DIGITAL DEVELOPMENT REPORT #10

BLOCK II AGC SELF~CHECK AND SHOW-BANKSUM

Edwin D. Smally

September 1, 1966

TABLE OF CONTENTS

INTRODUCTION

PART I. OPERATING PROCEDURES FOR SELF-CHECK AND SHOW-BANKSUM

CHAPTER
1 SELF~-CHECK OPERATING PROCEDURES

Options Available in SELF-CHECK
Procedure to Start SELF-CHECK
Malfunction Indication

Changes (if any) in SELF-CHECK Options When a
Malfunction is Detected

How to Use the DSKY to Monitor SELF-CHECK

2 SHOW~BANKSUM OPERATING PROCEDURES

Procedure to Start SHOW-BANKSUM
Procedure to Display Next Bank
Procedure to Stop BANK-SHOWSUM

PART II. EXPLANATION OF SELF-CHECK AND SHOW-BANKSUM

3 EXPLANATION OF COMPUTER INTERNAL SELFCHECK

Check of Pulses
TCH+ICF
CCSCHK
BZMFCHK
RESTORE1
RESTOREZ2
RESTORE3
BZFCHK
DXCH+DIM
DAS+INCR

Page

11

11
11
11

12

13
14
14
15
15
15
15
16
16
16

MPCHK
DVCHK
MSUCHK
MASKCHK
NDX+SU
D--SC
D--LCHK
ADDRCHK
RUPTCHK
IN=-0OUT1
IN-OUT?2
IN-OUT3

Check of Special and Central Registers
COUNTCHK
0-UFLOW

Check of Erasable Memory
ERASCHK
CNTRCHK
CYCLSHFT

Check of Rope Memory
ROPECHK

Check of Multiply Arithmetic Function
MPNMBRS

Check of Divide Arithmetic Function
DV1CHK
DV2CHK
DV4CHK
DV5CHK

16
16
16
17
17
17
17
17
17
18
18
18

18
18
18

19
19
20
20

20
21

21
21

22
22
22
22
22

APPENDIX

4

5

EXPLANATION OF DSKYCHK

EXPLANATION OF SHOW-BANKSUM

26

INTRODUCTION

This report is in two main sections. The first section contains the
operating procedures to be utilized by persons using the SELF-CHECK or
SHOW-BANKSUM routines. It also has block diagram flow charts which should
help explain how the operating procedures of SELF-CHECK may be used for
diagnostic purposes. The procedures for SELF-CHECK are slightly different
in BLOCK I and BLOCK II while the procedures for SHOW-BANKSUM are the
same.

The second section of this report goes into an explanation of SELF-CHECK
and SHOW-BANKSUM. The explanation of SELF-CHECK consists of an explanation
of the computer internal selfcheck and an explanation of the check of the
DSKY electroluminescents. There 1s a separate description of each subroutine
in SELF-CHECK and SHOW-BANKSUM. There i1s also a separate flow chart, located
in the appendix, for each subroutine. This section should prove helpful
to fleld engineers in locating the cause of malfunctions in the computer.

All numbers in this report are octal unless specifically mentioned

otherwise.

PART I

OPERATING PROCEDURES FOR SELF~CHECK AND SHOW-BANKSUM

-

CHAPTER 1

SELF-CHECK OPERATING PROCEDURES

There are 19 possible options in this BLOCK II version of SELF-CHECK.
These options are explained further on in this report. The first 18 options
are used to check the internal operation of the computer (0 to #10) while
the 19th option (+11) checks the electroluminiscent displays on the DSKY.

Tt is felt that most people will use the options assoclated with *10 or

-zero since all three of these options perform a complete internal self-check
of the computer, however, these three options perform different diagnostic
functions when an error is detected. The options associated with 1 to #7
check out various parts of the computer and will be useful for field engineers
or other personnel interested in diagnostic testing of the computer.

The normal use of SELF-CHECK is as a backup routine to check the computer
continuously when the computer is not busy with other routines. The +10 or

-zero options can be used for this purpose.

Options Available in SELF-CHECK

The different options of BLOCK II SELF-CHECK are controlled by putting
different numbers in the SMODE register (normally during the SELF-CHECK
start procedure); this is the same as BLOCK I. However, it should be
noted that the options are not the same in the BLOCK I and BLOCK II computers.

Placing a +0 in the SMODE register forces the computer to go into the
backup idle loop where it continuously looks for a new job.

Placing a #+NON-ZERO number below octal 12 or -0 number in the SMODE
register starts one of the active options of SELF-CHECK. Below is a description
of what part(s) of the computer the options check. A block diagram in
Figure 1 on the next page shows the options available and indicates the

number to put in the SMODE register for the desired option.

+1 octal: checks all pulses possible by internal control of the
computer.

+2 octal: checks all the IN-OUT instruction pulses.

+3 octal: checks SC registers and all bit combinations.

+4 octal: checks erasable memory.

-

v

+1 ALL PULSES POSSIBLE TO BE
CHECKED (INCLUDES IN-OUT PULSES)

h |

3 '
IN~-OUT PULSES

.]

) v
SPECIAL AND CENTRAL REGISTERS
4 '
ERASABLE REGISTERS

—

¥
|FIXED MEMORY

"
; 3
}

=10
OR
AJ -ZERO

ARITHMETIC MULTIPLY

—

e BB

Lf?ITHMETID DIVIDE

g S S—

it iy e by

+11
)

DSKYCHK

px'}t +0 in SMODE
(go to backup idle loop)

FIGURE 1. OPTIONS OF SELF-CHECK
The numbers associated with the options represent the contents of the
SMODE register.

The +0 option forces the computer to stay in the backup idle loop, a tight
loop which looks for a new job from the EXECUTIVE.

~5-

+5 octal: checks fixed memory.

+6 octal: an éxtensive multiply arithmetic check.

+7 octal: an extensive divide arithmetic check.

+10 octal: checks everything in the previous seven options (internal

self-check of the computer).
+11 octal: turns on the electroluminescent displays in the DSKY.

-zero: this option is the same as the +10 options until an
error is detected.

+zero: does not purposely check any part of the computer.

Procedure to Start SELF-CHECK

SELF-CHECK has its own verb-noun combination that should be utilized
when starting any of the options from the DSKY (verb 21 and noun 27).

V21N27E (£0 or +NON-ZERO)E

This procedure puts the desired number in the SMODE register depending
upon the option desired. The pressing of the second enter (E) button completes

the procedure.
Report E-1905 by Alan I. Green is recommended for those not acquainted
with the operation of the keyboard and display of the Apollo computer. A

description of what the three symbols used stand for is given below:

Verb

1]

Noun

=1
1!

Enter

Malfunction Indication

The block diagram in Figure 2 on page 6 is used as a reference for this
discussion. If SELF-CHECK should locate a malfunction the following sequence

of events will occur:

Step 1: The contents of the Q register is put in the SFAIL register.
This is the address +1 of where the error occurred.

Step 2: The SCOUNT register is incremented by one.

Start

— |

(increment SCOUNT)

All pulses possible

\

(increment SCOUNT)

SC registers

(increment SCOUNT)

Erasable registers
(increment SCOUNT +1

v

(increment SCOUNT)

Fixed memory

\
(increment SCOUNT)

Arithmetic multiply

\

(increment SCOUNT)
Arithmetic Divide

-0
-NON-ZERO Aj TC SFAIL
(continue with
SELF~-CHECK)
+NON-ZERO

Put H0 in
SMODE and

idle

Octal 01102
put in FATLREG

[

Program alarm
light turned on

Increment ERCOUNT
register

|

c(Q) put in
SFAIL register

l
r—-—————’ ERRORS

(increment SCOUNT +2)

]

FIGURE 2. COUNT REGISTERS AND MALFUNCTION INDICATORS

The above block diagram indicates the flow of SELF-CHECK when 10 or =-zero

is put in the SMODE register.

-7-

Step 3: The program alarm light on the DSKY is turned on.
Step 4: Octal 01102 is put in the FAILREG register.
Step 5: (a) stop SELF-CHECK (if c(SMODE) is +NON-ZERO).

(b) start at beginning again (if c(SMODE) is -NON-ZERO).

(¢) continue on with SELF-CHECK at the next address after
the error (if c(SMODE) is -ZERO).

Steps 3 and 4 will be omitted if the contents of the FAILREG register
is not +zero. A computer "FRESH START" will set the SMODE, SFAIL, FAILREG,
and ERCOUNT registers to tzero. A computer '"RESTART" will set the SFAIL
reglister to +zero.

If a second malfunction is located 41102 is put in the FAILREG register
but steps 3 and 4 are omitted. Steps 3 and 4 are omitted from all successive
malfunctions until the FAILREG register is made +zero (normally by performing
a "FRESH START").

It is possible to leave SELF-CHECK on for a long period and keep track
of the number of malfunctions that have occurred by observing the ERCOUNT
register. The SFAIL register will contain the error address +1 of the last
malfunction.

The "program alarm" light on the DSKY is used by other programs beside
SELF-CHECK. Therefore, the FAILREG register (1363) should be observed
to verify what type of malfunction occurred should this light come on.

An octal number 01102 in this register indicates a SELF-CHECK error.
Registers SFAIL (1364) and ERCOUNT (1365) should be observed, and probably
recorded, if there has been a SELF-CHECK error because these registers
contain the address +1 of where the last error occurred and the total number

of errors.

Changes (if any) in SELF-CHECK Options When a Malfunction is Detected

Putting a +11 in the SMODE register illuminates all possible electro-
luminescent displays on the DSKY. The subroutine puts a +zero in the
SMODE register. This routine does not automatically check for a malfunction
of the computer. It depends on an observer to watch the DSKY for the proper

displays.

s

No useful function will be performed by putting a number larger than
octal 11 in the SMODE register because no SELF-CHECK subroutines have been
written for these numbers. If octal 12 or a larger number is put in the
SMODE register a subroutine will change the contents of the SMODE to +zero,
which forces the computer to go to the backup idle loop.

Figure 3a on page 9 shows what happens to the option of SELF-CHECK
you are in if an error is detected while 1 to #10 is in the SMODE register.
First, the malfunction indications previously described are gone through
if the number in the SMODE register 1s either iNON-ZERO. However, the
next step depends on the sign of the number in the SMODE register. If
the number is plus the contents of the SMODE register 1s changed to +zero
which forces the computer into the backup idle loop. If the number in
the SMODE register is negative, the subroutine that is associated with
that number is started at the beginning again and the contents of the
SMODE register is not changed.

Figure 3b shows what happens when *2 is in the SMODE register and
an error is detected. The SCOUNT register is incremented at the beginning
of each of the subroutines that make up the internal computer selfcheck,
even if they are run through consecutively as they are when %10 or -zero
is in the SMODE register. |

Figure 3c shows what happens to the options of SELF-CHECK controlled
by +10 or -zero being in the SMODE register. The reader should also look
at Figure 2 to observe how the +l1 to #7 options are run through consecutively
when +10 or -zero is in the SMODE register. If an error is detected while
+10 is in the SMODE register, it is replaced by a +zero. If a -10 is in
the SMODE register, the internal computer self-check is started at the
beginning again. If a -zero is in the SMODE register, the computer goes
back to continue checking the internal computer self-check at the next
line from where the error was detected. Of course the malfunction indicators

are updated every time an error 1s detected.

How to Use the DSKY to Monitor SELF-CHECK

The block diagram in Figure 2 shows how the three SCOUNT registers
may be utilized to monitor the operation of SELF-CHECK. Register SCOUNT (1366)
is incremented at the start of each of the seven minor loops that make up

the internal computer self-check. Register SCOUNT +1(1367) is incremented

«Gu
-(1l to 10)
+(1 to 10)
C(SMODE) = (1 TO %10)
any loop formed by *1 put +0 in malfunction
to and including *10 SMODE and indicators
in SMODE register idle
~
1 ERRORS l
FIGURE 3a
-2
+2
C(SMODE) = L2
- LL——] put +0 in malfunction
[Lncrement SCOUNT SMODE and |indicators
idle ' ‘¢
[fN-ouT PULSES } S{ ERRORS]
FIGURE 3b
+10
C(SMODE) =.f10 or -0 .
put +0 in
SMODE and
V] idle
internal computer | ~—Fonciion
F_____ a
SELF~CHECK
indicators

ERRORS

return to next line and continue

FIGURES 3
ERROR OPTIONS OF SELF -CHECK

FIGURE 3¢

R

-10-

upon the completion of the erasable memory part of the internal computer

self-check when #4, *10, or -0 is in the SMODE register. Register SCOUNT +2(1370)

is incremented upon the completion of the arithmetic divide part of the
internal computer self-check when +7, #10, or -0 1s in the SMODE register.
The incrementing of the SCOUNT +2 register when %10 or -0 is in the SMODE
register indicates the successful completion of the internal self-check
of the computer. If a VISNOIE 1366E is performed on the DSKY, the contents
of these three count registers will appear in R1, R2, and R3 of the DSKY.

It may be desirable, for information or diagnostic reasons, to set
the three SCOUNT registers and the ERCOUNT register to zero before initiating
one of the options of SELF~CHECK. If so, these four registers have to
be set to zero from the DSKY. The following procedure will accomplish this:

Step 1: V21NO1E 17 65E 00000E (ERCOUNT register)
Step 2: N15E 00000E (SCOUNT register)
Step 3: E 00000E (SCOUNT +1 register)

Step 4: E 00000E (SCOUNT +2 register)

-11-

CHAPTER 2

SHOW-BANKSUM OPERATING PROCEDURES

The SHOW-BANKSUM routine shows the sum of the bank in Rl of the DSKY,
the bank number in R2 of the DSKY (should be same number as in R1, but can
be positive or negative), and the "bugger'" word in R3 of the DSKY. The
operating procedure consists of three steps: 1t is important to perform

the last step to end this particular job.

Procedure to Start SHOW-BANKSUM

This routine has its own Verb (56) so it is very easy to start. The
information for bank 00 appears in R1l, R2, and R3 of the DSKY immediately
after starting SHOW-BANKSUM.#*

STARTING PROCEDURE V56E

Procedure to Display Next Bank

The "proceed" verb is utilized to display the sum of the rest of the
banks. Each time the proceed verb is entered from the DSKY, the information
for the next higher bank appears in R1, R2, and R3 of the DSKY. If another
"proceed verb enter' is performed after the last bank in a particular rope
has been observed, the information for bank 00 will be displayed again.
Continued proceed verb enters will allow you to observe all the banks a

second time.

CONTINUE PROCEDURE V33E

Procedure to Stop BANK-SHOWSUM

The operator must punch in the "terminate" verb when he is through with

SHOW-BANKSUM. This terminates the SHOW~-BANKSUM routine in the EXECUTIVE.

TERMINATE PROCEDURE V34E

* Starting SHOW-BANKSUM puts +0 in the SMODE register. This forces SELF-CHECK
to go into the backup idle loop.

PART II

EXPLANATION OF SELF-CHECK AND SHOW-BANKSUM

-12-

CHAPTER 3

EXPLANATION OF COMPUTER INTERNAL SELFCHECK

SELF-CHECK has been written so it is a check of the computer by the
computer. The 19 options described in the "Operating Procedures' part
of this report may be utilized for diagnostic purposes should the computer
develop a malfunction. Eighteen options are related to the internal
operation of the computer; the other option lights up DSKY electroluminescents.
The fact that is is possible to successfully change the options of SELF-CHECK
assures the basic operation of the EXECUTIVE and much of the DSKY.

There are seven major sections in this version of SELF-CHECK; a minor
section (IN-OUT pulses) is also a part of one of the major sections (all
pulses possible). The first major section exercises almost all of the
control pulses used by the computer. The second major section checks
the special and central registers. Erasable memory is checked third.

The fourth section checks for the correct contents of the rope and checks
the computer circuitry associated with fixed rope memory. The fifth and

sixth sections check the arithmetic operations of the multiply and divide
instructions. The electroluminescent displays on the DSKY are checked

in the seventh section.

Three of the options available in SELF-CHECK allow the computer to
consecutively execute the first six major sections of SELF~-CHECK. These
six sections are considered the internal selfcheck of the computer.
Following is a list containing all of the subroutines of these six sections
in chronological order as they would be performed when performing the

internal selfcheck.

TC+ICF

CCSCHK

BZMFCHK

RESTOREL

RESTORE2

RESTORE3 checks almost all pulses.
BZFCHK 35 to 45 milliseconds.
DXCH+DIM

DAS+INCR

MPCHK

-13-

DVCHK

MSUCHK

MASKCHK

NDX+SU

D--SC

D=-~LCHK

ADDRCHK

RUPTCHK

IN-OUTlV

IN-OUT2 ', input output pulses

IN-OUT3)

COUNTCHK checks special and central

0-UFLOW registers. ~20 seconds.

BRASCHE checks erasable memory.

CNTRCHK ~7 seconds.

CYCLSHFT

ROPECHK checks sum of rope banks.
~] second per bank.

MPNMBRS check of multiply arithmetic
results. =20 seconds.

DVCHK check of divide arithmetic

results. =20 seconds.

Check of Pulses

Most of the control pulses in an instruction are used every time that
particular instruction is used; however, the function that some of these
pulses perform are not utilized until some time later. A systematic method
is used to check the existence of pulses that perform such functions.

As an example, the pulses that write a data or instruction word back into
erasable memory after it has been used are not checked until that data or

instruction word is used again.

-

Some of the control pulses serve no useful purpose. They appear
in various memory cycles because they are utilized on the same line in
other memory cycles and it was more economical, in respect to physical
construction of the computer, to let them appear where they were not
required than to omit them. These pulses do not hinder the correct functioning
of the instructions they are with and so are not checked for existence.

The only non-programmable instruction that is checked is PINC, which
is checked in the RUPTCHK subroutine. The fact that TIME3 interrupts
2 1/2 milliseconds after TIME4 assures the proper functioning of all the
pulses in this instruction. It 1s not possible to check the pulses in
the other non-programmable instructions.

No particular effort has been made to check the pulses associated
with the S, Z, and SQ registers. Some of these pulses are used in every
memory cycle and the fact that SELF-CHECK is successfully completed assures
the existence of these pulses.

A short description of the pulses checked by each subroutine in the

pulses section of this report will now be given:

TC+ICF This subroutine checks all of the pulses of the TC
and TCF instructions except the ability to TC to erasable
memory. A CS fixed memory instruction 1s used for the

first time and is checked by the next subroutine.

CCSCHK The main purpose of this subroutine is to make sure
the CCS instruction performs the four required branches
correctly and that c(A) is correct after each branch.
It was necessary to perform a fifth CCS to make sure
the CI pulse forced the result of a %1 to be 10.

All of the CCS pulses are checked except RB-WG.

This subroutine also checks pulses associated with CS fixed,
erasable, and special and central memory. Also those associated

with a TS to erasable memory.

BZMFCHK

RESTORE1

RESTORE2

RESTORE3

-15=

All of the pulses used by the BZMF instruction are checked
by the BZMFCHK subroutine. Also those pulses used by
CA fixed memory.

The fact the BZMF instruction should jump when the

c(A) < 0 and that it should not jump when c(A) = +NON-ZERO
is checked. Also that it does not jump when c(A) is
overflow with +0(01-00000).

This subroutine checks the ability of the NDX, CCS,
AD, MSU, SU, CA, and MASK instructions to read the
original contents back into erasable memory. The
normal operation of these instructions are not of

primary importance.

The NDX erasable, CA erasable, and MASK erasable instructions

are used and checked for the first time.

The fact that the MASK, MP, and DV instructions do not
edit is also checked.

This subroutine checks the ability of the extended
NDX, DCA, and DCS instructions to read the original
contents back into erasable memory. The normal operation

of these instructions are not of primary importance.

The pulses used by the XCH erasable, extended NDX erasable,
extended NDX fixed memory, DCS erasable, CA special and

central, and the DCA erasable instructions are checked.

The ability to restore instructions back into erasable

memory i1s checked by this subroutine.

=1 B

BZFCHK All of the pulses used by the BZF instruction are checked
by the BZFCHK subroutine. The fact that the BZF instruction
should jump when the c(A) = 0 and should not jump when
c(A) # 0 is checked. It is also made sure that the BZF
instruction will not jump with overflow (01-0000) and
underflow (10-37777) in the A register.

DXCH+DIM DXCHHDIM checks all of the pulses used by the DXCH
and the DIM instructions. It also checks the pulses
used by the TS with overflow, TS special and central,

CA special and central, and AD erasable instructions.

DAS+INCR This subroutine checks all of the pulses in the DAS
and INCR instructions. It also checks the pulses used
by the DCA fixed memory, DCS fixed memory, LXCH special

and central, and XCH special and central memory instructions.

The pulses in the AD instruction are also checked thoroughly
for the first time. The AD instruction has been used

before but this is the first time the result of the

addition has been checked.

MPCHK The MPCHK subroutine checks all of the pulses used by
the MP, AUG, and ADS instructions. The AUG and ADS
instructions are utilized in the process of checking

the four sign combinations possible in multiply.

DVCHK All of the pulses of the DV and QXCH instructions are
checked by this subroutine as well as the pulses used
by the TS with underflow instruction. Six divides are
used to thoroughly check out all the sign combinations

and other features of this instruction.

MSUCHK This subroutine checks all of the pulses of the MSU
instruction except the RB-WG pulses, which are checked
by the RESTOREL subroutine.

MASKCHK

NDX+SU

D--SC

D--LCHK

ADDRCHK

RUPTCHK

=7 -

MASKCHK checks the pulses in the MASK that have not

previously been checked.

This subroutine finishes checking the pulses in both
the index instructions. It also checks all of the
pulses in the SU instruction except RB-WG, which are
checked inthe RESTORE1l subroutine.

The D--SC subroutine checks that DCS, DXCH, and DCA

can be performed on special and central registers.

A DXCH and DCS 1s performed on the L register because

the order sequence of pulses can be checked more thoroughly’

by using this register.

This subroutine was written to check that the overflow
bit disappeared when a word went into and out of the
L register and to make sure that the Q register was

capable of holding 16 bits.

ADDRCHK makes sure the overfl ow, underflow, end-around-
carry features, and other features of the adder are
functioning correctly. It also makes sure that the

ADS special and central instruction is working satisfactory

when the result of the addition is overflow.

The main purpose of this subroutine is to make sure
that an overflow-underflow condition in the A register
will hold off an interrupt. It also checks that INHINT
will also hold off an interrupt and that a waiting
interrupt will interrupt immediately after the RESUME
instruction. The basic operation of TIME3, TIME4, and
the WAITLIST are also checked since they are all used
by this subroutine.

-18-

IN-OUT1 Checks all pulses of the WRITE and READ instructions.
IN-OUT2 Checks all pulses of the ROR and WOR instructions.
IN-OUT3 Checks all pulses of the RAND, WAND, and RXOR instructions.

Check of Special and Central Registers

This section of SELF-CHECK makes sure the A, B, C, G, and Q registers
and the output of the adder have all 16 decimal bit combinations pass
through them at least once. All 15 decimal bit combinations are put into
and called out of the L register and erasable memory; thus the parity bit
is generated and checked for each 15 bit combination. It is not possible
to guarantee the parity register is working correctly if words come out
of erasable memory correctly. However this part of SELF-CHECK will indicate
an error 1f any bits are droppped or picked up. Therefore, if the parity
reglster does not catch bits being dropped or picked up, this part of SELF-CHECK
will indicate a malfunction.

Following is a short description of the subroutines in this part of
SELF-CHECK:

COUNTCHK Effectively counts down a 15 decimal bit number by one
until zero is reached and checks that each successive
number is actually one less than the number preceding
it. Actually bit 15 is a sign bit so the countdown
alternates between plus and minus numbers. In the process
of counting down the 15 decimal bit number all the bit
combinations are generated by the adder and are written
in and out of the A, B, Cy, L, Q, and G registers as
well as erasable memory. Also the parity bit is generated
and checked internally by the computer for all 15 bit

combinations.

O-UFLOW Checks that all overflow and underflow bit combinations
are generated by the adder and are written into and
out of the A, B, C, and Q registers. The procedure

used is to count down, by one, from maximum positive

-19-

O-UFLOW overflow and negative underflow conditions until the
(eont) overflow-underflow condition does not exist. Again
there is a check that each successive number is one

less than the preceding number.

Check of Erasable Memory

This part of SELF-CHECK makes sure that it is possible to read a
"1" and a '"0" into and out of each bit position of erasable memory with
the following exceptions. Registers 1377, 1376, and 1375 are not specifically
checked inthis part of SELF-CHECK because they have previously been thoroughly
checked while checking the special and central registers. These three
registers are required for storage while checking the rest of erasable
memory. The special erasable registers from 61 down through 10 are only
addressed to see if a parity error occurs. Finally the cycle and shift
registers are checked by putting a combination of alternate zeros and ones
in these registers and making sure the correct operation is performed.
Following is a short description of the subroutines in this part of
SELF~-CHECK ¢

ERASCHK The non-special erasable registers are checked for
correct addressing and content by placing their own
address in two successive registers and making sure
there is a difference of -1 when the contents of the
lower address register is added to the complement of the
higher address register; if it is not, this subroutine
performs a TC to the ERRORS subroutine. The contents
of the two registers are complemented and the complement
of the lower register added to the contents of the
higher register; the result is checked for -1. The
previous contents of the erasable registers are preserved
and replaced after the registers have been checked.

The higher address register of the previous iteration
becomes the lower address register of the present iteration.
The erasable memory banks are checked from zero through

seven with common erasable (62-1374) being checked after

each erasable bank.

-20-

CNTRCHK The CS instruction is performed on all erasable registers
from octal 62 through octal 10. These include all
counters and other special erasable registers. It is
not feasible to put their own address in these registers

and check their contents because of their special use.

CYCLSHFT The octal number 25252 is placed in the two cycle
registers, the shift right register, and the EDOP register.
The contents of these registers are then twice checked

for correct contents.

Check of Rope Memory

The routine for checking the correct contents of a rope is called
ROPECHK. TIts purpose is twofold. First it is a check on the computer.
It makes sure all current drivers, sense amplifiers, and associated circuitry
used in connection with the fixed memory are operating properly. Secondly
it is a check on the rope itself. It makes sure none of the sense or inhibit
lines have become shorted or opened (essentially guarantees contents of
rope is correct and can be read correctly by the computer).

The sum of each bank should be the same as its bank number in the
low order bits of the computer. A special word, which is called a "bugger"
word, 1s added to the normal sum of the bank as the last word to be added.
This bugger word forces the sum of the bank to be plus or minus the sum

of the bank. As an example, the sum of bank 33 octal may be 00033 or 77744.

Two TC SELF words indicate the end of the summing process for each
bank. The "bugger" word immediately follows the second TC SELF word.
Of course all addresses in a bank up to and including the bugger word
have to contain words of good parity.

Following is a short description of the ROPECHK subroutine:

-21-

ROPECHK Each bank in the rope is summed separately; from the
lowest address to the highest address used in that
bank. The contents of a higher address is added to
the sum of the previous addresses. If this creates
an overflow condition a +1 is added to the new sum;

a -1 1s added to the new sum if an underflow condition

is created. The sum of each bank should be plus or

minus its own bank number. If the sum of the bank

is 1ts bank number the subroutine proceeds on to checking
the next bank. If the sum of the bank is not its bank
number SELF-CHECK goes to the error routine. The banks

are checked in ascending order.

Check of Multiply Arithmetic Function

There are four multiply loops in the multiply subroutine. The two main
purposes of this subroutine are to form all the different combinations
of adds possible in the multiply instruction (1l to 14) and to change the
value of the word to be added from minimum to maximum for each combination
of add. The total time of the multiply routine takes approximately 20 seconds.
It 1s felt that the multiply and divide subroutines are a good arithmetic
check of the computer. Therefore the long activity time of these subroutines
may be utilized to check normal operation of the computer in conjunction
with asynchronous and synchronous interface signals. The correct result
of each multiply and each divide is verified before proceeding on. The
procedure gone through if an error is found is described in the "operating
procedures" section of this report.

A description of the multiply subroutine is below:

MPNMBRS The first multiply loop multiplies 37777 by (37777 through
00001). The contents of the A register counts dewn
while the contents of the L register counts up. There
is a check after each multiplication that these two
registers add up to 37777. The second multiply loop
multiplies 77776 by (37777 through 00001l). There 1is
a check in this loop that the c(A) is minus zero and

=3P

MPNMBRS the c(L) counts down by minus one after each multiplication.
(get:) The third loop interchanges the multiplier and the
multiplicand of the first loop. The contents of the A and

L registers should be the same as in the first loop.

The fourth loop interchanges the multiplier and multiplicand
of the second loop. The contents of the A and L registers

should be the same as the second loop.

Check of Divide Arithmetic Function

The four divide subroutines form different combinations of subtractions
while varying the value of the word to be subtracted. It takes approximately
0.01 second to go through all the four divide subroutines. However
SELF-CHECK keeps the computer in the divide subroutines for approximately
20 seconds.

Following is a description of the divide subroutines:

DVICHK Divides +/17777/+/37777/ by +/20000/. The contents
of the A register and L register have opposite signs
before the division. The quotient is +/37774/; the
sign depends on the sign of c(A) and the sign of the
divisor. The remainder is #1 depending upon the sign

of the contents of the A register before the division.

DV2CHK Divides +17777+37777 by +20000. The quotient is
+37777 with +17777 the remainder.

DV4CHK Divides +37776+0 by +37776. The quotient 1is +37777
with a remainder of +37776.

DV5CHK Divides +0+0 by +0. The contents of the A register
and L register have opposite signs before each division.
The quotient will be £/3777/; the sign depends on the
sign of c¢(L) and the sign of the divisor. The remainder

=93

DV5CHK is £0; the sign depends on the sign of the L register
(eonE-) before the division. This is not a useful division

but it does help to make sure the computer is operating

correctly.

.

CHAPTER 4

EXPLANATION OF DSKYCHK

The purpose of DSKYCHK is to light up all the DSKY electroluminescent
elements. It puts a +0 in the SMODE register at the beginning of the
routine, which forces the computer internal selfcheck to sleep. This is
the only routine in SELF-CHECK that does not have to be terminated.

It runs to completion once and then the computer falls into the backup
idle loop. The routine has to be entered as one of the SELF-CHECK options
every time it is to be exercised.

Each electroluminescent display lasts for 5.12 seconds to allow time
to observe all the elements in the display. The sequence of the displays

is described next:

DSKYCHK First the digit "9" is displayed in the R1, RZ2, R3,
Verb, Noun, and PROG positions of the DSKY. The digits
8 through O are then each displayed in all the possible
displays on the DSKY. The next display leaves all zeros
in the DSKY and turns on the "computer activity" light
and the "verb'" flash and the '"noun'" flash. The last
display has only the "computer activity" light on.
Finally the DSKY is left completely blank.

=25«

CHAPTER 5

EXPLANATION OF SHOW-BANKSUM

SHOW-BANKSUM consists of a routine called SHOWSUM. This routine
essentially does the same thing that the routine ROPECHK does; that is,
add up the sum of separate banks in the rope. After this the similarity
ends. ROPECHK makes sure the sum of the bank is plus or minus its own
bank number while SHOWSUM displays the sum of the bank in R1 of the DSKY
irrespective of what the sum may be. SHOWSUM also displays the bank number
and the bugger word in R2 and R3 of the DSKY at the same time. The sum
of the bank and bank number in R1 and R2 are shown as the least significant
bit instead of bits 11 - 15 (the actual bank bits in the computer).
Again 1t is worthwhile mentioning that the sum of a bank may be plus or
minus 1ts bank number. That 1s, bank 5 may be 00005 or 77772.

Undoubtedly the greatest use of this routine will be in restoring
the confidence of personnel in the computer and in verifying that the
correct rope modules for a particular mission are actually the ones in
the computer package. Following is a short description of the SHOWSUM

subroutine;

SHOWSUM Each bank in the rope is summed separately; from the
lowest address to the highest address used in that
bank. The contents of a higher address is added to
the sum of the previous addresses. If this creates
an overflow condition a +1 is added to the new sum;
a -1 is added to the new sum if an underflow condition
is created. The sum of each bank should be plus or
minus its own bank number. The sum of the bank is displayed
in R1 of the DSKY. The bank number (actual bank number
used to sum the bank shifted 5 places left) is displayed
in R2 and the bugger word is displayed in R3. Entering
a proceed verb (33) from the DSKY will display the same
information for the next higher bank. Entering a terminate

verb (34) from the DSKY will end the SHOWSUM routine.

NOTE :

The appendix, which contains flow charts of all the sub-
routines in self-check, will be distributed at a later date to

everyone receiving this report.

R. Alonso

H. Blair-Smith
D. Bowler

R. Crisp

J. Fleming

A. Green

E. Hall

A. Hopkins

A. Laats (3)
A. LaPointe
F. 0'Glishen
D. Scolamiero
E. Smally (10)
W. Srebnik

L. Wilk

G. Edmunds

E. Copps

J. Miller

A. Kosmala

D. Lickly

S. Felix
RAYTHEON

W. Page

C. Collette
W. Dawson

R. Sinotte

E. Bradshaw (10)
R. Zagrodnick
D. Lambert

C. Stebbins

DISTRIBUTION LIST

AC ELECTRONICS
R. Erickson
R. Gilbert
J. Kernan
F. Brokaski
J. Sampson
0. Cerbins
J. Connors
V. Dahlmann
G. Reasor
R.

Werner (Downey)

NASA

Henry Howard
Eva Lee

B. Rhine (2)
C. Frasier
M. Holley

