The OUA, a sextant-telescope package, is used to
sight on known reference stars and landmarks for sight on known reference stars and landmarks fo
the fine angle measurements needed in navigational
check. In most operations, the Command Module pilot will use the telescope to locate a target star then sight the selected star in the magnified field of view of the sextant to make precise measurements.
Measuring the angle from the stars to the basc line of the optical sub-system yields information for aligning the Inertial Measurement Unit of the Guid-
ance and Navigation System. This accurately estabance and Navigation System. This accurately estab-
lishes the spacecraft's orientation. Measuring the lishes the spacecraft's orientation. Measuring the
angle from reference stars to earth or lunar land marks checks the position of the spacecraft. In both cases, when the star is accurately located in the sextant cross hairs, the astronaut presses a
Mark button, feeding the information to an onboard guidance computer. The computer calculates and performs the alignment of the Inertial Measurement Unit and provides course correction inform tion to the pilot.

ALIGNMENT OPTICAL TELESCOPE

APOLLO RANGEFINDER

The rangefinder will provide the Command Modut pilot with a reading of the distance to the Luna pilot with a reading of the distance to the
Module during the rendezvous maneuver. The astronaut sights the Lunar Module through
Trendevzous window and turn an adiusment a rendezvous window and turns an adjustment con-
trol until a movable image of the LM is tangent to a second, fixed image. The adjustment rotates a pair of wedges which are calibrated in terms of range and mechanically linked to a drum scale. As the astronaut monitors the rendezvous he takes distance The rangefinder is desigion on his part. or bracket-mounted operation. On the hand-held mission, it will be mounted above the headrest of the fight commander's couch

the stars

In space travel，man makes use of the only constant he has－the stars－to determine
his precise position and direction． his precise position and direction． Any change in the known position of the stars during space flight in our galaxy
is imperceptible，although the stars do is imperceptible，although the stars do
have some movement．By using an optical instrument to measure the angle between selected guide stars and a known refer ence，astronauts can determine precisel where they are with relation to the center of the earth．
To make space navigation easier，NASA has chosen 37 stars－nearly all of first or throughout the firmament．Normally，three stars are used for navigational checks．
the star chart
The numbers and names of the 37 guide stars are outlined in rectangular boxes on the chart．The constellations are identified assist in locating the guide stars．
The ecliptic，which is represented on the pparent path of the sun among the stars in the course of a year．It crosses the celes－ tial equator at the autumnal and vernal equinoxes．
The rectangular shape of the chart dis torts the relative positions of the stars in the polar regions，as a Mercator projection distorts polar land masses on a map of the Earth．For a completely accurate represen hould be printed in the form of a sphere with the observer located at the center．

