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INSTRUCTIONS

The subject of this program is Digital Computer Fundamentals. Knowledge of these funda-
mentals will provide an understanding of the approach to, and necessity for, the various
digital computer techniques and circuits.

The program is presented by auto-instructional techniques called programed learning. Brief-
ly, these techniques present the information in carefully sequenced small steps called frames.
With few exceptions, each step, or frame, requires a written response. However, in order
to make a correct response you must pay close attention to the frame content.

The information presented in each frame is placed on the right-hand side of the page. The
confirmation of your response is on the left-hand side of the page, next to the succeeding
frame.

To prevent your accidentally observing the correct response, we have included a removable
page-sized frame cover. This cover is placed on the page under the frame you are studying.
After writing in, or "constructing' your response, slide the cover down to the succeeding
frame. This will expose the confirmation response to the frame you have just completed.

You will not be able to quickly flip through the pages of the course skipping from '"high point
to high point'" as in an ordinary text. Your complete concentration is required. It is to your
advantage to take your time, follow the correct sequence (don't skip around), and carefully
think out your response before writing it. When tired, take a break. There is no time limit,
you set your own pace.

It is imperative that on those frames requiring written responses you write your response in
the area provided for it. A response is required for each blank underlined space. Writing
the response is important; it has the effect of making you an active participant in the learning
process. You will not be asked to create a response; where required, you will be guided by
hints, or cues, within the text, or asked for information previously presented.

After writing your response, immediately slide the cover sheet down, or, where necessary
turn the page to confirm your response. This immediate confirmation is vital. The immedi-
ate knowledge of the correctness of your response is a strong reinforcement of your learning.
We have carefully arranged and phrased the frames to allow a minimum of wrong responses.
Should you make a wrong response, return to the frame and cross out your answer, and after
re-reading the information presented, write in the correct response.

There is no doubt about the effectiveness of programed learning; it has been proven. Follow
instructions and you will learn more in less time, and learn it better than you would learn by
conventional training methods.

Remove your cover sheet, place it under the next frame and use as previously directed.



i.

ii.

iii.

iv.

vi.

text book

Program
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writing
or placing
or constructing
(or equivalent)

response

read
(or equivalent)

ii.

iii.

iv.

vi.

vii.

The following introductory material is presented
in the same form as the text. To answer one of
the most common questions, and possibly one
you are asking yourself, this is not a test, it is
a text! Although presented in a different form
this information is still a book.

This text differs from the normal text in that it
uses an auto-instructional approach, also called
programed learning. The subject matter content
is carefully sequenced, giving it another name, a
Program.

This textbook can also be called a

Programed learning presents the information in
small steps called "frames.'" This small step
you are now reading is a

Have you noticed that you cannot skip right
through? You must take each frame in sequence,
read it carefully and then you participate by

your response in the blank space.

After having written your response you must
immediately move the cover sheet down, or turn
the page, to confirm your response. If your re-
sponse is not correct, cross it out. Re-read the
frame and then write in the correct

If the blank space occurs within a sentence, do
not write your response until you have
the complete sentence.

There will also be frames in which your response
will be to write or draw a correct version of the
subject matter. Be sure to draw these on the
page, or an accompanying sheet of paper, allow-
ing you to check your .




vii. response viii. You will also find occasional information frames
whose contents are presented solely for informa-
tion - no response of any kind is required. In
this case you will be told to ""proceed to the next
frame." What you are now reading is an example
of an informational frame,

Now that you have the idea, start the program.

o ol



VOLUME I
SEMICONDUCTOR CIRCUITS
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1. Tube amplifiers have three general configura-
tions shown in illustrations A, B, and C below.
They are (A) the grounded-grid, (B) the
grounded-cathode (the most common), and (C)
the grounded-plate or cathode follower. Note
that "grounded" refers to signal ground, not
necessarily DC ground. In transistor ampli-
fiers we again have three configurations, each
one equivalent to one of the tube configurations.
However, with transistors we use the term
"common' instead of '"grounded. "

(Proceed to next frame)

2. "Common refers to the transistor element
which is common to both the input and the out-
put circuits. In this basic amplifier the input
signal is applied between the emitter and the

of the transistor.

NPN
e/-\
c
EIN ouT
L

T
’_I|I|I|I' +




2. base

3. base

4, common-base

3.

The output is taken across the collector

and the of the transistor,
NPN
_ e/” O\
gl c
Ein EouT
Ry b Ry

Since the base is common to both the input
and the output circuits, we call this a

- amplifier,

In the circuits below, note the similarities
between the grounded-grid amplifier (A)
and the -

amplifier (B).

5. common-base

In the common-base, and the other two ampli-
fier configurations which follow, we can change
from NPN (A) to PNP (B) simply by reversing
the polarity of each battery. PNP

Y

m
2

Ry
(A)

(Proceed to next frame—)
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7. Here we have the popular grounded-cathode
amplifier (A) and its transistor equivalent (B).
Note that the transistor's input is between its

and its

Eour

Ein EouT ' EIN RL
(A) (B)
7. base -- emitter 8. And the output is taken across the
(or vice versa) and the of the transistor.
8. collector -- emitter 9. Since the emitter is common to both the input
(or vice versa) and output circuits, we call this a -
amplifier,
9. common-emitter 10. On the circuit shown below, indicate the proper
battery polarities for a common-emitter PNP
amplifier,

PNP EouT
)
EIN “ RL
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10. I— I- 11. Lastly we have the grounded-plate amplifier

(A), more commonly called the cathode follower,
By B and the equivalent transistor circuit (B). It
takes a close look and a little thought to realize
L + that the input signal is applied between the base
and of the transistor.

11. collector 12. Compare circuits (A) and (B) shown below.
Note that they are exactly the same and that
the collector is at signal ground. However,
(B) shows more clearly that the input signal
is applied between the transistor's
and

EouT

[ 311

12. base -- collector 13. Now it is easy to see that the output signal is
(or vice versa) taken between the and
of the transistor.

1-4



13. emitter -- collector 14. So we can call this a common-
(or vice versa) amplifier.

14. collector 15. Just as the tube version (A) is usually called
a cathode follower, we often call the common-
collector amplifier (B) an
follower.

15. emitter 16. Complete the circuit shown below for a PNP
: emitter follower,




o 17.
I” b ]
>——-’-‘ ,I |
' \\o ¢l
] [l
’ -—
Y . L 5
2

L i

(B) GROUNDED CATHODE

(C) GROUNCED PLATE

For a comparison of the three amplifier config-
urations with both tubes and transistors, study
the circuits shown below. Note particularly the
input and output circuits, and the common ele-
ments. These circuits may become cluttered
with components for biasing, stabilization,
feedback, etc., and are sometimes hard to rec-
ognize with an unpracticed eye, but the basic
configuration must be either common-emitter,
common-base, or common-collector.

EIN EouT

L

1
-1y

(F) COMMON COLLECTOR
(EMITTER FOLLOWER)

(Proceed to next frame)




18.

19,

20.

emitter-base
(or vice versa)

forward

low

18. Now lets look at the characteristic input and
output impedances of the three transistor ampli-
fier configurations. In the common-base the
input signal is applied between the emitter and
the base, that is, across the -

junction.

/\NPN
EIN EouT
Ry

'l'+

19. The emitter-base junction, remember, is
(forward/reverse) biased.

|15

‘_ﬁMlll + 2

20. Forward bias encourages high conduction
across a junction. Therefore the input source
sees a (low/high) input impedance.

NPN

21. The output signal in a common-base amplifier

is taken across the -
junction.

1-7



21, base-collector
(or vice versa)

22, reverse

23. high

24. low -- high

25. impedance gain

COMMON-BASE

Zin Low 30n-
2= High

22,

23.

24,

25,

26,

COMMON-EMITTER

The base-collector junction is always
biased in amplifiers.

Since the reverse bias discourages conduction
across the base-collector junction the output
circuit appears as a impedance.

NPN

So we see that the common-base amplifier
has a input impedance and a
. output impedance.

With a low input impedance (Zj,) and a high
output impedance (Zg,¢), we can say that the
common-base amplifier has an impedance gain.
Typical values are 30 - 150 for Zjn and -
300K - 500K for Zout, giving an

of several thousand,

Let's start a chart showing the characteristics
of our three amplifier configurations. We will
add to this chart as we uncover more information.

COMMON-COLLECTOR

(Proceed to next frame)
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217.

28.

low

base

small, light, low, etc.

21.

28.

29.

30.

Now for the common-emitter amplifier.

As with the common-base the input signal is
applied across the forward biased emitter-base
junction. Therefore we expect a

Z, -

(E) COMMON EMITTER

The typical values of common-emitter Zjp of
500Q - 15000 are not nearly so low as the
30Q - 150Q of the common-

amplifier. There is another factor which we
will now consider.

Current flows in a transistor as shown
below. That is, a heavy current flows from
emitter to collector through the base. The
current flow in the base lead is very

[P

Here, current flow is shown schematically for
common-base (A) and common-emitter (B).
Note that in the common-base (A) the signal
source must carry a current,
while in the common-emitter (B) the signal
source carries only a current.

NPN
€ our

l
*-.*Illll'rr;-l

lerindie

(B)



30. large, heavy, etc. -- 31.
small, light, etc.

31. low 32.

32, high 33.

33. lower 34,

With a large current flowing in the input circuit
of the common-base, the source ''sees' a
impedance.

NPN/-\

% 3=

On the other hand, with only a small current
in the input circuit of the common-emitter, the
source sees a relatively

impedance. NPN

¢ lez1b+lc
Thus we see that, although both amplifiers
have their input circuits across forward biased
junctions, the heavy current in the input circuit
of the common-base (A) leads to a much

impedance than the light current
in the input circuit of the common-emitter (B).

- ; lavibtle

(A) (B)

Now let's see what the output impedance looks
like in the common-emitter amplifier, We said
previously that the output signal was taken be-
tween the transistor's and its

EouT
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34. collector -- emitter 35. But between the emitter and the collector we
(or vice versa) have both the reverse biased base-collector
junction and the biased emitter-
base junction.
EouT
EIN RL

35. forward 36. The reverse biased base-collector junction

gives a output impedance, as in

the common-base amplifier,

36. high 37. However, in the common-emitter amplifier,

the forward biased emitter-base junction is in
series opposition with the reverse biased base-
collector junction. Therefore, the output im-
pedance is considerably (raised/
lowered).

37. lowered ‘ 38. So while the common-base has a typical output

impedance of 300K - 500K, the common-emitter's
output impedance is in the order of 30K - 50K.

(Proceed to next frame)

39. Witha Zj, of 1000.n. and a Z,;; of 40K, for
example, the common-emitter amplifier will
have an impedance gain of about

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR

Zin Low 30n- 150 Low 5000 - 1500
Zout High 300K - 500K High 30K - 50K
Zgain High n x 1000 n x 10
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39. 40

40, base -- collector
(or vice versa)

41, reverse

42, high
43, low
44, high

40.

41,

42,

43.

4.

45,

Now for the common-collector amplifier, or
emitter follower. We have shown that its input
is applied between the and the

NPN EouT

| ’e 11
The base-collector junction, as in all amplifiers,
is biased.

With the signal source looking into a reverse
biased junction we can expect a
input impedance.

Also, the signal source is in a
(low, high) current path.

NPN

Ic
EIN 4

—
e
|11l
\L
]

lazlbtle

With a low current input circuit and a reverse

biased input junction, the input impedance will
be very .

Indeed, Zjy for the common-collector amplifier
is typically 20K - 500K or more as compared
with about 100 for the common-base and
10001 for the common-emitter.

(Proceed to next frame)
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46. The output of the common-collector amplifier
is taken from between the and the
of the transistor.

46; collector -- emitter 47. With the collector at signal ground, we are not
(or vice versa) concerned with the biased base-
collector junction.

47. reverse 48. The output is taken across the emitter load
resistor. Since the full current of the tran-
sistor must pass through this resistor we
have a output impedance.

NPN

. 5 ‘
+ e
! = =
AVEAYA:

N7

1es b+l

48. low 49. With a high Z;,, of 20K - 500K and a low Zg,t
of 50 - 1000, the common-collector am-
plifier has a fractional Z gain.

Take a few seconds now to compare the impedance
characteristics of our three amplifier configura-
tions on the chart below.

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR
Zin Lowest 30n- 1500 Low 500N - 1500-n Highest 20K - 500K
Zoyt ~ Highest 300K - 500K High 30K - 650K Lowest 50 1000.n
Zgain Highest n x 1000 n x 10 Less than 1

(Proceed to next frame)
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52.

53.

.05

19

50. Now let's take a closer look at the current flow
in our three amplifier configurations, As
illustrated here, I, = +

N P N

) Yle \ s ch\‘ C '——}

[ |
L-t_:'i-——_+|¢+—<:4___—-_4|.|.|.|r—;|

le

51. Generally I, = 92% to 98% of I and I, = 2% to
8% of I,. In our examples we will assume that
Ic = 95%; I and Iy = 5% Ie.
(Proceed to next frame)
52. Here we have the common-emitter circuit with

static element currents indicated.

Note that for a current of . 95 ma through R,

only ma flows through the signal source,
o L eour

lesib+lic

. L .
53. That is, I; is B T - times I,

54. If the amplifier is operated on the linear part
of the transistor's characteristic curves, then
a small change in Iy, will cause a corresponding
amplified change in I¢. Since I¢ is 19 x Ip, the
change in I; will be 19 x the change in Ij,.

(Proceed to next frame)




mld N EE e E BN BN N I BN GE BN B EE B B B Em an

55. .019

56. gain

57. 19

55.

56.

51.

58.

59.

59. current gain 60.

zout
zgaln

Igain

For example, if I, increases by . 001 ma
(A I, =.001). I, will increase by
19 x .001 = ma (A Ig).

Since Ic changes 19 times as much as Ip, we
can say that we have a current
of 19,

In mathematical terms, for common-emitter:
current gain = Ale/ A Ip. (The symbolA is
the Greek letter delta. In mathematics it means
"change in.') Using the same figures: current
gain= Al;/ Alp=.019/.001 =

In any configuration, the relation Al;/ ATy
is known by the Greek letter 8 (beta) and is a
characteristic of a given type of transistor,
justas g = A eb/ A e is a characteristic of
a given type vacuum tube.

(Proceed to next frame)

We said that B = A I,/ A I is a characteristic
of a given type of transistor. Also, in the com-
mon-emitter configuration, AIC/ AT, = current
gain. Therefore, in the common-emitter config-
uration, B =

Typical values of common-emitter current gain
range from 25 to 50. So we can also say that
for typical junction transistors ranges from

to . :

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR

Lowest 308- 1502 Low 5008 - 15008 Highest 20K - 500K
Highest 300K - 500K High 30K - 50K Lowest 50§ - 100080

Highest n x1000

n x 10 Less than 1

B = AIC/AIb’

25 - 50
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60. 25 -- 50

61. Igain=AIl;/A I

61. As we can see in this diagram, 8= AI./A L,
does not give us current gain (I gain) for the com-
mon-base configuration. Since the signal source
is in the emitter circuit, I gain= Al /A .

NPN/\

w® L
Df

L—t{ [

EIN

RL

05ma l¢

T—|||1||||

En

62. However, I; is onls.r- about % of Ig.
PN
mo E& 95 our
ma

62. Ic=95%1Ie
63. .95
COMMON-BASE
Zin Lowest 30f) -
Zout Highest 300K -

i < = A1, /AL,
‘eain 52 g e

-

63. With the figures given in the diagram, assuming
linear operation, Igain= AI,/ Al =

A le=0ima NPN/\

95 E OUT
ma
EIN

L—Hv'—g}
"

64. The relation A I, / A Ie for any configuration
is known by the Greek letter & (alpha). Like
B, d is a characteristic of a given type tran-
sistor. In the common-base configuration
L= A Ie/ A 1, is equal to

.

COMMON-EMITTER COMMON-COLLECTOR

150 Low 5000 - 15008) Highest 20K - 500K

500K High 30K - 50K  Lowest 500 - 10008
Zgain Highest n x 1000

n x 10 Less than 1
B -=A1, /AT,
25 - 50\/ 2
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64. current gain 65. If the common-base configuration has a current
gain of less than 1, what good is it? Remember
that the common-base has an input impedance in
the neighborhood of 100 ohms and an output im-
pedance of 500K or so.

(Proceed to next frame)

66. We can see that a A I of .1 ma requires that
the signal source prov1des an Ej, of A Ig x Zj,

.1 ma x 100 ohms = volt.
Zinsioon PN~ Zout= 500 K
Ima klﬁ .98 £ out
IN

o 05"\0 le _:

I .E.
66. .01 67. Since Ic .95 I, and AI .1 ma,

Al 95 X 1 ma = 085 ma in linear operation,

But, this 095 ma is in a 500K circuit. There-
fore Eqyt = Al; X Zgyt is in the neighborhood
of . 095 ma x 500K = volts.

67. 47.5 68. With an E;,, of . 01 volt and an E; of 47.5 volts,
this common-base amplifier has a tremendous
of 47.5/.01 or 41750.

68. voltage gain 69, Since we have ignored various losses, impedance
mismatch, and other factors, we must take these
figures with a grain of salt. Nevertheless, they
serve to show that the common-base amplifier
gives high voltage gain inspite of a current gain
of less than one, Realistic values of Egain range
from 300 to 1500.

(Proceed to next frame)

70. We can also say that Egajn = Igain X Zgain
- (losses, etc.). In the case above, with Zj,
= 1000 and Zg,¢ = 500K, Egam
.95 x 500000/100 = (losses etc. ).

70. 4750 71. In the common-emitter amplifier we have both
Iyqin @and Zgain but the Zgajp is much
than in the common-base.




71. lower, less etc.

72. With typical values, Eg,4 ain X gam
- losses etc. =40 x 4(F Possg etc.
= 1600 - losses etc. Typical values for common-
emitter Egajy are 200 - 1000. This is a little
than for the common-base.

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR
Zin Lowest 308 - 1502 Low 5008 - 15008  Highest 20K - 500K
Zout Highest 300K - 500K High 30K - 50K Lowest 50§ - 10008
Zgain Highest n x 1000 nx 10 Less than 1
in €= Alc/D e B=AL/ANL,
e .92 -.98 26 - £
Egain 300 - 1500 200 - 1000

72, less, lower, etc.

. Igain=Ale/al,

73. With your present knowledge of transistor am-
plifiers you should be able to deduce that cur-
rent gain for the common-collector amplifier
is given by the ratioa I__ /a1

|
N

lez b tlc

74. Using our same values of static element current
in linear operation, we see that Iygip
= A lg/A Ip=1g/Ip = 1/.05—2 Typical
values range from 25 to 50. Iyqip for the
common-collector is practxcal y the same as
for the

NPN

816,01 ma

L
N
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74. common-emitter

Zgai

lgain

Egai

76.

1.

COMMON-BASE
Lowest

Highest 300K -
Highest

o = Ale/ Ale,
.92 -.98

decrease

decrease

300 - 1500

75.

Although the common-collector has a good
current gain, it has an impedance gain of much
less than one. The net result is that, like the
cathode follower, the emitter follower has a
voltage gain of less than one.

COMMON-EMITTER COMMON-COLLECTOR

150N Low 500 - 15000  Highest 20K - 500K
500K High 30K - 50K Lowest 500.- 10000

n x 10 Less than 1

B = AL,/ AL, AL,/ Al
2580 b 5% 50

200 - 1000 Less than 1

76.

1.

78.

(Proceed to next frame)

What about phase inversion in transistor am-
plifiers? Well, let's look at the NPN common-
base first. The emitter is forward biased with
a negative potential. So a positive-going Ejp

will cause a/an (increase/decrease)
in the forward bias, _
/\NPN
EIN ] EouT
Ry Ry
+
T+ =

The decrease in forward bias in turn causes

a/an (increase/decrease) in

The decrease in I means we have a/an
in I,.

1-19




78.

79.

80,

81.

decrease

positive

do not

increase

79. The decrease in I, causes a decrease in the IR

drop across Ry, resulting in a
(positive/negative)-going E .

Eing let EouT
Ry Ry
&=
K =

80. Therefore, in the common-base amplifier, we
. (do/do not) have phase inversion.
o § PNP

N Eout 4

EE f

a

R

-I-+
81. In a PNP common-base amplifier a positive-

going E;,, will increase the positive forward
bias, and thereby : I

7~ .
Emn § Eout

, R RL

! I T

82. The resulting increase in Ic causes a/an
in the IR drop across Rj,.

|cf PN lc’

ﬂi
[

+—0,

EouT !
RL

H—@
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82,

83.

85.

86.

increase

positive

increases

increase

83. Since the collector is reverse biased with a
negative potential, the increased IR drop across

Rj, results in a -going Egut.
Ie? [‘\PNP Ic*
EI: ) EOUT
R RL
+

T

84. So we see again that, although they operate dif-
ferently in some respects, the PNP and NPN
versions of a given amplifier produce the same
results, in this case absence of phase inversion.
You may remember that the tube counterpart,
the grounded-grid, also has no phase inversion,

(Proceed to next frame)

85. In the NPN common-emitter amplifier a positive-

going Ejj, the positive forward bias
at the base.

EouT

86. The increased forward bias causes Ig, and
therefore I, to

87. Increased I; and the resulting IR drop across
Ry, cause a -going Egut.
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87.

88.

89.

negative

does

increase

88. With a negative-going output from a positive-
going input, it is obvious that the common-
emitter (does/does not) give
phase inversion.

89. [n the NPN common-collector (or emitter
follower) amplifier, a positive-going Ej,
increases the forward bias, causing I, and
the IR drop across Ry, to .

90. With an increased IR drop across Ry,, Eqgyut
will also be -going.
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90. positive 91. So we can conclude that, like the cathode follower,

the emitter follower (does/does not)
give phase inversion.

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR
Zin Lowest 30£1- 150 Low 500/.- 15000 Highest 20K - 500K
Zout Highest 300K - 500K High 30K- 50K Lowest 50N - 1000.n
Zgain Highest n x 1000 nx 10 Less than 1
ain o = Ale/ Ale B = AL/ AL, Alg/ ATy,
s . 25.50  ° 24 "5
Egain 300 - 1500 200 - 1000 Less than 1
Inversion No Yes No
91. does not 92. Thus far, for the sake of simplicity, our ex-

amples of transistor circuits have used separate
batteries for forward and reverse bias. In
typical applications, values of reverse bias

fall in the range of 6 to 60 volts while forward
bias is only a few tenths of a volt. Therefore,
we should be able, by use of voltage dividing

resistors, to obtain bias from
the bias battery.
1-23




92,

93.

forward -- reverse

93.

In the three basic circuits below, note that in
each case the potential on the transistor's
is between the potentials of its
and

base -- emitter -- collector
or .
base -- collector -- emitter

94.

In this common-emitter circuit below the

forward bias battery is eliminated and the base

is now biased a little positive with respect to

the emitter by the voltage divider composed of
and .

1-24




94. Ry --Ry
(or vice versa)

95. voltage divider

96. Ry --R3
(or vice versa)

97. emitter-base
(or vice versa)

95.

96.

91.

98,

In this common-base amplifier, the base is
biased positive with respect to the emitter by
the composed of
Ry and R3.

EIN EouT

Again in the common-collector, we derive base

bias from the voltage divider consisting of
and .

T_

In some cases it may be possible to replace

R}, as shown in this common-emitter circuit,

with the internal resistance of the -
junction.

By simply reversing the battery and the emitter
arrow, each of the preceding NPN circuits be-
comes a pexjfectly valid circuit,

1-25




98.

99,

100.

101.

102,

103.

PNP

base-collector
(or vice versa)

increased

current

burn out, destruction,
ruin, etc.

emitter

99,

100.

101.

102,

103.

104.

Transistors are much more sensitive to heat
than vacuum tubes. Although there is no heat
generating filament, any IR drop across the
transistor must be dissipated to prevent temper-
ature buildup. Most of the IR drop in a tran-
sistor occurs at the reverse biased, high re-
sistance (relatively), base-collector junction.
Therefore, most of the heat (I2R) is developed
at the - junction.

Without going into detail, we will simply state
that a rise in temperature at the base-collector
junction leads to an increase in current flow
through the transistor. Since the heat generated
is equal to IZR, the increased current leads to
(increased/decreased) heating.

Again, the increased temperature leads to in-
creased through the transistor.

We can easily see that this vicious circle of
temperature, current, temperature, current
---- quickly leads to the of the
transistor.

This thermal-runaway is most serious in the
common-emitter configuration. To limit cur-
rent flow, a limiting resistor (R3 below)

is inserted in the lead.

Y

m
4

As emitter current increases, the Iz x R3
drop causes the emitter terminal to become
more (positive/negative).
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104, positive 105. As the emitter terminal becomes more positive,
the net emitter-base forward bias
(increases/decreases).

NPN EouT
EIN Ry
+
105. decreases 106. The decreased forward bias stabilizes the

temperature-current relationship by
(increasing/decreasing) the emitter current.

106. decreasing 107. As with a cathode bias resistor, the emitter
ctabilization resistor may be shunted with a
capacitor to prevent degeneration.

107. bypass 108. In vacuum tubes we have little trouble matching
the high impedance output of one stage to the
high impedance grid circuit of the next stage,
In transistors, however, we have problems.
For example, with common-emitter stages,
Z,yt may be 40K and Zj, 1K. One approach,
shown below, is to use coupling.

c, K722 c, K722

10 MF 10MF
SIGNAL R 6 TO SIGNAL
K 1K ' K 1K R 20K
INPUT 20 150K 20 %“ 150k é 500 }UYPU‘I‘
© (HIGH [ &5 ¥ .
IMPEDANCE) =
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108, transformer

109. resistance or RC

COMMON-BASE

Zin Lowest

Zoat Highest 300K -

zgaln Highest

= Ao/ O,
Igain 4 Ic/gale

. 92 - .
Egain 300 - 1500
Inversion No

109. But for audio, good transformers are expensive,
and cheap transformers give poor frequency re-
sponse. A second approach, shown here, is to
put up with a mismatch and use
coupling. Note that an extra stage has been ad-
ded to make up for the loss in gain.

CK722 CK722 CK722

10MF 10 MF 10mF 10 Mk
SIGNAL K 20K 0% 150K 20K SIGNAL
INPUT 1% L So% § § OUTPUT
- hd
i |

110. Here is a two stage amplifier with high Z;,,
. high Zgyt and matched interstage coupling.
(Compare impedances on the chart below.)

Note that the input transistor is connected
in the - configura-
tion while the output stage is a -

COMMON-EMITTER COMMON-COLLECTOR

150Q Low 5008 - 150082 Highest 20K - 500K
500K High 30K - 50K Lowest 508 - 1000Q)

n x 10 Less than 1
B=A1/A I Aleg/A T
2540 ¥ D5
200 - 1000 Less than 1
Yes No
1-28



110.

111,

112,

common-collector --
common-emitter

emitter -- base

PNP

111, Notice also in this circuit that direct coupling
is used between the of Q1 and the
of Q2.

112, This direct-coupled circuit has a voltage gain
of about 660. It takes advantage of the
"complementary symmetry' of NPN and

transistors.

+22.5v

113, As with vacuum tube amplifiers, negative feed-
back can be used to raise the input impedance.
In a single stage, leaving the emitter stabiliza-
tion resistor, R3, unbypassed, provides the
required degeneration or

Y

EIN
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113. negative feedback 114

114, R7 --C4 115,
(or vice versa)

115. Ry -- Ry 116.

116. collector 1117,

In this two stage amplifier, we have negative
feedback from the collector of transistor Q2
to the emitter of transistor Q1 through the
components and

NEGATIVE FEEDBACK
PATH

= }zz sy

Note that this feedback is developed across an
unbypassed section of the emitter resistance,
R__, while stabilization is provided by R .

Here we have negative feedback from the
collector of Q2 to the base of Q1. Note that
Q1 is connected as a common-

25 MF 0K

5M
It
LAY
CK722 CKr22

Although negative feedback raises the input
impedance and flattens the frequency response,
as shown here, it also greatly

the gain.

60

1
WITHOUT FEEDBACK | o~

S

Ol
WITH FEEDBACK ~N

10 100 1000 10,000 100,000 1,000,000
FREQUENCY IN CPS

The effect of negative feedback on the frequency response of the amplifier,
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117,

119,

120.

reduces, lowers, etc.

Zgain

3, 000

118.

119,

120.

121.

Perhaps you have noticed the high values of
capacitance used in coupling and bypassing.
This is necessary because transistors are
current devices, and these capacitors must
handle signal currents, rather than signal
voltages.

R,

+225V

(Proceed to next frame)

Let us conclude this section on amplifier circuits
with a short discussion of power gain (Pgain) and
power amplifiers. Since P = EI and Py,

= 1Z, we can also _say that Pgain = Egain X Igain
and Pgaip = (Igain)? x '

That is, if an amplifier has a current gain of
10 and a voltage gain of 300, it has a power
gain of:

Pgain = Egain X Igain =300 x 10 =

Or if we have a current gain of 10 and an im-
pedance gain of 30, Pgain = (Igain)z X Zgain
=102 x 30 = .
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121, 3000 122, A power gain of 3000, or about 35 db, sounds
like a lot. However, if Pj, is in microwatts,
we are still dealing in very low power levels.
Shown below we have completed our chart by ad-
ding typical values of power gain for the three
amplifier configurations. You can see that we
achieve the greatest Pgyjy in the -

COMMON-BASE COMMON-EMITTER COMMON-COLLECTOR
Zin Lowest 3082- 1508 Low 500 - 15002  Highest 20K - 500K
Zout Highest 300K - 500K High 30K - 50K  Lowest 50Q - 10009
Zgain Highest n x 1000 n x 10 Less than 1
I <= AL/ A1, B=A1/AT AL/ AT,
gl J02 g8 ¢ 2550 5 5
Egain 300 - 1500 200 - 1000 Less than 1
Inversion No Yes No
Pgain 100 - 1000 300 - 10, 000 10 - 100

20 - 30db 25 - 40 db 10 - 20db

122. common-emitter 123. Here we have a simple class A audio power

amplifier (A). On paper, this circuit appears
very similar to the voltage amplifier (B),
except that Ry, has been replaced by the out-
put and loudspeaker.

AN\

(A) (B)

123. transformer 124. The power amplifier and voltage amplifier may
look alike, but transistor power circuits and
the transistors themselves, must be designed
to handle larger currents and to dissipate
greater amounts of
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124,

125,

126.

heat

5+

125.

126.

1217,

Although class A push-pull operation offers the
same advantages over single-ended operation
for transistors as it does with vacuum tubes
(lower distortion, more than two times the
power, etc.), push-pull transistor audio power
amplifiers are usually operated class

The advantage of class B operation is its greater
efficiency. In the simplified circuit below, the
class B push-pull output stage, Q2 and Q3,
draws only 1 ma with no signal input and 550 ma
at maximum signal input with 5 watts output to
the loudspeaker.

Thus, efficiency = Power Out/Power In

| = Power Out/(Ejn x Iin) =5 watts/(12V x.55A)

= 5 watts/6.6 watts = %

ORIVER OUTPUT
e 2N68
SOMF
+I0= Ql Q2
i 9 E
SOMW 3 " 2N68
outRuT
100 Q3
100 MF
bl | id
h
12v
—Hl—

By comparison, the class A driver stage,

Q1, draws an average current of 100 ma, signal
or no signal, and is handling much less audio
power., The efficiency of class B means not
only lower power consumption, but also less
heat buildup within the transistor and more
power output from a given transistor type.

(Proceed to next frame)
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128, This class A push-pull amplifier avoids the
need of center tapped input and output trans-
formers by taking advantage of the comple-
mentary symmetry of PNP and
transistors.

500 OHM
LOUDSPEAKER

INPUT
128, NPN : 129, In this circuit, note that R1, Rg, R3, and R4
provide emitter-base , While
R5 and Rg are resistors.
129. bias -- stabilizing 130. Here is a simplified circuit of a class B push-

pull, direct coupled amplifier, Note that the
output impedance is very
(high/low).

PN-P N-PN

W “iﬂ

130, low 131, In presenting these various amplifier circuits
we have not attempted to give a detailed de-
scription of their operation. They have been
presented merely to give you an idea of the
types of amplifier circuits in which transistors
are used,

(Proceed to next frame)
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132, So far, our discussion of transistor circuits
has been limited to various types of amplifiers
with small signal inputs, such as are used in
radio receivers. We will now discuss some
of the circuits employed in digital equipment.

(Proceed to next frame)

133. In this circuit, with the switch open, the barrier
potential within the transistor will cause
(a large/little or no) current to

flow through Ryp,.

133. little or no ' 134, With the switch closed, however, a large current
will flow through Ry due to the strong
bias on the emitter-base junction.

134. forward 135. To look at it another way, with the switch open
and the base floating, the transistor acts as a
very resistance.
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135.

136,

1317,

138,

139,

high

low

ON

reverse

forward

136. With the switch closed and the base forward
biased, the transistor presents a very
resistance,

1317,

138.

139.

140,

We refer to the high resistance, esentially non-
conducting condition of the transistor as OFF,
and the low resistance, conducting condition

‘as

The OFF resistance of the transistor can be
increased to several hundred K ohms by ground-
ing the base instead of leaving it floating. The
OFF resistance can be further increased by
applying . 2 volts or more of
to the emitter-base junction.

bias

In the ON condition, the emitter-collector resist-
ance is reduced to a few ohms by the strong
bias at the emitter-base junction.

Although it is not as efficient as a mechanical
switch or relay from the standpoint of ON and
OFF resistance, the transistor can perform

the switching operation much more rapidly.

For example, switching rates of several million
times a second are not uncommon,
speed applications such as control of lights,
small motor, transistorized automobile ignition,
etc., transistors give more uniform and reliable
performance due to the absence of arcing and
contact wear,
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141,

142,

143,

forward

forward

saturated

141. Here we have a typical PNP transistor switch.
With the large forward bias on the base-emitter
junction, conduction is so heavy that V., drops
to a level below Vy,o. Since Vg is less than
Vpes the base-collector junction is actually

biased!

RL= 1250
5WATTS

L I
TYPICAL VALUES

= 8OpA SWITCH OPEN
Ic = 0.2A SWITCH CLOSED
= I0mA = CURRENT THROUGH SWITCH
Vee= .2V SWITCH CLOSED
Vbe= .5V SWITCH CLOSED

INPUT POWER = I5 MILLIWATTS
LOAD POWER = 5 WATTS

142, We will not attempt to explain here how Ve can
be less than V.. However, a transistor oper-
ating under these conditons is said to be SATU-
RATED. That is, in saturated operation, the
‘base-collector junction becomes
biased.

143. The symbol Vce(SAT) is often used to denote the
collector-emitter voltage of a transistor in
operation,

144, Heating in a transistor switch is quite different
than in an ordinary amplifier. Using the circuit
| below, heating in the OFF conditions is
equal to Ve x Ip # 25V x 80pamp =
watts,

100
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144. .002 145, In the ON condition heat is equal to
VeexIg=.2Vx.2amps= watts.
RL =125
5 WATTS

: L
TYPICAL VALUES b
o * BOpA SWITCH OPEN . Vee® .2V SWITCH CLOSED
e + 0.2A SWITCH CLOSED Vbe* .5V SWITCH CLOSED

INPUT POWER = I5 MILLIWATTS
I = I0mA s CURRENT THROUGH SWITCH \BAD FOWEL + 5 wATTe

145, .04 146, If we calculate heat during the switching oper-
ation, we find, for example, that when
Vee = 12V, I = 0.1 amp. Therefore,
heat = 12V x .1 amp = 1. 2 watts., If Vee =6V
and I¢ = .15 amps, heat = 0. 9W. Likewise,
when Vee =18V and I¢ = .05 amps, heat = 0. 9W,
So we see the heat developed during switching is
much than during ON or OFF
periods.

146, greater, larger, etc. 147. The switching time is usually extremely short
(a few microseconds at most) compared to ON
or OFF time. Therefore, the average heat
dissipation, for a given maximum I; is much

in a switching circuit than in an

amplifier,
147. less ' 148, To put it another way, a given transistor can
handle much current in a switch-

ing circuit than in an amplifier,

148. more 149. When switching inductive loads, the transistor
must be protected from destructive high energy
transients, This can be done by shunting the
load with an appropriate

—Eco
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149, diode 150. Now let's consider the transient response
(not to be confused with destructive transients)
of a typical transistor switching circuit. When
the switch is closed and opened, the resulting
waveform at point A is a wave.

O -+ 10V

150. square 151. The waveform at point B, however, does not
follow exactly the waveform at point A. When
the switch is closed it takes a finite time for
the emitter-base capacitance to charge through
Rp in order to bias the emitter
junction,

+ 10V

151. forward ' 152, The time required for I; to rise (voltage at
point C to fall) 10% of its ultimate value is
called DELAY TIME, abbreviated

+0V
A o—l- —————1a
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152, tg

153. delay time

154. decreasing --
decreasing

155, tp

153. The time required for the emitter current to
diffuse across the base region, and other

factors also affect ty or
! |
! |

-0V
A O—f ————— I:—
-1ov—

o:y:_-—_
—1oV—Ym - — — —
+10V L
N
—itdfe e = =:

ovV-a - = .O-lov

!

154. Delay time can be reduced by several means,
including (increasing/decreasing)
the value of Rp and ; (increasing/
decreasing) the OFF bias voltage.

155. "The time required for I, to rise (V; to fall)
. from 10% to 90% of its ultimate value is called
RISE TIME, abbreviated

156. The total time from the closing of the switch
to 90% of ultimate V; is referred to as
TURN-ON TIME. Turn-on time is equal to

plus .
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156.

157.

158.

. 159,

160.

161.

delay time (or tq) --
rise time (or ty)
(or vice versa)

forward

forward

collector

reverse

157.

158.

159,

160.

161,

162,

Once V, reaches the 90% point, the transistor
is pretty well into saturation. In saturation,
remember, the collector becomes

biased.

The collector now begins emitting carriers
due to the bias.

Some of these carriers, emitted by the
, become stored in the base
Tregion and, in some cases, in the collector

.region,

When the switch is opened, these carriers
must be removed before the emitter-base
junction can return to bias.

%

4

‘
....... Lof--o0%

gt

The time required for the stored carriers to
dissipate and V; to drop to the 90% level is
the STORAGE TIME, abbreviated

Finally the voltage at point C rises to the original
+10V. The time required to traverse the 90%
to 10% region is the FALL TIME, abbreviated
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162. t;

164,

less

163.

In diagram (A) we have two saturated switching
circuits placed back to back, or perhaps base
to base. By substituting C1, C2, R and R2 for
the original control components in diagram (B),
each transistor now controls the other in an
oscillatory fashion. This circuit is one form of
multivibrator,

(Proceed tn next frame)

m
[2]
(<]

(A)

"—Om\o-jlllllllll:—

-

m
[
o

(8)

oo

164, When switch S; is closed, one transistor, let's

say Q1, is bound to conduct a little more

heavily than the other. Since Qi is conducting

more heavily, its Vge (collector to emitter

voltage) is dropping faster than that of Qg.

This negative going voltage is coupled through

C1 to the base of Qg, causing Q2 to conduct
___(more/less).

165. The lowered conduction of Qg results in an

increase in the Ve of Q2. This voltage rise
is coupled to the base of Qy, causing Qi to
(increase, decrease) conduction,
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165. increase 166, This cumulative process, which takes place in
a fraction of a microsecond, continues until
Q; is saturated and Qg is cutoff. In this con-
dition Q1 Ve is essentially
(ground/E ;) and Q2 V¢e is essentially

=

+

166. ground -- Ecc¢ 167, With current through the transistors at a
steady state, Cy now starts to charge up
through ~~~ and

M Ecc_

167. Q1 -- R1 168. As Cj charges, Q2 Ve starts to rise and

(or vice versa) eventually (a few microseconds in slow speed

multivibrators) Q2 comes out of cutoff. The
resulting conduction causes Q2 Ve to
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168. decrease, drop, etc. 169. This falling voltage is coupled through Cy to
the base of Qj, cutting off Q1 just as Q1 prev-
iously cutoff Qg. This process repeats at a
rate determined by the time constants of

CiR; and
K
Ry R2 Ecc:;_-
Ci c2 =
Si
Q1 Q2
169. C2R2 170. Outputs may be taken from the collectors of
Q1 and Q2. As shown these two outputs are
essentially square waves o

out of phase with each other,

OUTPUT

Nol ?
Q2 OUTPUT
No.2 S|
JuUuyuue:s
OQUTPUT
NoAlu g
oUTPUT | | I | | I | l e
No.2 —0
170. 180 171,

If the time constants of C1R1 and C2R3 are

equal, the square waves are symmetrical (A).

If, however, the time constants are unequal,
square waves result. (B)

uyuuuL

(A)

Juyuurer
R N N W |
Juuuty

1-44




171.

172,

173.

unsymmetrical

free-running

conduction

174. Cy -- Rg

172,

173.

174.

Because it is not stable in either of its
switched states, this is called an ASTABLE
multivibrator. (A means not.) And since it
runs freely without any input pulses it is also
calleda -running multivibrator.

Although it will run free without input pulses,
trigger pulses may be applied to either base to
synchronize its operation. Thus, a positive
pulse applied to a base shortly before the tran-
sistor comes out of cut-off, will trigger the
transistor into

Here we have altered the coupling between Q2
collector and Q1 base. When Q1 is ON and

Q2 is OFF, the discharging of C; returns Qg

to conduction as in the free-running multivibrator,
But when Q2 is ON and Q1 is OFF Q1 cannot be
turned ON because and

have been eliminated.

175. Switching states at this point requires a trigger.

This pulse can be applied to Qg base via C3
as a pulse.
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175. negative

176. Ry

177, Cy

176. In the stable state, with Q1 OFF and Q2 ON,
the negative trigger pulse drives Q2 base into
cut-off. The rising voltage at Q2 collector is
coupled to Q1 base through

177. As Qi comes out of cEt-off, Q2 is driven into
cut-off by the falling potential at Q1 collector,
which is coupled to Qg base through .

178. So we see that this multivibrator has one stable
state (Q1 OFF, Q2 ON) and one unstable state
(Q1 ON, Q2 OFF), Because it has one stable
state, we call this a monostable, or one-shot
multivibrator. Square wave outputs can be
taken from either collector.
(Proceed to next frame)

OUTPUT
No|l

OQUTPUT
No.2

179. Here is an emitter-cou;led one-shot multivi-
brator. In the stable state Q1 is
(ON/OFF) and Qg is

Ci Ri

ouT

Q Q2 r'l

mi
a
[k

1
|

R2
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179. OFF -- ON

180, reverse

181, Ry -- R4
(or vice versa)

180.

181.

182,

The positive pulse turns on Qi which in turn
cuts off Qg. Cj then discharges to bring Q2
out of cut-off. When Qg starts to conduct and
draws current through Rg, Q1 becomes
biased by the resulting IR drop
across Rg, and returns to the stable state.

C R| OUTPUT

Q) Q2 >
INPUT I
I

Ecc

]t

R2

This circuit is similar to our astable multivi-

brator except that: 1) Rj and Rg are connected

to the collectors Q1 and Qg instead of to Ecc;

and, 2) the bases are returned to -E through
and .

Since there is no way to discharge Cq or C2
towards Ece to bring the base of an OFF tran-
sistor out of cut-off, this circuit will not
change state without the application of external
trigger pulses,

(Proceed to next frame)
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183. Here we see negative pulses applied to the
collector of Qy and Qg. Such a pulse at the
collector of an ON transistor is shunted to
ground by the low internal resistance and has
no effect. At the collector of an OFF transis-
tor, the pulse sees a high shunt resistance and
is passed through the capacitor to the

of the ON transistor.

Ece

183. base 184. The negative pulse at the base of the ON tran-
sistor, say Qg, cuts that transistor off. The
rising voltage at Qg collector is then coupled
through Cg to turn Q1 , thus com-
pleting a change of state.

184, ON 185. The astable multivibrator, remember, is not
stable in either state; the monostable multivi-
brator is stable in one state, This multivibrator
is called bistable because it is stable in

states.

185. 2 or both 186. And because it seems to "'flip" states with one
pulse and "'flop'" back at the next pulse, the

bistable multivibrator is referred to as a
"flip~-flop. "

(Proceed to next frame)
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187. By adding two diodes to this bistable multivi-
brator, we can use one trigger input point in-
stead of two. Let's assume that Q; is ON and
Q2 is OFF. A trigger pulse (negative) at the
input point has little tendency to go through CR1
because Q1 is ON and Q) collector is at essen-
tially potential,

it
™
8

l’——‘
|

187. 0 volts or ground 188. However, the potential of Q2 collector is essen-
tially +Ecec. Therefore, the negative pulse
passes through CR3 to the collector of Q2.

Since Q2 is OFF and represents a high impedance,
the pulse passes through C2 to Qi base and turns
Q1 .

S v INPUT ¢
‘P

al le

R 1" TN Re

Y
vV

. 4

o
Lz
o
~
o
~
m
HY
o

SRy Re2

.
ro
™m

P

[ : 111

188. OFF 189, Because CRj and CR2 steer the trigger pulse to
the proper part of the circuit, they are called
ing diodes,




189. steering

190. ON

191, OFF -- ON

192, decrease

190,

191.

192,

193.

1
v Q >< Q2 V= Ecc
X

A DCTL (Direct Coupled Transistor Logic)
flip-flop is shown here. Operation is very sim-
ilar to that of the conventional flip-flop. With
Q1 OFF and Q2 ON, a negative pulse at Input #1
turns Qg OFF. The rising Q2 V¢e then turns
Q_ .

INPUT
INPUT # 2

iy

This circuit is one version of a Schmitt trigger.
It is a regenerative circuit. Its state depends
upon the relation of the input voltage to the
emitter potential of Q1, as determined by R2.
When the input voltage is lower than Q) emitter
potential, Q is (ON/OFF) and Q3

is .

As the input voltage increases, a critical value
is reached at which Q1 begins to conduct. The
decreasing Q) Ve, coupled through Cy begins
to conduction in Q2.

The decreased conduction of Q2 and the result-
ing decrease in IR drop across Rg cause a re-
generative in Q; conduction.
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193.

194,

195,

196.

increase

decrease

ON

less, lower, etc.

194. The regenerative action causes a very rapid
change of state (Q; ON, Q2 OFF). If the input
voltage now decreases, a point is reached
where conduction in Q) starts to

SANN

INPUT

195. The increasing Q1 Vce and Q2 Vpe, again aided
by regenerative action, turn Qg

196, The values of input voltage at which the Schmitt
trigger changes state are determined by bias
and other circuit operating parameters, In
the illustration below we see two different out-
puts produced from the same sine wave input
with two different values of turn-on and turn-off
voltage. Note that the turn-off voltage is

than the turn-on voltage.

TURN ON TURN ON

e A )
+y =4 N\
' ' 4 [ :
o ! : ’ H o i i [
. ' .

: A TURN | TURN
l \on l '1 OFF

197, Because its output depends on the instantaneous
value of the input voltage regardless of its
shape, and because its strong regenerative
action gives extremely short rise time and
fall time, the Schmitt trigger is useful for
waveform restoration, signal level shifting,
squaring of various waveforms, and for DC
level detection,

This completes Semiconductor Circuits.
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VOLUME 1I
COUNTING SYSTEMS




2,

complex or complicated
(or equivalent word)

Before learning binary arithmetic, most
students ask themselves this obvious question,
"What's wrong with the everyday decimal
system of arithmetic that requires that I
learn the binary system of arithmetic?"

The answer is that there is nothing wrong with
the decimal system as such. It works fine for
everyday use such as handling money and for
figuring various problems. Mechanical de-
vices work well with the decimal system,
witness the adding machines, comptometers,
cash registers, etc. However, most of us
live in an electronics world, Here decimal
arithmetic creates problems, We will first
look into some of the problems created by

use of decimal arithmetic and then learn how
they are overcome by the use of binary
arithmetic,

(Proceed to next frame)

Imagine if you wish electronic systems that
could generate and detect either ten amplitude
levels of voltage and/or current; or trains of
pulses ranging from one to ten, Of course
these can and have been devised, but they are
not simple circuits.

Most of the original electronic circuits used
for counting by decimal, or tens, required
feedback loops, and as a result these circuits
were anything but simple. They were
relatively .

One of the reasons for the complexity of
electronic circuits using the decimal system
is because the decimal system is based upon
ten digits.

These are: 0-1- - - o - -
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3.

0-1-2-3-4-5-6-7-8-9 4,

0-1-2-3-4-5-6-7 5.

0-1-2-3-4 6.

1--0 1.

or

0--1

binary 8.

2 ~mil == 1 9.
or

2 -1 -=0

To ease the requirements of electronic circuits
used for arithmetic purposes (computers, etc.)
we can use lesser-known systems of arithmetic
based upon values less than ten.

An example would be a system based upon the
number eight, called an octal system. An
octal system works with only eight digits,

These are: 0-1-

(Fill in the remaining digits. )

Let's keep reducing the number of digits

~ available to us. Imagine a limit of five digits

(called quinary). We would then list the
following five digits.

Fine, but that is still too many digits for our
requirements, Assume a limit of two digits.
These would be and

The prefix qui stands for five, and quinary
stands for arithmetic based on the number 5.
The prefix tri stands for three, and trinary
represents arithmetic based upon the number 3.

The prefix bi stands for two, and arithmetic
based on the number 2 is called

Binary arithmetic is based on the number
and can be represented by the two digits
and .

Let us discuss some of the ways in which we
can develop binary arithmetic symbols in
electronic circuits, Assume two different
voltage levels, OV and +1V.

Your task is to assign one of the binary digits
to the OV level and the other binary digit to the
+1V level,

+1V =
oV =~
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10.

0--1
(or vice versa)

10.

11,

12,

Did you carefully note that the response to the
preceding frame stated that you could indicate
either voltage level with the 0 or 1 digit?

This brings up an important point; unfortunately
there is no industry-wide standard. Depending
upon the choice of the manufacturer, or the in-
dividual engineer, the choice of a binary digit
for a zero voltage level could be either

or .

What other ways are there to electronically
represent the binary symbols of 0 and 1?

Many. Let us discuss the more well-known
methods. A relay, open or closed. A flip-
flop, conducting or non-conducting. Various
voltage levels, zero or plus, zero or minus,
plus or minus, different values of plus, differ-
ent values of minus,

For recognition of the binary symbols of 0 and
1, presence or absence is the most often used
method. For instance, presence or absence
of a hole in a punched card or paper tape.
Another method is the presence or absence of
a magnetic field, such as on magnetic tape.

We hope you are beginning to see some of the
many advantages of the use of binary symbols
over decimal symbols in electronic circuits,

(Proceed to next frame)

Before going too far let us clear up a possible

" source of confusion, The decimal system is

based upon the number 10, The base of the
system being the number 10, it is referred to
as the "base 10," However, the fundamental
number, or base, of the system in use could
also be called the "root" or '"radix.' Should
you see those words used, they are also cor-
rect and have the same meaning as the word
V'base. "

The decimal system uses the number 10 as its
root, or radix. Another way to express this
is to say that the decimal system uses the base
10. For the binary system, we would say it
uses the base .




12, 2 13. We should now have an appreciation of the prob-
lems of using decimal symbols and the ease of
using binary symbols in electronics. The next
step is to review decimal arithmetic. This will
act as an introduction to learning binary arith-
metic.

(Proceed to next frame)

14. To help us learn the subject it is best to re-
view arithmetic as expressed by exponents or
powers. There are three rules used in express-
ing numbers by powers. The first one is
simple, it is:

- EE s S a '

""Any number expressed to the power of 0 is
equal to 1."

For example, the base 10 to the power of 0,
(written 100 ), equals 1 The base 2 to the
power of 0, (written 20 ), equals ;

14. 1 15. The second of the simple rules used in ex-
pressing exponents is:

""A number expressed to a power of 1 is equal
to the number itself. "

For example, the base 2 to the power of 1,
written 21, is equal to 2 itself.

This means that 10! is equal to .

15, 10 16. As a reminder:

The base 10 to the power of 0 (100) =
The base 2 to the power of 1 (21) =

.

'




16. 100-1 17.
2l_ g

17. 10x10x10 18.

18. 1000 19.

19. 109-10x10x10 20.

x 10 x 10 = 100, 000

107 =10x10x 10 x 10
x10x10x10
= 10, 000, 000

The last rule is:
the number used

"For powers of 2 or more,
in the base is multiplied by

itself by the number of times expressed in its

power, "

Sounds impressive, but if we examine it closely
we see that it is relatively simple. In the deci-
mal system we use the base 10. The base 10

to the power of 2

would be a good example to

illustrate the simplicity of the rule.

The number used is 10, multiplied by itself
the number of times expressed in its power,

which is 2, -and it is written as 10 x 10,
Thus 102 = 10 x 10.

The value of 103 is written as

The value of 102, written as 10 x 10, is equal

to 100. The value of 103, written as
10 x 10 x 10, is equal to .

Try these examples as an exercise in ex-

ponents, or powers, of the base 10.

109 is written as
and is equal to

107 is written as
and is equal to

.Now let us create a table illustrating the values

of exponents of the base 10, the exponents to

be from 0 to 9.

(If required, use a piece of

scrap paper or the back of the preceding page
for any figuring.)

-
(=]
o
nn nn

bt b
(= =N=)
[N

—

(=]
>
|
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20.

22,

10°
10l
102
108
104
10

106 =
103 =
108 -
109 =

{1 | [ | B { A 1}

5 x 100
5x1

1
10

100

1, 000

10, 000

100, 000

1, 000, 000
10, 000, 000
100, 000, 000

1, 000, 000, 000

21.

22,

23.

Another way of illustrating the table is shown
below. Note that the least significant value is
to the right.

102 |108] 107 106 | 105 104| 103|102 |101| 100

1000 {100| 10{1000{100| 10
000 | 000| 000| 000| 000| 000}1000{100| 10| 1
000 {000 | 000

(Proceed to next frame)

Using the base 10 to any power we can express
any decimal number. As shown below the num-

ber 3 can be expressed by placing it under the
column 100,

109 {108]107] 106|105 |104{103]102|101] 100

1000 1100{ 10J1000{100 | 10
000 |000| 000 000|000 (000{1000{100| 10| 1
000 {000} 000

The decimal value of 3 can be expressed as

3 x 100, the equivalent of writing it as 3 x 1.

The decimal value of 5 can be expressed as
, and written as

Let us proceed from a single number to a
larger number such as 24, To help us express
the decimal number by powers we again use
the table of powers of 10. Placing the number
24 with its least significant digit at the right we
have:

109|108 |107] 106 | 105 |104| 103 |102 |101] 100

1000 {100 | 101000100 | 10
000 {000 {000| 000|000 [000|1000{100| 10| 1

000 | 000 | 000

2 4

We can break it down to:
2x10! =2x10 =20
4x100-4x 1= 4

24

Try this method of expressing decimal numbers
by the powers of 10, using the number 46.
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23.

24,

25,

4x10l =4x10-=40 24,
6x100=6x1 = 6
46

1x10l =1x10=10 25,
5x100=5x 1= 5
5
8x10 -8x 10=280
gx100-8x 1= 8
88
5xlog= 5x10x10x10=5, 000 26.
7x10°= Tx10x10 = 700
4x101= 4x10 = 40
3x100-3x 1 « 1
5’ iia
217,

As an exercise in expressing decimal numbers
by powers of 10, try the following.

1021108 107 108 |105]10%] 103 {102 |10 ] 100

1000/100| 10/1000{100| 10
000 | 000 |000| 000|000 (000{1000{100| 10| 1
000 | 000 | 000

Numbers 15 and 88.

You should have the idea now, any decimal num-
ber can be expressed by powers of 10. The

number T4, 639 would be expressed as follows:

109} 108] 107| 106 [105| 104] 103| 102| 101| 100

1000 100f 10j1000{100| 10
000 | 000} 000 000}000| 000{1000{100] 10| 1
000} 000{ 000

T 4 6 3 9
7x104=7x10x10x 10 x 10 = 70, 000
4x103 =4x10x10x 10 = 4,000
6x10% =6 x10x 10 - 600
3x10l =3x10 = 30
9x100-9x1 = 9

You try it with the number 5, 743,

Before discussing powers in the binary system,
this is a reminder that binary arithmetic is
based upon the number 2 and is represented by
the digits 0 and 1.

(Proceed to next frame)

The rules used in expressing numbers by ex-
ponents, or powers, are the same regardless of
the base. The first rule stated that a number
expressed to the power of 0 is equal to 1. In
binary arithmetic the base (also called the root
or radix) is 2.

The expression 2 to the power of 0 is written
and equals

2-1




21,

28,

29,

30.

31.

20 _ 4
ol _ 2
2x2%x2

22_4__-23_3

20_1 25.32
21 _2 26 _64
22 -4 27.128
23 _g 28._ 256
24 _ 16 29 -512

28,

29,

30.

31.

32,

The next rule stated that a number expressed
to a power of 1 is equal to the number itself.
Therefore, 2 to the power of 1 is written

and equals

The third and last rule was that for powers of

2 or more the number used in the base is multi-
plied by itself by the number of times expressed
in the power., This imposing statement merely
means that 24 can be written as 2 x 2.

The value of 23 is written as

Tgxe value of 20 = 1, 21 =2 22 - and
29 = .

Once again, let us make a table illustrating

the values of exponents, but this time of the
base 2. As before the exponents will be from
0to 9. (If required, use a piece of scrap paper
or the back of the preceding page for any
figuring.)

20 _ 25 _
gl .— 26 _
2 . 27 -
93 _ 98 _
24 . 29 _

‘Again we will illustrate the table with the least
significant figure to the right.

29| 28| 27|26 | 25| 24 | 23 [22 | 21| 20

512|256 |128 |64 |32 |16 | 8 | 4| 2 1

(Proceed to the next frame)
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33. Binary arithmetic using the base 2 requires
only the digits 0 and 1. Here is how the digits
are used.

To show that a value exists we use a 1; where a
value does not exist we use a 0. For example:
Try this:
The value of 1. The value of 2, The value of 3
22] 2120 [2Z]2120] [22] 21]20

4 211 4 211 4 |12 |1
| Lo |1 1o
33. 11 34. Here are some additional examples.
The value of 5. The value of 6.
23] 22| 21|20 23| 22| 21] 20
81412 |1 814 ]2
110 |1 11110

Note carefully that more digits are required to
express a number in binary than in decimal,
However, it is the value of the digits (0 and 1)
that we are interested in.

Try these:
The value of 4. The value of 10.
24| 23| 22| 21| 20 24| 23] 22| 21| 20
16| 8 |14 |2 |1 168 |4 ]2 |1
34, 100 1010 35. From memory: give the decimal values of the
following binary expressions.
10 =
101 =
110 =

I
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35. 10=2 36. Let us try expressing a larger number in binary.
101 =5 For example, 165.
110=6

99| 28] 27| 26 | 25| 24| 23 | 22 | 21| 20

512 |256 |128 | 64 | 32| 16 8] 4 2 1

The number 165 expressed in exponents of the
base 2 become:

2% - 128
22 - 32
28 - 4
2V . 1

165

The binary expression for the number 165
is

36. 10100101 37. There is an orderly progression of binary sym-
bols starting from the number 1. To see this
we can easily build a table starting with the

number 1,
You fill in this portion.
24 23] 22| 21f 20 24123 (22| 21) 20
1618 [4 (2 |1 |#]116]8 |4 |2 |1 |#
ojojofojojo 10
0j0jJO0joO|1]1 11
0j]0JO0f1]10]2 12
0|0 10111113 13
0|0 ]1101]01]4 14
0j0jJ1j0f11]5 15
0j0]J1j1]0]6 16
ojoj1 1141117 17
0|1]1]0]0}]0 |8 18
ojrjojof11]9 19
31. 24| 23] 22| 21{ 20 38. Take the number 22, express it by exponents of
16/8 |4 |2 |1 |# the base 2, and by its binary expression.
0]1 ]01]1 10110
0j1 1011 1]11 (A suggestion, if needed, construct the binary
0/1 11101410112 | table as shown in the preceding pages.)
01 1110 }1 |13
0]1 |11 0|14
01 |1 |1 ]11]15
1/0 J]O0 f0 O |16
1/]0 0 0 f1 |17
1/0 j0 |1 |0 |18
110 O f1 |1 19
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38, | 24[23| 22| 21| 20 39,

16|18 |4 |2 |1

24 _ 16
92 _ 4
2l . 9
22
10110
39. 10101 -- 5 40.
40. 10010 -- 5 -- 41,

ilIO 0|1|0

42,

The number 22 expressed in binary is 10110 and
requires five binary digits., The binary expres-
sion for the number 9 is 1001, requiring four
binary digits, called bits.

The number 21 is expressed in binary as
and requires  bits.

Let's try tieing together some of the informa-
tion we have just learned.

The number 26 expressed in binary is 11010,

contains its_and can be expressed as a pulse
train by|1 1{0|1]0.

The number 18 expressed in binary is B
contains bits and can be expressed as a
pulse train by

’

It is time for us to learn how to convert a
binary number to an equivalent decimal number,
There are various methods but we will use one
of the most popular ways. We will learn, for
example, that given the binary number
10110110010, we will convert it to its decimal
value of 1458.

(Proceed to next frame)

You have probably already guessed at the

method used; we have been using it all along
without mentioning it. Simply express each
binary 1 to its power, then add their values.

For example, the binary number 101. The least
significant digit is 20, there is no value assigned
to the next power, 21, and the most significant
digit is equal to 22,

16 g8 | 4 2 1 22 - 4
24 | 23] 22 | 21 ] 20 20 -
1 0 1 - 5

The binary number 110 is equivalent to the dec-
imal number
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42,

43.

44.

871

1229

43.

44.

45.

Another example, using a higher value, the
binary number 11100100110,

1024|512 (256 | 128|64(32| 16| 8| 4] 2| 1

210 29 28 2'7 26 25 24 23 92 21 20

1 |1]1]0j0}|1]0 |O |1 ]1]0

1024

Convert the binary number of 1101101101 to its
equivalent decimal number of v

As an exercise: the binary number
10011001101 equals the decimal number

We can change a decimal number to a binary
number by a method of trial and error. How-
ever, a preferred method is to use a procedure
that will give us our answer in less time, and
with less probability of an error,

(Proceed to next frame)

In converting a decimal number to a binary
number we divide the decimal number by 2,
and note the remainder. Any even number
divided by 2 has a remainder of 0, and an odd
llmmber divided by 2 will have a remainder of

1
Examples: 2 [2 0 Remainder

1
23 1 Remainder

(Proceed to next frame)
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47,
47. 100 48,
48, 0 49,

21 1
22" o
2l4 o
28 o

Binary 1000 equals
decimal 8,

For decimal numbers requiring division in
two or more steps we keep dividing until
the quotient is smaller than 2,

Example: Number 4

NN N
qqqo
OO

The binary number is equivalent to
decimal number 4.

You probably did it without thinking about it,
but to be sure let us point out how you take your
vertical list of remainders and write them

out horizontally. The bottom number goes on
the right as the least significant digit and the
top number goes on the left as the most
significant digit.

Try this method to convert the decimal number
8 to its equivalent binary number,

Let us try it with larger decimal numbers.

Example: 26

NN NN DN
qqqqqo
Dl
Ot O bt

Binary 11010 is equal to decimal 26.

Try it with decimal number 75,
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49, 0 50. As you probably surmised, larger decimal
2l 1 numbers are converted the same way, we
22 0 merely have more steps.

214 o
2o 1 Example: 427
2 I’I_E'_ 0 .
231 1
2 M5 1 2 1 1
2 (3 1
Binary 1001011 equals 26— 0
decimal 75. 2 M3~ 1
2026 o
2 53 1
2 106 0
2 213 1
2 1427 1
Binary 110101011 is equal to decimal 427.
Try it with decimal 374.

50, 0 51, As an exercise convert the following decimal
2 (1 1 numbers to their equivalent binary numbers.
22 0
2 (5 1 623 1397
211 1
2123~ 1
2146 o0
23~ 1
21187 1
2374 o _

Binary 101110110 equal
decimal 374,

51, 52. A method of adding binary numbers would be
0 0 to convert them to their decimal values, add

2 1 1 2 [1 1 them in the familiar decimal method, then re-

2 2 o 2 13 0 convert the sum to a binary value.

2 (4 o 2 [5 1

2 [9 1 2 110 0 With the use of only two digits, straight binary

2 (19 1 2 21 1 addition is simple. Once again we must learn

2 [38 0 2 43 1 some basic rules,

2 [ 1 2 87 1

2 155 1 2 174 o There are three rules, the first is easy:

2 [311 1 2 |‘ 349 1

2 1623 .1 2 | 698 0 0+0=0

2 11397 1
623 = 1001101111 (Proceed to next frame)

1397 = 10101110101
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53.

54,

10111

110

111101

53.

55.

The next rule is also simple.

1+0(0r0+1)=1

Examples: 1010 010110
+0100 +100001
1110 110111
Try these: 10011 101000
+00100 +010101

The last rule is: 1 +1 =0 and carry 1 to the
next column. :

1
Take the least significant binary value of +1,

1
which is also the decimal equivalent of +1. The
decimal sum is 2, and the binary sum is 10,

To obtain the binary 10 we had to carry a 1
from the 2 column to the 21 column. Thus
we can see that every time we add a binary

1 +1, we have a sum of 0 and a carry of 1 to
the next most significant column,

As an exercise: 101
+001

The best way to learn the application is to try
examples illustrating the various conditions
for binary addition.

Step1 Step2 Step3

. 11 11 11
An example: 401 +01 +01
0 10 10

Carry 1 1 11

0

In the example shown, for the first step we
add the least significant digits of 1 + 1. We
put down a 0 and carry a 1 to the next most
significant column. Note that the carry is
placed below. The second step is to add the
1 + 0 of the next column, and we place the
answer of 1 below the line. The third step is
to add the sum of 1 plus the carry of 1, to
produce a final sum of 0 with a carry of 1.
The answer to this example is the binary sum
of
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55.

56.

100

110001

10010000

56.

517.

Another example: 101
+111
010

Carry 111

10

In this example, for the least significant digits
of 1 + 1 we put down a 0 and carry a 1. In the
next step we add the digits of 0 + 1, place the
answer of 1 below the line, which is then added
to the carry for a final sum of 0 and a carry of
1. For the final column we add the digits of

1 + 1 for a sum of 0 and a carry of 1; to the
sum of 0 we add the carry from the preceding
column, for a final sum of 1. This procedure
gives us a binary sum of 1100,

Try these 10110 1011011
+11011 +0110101

The preceding examples and problems con-
sisted of adding no more than two binary values.
To add three or more binary values, the pro-
cedure is identical,

Example: Step 1 Step 2 Step 3
11 11 11
01 01 01
10 10 10
10 10 10
0 10 10
Carry 1 11 111
10 10
0
Stepl: 1+1=0andcarryl, 0+ 0=0,
0+0=0.
Step2: 1+0=1,1+1=0andcarryl,
0+1=1,1+carry 1=0and carry 1.

Step 3: (Add both carries) 1 + 1 = 0 and carry 1.
The sum of the example is 1000,

Try these: 11 10
01 11
10 11
0 10
2-16



57. 111 1010

58. 1010001 10100000

59, 100011

60. 1000010 10111101

61. 0

58.

59.

60.

61.

62,

As an exercise:

Add: 10110 110011
11010 010100
10100 100011
01101 110110

To multiply binary numbers we find that the
beginnings are identical to multiplication of
decimal numbers. For example:

111
x101
111
000
111
In binary multiplication we multiply just as in
decimal multiplication, but each column is added
by binary addition. The answer to the example
shown is

There is nothing else to say about multiplication
of binary numbers. We multiply just as in dec-
imal arithmetic, but we add the columns with
binary addition.

As an exercise, do the following problems.

1011 11011
x0110 x00111

The next step is learning to subtract binary
numbers, which is similar to subtraction of
decimal numbers.

With the use of only two digits, binary subtrac-
tion again provides us with three situations to
remeniber. The first one, if we take one from

one (-1) the remainder is

The next step in binary subtraction is also sim-
ilar to decimal subtraction.

Taking nothing from one (1-0) the remainder
is
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62.

63.

101 100 1000

63.

64.

With those two simple rules for binary sub-
traction we should be able to do the following
examples,

111 101 1101
-010  -001  -0101

To subtract 1 from 0 we have to borrow and
carry. For example:

Step 1 Step 2 Step 3
10 10 10 10
-01 -01 -01 -01
_ Carry 1 Carry 1
1 o1

Step 1: To subtract 1 from 0 we borrow a 1
from the next most significant column
and place it under the line as the re-
mainder.

Step 2: We must add a carry to the column from
which we borrowed.

Step 3: Subtracting the values in the next
column: 1-0 equals 1, from this re-
mainder of 1 we subtract the carry of
1: 1-1 equals 0.

Try these: 11010 10101
-00101 -01011
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64.

65.

66.

10101

011011

101010110

01010

0111010111

65.

66.

67.

Let us stress the step where we add a carry to
thé next most significant column from which we
borrowed.

Example: Step1 Step2 Step 3 Step 4
110 110 110 110 110
-011 -011  -041 -011 -011
Cary 1 U U I
1 1 11 011

Step 1:' 0-1, borrow 1, carry 1.

Step 2: We must add the subtrahend (number
being subtracted) and the carry.
1+1 equals 0 and carry. To indicate
zero we have put a line through each 1.

Step 3: Subtracting, 1-0 equals 1.

Step 4: Subtracting, 1-0 equals 1; from the
remainder of 1 subtract the carry,
1-1 equals 0.

Try this example: 101010
-001111

There's no way out of it; the best way to learn
is still to try different examples.

Try these: 110001011
-000110101

1101101101
-0110010110

It is difficult to count backwards in electronic
circuits. To overcome this difficulty we can
use a method of subtraction that permits us to
employ addition. This method is called
""complementing. ' Complementing has often

been used as a method of '"proving' a subtraction
problem.

To help us understand complementing we will
first illustrate the method using decimal arith-
metic, then binary arithmetic.

(Proceed to next frame)
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68.

69.

10!

68.

69.

70.

A definition of the word complement is "the
quantity needed to make a thing complete. " In
our case the thing we are making complete is a
number. To make a decimal number complete
(complementing the number) is to add to it the
number required to make its value 10.

The complement of 0 is 10, of 1 it is 9, of 2
it is 8, of 3 it is 7.

The complement of 6 is , and of 9 it is

Complementing by adding to a number to make
its value ten is called "tens' complement. As
we just noted, every value between 0 and 9 has
a tens complement that makes it complete.

Carefully note that when we complement a
value to make a tens complement we are rais-
ing it by one power. A value of 4 is actually

4 x 10", The complement of 4 is 6, the total
being 101, 6used the value one power when
we went from 10

Here's why we stressed the fact that we raised
the value one power. To subtract 3 from 8
leaves 5. But let us assume that we cannot
subtract, we can only complement and add.
The problem is still the same:

8 Minuend
-3 Subtrahend

The tens complement of the subtrahend of 3 is
7. Add the complement of 7 to the minuend of
8 for a total of 15. In adding we increased our
values from a power of 100 to the power of 101,
To remove this added power is extremely
simple, drop the value of 1 in the colum that
represents the added power. This means our
answer will be the number left standing,

which is
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70.

T1.

T2.

The complement of 1
is 9, added to 7, totals
16.

Drop the power, 16.
Remainder is 6.

The complement of 2258
is 7742, added to 7196,

totals 14938.

Drop the power, 14938,
Remainder is 4938.

T1.

T2.

73.

Let's do that again, this time with different
values.

9 Minuend
—_6_ Subtrahend

The tens complement of the subtrahend 6 is 4.
Add the complement of 4 and the minuend of 9,
total = 13. Drop the added power, 13.

The remainder is 3.

Try it with these values:

7
-1

The method, and results, are the same when
we complement with larger values. For
example:

33
-16

The value of 16 is of course larger than 10, to
find its complement we use 100.

The tens complement of the subtrahend 16 is 84.
Add the complement of 84 and the minuend of
33, total = 117. Again, we drop the added
power, 117. The remainder is 17.

From what is shown in the example above you
should be able to figure the proper tens com-
plement and solve the following problem.

7196
-2258

For electronic reasons a better method is with
'nines'" complement. Using nines complement
the steps we take in solving problems are
identical, we merely add 1 to our answer.

In the nines complement the complement of 0 is

9, of 1itis 8, of 2itis 7, of 3 it is , and
of 4 it is , etc.
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73.

4.

Remainder is 3

74.

75. .

Using the nines complement we will do the same
examples and problems as on the previous pages.

8 Minuend
- ?L Subtrahend

The nines complement of the subtrahend 3 is 6.
Add the complement of 6 and the minuend of 8,
total = 14. Drop the added power, 14.

Add 1 to the 4, the remainder is 5.

Try it with the values of 9
-6

Let us review what we have just done: 9

-6
The nines complement of the subtrahend 6 is 3.
Add the complement of 3 and the minuend of 9,
total = 12. Drop the added power, 12. Add
ltothe2;1+2 =3,

The task of dropping the added power, and adding
1 to the answer, can be combined. Merely drop
the 1 of the added power and carry it beneath

the answer, and add them. This is known as
"end around carry."

This doesn't change our approach, it simplifies
it. Prove this to yourself by again trying this
problem. This time use the nines complement
and end around carry.

7
=L
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75. The complement of 1 is 8,
added to 7, totals 15.
Drop the power and carry
it beneath the answer,

15
1

6
Remainder is 6.

76. 6366

7. 2474 84091

78. 1

76.

1.

78.

79.

Once again, let us try it with a larger value:

33
-1

The value of 16 is of course larger than 9, for
its nines complement we must use 99.

The nines complement of the subtrahend 16 is
83. Add the complement of 83 and the minuend
of 33, total = 116. Drop the end (added power)
Y16. Carry the 1 beneath the answer 16

1
Add them for a remainder of 17T

The example given should allow you to figure the
proper nines complement and end around carry
for the following problem:

8342
-1976

For practice, try these two problems using
nines complement and end around carry.

7617 98197
-5143 -14106

If we wished we could subtract decimal numbers
using complementing by reducing the value of
our complement and adding different values to
the remainder to make up for the reduction.

Binary, consisting of 1's and 0's, needs only
the very lowest value of complement, a one's
complement. In a one's complement, if we
already have a 1, we need nothing (0) to comple-
ment it. Conversely, if we have nothing (0) we
needa __  to complement it.

Reviewing the latter portion of the preceding

page, we simply stated that in a one's complement,
the complement of 0 is , and the complement
of 1is
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79. The complement of 0 is 1, 80. In subtraction of binary numbers by complement-
and the complement of ing, we find complementing an easy task. We
1is 0. must not forget though that we still use the same

methods of adding our complement and minuend,
and dropping the added power by our end around
carry. For example:

10 Minuend
-01 Subtrahend

The one's complement of the subtrahend 01 is 10.
Add the complement of 10 and the minuend of 10

10
+10
100
Drop the end (added power) 100
. Carry the 1 beneath the answer 00
1

Add them for a binary value of 01

Try this problem 110
-010
80. The complement of 010 is 81. Since subtraction of binary numbers using com-
101, added to 110, plementing is the most prominent method in
totals 1011, electronics, it would be wise if we tried various
Drop the power, and examples to be very sure we have a good under-
carry it beneath the standing of the method.
answer 101} Example: Complemented End around carry
~T00 1011011 1011011 10110111
. . -0100011 +1011100 + 0000001
Remainder is 100. — 0000111 —110110
Carry1 11 111
11 100

Remainder = 111000

Try these problems:

100110110 1110010110
-001101001 -0001100100

81. 11001101 1100110010 82. Any time you are in doubt you can convert the
binary values to decimal values to check your
answer,

Try these problems:

110100110 101101
-000010000 -011001
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82.

84.

8

110010110 10100

8/ 2
18

Octal 22 equals deci-
mal 18.

83.

84.

85.

As mentioned earlier, arithmetic based on the
number eight is called an octal or octonary
system. The base 8 is often used in computing
circuits. g number 8 is also an integral
power of 2 (2

Another reason for octal numbering is that
representation of an octal digit is simple since
any of the eight digits (0-7) can be represented
by a maximum of three binary bits (7 = 111).

(Proceed to next frame)

To convert a decimal number to an octal value

. we use an approach similar to that used to con-

vert a decimal number to a binary number. The
octal system being based on the number 8, we
will simply divide our decimal number by 8 and
keep track of the remainder.

For example: the decimal number 26 divided by
8 is 3, with a remainder of 2

We write it this way. 8 6 2

The next step is to continue to divide by 8.
Since 8 cannot go into 3 we place the 3 on the
side as the remainder.

8[ 3 3 < This is the
8/ 26 2 octal number.
The octal number 32 is equivalent to decimal
number 26.

Using this method, what is the octal number for
the decimal number 18 ?

Larger decimal numbers are converted the same
way, we merely have more steps. For example:
the decimal value 1547.

8 3

8/ 24 0

8/ 193 1
8/ 1547 3

Decimal 1547 is equal to octal 3013.

Convert the decimal number 6241 to its octal
equivalent.
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85. 8 1
8/12 4

8 1

8 4

8/ 6241 1

Decimal 6241 equals
octal 14141,

86. gl| g0

8 | 1

3 |4
4x80-4x1- 4
3x8l-3x8=24
28

Octal 34 equals decimal 28,

81. 2j1(0
010} 001 | 000

Octal 210 equals binary
10001000.

86.

87.

We previously converted decimal 18 to octal 22,
let's prove that octal 22 equals decimal 18.
Working with the base 8, we know that g0 repre-
sents 1, and that 8l represents 8. Placing these
values in a table with the octal value expressed
underneath their respective columns, we have:

gl| g0

8 |1

2 | 2
2x80-2x1- 2
2x8l-2x8-16
18

Try converting the octal number 34 to its equiv-
alent decimal value.

As mentioned earlier an advantage of an octal
value is that each digit can be expressed by no
more than three binary bits.

To express the octal value of 107 in binary we

start from the least significant digit and in turn
convert each digit to its binary equivalent.

yopT
001| 000111

Octal 107 equals binary 1000111,

Try converting the octal value 210 to its binary
equivalent,

To convert a binary number to an octal number
we merely reverse the procedure. For ex-
ample, let us convert binary 1011001 to its
octal equivalent,
001| 011 | 001
11 3 1
Binary 1011001 equals octal 131,

Try converting binary 110100100 to its octal
equivalent,
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88.

89.

110§100 |100
6 | 4] 4

Binary 110100100 equals
octal 644,

1x20

]

oo1|011|111
11317

e
L
N NN
WD =

4
1x2
1x26

7x8%= 7
3x8l-24
1x82-64

95

Binary 1011111 = Octal 137
= Decimal 95,

89,

We just converted binary

Let us go one step further and prove our binary
to octal conversions.
110100100 to octal 644. Let's convert each
number by its associated powers to its decimal
equivalent.

28| 27126 135 [2413] 22|51} 90|
256 1128164 (3216)8 |4 [2 |1

1 1 0] 1]0/0]1 |0 ]O

82| 81 |40
64 | 8] 11|
6 [ 4] 4

Decimal 420 = Octal 644 = Binary 110100100

Try converting binary 1011111 to its octal equiv-
alent, then convert both the binary and octal
values to their decimal equivalent.

This completes Binary Arithmetic,
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Boolean algebra is named after George Boole
(1815-1864), a mathematician. One of his pub-
lished works has the full title of '""An Investigation
of the Laws of Thought on which Are Founded the
Mathematical Theories of Logic and Probabili-
ties." This treatise presented the first practical
system of applying logic in algebraic form.

The real awakening to the usefulness of Boole's
algebra to electricity and electronics came in
1938. A copy of the Transactions of the American
Institute of Electrical Engineers contained in
article entitled "A Symbolic Analysis of Relay and
Switching Circuits.' The author of the article
was C. E. Shannon of the Bell Telephone Labora-
tories.

Thus in 1938 Boole's algebra, now known as

Boolean Algebra, was applied to telephone switch-
ing circuits. Presently its use has extended to
include computer type circuits.

(Proceed to the next frame)

It is a valuable working tool providing a firm
foundation for proper interpretation of complex
logic diagrams.

It presents a convenient method for representing
a switching circuit without drawing the circuit,

It is useful for translating switching problems
into equations, solving the equations, and directly
converting the answer into statements or devices.

We are of course discussing
Algebra,
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2,

3.

Boolean

are not

Algebra is a collection of symbols and a set of
rules governing their manipulation which serves
the purpose of a shorthand to ease computation.

In the conventional type of algebra the symbols
stand for numbers and the rules of operation are
similar to those of boolean algebra. Boolean

algebra is an algebra using a shorthand based on

formal logic and is applicable to the design and
understanding of electrical switching circuits.

The following example illustrates a difference.
Boolean Algebra Conventional Algebra

, =1

0
+
=2
-0
+ 4+ U
T -

=2

Obviously boolean and conventional algebra (are/
are not) identical,

Unlike ordinary algebra, subtraction and division
operations are forbidden in boolean algebra
equations.

An example is the equation A(A + B) = A. You
will learn that in boolean algebra the quantity
(A + B) is not necessarily 1, it is quite possible
to have the quantity (A + B) equal to 0.

In boolean algebra, if (A + B) = 0, then in the
equation A(A + B) = A, A=0.

However, if we divide both sides of the equation
by A as in conventional algebra:

__x-——"‘(“*m:‘f‘r (A+B)=1

We should know then that in boolean algebra we
cannot and
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4,

6.

subtract and divide

(or vice versa)

member

All things can be divided into classes. For ex-
ample, all dwellings, of any type, would be a
class. All homes would be a member or sub-
class of the class of dwellings. The class and
sub-classes must have something in common, in
this example they are all dwellings.

The class of all things with a certain character-
istic can be illustrated by a rectangle enclosing
all members of the class. This rectangle is
called a Venn diagram, named for John Venn, an
English Logician.

Class D, all
members of the
class of dwellings.

(Proceed to the next frame)

A member of the class of dwellings can be shown
within the rectangle. On the Venn diagram illus-
trated below the sub-class of homes, called A,
is inserted as a member of class D.

@ Aisa

Another member of the class of dwellings would
be all dwellings used only for business purposes.
This too can be illustrated as being a member of

class D.
Bis a of
D.
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1.

9.

member

and

or

10,

It is quite possible to have both members A and
B overlap. There are undoubtedly some business
dwellings doubling in use as domiciles, and some
homes that are also used for business. In illus-
trating them in a Venn diagram we shadow the
points of inclusion.

The Venn diagram illustrates that a member of
class A can also be a member of class B, and

vice versa. This conjunction shows that there

are members of both class A and class B.

A B

are members of
< class D.

Let's apply our logic in a different direction.
There are of course homes and business dwell-
ings that are used only as such, plus those that
are members of both classes. This can be illus-
trated in the Venn diagram by shadowing both A
and B and the points of inclusion.

This Venn diagram illustrates that we have mem-
bers of class A or members of class B, or both.

A B is
a member of class D.

Boolean algebra is concerned with belonging or
not belonging to a class, to True or False, Yes
or No, etc. The letter symbols are only two-
valued, and have only the possibilities of being
Oor1.

With boolean algebra being two-valued, and these
values being 0 or 1, we find boolean algebra to
be a logical extension of arithmetic.



10. binary

11, Oand 1
{or vice versa)

13, truth

14. postulate

15. postulate
theorem

11.

12,

13.

14.

15.

16.

Boolean algebra has two classes, or conditions,
these are represented by the binary values of
and

Because of its newness, many of the terms and
expressions used in boolean algebra are not
always used consistently. For example, the
sign + is sometimes shown as v, or V, or U.
To prevent confusion we will briefly define the
following terms, Postulate, Theorem, and Ex-
pression.

(Proceed to the next frame)

We will consider a postulate to be a self-evident
truth, that has not yet been proven to be an abso-
lute

A theorem will be considered to be a postulate
that has been proven to be an absolute truth, and
can be considered to be an established principle
or law,

Another way of expressing it, a theorem is a
proven

In this course we will first consider an expression
as being a self-evident truth, or .
We will then prove it to be a law, or an estab-
lished principle, called a

Boolean algebra has two classes, or conditions,
represented by the binary values of 0 and 1.
Another notably different aspect of boolean alge-
bra is the concept of NOT.

The NOT function is one of complementing, or
negation. It is a logical method of noting when
something is NOT present, therefore, it is ab-
sent. For example, when something is NOT true,
it is false.

(Proceed to the next frame)
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17.  The NOT function is indicated by a bar over the
symbol. For example, A, reads "NOT A," or
it can be read ""A NOT."

It may also be shown (in other texts) by the sym-
bol for prime. For example, B' would be read
as " ~ "

17. "NOT B" or "B NOT" 18. There will also be instances where a function is
double-notted, written A,

As in any double-negative statement, it is equal
to a positive statement. This means that
A= .

18. A=A 19. The symbol A denotes the complement of A. If
the value of A is 1, A must equal the value of

19. 0 20. The complement of A is A, and vice versa. If
the value of B is 1, B must equal the value of

20, 0 21. In boolean algebra expressions the binary function

of 0 and 1 may be assigned to any two-state device.
Examples include hydraulic valves that are open
or shut, mechanical clutches that are engaged or
disengaged, etc.

The binary devices we will work with will be
forms of electrical switches. It could be a tog-
gle switch that is on or off, a diode that is con-
ducting or nonconducting, a transistor that is
cutoff or in saturation, etc.

For simplification all circuit representation
will be illustrated without an input source or
output load. It will also be assumed that the
input source is always a binary 1.

(Proceed to the next frame)
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22,

22. open 23,

23. 1 24,
0

24. AORB 25.

Throughout this course we will assign the binary
value of 1 as being represented by a closed
switch. The binary value of 0 will be repre-
sented by an switch.

to ensure our understanding of the binary functions
as used in this course we can represent them
with switches as shown below.

——O——pO— =

_o/'o__. =

In conventional algebra the symbol + defines
"add." However, in boolean algebra it is as-
signed the meaning "OR." Thus X + Y is read
"XOR Y."

The OR function is a parallel function that logi-
cally spells out "either - or - or both."

Two switches, one represented by A, one repre-
sented by B, which are to be placed as an OR
function, would be expressed as A + B, and read
as A B.

To help us examine each postulate, we will use
Single Pole Single Throw (SPST) switch symbols
for "representation' of the logic.

One postulate of an OR function is 0 + 0 = 0,

The OR function being a parallel function we can
represent it with parallel switches as shownbelow.

(d t+—o

When reading this function we express it as 0
0=0.
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25. OR 26.
26. 0 27,
27. 1 28,
28. " 29,
| —a » ]»——I
e O—>O—

Although we will restrict ourselves to discussing
the basic parallel OR function, represented by
two SPST switches, it should be known that it
also holds true for n - switches.

This is expressedas 0 + 0 + 0 ----- +0=0

This can be represented as:

o5 ©
—$4—05 —$—o0
o5 o—

This illustrates that logically we can have an in-
determinate number of paralleled open switches
(0's), the output will still be the binary value of

Another postulate of an OR function is:
0+1=1

This is the same as in ordinary algebra. It can
be expressed as: '"In a parallel circuit, if we
have either 0 OR 1, the logical sum will be

The postulate 0 + 1 = 1 can be represented as
shown below: Label the binary values of each
switch and the resultant output as expressed by

the postulate.
o

| —g I
Y—0O—e0—

The postulate 0 + 1 = 1 logically tells us that in
a parallel OR function of n - switches, it only re-
quires one closed switch to provide a closed path
and give us a binary at the output,

3-8




LI

29,

30.

31.

theorem

30.

31.

32,

This postulate requires some thought,

1+1 =1, This does not follow ordinary algebra.
Looking at the representation of this postulate
will show why.

~—O——8-0—

|
| — |

00—
[

With either or both switches closed, the output
can be no higher than a binary

Substituting letter symbols for one of the vari-
ables may help us grasp the concept of the fol-

- lowing expressions.

Let us substitute a letter symbol for the first
postulate, 0 + 0 = 0, givingus A + 0 = A,

This means that any switch in parallel with an
open switch will behave logically as that switch
alone.

If we can prove that statement, the expression
A + 0 = A no longer represents a postulate, it
will represent a .

To prove that A + 0 = A we will substitute both
0 and 1 for A.

1) Substituting, A=0. A+0=0. 0+0=0.
2) Substituting, A=1. A+0=1. 1+0=1,

In each substitution we proved that a switch in
parallel with an open switch will behave logically
as that switch alone.

A representation of the first substitution would be:

%101 © ]
| — ——— A=0

b el

)

You draw the representation of the second sub-
stitution.
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32,
—O——9-0——
AN
o $— A=
—og o—
33.
1)
R0 O-
| ——J T— A=l
N
2)
—O——$0——
|—p AU — A=l
Ot
34.

| —e

—— A=0

33.

34.

35.

Now we will substitute a letter symbol for the
next postulate, 0 + 1 = 1, this gives us
A+1=1,

This says that a switch in parallel with a closed
switch will behave logically as the closed switch.

1) Substituting, A = 0.
2) Substituting, A =1,

As+l=1,
A+l1=1,

0+1=1,
1+1=1.

Try drawing the representation for each substi-
tution, Be sure to label each switch and the out-
put.

For the postulate 0 + 0 =0, and 1 + 1 = 1, we can
substitute the symbol A, this gives us A + A = A,

This says that two switches operating together,
when placed in parallel behave logically as one
switch,

This expression can be represented for one pos-
tulate in this manner.

YTy °
|

A1)

Try drawing the representation for the other
expression of A + A = A,

It is possible to have one switch complement
the other, that is, as one is closed the other
opens.

This can be expressed as A + A = 1, and repre-
sented as:

—of"/'o——
| — ' —I

_o{v"*l_

This illustrates that in a parallel circuit a switch
and its complement behave logically as a closed
circuit,

The expression A + A=1isread A A=1,
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35.

36.

317.

AORNOTA =1

postulates

theorems

A AND B

36.

31.

38.

Reviewing the OR function.

0+40=0
04+1=1
141 =1

The expressions above were listed as

The expressions below were listed as

A+0=A
A+1=1

A+A=A
A+A=1

In conventional algebra the symbol x defines
"multiply." In boolean algebra it is assigned
the meaning ""AND, " Thus A x B is read

"A AND B," and is called the logical product.
The AND function is also often expressed as
A - B, or simply AB.

The AND function is a series function that logi-
cally spells out "both __and .

Two switches, represented by A and B, which

are to be placed in an AND function, would be
expressed as A x B, and read as A B.

One postulate of an AND function is 0 x 0 = 0,

The AND function being a series function we can
represent it with series switches as shown below.

|——-oo/'o—o/o'o—o

When reading this function we can express it as
0 0=0.
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38. AND
39, O
40,
| —-oo/'o—ol—oo—o
41, O

39.

40.

41.

42,

Our discussion so far has been based on two
switches in series. It should be apparent that
three or more open switches will give the same
results.

We can express itas 0x 0 ----x 0= 0.

This can be represented as:

| —oo/'o-——oo/'o----oo/'o—— -

" Another postulate of an AND function is

0x1=0,
This can be represented as shown below. Label

the binary values of each switch, and the result-
ant output as expressed by the postulate.

[ Ot

The postulate 0 x 1 = 0 logically tells us that in
a series AND function of n-switches, it requires
only one open switch to provide an open path and
give us a binary at the output,

A third postulate of an AND function is
1x1=1, ~

This postulate is represented as shown below,
you fill in the binary output value.
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42, 43,

43, 44,

| —O—8-O0——0— 70— 0

To prove our postulates, and develop a theorem,
we will substitute letter symbols. For the first
postulate, 0 x 0 = 0, we have Ax 0 =0,

This states that any switch in ser’ies with an
open switch behaves logically as an open switch.

1) Substituting, A=0, Ax0=0. 0x0=0.
2) Substituting, A=1., Ax0=0. 1x0=0.
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