Instrumentation Laboratory Massachusetts Institute of Technology

Cambridge，Massachusetts

Digital Lev．Memo 非399

To：Eldon Hall
From：Allen Harano
Date： 8 February 1968
Subj：Restarts Due to a Momentary Loss of Primary Power Ref．：DDM 非343（Enclosed）

It has been found that multiple RESTARTS can occur due to a single momentary drop in primary（ 28 volt）power．

The input circuitry and relevant portions of the voltage fail circuitry of the AGC are shown in Fig．1．Spacecraft power coming into the computer via the ABUSS or BBUSS passes through a blocking diode and $25 \mu \mathrm{~h}$ inductor to a point called $+28 \mathrm{COM}(+28$ common）+28 COM is filtered directly by $\sim 230 \mu \mathrm{f}$ ；in addition there are two $\mathrm{L}-\mathrm{C}$ networks of $25 \mu \mathrm{~h}$ and $88 \mu \mathrm{f}$ tied to +28 COM ．

The VFAIL comparator（contained in module B8）looks at +28 COM and will alarm within microseconds if +28 COM drops below $21.6 \pm .2$ volts．The signal VFAIL is digitally filtered（in module A13）and must remain present for a minimum of $146 \mu \mathrm{sec}$ to cause a RESTART．The timing for this is shown in Fig．Ra．Flip－ flop 1 is set by the coincidence of VFALL and timing signal F05B（a 3200 pps ， $10 \mu \mathrm{~s}$ wide pulse）．The state of flip－flop 1 is interrogated by timing signal F05A（another $3200 \mathrm{pps}, 10 \mu \mathrm{~s}$ wide pulse that is 180° out of phase with respect to F05B）which＂jams＂flip－flop 2 into the same state as flip－flop 1．The output of flip－flop 2 is the signal．STRT1，which causes the signal GOJAM．GOJAM stops all computer activity，except for the AGC Scaler and a few continuous output signals（Master Clock，ISS timing，etc．），and forces the computer into Tl（time 12）．

Due to hysteresis in the comparator VFAIL will remain at a logical＂1＂ until +28 COM increases somewhat above 21.6 volts．（In AGC C1M this point is .2 － .3 volts above the point where VFAIL turns on．）When VFAIL goes to a logical ＂0＂flip－flop 1 is reset，and at the next F05A pulse flip－flop 2 is reset．Signal START2 has now disappeared，therefore signal GOJAM disappears and the computer begins program execution at location 40008°

It should be noted that from the time GOJAM comes on until the time GOJAM disappears is only one RESTART since program execution is suspended for the duration．RESTARTS caused by STRTl are normally some multiple of $312 \mu \mathrm{sin}$ duration since flip－flop 2 is set and reset by FO5A．

It is possible，but very unlikely，for RESTARTS to occur at a 3200 pps rate due to VFAIL．The timing for this is shown in Fig． $2 b$ ．It requires that VFAIL be＂ 1 ＂during FO 5B and go from＂ 1 ＂to＂ 0 ＂during the 10μ interval of F05A．In the case shown the first RESTART occurs $146 \mu s$ after VFAIL and each succeeding RESTART occurs $312.5 \mu \mathrm{~s}$ later．

Due to the digital filtering in A13，GOJAM will occur $146.25-458.75 \mu s$ after VFAIL turns on．

Because of the hysteresis in the VFAIL comparator it was felt unlikely that multiple RESTARTS would occur due to a single power transient since the Bus voltage would have to oscillate around the alarm voltage（22．3 $\pm .3$ ）．Closer

FIGURE 1

examination of the AGC＇s power requirements，however，show that it is quite possible to obtain multiple RESTARTS．Tests performed using AGC－C1M and one DSKY show that as the 28 VBUS voltage is decreased，input current increased to ~ 3.0 amps until 22.7 volts is reached．At this point VFAIL occurs and the input current decreases to ~ 2.25 a since the computer is stopped．As the bus voltage is increased the current requirements remain constant until the voltage reaches $22.9+$ ，at which point VFAIL disappears and the computer resumes normal operation． The current requirement jumps up to ~ 2.95 a．This corresponds to a negative resistance of $\sim 1 / 3 \Omega$ ．Therefore a source resistance greater than $1 / 3 \Omega$ can cause oscillation．

The oscillograph shown in Fig．3a was taken using AGC－C1M and one DSKY． Power was applied from a well regulated supply through a 0.5Ω resistor（see Fig．3b）．The wave shapes shown occurred with the power supply set at 24.1 volts． As the power supply voltage is varied the frequency and duty factor of VFAIL changes until VFAIL is always on（lower voltage），or always off（higher voltage）．

To summarize，the affects of a momentary power loss are as follows：
1．Input power to the $A G C$ drops below $22.3 \pm .3 \mathrm{~V} .+28$ COM slowly drops to $21.6 \pm .2 \mathrm{~V}$ at which time VFAIL turns on． （Reference D．D．Memo 非343 for time constants involved with +28 COM．NOTE：Line 3 of DDM 非 343 should be 22.3 instead of 23．3）．After an additional delay of $146-458 \mu \mathrm{~s}$ STRT1 occurs causing GOJAM．

2．If the transitions of the input power are sufficiently fast only one RESTART occurs．If the input power fluctuates near 23.3 V for longer than $\sim 500 \mu$ s after VFAIL turns on （due to slow transition times or the＂steady state＂value drops to ~ 22.3 ）multiple RESTARTS may occur．

From the results obtained in D．D．Memo $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 343，if the input power drops from 28 volts there is a minimum of ~ 1 ms before a RESTART occurs．Succeeding RESTARTS may occur（provided the input conditions are proper）at a maximum rate of 3200 pps．

Dist．
E．C．Hall
A．Hopkins
P．Ward
A．Harano
A．Laats
R．Lones
J．Harrison－MIT／GAEC
M．Adams－MIT／GAEC
G．Silver－MIT／KSC
T．Lawton－MTT／MSC

FIGURE 3a

2.75 amps average

FIGURE 3b

