tdhzh >z= 1_._._2_%—"1_"1__*”“__
(1+8) (1+8)
Substitution of the above equation into 3.15 gives for B<<1
_ 7 tan o -
§ 5 =il for n> 3 and @<<1
2 317
or J= —1-:;;_- (for n>20 and B<<1)

Equations 3.15 or 3,17 and Figure 3.4 indicate the modes of oscillation
which are possible in the loop with no contactor hysteresis. The effect of the
g hysteresis is best determined graphically because it is amplitude dependent.

In general, by considering Figure 3.2 it can be said that the hysteresis can result
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in higher n:n modes becoming possible; however, it can also cause the lower n:n
modes to become impossible.

Before attempting to extract more information about the behavior of the loop
by means of the describing function analysis, an "exact" piecewise linear
analysis will be made.

3.4 Piecewise Linear Analysis

Having determined the possible modes of oscillation by the describing
function technique, the exact oscillatory behavior of the pendulum is obtained in
this section by a piecewise linear method in order to (1) provide an analytic
method for predicting the limit cycles and (2) provide further insight into the
information which can be derived from the describing function.

The pendulum behaves in a linear manner with the exception of the dis-
continuities which occur whenever the feedback torque reverses direction. An
analytic expression for the linear portion of the limit cycle can be obtained if
the proper boundary conditions at the discontinuities are met in order for the
oscillation to be sustained. This piecewise linear analysis gives an solution
which is exact.

3.4.1. Pendulum Dynamics During Limit Cycle

With no input acceleration being applied to the pendulum, the oscillatory

motion during the interval when®is positive can be described by equation 2.3
U
with a = 0, Normalizing the time derivatives (i.e., 8 = -%— , &= '%Z‘ ),

equation 2.3 can be written as follows:

-MT*

e o T
3 i 3.18

Ka =
9*19"'19‘

Transforming equation 3.18 from the m-domain (dimensionless time domain)
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into the S-domain, where S = sT, yields the following expression where M is a

constant:

2 MT* L 1e
(Sz+ II—C_S + 1';15')6(8) = = SI v eh,o -+ (S*’ -—rf_ ehlo 3.19

The left member of equation 2.4 can be factored a‘nd the equation can be

written in terms of the dimensionless quantities defined in section 2.4.

= ,ﬁi):- - 6:..40 + [S (B 1)}6n,o

1y = 9 320
O1s) (s +8)s+¥B)
where %= T
T
8= %

(]
™
AT < (“8)
Transforming equation 3.20 from the S-domain back into the m-domain

- -R&m -&m -B¥m -¥m ‘ -Bfm -¥m)| 3
B = | 25 (1-8- 65 &™) - 840, (€7 7)- 5, (B P &
! i-68 1673 .
Differentiating equation 3.21 with respect to m yields:

, t - B8m  ~Y¥en ~p¥m —Km) / - B8m -a")
B ity R oy | e
In order for an n:n mode of oscillation (i.e., n positive pulses followed

by n negative pulses) to be self-sustaining, the following conditions must exist
at the m = nth sampling instant:
/ /
e”,"‘"-gﬂ,o + EBrm=- €n,o 323
Substituting equations 3.23 into 3.2l and 3.22 and solving simultaneously

for GM and 9:-.,0 yields:

Bno> —L T -8 ‘__'__e—_b'_h_‘ 3.24
BB | Tt U lag™
) . -Bfh_ -dn
On,o™ Zjufe oy ')'atn 325
(1-8)(1+e™)(1+ e 8in)

Substituting equations 3.24 and 3.25 into equation 3.21 gives the following

relationship for 8, ,where 0 £ m £n:

On = 2u ( ghn  Ben ]_ « 3.26
nm 50(16) 'L }te"ﬁ"" 1&@"‘”’ B

Equation 3.26 gives the pendulum position at the mth sampling instant after




Ty

the torquing signal changes sign in an n:n mode of limit cycle oscillation. At

7~
- the particular sampling instant (m = 0) that the feedback torque changes direction,
the values of Gmande:,pare given by equations 3.24 and 3.25.
The exponential expressions found in equations 3.24 and 3.25 and 3.26 can
be defined in terms of hyperbolic functions as follows:
1 'Ze% - 2(’.% - e% sech X
1+ 2el  2(c?s+e'?) 2 2
- X -3
1-€* e¥_ ei-g'*? oy
— = ° s —x = lanh —2\-
i+ e L3 ez e+ e 2
-5
{ - e?sechx = tanhx
2 2
Using these relationships, equations 3.24, 3.25 and 3.26 can be written
in the following manner:
. ‘ A /. BN on :
(::‘ Onc= mn—ﬁ)—&tanh-—z— - Btanh 7) ; ‘ 3.27
' ‘ B¥n o ¥n
LA t _ &n |
en'O" (1“8) Cfanh 2 Ta)nh .T’,-" 328
N
- A -.’36("\“'}' i é’n fo) -b‘("\" !g.) Xn A
en,,m- B (i-P) e BeUnbge— - DE sech el IR B35 3.24

3.4,2/ Pendulum Dynamics During Limit Cycle, Neglecting Elastic Restraint

It is generally found that the effect of the elastic restraint on the pendulum
dyhamics during the limit cycle can be neglected because of the relative magnitude
. ‘ )
of the integrator time constant with respect to the limit cycle half period. At the

limit cycle frequency, the pendulum behaves as if T,=(i.e., 80 ). ,

Letting B =b9 in equation 3.20:
- d.:-_ * 6ne +(S"5)6n,0

= ; 3.30
Os) 5(S+%)
Transforming equation 3,30 from the S-domain back into the m~-domain:
-y, -¥m ) =¥
Gnlmz en.o -+ %‘_’.(1 =L ) - /; (617‘) -1+ e m) : 3.31



- seconds at 2x10

0=

Differentiating equa'tion 3.31 with respect to m:
Onm = Onc € I . (1- e’™) 3.32
At the m=nth sampling instant the following conditions are required in
oraer for' the n:n mode to be self-sustaining:
bnn=-6no , 9;\,n ® = 9:\,0 3.33
Substituting equations 3.33 into 3.31 and 3.32 and solving simultaneously

for 8p, and Oln,c yields:

~3n
- B (R LA
Yoy [*z” fve o ] 7
5 - ¥n
/ l—-€ <
P Sl 335
eh_o /“ 1* e_xn
Substituting equations 3.34 and 3,35 into 3.31 gives the following ex-
‘pression for On’mvshere 0€m#n.
~¥m
SO (LN R LIPSt 33c

Onm= 5|7~ T

Equations 3.34, 3.35 and 3.36 can be written in terms of hyperbolic functions

‘as follows: ; ¥
9;\,5 = Lanh %‘1 338
~y(m-~ '—“) |
6,,,,,,--%‘—[1—6("1-%)-6 ¢ zsech%‘] 239

3.4.3. Relating "Exact" Analysis an< Describing Function Analysis

Since the integrator time constant of the experimental accelerometer

is 12:5 seconds and the duration of a half-cycle for a 3:3 mode is 3T=0.0015

3pps clock rate, the pendulum can be considered as having

a perfect integrator as far as mode prediction is concerned. Thus, the simple
equations of section 3.4.2 are used rather than those derived in section 3.4.1.

The steady-state pendulum outputs during the 2:2 and 3:3 modes of
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oscillation are shown in Figure 3.5. The terminology O,1 m refers to the
. i,
pendulum angle at the mth pulse after a torque reversal during an n:n moce.

The torque reverses at +6 If the hysteresis were increased to +1.5 seconds

n,0"

of arc, the 2:2 mede would no longer be self-sustaining because 92 0 would
’

occur within th~ hysteresis band. At that time, the hysteresis band encom-

passes 94 3 making the 4:4 mode possible. If the hysteresis were recuced

to zero; the 2:2 and 3:3 modes would still be possible, in addition to the 1:1,

This is substantiated by the describing function curve of Figure 3.3 . The locus

of e
Gp

of these modes intersect -180°.

for zero hysteresis lies along the =180 line. The ¢G0w5for all three

Having the "exact" pendulum response in Figure 3.5, some additional

moding information can be obtained from the describing function in Figure 3.3

by relating the two curves. The amplitude of an n:n mode of oscillation can

1t
be obtained by evaluating equation 3.8 at the frequency of the n:n mode, W= 7F°
A8

) G T

Without a sampler in the loop, the system, according to Figure 3.3

6| 340

would limit cycle at the frequency where g _ __é___ intersects ﬁpendulum ‘

W= 3,65 x 103 radians/second. For this situation, -l_-Qnowould equal + AQ

(i.e., + 1 second of érc.) The. inclusion of a sampler with a clock rate of
2 x 103 pps causes the system to limit cycles at 3.14 x 103 rac./sec.
(2: 2 mode) or 2.1 x 1073 rad./sec. (3:3 mode). The sampler contributes a
phase shift of a<2;2‘ and 3.4 for the 2:2 and 3:3 modes, respectively.

The crossing of the zero reference axis in Figure 3.5 by the pendulum

cannot be detected until the pendulum leaves the hysteresis band. The
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effective phase shift is defined by the describing .function as sin . -l%gl. .
According to Figure 3.3,
- -1
Jh:h - Xp:p = SiN a0 3.4

10

Since the torque feedback signal is not switched until Qn'w it is evident

from equation 3.41, ngure 3.3 and Figure 3.5 that a similar expression in-

volving 8, o can now be written.
’

J - - Qn,c
h:n - SN i

ol |
or 6o * |6lnm SinSpin 342

Similarly,
On,n-1 = |8l sin (- Spn) 343

Thus, the pendulum angle at the two critical sampling instants can be
determined semi~graphically. This does not exhause the information obtainable
from the describing function analysis. References to Figure 3.3 will be made
in other sections of this report. The accuracy of the describing function de-
pends on the particular system parameters and operating conditions. In the
case under investigation, the higher harmonics contribute very little phase
shift and distortion to the fundamental sinusoid. The describing furiction
analysis and the piecewise linearization analysis agree very‘well.

3.5 Analytic Mode Prediction

A convenient semigraphical method of predicting the oscillatory modes
is afforded by the describing function. An "exact" analytic expression for
the possible nin modes can"be obtained from the equations used in the piece-
wise linear analysis.

Without a ;sampler in the loop, On,o = a8 since the torque feedback

reverses polarity at the instant the pendulum leaves the hysteresis band.
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Lettin geho- A0 in equation 3.37 yields

E ‘E('\'{"Ian ‘b‘é’)

or
| ¥
386 - 38 fanh - 344
For small values of 3:‘9 , the tanh can be expressed as the first two
. terms of its series expansion.
‘ h _ Un 1 / ¥ v
Tan 151 = \2)4, ,,,,,, 3.45

Substituting equation 3.45 into 3. 44,

XAG (bﬂ)

" or 3/2400 Yab .
h= < .04 346
M2 for o

The n evaluated in equation 3.46 will most likely be a non-integer number.

The possible n:n modes, with a sampler in the loop, will then be such that the
values of n are the next two higher integers above the value of n given by

equation 3.45.

For large values of 36 . tanh-a-ih— == { and equation 3.44 can be written
¥a® _ ¥n _
as e 1
or by = -"'<1 + "“') - for 24 34%7
¥ /“" A >1‘
If .0l1<— xAO <1, the curve in Figure 3. is used to determine n. Knowing

_____3/420 , determine §—2-'-‘— from the curve and solve for n. In general, depending

on the magnitude of%_g_, n is determined with use of equations 3.46, equation

- 3.47 or Figure 3.6. This value of n would correspond to the limit cycle freg-

uency, w= n—“:r-, which would exist in the loop which has no sampler, The
presence of the sampler makes several n:n modes possible. These n:n modes

would be such that values of n are the next two higher integers above the non-
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integer value of n determined for the non-sampled case.

There is a possibility that three, rather than two, n:n modes are
possible. For example, it is evident from Figure 3.2 that a small increase
in+ A@ from its value of +1 second of arc would cause =1 to intersect

D
the possible effective sampler phase shift of the 4:4, 3:3 and 2:2 modes.

i This condition occurs if the determined vilue of n for an unsampled loop

is just slightly less than an integer.
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CHAPTER IV

System Response to Acceleration Inputs

Graphical and analytic methods of predicting the possible oscillatory
modes of a sample-data contactor feedback control system were presented in

Chapter III for the case with no input being applied. The effect of contactor

. hysteresis was also considered. In this chapter, the response of this non-

linear system to a small input will be investigated. The principle of super-
posi'tion does not, in general, apply to a nonlinear system (i.e., the response
of the system to one input cannot be ordinarily determined from the response
of the system to some other input.,) This is the reason why it is usually
difficult to obtain a general solution of the dynamic response of a nonlinear
system. However, for small inputs, the analysis of this chapter provides a
simple, but accurate, description of the dynamic behavior of the system. This

technique involves the superposition of the linear open-loop response of

the pendulum upon the steady-state oscillation of the closed-loop nonlinear

system. The results-of the analog computer simulation substantiate the

validity of using such a technique.

4,1 Mode Switching Angle .

The behavior of the pendulum for the 2:2 and 3:3 modes are shown in

Figure 3.5. The existence of these two modes was determined by obtaining
]
the initial conditions at the beginning of each torque half cycle required to i

make the limit cycle period equal to 2nT. In addition, it was required that
8 o he larger than+A8 and that the pendulum angle be more positive than

-A6 at all the sampling instants between g and % ne1 7 inclusively.

v

In order for the limit cycle to continue indefinitely, gh,h must equal
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' —qp _For the moding to continue only from one torque cycle to another, 6n n
| need not necessarily equal -6n,. All that is required is that no change in the
polarity of the pendulum angle be detected at any sampling instant until the
nth sampling instant, For a small anplitude, slowly varying acceleration
input, the wave shapes in Figure 3.5 can be considered as moving slowly up
~and down. The 2:2 wave cun move upward until —92’0 enters the hysteresis
band and the torque does not reverse until the arrival of the next pulse as the

system enters the 3:3 mode. Likewise, the 2:2 wave could move downward

until 92 o enters the hysteresis band. The mode switching angle for the 2:2

-

mode is therefore t@z 0.

The 3:3 wave can move upward until —93'2 passes through the hysteresis
band and the torque reverses on the second sampling pulse of the torque half
C cycle rather than the tl';ird pulse as the system enters the 2:2 mode. Similarly,
the 3:3 wave can move downward until 93,2 passes through the hysteresis band.

!
Thus 193 2 is the mode switching angle for the 3:3 mode.

|
The mode switching angle depends on the wave shape of the particular nin
mode and the size of the hysteresis angle. "For a rapidly changing acceleration

input, the torque reversal could come at any sampling instant. However, with

a small amplitude, slowly varying input, the mode switching angle will be
t er\,t: if l 9.,,0 - (*AG)I < K"Ae) - en,n—l‘

41
t0nn  if |Ono- (+20)]> |(-a8) - 8n,n-1]

According to the describing function in Figure 3.3, the mode switching

angle is
o Ieln:n Slhénm ‘f Hnn < >\n:h

le‘h;n Sm(%-&n,n) if HKn:n > );,.,.n

A
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4.2 Open Loop Response of Pendulum to Step Input

For small inputs, the nonlinear system can be considered as operating in
a limit cycle with the input simply affecting the average value of the oscillating
pendulum. The approach which will be used in obtaining the response of the sys-

tem to an applied acceleration will consist of determining when the average value

. of the limit cycle reacts to the step input such that it causes a change from one

of the possible modes to the other. The average value of the limit cycle moves
away from its reference position when an acceleration is applied until the mode
switching angle reaches the hysteresis band and the mode ~changes.

The reaction of the average value of the pendulum limit cycle to the
acceleration input can be obtained from the open loop response of the pendulum

to a step input. The response, according to equation 2.4 is
% - ,

24 .
~Paf, 7 "-€ ©
G(ﬂ“ T[l+ 42

-5
1 T{

{ter the transient portion has decayed exponentially to a negligible value,
the pendulum approaches the steady-state value,

P
s = —% 43

With no elastic restraint, K', in the pendulum; the response according to

The steady-state response to the step input is therefore a ramp when K= 0.

4,3 System Response to a Step Input

/
Assume no elastic restraint for the present, the average value of thej

L

pendulum in the 2:2 mode moves upward in Figure 3.5 due to a small step input

of acceleration. Eventually, during one of the positive half cycles, -92 " will
'

occur within the hysteresis band and the 2:2 mode will switch to a 3:3 mode.
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Since the mode switch occurred at the beginning of the torque cycle, the up-
and—down counter will produce no net change. With the step input still applied

to the pendulum, the average value of pendulum limit cycle, now in the 3:3 mode,
will continue to move upward.,

' Eventually, during a negative . 1f cycle of the pendulum, the 3:3 wave in
Figur'e 3.5 will have moved upward such that —63’2 occurs outside the hysteresis
band and the torque reverses immediately as the system goes back into the 2:2
mode. During this particular torque cycle, the counter will have counted up 3,
counted down 2 and therefore gives a net output of one =AV pulse. If the step
input persists, the system will continue to change between ;he 2:2 and 3:3 modes,
giving a net output every time the mode switches from a 3:3 to a 2:2 mode.

The application of a acceleration step input of the opposite polarity will
cause the waveforms in Figure 3.5 to move downward. The modes change again
at the mode switching angles described in section 4.1. The only difference with
the negative step input, is that counter produces a net output as the mode switches
from a 2:2 to a 3:3 mode. |

The behavior of the system in response to an acceleration step input can
be considered in the following manner. Since there are generally only two modes
bossible, the system can only switch between the two modes. If the system
is in a 2:2 mode and a positive acceleration is applied, eventually a+A V pulse
will be required. The occurrence of a 2:3 cycle after a number of 2:2 cycles with
a. positive acceleration be‘ing applied would be an impossibility since this would
result in.a net -AV pulse. What actually happens if that system "slips" into the
3:3 moding by producing a 3:3 cycle after a number of 2:2 cycles. No net output

of the counter is produced during this change of modes because the change
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occurred at ti‘ne end of a negative half cycle of the pendulum oscillation which is
the time when the contents of the counter are examined. The system continues in
the 3:3 mode under the influence of the step input. Eventually, a 3:2 cycle
occurs which is detected by the up-and-down counter as a net +AV pulse. With

the step input remaining applied to the pendulum, the system will continue to

change repeated between the two modes with the incremental velocity information

becoming available at a rate this quantized data best indicates the time integral
of acceleration. The response of the simulated accelerometer to acceleration
step inputs of various amplitudes are shown in the Appendix.

This heuristic development of a description of the system response to a
step input may also be presented with the use of the phase-plane. The phase
plane trajectories for the 2:2 and 3:3 modes are shown in Figure 4.1. The
hysteresis band and the sampling instants are also shown on the plot. A plot
of the 4:4 and l:l trajectories would show that these modes are impossible be-
cause of the relative location of _t94' 3, 16, ,0 and the hysteresis band.

With no elastic restraint in the pendulum, the trajectories move to the
right or left under the influence of an acceleration step input. This lateral
motion of the trajectory continues until en,o enters the hysteresis band or
else en,n-l passes through the hysteresis band and the mode switches. This
mode switching continues as the incremental velocity information is generated,
The horizontal bars through sampling points indicate the possible lateral dis-
placements of these sampling points that can exist. The discussion of the
system behavior in this section can be followed in conjunction with the

trajectories of Figure 4.1. A typical trajectory of the simulated accelerometer

is shown in Figure A.2 of the Appendix.
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This description of the system response to a small step input of acceler-
ation was substantiated by the analog computer simulation. The system response
to large amplitude, rapidly-varying inputs is much more difficult to ascertain
because the greater number of possible modes and mode switching angles makes
a general theory of mode response impossible. However, an extensive computer
simulation can provide some general information on responses to large inputs.
This would be the suggested method of investigating large inputs.

4.4 Accelecrometer Deadzone Due to Elastic Restraint

The steady state response of the average value of the pendulum angle to

an acceleration step input is given by equation 4.3 and repeated below where

'
K=Pg+K.

9 = Pa = s 2 2 _.__1___. g
53 - T S5
K Ry + K I 1+ o
It was shown in section 4.1 that mode switching occurs whenever the
average value of the limit cycle exceeds ile,,,c-(me)‘ or * K’AG)- en,n-l',
whichever is smaller. Therefore, if the average value of the limit cycle re-
quired for mode switching is not exceeded as the pendulum angle approaches
GS a sensible output of the accelerometer will not be produced. (See Figures
S,

A.15b and A.16 in the Appendix). Setting the smaller off_l@ - (+48)

!

or

+|(-48)-86 equal to GSS gives the bounds of the deadzone for that

n,n- 1'
particular n:n mode.

DeADzONE 3% I Oh,o‘<‘*A9),(i‘ %)9’5 if IG.-.,o‘&.G){< l("AO) - Gn,p-\‘

v ’ 4.6
or *‘(;Ae)”en'm,n-\i(i" %)9’3 if ‘6,-;'0“'(&19,\'14('&0)'Gn,nﬂl

Repeated switching between the two possible modes is required in order
to obtain the proper output due to a step input, Furthermore, the deadzones

for the two modes are generally not the same such that an acceleration input

may be outside the deadzone for one of the modes, but within the deadzone
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for the other. Thus, the actual accelerometer deadzone is the larger of the
tws deadzones for the possible n:n modes.

The deadzones for the possible modes, given by equations 4.6, were
plotted versus the hysteresis angle in Figure 4.2. The actual accelerometer

deadzone at any value of hysteresis is the larger of the two mode deadzones.

: Note that there are values of hysteresis which will allow three different modes

to be possible, It is apparent from Figure 4,2 that the minimum accelerometer
deadzones occur when the deadzones for the two possible modes are equal.
The accelerometer deadzone can also be determined from the describing

function analyslsT According to section 3.4,3
|9n,o'(*59)l = lelh:n {5"‘ Shiin ™ 5'n<§n:n‘c’\n;n ]
'(‘Ae)" en,n—li e le - [Slh(gn‘h" o‘h;h) + 5""(%— Srs:n)]

The deadzone for a particular n:n mode can be obtained with use of Figure 4.2

47

Deadzone,,,= % teln;h[sméhzn - Sm(gn-n" o(h‘h);}(l‘* %)9'5 3f°‘h:h<>\n:n !

' 48
or 1% )Olh:n[sm(§h.h‘°<n:n)+Sm(““ﬁ "Sn:n}j p¢ ‘%)q’s 'f°<n:n>Xnm

Again, the actual accelerometer deadzone is the larger of the two dead-
zones for the possible n:n modes.

Consider the experimental accelerometer with the parameters given in
equation 3.9. With the hysteresis set at + 1 second of arc, it is evident
from Figure 3.3 that

X2z2< N2z
=33 > X3:3
Therefore, the deadzones for the two modes are

Deadzonez:z =% ]9]2:2 [smSz:z = Sin (Sz-z‘ “2'2,2)(1 s %)9'5

Deadzoneg,3= ¥ 19'3;3[8"" (sz=3 ""a:;)“‘ Sin (% - 53'3)](1"’ %)915
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Since l()l'z._z = 2.5 seconds of arc and |0,3’3= 4,7 seconds of arc accord-

A} K _
ing to Figure 3.4, the deadzones for pg 8 are

. L
Deadzone2:2= * 2.25%10 g's

i

Deadzoneala + qQx ,0”59‘5
Thus the actual accelerometer deadzone is the larger of the two deadzones;
namely, * ‘1*(0‘59'5.

Even if the step input is slightly larger than the value of the deadzone
given by equations 4.6 or 4,8, the pendulum would tend to approach its steady
state value exponentially rather than linearly as it would in the absence of
elastic restraint, Although this would not result in a complete loss of inform-
ation, as is the case within the deadzone, it would result in an undesirable
partial loss of 1nf.ormation due to a time lag in the production of a sensible accel-
erometer outbut. (See Figure A,17 in the Appendix). In other words, the presence
of elastic restraint causes the accelerometer sensitivity to be nonlinear
immediately outside the deadzone in addition to the definite nonlinearity within

the deadzone.

4,5 Mode Switching Without Producing Output :

The repeated switching between the 2:2 and 3: 3 modes is associated with
an acceleration input, according to the discussion in the previous section, How-
ever, there is a very small region of limit cycle conditions which can result in
the system switching repeatedly between the 2:2 and 3:3 modes without an
acceleration input being ap’plied.

Consider the situation where the system is in a 3:3 mode and a small
acceleration is applied so that the 3: 3 trajectory in Figure 4.1 moves to the

right. When -84 2 reaches the =486 at point A, the system switches from the
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The time constant of the torquer should be small or else it must be con-
sidered during the calculation of the pendulum dynamics.

5.4 Clock Frequency

The minimum clock frequency should be such that T is equal to, or less than,

the feedback acceleration (.g[.) divided by the desired increment of velocity, in

.order to obtain the specified resolution in the velocity indication.

M
The accuraty of the clock frequency must be better than the accuracy
specification for the system and the width of the clock pulse should be very narrow

in order to reduce the uncertainty in the time that switching occurs.

5.5 Elastic Restraint

It is desirable that there be no elastic restraint in the pendulum because of
the deadzone and nonlinearity it produces. The deadzone effect can be seen by
comparing Figure A, 15b and A, 16 in the Appendix. The elimination of the dead-
zone removes the uncertainty of the pendulum position in the vicinity of its
reference position. The nonlinearity refers to the scale factor of the acceler-
ometer being affected by the time delay in producing a aV output. This is due
to the fact that the average value of the pendulum "limit cycle" moves away from
its reference position in an exponential manner rather than linearly. This time
delay increases as the input decreases; such that it approaches infinity as the
input reduces to the deadzgne level, This nonlinear effect is shown in Figure
A.17 of the Appendix.

5.6 Pendulum Time Constant

In order for the accelerometer system to operate in an optimum fashion,
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33 into the 2:2. Assume that the step input is removed shortly thereafter. Since
-9312 is slightly less than the value of 92,0 required for a 2:2 mode to be self-
sustaining, the pendulum will tend to overshoot to the left during the first 2:2
cycle. The 2:2 mode will tend to complete its cycle to the left of point B, which
is clearly impossible because of the hystersis band. Thus, the system will re-
turn to the 3:3 mode. Since -93'2 for this first cycle is slightly larger than the
normal value of -93,2, the trajectory will overshoot slightly to the fight during
this initial 3:3, so that it returns to the 2:2 at the end of this single 3:3 cycle.
The possibility of such a mode existing indefinitely was proven by
considering a periodic mode consisting of ten pulses have a+3, -2, +2, -3
sequence, Using the piecewise linear equations derived in section 3.4.2 to
describe the behavior of the pendulum between torque reversals, a set of
initial conditions were obtained so that 8 and 9‘ at the first and tenth sampling
instants were equal but of opposite sign. In addition, the requirements for the
sense of the pendulum angle at the intermediate sampling instants were met
making it possible for this particular mode to be self-sustaining indefinitely.
Since this particular type of limit cycle appears to be relatively unstable
in comparison with the 2:2 and 3:3 modes, it was difficult to have the analog
computer simulation of this moding to persist more than about five cycles. (See

Figure A, 18 in the Appendix).
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CHAPTER V

Accelerometer System Synthesis

5.1 General

During the course of analyzing the pulse torqued accelerometer, the effects
of the system parameters upon the behavior of the nonlinear system were uncovereq.
Knowing the performance characteristics which are desirable in the system, it is
' appropriate at the conclusion of the analysis to provide a guide which may be used
for the selection of the system parameters in the synthesis of an accelerometer .
system,

It is not the purpose of this chapter to become concerned with the problems
associated with the physical realization of such a system; rather to present a
mathematical guide to the development of an accelerometer which meet the
specifications established by a proposed application,

5.2 Pendulosity.

It is desirable to keep the pendulosity small in the pendulum since it does
have an effect on the size and weight of the instrument., The product of the
pendulosity and the minimum acceleration to be measured should be greater than
the torque uncertainty in the system in order to insure proper detection of an
input,

Pamin .> A uncertainty

5.3 Torque Generator

'

The minimum torquing level, + M, must be greater than the product of the
pendulosity and maximum acceleration to be measured in order to provide the

specified range,

M>Pamax 5.2
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the "limit cycle" amplitude should be kept 'as small as possible in order to reduce
the instantaneous error in the velocity indication, This corresponds to having a
"tight"loop in a linear control system, The frequency of the "limit cycle" should
also be high in order that the change in velocity can be detected in the shortest

possible time, In this regard, the pendulum time constant (—C—I:—) should be as

- small as is practical.,

Efforts should be made to keep the inertia low. Therefore, it would be
desirable that the torque and signal generators require very little material to
be located on the float, The damping should be high in order to reduce the angle
through which the pendulum travels. Yet it should be low so that the average
value of the "limit cycle" moves away from its reference position at a high
angular rate in order to detect a change in velocity in the shortest time possible.
Thus, there appears to be an optimum value of damping for which the "limit cycle"
frequency is maxim\.Jm. This optimum value of damping will now be determined
from the describing functjon analysis for the system which has ﬁo sampler.

According to the describing function analysis, the system "limit cycles"”

when J
¢pendulum =@ 1 ‘
G
or - -72—‘:- + tar:‘uﬂ},’ -% 4+ s -‘%% 54
Rewriting equation 5,4
tan 'wT,= "‘;_ o Slﬂ_.fg\' 5.5

Taking the cosine of both sides of equation 5.5

-| =l Ae E T e
cos(tah ‘sz)"‘ C°5(S‘" T 2) T ¢
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1
1~ Jng z

Knowing that tan™' -« Is the phase angle of the following

right triangle can be constructed:

From the right triangle it is evident that

cos(tan - wTy) = (1 " - &7

w? ”C’f)%;
Neglecting the integrator time constant, the amplitude of the pendulum

limit cycle can be obtained from the t"requency response of the pendulum to the

fundemental component of the square wave driving it. Thus
4

———— —

- n C .
|6] W1+ wrT?)i 5.8

Substituting equations 5.7 and 5.8 into 5.6 gives

1 2 5
(l + w?-Tzl)"i - "f:I w([ *wszl)z

Since T;=-é—the above equation can be written as:

4MC
Ao

According to equation 5.9, the frequency of oscillation can be increased

= C?'w +w311 5.9

by increasing M and decreasing a8 and I, However, once these three quantities

1

are fixed, 'the value of C which maximizesw can be determined as follows:

Take the partial derivative of w with respect to C in equation 5,9

- . 4M 2 dw 272 Jw
i a0 2Cw + C 3C + 3wl Yol
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Set %% equal to zero and solve for Wmg,. which exists for optimum damping.

™M
wMQx, = “ZCAO 510

Substituting equation 5.10 into 5.9 and solving for optimum C yields:

__ [2M1]
Coy/=p 5.11

Solving for wT, using equations 5.10 and 5.11

le: 1

or W= 512

A
T

When the pendulum time constant contributes 45° of phase shift in accord-
ance with equation 5.12, the hysteresis describing function also contributes 45°

- Ao o
ori,e., ¢-_L - sin — =45
- & 161

or
A6 =.707]6|
Equation 5.12 gives the relationship between the amplitude of the "limit
cycle" and the torque switching angle which gives the maximum limit cycle

frequency. A plot of wversus C would show the curve to be quite flat around the

optimum value of C,
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CHAPTER VI

Conclusions and Recommendations

This report has been concerned with the analysis of a pulse torqued accel-
erometer with zero and s'mall inputs., The describing function technique was used
extensively to determine the behavior of the system because of its simplicity. The
accuracy of the technique is more than sufficient for engineering purposes. The
plece-wise linearization method was used to gain further insight into determining
the oscillatory modes. It was not necessary to introduce the Z-transform 1ntd the
analysis to represent the effect of the sampler, Although the phase plane method
was not employed extensively, this method may prove to be more useful in the
analysis of the system response to larger acceleration inputs.

Analytic and graphical procedures for determining the oscillatory modes of
the accelerometer modes were presented in Chapter III., A heuristic extension of
these procedures provided an explanation of the response of the system to small
inputs in Chapter IV, Based upon the analysis, design criteria to be used in the
systhesis of a pulse restrained accelerometer are given in Chapter V. An analog
computer simulation and laboratory experiments substantiated the analytic de-
velopment,

Having described the moding existing in this sample data contactor feed-
back control system and the deadzone resulting from the presence of elastic res-
traint, any further work should be directed toward determining the system res-

ponse to large inputs. Inputs other than step functions should be considered and

the effect of the amplitude and frequency of the acceleration input upon the
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accuracy of the velocity information should be investigated. . Having available
the analytic techniques of this report, computer simulation and laboratory exper-

iments appear to be suitable means for future investigations.
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APPENDIX

Analog Computer Simulation

A.1 Computer Program

The experimental accelerometer which was simulated on the analog computer

. has the following parameters:

Ty o = 43%10 2 sec,
‘Ti: —f: = {2.5 sec.
tM== 2 SPS

Kl

— = 8

Py

" The scale factors which were required to reduce the basic system equations

to computer equations are as follows:

_ ‘actual
tcomputer B 1000
S x 104 volts = 1 radian
Neglecting the elastic restraint which is too small to simulate on the com-
puter, the following differential equation was programmed to represent the
pendulum:
0+ 2.336 = + 5.8 volts
The program is shown in Figure A.1. The Schmitt trigger served as the
contactor and the sample-and-hold operation was performed by a flip-flop gated

by clock pulses.

A.2 Discussion of Simulation Results

A typical trajectory in the phase plane is shown in Figure A,2, The system
is initially in a 2:2 mode and an acceleration step input is applied at point A

so that the average value of the pendulum "limit cycle" moves off to the right
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at a constant rate, At point B, the torque should reverse if the system is to

remain in the 2:2 mode., Since B is within the hysteresis band, the trajectory
continues on to the left and thus enters a 3:3 mode. If the step input were to
remain applied, the system would continue to switch between the two modes.

For very small inputs the system switches betwen the 2:2 and 3: 3 modes

-at a rate proportional to the input as can be seen in Figure A,3 and A.4. The
torque feedback signal e:iisting for 1g, 3g and 4g step inputs are periodic in
Figures A.5, A,7 and A, 8 because the amplitude of the feedback signal is
5g's, an integer multiple of the input.

This periodic behavior of the torque feedback signal would be impossible
for smaller inputs, even though 5g's is an integer multiple of the input because
the shorter of the two torque half cycles must consist of three or less pulses.,
(Since a 4:4 mode could not be sustained with a zero input, a torque half
cycle of four pulses can not exist in the presence of an acceleration input
which is tending to drive the peﬁdulum toward its reference position during the
shorter torque half cycle.)

For 1r;puts, of which 5g's is not an integer multiple, the system may have
a periodic behavior which lasts for several cycles as the average value of the
"limit cycle" moves away from the reference position until a pulse is "gained"
as shown 1‘n Figure A.9. The periodic behavior may correspond to a higher
acceleratién so that a pulse is "lost" every few cycles as the average value
of the "limit cycle" moves toward the reference position, as in Figure A, 10,

The effect of a change in the sampling rate is shown in Figures A,12,
A,13, A,14 and A.15a. An increase in the clock rate results in a smaller
instantaneous velocity error as the time required to detect an incremental

change in velocity is decreased.
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If the contents of the up-and-down counter are put into the velocity
accumulator at the end of every positive torque half cycle, a net output of
one AV pulse occurs at point A in Figure A, 13 as the counter is cleared for
the next torque cycle. Even though there is a change in mode at point B,
there is no net output since the mode change is "in phase" with the counter,.
The next output does not occur until point C is reached.

The addition of elastic restraint (T~ % = ,01655 sec.) caused the
pendulum response to change from that of Figure A, 15b to that of Figure A, 16.
The average value of the "limit cycle" in Figure A,16 moves away from the
reference position to the position where the torque due to the acceleration
input is balanced by the elastic restraint torque., Since this steady state
value is less than the mode switching angle, no incrememtal change in
velocity is detected,

In addition to preventing the detection of acceleration within the dead-
zone, elastic restraint affects the linearity of the system outside the dead-
zone., When the integrator time constant (%—) was increased to .0233
seconds in Figure A,17, the mode changed and therefore resulted in an
indication of AV . However, the average value of the "limit cycle" approached
the mode switching angle exponentially due to the integrator time constant.
This caused the mode switching to occur at point B rather than at point A,
This time lag causes an unrecoverable velocity error of (tg~1t, ) times
the acceleration input.

The situation where the mode changes without producing an output was

substantiated in the computer simulation. With a very small input being
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applied to the pendulum in Figure A,18, the system went through a -2, +3,
-3, +2 sequence in going from the 3:3 to the 2:2 modes. Later a+3, -2,
+2, -3 sequence occurs as the system changes from the 2:2 to the 3:3
mode. The presence of the very small g input prevented the sequence from
occurriné more than once each time the mode changed. Not only is this
~type of "limit cycle" unstable, the range of initial conditions for its

existance is very small,
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