NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MSC INTERNAL NOTE NO. 69-FS-4

PROGRAMMED GUIDANCE EQUATIONS

FOR
LUMINARY IB
MANNED LM EARTH ORBITAL AND LUNAR PROGRAM

By Flight Software Branch

FLIGHT SUPPORT DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

SEPTEMBER 1969

UNCLASSIFIED

MSC INTERNAL NOTE No. 69-FS-4

PROGRAMMED GUIDANCE EQUATIONS for

LUMINARY IB
MANNED LM EARTH ORBITAL
AND LUNAR PROGRAM

Prepared by
Flight Software Branch

FLIGHT SUPPORT DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

This document is a complete re-issue of MSC Internal Note No. 69-FS-3, "Programmed Guidance Equations for LTMINARY 1A Manned IM Earth Orbital and Lunar Program", dated May 1969, updated to reflect the information in the LUMINARY 1B program to be flown on the Apollo H 1 mission.

Abstract

The information presented in this document on the LUMINARY 1B guidance program was produced with the intention that it be used together with a symbolic tabulation of the program. The information is divided into a series of separate sections, each of which describes a basic area of guidance computation and contains a list of definitions of variables and constants used in that area of the program. In order to assist the user in finding the computations in which he is interested, summaries of each section have been included, and all routine tags used in this document (generally identical to but a subset of those in the program listing) are indexed at the end of the document along with a list of references to each routine listed. A list of references to flagwords and channels has been included as well, as a supplement to the list of references to variables and constants supplied in the program listing itself.

The program from which this document was prepared is identified "LUMINARY Revision 116" and was released on August 11, 1969 for fabrication of the LM Guidance Computer memory ropes for the Apollo H1 mission.

Because of the purposes for which the information in this document was originally prepared, and the methods used in its production, this material should not be used as definitive information on the LUMINARY 1B program but as an aid in the reading and understanding of the program listing. If definitive information is required, the G\&N contractor is the proper source for it.

Table of Contents

Introduction 1
Summaries of Individual Sections 3
Notation and Terminology 7
Major Variables 19
Erasable Memory Initialization 25
Channels, Flagwords and Other Discrete Information Registers 37
List of References to Flagwords and Channels 75
Sections
Alignment of the Inertial Sub-System AI.IN - 1
Ascent Guidance ASCT - 1
Attitude Maneuvers ATTM - 1
Burn Control Routines BURN - 1
Conic Subroutines CONC - 1
Coordinate Transformations COOR - 1
Digital Autopilot Control Routines DAPA - 1
Digital Autopilot Phase Plane Logic DAPB - 1
Data Input/Output Routines DATA - 1
Descent Guidance DESC - 1
Display Interface Routines DINT - 1
Display and Keyboard Interface Routines DSKY - 1
Extended Verbs EXVB - 1
IMU Computations IMUC - 1
Program Interrupts INTR - 1
Mathematical Functions,Executive,Waitlist. MATX - 1
Orbital Integration ORBI - 1
Program Service Routines PGSR - 1
Radar Control Routines RADR - 1
Rendezvous Navigation RNAV - 1
Servicer SERV - 1
Up and Down Telemetry TELE - 1
Testing Routines TEST - 1
Targeting - Lambert TRGL - 1
Targeting - External Delta V TRGX - 1
Tables
Program and Routine List (equivalence definition). W - 3
Noun List W-5
Alarm Codes W - 15
Checklist Codes W - 19
Option Codes W - 21
Job Priorities W-23
Index of Routines X - 1

Introduction

Under the egis of the Program Development Group, Apollo Guidance Program Section, Flight Software Branch of MSC, in order to facilitate the reading of the detailed symbolic listing, a "Programmed Guidance Equations Document" has been prepared for the "LUMINARY" program. A major purpose of this document has been to provide more effective identification and analysis of various program performance features and to permit more effective review of published computer program documentation.

During reviews of previous programs written for the Apollo Guidance Computers, it was found desirable to assemble a set of workingpaper information on the equations actually programmed for these flights. This material has proven to be useful to the various groups associated with these flights, in that it can be used to bridge the gap between the extreme detail of the program listing and the occasional lack of detail available elsewhere on the guidance equations. Consequently, the material on the following pages has been assembled in a fashion similar to that used for previous programs and follows the same general format.

Certain aspects of the program are quite complex, and this programmed guidance equation material should not be considered as a substitute for actual study of the program symbolic listing itself. No complete set of equation information was available from the G\&N contractor against which the programmed equations could be validated, and in the interest of timely publication, the review of the assembled document against the program assembly has not been as detailed as would be desired.

The program assembly listing which was used to prepare this programmed equation information bears the heading print:
GAP: ASSEMBLIT REVISION 116 OF AGC PROGRAM LUMINARY BY NASA 2021112-O71 and is dated August 11, 1969. The function of virtually all the program
steps of interest to the flight is described either on the following pages, or, for general computer system control, in TRW Working Paper 3420.5-27 (revision 1).

Recipients of this document are cautioned against misusing it as a definitive description of the "LUMINARY" guidance equations. Instead, it might be used to achieve a better understanding of the program assembly listing, since it is intended as an aid in review of the listing, not as a substitute for it. Definitive guidance equation information can be provided only by the $G \& N$ contractor through the appropriate MSC channels.

A great deal of credit goes to TRW Systems MTCP Tasks A-90 and A-201 (Support of Apollo Guidance Program and Guidance Document Review) personnel, in particular Mr. William C. Koelsch, who conducted a similar review of the "SUNDANCE" program. This document has drawn heavily upon the results of that review and could not be published at this time without the earlier work done by TRW Systems.

Summary of Individual Sections

The contents of this description of the "LUMINARY" guidance and control equations are divided into twenty-five semi-independent sections, each of which is assigned a four letter code. Pages are numbered consecutively within each section and the sections themselves are arranged in alphabetical order by code. Familiarity with the information in "Notation and Terminology" is helpful in understanding the somewhat specialized type of notation used in describing the program, but each section includes a list of "Quantities in Computations" which is intended to describe all variables and constants in the section that are not described in the list of "Major Variables".

Alignment of the Inertial Subsystem (ALIN)

Programs used to align the ISS to any of several specified alignments and to compute the "reference to stable-member" transformation matrix, based on measurements of the positions of celestial bodies with respect to the spacecraft.

Ascent Guidance (ASCT)

Programs used to initiate, control, and terminate the LM ascent from the lunar surface (P12) and aborts from powered descent (P70 and P71)

Attitude Maneuvers (ATTM)

Computations performed to determine the axis about which spacecraft rotation should take place and the magnitude of the rotation to go from present vehicle attitude to final attitude, including logic controlling the maneuver rates and DAP interface.

Burn Control Routines (BURN)

Programs used to initiate, control, and terminate all three types of $I M$ burns (RCS, APS, and DPS).

Conic Subroutines (CONC)

Subroutines used by navigation and targeting routines to compute various conic parameters.

Coordinate Transformations (COOR)

Subroutines defining the transformations between the several coordinate systems used by the LGC, including routines for determination of lunar and solar position and selenographic latitude and longitude.

Digital Autopilot Control Routines (DAPA)

P-Exis and Q,R-axis RCS control for free or powered flight; Q,R-axis Gimbal Trim System. (Includes jet fail monitor.)

Digital Autopilot Phase Plane Logic (DAPB)

Equations used to compute jet accelerations, jet firing times and disturbing accelerations; deadband selection and astronaut interface routines.

Data Input/Output Routines (DATA)
Logic used to control display and loading of various LGC registers under control of the DSKY or internal programs, including noun definitions.

Deseent Guidance (DESC)

Programs used to initiate, control, and terminate the LM powered descent maneuvers ($\mathrm{P} 6 \mathrm{O}^{\prime} \mathrm{s}$).

Display Interface Routines (DINT)

Routines governing program use of the DSKY and the priority of displays.

Display and Keyboard Interface Logic (DSKY)

Routines defining the mechanics of interpreting inputs from the DSKY keyboard or uplink and for changing the status of numerical character lights on the display.

Extended Verbs (EXVB)

Definition of the functions of the extended verbs (40-99) including those controlling block updates of LGC E-memory, AGS initialization, calculation of TFF and rendezvous displays.

IMU Computations (IMUC)

Computations associated with the Inertial Measurement Unit, including those for controlling CDU pulse outputs, for checking and setting IMU modes and switching between them, for accelerometer and gyro compensation, and for gyro torquing.

Program Interrupts (INTR)

Short description of all eleven program interrupts; the routines associated with program interrupt No. 4.

Mathematical Functions, Executive, Waitlist (MATX)
Various built-in trigonometric, logarithm and root extraction functions used by the programs, and some of the logic associated with the operations, such as "Establish," or "Call."

Orbital Integration (ORBI)

The equations used for precision integration of the state vector, and logic to switch between powered flight and coasting flight navigation.

Program Service Routines (PGSR)

Routines used for initialization of the LGC, re-initialization in case of restart, and for change of program (major mode). Also includes alarm routines.
Radar Control Routines (RADR)
Routines controlling the positioning and reduction of data from the Landing Radar and the Rendezvous Radar.
Rendezvous Navigation (RNAV)
Programs using the rendezvous radar to update both state vectors maintained in the LGC and to update the "error transition matrix" based on tracking of the CSM.

Servicer (SERV)

Average-G navigation routines and other routines used for burn control and monitoring.

Up and Down Telemetry (TELE)

Uplink character processing and computations performed for periodic downlink transmission, including a brief summary of the information on the downlink.

Testing Routines (TEST)

Computer self-test routines and externally initiated tests.

Targeting - Lambert (TRGL)

Burn targeting using the Lambert computation of velocity-to-begained.

Targeting - External Delta-V (TRGX)

Burn targeting for constant attitude burns.

Notation and Terminology

Because of some of the special design features of the Apollo Guidance Computer, a set of special notation and terminology has been found useful in describing the equations programmed for this computer. In most cases, this notation and terminology follows that which seems to be employed by the G\&N contractor, and also follows that which was used in documents previously prepared on Block 1 and Block 2 programs.

The following document may be found useful for supplemental information on the symbolic listing, and for a more detailed discussion of the computer hardware and general computer system control:
3420.5-27, "Apollo Guidance Program Symbolic Listing Information for Block 2," Revision 1, dated 27 June 1968, prepared under MTCP Task A-90.

Copies of that document, together with revision information as it is published, may be obtained from the Flight Software Branch of MSC.

Numbers

A. General

The guidance computer is designed with a memory word length of 15 bits (plus a sixteenth bit, not sensed by the program, used to achieve "odd parity", i.e., an odd number of binary ones in the total 16-bit word). It is also designed as a fractional machine, so that all numbers in the computer are less than one: "equation values" greater than 1.0 are accommodated by suitable scaling, as described below. Arithmetic is all one's complement except in special instances where two's complement is required for hardware interface information. There is no hardware floating point capability in the computer, although a facsimile to floating point computations is sometimes used (and identified as "quasifloating point") in the program, particularly when the quantities involved can have a large dynamic range.

The 15 -bit word is divided into a sign bit and 14 magnitude bits, with the bits numbered from the sign (\#15) to the least significant magnitude bit (\#1) as shown:
Value: Sign $2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9} 2^{-10} 2^{-11} 2^{-12} 2^{-13} 2^{-14}$
Number: $15,14,13,12,11,10,9,8,7,6,5,4,3,2,1$
Once the stored value of a number in the computer register (evaluated using the bit weights shown) has been determined, its equation value may be determined by multiplying the stored value by some power of two which is called the "scale factor":

The scale factor of a quantity is the power of two by which the number in the computer (considered as a fraction in the range between -1 and +1) must be multiplied to obtain its equation value. For convenfence, the scale factor is shown as "Bxx", where "xx" is some positive or negative integer.

For example, if a word has a scale factor B14, this means that the individual bits have a weight 2^{14} (or 16384) times the values shown in the above table. A counter in the program with this scale factor, therefore, would have its least significant magnitude bit (or least increment) equal to $1\left(2^{-14} \times 2^{14}=1\right)$. See Appendix A of $3420.5-27$ for more details.

In many instances, the word length of 15 bits, permitting a number to be expressed to $1: \pm 16384$ (1 part in ± 16384), is insufficient to give the required precision in the computations. In these instances, a double precision number (stored in two consecutive memory cells) is used. Scale factor information for double precision numbers has the same interpretation as for single precision numbers, and the less significant half of the word has weights that are 2^{-14} times the weights shown above. A quantity that is double precision with a scale factor of B28, for example, would have a least significant bit of 1 and a maximum value of ($2^{28}-1$), or $268,435,455$. . In a few cases (usually involving time information), triple precision quantities are required, which follow similar rules.

In cases where it is not reasonably self-evident, the single, double, or triple precision nature of the quantity is specified (by subscripts sp, dp, and tp, respectively).

In addition to the scale factor information, it is necessary to know the units in which the quantities are expressed. Times are usually expressed in units of "centiseconds" (0.01 seconds). The navigation equations give a position output in units of meters and a velocity output in units of meters per centisecond. Angles are usually expressed in units of revolutions (of 360°). Where not reasonably obvious, units on the quantities are given.

Unless otherwise specified, numbers with explicit values are quoted in decimal. A notation such as "1E-5" means 10^{-5}. Octal numbers are indicated by a subscript of 8 (such as 348 for octal 34); binary numbers have a subscript 2 (such as 11100_{2} for 34_{8} expressed in binary). The quantity +0 is $00000_{8} ;-0$ is 77777_{8} (in some cases, the distinction is important, since a computer instruction can distinguish between them).

B. Constants

Fixed scalar constants are denoted by $\mathrm{K}: \mathrm{xxx}$, where xxx is a symbol of arbitrary type and length, selected generally for similarity with the program notation (capital letters) or for mnemonic usefulness (small letters). A subscript can be used to indicate one of several constants stored in a table.

Constants stored in erasable memory (so they can be changed without hardware implications) are not distinguished from variables. Some are set by the fresh start or restart routines; some are loaded as part of the erasable load.

In a few cases, vector or matrix constants are employed. They are so designated by an underline or brackets as are vector and matrix variables.

C. Variables

Variables are generally designated by several upper case capital letters, sometimes with subscripts (the symbol K : is reserved for constants). Lower case letters sometimes appear with the symbol for a variable, and have the following special meanings:
d: A division indication appears as part of the symbol in the program (1dANET zppears in the listing as l/ANET).

1: A suitable number or capital letter is substituted as defined in the related equation information for "i" (VACiUSE $=$ VAC3USE if $i=3$, etc.)
$m:$ A minus sign appears as part of the symbol in the program (mTPER appears in the listing as -TPER).
p: A plus sign appears as part of the symbol in the program (pMGA appears in the listing as +MGA).

An underline of the first character of a symbol means a quantity with several components, frequently a vector but sometimes a quantity having vector-type properties, such as gyro compensation about different axes. Individual components of a vector are identified by a subacript using the same symbol as for the vector, but without the underline: TS x_{x} for example, would be the X component of the vector $T S$.

Matrices are designated by enclosing their identification mnemonics in brackets: [REFSMMAT] for instance. Interpretive language operations in the guidance computer (see TRW Working Paper 3420.5-27) permit convenient manipulations of 3×3 matrices whose elements are stored double precision. Therefore, larger matrics are handled nine elements at a time. Both premultiplication and post-multiplication of a vector by a metrix are incorporated (post-multiplication is equivalent to premultiplication by the transpose). Elements of a 3×3 matrix are stored "first row, then second row, then third."

D. Addresses

The value of an address is designated by the symbol used in the program, enclosed in quotation marks: without the quotation marks, the contents of the cell with that address would be indicated. In order to improve presentation clarity, many of the program-step symbols are omitted from the equations, and others may not precisely correspond to the program divisions actually located by the symbol in questi:n. It is sometimes necessary to refer to a computer address as actually packed into a l5-bit word: for this, the term "CADR" (see 3420.5-27) is employed (erasable and fixed memory CADR formats differ).

A number of subroutines are used within the program, each of which require information on the "main" program to which program control must be transferred at the end of the subroutine. For clarity in showing the computation flow performed, the retention of the necessary return address information is shown explicitly in a few places. The "return address" is the address to which control is to be transferred after completion of the subroutine; the "calling address" is the address from which transfer to the subroutine was made. In many cases, the return address is one greater than the calling address, but in some instances, such as transfers to the "ALARM" routine, the cell following the calling address contains infomation pertinent to the subroutine (such as the alarm pattern), and therefore the return address may be several address locations after the calling address. To save program steps, in some cases the complement of the address may actually be used by the program for storage purposes; but this fact, since it has no effect on the computation flow, is not indicated in the equations.

E. Subscripts

Subscripts are used for relative addressing or for informational purposes. As relative addresses, they index one of several variables or constants stored in a table with only one explicit address. DSPTEM1 1 indicates the cell after DSPTEM1, and DSPTEM1 2 indicates the cell after DSPTEM1 ${ }_{1}$. Sometimes the subscript contains the complete address and any arbitrary erasable memory is selected by the notation $E_{A D R}$ where the address of the cell desired is stored in ADR. When used for informational purposes, the subscript does not change the address of the cell but merely indicates its nature. The following subscripts are frequently used:

```
sp: Single precision
dp: Double precision
tp: Triple precision
ms, ls: More and less significant halves of a double
                                    precision number
x, y, z: First, second and third components of a three-
        dimensional vector
2 (with a number): Binary
8 (with a number): Octal
(Numbers without a subscript are quoted in decimal)
11, 12, 13, 14, 15, ....: Elements of the first row of a
                                    matrix
21, 22, 23, 24, 25, ....: Elements of the second row of
                                    a matrix
31, 32, 33, 34, 35, ....: Elements of the third row of
                                    a matrix
41, 42, 43, 44, 45,....: Elements of the fourth row of
a matrix
etc.
```


Program Control

Three types of program sub-units occur within the complete program:
a) A subroutine, which performs a certain function and then returns control to the program sub-unit which called it (subroutines, of course, may have other subroutines within them).
b) A task, which is a short sequence of computations performed based on a time criterion, or upon some external signal.
c) A job, which is a program entity (such as targeting compu.. tations, steering computations, processing of a keyboard charactei, etc.) of long duration which must be done in a definite sequence. (Accelerometer data, for example, must be corrected for biases before navigation computations are performed, and navigation before steering commands, so they all form part of the same job.)

Time-dependent tasks are implemented by a "waitlist" system (see section VIIA of 3420.5-27), for which the programer merely specifies the time delay (from "now") when he wants a computation done, and the starting address of that computation. The time delay has a least increment of 10 milliseconds. Unless interrupts are inhibited, a program interrupt (which can be caused by a signal from the telemetry system, the uplink, the "waitlist" hardware, separate ("T4RUPT") waitlist-type hardware, a keyboard input, etc) causes suspension of a job and performance of the task. Tasks, however, are not subject to interruption by other tasks, but continue to completion. There is also a hardware monitoring function which can cause a "program/hardware restart" which, if necessary, could interrupt a task: in general, however, these should not be encountered.

Jobs are sequenced with the aid of a priority system (see section VIIB of 3420.5-27) and are performed only if no tasks must be performed. If no "productive" computations are required, then a "dummy job" is performed, which checks periodically for the availability of a job to be performed, and of course is subject to interruption for a task. A job can be "established" (put into a list to be selected when its priority is sufficiently high) by another job or by a task. A job can be "put to sleep" to wait for some external event (such as an uplink input), the occurrence of which will "awaken" the job. Jobs can optionally be assigned a set of "working storage" erasable memory cells, called a "VAC area" (see Section VID of 3420.5-27).

A program "step" is a step in the computation sequence shown on the page, and should not be confused with a line of the program assembly listing.

The following program-control terms are employed:
a. Awaken a job: Cause a job (if any) with the indicated starting address to be restored to its original priority after a period of being "asleep", during which the performance of the job was suspended by making its priority negative.
b. Call "XXX" in yy seconds: Cause a task with starting address of "XXX" to be performed in yy seconds from the present time (yy has a least increment of 10 milliseconds).
c. Delay yy seconds: Cause the present string of computations to be suspended for yy seconds, and then restart at next line. Delays to a Waitlist Task are implemented by a waitlist call to the following step, and then an end task; delays for a job are achieved by using the "DELAYJOB" routine.
d. End job: Terminate performance of the job, and transfer control to an executive routine to initiate performance of the job which has the highest priority of those remaining. The "dummy job" is the only one which is not ended in this fashion.
e. End task: Terminate performance of the waitlist-initiated task, and transfer control to a routine which checks for other waitlist tasks, causing resumption of previous computations if there are no such tasks.
f. Establish "XXXX": Enter the job with starting address "XXXX" in the priority list to be performed when appropriate (each job has a priority associated with it, not necessarily shown in the equations). A job can optionally be established with or without a working storage (VAC) area (not generally shown in the equations).
g. If: Carry out the indicated manipulations provided the indicated conditions are satisfied. The "indicated manipulations" are "indicated" by being indented, if the "If" statement is followed by a colon, or by being on the same line as an "If" statement followed by a comma. Should the conditions not be satisfied or after performing "indicated manipulations" that do not end with a "Proceed to...", continue on in sequence at the next non-indented line.
h. Perform "XXXX": Cause a subroutine with starting address "XXXX" to be entered. The specific memory cell to which the
subroutine returns control depends in some cases on the purpose of the routine, but generally is the step after the "Perform" instruction.
i. Proceed to "XXXX": Cause the program step with address "XXXX" to be the next one to be performed, and continue the performance of the program from that point.
j. Proceed to XXXX: Cause the program step whose address is stored in cell XXXX to be the next one performed, and continue the performance of the program from that point.
k. Put to sleep: Cause the present job's computations to be suspended (by making its priority negative) until some event takes place causing the job to be "awakened." Differs from End job and Establishing a job in that the VAC area and Job Register Set are retained. When a job is put to sleep, a starting address identification is proceeded for use in awakening the job (and also to specify the starting point for the job when it is performed).

1. Resume: Resume computations which were interrupted to perform the task (used for tasks not initiated through waitlist means, cf. End task).
m. Return (or "Return via XXX" where the return address has been stored in XXX): Return to the subroutine's calling program (which in some cases could have been either a task or a job).
n. When no transfer instruction occurs at the end of a routine, computations continue down the page through subsequent routine or routines.

In addition to the above terms, a special notation is used with display interface routines:

```
Proceed to "GOFLASH"
    (If terminate, ...; if proceed, ...; if other response,
    .....)
```


or

Perform "GOFLASHR"

(If terminate, ...; if proceed, ...; if other response,)

$$
X=Y
$$

End job
In the first case, control is transferred to the display interface routine and the program is terminated until the astronaut responds. In the second case, a display interface routine is established and the subsequent steps ($\mathrm{X}=\mathrm{Y}$) are executed before the astronaut responds to the display (usually). The four possible astronaut responses that are recognized are: "Terminate" via verb 34; "Proceed" via verb 33 or the proceed button; "Resequence" via verb 32 ; and "Enter" by pushing the enter button in response to a "please perform" type verb or after loading data via one of the load verbs. The last two types of response will initiate the "if other response" branch.

A capability also exists to "kill" a task that has been inserted in the "waitlist" but has not yet been executed. It is simply removed from the waitlist.

Operations

Several mathematical manipulations are available to the programmer and are indicated either by special characters or by lower case symbols. The trigonometric, logarithm and square root functions are described in the MATX section.

1) Standard Arithmetic Operations

+ : plus
-: minus
: (blank) multiply; scalar by scalar, vector by scalar, etc.
/ : divide; scalar by scalar; vector by scalar
$|A|:$ Magnitude of scalar (absolute value)
$|A|:$ Magnitude of vector (length)

2) Special scalar operations (see MATX section)
$\sqrt{\mathbb{A}} \quad$: square root
arccosA : double precision arc cosine of A
arcsinA : double precision arc sine of A
$\arcsin _{\text {sp }}{ }^{A}$: single precision arc sine of A
cosA : double precision cosine of A
$\cos _{\mathrm{sp}}{ }^{\mathrm{A}} \quad$: single precision cosine of A
sinA : double precision sine of A
$\sin _{s p}{ }^{A} \quad$: single precision sine of A
lnA : natural logarithm of A
3) Vector operations

* (\underline{A}^{*} B) : vector cross product
- (\underline{A}^{\cdot} B) : vector dot product
$\underline{A}^{2} \quad:$ square of length of A
$[A] \underline{B}$ or $\underline{B}[A]^{T}$: premultiply the vector B by the matrix [A](3x3; interpretive instruction MXV). The X component of the answer is equal to the dot product of the first row of [A] with B, etc.
$\underline{B}[A]$ or $[A]^{T} \underline{B}$: post multiply the vector \underline{B} by the matrix [A] (3×3, interpretive instruction VXM). The X component of the answer is equal to the dot product of the first column of [A] with B, etc.

4) Bit operations

Switch bit a of B to 1 or 0 : Set or reset bit a of erasable memory register B
Set bit a of $A=b i t b$ of B : Set or reset bit a of erasable memory register A according to whether bit b of B is set or reset.

Invert bit a of B :
Set bit a of $A=$ the complement of bit a of A.
 A and B is a binary 1 , then the result is a binary 1 ; otherwise, the result is a binary 0 .
$\sim(\tilde{B}): \quad B i t$ by bit complement of B.
5) cycle: Shift in a cyclic fashion, with bits "spilling out" of one end of the register appearing at the other end. For example, bit 14 cycled left 2 places, since the word length of the computer is 15 bits for data, becomes bit 1 , as does the same bit cycled right 13 places (or, in this case, shifted right 13 places).
6) 1imit: Cause the maximum value (usually K :posmax) to be stored if the quantity of its computed value exceeds that maximum. (Unless otherwise specified, the magnitude is limited, with sign information preserved; frequently done by means of a check for overflow.)
7) modulo: Form a quantity, for A modulo B, equivalent to the value of B times the remainder from (A / B). For example, 380° modulo one revolution is 20°.
8) overflow: Exceed the capacity of the computer register (i.e. the maximum value of the number allowed by its scaling). The interpretive language (section VI of 3420.5-27) has a special cell which is set if such an overflow is encountered, and which may be sensed to cause program branching. The divide instruction in the interpretive language, if the numerator exceeds the denominator (using the numbers in the computer register), sets the answer to the maximum capacity of the computer register with the proper sign.
9) quasi-floating point: Carry out a computation (usually involving a division) by, in general, normalizing both numerator and denominator before performing the division (with suitable provisions to avoid division overflow), and then shifting the result the appropriate number of places. Normalization involves shifting a number so that there are no leading magnitude zeroes, and counting the number of shifts required.
10) set $\mathrm{A}=\mathrm{B}$ and $\mathrm{B}=\mathrm{A}$: Exchange the contents of "A" and " B "
11) signA: Complement the accumulator if A is negative; otherwise, leave the accumulator alone. Unless otherwise specified, if $\mathrm{A}=0$ the accumulator is also left alone, i.e. 0 is a "positive" number).
12) shift: Shift in a non-cyclic fashion, with exclusion of the sign bit: bits "spilling out" of the least significant end of the register (for shifting right) are lost. Cf. "cycle". Vacated bits are set to sign bit.
13) sign agreement: Force the signs of the various parts of a multiple-precision word to be the same.
14) unit $(\underline{A}+\underline{B})$: Form or use a unit vector from the vector information specified. The scale factor of the unit vector when formed is Bl. The magnitude of the vector is left in push-down list address 36D and its square in 34D. Operation "overflows" if magnitude of yector (before forming unit) is less than 2^{-21} as stored in computer register: if a cross product of 2 unit vectors involved, this would be a "true value" of 2^{-19}, or about 0.002 mr .
15) $A=\left(a_{1}, a_{2}, a_{3}\right)$: Form a vector with x, y, and z components $=$ a_{1}, a_{2} and a_{3}.
16) $B=\left(b_{1}, b_{2}\right)$: Form a double precision number B with more significant half $=b_{1}$, less significant half $=b_{2}$.
17) The difference between two angles expressed in two's complement form can be performed by a special instruction to produce a result in one's complement form.

```
Ma.jor Variables
(and constants)
```

The following quantities are used at several points in the program; a general knowledge of their significance will be valuable in any effort to understand the program.

CADRFISH $_{i}$ ($i=0,1,2$), CADRSTOR, DSPLIST: Single precision address storage registers in the display interface routines. Three internally generated displays can be handled by the display interface routines at any one time, one "priority" display, one "mark/extended verb" display and one "normal" display. The addresses of the routines requesting these displays are stored in CADRFLSH 0 , CADRFLSH ${ }_{1}$ and CADRFTSH 2 respectively. If the active display inds that the astronaut is using the DSKY (Display and Keyboard Assembly), it is put to sleep and its address stored in DSFLIST until the astronaut releases the DSKY. If the active display requires astronaut response, it is put to sleep and its address stored in CADRSTOR until the response is received.

CDU ($\operatorname{CDU}_{x}, \operatorname{CDU}, \operatorname{CDU}_{z}$): LGC input counters incremented directly from the Coupling'Data ${ }^{2}$ Unit to maintain IGC knowledge of the position of the outer, inner and middle gimbal angles of the Inertial Measurement Unit. These counters are coupled directly to the "Read Counters" in the three ICDU channels of the CDU, and the two counters associated with each gimbal angle are incremented simultaneously. In order to synchronize the LGC counters with the Read Counters, the LGC counters must be set to zero while the ICDU Read Counters are maintained at zero by setting bit 5 of channel 12. The gimbal angle data thus maintained is scaled B-1 in units of revolutions (one least increment is equivalent to 2^{-15} revolution) and is in two's complement form.

The manipulation of two's complement numbers in the LGC maintains a periodic regularity by propagating an overflow bit into the sign bit. In the case of angles scaled B-1 in units of revolutions, the overflow bit represents one-half of a revolution (180 degrees), and angular sums over one half of a revolution in magnitude are "automatically" adjusted to lie within the range $-\frac{1}{2} \leq a n g l e<\frac{k}{2}$. For example: $0.35+0.42=-0.23\left(126.0^{\circ}+151.2^{0^{2}}=-82.8^{\circ}\right)$.
CDU_{s}, CDU_{t} : LGC input counters incremented directly from the ${ }^{\text {S Coupling Data Unit to maintain LSC knowledge of the Rendezvous }}$ Radar shaft and trunnion angles. These counters are coupled to the Read Counters in the two RRCDU channels of the CDU and are exactly like the CDU-linked counters described above. The RRCDU Read Counters are zeroed by bit 1 of channel 12.

CDUD: Single precision vector containing the latest specification of desired IMU gimbal angles for the Digital Autopilot, scaled B-1 in units of revolutions and stored in two's complement form. See the description of LLG two's complement included with the definition of CDU.

Channels: Fifteen bit interface registers for input and output of discrete information. See TRW Working Paper 3420.5-27 for more precise and complete information. Channels 5,6,11-16 and 30-33 are described in the section entitled "Channels, Flagwords and Other Discrete Information Registers."

1,2: Identical to A and Q registers; see MATX section.
3,4: Standby Clock; continues to count when the LGC is put into standby mode (see "PO6").

7: Bits 15-8 and 4-1 have no function; bits 7-5 are the fixedmemory address extension bits (SUPERBNK); see MATX section.

10: Channel used by "TLRUPT" to set the relays in the DSKY; bits 15-12 contain the relay address; bits $11-1$ contain the desired setting. Called OUTO in the programs; see INTR section.

34,35: Two channels loaded with information to be telemetered by the downlink; see TELE section.

DELCDU: Single precision vector subtracted from CDUD every 100 milliseconds to control the rate during an automatic attitude maneuver, scaled B-1 in units of revolutions and stored in two's complement form. See the description of LGC two's complement included with the definition of CDU.

DELV: Double precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second and expressed in stable member (IMU) coordinates. (One pulse from the accelerometer is equivalent to one centimeter per second; DELV is loaded directly from the accelerometers.)

DISPDEX: Single precision index controlling the periodic and otherwise independent display (by "CLOKTASK") of burn parameters. See BURN section.

DNLSTCOD: Single precision index (range 0-5) indicating which of the downlists is to be telemetered, scaled B14 and unitless. Loaded by various programs to select the proper downlist. See K:DNTABLE in TELE section.

DSPTAB ($i=0-10$): Computer storage for the DSKY illumination relay settings, complemented when they are changed to signal to the "T4RUPT" routine that the relays are to be re-set as soon as possible. A numerical record of what is displayed via $\operatorname{DSPTAB}_{10}, 9,8$
is maintained in MODREG, VERBREG and NOUNREG. The contents of being displayed via DSPTAB $7_{-0} 0^{\circ}$ See DSKY and DATA sections.

DSPTAB $_{11}$: Single precision flagword whose bits designate relays to ble set to illuminate lamps on the DSKY. Bit 9 lights the "program alarm" (PROG) lamp when set; bit 8 lights the "tracker fail" (TRACKER) lamp when set; bit 6 lights the "gimbal lock warning" (GIMBAL LOCK) lamp when set; bit 5 lights the "LR attitude fail" lamp when set; bit 4 lights the "no attitude" (NO ATT) lamp when set (Via "I\&TUPT"); bit 3 lights the "LR velocity fail" lamp when set.
$\mathrm{E}_{\mathrm{ADR}}$: Notation used to denote any cell in erasable memory whose address is stored in the quantity used as the subscript (here denoted by ADR). If access is required to an E-memory cell in a switched bank other than that in which the program is operating, the EBANK register must be re-set first.

FLAGWRDO-11: Single precision registers whose bits are used individually for storage of on-off/yes-no type information. The flagwords are described in the section entitled "Channels, Flagwords and Other Discrete Information Registers" and references to the flagwords are listed in the section entitled "List of References to Flagwords and Channels."
i, J, k, n, p, s, t, v: Letters used to denote various temporary storage cells in the programs, usually indexes scaled B14 and unitless.

K:dvtoacc: Constant implicit in the 2 second navigation cycle, scaled $B-1$ in units of seconds to the minus one power. Equation value: $\frac{1}{2}$. If the navigation cycle is changed to something other than 2 seconds, this constant will have to be changed to an explicit one wherever it appears.

K:posmaxsp, K:posmaxdp: Notation for the maximum positive value that can be stored in a single or double precision IGC register. The stored value of the constants is 377778 and 377778377778 respectively. The equation value of each is determined by the scale factor of the variable involved. If B is the scale factor, the equation values are:

$$
\begin{aligned}
& \mathrm{K}: \text { posmaxsp }=2^{B}\left(1-2^{-14}\right) \\
& \mathrm{K}: \text { posmaxdp }=2^{B}\left(1-2^{-28}\right)
\end{aligned}
$$

K:VxxNox: Single precision constant verb-noun code. The two-digit decimal noun number is stored in bits $1-7$ of the constant; the two-digit decimal verb number is stored in bits 8-14.

MPAC ${ }_{i}(i=0-7)$: Multiple precision accumulator and storage used by jobs coded in interpretive language (via the interpretive decoder) and sometimes by jobs coded in basic language. A set of eight single precision cells associated with each job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, MPAC $-M_{0} A_{7}$ are saved as part of the "job core" reserved for that job, and they are re-set exactly as they were when the interrupted job is reestablished.

MUDEX, PBODY: Single precision indexes used to differentiate between constants and program branches that differ according to whether the center of attraction is the earth (0) or the moon (8 and 2 respectively). See CONC section and ORBI section respectively.

PRIOTIME: Single precision time when a priority display is activated, used to enforce the two second delay before the response to a priority display is accepted (to avoid the problem of a response to a just interrupted normal display being interpreted as the response to the priority display.) See DINT section.

RATT, VATT, TAT: State vector output from orbital integration with constant scaling (B29, B7, B28) or variable scaling (RATT1, VATT1, TAT) in units of meters, meters per centisecond, and centiseconds.

RCVCSM, RCVIFM: The permanent state vectors for the CSM and LM contain six double precision vectors and three double precision scalars. They are listed below along with the name of the equivalent variable used in the precision integration of each.

LM
CSM
RCVCSM
VCVCSM $\bar{T} C C S M$ DELTACSM N TETCSM RRECTCSM VRECTCSM XKEPCSM

Integration
RCV
V̄CV
$\bar{T} C$ IDELTAV
TNUV
TET
RRECT
VRECT XPREV
[REFSMMAT]: Double precision, 3×3 transformation matrix, scaled B1 and unitless. Defined such that Asm = [REFSMMAT] Arf where A is a vector expressed in stable member and reference coordinates respectively. (Other transformation matrices are not continuously maintained but only generated when needed.)

RN, VN, PIPTIME, R-OTHER, V-OTHER, TETCSM: Double precision vectors describing the navigation state of the LM and CSM respectively, scaled nominally (B29, B7, B28).

TDEC1: Double precision time input to orbital integration routines (GET) specifying the endpoint, of the integration, scaled B28 in units of centiseconds. (Only input necessary if the permanent state vector is used as the origin.)

TEPHEM: Triple precision elapsed time from July 1.01968 to the time when the LGC clock (TIMENOW) is zeroed, for use in calculation of ephemerides; scaled B42 in units of centiseconds and included in the pre-launch erasable load.

THETAD: Single precision vector containing the final desired gimbal angles that define a desired orientation of the spacecraft with respect to the Inertial Measurement Unit (IMU) for large attitude maneuvers or DMU alignment; scaled B-1 in units of revolutions and stored in two's complement form. See the description of LGC two's complement included with the definition of CDU.

TIG: Double precision time of ignition (or predicted cutoff time, once the engine has been ignited) input to the burn programs from the targeting programs. The parameters required of the targeting programs by the burn programs (in addition to the LM state and mass estimate, which are assumed always available) are:

> External Delta-V
> $($ XDFLVFLG $=1)$
TIG
RTIG
VTIG
DELVSIN
DELVSAB

Lambert Targetted $($ XDELVFLG $=0)$

```
TIG
RTARG
TPASS4
NORMSW (FL7, bit 10)
MUDEX
```

TIME3, TIME4, TIME5, TIME6: LGC clocks in addition to TIMENOW which are used to control interrupts of one kind or another. See INTR section.

TIMENOW: Double precision computer clock, incremented every centisecond (one hundredth of a second) by the IGC oscillator; scaled B28 in units of centiseconds.

TS (and various transmutations such as TS1, TSnoun TS_{12}, TSvec): Real or dummy temporary storage cells used for convenience in describing the performance of the equations. When used as a communication cell between routines, TS generally represents what the program transfers via the accumulator.

VGPREV: Double precision previous value of velocity-to-be-gained vector, program notation also "VGTIG," scaled B7 in units of meters per centisecond.

UPSVFLAG: Single precision flag loaded with a state vector update (address of UPSVFLAG is just before that of RRECT) to indicate whether the update is for the LM or CSM state and whether it is in moon-centered or earth-centered reference coordinates. See ORBI section.

XSC, XSM, XSCD, etc.: Double precision unit vectors in the directions of the \bar{X} spacecraft axis, the X stable member axis, the desired X spacecraft axis, etc. Such unit vectors are always scaled B1 and unitless, but they may be expressed in various coordinate systems. An effort has been made to indicate the coordinate system in cases where it was not inmediately obvious by adding small letters (sc, sm, rf) to the tag; the notations YSCsm, YSCsc, and YSC all reprosent the same cell - the indication of coordinate system is purely explanatory.

The quantities listed below constitute the "erasable memory load" which supplements the initialization performed by verb 36 (fresh start routine "SLAPl") in order to prepare the LGC erasable memory for the beginning of the mission. The list shows the absolute uddress of each quantity in the list (single, double or triple precision) in ECADR form (EBANK in bits ll-9; address $=14008$ + bits 8-1); the tag assigned to that address by this document; the tag assigned to that address by the LUMINARY program if it differs from that used in this document; the scale factor and the units which the program assumes when handling each quantity; and the section of this document in which the quantity is defined.

Following this alphabetical list are the erasable memory quantities listed in order of increasing ECADR.

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02566 \\ & 02567 \end{aligned}$	ABT RDOT	B7	meters/centisecond	ASCT
01463	ADIAX	B-5	gyro pulses/cm per sec ${ }^{2}$	IMUC
01464	ADIAY	B-5	gyro pulses/cm per sec ${ }^{2}$	IMUC
01465	ADIAZ	B-5	gyro pulses/cm per sec ${ }^{2}$	IMUC
01466	ADSRAX	B-5	gyro pulses/cm per sec ${ }^{2}$	IMUC
01467	ADSRAY	B-5	gyro pulses/cm jer sec ${ }^{2}$	IMUC
01470	ADSRAZ	B-5	gyro pulses/cm per sec^{2}	IMUC

(Because one gyro pulse is equivalent to 2^{-21} revolutions, the above six quantities could also be assumed to be scaled $\mathrm{B}-26$ in units of revolutions.)

$\begin{aligned} & 02020 \\ & 02021 \end{aligned}$	AGSK		B28	centiseconds	EXVB
03404	$\mathrm{AOTA}^{\text {A }} 1$	(AOT AZ)	B-1	revolutions (2's comp)	ALIN
03405	AOTAZ_{2}	($A O T A Z+1)$	B-1	revolutions (2 's comp)	ALIN
03406	AOTAZ3	(AOT AZ+2)	B-1	revolutions (2's comp)	ALIN
03407	$\mathrm{AOT}^{\text {AZ }}$	(AOTAZ+3)	B-1	revolutions (2's comp)	ALIN

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02550 \\ & 02551 \end{aligned}$	J1PARM	* B23	meters	ASCT
$\begin{aligned} & 02552 \\ & 02553 \end{aligned}$	KıPARM	* B23	meters/revolution	ASCT
$\begin{aligned} & 02554 \\ & 02555 \end{aligned}$	J2PARM	* B23	meters	ASCT
$\begin{aligned} & 02556 \\ & 02557 \end{aligned}$	K2PARM	* B23	meters/revolution	ASCT
	* See note on page	ASCT-14.		
$\begin{aligned} & 02542 \\ & 02543 \end{aligned}$	LAGdTAU (LAG/TAU)	B0	unitless	DESC
03426	LEADTIME	B17	centiseconds	DESC
\| 01326	LEMMASS	B16	kilograms	DAPB
$\begin{aligned} & 02012 \\ & \text { thru } \\ & 02017 \end{aligned}$	LM504 (504LM)	BO	radians	COOR
* 03010	LMKAOSN	B14	unitless	DAPA *
* 03007	LMOMEGAN	B14	unitless	DAPA *
* 03006	LMTRAP	B-3	revolutions/second	DAPA *
02506	LOWCRIT	B14	DPS throttle pulses	DESC
02522	LRALPHA ${ }_{1}$ (LRALPHA)	B-1	revolutions (2 's comp)	SERV
02524	LRALPHA ${ }_{2}$ (LRALPHA2)	B-1	revolutions (2 's comp)	SERV
02523	LRBETA_{1} (LRBETAI)	B-1	revolutions (2's comp)	SERV
02525	LRBETA $_{2}$ (LRBETA2)	B-1	revolutions (2 's comp)	SERV
03420	LRHMAX	B14	meters	SERV

ECADR	Tag (alternate tag)	Scale	Units	Section
02527	LRVF	$\mathrm{B}^{\prime} 7$	meters/centisecond	SERV
02526	LRVMAX	B7	meters/centisecond	SERV
03421	LRWH	B0	unitless	SERV
02530	LRWVO (LRWVZ)	B0	unitless	SERV
02531	LRWV_{1} (LRWVY)	B0	unitless	SERV
02532	LRWN_{2} (LRWVX)	B0	unitless	SERV
02533	LRWVF ${ }_{0}$ (LRWVFFZ)	BO	unitless	SERV
02534	LRWNF_{1} (LRWVEFY)	B0	unitless	SERV
02535	LRWVF_{2} (LRWVFX)	B0	unitless	SERV
02536	L.WWVFF	B0	unitless	SERV
$\begin{aligned} & 01243 \\ & 01244 \end{aligned}$	MASS	B16	kilograms	$\begin{aligned} & \text { SझRV } \\ & \text { DAPB } \end{aligned}$
$\begin{aligned} & 02546 \\ & 02547 \end{aligned}$	MAXFORCE	B12	kg meters/centisecond ${ }^{2}$	DESC
$\begin{aligned} & 02544 \\ & 02545 \end{aligned}$	MINFORCE	B12	kg meters/centisecond ${ }^{2}$	DESC
01460	NBDX	B-5	gyro pulses/centisecond	IMUC
01461	NBDY	B-5	gyro pulses/centisecond	IMUC
01462	NBDZ	B-5	gyro pulses/centisecond	IMUC
	(B-5 gyro pulses/cs	uivalent	to B-26 revolutions/cs)	
01452	PIPABIAS $_{\mathbf{x}}$ (PBIASX)	B-3	PIPA counts/centisecond	IMUC
01453	$\mathrm{PIPASCF}_{\mathbf{x}}$ (PIPASCFX)	B-9	unitless	IMUC
01454	PIPABIASy (PBIASY)	B-3	PIPA counts/centisecond	IMUC
01455	PIPASCFy (PIPASCFY)	B-9	unitless	IMUC
01456	PIPABIASz (PBIASZ)	B-3	PIPA counts/centisecond	IMUC

ECADR	Tag (alternate tag)	Scale	Units	Section
01457	PIPASCF $_{\mathbf{z}}$ (PIPASCFZ) $^{\text {(}}$	B-9	unitless	IMUC
03002	PITTIME	Bl_{4}	centiseconds	DAPB
$\begin{aligned} & 03402 \\ & 03403 \end{aligned}$	PTIGINC	B28	centiseconds	TRGL
$\begin{aligned} & 01351 \\ & 01352 \end{aligned}$	RADSKAL	B21	LR low scale altitude bits/meter/cs	SERV
$\begin{aligned} & 02562 \\ & 02563 \end{aligned}$	RAMIN	B24	meters	ASCT
$\begin{aligned} & 01770 \\ & 01771 \end{aligned}$	RANGEVAR	B-12	unitless	RNAV
$\begin{aligned} & 01772 \\ & 01773 \end{aligned}$	RATEVAR	B-12	unitless	RNAV
02022 thru 02027	RLS	B27	meters	CONC
02004	RMAX	B19	meters	RNAV
02537	RODSCALF	B-7	meters/centisecond	DESC
03001	ROLLTTME	B14	centiseconds	DAPB
03430	RPCRTQSW	Bl	unitless	SERV
03427	RPCRIIME	B17	centiseconds	SERV
01774	RVARMIN	B12	meters ${ }^{2}$	RNAV
02010	SHAFTVAR	B-12	radians ${ }^{2}$	RNAV
01353	SKALSKAL	B0	unitless	SERV
02416 thru 02423	$\underline{T} A R G A D G O(A D G, A B R F G)$	B-4	meters/centisecond ${ }^{2}$	DESC
02452 thru 02457	TARGADG 28 (AAPFG)	B-4	meters/centisscond ${ }^{2}$	DESC

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02402 \\ & \text { thru } \\ & 02407 \end{aligned}$	\underline{T} ARGRDG $_{0}(\mathrm{RDG}, \mathrm{RBRFG})$	B24	meters	DESC
$\begin{aligned} & 02435 \\ & \text { thru } \\ & 02443 \end{aligned}$	$\underline{T}^{\text {ARGRDG }} 28$ (RAPFG)	B24	meters	DESC
$\begin{aligned} & 02410 \\ & \text { thru } \\ & 02415 \end{aligned}$	TARGVDGo (VDG, VBRFG)	Blo	neters/centisecond	DESC
$\begin{aligned} & 02444 \\ & \text { thru } \\ & 02451 \end{aligned}$	T ${ }^{\text {ARGVVGG28 }}$ (VAPFG)	Blo	meters/centisecond	DESC
$\begin{aligned} & 02540 \\ & 02541 \end{aligned}$	TAUROD	B9	centiseconds	DESC
$\begin{aligned} & 02516 \\ & 02517 \end{aligned}$	TAUVERT	B14	centiseconds	DESC
02434	TCGF\% (TCGFBRAK)	B17	centiseconds	DESC
02470	TCGF 28 (TCGFAPPR)	B17	centiseconds	DESC
02435	TCGIO (TCGIBRAK)	B17	centiseconds	DESC
02471	TCGI 28 (TCGIAPPR)	B17	centiseconds	DESC
03423	. TEND $^{\text {(}}$ (EENDBRAK)	B17	centiseconds	DESC
03424	TEND ${ }_{1}$ (TENDAPPR)	B17	centiseconds	DESC
$\begin{aligned} & 01706 \\ & 01707 \\ & 01710 \end{aligned}$	TEPHEM	B42	centiseconds	COOR
$\begin{aligned} & 01570 \\ & 01577 \end{aligned}$	TETCSM	B28	centiseconds	ORBI
$\begin{aligned} & 01642 \\ & 01643 \end{aligned}$	TETLEM	B28	centiseconds	ORBI
$\begin{aligned} & 02560 \\ & 02561 \end{aligned}$	THETCRIT	BO	revolutions	ASCT

ECADR	Tag (alternate tag)	Scale	Units	Sectio
$\begin{aligned} & 02400 \\ & 02401 \end{aligned}$	TLAND	B28	centiseconds	DESC
$\begin{aligned} & 03431 \\ & 03432 \end{aligned}$	TNEWA	B28	centiseconds	BURN
02011	TRUNVAR	B-12	radians ${ }^{2}$	RNAV
$\begin{aligned} & 02426 \\ & 02427 \end{aligned}$		B-4	meters/centisecond ${ }^{2}$	DESC
$\begin{aligned} & 02462 \\ & 02463 \end{aligned}$	$\begin{array}{rl} T^{T H F A D G Z} & 28 \\ & \left(\text { AAPFG }^{*}\right. \text { and } \\ \text { ADGTTF }+28) \end{array}$	B-4	meters/centisecond ${ }^{2}$	DESC
$\begin{aligned} & 02430 \\ & 02431 \end{aligned}$	$\mathrm{TTFJDGZ}_{0} \underset{ }{\mathrm{JDG} 2 \mathrm{JTF} F+0)}$	B-21	meters/centisecond ${ }^{3}$	DISC
$\begin{aligned} & 02464 \\ & 02465 \end{aligned}$	TTFJDGZ ${ }_{2 \delta}$ (JAPFG* and (JDG2TTF+28)	B-21	meters/centisecond ${ }^{3}$	DESC
$\begin{aligned} & 02424 \\ & 02425 \end{aligned}$	TTFVDGZ Z_{0} (VBRFG* and VDGZTTF+0	B13	meters/centisecond	DESC
$\begin{aligned} & 02460 \\ & 02461 \end{aligned}$	$\begin{aligned} & \text { TTFVDGZ }_{28} \text { (VAPFG* and } \\ & \text { VDG2TTF }+28\end{aligned}$	B13	meters/centisecond	DESC
$\begin{aligned} & 01713 \\ & 01714 \end{aligned}$	$\mathrm{UNITW}_{\mathrm{X}}$ (mAYO)	B0	unitless	COOR
$\begin{aligned} & 01715 \\ & 01716 \end{aligned}$	UNITW $^{\text {(}}$ (AXO)	BO	unitless	COOR
02510 thru 02515	V2FG	B10	meters/centisecond	DESC
02005	VMAX	B7	meters/centisecond	RNAV
01775	VVARMIN	B-12	meters $^{2} /$ centisecond 2	RNAV
02000	WRENDPOS	B14	meters	RNAV
02001	WRENDVEL	B0	meters/centisecond	RNAV
02002	WSHAFT	B-5	radians	RNAV
02006	WSURFPOS	B14	meters	RNAV

ECADR	Tag (alternate tag)	Scale	Units	Section
02007	WSURFVEL	B0	meters/centisecond	RNAV
02003	WTRUN	B-5	radians	RNAV
$\begin{aligned} & 01700 \\ & \text { thru } \\ & 01705 \end{aligned}$	X789 (*Scaling	B5 for	radians rth and B3 for moon)	RNAV
$\begin{aligned} & 02564 \\ & 02565 \end{aligned}$	YLIM	B24	meters	ASCT
03422	ZOOMT IME	B1. 4	centiseconds	BURN
* These quantities are also loaded by the fresh start routine entered * from verb 36.				
In addition to the quantities listed on the previous pages, the indicated bits of the following flagwords must be padloaded as they are not initialized by the fresh start ("SLAPI") routine.				
	FLLAGWRD3		(REFSMFLG)	
	FLAGWRD8		$\begin{aligned} & \text { (SURFFLAG) } \\ & \text { (LMOONFLG) } \\ & \text { (CMOONFLG) } \end{aligned}$	
	FLGWRD10	bit	(APSFLAG)	

The following pad loaded variables are listed by ascending ECADR. The tag name is that given by this document.

ECADR	Tag	ECADR	Tag
01243-4	MASS	01700-5	$\underline{\mathrm{X}} 789$
01326	LEMMASS	01706-10	TEPHEM
01327	CSMMASS	$01711-2$	AZO
01347	E3J22R2M	01713-4	UNITW $_{\text {X }}$
01350	E32C31RM	01715-6	JNITW $^{\text {y }}$
01351-2	RADSKAL	01770-1	RANGEVAR
01353	SKALSKAL	01772-3	RATEVAR
01452	PIPABIAS $_{\mathbf{x}}$	0.1774	RVARMIN
01453	PIPASCF $_{\text {x }}$	01775	VVARMIN
01454	PIPABIAS $_{y}$	02000	WRENDPOS
01455	PIPASCF $_{y}$	02001	WRENDVEL
01456	PIPABIAS $_{\text {z }}$	02032	WSHAFT
01457	$\mathrm{PIPASOF}_{z}$	02003	WT RUN
01460	NBDX	02004	RMAX
01461	NBDY	02005	VMAX
01462	NBDZ	02006	WSURFPOS
01463	ADIAX	02007	WSURFVEL
01464	ADIAY	02010	SHAFTVAR
01465	ADIAZ	02011	TRUNVAR
01466	ADSRAX	02012-7	LM504
01467	ADSRAY	02020-1	AGSK
01470	ADSRAZ	02022-7	$\underline{\text { RLS }}$
01570-1	TETCSM	02400-1	TLAND
01642-3	TETLEM	02402-7	$\underline{T A R G R D G}_{0}$

ECADR	T8.g	ECADR	Tag
02410-5	T ARGVDG	02516-7	TAUVERT
02416-23	T ARGADG ${ }_{0}$	02520-1	DELQFIX
02424-5	TTFVDGZO	02522	$\mathrm{LRALPHA}_{1}$
02426-7	TTFADGZ ${ }_{0}$	02523	LRBきTA
02430-1	TTFJDGZ0	02524	$\mathrm{LRALPHA}_{2}$
02432-3	GATNO	02525	$L_{\text {LRETA }}$
02434	TCGFO	02525	LRVMAX
02435	TCGIO	02527	LRVF
02436-43	TARGRDG28	02530	LRWV_{0}
02444-51	TARGVDG 28	02531	LRWV_{1}
02452-7	TARGADG 28	02532	LRWV_{2}
02460-1	TTFVDGZ28	02533	LRWVFO
02462-3	TTF ADGZ28	02534	LRWVF_{1}
02464-5	TTFJDGZ 28	02535	LPWVF_{2}
02466-7	GAIN 28	02536	LRWVFF
02470	TCGF28	02537	RODSCALE
02471	TCGI 28	02540-1	T AUROD
02472-3	DESIGNV	02542-3	LAGdTAU
02474-5	DESIGNRX	02544-5	MINFORCE
02476-7	DESIGNRZ	02546-7	MAXFORCE
02500-1	DESKIGNX	02550-1	J1PARM
02502-3	DESKIGNY	02552-3	K1PARM
02504-5	DESKIGNV	02554-5	J2PARM
02506	LOWCRIT	02556-7	K2PARM
02507	HIGHCRIT	02560-1	THETCRIT
02510-5	V2FG	02562-3	RAMIN

ECADR	Tag	ECADR	Tag
02564-5	YLTM	031/22	ZOOMT IME
02566-7	ABTRDOT	03423	TEND 0
02570-1	COSTHET1	03424	TEND_{1}
02572-3	COSTHET2	03425	DELTTFAP
02634-41	DLAND	03426	LEADTIME
03000	HIASCENT	03427	RPCRTIME
03001	ROLLTIME	03430	RPCRTQSW
03002	PITTIME	03431-2	TNEWA
03003	DKTRAP		
03004	DKOMEGAN		
03005	DKKAOSN		
03006	LMTRAP		
03007	LMOIIEGAN		
03010	LMKAOSN		
03011	DKDB		
03012	IGNAOSQ		
03013	IGNAOSR		
03113-20	DOWNTORK ${ }_{\text {O-5 }}$		
03400-1	ATIGINC		
03402-3	PTIGINC		
03404-11	AOTAZ_{1-6}		
03412-7	AOTEL $1-6$		
03420	LRHMAX		
03421	LRWH		

Channels l-4, 7, 10, 34, and 35 are discussed in the list of Major Variables

Channel 5

Bits 15-9 have no significance; bits 8-1 are set to command RCS jet firings and reset to terminate the firing.

Bit	Code	Jet Number	Systern	Rotation Effect	Translation Effect
8	1D	14	B	+U	+X
7	1U	13	A	-U	-X
6	2D	10	A	+V	+X
5	2 U	9	B	-V	-X
4	3D	6	B	-U	+X
3	3U	5	A	+U	-X
2	4 D	2	A	-V	+X
1	4 U	1	B	+V	-X
Channel 6					

Bits 15-9 have no significance; bits 8-1 are set to command RCS jet firings and reset to terminate the firing.

Bit	Code	Jet Number	System	Rotation Effect	Translation Effect
8	$1 S$	16	B	-P	+Y
7	4 S	4	A	+P	-Y
6	3 S	8	A	-P	-Y
5	2 S	12	B	+P	+Y
4					
3	2 F	11	A	-P	+Z
2	1 F	15	A	+P	-2
1	4 F	3	B	-P	-2
	3 F	7	B	+P	$+Z$

Channel 11
Bits $15,12,11$, and 8 are spare.

Bits 14 (engine off) and 13 (engine on) are assigned to the main engine on/off function. The normal engine-off command configuration is IO_{2}; the normal engine-on command configuration is Ol_{2}. The following information concerns the performance of the LM when either of the two other possible binary states (OO_{2} or ll_{2}) occurs (as in a hardware restart - "GOPROG").
"All Block 2 computers have the engine-on and engine off discretes in bits 13 and 14 respectively of channel ll. If the LEM Descent engine sees a 1,1 condition (both output transistors conducting) or a 0,0 condition (both output transistors non-conducting), it will ignore the signal and remain in the state it was previously in. This allows the computer to zero all the output bits during a restart and not shut the engine off. There is no time limit as to how long an improper state (1,1) or (0,0) can last with the descent engine.
"The LEM ascent engine will be turned on by an erroneous l, l condition which lasts longer than 1 millisecond. Therefore the LGC must be programed to set the bits to the proper state within 0.5 millisecond following recovery from a restart."

It is assumed that the ascent engine will remain off if staging occurs with the bits in the configuration OO_{2}.

A fresh start sets bit 14 to 1 and leaves the remaining bits alone.
Meaning when set and reset (channel 11 is an output or command channel)

101 - Caution Reset signal: resets the flip-flop holding the Restart lamp in the energized state.
0 - Allow the Restart lamp to light
9 l - Test connector discrete used in bench tests 0 -

7 I - Light the "Operator Error" lamp (automatic flash) 0 - Extinguish the "Operator Error" lamp

61 - Start flash of verb and noun registers on the DSKY 0 - Stop the verb-noun flash

5 1-Light the "Key Release" lamp (automatic flash) to request key release
0 - Extinguish the "Key Release" lamp

```
    4 - Light the "Temperature Caution" lamp
    O - Extinguish the "Temperature Caution" lamp
    3 1 - Light the "Uplink Activity" lamp
    0 - Extinguish the "Uplink Activity" lamp
    2 1 - Light the "Computer Activity" lamp
    O - Extinguish the "Computer Activity" lamp
l l - Light the "ISS Warning" lamp
    O - Extinguish the "ISS Warning" lamp
```


Channel 12

Bit and initial value (fresh start)
Meaning (channel 12 is an output or command channel)
150 Bit energizes a latching relay that signals that the ISS turn-on delay is complete, removing the signal from bit 14 of channel 30 and switching the ISS into the normal operate mode. Reset after remaining set for about ten and one half seconds.

1401 - Enable RR lock-on and automatic tracking. 0 - Disable Rendezvous Radar lock-on and automatic tracking.

130 Command provided via a DSKY relay to change landing radar from position \#1 to position \#2. (Returned to position \#1 by a spacecraft switch.)

120 Bit set to cause rotation of the DPS bell around the +Z LM axis to produce a negative angular jerk around the +Z axis (-R).

110 Bit set to cause rotation of the DPS bell around the -Z LM axis to produce a positive angular jerk around the $+Z$ axis $(+R)$.

100 Bit set to cause rotation of the DPS bell around the +Y LM axis to produce a negative angular jerk around the +Y axis (-Q).

90 Bit set to cause rotation of the DPS bell around the -Y LM axis to produce a positive angular jerk around the $+Y$ axis ($+Q$).

8 O Bit set to display inertial data.

70 spare
601 - Enable ICDU Error Counters - for gyro torquing, coarse align, or display on the FDAI. 0 - Disable ICDU Error Counters (3).

501 - Zero the ICDU Read Counters; force the ICDU gimbal angle follower counters to zero. 0 - Allow the ICDU Read Counters to follow the IMU gimbal angles, incrementing the GDU counters in the LGC as they do.

401 - Enable coarse align of the IMU; connect the ICDU Read Counters with the ICDU Error Counters so that the latter may be decremented as the IMU is coarse aligned. 0 - Disable coarse align of the IMU.

30 Bit not set in LUMINARY program.
201 - Enable Rendezvous Radar CDU Error Counters.
0 - Disable RRCDU Error Counters (2).
$10 \quad 1$ - Zero the RRCDU Read Counters. (Like bit 5) 0 - Allow the RRCDU Read Counters to follow the RR position angles.

Channel 13

Bit and initial value (fresh start)
Meaning (channel 13 is an output or command channel)
150 Bit set to 1 to permit cell 000318 (TIME6) to be decremented by 1 each 0.000625 second. When cell has been reduced to -0 , the next decrement resets bit to 0 and causes program interrupt \#1.

140 Bit set to 1 to permit the RCS jet fail switches or the DPS gimbal fail switch to cause interrupt \#10; always 0 in LUMINARY.

130 Bit set to l to permit signals from the translational hand controller to cause interrupt \#10; always 0 in LUMINARY.

120 Bit set to 1 to permit signals from the rotational hand controller to cause interrupt \#10.

11 O Bit set to 1 to cause the PRO key on the DSKY to be interpreted as a "standby" key and put the LGC into standby mode.

Channel 13 (Continued)

100 Bit set to l to test the DSKY lights and relays not otherwise accessible to the software: energizes the Restart, Standby and Computer Warning lamps (the latter through a "warning filter").

901 - Initiate readout of analog-to-digital converters associated with the displacement of the rotational hand controller into cells RHCP, RHCQ, and RHCR (428-448).
0 - Stop readout of RHC analog-to-digital converters
801 - Enable input to RHCP, RHCQ, and RHCR from rotational hand controller analog-to-digital converter
0 - Disable input to RHCP, RHCQ, and RHCR
70 Bit used as the "word order code" bit (first bit in the 40-bit downlink sequence sent from the LGC containing digital data) for telemetry.

60 Bits used to block all inputs to INLINK; not set in LUMINARY.
50 Not used in LUMINARY.
40 Bit set to 1 to initiate transmission of radar information to the LGC. Bit is reset to 0 when program interrupt \#9 is generated, 5 milliseconds after the end of the pulse train from the radar to cell 468 (RNRAD).

3-1 Bits set to determine the routing of radar information into RNRAD when bit 4 is set. Information into RNRAD is: RR range information if bits $3-1$ are $\mathrm{OOl}_{2} ; \mathrm{RR}$ range rate if OlO_{2}; LR X-velocity if 100_{2}; LR Y-velocity if lOl_{2}; LR Z-velocity if 1102; and LR altitude information if bits 3-1 are 1112.

Channel 14

Bit and initial value (fresh start)
Meaning (channel 14 is an output or command channel)
150 Bit set to 1 to cause output pulses (at a 3200 pps rate) to be generated from CDUXCMD, cell 000508. When cell is counted down to zero, the bit is reset, stopping the pulses. The ICDU Error Counter is loaded by these pulses if bit 6 of channel 12 is 1 .

Channel 14 (Continued)

140 Bit set to 1 to cause output pulses to be generated from CDUYCMD, cell 000518. Like bit 15.

130 Bit set to 1 to cause outpiut pulses to be generated from CDUZCMD, cell 000528. Like bit 15.

120 Bit set to 1 to cause output pulses (at a 3200 pps rate) to be generated from CDUTCMD, cell 000538. When cell is counted down to 0 , the bit is reset, stopping the pulses. The RRCDU Error Counter is loaded by these pulses if but 2 of channel 12 is 1.

110 Bit set to 1 to cause output pulses to be generated from CDUSCMD, cell 000548. Like bit 12.

100 Bit set to 1 to specify "gyro activity": it causes the pulse train whose magnitude is in cell 000478, GYROCMD, to be sent with polarity and destination specified by bits 9-7 of this channel, if bit 6 of this channel is l. Bit reset after the pulses are sent.

901 - Gyro torquing pulses from GYROCMD specify a negative torque.
0 - Gyro torquing pulses from GYROCMD specify a positive torque. (Other pulse-type outputs from the computer have the polarity indicated by the polarity of the information in the counter cell itself.)

8-7 Bits used to specify the axis for gyro compensation information from GYROCMD. Conventional output sequence is inner (Y), middle (Z), and outer (X). The settings of bits 8 and 7 are: 0_{2} for no output; 01_{2} for X-axis gyro; 10_{2} for Y axis gyro; ll2 for Z-axis gyro.

60 Bit set to 1 to enable the power supply that produces the torquing pulses used to torque the gyros. Generally remains set after the first gyro torquing operation.

50 Not used in LUMINARY.
40 Bit set to 1 to cause output pulses to be generated from cell 000558 (THRUST) for use in controlling the position of the descent engine throttle.

Channel 14 (Continued)

30 Bit set to 1 to initiate shifting of data from cell 000608 (ALTM) to spacecraft indicator for altitude or altitude rate information. (See bit 2 of this word.) Bit reset to 0 just after start of data shift.

20 Bit set to 1 to indicate that altitude rate information is being shifted from cell 000608 ; if bit is 0 altitude information is being shifted from cell 00060g.

10 Not used in LUMINARY.

Bits $15-6$ have no function.
Bits 5-1 contain the five-bit binary keycode generated by the depression of one of the keys on the DSKY (Display and Keyboard Assembly). The depression of any key causes program interrupt \#5 which reads the keycode immediately, while the key is depressed. The release of the key resets channel 15 and resets an interrupt trap (\#15) to re-enable the interrupt.

Channel 16

Bits $15-8,2$ and 1 have no function.
Bit 7 is set to 1 if an increase in the rate of descent is desired by the crew (i.e. a lower thrust). Generated by moving a rate-ofdescent switch in the -X direction (towards the engine).

Bit 6 is set to 1 if a decrease in the rate of descent is desired by the crew (i.e. a higher thrust). Generated by moving a rate-of-descent switch in the +X direction.

Bits 5-3 are set by depression of the mark reject, and X and Y mark buttons. The depression of any of these buttons causes program interrupt \#6 which reads the information on channel 16 immediately while the button is depressed. The release of the button resets channel 16 and resets interrupt trap \#16A to re-enable interrupt \#6. Bits 5-3 are processed by the "MARKRUPT" routine.

A special capability is programmed into the restart routine to enable the astronaut to extricate the LGC from a multiple-restart loop. The restart program exits to the fresh start program if it senses that the mark reject button and the error reset key (channel 15 code 228) are depressed simultaneously.

Channel 30

Bit Meaning (channel 30 is an input or information channel)
$15 \quad 1$ - Stable Member temperature outside design limits.
0 - Stable Member temperature within design limits.
(Connected directly to lamp controlled by bit 4 of channel 11)
141 - IMU power-on switch off; or, IMU power-on switch on and IMU in normal operate mode ("turn-on delay complete" discrete sent from the LGC (bit 15 of channel 12).

Channel 30 (Continued)

Bit Meaning (Channel 30 is an input or information channel)
140 - IMU power-on switch on and IMU caged, waiting for "turn-on delay complete" discrete from the LGC. (The discrete from the LGC sets a relay which switches the IMU to normal operate mode.)

131 - IMU good.
0 - IMU fail due to excessive servo errors or degradation of 3200 pps or 800 pps supply . (See IMUMON routine.)

121 - ICDU good.
O - ICDU fail (due to excessive errors or low voltage). (Sée IMUMON routine.)

11 I - IMU not caged by crew switch setting.
0 - IMU caged by setting of crew switch. (See IMUMON routine.)
10
l - SCS control of spacecraft. (Panel switch)
0 - PGNCS control of spacecraft.
1 - IMU power-on switch switched to off (panel 100).
0 - IMU power-on switch switched to on.

1 - Engine not armed. (nnt examined in Luminary)
0 - Engine armed.
21 - Ascent configuration. (not examined in Luminary)
0 - Ascent and descent configuration.

Channel 30 (Continued)

Bit

1 - -Y translation not commanded via the THC. $0--Y$ translation commanded via the THC.
$9 \quad 1-+Y$ translation not commanded via the THC. $0-+Y$ translation commanded via the THC:

1 - -X translation not commanded via the THC. 0 - -X translation commanded via the THC.
$1-+X$ translation not commanded via the THC. $0-+X$ translation commanded via the THC.

Channel 31 (Continued)

Bits 6-1 carry discrete information about the displacement of the Rotational Hand Controller (RHC - also denoted by ACA). The bits are normally l and are set to 0 by the RHC to indicate the following directions of desired rotation:

Bit	6	5	4	3	2	1
Desired Rotation	$-R$	$+R$	$-P$	$+P$	$-Q$	$+Q$

Channel 32

Bits 15, 13, 12, and 11 of channel 32 are spares.
Bit 14 is activated by the "Proceed" key on the DSKY (formerly the "Standby" key and still functional as such when program 6 has enabled standby). It is normally set (l) and is reset to 0 only while the proceed key is depressed. It is examined every 120 milliseconds by the "T4RUPT" program and functions like a verb 33 except when program 6 has enabled standby.

Bit 10. Bit state of 0 indicates that the desired engine gimbal failure monitor detects an apparent gimbal fail in the pitch or roll gimbal trim system. Not used by the LUMINARY program.

Bit 9 is sensed as 0 if action is taken by the crew to turn off the descent engine gimbal system. This prevents bits 12-9 of channel 12 from having any effect on the flight and causes the software to avoid using the gimbal.

Bits 8-1 are normally set (1). They are reset by astronaut panel switches that disable RCS jets (indicate that they are not functional). Each switch disables two jets, one with thrust around the P axis and one with thrust around the Q or R axis. The bits disable the following jets (see "RCSMONIT" routine):

Bit	Jet Numbers	Action (rotation)	Quad	System	Code
8	10	$+V$	2	A	$2 D$
	11	$-P$	2	A	$2 F$
7	9	$-V$	2	B	2 U
	12	$+P$	2	B	$2 S$
6	13	$-U$	1	A	$1 U$
	15	$+P$	1	A	$1 F$

Channel 32 (Continued)

Bit	Jet Numbers	Action (rotation)	Quad	System	Code
5	14	+U	1	B	1 D
	16	-P	1	B	1 S
4	6	-U	3	B	3 D
	7	+P	3	B	3 F
3	1	+V	4	B	4 U
	3	-P	4	B	4 F
2	5	+U	3	A	3 U
	8	-P	3	A	3 S
		-V	4	A	4 D
1	2	+P	4	A	4 S

Channel 33
Bit Meaning (channel 33 is an input or information channel)
$15 \quad 1$ - Computer oscillator operating; reset to 1 by channel load instruction.
0 - Computer oscillator failure; flip-flop that can be set by a power transient momentarily interrupting the oscillator. Not sensed by the LUMLNARY program.

14 Flip-flop sensed as 0 if a "computer warning" indication has been produced (e.g. multiple restarts, counter fail, voltage fail in standby, or alarm test by bit 10 of channel 13). Reset to l by channel load instruction. Not sensed by LUMINARY program.

13 Flip-flop input sensed as 0 if a PIPA fail indication generated by the PIPA (accelerometer) electronics. Reset to l by channel load instruction.

12 Flip-flop input sensed as 0 if a telemetry end pulse occurs too soon after the previous pulse (faster than 100 pps). Reset to l by channel load instruction.

11 Flip-flop input sensed as 0 if an input bit to cell 000458 (INLINK) is rejected due to an excessive bit rate (faster than 6400 pps). Reset to 1 by channel load instruction.

10 Not examined by the LUMINARY program.
$9 \quad 1$ - Landing radar high scale.
0 - Landing radar low scale.

Bit Meaning (channel 33 is an input or information channel)
8 l - At least one of the three LR velocity trackers not locked on. 0 - Landing radar velocity data good.
$7 \quad 1$ - Landing radar not in position 2. 0 - Landing radar in position 2.
$6 \quad 1$ - Landing radar not in position 1. 0 - Landing radar in position 1.

5 I - IR range tracker or rear velocity-beam tracker (2) not locked on. 0 - Landing radar range (altitude) data good.
$4 \quad 1$ - RR range tracker and frequency tracker not both locked on. $0-\mathrm{RR}$ range and range rate data good.

31 - Rendezvous radar range high scale. 0 - Rendezvous radar range low scale.

21 - RR power off or RR mode switch not in the "LGC" position. $0-R R$ on and under LGC control; can be positioned via cells 538-548.

1 spare

FLAGWRDO

Bit and initial value (fresh start)

15 (0) NEED2FLG 1 - Error needles driven with LGC DAP computed boay rates
0 - Error needles driven with attitude errors
14 (0) JSWITCH 1 - Integration of W-matrix
0 - Integration of state vector
13 (0) MIDFLAG 1 - Integration with secondary body and solar perturbations (should remain zero in LUMINARY) 0 - Integration without solar perturbations

12 (0) MOONFLAG 1 - In the sphere of influence of the moon
0 - In the sphere of influence of the earth
11 (0) P21FLAG 1 - Use base vectors already calculated 0 - lst pass -- calculate base vectors

10 (0) FSPASFLG 1 - First pass through reposition routine
0 - Not first pass through reposition routine
9 (0) P25FLAG 1 - P25 in operation (preferred tracking attitude) 0 - P25 not in operation

8 (0) IMUSE 1 - IMU in use (being switched, torqued or aligned)
0 - IMU not in use
7 (0) RNDVZFLG 1 - P2́O or P22 has been enabled
0 - P20 or P22 has not been enabled
6 (0) RRNBSW 1 - RRTARGET in navigation base coordinates 0 - RRTARGET in stable member coordinates

5 (0) LOKONSW I - Radar lock-on desired
0 - Radar lock-on not desired
4 (0) NEEDLFLG I - Display total attitude error 0 - DAP following error displayed

3 (0) FREEFLAG A temporary flag used for utility purposes in many routines by P5l-P53; by lunar and solar ephemerides.

2 (0) RlOFLAG 1 - RlO outputs data to altitude and altitude rate meters only
0 - Output of 1 condition plus forward and lateral velocity on cross pointers

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0
1 (0) OLDESFLG 1 - R29 (powered flight RR designate routine) gyro command loop requested
0 - R29 (powered flight RR designate routine) gyro command loop not requested

FLAGWRD1

Bit and initial value (fresh start)

		Mnemonic	Meaning when 1 and 0
15	(0)	NJETSFLG	1-Two jet RCS burn 0 - Four jet RCS burn
14	(0)	DIDFLAG	l - Inertial data is available 0 - Perform data display initialization functions
13	(0)	ERADFLAG	1-Compute earth radius for Fischer ellipsoid; use stored moon radius (never set in LUMINARY) 0 - Compute moon radius; use stored earth radius (pad radius) (in latitude-longitude routines)
12	(0)	RODFLAG	1- If in P66, normal operation continues. Restart clears flag 0 - If in P66, reinitialization is performed and flag is set
11	(0)	Spare	
10	(0)	R61FTAG	1-R61 (preferred tracking attitude routine) LEM to be operated 0 - R65 (fine preferred tracking attitude routine) Lem to be operated
9	(0)	spare	
8	(0)	VEHUPFLG	1 -. Update CSM state vector 0 - Update. LM state vector
7	(0)	UPDATFIG	1 - State vector updates from tracking allowed 0 - Updates from tracking not allowed
6	(0)	NOUPFLAG	1 - Neither CSM nor IEM state vector may be updated 0 - Either CSM or LEM state vector may be updated
5	(0)	TRACKFLG	$\begin{aligned} & 1 \text { - Tracking allowed } \\ & 0 \text { - Tracking not allowed } \end{aligned}$
4	(0)	spare	
3	(0)	SLOPESW	l - Iteration with bias method 0 - Iteration with regular falsi method
2	(0)	GUESSSW	1 - No starting value for iteration 0 - Starting value for iteration exists

FLAGWRD1 (Continued)
Bit and initial value (fresh start)
Mnemonic Meaning when 1 and
1 (0) Spare

FLAGWRD2

Bit and initial value (fresh start)

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0

3 (0) CALCMAN3 1 - No final roll 0 - Final roll is necessary

2 (0) CALCMAN2 1 - Perform maneuver starting procedure 0 - Bypass starting procedure

1 (0) NODOFLAG 1 - V37 not permitted (do not allow a major mode change) 0 - V37 permitted (major mode change enabled)

FLAGWRD3

Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
15 (0) POOHFLAG 1 - POO integration 10 minute checks are running0 - POO integration 10 minute checks disabled
14 (0) GLOKFAIL 1 - Calculated middle gimbal angle exceeds 60°0 - Checked and reset in IMU performance testsonly
13 REFSMFLG 1 - Reference to stable member matrix valid(protected from fresh start)0 - Transformation matrix not valid
12 (0) LUNAFLAG 1 - Lunar latitude-longitude conversion0 - Earth latitude-longitude conversion
11 (1) NOR29FLG 1 - R29 not allowed0 - R29 allowed (rendezvous radar designate,powered flight)
10 (0) VFLAG 1 - No star pair found during R56.
0 - Star pair found during R56
9 (0) RO4FLAG 1 - Alarm 521 suppressed0 - Alarm 521 allowed
9 (0) READRFLG 1 - Reading rendezvous radar data pursuant to R290 - Not reading rendezvous radar data pursuant to R29
8 (0) PRECIFLG 1 - Normal integration in POO0 - Engages 4-time step (POO) logic in integration
7 (0) CULTFLAG 1 - Star occulted
0 - Star not occulted
6 (0) ORBWFLAG l - W matrix valid for orbital navigation (neverset in LUMINARY)0 - W matrix invalid for orbital navigation5 (0) STATEFLG 1 - Result of integration stored in permanent state0 - Result of integration not to be stored in per-manent state
4 (0) INTYPFLG 1 - Conic integration0 - Encke integration (precision)

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0
3 (0) VINTFLAG 1 - CSM state vector integration 0 - LM state vector integration
2 (0) D60R9FLG 1 - W matrix considered 9-dimensional for integration0 - W matrix considered 6-dimensional for integration1 (0) DIMOFLAG $\quad 1$ - W matrix is to be used0 - W matrix is not to be used

FLAGWRD4

Bit and initial value (fresh start)

		Mnemonic	Meaning when 1 and 0
15	(0)	MRKIDFLG	I - Mark display awaiting astronaut response 0 - Mark display not awaiting astronaut response
14	(0)	PRIODFLG	l - Priority display awaiting astronaut response 0 - Priority display not awaiting astronaut response
13	(0)	NRMIDFLG	l - Normal display awaiting astronaut response 0 - Normal display not awaiting astronaut response
12	(0)	PDSPFLAG	$\begin{aligned} & \text { l - Make normal display priority (set by P2O } \\ & \text { for R60 display) } \\ & 0 \text { - Do not make normal display priority } \end{aligned}$
11	(0)	MWAITFLG	l - Higher priority display operating when mark display initiated; it's asleep and waiting 0 - Mark display not asleep because it's waiting for higher priority display to be completed
10	(0)	NWAITFLG	l-Higher priority display operating when normal display initiated 0 - If normal display is asleep, it's not because another display was operating when it started
9	(0)	MRKNVFLG	l - Mark display awaiting key release 0 - Mark display not awaiting key release
8	(0)	NRMNVFLG	l - Normal display awaiting key release O - Normal display not awaiting key release
7	(0)	PRONVFLG	1 - Priority display awaiting key release 0 - Priority display not awaiting key release
6	(0)	PINBRFLG	1 - Astronaut has interferred with existing display 0 - Astronaut has not interferred with display
5	(0)	MRUPTFLG	1 - Mark display interrupted by priority display 0 - Mark display not interrupted by priority display
4	(0)	NRUPTFLG	1 - Normal display interrupted 0 - Normal display not interrupted

Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
3 (0) MKOVFLAG 1 - Mark display interrupting normal0 - Priority display interrupting mark or normal
2 (0) spare
1 (0) XDSPFLAG 1 - Mark (extended verb) display not to be interrupted 0 - Mark display may be interrupted

FLAGWRD5

Bit and initial value (fresh start)

	Mnemonic	Meaning when 1 and 0
15 (0)	DSKYFLAG	1 - Displays sent to DSKY O - No displays to DSKY
14 (0)	spare	
13 (0)	SNUFFER	l - U, V jets disabled during DPS burns (V65) 0-U, V jets enabled during DPS burns (V75)
12 (0)	NOTHROTL	1 - Inhibit full throttle 0 - Permit full throttle
11 (0)	R77FLAG	1 - R77 is operating, suppress all radar alarms and tracker fails 0 - R77 is not operating
10 (0)	RNGSCFLG	1 - Scale change has occurred during $R R$ reading 0 - Scale was the same before the reading and after
9 (0)	DMENFLG	1 - Measurement incorporation using 9x9 W-matrix 0 - Measurement incorporation using 6×6 W-matrix
8 (0)	ZOOMFLAG	1 - P63 throttle-up has occurred 0 - P63 throttle-up has not occurred
7 (0)	ENGONFLG	1 - Engine turned on (commanded on) 0 - Engine turned off (APS or DPS)
6 (0)	3AXISFLG	1 - Maneuver specified by three axes 0 - Maneuver specified by one axis; R60 calls "VECPOINT"
$5(0)$	AORBSFLG	1 - Jets 7,15,8, and16 used for P-axis control 0 - Jets 4,12,3, and 11 used for P-axis control
4 (0)	NORRMON	l - Bypsss RR gimbal monitor O - Perform RR gimbal monitor
3 (0)	SOLNSW	1- Lambert does not converge; Time-radius routine cannot solve because of near-circular orbit 0 - Lambert or Time-radius problem soluble

Bit and initial value (fresh start)

	Mnemonic	Meaning when 1 and 0
2 (0)	MGLVFLAG	1 - Local vertical coordinates computed O - Middle gimbsl angle computed
1 (0)	RENDWFLG	1 - W-matrix valid for rendezvous navigation 0 - W-matrix not valid for rendezvous navigation

FLAGWRD6

Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
15 (0) S32.1FI 1 - DELVEETI exceeds the maximum allowable
0 - DELVEETI within maximum bound
14 (0) S32.1F2 1 - First pass of CSI iteration
0 - Reiteration
13 (0) S32.1F3A See TRGX section
12 (0) S32.1F3B See TRGX section.
11 (0) spare
10 (0) GMBDRVSW 1 - Initial positioning of DPS gimbals complete 0 - Initial positioning of DPS gimbals not somplete

9 (0) spare
8 (0) MUNFLAG 1 - Lunar landing Average-g navigation
0 - Earth orbital Average-g navigation
7 (0) spare
6 (0) REDFLAG 1 - Landing site redesignation permitted 0 - Landing site redesignation not permitted

5 (0) spare
4 (0) spare
3 (0) NTARGFLG 1 - Astronaut did overwrite delta (See "S34/35.5") 0 - Astronaut did not overwrite delta

2 (0) AUXFLAG 1 - Providing IDLEFLAG is not set, SERVICER will exercise DVMON on its next pass 0 - SERVICER will skip DVMON on its next pass, even if the IDIEFLAG is not set. It will then set AUXFLAG

Mnemonic Meaning when 1 and 0
1 (0) ATTFLAG 1 - LM attitude exists in moon-fixed coordinates 0 - No LM attitude available in moon-fixed coordinates

FLAAGWRD7

		Mnemonic	Meaning when 1 and 0
15	(0)	ITSWICH	l - Test Lambert answer against limits 0 - Accept next Lambert TPI search solution
14	(0)	MANUFLAG	1 - Attitude maneuver during $R R$ search (not set in 0 - No attitude maneuver during $R R$ search Luminary)
13	(0)	IGNFLAG	1 - Ignition time has arrived 0 - Ignition time has not yet arrived
12	(0)	ASTNFLAG	1 - Astronaut has okayed ignition 0 - Astronaut has not okayed ignition
17	(0)	SWANDISP	l - Landing analog displays enabled 0 - Landing analog displays suppressed
10	(0)	NORMSW	1 - Unit normal input to Lambert O - Lambert computes its own unit normal
9	(0)	RVSW	1-Do not compute final state vector in TimeTheta 0 - Compute final state vector in Time-Theta
8	(0)	V67FLAG	```l - Astronaut changing W-matrix initialization values O - Astronaut not changing values```
7	(1)	IDLEFLAG	I - Disable Delta-V monitor 0 - Enable Delta-V monitor
6	(0)	V37FLAG	1 - Servicer running 0 - Servicer not running
5	(0)	AVEGFLAG	1 - Average-G desired 0 - Average-G not desired
4	(0)	UPLOCKFL	l - K, K-bar, K fail 0 - No KKK fail since last error reset
3	(0)	VERIFLAG	Inverted whenever P27 is ended with a verb 33
2	(0)	V82EMFLG	1 - Moon vicinity 0 - Earth vicinity

FLAGWRD7 (Continued)

Bit and initial value (fresh start)

	Mnemonic
	Meaning when I and 0
	I - Calculate time to perigee
	0 - Calculate TFF

FLAGWRD8

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0
15 (0) RPQFLAG 1 - Position vector of secondary body not calculated
0 - Position vector of secondary body calculated
14 (0) spare
13 (0) NEWIFLG

12 CMOONFLG 1 - Permanent CSM state in lunar sphere of influence 0 - Permanent CSM state in earth's sphere (protected from fresh start)

11 LMOONFLG 1 - Permanent LM state in lunar shpere of influence 0 - Permanent LM state in earth's sphere (protected from fresh start)

10 (0) FLUNDISP 1 - Current guidance displays inhibited 0 - Current guidance displays permitted

9 (0) spare

8 SURFFLAG $\quad 1$ - LM on lunar surface
0 - LM not on lunar surface (protected from fresh start)

7 (0) INFINFLG 1 - Closure through infinity required in conic solution
0 - Closure through infinity not required
6 (0) ORDERSW 1 - Iterator uses second order minimum mode (not set in 0 - Iterator uses first order standard mode Luminary)
5 (0) APSESW 1 - Orbit does not intersect RDESIRED (Time-Radius) 0 - Orbit does intersect REDESIRED

4 (0) COGAFLAG
1 - No conic solution; close to rectilinear 0 - Orbit is not too close to rectilinear for solution

FLAGWRD8 (Continued)

FLAGWRD9

	Mnemonic	Meaning when 1 and 0
15 (0)	spare	
14 (0) FLVR		1 - Vertical rise (ascent guidance)
		0 - Non-vertical rise
13 (0) P7071FLG		1 - P70 or P71 using ascent guidance 0 - P12 using ascent guidance
12 (0)	FLPC	```l - No position control (ascent guidance) O - Position control```
11 (0)	FLPI	```l - Pre-ignition phase (ascent guidance) 0 - Regular guidance```
10 (0)	FLRCS	```I - RCS injection mode (ascent guidance) O - Main engine mode```
9 (0)	IETABORT	l - Abort programs are enabled 0 - Abort programs are not enabled
8 (0)	FLAP	I - APS continued abort after DPS staging (ascent guidance) 0 - APS abort is not a continuation
7 (0)	spare	
6 (0)	ROTFLAG	1 - P70 and P71 will force vehicle rotation in the preferred direction 0 - P70 and P71 will not force vehicle rotation in the preferred direction
5 (0)	QUITFLAG	1 - Discontinue orbital integration 0 - Continue integration
4 (0)	spare	
3 (0)	MIDIFLAG	1 - Integrate to TDEC 0 - Integrate to TIMENOW
2 (0)	MIDAVFLG	l - Integration entered from one of the drifting flight to powered flight handover routines 0 - Integration not entered as above
1 (0)	AVEMIDSW	l - AVETOMID calling for W-matrix integration; do not write over RN, VN, PIPTIME 0 - AVETOMID without W-matrix integration; allow set up of RN, VN, PIPTIME

	Mnemonic	Meaning when 1 and 0
15 (0)	spare	
14 (0)	INTFLAG	1 - Integration in progress 0 - Integration not in progress
13	APSFLAG	1 - Ascent stage (protected from 0 - Descent stage fresh start)
12 (0)	spare	
11 (0)	spare	
10 (0)	spare	
9 (0)	spare	
8 (0)	spare	
7 (0)	REINTFLG	1 - Integration routine to be restarted 0 - Integration routine not to be restarted
6 (0)	spare	
5 (0)	spare	
4 (0)	spare	
3 (0)	spare	
2 (0)	spare	
1 (0)	spare	

FLGWRD11

Bit and initial value (fresh start)

		Mnemonic	Meaning when 1 and 0
15	(1)	LRBYPASS	l - Bypass all landing radar updates 0 - Do not bypass
14	(0)	spare	
13	(0)	spare	
12	(0)	VXINH	1 - If Z velocity data unreasonable, bypass X velocity update on next pass 0 - Update X-axis velocity
11	(0)	PSTHIGAT	$\begin{aligned} & 1 \text { - Past higate } \\ & 0 \text { - Prehigate } \end{aligned}$
10	(0)	NOLRREAD	1 - Landing radar reposition; bypass update 0 - Landing radar not repositioning
9	(0)	XORFLG	1 - Below limit inhibit X-axis override 0 - Above limit do not inhibit
8	(0)	LRINH	l - Landing radar updates permitted by astronaut 0 - Landing radar updates inhibited by astronaut
7	(0)	veldata	1 - Landing radar velocity measurement made 0 - Landing radar velocity measurement not made
6	(0)	READIR	l-Ok to read landing radar range data 0 - Do not read landing radar range data
5	(0)	READVEL	1 - Ok to read landing radar velocity data 0 - Do not read landing radar velocity data
4	(0)	RNGEDATA	1 - Landing radar altitude measurement made 0 - Landing radar altitude measurement not made
3	(0)	SCALBAD	1 - Landing radar low scale discrete not present when it should be 0 - Landing radar scale discrete appears ok
2	(0)	VFLSHFLG	I - Landing radar velocity fail lamp should be flashing 0 - Landing radar velocity fail lamp should not be flashing

FLGWRD11 (Continued)

Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
1 (1) HFLSHFLG 1 - Landing radar altitude fail lamp should be flashing
0 - Landing radar altitude fail lamp should not be flashing

DAPBOJLS

Bit and initial value (fresh start)

		Mnemonic	Meaning when 1 and 0
15	(0)	PULSES	1 - Minimum impulse command mode 0 - Not minimum impulse
14	(1)	USEQRJTS	1 - Use of gimbal not allowed 0 - Gimbal may be used
13	(0)	CSMDOCKD	1 - CSM attached to LM 0 - CSM not attached
12	(0)	OURRSBIT	l - Still in rate command mode 0 - Not in rate command mode
11	(0)	ACC4OR2X	1-4-jet P-axis translation 0 - 2-jet P-axis translation
10	(1)	AORBTRAN	l - X translation B system O - X translation A system
9	(0)	XOVINHIB	1 - LPD phase; X-axis override disabled 0 - Not in Landing Point Designation Phase
8	(1)	DRIFTBIT	1 - Assume that offset acceleration is zero 0 - Offset acceleration likely
7	(1)	RHCSCALE	$\begin{aligned} & \text { 1-Normal RHC scaling } \\ & \text { O.- Fine RHC scaling } \end{aligned}$
6	(0)	ULLAGER	l - Internal ullage request 0 - No program ullage request
5	(1)	DBSL2FLG	
4 (0)		DBSELECT	
		N46 Digit "D" Load	DAP Deadband BIT 5 BIT 4
		0	$\pm 0.3^{\circ} 00$
		1	$\pm 1.0^{\circ}$ O $\quad 1$
		2	$\pm 5.0^{\circ} \quad 10$
		3	$\pm 5.0^{\circ} \quad 1$
3	(0)	ACCSOKAY	1 - Computed accelerations probably correct 0 - Computed accelerations probably incorrect
2	(1)	AJT Ratez	Used together to determine index (RATEINDX)
	(0)	AUTRATEI	which is used to select attitude maneuver rate

Mnemonic Meaning when 1 and 0

$00_{2} 0.2$ degrees/second
$01_{2} 0.5$ degrees/second
$10_{2}^{2} 2.0$ degrees/second
$11_{2}^{2} 10.0$ degrees/second

RADMODES

		Mnemonic	Meaning when 1 and 0
15	(0)	CDESFLAG	l - LGC sends continuous designate commands to RR 0 - LGC checks for lock-on when designating
14	(0)	REMODFLG	1 - Remode of RR antenna is required 0 - No remode of $R R$ antenna
13	(0)	RCDUOFLG	l - RR CDU's are being zeroed $0-R R$ CDU's are not being zeroed
12	(0)	ANTENFLG	l - RR antenna is in mode 2 $0-\mathrm{RR}$ antenna is in mode 1
11	(0)	REPOSMON	l - RR antenna reposition taking place 0 - No RR antenna reposition taking place
10	(0)	DESIGFLG	l - RR antenna dэsignation taking place 0 - No RR antenna designation taking place
9	(0)	ALTSCALE	l - LR altitude reading on high scale 0 - LR altitude reading on low scale
8	(0)	LRVELFLG	l - LR velocity data fail 0 - LR velocity data good
7	(1)	RCDUFAIL	l - RR CDU fail has not occurred 0. - RR CDU fail has occurred
6	*	LRPOSFLG	1 - LR antenna command to position \#2 0 - LR antenna in position \#l * - State of B6 CH33
5	(0)	LRALTFLG	1 - LR altitude data fail O - LR altitude data good
4	(0)	RRDATAFL	$\begin{aligned} & 1-R R \text { data fail } \\ & 0-R R \text { data good } \end{aligned}$
3	(0)	RRRSFLAG	1 - RR range data on high scale $0-R R$ range data on low scale
2	(1)	AUTOMODE	1 - RR not in automatic mode 0 - RR is in automatic mode
1	(0)	TURNONFL	l - RR turn-on sequence in progress 0 - No RR turn-on sequence in progress

List of References to Flagwords and Channels

The following is a listing of some of the rautines in which the majority of the discrete bits of information are set, reset, and tested. Input channels can only be tested (though some flip-flops are automatically reset when tested, they will be set again immediately if the relevant hardware signal is still present). Output channels are usually just set and reset, but they can also be tested to assure that they are configured as required. Flagwords are set, reset, and tested by the programs. References refer to this document, not to the listing.

This list tries to include all references to each bit, but since flagwords and channels can be addressed in many different ways in the LGC program, there is no way to assure that all references are included here. (In some cases references are deliberately left out because the bit does not affect the material presented in this document.)

Channel 5

Bit Routines
81 - WRITEU
0 - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

7 I - WRITEU
0 - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

6 I - WRITEV
O - DOFSTRTI WRITEV MOREIDLE test - TRYGTS

5 I - WRITEV
0 - DOFSTRTI WRITEV MOREIDLE test - TRYGTS

4 I - WRITEU
O - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

31 - WRITEU
O - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

```
Bit Routines
```

21 - WRITEV
O - DOFSTRT1 WRITEV MOREIDLE test - TRYGTS

```
1 - WRITEV
O - DOFSTRTI WRITEV MOREIDLE
test - TRYGTS
```

Channel 6
81 - WRITEP
O - WRITEP MOREIDLE DOFSTRT1
test
7 I - WRITEP
0 - DOFSTRT1 MOREIDLE WRITEP test

61 - WRITEP
0 - DOFSTRTI MOREIDLE WRITEP test

51 - WRITEP
0 - DOFSTRTI MOREIDLE WRITEP test

4 - WRITEP
0 - DOFSTRT1 MOREIDLE WRITEP test

31 - WRITEP
O - DOFSTRT1 MOREIDLE WRITEP test

21 - WRITEP
O - DOFSTRTI MOREIDLE WRITEP test

11 - WRITEP
O - DOFSTRT1 MOREIDLE WRITEP
test
Channel 11
141 - DOFSTART IMUMON ENGINOF3 GOPROG
O - IGNITION ABRTJASK

```
    Bit Routines
    13 1 - IGNITION GOPROG ABRTJASK
        O - IMUMON ENGINOF3
    10 1 - ERROR
        0 - STARTSB2
    9 1 - READACCS
    O - STARTSB2 AVGEND
    7 1 - V37 VBTSTLTS DSPALARM ALMCYCLE CHARALRM UPERROUT UPEND70
        P20LEMB7 ALM/END V73UPDAT UPEND73 AB0RTALM
        O - STARTSB2 ERROR TSTLTS3
    6 1 - FLASHSUB TESTNN VBTSTLTS REQDATZ REQMM
        O - NV50DSP STARTSB2 TSTLTS3 BLANKDSP ENTER GOLOADLV VBRESEQ
    5 - CHARIN NV5ODSP MONDO VBTSTLTS
        O - STARTSB2 WITCHONE RELDSP RELDSPI
    4 I - IMUMON VBTSTLTS
        O - IMUMON STARTSB2 TSTLTS3
    3 I - UPRUPT VBTSTLTS
    0 - STARTSB2 TSTLTS3 V73UPDAT UPOUT4 ERROR VBRELDSP
    2 1 - ADVAN
        O - STARTSB2 DUMMYJB2
    1 1 - SETISSW VBTSTLTS
        0 - SETISSW TSTLTS3
        test - ENDIMU
Channel 12
151 - ENDTNON
0 - STARTSB2 UNZ2 CAGESUB DOFSTRTI test - IMUMON
14 I - R23LEM LRS24.1 RO4X DODES R29DODES 0 - R21LEM TRMTRACK RRGIMON STDESIG RO4END R29DOFSTRTI
test - R22LEM
131 - LRPOS2 O - STARTSB2 LRPOSCAN DOFSTRTI test -
```


Bit Routines

121 - ACDT+C12 TRIMGIMB
0 - ACDT+C12 TRIMGIMB SUPERJOB MOREIDLE DOFSTRT1 NEGUSUM test - SPSCONT
$11-9$ same as 12
81 - LANDISP
O - STARTSB2 IMUMON DISPRSET DOFSTRT161 - NEEDLER COARS IMUATTCK GOPROG CA+ECE DOFSTRT10 - NEEDLER IMUMON CAGESUB SE'TCOARS IMUZERO DOFSTRT1test - NEEDLER
51 - IMUZERO ISSZERO CAGESUB
0 - IMUMON UNZ2 IMUZERO2 IMUFINE DOFSTRT1 test - IMUATTCK
41 - SETCOARS CAGESUB GOPROG DOFSTRT10 - IMUMON UNZ2 IMUZERO IMUFINE DOFSTRT1
test - TNONTEST GLOCKMON IFAILOK IMUATTCK SETCOARS 8192AUGTSTLTS 3
21 - SETRRECR INTLZE0 - STARTSB2 RRAUTCHK RRGIMON DORREPOS TRMTRACK STDESIG RESET22IMUMON R24END R24IEM3 RRDESDUN RRDESEND POOH RR1AX2 RRDESNBR29DPAS2 DOFSTRT1 PROG20A R21LEM9 DISPRSET P12LMtest - SETRRECR
11 - RRZEROSB NORRGMONO - STARTSB2 RRZEROSB DOFSTRT1
Channel 13
151 - JTLST T6JOBCHK
0 - STARTSB1 DOFSTRT1
141 - noneO - DOFSTRT1
131 - none0 - DOFSTRT1
121 - REDESMON STARTP64 STARTSB2
O - DOFSTRT1
Bit Routines
11 - PO6
0 - POSTAND STARTSB2 DOFSTRT1
101 - VBTSTLTS
O - ERROR TSTLTS3 STARTSB2 DOFSTRT1
9 - ZEROENBL
0 - STARTSB2 DOFSTRT1
8 l - ZEROENBL
O - STARTSB2 DOFSTRT1
7 I - DODOWNTM
O - DOFSTRT1 WOZERO test - DODOWNTM
6-5 not set in LUMINARY
4 l - RADSTART
0 - . STARTSB2 DOFSTRT1
test - C13STALL VBTSTLTS
3 1-RADSTART
test - RADAREAD
21 - RADSTART
O - . . \quad STARTSB2 DOFSTRTI
test - RADAREAD
11 - RADSTART
test - RADAREAD RENDRAD
Channel 14
151 - COARS2 ATTCK2 NEEDLES
0 - DOFSTRT1 IMUMON STARTSB2
14 1 - COARS2 ATTCK2 NEEDLES
0 - DOFSTRT1 IMUMON STARTSB2
| 131 - COARS2 ATTCK2 NEEDLES
O - DOFSTRT1 IMUMON STARTSB2
121 - RROUT SPEEDRUN
0 - DOFSTRT1 IMUMON STARTSB2

```
Bit Routines
11 1 - RROUT SPEEDRUN
    O - IMUMON STARTSB2 DOFSTRTI
10 1 - GYROEXIT
    O - STRTGYRO IMUMON SETCOARS STARTSB2 DOFSTRTI
    9 1 - STRTGYR2
    O - STRTGYRO IMUMON STARTSB2 DOFSTRT1
    8 - STRTGYR2
    O - STRTGYRO IMUMON STARTSB2 DOFSTRT1
    7 - STRTGYR2
    O - STRTGYRO IMUMON STARTSB2 DOFSTRT1
    6 - IMUPULSE
    O - IMUMON DOFSTRTI
    4 l - GOPROG DOIT P4OZOOM THROTUP ENGINOF3
    O - STARTSB2 DOFSTRT1
    3 1 - ALTROUT1 ALTOUT1
    0 - STARTSB2 DOFSTRT1
2 l - ALTROUT1
    O - ALTOUTl STARTSB2 DOFSTRT1
    Channel 15
Tested in routines KEYRUPTI and LIGHTSET - 5 LIGHTSET
                                    2 LIGHTSET
```

Channel 16
7 DESCBITS SOMEKEY
6 SOMEKEY
5 LIGHTSET MARKRUPT
4 MARKRUPT
3 MARKRUPT

Channel 30

Bit Routines in which bit is tested
Bits 15-11 are tested only in IMUMON
10 P4OAUTO REDOMANC R515+L02FINDCDUW CHEKBITS
9 IMUMON
7 RRCDUCHK
6 LANDISP
5 PLOAUTO LUNLAND
4 R10,Rll
1 R10,R11
Channel 31
Bit Routines in which bit is tested
15 DETENTCK CHEKSTIK
14 P4OAUTO REDOMANC NEWDELHI IMUATTCK FINDCDUW R61C+LO2' CHEKBITS
13 TSNEXTP TSNEXTS IMUATTCK DETENTCK QRAXIS CHEKBITS : LUNLAND STEER? EXVERT REDESMON 1406ALM
12-9 CHKVISFZ
8 RCS
7 RCS
6 TSNEXTS PITFALL REDESMON
5 TSNEXTS PITFALL REDESMON
4 TSNEXTP
3 TSNEXTP
2 TSNEXTS PITFALL REDESMON
1 TSNEXTS PITFALL REDESMON

Channel 32

Bit Routines
14 PROCEEDE
9 DVMON
8-1 RCSMONIT
Channel 33
15
14
13
C33TEST
12 C33TEST
11 C33TEST
9 LRHEIGHT RO4Z
8 INITREAD DGCHECK SCALCHNG R77CHECK
17 7 LRPOS2 LRPOSCAN P2CHK MUNRETRN LRPOSOUT
16 DORSAMP ASTNRET MUNRETRN RO4Z P1CHK LRPOSOUT
5 DGCHECK INITREAD SCALCHNG R77CHECK
14 4 DODES INITREAD DGCHECK SGALCHNG DATGDCHK R29DPAS2 R61C+LO1
3 RENDRAD LRS22. 1 RO4Z
2 RRAUTCHK RO4X R22LEM P2OLEMB7

FLAGWRDO

Bit Mnemonic Routines
15 NEED2FLG 1 - RATEDISP0 - R6OLEM DAPATTER TOTATTER DOFSTRT 1test - ALTDSPLY
14 JSWITCH 1 - ENDSTATEO - INTGRATE DOFSTRT1test - NBRANCH DIFEQ+2 NEXTCOL INTGRATE
13 MIDFLAG 1 - TESTIOOP
O- TESTIOOP DOFSTRT1
test - TIMESTEP ACCOMP DOW..
12 MOONFLAG 1 - P21CONT INTEGRV ORIGCHNG INTWAKEU INITVEL2 INTINT REV83P76 USEPIOS ATTACHIT EXGSUB OTHINT
0 - P21CONT INTEGRV ORIGGHNG INTWAKEU INITVEL2 INTINT REV83P76 ATTACHIT DOFSTRT1 OTHINT
test - INTEGRV INTEGRVS RECTOUT TIMESTEP ORIGCHNG ACCOMPOBLATE ENDSTATE KEPPREP A-PCHK INTWAKEU P76DOW. . ATTACHIT ORBCHGO
11 P21FLAG 1 - P2IVSAVEO - GOPROG3 DOFSTRT1
test - PROG21
10 FSPASFLG 1 - R21LEM 40-60TIMES DOFSTRT1test - GOTTMES
9 P25FLAG 1 - PROG25O - TRMTRACK POOH RESET22 P63LM DOFSTRT1test - TRMTRACK CANV37 RESET22 P25LEMM V37RET
8 IMUSE 1 - IMUCHK RO2BOTH0 - TRMTRACK IMMMON CANV37 POOH PO6 ENDTEST1 DOFSTRT1RESET22 SOMERR2
test - AGSVCALC TNONTEST ENDTNON IMMMON
7 RNDVZFLG 1 - PROG2OAO - TRMTRACK IMUMON POOH PO6 RESET22। P12LM DOFSTRT1P63LM PROG25
test - CANV37 RESET22 RRCDUCHK P20LEMC P20LEMC1 TRMTRACKR22LEM CALLDGCH LUNDESCH V37RET CSMINT RELINUS
1 - RRDESNBO - RRDESSM DOFSTRT1 CSMINTtest - DODES

FLAGWRDO (Continued)

Bit Mnemonic Routines
LOKONSW 1 - VBCOARK R21LEM10 - VBCOARK DOFSTRT1 R21LEM R21LEM8test - DODES
4 NEEDLFLG 1 - . R6OLEM0 - DAPATTER DOFSTRT1 TOTATTERtest - ALTDSPLY
3 FREEFLAG 1 - LSPOS CHKSDATA GVDETER0 - LSPOS CHKSDATA GVDETER DOFSTRT1test - P51C R51E SURFLINE GVDETER
2 R1OFLAG 1 - P12LM ABRTJASK0-DOFSTRT1test - DISPRSET SPEEDRUN LANDISP
1 OLDESFLG 1 - R29.LOS
0 - R29 DOFSTRT1
test - R29.LOS

Bit	Mnemonic	Routines
15	NJETSFLG	$\begin{aligned} & 1 \text { - DPDAT1 } \\ & 0 \text { - DPDAT1 DOFSTRT1 } \\ & \text { test - P41LM } \end{aligned}$
14	DIDFLAG	```1 - LANDISP O - GOPROG3 DISPRSET DOFSTRT1 test - IANDISP```
13	ERADFLAG	$\begin{aligned} & 1 \text { - never set } \\ & 0 \text { - DOFSTRT1 P52LS P57POST P21VSAVE } \\ & \text { test - LAT-LONG LALOTORV } \end{aligned}$
12	RODFLAG	$\begin{aligned} & 1 \text { - STRTP66A } \\ & \text { o - GOPROG3 DOFSTRT1 } \\ & \text { test - RESTART? } \end{aligned}$
10	R61FLAG	$\begin{aligned} & 1 \text { - R61LEM } \\ & 0 \text { - R65LEM DOFSTRT1 } \\ & \text { test - R61C+LO6 } \end{aligned}$
8	VEHUPFLG	$\begin{aligned} & 1 \text { - ORBCHGO CSMVEC } \\ & 0 \text { - LEMVEC PROG2O DOFSTRT1 } \\ & \text { test - UPPSV LSR22. } 3 \text { RANGEBQ FAZC FAZAB3 } \end{aligned}$
7	UPDATFLG	```1 - RESET22 PROG2OA P34 S34/35.5 P35 P30 P32 P32/P72C P33 P33/P73B P75 P74 P72 P73 O - TRMTRACK SEUDOPO0 P30 CLUDATE DOFSTRT1 test - R22LEM```
6	NOUPFLAG	```1 - UPDATOFF O - LEMVEC CSMVEC DOFSTRT1 test - R22LEM```
5	TRACKFLG	```1 - RESET22 PROG2OA PROG25 P34 P35 P30 P32 P33 P72 P73 P74 P75 P76 O - RNDREFDR TRMTRACK SEUDOPOO DOFSTRT1 test - TRMTRACK P2OLEMC P20LEMD1 R22LEM P25LEMM P2OLEMC1 RDRUSECK P2OLEMB RELINUS R61C+LO2```
3	SLOPESW	$\begin{aligned} & 1 \text { - LAMBERT } \\ & 0 \text { - ITERATOR DOFSTRT1 } \\ & \text { test - ITERATOR IAMBLOOP } \end{aligned}$
2	GUESSW	$\begin{aligned} & 1 \text { - INITVEL } \\ & 0 \text { - INITVEL2 DOFSTRT1 } \\ & \text { test - LAMBERT } \end{aligned}$

FLAGWRD2

```
    Bit Mnemonic Routines
    15 DRTFTFLG 1 - P51B CAL53A UNZ2 AVGEND GYCOARS INITBY
    0 - RNDREFDR PREREAD GYCOARS DOFSTRTI
    test - SVCT3 NBDONLY UNZ2
    14 SRCHOPTN 1 - R24LEM
    O - P2OLEMB3 PROG2OA DOFSTRT1 TRMTRACK
    test - P2OLEMB3 LRS24.1 DORROUT
    13 ACMODFLG 1 - P20LEMB1
        O - P20L.EMB3 PROG2OA DOFSTRT1
        test - P20LEMB3
    L2 LOSCMFLG 1 - R21LEM10 BEGDES29 R29.LOS
        0 - RRDESDUN R29.LOS R21LEM1 R29DPAS2 PROG2OA R24LEM
        R29 DOFSTRT1 R21LEM4 RRDESNB
        test - BEGDES29 R29.LOS DORROUTT LPS20.1
    11 STEERSW 1 - DVMON
        O - AVERAGEG DOFSTRTl VGAIN*
        test - VGAIN* STEER?
    9 IMPULSW 1 - S40.132 VGAIN*
    0 - STEERING S4O.13 P42IGN DOFSTRTI
    test -. PL2IGN STEERING
    8 XDELVFLG 1 - P30 ADVANCE
    0 - INITVEL7 DOFSTRTI
    test - S40.1 UPDATEVG S40.8
    7 ETPIFLAG 1 - P34 P74
        0 - P34 P74 DOFSTRT1
        test - P34/P74C INTLOOP ELCALC
1 - N45PROC P30
0 - SELECTMU DOFSTRT1
test - S34/35.5 P32/P72C P33/P73B VN1645 N45PROC
```

FLAGWRD2 (Continued)

Bit	Mnemonic	Routines
5	AVFLAG	$\begin{aligned} & 1 \text { - P42STAGE: S40.9 P34 P35 P32 P33 } \\ & 0 \text { - P74 P75 P72 P73 } \\ & \text { test - PRECSET, } \end{aligned}$
4	PFRATFLG	```1 - S40.2,3 O - R5IE GYCOARS REGCOARS DOFSTRTI test - PROG52```
3	CALCMAN 3	Not really functional: set in KALCMAN3; reset in DOFSTRTI
2	CALCMAN2	$\begin{aligned} & 1 \text { - WCALC } \\ & 0 \text { - NEWANGL DOFSTRTI } \\ & \text { test - NEWANGL } \end{aligned}$
1	NODOFLAG	```1 - AGSVCALC STATINT1 PO6 O - AGSVCALC STATINTI POOH POSTAND DOFSTRTI POODOO test - V37```

FLAGWRD3

Bit	Mnemonic	Routines
15	POOHFLAG	1 - STATINT1
		0 - CANV 37 DOFSTRT1 test - TESTLOOP
14	GLOKFAIL	1 - CALCGA
		0 - REDO CANV37 DOFSTRT1
		test - REDO
13	REFSMFLG	1 - P5IC GYCOARS REGCOARS SURFDISP
		0 - RNDREFDR GYCOARS GVDETER
		test - AGSINIT RO2BOTH VN1645 PACKOPTN DSPOPTN R59
12	LUNAFLAG	1 - LANDJUNK P52LS P57P0ST P21VSAVE
		0 - DOFSTRT1 P21VSAVE
11		
	NOR29FLG	1 - AVGEND DOFSTRT1
		0 - CMPONENT test - COPYCYC1 STARTSB2 R29RDJOB RDRUSECK
10	VFLAG	1 - R56 PIC3
		0 - PIC3 DOFSTRT1
9	R04FLAG	1 - R04 R61C+L01
		0 - RO4END CANV 37 PROG2OA DOFSTRT1 R61C+L01 STARTSB2 test - ROLZ RADAREAD RESAMPLE R77
	READRFLG	1 - R29DPAS2
		0 - ENDRRD29 STARTSB2 DOFSTRT1
		test - R29READ COPYCYCI
8	PRECIFLG	1 - STATINTI CSMPREC INTEGRVS LEMPREC
		0 - STATINTI INTEXIT DOFSTRTI test - TESTLOOP
7	CULTFLAG	1 - OCCULT
		```O - OCCULT DOFSTRTI test - PIC3```
6	ORBWFLAG	1 - never set
		0 - WMATEND INTWAKEU DOFSTRTI test - AVETOMID
15	STATEFLG	1 - SETIFLGS WMATEND LSR22.3 LSR22. 4
		0 - ENDINT TESTLOOP DOFSTRTI POODOO INTEXIT test - A-PCHK

## FLAGWRD3 (Continued)

```
Bit Mnemonic Routines
| INTYPFLG 1 - OTHCONIC CSMCONIC LEMCONIC INTINT EXGSUB REV83 I:
0 - MIDTOAV2 SETIFLGS CSMPREC LEMPREC MIDTOAVI MTMTMAV2
 P76 LSR22.3 LSR22.4 INITVEL2 INTINT ORBCHGO
 DOFSTRTI GETRVN PROG2I
test - ALOADED
 3 VINTFLAG 1 - STATTNTI CSMPREC CSMCONIC AVETOMID UPPSV LSR22.3
 LSR22.4 ORBCHGO PROG21
O - STATINTI LEMPREC LEMCONIC AVETOMID
 MIDTOAV2
 UPPSV LSR22.3 LSR22.4 DOFSTRT1 ORBCHGO PROG21
 test - INTEGRV ENDSTATE A-PCHK
 2 D6OR9FLG I - STATINTI AVETOMID UPPSV LSR22.3 ORBCHGO
 0 - ORBCHGO SETIFLGS LSR22.4 DOFSTRTI
 test - ENDSTATE
 1 DIMOFLAG I - STATNNTI AVETOMID UPPSV LSR22.3 LSR22.4 ORBCHGO
 O - SETIFLGS CSMPREC LEMPREC CSMCONIC LEMCONIC INTEGRVS
 WMATEND: MIDTOAV2 LSR22.3 ORBCHGO
 DOFSTRTI PROG21 P21CONT
 test - ACCOMP ENDSTATE
```


## FLAGWRD4

Bit	Mnemonic	Routines
15	MRKIDFLG	```1 - FLASHSUB O - JOBXCHS ENDRET STARTSB2 DOFSTRTI test - OKTOPLAY MAKEPRIO FLASHSUB TERMATE PINBRNCH```
14	PRIODFLG	```1 - FLASHSUB O - ENDRET STARTSB2 DOFSTRT1 test - NORMBNCH MAKEMARK MAKEPRIO PINBRNCH ENDEXT OKTOPLAY TESIXACT TERMATE```
13	NRMIDFLG	```1 - FLASHSUB O - JOBXCHS ENDRET STARTSB2 DOFSTRTI test - MAKEPLAY MAKEMARK MAKEPRIO PINBRNCH ENDEXT```
12	PDSPFLAG	$\begin{aligned} & 1 \text { - R61C+LO2 RELINUS } \\ & 0 \text { - STARTSB2 R61C+LO2 DOFSTRTI } \\ & \text { test - OKTOPLAY MAKEMARK CHKLINUS TESTXACT R61TEST } \end{aligned}$
11	MWAITFLG	1 - MAKEMARK   O - MARKWAKE STARTSB2 DOFSTRTI   test - OKTOPLAY MAKEMARK NORMRET
10	NWAITFLG	```1 - OKTOPLAY O - NORMWAKE STARTSB2 DOFSTRT1 test - MAKEYLAY NORMRET```
9	MRKNVFLG	$\begin{aligned} & 1 \text { - NV50DSP } \\ & 0 \text { - JOBXCHS NV50DSP STARTSB2 DOFSTRT1 } \\ & \text { test - OKTOPLAY MAKEMARK MAKEPRIO WITCHONE } \end{aligned}$
8	NRMNVFLG	$\begin{aligned} & 1 \text { - NV50DSP } \\ & 0 \text { - JOBXCHS NV50DSP STARTSB2 DOFSTRT1 } \\ & \text { test - MAKEPLAY MAKEMARK MAKEPRIO WITCHONE } \end{aligned}$
7	PRONVFLG	```1 - NV50DSP 0 - NV50DSP STARTSB2 DOFSTRT1 test - OKTOPLAY MAKEMARK MAKEPRIO WITCHONE TESTXACT```
6	PINBRFLG	$\begin{aligned} & 1 \text { - NORMBNCH } \\ & 0 \text { - ENDRET STARTSB2 DOFSTRT1 } \\ & \text { test - FLASHSUB } \end{aligned}$
5	MRUPTFLG	1 - JOBXCHS   0 - MARKWAKE STARTSB2 DOFSTRTI   test - OKTOPLAY MAKPMARK NORMRET

## FLAGWRD4 (Continued)

Bit	Mnemonic	Routines
4	NRUPTFLG	```1 - JOBXCHS O - NORMWARE STARTSB2 DOFSTRTI test - MAKEPLAY NORMRET```
3	MKOVFLAG	```l - MAKEMARK O - MARKPLAY MARKRET STARTSB2 DOFSTRT1 test - JOBXCHS```
1	XDSPFLAG	1 - AGSVCALC MARKPLAY   O - ENDEXT STARTSB2 DOFSTRT1 GOTOPOOH test - OKTOPLAY

## FLAGWRD5

```
 Bit Mnemonic Routines
 15 DSKYFLAG 1 - KEYRUPTI
 O - DOFSTRTI
 test - T4RUPT
 13 SNUFFER 1 - SNUFFOUT
 O - OUTSNUFF DOFSTRTI
 test - AFTERTJ
 12 NOTHROTL I - S40.13 S40.13D
 0 - P4OLM S40.13D P63LM DOFSTRT1
 test - P4OIGN
 11 RT7FLAG 1 - R77
 O - R77END DOFSTRT1 STARTSB2
 test - R77CHECK DORSAMP RDRUSECK
 10 RNGSCFLG 1 - SCALCHNG
 O - LRS22.1 LRHJOB R29RANGE DOFSTRTI
 test - READRDOT LRHJOB R29RANGE
 9 DMENFLG 1 - LSR22.3
 0 - LSR22.4 DOFSTRT1
 test - INCORP1 INCORP2 FAZAB3 INCOR2-3
 ZOOMFLAG 1- P63200M
 0 - TIG-5 DOFSTRT1
 test - LUNLAND
 7 ENGONFLG 1 - IGNITION ABRTJASK
 O - ENGINOF3 IMUMON DOFSTRTI
 test - GOPROG DCMCL
 6 3AXISFLG 1 - R62DISP
 0 - R52 ENDMANU1 V89RECL P4OIN P4ILM CANV37
 DOFSTRTI R61C+LO2
 test - R6OLEM REDOMANC
 5 AORBSFLG 1 - PURGENCY PJETSLLEC
 O - PURGENCY PJETSLEC DOFSTRT1
 test - TSNEXTP PEGI PURGENCY
```


## FLAGNRD5 (CONTINUED)

Bit	Mnemonic	Routines
4	NORRMON	```1 - VBCOARK R23LPM R2ILEM8 O - RRDESEND STARTSB2 PROG2OA R23LEM R23LEM2 DOFSTRTI R2ILEMI test - RRGIMON```
3	SOLNSW	$\begin{aligned} & 1 \text { - TIMERAD SOFFCHEK LAMBERT } \\ & 0 \text { - TIMERAD DOFSTRTI LAMBERT } \\ & \text { test - none (telemetry) } \end{aligned}$
2	MGLVFLAG	$\begin{aligned} & 1 \text { - GET.LVC } \\ & 0 \text { - GET+MGA DOFSTRT1 } \\ & \text { test - none (telemetry) } \end{aligned}$
1	RENDWFLG	```1 - WLINIT O - WMATRXNG WMATEND INTWAKEU V67CALL DOFSTRTI ATMAG test - STATINTI AVETOMID UPPSV ORBCHGO LSR22.3```

## FLAGWRD6

```
 Bit Mnemonic Routines
 15 S32.1F1 1 - CSI/B2
 O - CSI/A SCNDSOL DOFSTRT1
 test - CSI/B2
 14 S32.1F2 1 - CSI/A SCNDSOL
 O - FRSTPAS DOFSTRT1
 test - CIRCL
 13 S32.1F3A 1 - CIRCL FIFTYFPS
 O - CSI/A SCNDSOL DOFSTRTI
 test - CSI/B2 CIRCL SCNDSOL
 12 S32.1F3B 1 - CSI/A FIFTYFPS
 O - CIRCL SCNDSOL DOFSTRT1
 test - CSI/B2 CIRCL SCNDSOL
 10 GMBDRVSW 1 - PITCHOFF
 O - TRIMGIMB DOFSTRTI
 test - PITCHOFF
 8 MUNFLAG 1 - P63LM P12LM
 O - AVGEND DOFSTRTI CANV37
 test - NORMLIZE READACCS AVERAGEG RRGIMON P418POT. SERVIDLE
 V83CALL GETRVN
 6 REDFLAG 1 - P64DISPS
 0 - P64DISPS STARTP64 P63LM DOFSTRTI VRSTART
 test - P64DISPS REDESIG
 3 NTARGFLG 1 - NTARGCHK
 0 - S34/35.5 DOFSTRT1
 test - Not shown in document
```

FLAGNRD6 (Continued)

Bit Mnemonic	Routines	
2	AUXFLAG	1 - AVERAGEG   $0-$ AVERAGEG DOFSTRT1   test - AVERAGEG
		$1-$ REFMF   1 ATTFLAG
		$0-$ DOFSTRTI
test - PACKOPTN DSPOPTN ATTCHK		

## FLAGNRD7

Bit	Mnemonic	Routines
15	ITSWICH	1-P34/P74C P33/P73B   0 - P34/P74C INTLOOP DOFSTRTI test - INTLOOP ELCALC
13	IGNFLAG	```1 - TIG-0 O TIG-5 P42IGN DOFSTRT1 test - *PROCEED```
12	ASTNFLAG	$\begin{aligned} & 1 \text { - *PROCEED } \\ & 0 \text { - TIG-5 P42IGN DOFSTRT1 } \\ & \text { test - TIG-0 } \end{aligned}$
11	SWANDISP	$\begin{aligned} & 1 \text { - P63IGN ABRTIGN } \\ & 0 \text { - DOFSTRT1 AVGEND } \\ & \text { test - LANDISP } \end{aligned}$
10	NORMSW	$\begin{aligned} & 1 \text { - INITVEL2 } \\ & 0 \text { - PARAM DOFSTRT1 HAVEGUES } \\ & \text { test - S40.1B S } 40.9 \text { GEOM UPDATEVG RASTEERI } \end{aligned}$
9	RVSW	```1 - INTLOOP CSI/B2 VN0611 O - CDHMVR DOFSTRTI ORBCHGO test - COMMNOUT```
8	V67FLAG	$\begin{aligned} & 1 \text { - V67CALL } \\ & 0 \text { - DOFSTRT1 V67CALL } \\ & \text { test - V67CALL } \end{aligned}$
7	IDLEFLAG	```1 - STEERING ENGINOFI COMFAIL DOFSTRTI MAINENG SERVIDLE O - PL2IGN GOABORT COMFAIL4 test - STEERING AVERAGEG MAINENG```
6	V 37FLAG	$\begin{aligned} & 1 \text { - PREREAD } \\ & 0 \text { - DOFSTRTI AVGEND } \\ & \text { test - V37 POODOO RDRUSECK } \end{aligned}$
${ }^{5}$	AVEGFLAG	```1 - PREREAD 0 - V37 DOFSTRTl test - V82CALL READACCS REV83 RRGIMON P70 P71 Rl0,RIl```
4	UPLOCKFL	$\begin{aligned} & 1 \text { - UPRUPT } \\ & 0 \text { - UPRUPT DOFSTRT1 } \\ & \text { test - UPRUPT } \end{aligned}$

## FLAGWRD7 (Continued)

Bit	Mnemonic	Routines
3	VERIFLAG	1 - UPSTORE
		O - UPSTORE DOFSTRTI   test - none (for telemetry)
2	V82FMFLG	1 - V82GOFF1 V82GON1
		0 - V82GOFF1 V82GON1 DOFSTRT1 test - SR30.1
1	TFFSW	1 - CALCTPER
		0 - CALCTFF DOFSTRT1 test - CALCTFF

## FLAGWRD8

Bit	Mnemonic	Routines
15	RPQFLAG	$\begin{aligned} & 1 \text { - INTEGRV INTEGRVS GOBAQUE } \\ & 0 \text { - ACCOMP DOFSTRTI } \\ & \text { test - TIMESTEP LUNSPH } \end{aligned}$
13	NEWIFLG	$\begin{aligned} & 1 \text { - INTEGRV INTEGRVS } \\ & 0 \text { - TESTLOOP DOFSTRTI } \\ & \text { test - TESTLOOP } \end{aligned}$
12	CMOONFLG	1 - ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT ORBCHGO 0 - ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT ORBCHGO test - INTEGRV SELECTMU INTINT CSI/B2 P76
11	LMOONFLG	```1 - ENDSTATE A-PCHK INTWAKEU O - ENDSTATE A-PCHK INTWAKEU test - V82GON1 AVETOMID INTEGRV FAZC ATTACHIT REV83 OTHINT```
10	FLUNDISP	```1 - COMFAIL O - GOABORT IGNITION GOCUTOFF COMFAIL4 DOFSTRTI test - DISPEXIT ASCTERMI```
8	SJRFFLAG	```1 - LANDJUNK O - ATMAG test - CHANGEVB YMKRUPT RRDESSM ATTACHIT NBDONLY WLINIT V67CALL P2OLEMA STATINT1 LSR22.3 R2ILEM RANGEBQ R22LEM R24LEM3 SERVICER LUNDESCH LPS20.1 P20LEMB7```
		PROG2O AVESTAR VACSTOR SURFAGAN MARKRUPT UPPSV R22LEM42 INTEGRV LASTBIAS REV83 P2IVSAVE UPPSV4 V83CALL RANGEBQ R21LEMY ATTACHED
7	INFINFLG	```1 - INFINITY O - POLYCOEF DOFSTRTI test - COMMNOUT LAMBLOOP```
6	OREERSW	$\begin{aligned} & 1 \text { - none } \\ & 0 \text { - DOFSTRTI } \\ & \text { test - ITERATOR } \end{aligned}$
5	APSESW	```1 - TIMERAD O - TIMERAD DOFSTRTI test - none (telemetry)```

## FLAGWRD8 (Continued)

Bit	Mnemonic	Routines
4	COGAFLAG	$\begin{aligned} & 1 \text { - TIMERAD TIMETHET } \\ & 0 \text { - COMMNOUT PARAM DOFSTRT1 } \\ & \text { test - none (telemetry) } \end{aligned}$
2	INITALGN	$\begin{aligned} & 1 \text { - BYIMATT } \\ & 0 \text { - DOFSTRTI ATTCHK } \\ & \text { test - SURFDISP INITBY SURFLINE } \end{aligned}$
1	360SW	$\begin{aligned} & 1 \text { - GETX WLOOP } \\ & 0 \text { - GETX DOFSTRTI } \\ & \text { test - POLYCOEF } \end{aligned}$

## FLAGWRD9

Bit	Mnemonic	Routines
14	FLVR	$\begin{aligned} & 1 \text { - P12LM INJTARG } \\ & 0 \text { - CMPONENT DOFSTRT1 } \\ & \text { test - CMPONENT } \end{aligned}$
13	P7071FLG	$\begin{aligned} & 1 \text { - GOABORT } \\ & 0 \text { - DOFSTRT1 } \\ & \text { test - ASCENT CMPONENT } \end{aligned}$
12	FLPC	$\begin{aligned} & 1 \text { - MAINENG } \\ & 0 \text {-. DOFSTRTI } \\ & \text { test - MAINENG } \end{aligned}$
11	FLPI	$\begin{aligned} & 1 \text { - P12LI } \\ & 0 \text { - P12RET DOFSTRT1 } \\ & \text { test - CMPONENT } \end{aligned}$
10	FLRCS	```1 - CUTOFF O - GOABORT DOFSTRTI test - ASCTERM1 ASCTERM ASCENT ATMAG```
9	LETABORT	```1 - P63IGN O - LANDJUNK TERMASC GOABORT DOFSTRTI test - P70 P71 Rl0,R11```
8	FLAP	```1 - UPTHROT O - DOFSTRTI test - GOABORT P12INIT```
6	ROTFLAG	$\begin{aligned} & 1 \text { - INJTARG } \\ & 0 \text { - DOFSTRTI CMPONENT } \\ & \text { test - CMPONENT } \end{aligned}$
5	QUITFLAG	```l - VERB96 0 - STATINTl DOFSTRTI test - STATINTI TESTLOOP```
3	MIDIFLAG	```1 - MIDTOAVI O - MIDTOAVI MIDTOAV2 CKMID2 DOFSTRT1 test - CKMID2```
2	MLDAVFLG	$\begin{aligned} & 1 \text { - MIDTOAV2 } \\ & 0 \text { - MIDTOAV2 DOFSTRT1 } \\ & \text { test - ENDSTATE } \end{aligned}$
1	AVEMIDSW	$\begin{aligned} & 1 \text { - AVETOMID } \\ & 0 \text { - INTEXIT DOFSTRT1 } \\ & \text { test - SVDWN2 } \end{aligned}$

## FLGWRD10

Bit	Mnemonic	Routines
14	INTFLAG	1 - INTSTALL
		0 - LNTWAKE1 GOPROG GOPROG2A DOFSTRTI test - INTSTALL
13	APSFLAG	1 - LANDJUNK DPDATI ABRTJASK WANTAPS
		$0-\mathrm{DPDAT} 1$
		test - P4OLM P42LM S40.13 RCS 1/ACCS DAPDATAI
		DAPDATA2 SERVICER P4OAUTO DVMON AFTERTJ S40.130
7	REINTFLG	1 - ENDSTATE A-PCHK P76 UPJOB INCORP2
		0 - GOPROG2A INTWAKE1 DOFSTRT1 POODOO
		test - INTSTALL INTWAKE

## FLGWRD11

Bit	Mnemonic	Routines
15	LRBYPASS	1 - SERVIDLE ABRTJASK CANV37 DOFSTRT1 $0-\text { P63LM }$
1		test - MUNRETRN RIO,RII RDRUSECK RADAREAD RESAMPLE
12	VXINH	```l - VMEASCHK O - ABRTJASK VMEASCHK DOFSTRT1 CANV37 SERVIDLE test - VMEASCHK```
11	PSTHIGAT	1 - MUNRETRN   0 - ABRTJASK DOFSTRTI CANV 37 SERVIDLE test - MUNRETRN UPDATCHK
10	NOLRREAD	1 - MUNRETRN   O - ABRTJASK POSGOOD DOFSTRT1 CANV 37 SERVIDLE P1CHK test - UPDATCHK RIO,RII MUNRETRN
9	XORFLG	```1 - MUNRETRN O - ABRTJASK DOFSTRT1 CANV37 SERVIDLE test - MUNRETRN```
8	LRINH	```1 - SET57 0 - ABRTJASK LROFF DOFSTRTI CANV 37 SERVIDLE RESET57 test - NOREASON VMEASCHK```
7	VELDATA	```l - LRVJOB O - ABRTJASK CONTSERV DOFSTRTI CANV37 SERVIDLE test - VMEASCHK```
6	LRPOS 2FLG	```1 - POSGOODD O - ABRTJASK SERVIDLE DÖFSTRT1 CANV37 test -```
5	READVEL	```1 - VALTCHK O - ABRTJASK DOFSTRTI CANV37 SERVIDLE test - VALTCHK```
4	RNGEDATA	```1 - LRHJOB O - CONTSERV ABRTJASK DOFSTRTl CANV 37 SERVIDLE test - UPDATCHK```
3	N0511FLG	$\begin{aligned} & 1 \text { - P1CHK } \\ & 0 \text { - ABRTJASK SERVIDLE DOFSTRT1 CANV } 37 \\ & \text { test - MLRRETRN } \end{aligned}$

## FLGWRDII (Continued)

Bit Mnemonic Routines2 VFLSHFLG 1 - VMEASCHKO - ABRTJASK VMEASCHK ONLITES DOFSTRTI CANV 37 SERVIDLEtest - RlO,Rll RADLITES
1 HFLSHFLG 1 - UPDATCHKO - ABRTJASK UPDATCHK ONLITES DOFSTRTI CANV 37 SERVIDLEtest - RlO,R1l RADLITES

## RADMODES

```
 Bit Mnemonic Routines
 15 CDESFLAG 1 - VBCOARK LRS24.1 R2ILEM8
 14 REMODFLG 1 - RRDESSM RRDESNB R29
 0 - ITURNON2 STARTSUB STARTSB2 RRAUTCHK REMODE
 test - RRGIMON RR1AX2 BEGDES LRS24.1 COPYCYC1
13 RCDUOFLG \begin{tabular}{ll}
1 - RRAUTCHK RRZERO \\
& 0 - ITURNON2 STARTSUB STARTSB2 RRZEROSB RRAUTCHK \\
& test - RRGIMON SETTRRF P2OLEMB3 R22LEM COPYCYCI RRCDUCHK
\end{tabular}
12 ANTENFLG 1 - RRZEROSB RMODINV
 O - ITURNON2 STARTSUB RRZEROSB RMODINV
 test - DORREPOS RRLIMCHK RRANGLES RMODINV REMODE DODES
 RRLIMNB R29 R2ILEM
 1 - RRGIMON R29
 0 - ITURNON2 STARTSUB STARTSB2 RRAUTCHK DORREPOS RRIAX2
 PREPOS29
 test - RRGIMON RRIAX2 STARTDES STDESIG IORROUT' RRZERO
 RENDRAD COPYCYCI
 10 DESIGFLG 1 - STARTDES R29
 O - VBCOARK RRDESEND TRMTRACK ITURNON2 STARTSUB POOH
 STDESIG STARTSB2 RRDESDUN R24END R24LEM3 RRDESNB
 RESET22 R29DPAS2 COPYCYC1 R29 P12LM PROG20A R21LEM9
 test - DORREPOS RR1AX2 STDESIG R29 BEGDES29 REMODE
 9 ALTSCALE I - SCALCHNG RO4 Z
 O - ITURNON2 STARTSUB SCALCHNG RO4Z
 test - LRHEIGHT UPDATCHK
 8 LRVELFLG 1 - RESAMPLE R77CHECK
 O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3 R77CHECK
 test - RADLITES
 7 RCDUFAIL 7 - ERROR ITURNON2 STARTSUB RRCDUCHK TSTLTS3
 O - RRCDUCHK
 test - RRCDUCHK SETTRKF ENDRADAR RENDRAD
 6 ~ L R P O S F L G ~ l ~ - ~ S T A R T S U B ~ L R P O S 2 ~ R O 4 Z ~ Z
 0 - ITURNON2 STARTSUB RO4Z
 test - DORSAMP
```

```
Bit Mnemonic Routines
 L LRALTFLG 1 - RESAMPLE R77CHECK
 O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3 R77CHECK
 test - RADLITES
 4 RRDATAFL 1 - RESAMPLE
 O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3
 test - SETTRKF
 3 RRRSFLAG 1 - SCALCHNG LRS22.1 RO4Z
 O - ITURNON2 STARTSUB SCALCHNG LRS22.1 ROLZ
 test - RENDRAD RRANGOUT
 2 AUTOMODE 1 - ITURNON2 STARTSUB RRAUTCHK
 O - RRAUTCHK
 test - RRAUTCHK RRCDUCHK RRGIMON SETTRKF RRIAX2 RRZERO
 COPYCYCI R29RDJOB NORRGMON
```

1 TURNONFL 1 - RRAUTCHK
O - ITURNON2 STARTSUB STARTSB2 RRTURNON RRAUTCHK test - RRZERO

## DAPBOOLS

Bit	Mnemonic	Routines
15	PUTSES	```1 - MINIMP LANDJUNK O - NOMINIMP P63IGN DOFSTRT1 IGNITION ABRTJASK TIGTASK test - TSNEXTP TSNEXTS```
14	USEQRJTS	```1 - ENGINOF3 AVERAGEG DVMON DOFSTRTI O - DVMON test - TJLAW4 TRYGTS SPSCONT```
13	CSMDOCKD	```1 - DPDATI 0 - DPDATI DOFSTRTI test - PURGENCY TJLAW4 1/ACCS DAPDATA2 DAPDATA1 DPDAT1 BACKP STIKLOAD FINDCDUW P4OLM MINRTN```
12	OURRCBIT	```1 - DETENTCK O - DETENTCK DOFSTRT1 test - DETENTCK CHEKSTIK QRAXIS```
11	ACC40R2X	```I - DPDATI GOABORT PI2LM O - DPDATl DOFSTRT1 test - DPDATl DAPDATAI +XORULGE```
10	AORBTRAN	```1 - COMFAIL2 DPDAT1 DOFSTRT1 O - COMFAIL2 DPDAT1 test - MINRTNDAPDATAI +XORULGE```
9	XJVINHIB	```I - CMPONENT MUNRETRN O - DOFSTRTI P65START CMPONENT ABRTJASK CANV37 GOTOPOOH VRTSTART test - TSNEXTP FINDCDUW```
8	DRIFTBIT	1 - ALLCOAST COMFAIL2 DOFSTRT1 0 - P42IGN ABRTJASK test - 1/ACCONT SPSRCS RCS BACKP AFTERTJ
7	RHCSCALE	```1 - DPDAT1 DOFSTRT1 0 - DPDATI test - DAPDATAl STIKLOAD```
6	ULLAGER	```l - ULLGTASK COMFAIL2 O - PL2IGN ENGINOFI GOPOST GOTOPOOH GOCUTOFF ABRTJASK DOFSTRT1 STOPCLOK test - RCS```

DAPBOOLS (Continued)

Bit	Mnemonic	Routines
5	DBS L2FLG	$1-\quad$ DPDATY $0-\ldots$ test - RESTORDB DAPDATA1
4	DBSELECT	$\begin{aligned} & 1 \text { - DPDAT1 } \\ & 0 \text { - DPDATI DOFSTRT1 } \\ & \text { test - RESTORDB DAPDATA1 } \end{aligned}$
3	ACCSORAY	$\begin{aligned} & 1-1 / \text { ACCRET } \\ & 0 \text { - STARTSB1 DOFSTRT1 } \\ & \text { test - DAPIDLER } \end{aligned}$
2	AUTRATE2	$\begin{aligned} & 1 \text { - DPDATI DOFSTRTI } \\ & 0 \text { - DPDATI } \\ & \text { test - DAPDATAI } \end{aligned}$
1	AUTRATE1	$\begin{aligned} & 1 \text { - DPDATI } \\ & 0 \text { - DPDATI DOFSTRTI } \\ & \text { test - DAPDATAI } \end{aligned}$

## IMODES30

Bit Routines
15 - IMUMON (IMU temp. out of limits)

test - IMUMON GOPROG TSTLTS 3 DOFSTRT1

141 - IMUMON GOPROG DOFSTRTI (ISS turn-on delay initiate)
O - IMUMON
test - IMUMON TNONTEST ENDTNON
131 - IMUMON IFAILOK GOPROG TSTLTS3 DOFSTRT1 (IMIJ good)
O - IMUMON
test - SETISSW
121 - IMUMON GOPROG TSTLTS3 DOFSTRT1 (ICDU good)
O - IMUMON
test - SETISSW
11 - IMUMON GOPROG DOFSTRTI (IMU not caged)
O - IMUMON
test - IMUMON
101 - ERROR C33TEST PFAILOK GOPROG TSTLTS3 DOFSTRT1 (PIPA good) 0 - C33TEST
test - PIPFREE C33TEST SETISSW
9 1-IMUMON DOFSTRT1
(IMU not operating)
O - IMUMON
test - IMUCHK RO2BOTH IMUMON TNONTEST C33TEST IMUZERO
8 - TNONTEST
(turn-on delay incomplete)
O - TNONTEST GOPROG DOFSTRT1 test - TNONTEST C33TEST

7 1 - ITURNON2
O - TNONTEST GOPROG DOFSTRT1 test TNONTEST C33TEST

61 - CAGESUB2
0 - UNZ2 GOPROG DOFSTRTI
test - PIPUSE PFAILOK IMUPULSE STRTGYRO 8192AUG IMUZERO IMUZERO2 IMUCOOARS COARS COARS2 IMUFINE IFAILOK V37 IMUFINED

5 l - CAGESUB2
0 - PFAILOK DOFSTRT1
test - C33TEST
(Secondary PIPA fail monitor disabled)

## Bit Routines

```
4 - CAGESUB2 IMUZERO SETCOARS DOFSTRT1 '(IMU fail monitor inhibit)
 0 - UNZ2 IMUZERO2 IFAILOK
 test - SETISSW
31 - CAGESUB2 IMUZERO
 0 - UNZ2 IMUZERO2 DOFSTRTI
 test - SETISSW
21 - TMUMON (turn-on sequence failure)
 0 - ENDTNON GOPROG DOFSTRTI
 test - IMUMON ENDTNON
 1 1-PIPFREE CAGESUB2 DOFSTRT1 (PIPA fail monitor disable)
 0 - PIPUSE
 test - C33TEST SETISSW
```


## IMODES33

Bit Routines
141 - PROCEEDE
(proceed button)
0 - PROCEEDE STARTSB2 DOFSTRT1 test - PROCEEDE

131 - ERROR C33TEST PFAILOK STARTSB2 TSTLTS3 DOFSTRT1 (PIPA good) 0 - C33TEST
test - C33TEST
121 - ERROR C33TEST STARTSB2 TSTLTS3 DOFSTRT1 (downlink not too fast) 0-C33TEST test - DNTMFAST C33TEST

111 - ERROR C33TEST STARTSB2 TSTLTS3 DOFSTRT1 (uplink not too fast) 0 - C33 TEST
test - UPTMFAST C33TEST
8 1-INTLZE
0 - DISPRSET STARTSB2 DOFSTRT1 test - DISPRSET

71 - ALTROUTI
0 - ALTOUT1 DISPRSET STARTSB2 LANDISP DOFSTRTI test - LANDISP

61 - IMUMON CAGESUB2 IMUZERO SETCOARS DOFSTRTI (DAP disable) 0 - UNZ2 IMUZERO2 IMUFINE test - CHEKBITS

5 1 - TMUZERO
0 - IMUZERO2 STARTSB2 DOFSTRT1 (zeroing in progress) test - none (telemetry)

11 - VBTSTLTS
0 - TSTLTS3 STARTSB2 DOFSTRT1 (lamp test) test - IMUMON SETISSW SETGLOCK SETTRKF
Bit Routines
15, Not used
13 - DAPIDLER0 - STARTSBI DOFSTRT1test - DAPIDLER
121 - STARTDAP SKIPPAXS 0 - PJETSLEC DOFSTRTI test - SUPERJOB
11 1 - QRTIMEO - STARTDAP DETENTCK TOPSEUDO DOFSTRT1test - DETENTCK RHCACTIV
10 1 - PEGT0-STARTDAP DETENTCK PEGI DOFSTRT1test - DETENTCK RATERROR
9 1-DETENTCK
O - DETENTCK CHEKSTIK DOFSTRTI test - DETENTCK RATERROR
8
7 Not used
6
51 - NEGUSUM0 - STARTDAP ACDT+C12 DOFSTRT1test - PAXFILT
4 1 - ALTDSPLY0 - ALTDSPLY DOFSTRTItest - ALTDSPLY
31 - NEEDLER DOFSTRTI CHEKBITS 0 - NEEDLER test - NEEDLER
21 - NEEDLER0 - NEEDLER DOFSTRTItest - NEEDLER
1 1-TRYUORV O - STARTDAP TRYUORV DOFSTRTI test - TRYUORV

## DSPTAB11

Bit Routines
91 - VBTSTLTS PROGLARM (program check fail lamp) 0 - ERROR TSTLTS3 SLAPI test - none

8 I - SETTRKF VBTSTLTS
(tracker fail lamp) 0 - ERROR GOPROG SETTRKF TSTLTS3 SLAPI test - SETTRKF

61 - SETGLOCK VBTSTLTS
(gimbal lock warning lamp) 0 - SETGLOCK TSTLTS3 test - SETGLOCK IMJZERO DOFSTRTI

51 - VBTSTLTS RIO,RII LITIT (LR altitude fail) 0 - RIO,RII ERROR SLAPI TSTLTS3 GOPROG test - LITIT

41 - CAGESUBI SETCOARS VBTSTLTS TSTLTS3 (no:attitude lamp) 0 - ISSZERO ENDTNON IMUZERO IMUFINE TSTLTS3 test - IMUZERO GOPROG DOFSTRTI

31 - VBTSTLTS R10,R1I LITIT
(LR velocity fail)
O-R10,R11 ERROR SLAP1 TSTLTS3 GOPROG test - LITIT

## Alignment of the Inertial Sub-System

```
P51
P51B 1dPIPADT = less significant half of TTMENOW
 PIPA = -0
 GCOMP = 0
 Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
 STARIND = 0
P51C Perform "AOTMARK"
 (return after marks are averaged)
 Perform "AOTSTALL"
 If AOTGOOD = 0, perform "CURTAINS"
 If STARIND = 0:
 STARSAV1 = STARAD
 TSt = TSIGHT
 Perform "PLANET"
 PLANVEC = TS
 STARIND = 1
 Proceed to "P51C"
TSt = TSIGHT
```

    ALIN - 1
    Perform "PLANET"
$\mathrm{TS}_{12}=\underline{T} \mathrm{~S}$
TS $_{6}=$ PLANVEC
STARAD $_{0}=$ STARSAV1
STARAD $_{6}=$ STARSAV $\approx$
Perform "CHESDATA"
If FLAGWRDO bit 3 (FREEFLAG) $=0$ : (error between actual separationProceed to second step of "P51"and measured separation is notacceptable)
Perform "AXISGEN"
[REFSMMAT] $=$ [DCMAT]
Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
Proceed to "GOTOPOOH"
COARSE If IMUCADR $\neq 0$ : (IMU in use)
Delay 1 second
Proceed to "COARSE"
Perform "IMUCOARS"
Perform "IMUSTALL"
If ISSGOOD $=0$, perform "CURTAINS"
Perform "IMUFINE"
Perform "IMUSTALL"
If ISSGOOD $=0$, perform "CURTAINS"
Return

AOTMARK Inhibit interrupts
If MARKSTAT $\neq 00000_{8}$ : (mark system already busy)
Proceed to "POODOO" with TS $=20105_{8}$
If bits 2 and 3 of EXTVBACT are not both 0 :
TS1 $\mathrm{dp}=$ return address of routine calling "AOTMARK"
Proceed to ${ }^{\text {BBAILOUN1 }}{ }^{n}$ with TS $=31211_{8}$
Switch bit 2 of EXTVBACT to 1
Establish a special additional working storage area for the mark system; store its address in bits 1-9 of MARKSTAT. It will be denoted hereafter as MARKVAC.

If no storage area is available for MARKVAC:
TS1 $1_{\mathrm{dp}}=$ return address of routine calling "AOTMARK"
Proceed to "BAILOUT1" with TS $=312078$
Establish "GETDAT"
Release interrupt inhibit
Return
AOTSTALL Inhibit interrupts
If OPTGADR $>0$ or if OPTCADR $<-1$ :
TS1 ${ }_{d p}=$ return address of routine calling "AOTSTALL"
Proceed to ${ }^{\text {MBAILOUT1" }}$ with $T S=31210_{8}$
If $O P T C A D R=-1: \quad$ (operation already complete and good)
OPTCADR $=+0$
$A O T G O O D=1$
Release interrupt inhibit
Return
If OPTCADR $=-0: \quad$ (operation already complete and bad)

$$
\text { ALIN - } 3
$$

```
 (If OPTCADR = -0)
 OPTCADR = +0
 AOTGOOD = O
 Release interrupt inhibit
 Return
 (Otherwise, OPTCADR = +0)
 OPTCADR = return address (to caller of "AOTSTALL")
 Put present job to sleep
 When awakened, return via LOC
MKRELEAS MARKSTAT = 000000
 Release special working storage area MARKVAC
 If OPTCADR = +0: ("AOTSTALL" not entered yet)
 OPTCADR = -1
 End task
LOC = OPTCADR
AOTGOOD = 1
Wake job put to sleep in."AOTSTALL"
OPTCADR = +O
End task
GETDAT Switch bit 12 of MARKSTAT to 1 (to inhibit processing of
marks in "MARKRUPT")
Proceed to "GOXDSPF" with TS = K:V01N71 (AOTCODE)
 (If terminate, proceed to "KILIAOT"; if proceed,
 continue at next step; if other response, proceed
 to "GETDAT")
(AOTCODE should be of the form 000 000 xox xux xoxx)
```

XYMARK $=$ bits $15-7$ of AOTCODE shifted right 6 places to bit positions 9-1

If XYMARK $\leq 0$, proceed to "GETDAT"
If $X$ IMMARK $=000078$ : (detent code 7 for COAS)
Proceed to "GOXDSPF" with $T S=K: V 06 N 87$ (AZ, EL) (If terminate, proceed to "KILIAOT"; if proceed, continue at next step; if other response, repeat this step)
$\mathrm{TSazm}=\mathrm{AZ}$
TSelev = EL
TSsrot $=0$
Proceed to "OPTAXIS"
(Otherwise, XYMARK is between 1 and 6 inclusive)
TSelev $=$ AOTE $L_{\text {XYMARK }}$
TSazm $=$ AOTAZ $_{X Y M A R K}$
TSsrot $=\mathrm{AOTAZ}_{2}-$ TSazm
OPTAXIS Perform "OANB"
$\underline{U} Y P=\cos T S s r o t \underline{U} Y P^{\prime}-\operatorname{sinTSsrot} \underline{U} X P{ }^{\prime}$
$\underline{\mathbb{U}} \underline{X P}^{\prime}=\operatorname{cosTSsrot} \underline{U X P}^{\prime}+\operatorname{sinTSsrot} \underline{Y} Y^{\prime}$
STARAD $_{6}=0$
Proceed to "GETMKS"
OANB TSelev = TSelev converted to one's complement form
TSazm $=$ TSazm converted to one's complement form
$\underline{S C A X I S}=\left(\begin{array}{l}\text { sinTSelev } \\ \text { cosTSelev sinTSazm } \\ \text { cosTSelev cosTSazm }\end{array}\right)$
$\underline{U Y P}^{\prime}=u n i t(\underline{S C A X I S} * \underline{K}:$ UNITX $) \quad(=(0, \operatorname{cosTSazm},-\operatorname{sinTSazm}))$
$\underline{U X X P}^{\prime}=$ unit( $\underline{U Y P}^{\prime} *$ SCAXIS)
Return

GETMKS XYMARK $=00000_{8}$
MARKCNTR $=0$
Switch bits 15 thru 10 of MARKSTAT to 0
$T S=K: V 54 N 71 \quad$ ("mark $\mathbf{X}$ or Y" verb; star code noun)
PASTIT Proceed to "GOMARK4"
(If terminate, proceed to "KILLAOT"; if proceed, proceed to "MARKCHEX"; if other response, proceed to "GETDAT".)

MARKRUPT (Entered on program interrupt initiated by the mark or mark reject buttons or by a commanded change in descent rate.)
$\underline{T S c d u}=\underline{C D U}$
TSt = TIMENOW
If bits 3,4 and 5 of channel 16 all $=0$ :
Proceed to "SOMEKEY"
(Something other than mark or mark reject)
If bit 12 of MARKSTAT $=1$, Resume
(Processing of marks inhibited)
If MARKSTAT $=00000_{8}: \quad$ (mark program not operating)
Perform "ALARM" with TS $=00112_{8}$
Resume
If bit 5 of channel $16=1$ (mark reject)
If FLAGWRD8 bit 8 (SURFFLAG) $=1$ :
If MARKCNTR > 0:

MARKCNTR $=$ MARKCNTR -1
Resume
Perform "ALARM" with $T S=001158$
Resume

ALIN - 6
(If bit 5 of channel $16=1$ :)
If bits 10 and 11 of MARKSTAT both $=0$ : (no marks to reject)
Perform "alarma with TS $=00115_{8}$

## Resume

Proceed to "REJECT"
If bit 4 of channel $16=1$, proceed to "YMKRUPT"
If bit 3 of channel $16=1$, proceed to "XMKRUPT"
SOMEKEY If bit 6 or bit 7 of channel $16=1$, proceed to "DESCBITS" (Comanded change in descent rate)

Perform "ALARM" with $\mathrm{TS}=001138$
Reaume
XMKRUPT $\quad 1=0$
XYMARK $=010008 \quad($ bit $10=1)$
Skip next two steps
YMKRUPT $\quad 1=1$
$X Y M A R K=02000_{8} \quad($ bit $11=1)$
If FLAGNPD bit 8 (SURFFLAG) $=1$, proceed to "SURFSTOR"
If bit 14 of MARKSTAT $=1$ (nark pair just completed)
If $M A R K C N T R \geq 4:$
Porform "ALARM" with TS $=00107_{8}$
If FLAGWRD8 bit 8 (SURFFLAG) $=1$;
Proceed te "DSPV6N79"

## Resume

MARKCNTR $=$ MARKCNTR +1
Switch bits 14,11 and 10 of MARKSTAT to 0
(End of indented steps)
If bit which is 1 in XYMARK is also 1 in MARKSTAT: (wrong mark)

Perform "ALARM" with TS $=00114_{8}$

## Resume

Proceed to "VACSTOR"
SURFSTOR
$i=0$
Switch bits 10 and 11 of MARKSTAT to 1
(Show surface mark for "MARKCHEX")
VACSTOR Get address of MARKVAC from low 9 bits of MARKSTAT
SIGHT $=$ TS

```
\(i=i+6\) MARKCNTR
 (\(x: 0,6,12,18,24\))
 (y: 1,7,13,19,25)
\(\operatorname{MKDEX}=1 \quad\) (store in case of surface mark)
MARKVAC \(_{i}=\) TScdu \(_{y}\) (inner gimbal angle)
\(i=i+2\)
 (\(x: 2,8,14,20,26\))
 (y: 3,9,15,21,27)
MARKVAC \(_{i}=\) TScdu \(_{z}\) (middle gimbal angle)
\(i=1+2 \quad(x: 4,10,16,22,28)\)
 (y: 5,11,17,23,29)
MARKVAC \(_{i}=T S C d u_{x}\) (outer gimbal angle)
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
Proceed to "REMARK" skipping first step
Switch bit 13 of MARKSTAT to 0 (enable selective mark
 reject)
MARKSTAT \(=\) MARKSTAT + XYMARK
 (switching bit 10 or 11 of MARKSTAT to 1)
If bits 10 and 11 of MARKSTAT both \(=1\) :
 Switch bit 14 of MARKSTAT to 1 (indicate both marks
 taken)
Proceed to "REMARK"
```

REJECT If bit 13 of MARKSTAT $=0$ : (reject only latest mark)
If bit 10 of XYMARK $=1$ :Switch bit 10 of MARKSTAT to 0
If bit 11 of XYMARK $=1$ :
Switch bit 11 of MARKSTAT to 0
If bit 13 of MARKSEAT $=1$ : (no mark since last reject)
Switch bits 10 and 11 of MARKSTAT to 02
Switch bit 14 of MARKSTAT to 0 (reject pair)
Switch bit 13 of MARKSTAT to 1 (see above)
RFMARK MKDEX = bits 11 and 10 of MARKSTAT shifted right 9 places to bit positions 2 and $1 \quad$ (MDEX $=0,1,2$ or 3 )
Establish "CHANGEVB" ..... (pr15)
Resume
CHANGEVB If FLAGNRD8 bit 8 (SURFFLAG) $=1$, proceed to "DSPV6N79"
$T S=K: V 54 N 71$ (request $X$ or $Y$ mark)
If MKDEX $=1, \mathrm{TS}=\mathrm{K}: \mathrm{V} 53 \mathrm{~N} 71$ (request $Y$ mark)
If $\operatorname{MKDEX}=2, \mathrm{TS}=\mathrm{K}: \mathrm{V} 52 \mathrm{~N} 71$ ..... (request $\mathbf{X}$ mark)
Proceed to "PASTIT"
MARKCHEX Switch bit 12 of MARKSTAT to 1 (inhibit processing in "MARKRUPT' )
Store address of MARKVAC in low 9 bits of XMMARK
MKDEX $=0$
If bits 10 and 11 of MARKSTAT are not both 1:
(last pair incomplete)
If MARKGNTR $=0$ :
ALIN - 9

```
(If MARKCNTR = 0:)
 Perform "ALARM" with TS = 001118
```

    Proceed to "GETMKS"
    MARKCNTR $=$ MARKCNTR -1

```
AVESTAR MKDEX = MKDEX + 1
 i=6 MARKCNTR
 Get address of MARKVAC from XYMARK
 If FLAGWRD8 bit 8 (SURFPLAG) = 1, proceed to "SURFSTAR"
 ANG = (MARKVAC }\mp@subsup{i}{+}{4},\mp@subsup{M}{MARKVAC }{i
 Perform "CD*TR*GS"
 Perform "NBTOSM"
 TS = [NBSMMAT] UXP
 i=i+1
 ANG}=(\mp@subsup{M}{MARKVAC }{i+4
 Perform "CD*TR*GS"
 Perform "NBTOSM"
 TS = ([NBSMMAT] UYP) * TS
 TSstar = -unitTS
AVEIT }\quad\textrm{n}=\textrm{MKDEX
```



```
 STARSAV2 = STARAD}
 If MARKCNTR > 0:
 MARKCNTR = MARKCNTR - 1
 Proceed to "AVESTAR"
 Call "MKRELEAS" in 0.05 seconds
```

    ALIN - 10
    
## Procoed to 4 ENDEXT*

DSPV6N79 Proceed to "GOXDSPF" with TS $=$ K:VO6N79 (CURSOR-SPIRAL) (If terminate, proceed to "KILIAOT"; if procead, proceed to "SURFRND"; if other response, continue at next step.)

If bit 6 of MPAC $=1$, proceed to "SURFAGAN"
(V32E)
Proceed to "DSPV6N79"
SURFEND Switch bit 14 of MARKSTAT to 1 (show mark end)
SURFAGAN Save VAC area for surface marking
MARKV AC $_{\text {MKDEX }}+1=$ CURSOR
MARKVAC $_{\text {MKDEX }}{ }^{2}=\operatorname{SPIRAL}$
If bit 14 of MARKSTAT $=1$, proceed to "MARKCHEX"
If MARKCNTR $\geq 4$ :
Perform "ALARM" with TS $=00107_{8}$
If FLAGWRD8 bit 8 (SURFFLAG) $=1$, proceed to "DSPV6N79"
Resume
MARKCNTR $=$ MARKCNTR +1
Proceed to "GETMKS" skipping first two steps
SURPSTAR ANG $=\left(\right.$ MARKVAC $_{i+4}$, MARKVAC $_{i}$, MARKVAC $_{i+2}$ ) (Save CDU's at time of X-mark for use in "CD*TR*GS") TSyrot $=$ MARKVAC $_{i+1} \quad$ (CURSOR angle converted to one's comp. form)
If TSyrot $=0$ :
If TSsrot $=0$ :
$\underline{T S}=$ SCAXIS
Proceed to "JUSTOA"
$\underline{T} S=u n i t\left(\underline{U} Y P{ }^{\prime}\right.$ cosTSyrot $-\underline{U X P}$ ' sinTSyrot)
$\underline{T} S=$ unit ( $\underline{S}$ * SGAXIS $)$

```
 TSsrot = MARKVAC i+3 (SPIRAL angle converted to one's comp. form)
 TSsep = 1/12(TSsrot - TSyrot + K:ABOUT1)
 TS = unit(cosTSsep SCAXIS + sinTSsep TS)
 JUSTOA Perform "CD*TR*GS"
 Perform "NBTOSM"
 TS = [NBSMMAT] TTS
 Proceed to "AVEIT"
 FLANET TSIGHT = TSt
 i = low 6 bits of AOTCODE (0 to 40)
 If STARIND = 0, BESTI = 6 i
 If STARIND = 1, BESTJ = 6 i
 If i=0: (planet)
 Proceed to "GOFLASH" with TS = K:VO6N88 (STARAD ()
 (If terminate, repeat this step; if proceed,
 continue at next step; if other response,
 repeat this step.)
 TS = unitSTARAD
 Return
If i< 38: (star)
 TS = K
 Return
Perform "LOCSAM"
If i}=38,\underline{T}S=\underline{VSUN
If i = 39, TS = VEARTH
If i}=40,\underline{TS}=\underline{VMOON
Return
```

```
LOCSAM QMIN = return addres:
 TSIGHT = TSt
 Perform "LSPOS"
 TDEC1 = TSIGHT
 Perform "LEMPREC"
 If PBODY = 0: (earth centered)
 VMOON = unit(K:RSUBEM VMOON - RATT)
 VEARTH = -unitRATT
 GEARTH = cos(arcsin(K:RSUBE / |RATT|) + K:5DEGREES)
 CMOON = K:CSS5
 If PBODY = 2: (moon centered)
 VSUN = unit(YSUN - K:ROE MMOON)
 VEARTH = - unit(K:RSUBEM VMOON + RATT)
 VMOON = - unitRATT
 CMOON = cos(arcsin(K:RSUBM / |RATT |) + K:5DEGREES)
 CEARTH = K:CSS5
 CSUN = K:CSSUN
 Return via QMIN
CHKSDATA Switch FLAGWRDO bit 3 (FREEFLAG) to 1
TSang = arccos(\mp@subsup{\underline{STARAD}}{0}{}\cdot\mp@subsup{\underline{STARAD}}{6}{})
Switch FLAGWRDO bit 3 (FREEFLAG) to 0
THETA = arccos(TS * TS 12) - TSang
DSPTEM1 dp = |THETA
Switch FLAGWRDO bit 3(FREEFLAG) to 1
```

Proceed to "GOFLASH" with TS $=$ K:V06N05 (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed, skip next step; if other response, continue at next step.)

Switch FLAGWRDO bit 3 (FREEFLAG) to 0
Return

```
AXISGEN TS1 = TS
```



```
 TS3 = TS1 * TS2
 [RFSTMAT] =[[TS1x TS1y TS1 z
 TS1 = STARAD O
```



```
 TS3 = T-S1 * TS2
 [SMSTMAT] =[[S1 x TS1 y TS1 z
 [DGMAT] = [SMSIMAT]]}[\mathrm{ [RFSTMAT]
 Unitize each of the three rows of DCMAT
 (assure that it is orthogonal)
STARAD O = [GCMAT] T K:UNITX
STARAD}6=[\mathrm{ DCMAT]] K:UNITY
\mp@subsup{STSARAD }{12}{}=[\mathrm{ [DMAT]] K}
Return
PROG52 Perform "RORBOTH"
 If FLAGWRD2 bit 4 (PFRATFLG) = 1:
 OPTION2 = 1 and skip noxt step
 OPTION2 = 3 (REFSMMAT option)
 ALIN - }1
```

P52B

If OPTION2 bits 2 and $1=0: \quad$ (OPTION2 $=0,4,12, \ldots$. ).
TS = TLAND and skip next step (Landing site)
(Otherwise, OPTION2 = 2,6,....) (Nominal)
$T S=-0$
DSPTEM1 $=T S$
Proceed to "GOFLASH" with TS = K:VO6N34
(DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

If more significant half of DSPTEM1 $\leq 0$ :
TALIGN $=$ TTMENOW and skip next step
TALIGN = DSPTEM1
If OPTION2 bit $2=1$ (OPTION2 $=2,6,10, \ldots .$. )
TSt $=$ TALIGN
Perform "S52.3"
Proceed to "P52D"
P52LS Switch FLAGWRD1 bit 13 (ERADFLAG) to 0 (OPTION2 $=0,4,12, \ldots$ )
Switch FLAGWRD3 bit 12 (LUNAFIG) to 1
$\underline{T} S=$ RIS (landing site vector in MF coordinates)

```
 TSt = TALIGN
 TLAND = TALIGN
 Perform "MOONMX"
 AIPHAV =[MOONMAT] T (\underline{TS + IMM504 * IS)}
 TSt = TALIGN
 Perform "N89DISP"
 XSMDrf = unitALPHAV
 Perform "LSORIENT" (compute landing site orientation)
 Proceed to "P52D"
N89DISP TStime = TSt
 Perform "LAT-LONG" (calculate and display landing site)
 LANDLONG = LONG / 2
 LANDALT = ALT
 LANDLAT = LAT
 Proceed to "GOFLASH" with TS = K:VO6N89 (LANDLAT,LANDLONG,LANDALT)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; if other response, repeat
 this step.)
LONG = 2 LANDLONG
ALT = LANDALT
LAT = LANDLAT
TSt = TStime
Perform "LALOTORV"
Return
P52D Perform "S52.2" (compute gimbal angles)
Proceed to "GOFLASH" with TS = K:VO6N22 (THETAD)
 (If terminate, proceed to "GOTOPOOH"; if proceed
 continue at next step; if other response, proceed
 to "P52D".)
```

```
 Proceed to "GOPERF1" with TS = 00013 (perform checklist #13)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 proceed to "REGCOARS"; if other response, continue
 at next step.)
 XDC = unit([REFSMMAT] XSMDrf) (get desired SM wrt present SM)
 YDC = unit([REFSMMAT] YSMDrf)
 ZDC = unit([REFSMMAT] ZSMDrf)
 Perform "GYCOARS"
 Proceed to "GOTOPOOH"
GYCOARS QMAJ = return address
 Perform "CAICGTA"
 Switch FLAGWRD2 bit 15 (DRIFTFIG) to 0
 Switch FIAGWRD3 bit 13 (REFSMFIG) to 0
 Perform "GODSPR" with TS = K:V16N2O (monitor gimbal angles)
 Perform "IMUPULSE" with TS = address of OGC
 Perform "IMUSTALL"
 If ISSGOOD = 0, perform "CURTAINS" (bad return)
 [REFSMMAT] = [XSMDMAT]
 Switch FLAGWRD2 bit 4 (PFRATFLG) to 0
 Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
 1dPIPADT = TIMENOW
 PIPA = -0
GCOMP = O
Switch FLAGWRD2 bit 15 (DRIFTFIG) to 1
Proceed to "R51K"
```

S52. 2 QMAJ $=$ return address
Perform "CDUTRIG"
Perform "CALCSMSC"
$\underline{\operatorname{XNBrf}}=$ unit $\left([\text { REFSMMAT }]^{T} \underline{\text { anBsm }}\right)$
YNBrf $=$ unit $\left([\text { REFSMMAT }]^{T}\right.$ YNBsm $)$
ZNBrf $=$ unit ([REFSMMAT] $]^{T}$ ZNBsm $)$
$\underline{X} S M r f=$ XSMDrf
$\underline{Y} S M r f=Y S M D r f$
$\underline{Z} S M r f=Z \underline{S M D r f}$
Perform "CALCGA"
Return via QMAJ
S52.3 QMAJ $=$ return address
$\operatorname{TDEC} 1=\mathrm{TSt}$
Perform "LEMCONIC"
$\underline{X S M D r f}=$ unitRATT
$\underline{Y}$ SMDrf $=$ unit (VATT * RATT $)$
$\underline{Z} S M D r f=u n i t(\underline{X} S M D r f *$ Y $\operatorname{SMDrf})$
Return via QMAJ
LSORIENT QMAJ = return address
ZSMDrf $=$ unit $[(\underline{R R E C T C S M} * \underline{\text { VRECTCSM }}) *$ XSMDrf $]$
YSMDrf $=$ unit (ZSMDrf * X XMDrf $)$
Return via QMAJ
CAL53A Perform ${ }^{\text {n }} 52.2^{n}$
$\underline{T} S=|\underline{C D U}-\underline{T H E T A D}| \quad\left(T S_{x}=\operatorname{CDJ}_{x}-\operatorname{THETAD}_{x}\right.$, etc.)

If any of the three components of $T S$ is $\geq \mathrm{K}:$ DEGREE 1 and < K:DEG359:

Perform "COARSE"
1dPIPADT $=$ TTMENOW ${ }_{\text {Is }}$
$\underline{P I P A}=-0$
$\operatorname{GCOMP}=0$
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
$[$ REFSMMAT $]=\left[\begin{array}{llll}\text { XSMrf }_{x} & \text { XSMrf }_{y} & \text { XSMrf }_{z} \\ \text { YSMrf }_{x} & \text { YSMrf }_{y} & \text { YSMrf }_{z} \\ \text { ZSMrf }_{x} & \text { ZSMrf }_{y} & \text { ZSMrf }_{z}\end{array}\right]$
Return
R51 QMAJ $=$ return address
Proceed to "GOPERF1" with TS $=00015$ (perform checklist \#15)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, proceed to "R51E".)

TSt $=$ TIMENOW + K:TSIGHT1
Porform "LOCSAM"
Perform "R56" (select best star pair)
If HAYEPAIR $\times 0$ :

Perform "ALARM" with TS $=004058$
Proceed to "GOFLASH" with TS = K:VO5NO9 (display alarm)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, proceed to second step of "R51".)

R51E $\quad$ STARIND $=0$ (start with star farther from line-of-sight)
Perform "R52" (set AOTCODE and maneuver LM)
Perform "AOTMARK"
Perform "AOTSTALL"
If AOTGOOD $=0$, perform "CURTAINS" (bad return)
If STARIND = 0:
STARSAV1 $=$ STARAD $_{6}$
TSt $=$ TSIGHT
Perform "PLANET"
PLANVEC = TS
STARIND = 1
Proceed to second step of "R51E"
STARSAV2 $^{2}=$ STARAD $_{6}$
TSt $=$ TSIGHT
Perform "PLANET"
STARAD $_{6}=$ unit( $[$ REFSMMAT $]$ TS $)$
STARAD $_{0}=$ unit( [REFSMMAT] PLANVEC $)$
$\underline{T S}_{6}=$ STARSAV1
$\underline{T S}_{12}=$ STARSAV 2
Perform "CHKSDATA" ..... (R54)
If FLAGWRDO bit 3 (FREEFLAG) $=1$ :
Perform "AXISGEN"Perform "R55"Switch FLAGWRD2 bit 4 (PFRATFLG) to 0R51K Proceed to "GOPERF1" with TS = 00014 (check:list \#14)(If terminate, proceed to "GOTOPOOH"; if proceed,proceed to second step of "R51"; if otherresponse, continue at next step.)
Return via QMAJ
ALIN ..... 20

AOTCODE $=0^{00200} 8+\mathrm{BESTI} / 6$ (setting detent code to 2)
If $\operatorname{STARIND}=1, \operatorname{AOTCODE}=0^{00200} 8+B E S T J / 6$
Proceed to "GOFLASH" with TS = K:VO1N70 (AOTCODE)
(If terminate, proceed to. "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

Switch FLAGWRD5 bit 6 (3AXISFIG) to 0
TS1 $=$ bits 15-7 of AOTCODE shifted right to bit positions 9-1
If $T S 1 \leq 0$, proceed to "GETAZEL" (COAS calibration)
If TS1 = 7, proceed to "GETAZEL" (COAS sighting)
$i=$ TS1 (detent position between 1 and 6 inclusive)
TSazm $=$ AOTAZ $_{i}$
TSelev = K:r52el
Proceed to "AZEL"
GETAZEL Proceed to "GOFLASH" with TS = K:VO6N87 (AZ, EL)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)
$\mathrm{TSazm}=\mathrm{AZ}$
TSelev = EL
AZEL Perform "OANB" (get SCAXIS)
TSt = TIMENOW
Perform "PLANET"
POINTVSM $=$ unit([REFSMMAT] TS $)$
Perform "R60IEM" (attitude maneuver)
If bits $15-7$ of AOTCODE $=0$ : (COAS calibration)
Proceed to "R52" skipping first two steps
Return

```
R55 QMIN = return address
 Perform "CALCGTA"
 Proceed to "GOFLASH" with TS = K:VO6N93 (OGC,IGC,MGC)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; if other response, return
 via QMIN.)
 TS = address of (OGC, IGC, MGC)
 Perform "IMUPULSE"
 Perform "IMUSTALL"
 If ISSGOOD = 0, perform "CURTAINS" (bad return)
 Return via QMIN
R56 QMIN = return address
 Perform "CDUTRIG"
 Perform "CALCSMSC"
 Switch FLAGWRD3 bit 10 (VFLAG) to 1
 BESTI = 0
 BESTJ = 0
 SAX = unit([REFSMMAT] [T (\frac{1}{2}}\mathrm{ \_NBsm + <
 i = 38
PIC1 i=i-1
 If i = 0, proceed to "PICEND"
 If K:CATLOG }\mp@subsup{|}{i}{*SAX}< K:CSS33, proceed to "PIC1"
 j = i
PIC3 j = j - 1
 If j = 0, proceed to "PIC1"
 ALIN - 22
```

```
If K:CATLOGG (SAX < K:CSS33, proceed to "PIC3"
If K:CATLOGG (K:CATLOG }\mp@subsup{\mp@code{j}}{\}{\
TSstar = K}:\mp@subsup{\mathrm{ CATLOG }}{i}{
Perform "OCCULT" (see if first star is occulted)
If FLAGWRD3 bit 7 (CULTFLAG) = 1, proceed to "PIC1"
TSstar = K:CATLOG
Perform "OCCULT" (see if second star is occulted)
If FLAGWRD3 bit 7 (CULTFLAG) = 1, proceed to "PIC3"
If FLAGWRD3 bit 10 (VFLAG) = 1:
 Switch FLAGNRD3 bit 10 (VFLAG) to 0
 BESTI = 6 i
 BESTJ = 6 j
 Proceed to "PIC3"
BESTI = BESTI / 6
BESTJ = BESTJJ / 6
TSa = \underline{K}:CATLOG BESTI ' K}:\mp@subsup{CATLOG}{BESTJ}{
BESTI = 6 BESTI
BESTJ = 6 BESTJ
Switch FLAGNRD3 bit 10 (VFLAG) to 1
TSb = K:CATLOG
Switch FLAGWRD3 bit 10 (VFLAG) to 0
```

ALIN - 23

```
If TSa > TSb: (new pair has better separation)
 BESTI = 6 1
BESTJ = 6 j
Proceed to "PIC3"
PICEND
```

```
If FLAGWRD3 bit 10 (VFLAG) = 1: (no pairs found)
```

If FLAGWRD3 bit 10 (VFLAG) = 1: (no pairs found)
HAVEPAIR = 0
Return via QMIN
i = BESTI / 6
j = BESTJ / 6
If SAX | K:CATLOGG
BESTI = 6 j (farther)
BESTJ = 6 i (closer)
HAVEPAIR = 1
Return via QMIN
OCCULT

$$
\begin{aligned}
& {[\text { TSmat }]=\left[\begin{array}{lll}
\text { VEARTH }_{x} & \text { VEARTH }_{y} & \text { VEARTH }_{z} \\
\operatorname{VSUN}_{x} & \text { VSUN }_{y} & \text { VSUN }_{z} \\
\operatorname{VMOON}_{x} & \text { VMOON }_{y} & \operatorname{VMOON}_{z}
\end{array}\right]} \\
& \underline{T S}=\left(\begin{array}{c}
\text { CEARTH } \\
\text { CSUN } \\
\text { CMOON }
\end{array}\right)-[\text { TSmat }] \text { TSstar }
\end{aligned}
$$

$$
\text { Switch FLAGNRD3 bit } 7 \text { (CULTFLAG) to } 0
$$

$$
\text { If } \mathrm{TS}_{\mathrm{x}} \leq 0 \text {, or if } \mathrm{TS}_{\mathrm{y}} \text { or } \mathrm{TS}_{\mathrm{z}}<0:
$$

$$
\text { Switch FLAGWRD3 bit } 7 \text { (CULTFLAG) to } 1
$$

Return

$$
\text { ALIN - } 24
$$

```
\begin{tabular}{lr}
Perform "TMUCHK" & (assure that IMU is on) \\
OPTION2 \(=00003_{8}\) & (REFSMMAT orientation)
\end{tabular}

\section*{P570PT}

Perform "GOPERFLR" with OPTION1 \(=000018\)
(If terminate, proceed to "GOTOPOOH"; if proceed, skip next step; if other response, repeat this step.)

End job
If OPTION2 bit \(2=0\) and bit \(1=1\) : (OPTION2 \(=1,5,9, \ldots\))
Proceed to "PACKOPTN" (Preferred orientation)
If OPTION2 bit \(2=1\) and bit \(1=0\) : (OPTION2 \(=2,6,10, \ldots\))
Proceed to "P570PT" (recycle; invalid in P57)
If OPTION2 bits 2 and \(1=1\) : (OPTION2 \(=3,7,11, \ldots\))
[XSMD] \(=\) [REFSMMAT \(]\) (REFSMMAT orientation)
Proceed to "PACKOPTN"
(Otherwise, OPTION2 \(=0,4,8,12, \ldots\)) (Landing site orientation)
DSPTEM1 = TIG
Perform "GOFLASH" with TS = K:VO6N34 (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

If DSPTEM1 \(=0: \quad(\) key-in time \(=0)\)
TALIGN \(=\) TIMENOW
TDEC1 = TIMENOW
Proceed to "P57D"
If TIMENOW \(\geq\) DSPTEM1: (key-in time \(\leq\) present time)
TALIGN = DSPTEM1
TDEC1 = DSPTEM1
Proceed to "P57D"
TIG \(=\) DSPTEM1 (key-in time \(>\) present time)
TALIGN = DSPTEM1
TDEC1 \(=\) DSPTEM1
P57D Perform "LEMPREC"
XSMDrf = unitRATT
Perform "LSORIENT" (compute desired IMU orientation)
PACKOPTN OPTION2 \(=0^{00000} 8\) (zero alignment option)OPTION3 \(=00000_{8} \quad\) (zero flag bit configuration)
If FLAGWRD3 bit 13 (REFSMFLG) \(=1\), OPTION3 \(=00100_{8}\)
If FLAGWRD6 bit 1 (ATTFLAG) \(=1\), OPTION3 \(=\) OPTION \(3+00010_{8}\)
OPTION1 \(=0^{00010} 8\)
DSPOPTN Proceed to "GOFLASH" with TS = K:VO5N06 (OPTION1,OPTION2,OPTION3)(If terminate, proceed to "GOTOPOOH"; if proceed, continueat next step; if other response, repeat this step.)
If FLAGWRD3 bit 13 (REFSMFLG) = 1, proceed to "GETLMATT"
If FLAGWRD6 bit 1 (ATTFLAG) = 1, proceed to "BYLMATT"
If OPTION2 bit \(2=1: \quad\) (OPTION2 \(=2,3,6,7, \ldots\))
Proceed to "BYLMATT" (don't have attitude)
Perform "ALARM" with \(\mathrm{TS}=00701\) g (option inconsistent with flags)
Proceed to "GOFLASH" with TS \(=\mathrm{K}:\) V05N09 (display alarm)(If terminate, proceed to "GOTOPOOH"; if proceed, proceed to"DSPOPTN"; if other response, proceed to "DSPOPTN".)
GETLMATT Perform "REFMF"
BYLMATT Switch FLAGWRD8 bit 2 (INITALGN) to 1
If OPTION2 bit \(1=1: \quad(\) OPTION2 \(=1,3,5,7, \ldots\))
Proceed to "GVDETER"
ATTCHK If FLAGWRD6 bit 1 (ATTFLAG) = 1, proceed to "P570PTO"
Switch FLAGWRD8 bit 2 (INITALGN). to 0
If OPTION2 bits 2 and 1 both \(=0: \quad\) (OPTION2 \(=0,4,8, \ldots\))
Proceed to "P570PTO"
```

    If OPTION2 bit 2 = 0 and bit 1 = 1:(OPTION2 = 1,5,9,\ldots.)
        Proceed to "P570PT1"
    If OPTION2 bit 2 = 1 and bit 1 = 0:(OPTION2 = 2,6,10,\ldots..)
        Proceed to "P570PT2"
    If OPTION2 bits 2 and 1 both = 1: (OPTION2 = 3,7,11,\ldots..)
        Proceed to "P570PT3"
    P570PTO VEC1 = YNBSAV
VEC}2= ZNBSAV
Parform "CDUTRIG"
Perform "CALCSMSC"
TS = INBsm
SAMETYP STARSAV1 = TS
STARSAV2 = ZNBsm
Perform "MFREF" (VEC1,2 to reference coordinates)
Proceed to "SURFLINE"
P570PT1 VEC1 = unitRLS
VEC2 = ZNBSAV
Perform "CDUTRIG"
Perform "CALCSMSC"
Perform "CD*TR*GS"
Perform "NBTOSM"
TS = [NBSMMAT] GSAV
Proceed to "SAMETYP"

```
 ALIN - 27
```

P570PT2 Proceed to "2STARS"
P570PT3 VEC1 = unitRLS
VEC2 = unitRLS
Perform "CD*TR*GS"
Perform "NBTOSM"
STARSAV1 = [NBSMMAT ] GSAV
Perform "MFREF"
Proceed to "1STAR"
SURFLINE STARAD O = unit([XSMDMAT] VEC1)
TS
STARAD 6 = unit([XSMDMAT] VEC2)
TS
If FLAGWRD8 bit 2 (INITALGN) = 1, proceed to "INITBY"
Perform "CHKSDATA" (R54)
If FLAGWRDO bit 3 (FREEFLAG) = 0, proceed to "P57POST"
INITBY Perform "AXISGEN"
Perform "CALCGTA"
If FLLAGWRD8 bit 2 (INITALGN) = 1, skip next step
Proceed to "GOFLASH" with TS = K:V06N93 (gyro angles)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, proceed
to "P57P0ST".)
TS Ogc = (OGC, IGC, MGC)
TS = TS ogc /K:5DEGREES

```
 ALIN - 28

If overflow (any component of \(T S \geq 1\)):
\(\underline{X} \operatorname{SMrf}=[\text { DCMAT }]^{T}: \underline{K}:\) UNITX
YSMref \(=[\text { DCMAT }]^{T} K:\) UNITY
\(\underline{Z S M r f}=[\text { DCMAT }]^{T} \underline{K}:\) UNITZ
Perform "CDUTRIG"
Perform "CALCSMSC"
Perform "CALCGA"
If FLAGWRD8 bit 2 (INITALGN) \(=0\), skip next step
Proceed to "GOFLASH" with TS \(=\mathrm{K}:\) VO6N22 (THETAD)
(If terminate, proceed to "GOTOPOOH" ; if proceed, continue at next step; if other response, repeat this step.)

Perform "COARSE"
1dPIPADT \(=\) TIMENOW \(_{\text {Is }}\)
PIPA \(=-0\)
GCOMP \(=0\)
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
\(\mathrm{ANG}=\) THETAD
Perform "CD*TR*GS"
Perform "NBTOSM"
\(\underline{S T A R A D}_{0}=[\) NBSMMAT \(] \underline{K}:\) UNITX
STARAD \(_{6}=[\) NBSMMAT \(] K\) UNITY
Perform "CDUTRIG"
Perform "CAICSMSC"
\(\mathrm{TS}_{6}=\underline{X N B s m}\)
\(\mathrm{TS}_{12}=\) YNBsm
Perform "AXISGEN"
Perform "CAICGTA"
(End of indented steps)
ALIN - 29
```

    TS = address of (OGC,IGC,MGC)
    Perform "IMUPULSE"
    Perform "IMUSTALL"
    If ISSGOOD = 0, perform "CURTAINS"
    SURFDISP Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
[REFSMMAT] = [XSMDMAT]
If OPTION2 = 000000 g, proceed to "P57P0ST"
If FLAGWRD8 bit 2 (INITALGN) = 1:
Proceed to "ATTCHK" skipping first step
Perform "REFMF"
Proceed to "P57P0ST"
2STARS STARIND = 0 (first star)
Skip next step
1STAR STARIND = 1 (second star)
R59 If FLAGWRD3 bit 13 (REFSMFLG) = 0, proceed to "R590UT"
Proceed to "GOFLASH" with TS = K:V01N70 (detent and star code)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response,
proceed to "R59".)
i = low 6 bits of AOTCODE
If STARIND = 0, BESTI = 6 i
If STARIND = 1, BESTJ = 6 i

```
ALIN - 30

If \(i=0\), proceed to "R590UT" (planet, not star code)
If \(38 \leq 1\), proceed to \({ }^{\text {RR590UT" (sun, earth or moon) }}\)
\(\underline{T S}=\operatorname{unit}\left([\right.\) ReFSMMAT \(] \underline{K}:\) CATLOG \(\left._{i}\right)\)
Perform "CDUUTRIG"
Perform "SMTONB"
\(\underline{\text { STAR }}=\) [SMNBMAT] TS (star vector in NB coor)
POSCODE \(=1\)
```

INCAZ QMIN = AOTAZZ
TSazm = QMIN
TSelev = K:r52el (elevation = 45 degrees)
Perform "OANB"
TS1 = arccos(STAR P SCAXIS )
TS2 = TS1 - K:DEG30
If TS2 \geq 0: (star not in field of view; try next position)
POSCODE = POSCODE + 1
If POSCODE \geq7, proceed to "R59ALM"
Proceed to "INCAZ"
TS = TS1 - K:DEG. }
If TS< 0:
CURSOR = 0
SPIRAL = 0

```
 ALIN - 31
```

(If TS < 0:)

```

Proceed to "79DISP"
```

TS1 = 12 TS1
TS2 = unit(SGAXIS * K
TS3 = unit(-TS2 * SCAXIS)
TS4 = unit(SGAXIS * STAR)
TS5 = arccos(TS4 P TS2)
TS = TS3\cdotTS4
If TS \geq0, skip next step
TS5 = K:ABOUT1 - TS5
TS5 = TS5 + QMIN / 2 (one's complement form, scaled revs)
Perform "1ST02S"
CJRSOR = TS5 (two's complement form, scaled \frac{1}{2} revs)
TS = CURSOR + TS1 (one's complement form, scaled revs)
Perform "1ST02S"
SPIRAL = TS (two's complement form, scaled \frac{1}{2} revs)

```

79DISP Proceed to "GOFLASH" with TS = K:VO6N79 (CURSOR,SPIRAL,POSCODE)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, proceed to "R59",)

TS = bits 3-1 of POSCODE shifted left to bits 9-7
TS1 = bits 6-1 of AOTCODE
AOTCODE \(=\) TS + TS1 (star code in bits 6-1; detent code (derived from POSCODE) in bits 9-7)
```

R590UT Perform "AOTMARK"
Perform "AOTSTALL"
If AOTGOOD = 0, perform "CURTAINS"
Proceed to "R59RET"
R59ALM Perform "ALARM" with TS = 004048
Proceed to "GOFLASH" with TS = K:V05NO9 (display alarm)
(If terminate, proceed to "GOTOPOOH"; if proceed,
proceed to "R590UT"; if other response, proceed to
"R59".)
R59RET If STARIND = 0, proceed to "ASTAR"
TSt = TSIGHT (time of second mark)
Perform "PLANET"
VEC2 = TS
Perform "SURFLINE"
ASTAR STARSAV1= STARAD 6 (first star marked)
TSt = TSIGHT (time of first mark)
Perform "PLANET"
VEC1 = TS
Proceed to "1STAR" (get second star sighting)
GVDETER THETAD }=\textrm{x}=\textrm{K}:42\textrm{DEG
THETAD
THETAD }=\textrm{z}=\textrm{K}:35\textrm{DEG
Switch FLAGWRD3 bit 13(REFSMFLG) to 0
Perform "LUNG" (align to IHETAD and get gravity vector)

```
 ALIN - 33
```

    Perform "NBTOSM"
    \underline{nNBsm}=[\mathrm{ NBSMMAT] K}:\mathrm{ UNITX}
    XSMsm = 2 STAR STAR - K:UNITX
    YNBsm = [NBSMMAT] K
    \underline{YSMsm = 2 STAR y STAR - K}: UNITY
    ZNBsm = [NBSMMAT] K:UNITZ
    ZSMsm = 2 STAR 
    Perform "CALCGA" (get new THETAD)
    STARAD 12 = \frac{1}{2} GOUT
    Perform "LUNG"
    STARSAV1 = unit(\frac{1}{2} GOUT + STARAD 12)
    DSPTEM1 = arccos(STARSAV1 (GSAV)
Switch FLAGNRDO bit 3 (FREEFLAG) to 0
Proceed to "GOFLASH" with TS = K:VO6NO4 (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response,
switch FLAGWRDO bit 3 (FREEFLAG) to 1 and
continue at next step.)
GSAV = STARSAV1
If FLAGWRDO bit 3 (FREEFLAG) = 1, proceed to "GVDETER"
Proceed to "ATTCHK"
LUNG QMIN = return address
GACC = 0
Perform "COARSE"
GCTR = -20
1dPIPADT = K:PRI031

```
 GCOMPSW = 0
 GGOMP = 0
 Perform "PIPASR" skipping first step (don't load PIPTIME1)
GREED Call "GRABGRAV" in two seconds
 End job
GRABGRAV Perform "PIPASR" skipping first step
 Establish "ADDGRAV"
 (pr13)
 End task
ADDGRAV Perform "1/PIPA"
 GCTR = GCTR + 1
 GACC = GACC + K:lungt DELV
 If GCTR < 0, proceed to "GREED"
 STAR = unitGAGC
 Perform "CDUTRIG"
 Perform "SMTONB"
 GOUT = [SMNBMAT] STAR
 Return via QMIN
REGCOARS Perform "CAL53A"
 Switch FLAGWRD3 bit 13 (REFSMFIG) to 1
 Switch FLAGWRD2 bit 4 (PFRATFLG) to 0
 Perform "R51"
 Proceed to "GOTOPOOH"
```

        ALIN - 35
    ```
P57P0ST Proceed to "GOPERF1" with TS = 00014% (checklist # 14)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 proceed to "ATTCHK" skipping first step; if other
 response, continue at next step.)
 If OPTION2 }\not=000002g\mathrm{ , proceed to "GOTOPOOH"
 (OPTION2 = 00002 % so calculate landing site)
 Perform "CDUTRIG"
 Perform "NBTOSM"
 TSgref = [REFSMMAT] T}[\mathrm{ [NBSM] GSAV
 Switch FLAGWRD3 bit 12 (LUNAFLG) to 1
 ALPHAV = |\underline{RIS | TSgref}
 Switch FLAGWRD1 bit 13 (ERADFLAG) to 0
 TSt = TIMENOW
 Perform "N89DISP"
 RN = ALPHAV (scaled B29)
 PIPTIME = TSt
 Perform "MOONMX"
 RIS =[MOONMAT }|(\underline{RNN}-(\MOONMAT | } IMM504)* \underline{RN}
 Proceed to "GOTOPOOH"
KILLAOT Switch EXTVBACT to zero (allow extended verbs)
 Proceed to "GOTOPOOH"
MMUCHK If bit 9 of IMODES 30 = 1: (IMU off)
 Perform "ALARM" with TS = 00210
 Proceed to "GOTOPOOH"
 Switch FLAGWRDO bit 8 (IMUSE) to 1
 Return
```

    ALIN - 36
    1dPIPADT: See IMUC section.
ALPHAV: See COOR section.
ALT: See COOR section.
ANG: See COOR section.
AOTAZ ${ }_{i}$, AOTEL ${ }_{i}(i=1,2,3,4,5,6)$ : Twelve single precision scalars stored in units of revolutions, scaled B-1 in two's complement form. The AOT has six working positions, fixed by detents, defined by angles of rotation around the -X spacecraft axis, measured from the $+Z$ spacecraft axis (AOTAZ) and by angles of elevation above the $Y-Z$ plane (AOTEL). These quantities are stored in erasable memory because their exact values vary among spacecraft, but the nominal values are;

|  | i | AOTAZ $_{i}$ |
| :--- | :---: | :---: |
| 1 | (left forward) | $-60^{\circ}$ |
| 2 (forward) | $0^{\circ}$ | $45^{\circ}$ |
| 3 | (right forward) | $60^{\circ}$ |
| 4 (right rear) | $120^{\circ}$ | $45^{\circ}$ |
| 5 | (rear) | $180^{\circ}$ |
| 6 (left rear) | $-120^{\circ}$ | $45^{\circ}$ |
|  |  | $45^{\circ}$ |
|  |  | $45^{\circ}$ |

AOTCODE: A single precision scalar containing the star selection code in bits 6-1 (an octal number from 1 to 458 for stars, 0 for a planet, and $46 \mathrm{~g}^{-50} 8$ for sun, earth and moon), and the AOT detent code in bits 9-7 (1,2,3,4,5 or 6 for AOT detents; 0 for COAS calibration; 7 for COAS position to be specified.)

AOTGOOD: A flag indicating that the AOT marking procedure was successfully executed. (Implemented as a variable return address in the listing.)

AZ, EL: Single precision angles of azimuth and elevation of the COAS stored in units of revolutions, scaled B-1 in two's complement form.

BESTI: Single precision value, scaled B14, of the index parameter for star \#1 of the "best" star pair as determined by "R56". It is the star farthest from the AOT center detent position and will be zero if no star pairs are found that are satisfactory. In "R59" it is the value of the index parameter of the first celestial body used for marking (if two bodies are to be used). It is equal to six times the decimal equivalent of the "star selection code" (see AOTCODE definition and the Star Table).

BESTJ: See BESTI. In "R56" it is the index parameter for star \#2 which is the closest star to the AOT center detent position. In "R59" it is the index parameter of the second celestial body used for marking (if two are to be used) or the index parameter of the single body being used (Technique 3 alignment).

CDU: See COOR section.
CEARTH, CMOON, CSUN: Three double precision cosines defining the areas around the earth, moon and sun within which an object to be marked is considered to be occulted; scaled B2 and unitless.

CURSOR: Single precision angle through which the reticle must be rotated to place the cursor on a star for a given viewing position. Used only on the lunar surface, scaled BO in units of half revolutions.
[DCMAT]: Double precision direction cosine matrix, scaled B1 and unitless. When multiplied by $K$ :UNITX, $K$ :UNITY and $K$ :UNITZ it is equivalent to the program notation of $X \overline{D C}, Y$, $Y D C$ and $\overline{Z D C}$ respectively.

DELV: See SERV section.
DSPTEM1, DSPTEM2: See DATA section.
EXTVBACT: See EXVB section.
GACC: Double precision sum of measured gravity vectors, scaled B13 in units of centimeters per second squared and expressed in stable member coordinates.

GCOMP, GCOMPSW: See IMUC section.
GCTR: Single precision counter scaled B14 and unitless. Set to -20 in "LUNG" and incremented by one each two seconds until it becomes zero, thus allowing 40 seconds of PIPA readings for determination of the gravity vector.

GOUT: Double precision unit gravity vector, scaled B1 and expressed in navigation base coordinates.

GSAV: Double precision storage for unit gravity vector determined. in previous pass through "P57", scaled B1 and expressed in navigation base coordinates.

HAVEPAIR: Single precision flag to indicate whether "R51" was successful in finding a star pair adequately separated for marking.

IMODES30, IMUCADR; ISSGOOD:See IMUC section.
K:35DEG: Single precision constant stored as 062118, scaled B-1 in units of revolutions. Equation value: 0.09793. (Equivalent to 35.255 degrees.)

K:42DEG: Single precision constant stored as 07357 g, scaled B-1 in units of revolutions. Equation value 0.11667 (Equivalent to 42.001 degrees.)

K:5DEGREES: Double precision constant stored as 0.013888889, scaled BO in units of revolutions. Equation value: 0.013888889. (Equivalent to 5 degrees.)

K:ABOUT1: Double precision constant, scaled BO in units of revolutions. Equation value: 0.9999999.

K:CATLOG $:$ : A list of thirty-seven unit vectors defining the position of stars to be used as reiferences against which star sighting measurements can be compared, scaled B1 and unitless. See table below.

K:USS33: Double precision constant stored as 0.16070 , scaled B2 and unitless. Equation value: 0.64280. (Equivalent to the cosine of 50 degrees)

K:CSS40: Double precision constant stored as 0.16070 , scaled B2 and unitless. Equation value: 0.64280. (Equivalent to the cosine of 50 degrees)

K:CSS5: Double precision constant stored as 0.2490475 , scaled B2 and unitless. Equation value: 0.99619. (Equivalent to the cosine of 5 degrees)

K:CSSUN: Double precision constant stored as 0.125 , scaled B2 and unitless. Equation value: 0.5. (Equivalent to the cosine of 60 degrees)

K:DEG.5: Double precision constant stored as 0.00138888 , scaled BO in units of revolutions. Equation value: 0.00138888.

K:DEG30: Double precision constant stored as 0.083333333 , scaled BO in units of revolutions. Equation value: 0.083333333. (Equivalent to 30 degrees)

K: DEG359: Single precision constant stored as $16338 \times 2^{-14}$, scaled BO in units of revolutions. Equation value: 0.99719. (Equivalent to 359 degrees)

K:DEG60: Single precision constant stored as 0.333313 , scaled B-1 in units of revolutions. Equation value: 0.1666. (Equivalent to 60 degrees)

K:DEGREE1: Single precision constant stored as $46 \times 2^{-1 / 4}$, scaled BO in units of revolutions. Equation value: 0.0028. (Equivalent to 1 degree)

K: lungt: Implied constant, scaled B-1 in units of seconds ${ }^{-1}$. Equation value: $\frac{1}{2}$.

K:r52el: Single precision constant stored as 10000 g , program notation "BIT13", scaled B-1 in units of revolutions. Equation value: 0.125. (Equivalent to 45 degrees)

K:ROE: Double precision constant stored as 0.00257125, scaled BO and unitless. Equation value: 0.00257125. (Equivalent to the ratio of the mean Earth to Moon distance to the mean Earth to Sun distance)

K:RSIBE: Double precision constant stored as $6378166 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 6378166. (Equivalent to 6378.166 km ; the equatorial radius of the Earth)

K:RSUBEM: Double precision constant stored as $384402000 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 384402000. (Equivalent to $384,402.0 \mathrm{~km}$; the mean distance between the Earth and Moon)

K: RSUBM: Double precision constant stored as $1738090 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 1738090. (Equivalent to 1738.09 km ; the mean radius of the moon)

K:TSIGHT1: Double precision constant stored as $36000 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 36000. (Equivalent to 6 minutes)
$\underline{K}: U N I T X, \underline{K}:$ UNITY, $\underline{K}:$ UNITZ: See SERV section.
K:VxxNxx: See Major Variables section.
LANDLONG, LANDLAT, LANDALT: Double precision locations for display of LONG, LAT and ALT respectively in Noun 89.

LAT, LONG: See COOR section.
IM504: See COOR section.
LOC: Single precision octal storage for starting address of an awakened job.

MARKCNTR: Single precision counter to keep track of the number of valid marks made by the astronaut and to limit the number allowed, scaled B14 and unitless.

MARKSTAT: Single precision address storage and flagword. The address of the special working storage area assigned to the mark system is kept in bits 9-1 of MARKSTAT. Bit 15 is always 0 . The other bits have the following significance:

$$
\text { ALIN - } 40
$$

| Bit | Meaning |
| :---: | :---: |
| 14 | (1) A set of marks is complete and the next mark is to be interpreted as part of a new set. |
|  | (0) A pair of marks is in the process of being executed and redundant marks will not be accepted. |
| 13 | (1) A mark has been made since the last reject and it alone will be cleared if a reject is entered. |
|  | (0) If a reject is entered, both marks will be cleared. |
| 12 | (1) The processing of marks and mark rejects in the "MARKRUPT" routine is inhibited because the parameters needed for interpretation of marks have not yet been initialized, or the astronaut has indicated that he is finished taking marks. |
|  | (0). The processing of marks is allowed. |
| 11 | (1) The Y mark of a pair has been accepted. |
|  | (0) The Y mark of a pair has not yet been accepted. |
| 10 | (1) The $X$ mark of a pair has been accepted. |
|  | (0) The X mark of a pair has not yet been accepted. |

MARKVAC $_{1}$ : Single precision storage for two's complement values of gimbal angles from the CDU at the time of each of the $\mathbb{X}$ and Y marks taken, for use in constructing the line-of-sight vector at each mark and determining the average line-of-sight vector, scaled B-1 in units of revolutions.

MARKVAC MKDEX ${ }^{1,3}$ : Single precision storage for CURSOR and SPIRAL angles respectively, indexed such that up to five sets of angles can be stored for use in determining the average line-of-sight vector. Storage locations actually used are those normally reserved for Y-mark CDU information. (Only X-mark information is used on the lunar surface.) Scaled B-1 in units of revolutions.

MKDEX: Single precision index scaled B14 and unitless, or B3 and unitless.

MPAC: See MATX section.
n : Single precision integer scaled B14.
[NBSMMAT]: See COOR section.
OGC, IGC, MGC: See COOR section.
OPTCADR: Single precision octal storage for address to return to program that has requested marking and is waiting for the marking to be completed.

OPTION1, OPTION2, OPTION3: See DATA section.
PBODY: See ORBI section.
PIPA: See IMUC section.
PIPTIME: See SERV section.
PIANVEC: Double precision unit vector in the direction of the first celestial body to be used for marking, scaled B1 and expressed in reference coordinates.

POINTVSM: See ATTM section.
POSCODE: Single precision counter to indicate the position of the AOT. Changed to the appropriate detent code in "79DISP"; scaled B14 and unitless.

QMAJ, QMIN: Single precision octal return address storage cells. QMIN is also used as temporary working storage.

RATT: See ORBI section.
[REFSMMAT]: See COOR section.
[RFSTMAT]: Double precision, $3 \times 3$ matrix such that $A_{\text {star }}=\left[\right.$ RFSTMAT $\mid A_{r e f}$, where $A$ is a vector expressed in "line-of-sight" andreference coordinates respectively; scaled B1 and unitless.

RIS: See DESC section.
RN: See SERV section.
RRECTCSM: See ORBI section.
SAX: Double precision unit vector in the direction of the line-of-sight of the AOT center position, scaled B1 and expressed in reference coordinates.

SCAXIS: See ATTM section.
[SMNBMAT]: See COOR section.
[SMSTMAT]: Double precision, $3 \times 3$ matrix defined such that A $_{\text {"Itar }}=[$ SMSTMAT $] A_{\text {sm }}$ where $A$ is a vector expressed in line-of-sight" and stable member coordinates respectively; scaled B1 and unitless.

SPIRAL: Single precision angle through which the reticle must be rotated to place the spiral on a given star. Used only on the lunar surface, scaled $B O$ in units of half revolutions.

$$
\text { ALIN }-42
$$

STAR: Line-of-sight vector to a star, expressed in navigation base coordinates. Also temporary storage for GACC in "ADDGRAV".

STARAD $_{0}$, STARAD 6 : Double precision unit vectors used primarily for st,orage of measured position vectors of the two celestial bodies being marked and expressed in stable member coordinates. Also used as working storage for other occasions.

STARAD $_{12}$ : Double precision unit vector used for working storage.
STARTND: Single precisjon index scaled B14 and unitless.
STARSAV1, STARSAV2: Double precision vectors scaled B1 and unitless. Used to store the two "measurement" vectors for comparison with two "reference" vectors to determine IMU alignment. Expressed in stable member coordinates.

TALIGN: Double precision time for determination of TMU alignment, scaled B28 in units of cent,iseconds.

TDEC1: See ORBI section.
THETA: See GOOR section.
THETAD: See IMUC section.
TIG: See BURN section.
TIMFNOW: See FXVB section.
TLAND: See DESC section.
TSIGHT: Double precision time of latest sighting, scaled B28 in units of centi.seconds.

UXP, UYP: Double precisjon vectors expressed in navigation base coordinates, scaled B1 and unitless. Unit vectors perpendicular to the planes whose images in the AOT eyepiece coincide with the horizontal ( $\bar{f}$ ) and vertical ( $Y$ ) crosshairs. The intersection of these planes determines the line-of-sight vector to the star heing marked.

UXP', UYP': Double precision vectors expressed in navigation base coordinates, scaled B1 and unitless. Unit vectors perpendicular to the AOT line-of-sight and to the horizontal (X) and vertical (Y) crosshairs in the AOT eyepiece reticle. Each defines one of two planes whose intersection determines the line-of-sight vector to the image of a star in the AOT eyepiece. Because of the construction of the AOT (a rotating shaft above a fixed mirror), the field of view rotates about the line-of-sight vector as the AOT shaft rotates about the -X spacecraft axis.

VATT: See ORBI section.
VEARTH, VMOON, VSUN: Double precision unit vectors in the direction of the earth, moon and sun with origin at the spacecraft, scaled B1 and expressed in reference coordinates. (Origin also at the earth or moon)

VEC1, VEC2: See COOR section.
VRECTCSM: See ORBI section.
XDC, YDC, ZDC: In "P52D" these are the desired stable member unit vectors in present stable member coordinates. They are also the $x, y$ and $z$ components of [DCMAT].

XNBrf, YNBrf, ZNBrf, XNBsm, YNBsm, ZNBsm: See COOR section.
XSMrf, YSMrf, ZSMrf: See COOR section.
XSMDrf, YSMDrf, ZSMDrf: See COOR section.
XSMDMAT]: Double precision, $3 \times 3$ matrix defined such that Asmd $=$ [XSMDMAT] Aref, where A is a vector expressed in desired stable member coordinates and reference coordinates respectively; scaled B1 and unitless. The components are XSMDrf, YSiMDrf and ZSMDrf.

XYMARK: Single precision octal storage for bit indicating whether mark being processed is an $X$ or a $Y$ mark, or working storage for other occasions.

YNBSAV, ZNBSAV: Double precision unit vectors in the directions of the $Y$ and $Z$ navigation base axes, scaled B1 and expressed in moon-fixed coordinates.

| Display | Index | X Conrnnent | Y Component | Z Component | Identification |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 1 | 0.8748658918 | 0.0260879174 | 0.4836621670 | $\alpha$ Andromedae |
| 02 | 2 | 0.9342640400 | 0.1735073142 | -0.3115219339 | B Ceti |
| 03 | 3 | 0.4775639450 | 0.1166004340 | 0.8708254803 | Y Cassiopeiae |
| 04 | 4 | 0.4917678276 | 0.2204887125 | -0.8423473935 | < Eridani |
| 05 | 5 | 0.0130968840 | 0.0078062795 | 0.9998837600 | $\alpha$ Ursae Minoris |
| 06 | 6 | 0.5450107404 | 0.5314955466 | -0.6484410356 | O Eridani |
| 07 | 7 | 0.7032235469 | 0.7075846047 | 0.0692868685 | $\alpha$ Ceti |
| 10 | 8 | 0.4105636020 | 0.4988110001 | 0.7632988371 | $\propto$ Persei |
| 11 | 9 | 0.3507315038 | 0.8926333307 | 0.2831839492 | ๙ Tauri |
| 12 | 10 | 0.2011399589 | 0.9690337941 | -0.1432348512 | $\beta$ Orionis |
| 13 | 11 | 0.1371725575 | 0.6813721061 | 0.7189685267 | $\alpha$ Aurigae |
| 14 | 12 | -0.0614937230 | 0.6031563286 | -0.7952489957 | $\propto$ Carinae |
| 15 | 13 | -0.1820751783 | 0.9404899869 | -0.2869271926 | $\alpha$ Canis Majoris |
| 16 | 14 | -0.4118589524 | 0.9065485360 | 0.0924226975 | < Canis Minoris |
| 17 | 15 | -0.3612508532 | 0.5747270840 | -0.73142932655 | $y^{*}$ Velorum |
| 20 | 16 | -0.4657947941 | 0.4774785033 | 0.7450164351 | L Ursae Majoris |
| 21 | 17 | -0.7742591356 | 0.6152504197 | -0.1482892839 | < Hydrae |
| 22 | 18 | -0.8608205219 | 0.4636213989 | 0.2098647835 | $\alpha$ Leonis |
| 23 | 19 | -0.96566054.84 | 0.0525933156 | 0.2544280809 | $\beta$ Leonis |
| 24 | 20 | -0.9525211695 | -0.0593434796 | -0.2986331746 | y Corvi |
| 25 | 21 | -0.4523440203 | -0.0493710140 | -0.8904759346 | \& Crucis |
| 26 | 22 | -0.9170097662 | -0.3502146628 | -0.1908999176 | KVirginis |
| 27 | 23 | -0.5812035376 | -0.2909171294 | 0.7599800468 | ${ }^{5}$ Ursae Majoris |
| 30 | 24 | -0.6898393233 | -0.14182330640 | -0.5909338474 | C Centauri |
| 31 | 25 | -0.7861763936 | -0.5217996305 | 0.3311371675 | \& Bootis |
| 32 | 26 | -0.5326876930 | -0.7160644554 | 0.4511047742 | $\propto$ Coronae Borealis |
| 33 | 27 | -0.3516499609 | -0.8240752703 | -0.4441196390 | < Scorpii |
| 34 | 28 | -0.1146237858 | -0.3399692557 | -0.9334250333 | ※ Trianguli Australis |
| 35 | 29 | -0.1124304773 | -0.9694934200 | 0.217811 .6072 | $\times$ Ophiuchi |
| 36 | 30 | 0.1217293692 | -0.7702732847 | 0.6259880410 | x Iyrae |
| 37 | 31 | 0.2069525789 | -0.8719885748 | -0.4436288486 | :-Sagittarii |
| 40 | 32 | 0.4537196908 | -0.8779508801 | 0.1527766153 | $\times$ Aquilae |
| 41 | 33 | 0.55201844 .64 | -0.7933187400 | -0.2567508745 | $\hat{P}$ Capricorni |
| 42 | 34 | 0.3201817378 | -0.4436021946 | -0.8370786986 | c. Pavonis |
| 43 | 35 | 0.4541086270 | -0.5392368197 | 0.7092312789 | x Cygni |
| 44 | 36 | 0.8139832631 | -0.5557243189 | 0.1691204557 | ÉPegasi |
| 45 | 37 | 0.8342971408 | -0.2392481515 | -0.4966976975 | 人 Piscis Austrini |

The "Display" column gives the star number that is displayed by the program (as an octal quantity). The "Index" column is the decimal equivalent of the "Display" column and when multiplied by six is equal to BESTI (or BESTJ).

| Display | Name | Catlg. | Magnitude | Ascension | Declination |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | Alpheratz | $\alpha$ And | 2.1 | 00649.9 | +28 5529 |
| 02 | Diphda | $\beta$ Cet | 2.2 | 04205.0 | $-180904$ |
| 03 | Navi | $y$ Cas | Var. | 05453.0 | +60 3317 |
| 04 | Achernar | $\alpha$ Eri | 0.6 | 13635.9 | $-572320$ |
| 05 | Polaris | $\alpha$ UMi | 2.1 | 20318.9 | +89 0734 |
| 06 | Acamar | $\theta$ Eri | 3.4 | 25707.4 | $-402527$ |
| 07 | Menkar | $\alpha$ Cet | 2.8 | 30042.5 | $+35823$ |
| 10 | Mirfak | $\alpha$ Per | 1.9 | 32210.3 | +49 4521 |
| 11 | Aldebaran | $\chi$ Tau | 1.1 | 43411.8 | +162701 |
| 12 | Rigel | B Ori | 0.3 | 51305.7 | - 81406 |
| 13 | Capella | $\alpha$ Aur | 0.2 | 51428.2 | +45 5810 |
| 14 | Canopus | ¢ Car | -0.9 | $6 \quad 2317.1$ | -52 4044 |
| 15 | Sirius | $\alpha \mathrm{CMa}$ | -1.6 | 64349.6 | -16 4025 |
| 16 | Procyon | $\alpha \mathrm{CMi}$ | 0.5 | 73743.9 | $+51811$ |
| 17 | Regor | $\gamma^{2} \mathrm{Vel}$ | 1.9 | 80836.4 | $-471451$ |
| 20 | Dnoces | © UMa | 3.1 | 85709.7 | +480938 |
| 21 | Alphard | $\alpha$ Hya | 2.2 | 92606.8 | - 831.40 |
| 22 | Regulus | * Leo | 1.3 | 100646.5 | +120652 |
| 23 | Denebola | $\beta$ Leo | 2.2 | 114731.8 | $+144423$ |
| 24 | Gienah | $\gamma \mathrm{Crv}$ | 2.8 | 121415.6 | $-172232$ |
| 25 | Acrux. | ${ }^{\prime} \mathrm{Cru}$ | 1.0 | 122454.9 | -62 5559 |
| 26 | Spica | $\alpha$ Vir | 1.2 | 132336.6 | -11 0019 |
| 27 | Alkaid | ) UMa | 1.9 | 134621.6 | +49 2745 |
| 30 | Menkent | 6 Cen | 2.3 | 140454.6 | -361313 |
| 31 | Arcturus | \& Boo | 0.2 | 141417.5 | +19 2016 |
| 32 | Alphecca | $\alpha \mathrm{CrB}$ | 2.3 | 153325.0 | +26 4853 |
| 33 | Antares | $\alpha$ Sco | 1.2 | 162733.9 | -26 2201 |
| 34 | Atria | $\alpha \operatorname{Tr} A$ | 1.9 | 164528.3 | -68 5831 |
| 35 | Rasalhague | $\alpha$ Oph | 2.1 | 173332.4 | +12 3450 |
| 36 | Vega | $\alpha$ Lyr | 0.1 | 183555.3 | +38 4517 |
| 37 | Nunki | $\sigma^{\circ} \mathrm{Sgr}$ | 2.1 | 185324.3 | -26 2008 |
| 40 | Altair | $*$ Aql | 0.9 | 194919.1 | + 84716 |
| 41 | Dabin | $\beta$ Cap | 3.2 | 201919.6 | $-145238$ |
| 42 | Peacock | $\alpha$ Pav | 2.1 | 202317.0 | -564958 |
| 43 | Deneb | $\alpha$ Cyg | 1.3 | 204024.4 | $+451021$ |
| 44 | Enif | $\epsilon \mathrm{Peg}$ | 2.5 | 214242.7 | + 94412 |
| 45 | Fomalhaut | $\alpha$ PsA | 1.3 | 225559.7 | -29 4654 |

"Display" gives the star number that is displayed by the program (as an octal quantity). "Catlg" refers to the name on pp. 282-292 of "The American Ephemeris and Nautical Almanac for the Year 1970," where the magnitude and coordinate information were obtained.

Right ascension is given in hours, minutes, and seconds; Declination is given in degrees, minutes, and seconds. Both are for January 0.767, 1970, the beginning of the Besselian year.

```
P12LM Perform "RO2BOTH"
 Switch RADMODES bit 10 (DESIGFLG) and bit 15 (CDESFLAG) to 0
 Switch bit 2 of channel 12 to 0 (disable RRCDU error counters)
 DVTHRUSH = K:THRESH2
 DVCNTR = 4
TRKMKCNT = 0
Proceed to "GOFLASH" with TS = K:VO6N33(TIG)(If terminate, proceed to "GOTOPOOH"; if proceed, continuewith next step; if other response, repeat this step.)
Switch FLAGWRD6 bit 8 (MUNFLAG) to 1
Switch DAPBOOLS bit 11 (ACC4OR2X) to 1
Switch FLAGWRDO bit 2 (R10FIAG) to 1
Switch FLAGWRDO bit 7 (RNDVZFLG) to 0
Switch FLAGWRD9 bit 11 (FLPI) to 1
Switch FIAGWRD9 bit 14 (FLVR) to 1
TSt = TIMENOW
Perform "MOONMX"
\(\underline{T S}=[\text { MOONMAT }]^{T}(\underline{K}:\) UNITZ \(+\underline{\mathrm{LM} 504} * \underline{K}:\) UNITZ \()\)
\(\underline{W M}=K: M O O N R A T E[R E F S M M A T]\) TS
LANDMAG \(=|\underline{R I S}|\)
Perform "P12INIT" (initialize APS parameters and ascent
TGO \(=\mathrm{K}: T G O A\)
TDEC1 \(=\) TIG
Perform "LEMPREC"
\(\underline{V} 1 S=[\) REFSMMAT \(]\) VATT
\(\underline{\mathrm{R}}=[\) REFSMMA \(]\) RATT
```

```
 Perform "MUNGRAV" with TSr = R
 UNITR = unit\underline{R}
 Y = RCO (UNITR • QAXIS)
 XRANGE = - Y
 ZDOTD = K:VINJNOM
 RDOTD = K:RDOTDNOM
 Proceed to "GOFLASH" with TS = K:VO6N76 (ZDOTD, RDOTD, XRANGE)
 (If terminate, proceed to "GOTOPOOH"; if proceed, continue
 with next step; if other response, repeat this step.)
WHICH = "P12TABLE"
YCO = XRANGE + Y
V = K:49FPS UNITR + V1S
RDOT = V - UNNITR
ZAXIS = unit(\underline{UNITR * QAXIS)}
Proceed to "ASCENT" (calculate initial guidance quantities)
P12RET TS = (ATP)
If TS = O, skip next step
TS = arcsin(ATY / \sqrt{}{TS})
YAW = TS
PITCH = - arccos(UNITR • unitUNFC)
Perform "PFLITEDB" with interrupts inhibited
Switch FLAGWRD9 bit 11 (FLPI) to 0
Proceed to "BURNBABY"
 (Standard pre-ignition sequence; initializes average-g
 navigation at TIG-30 seconds and calls "P12IGN" at time of
 ignition which sets AVEGEXIT to "ATMAG" establishing the
 two second guidance loop. See BURN section for details.)
```

| P70 | If MODREG $=$ MMNUMBER or FLAGWRD9 bit 9 (LETABORT) $=0$ or FLAGWRD7 bit 5 (AVEGFLAG) $=0$ : |
| :---: | :---: |
|  | Proceed to "ABORTALM" |
| P70A | $T S=0$ |
|  | Proceed to the second step of "P71A" |
| P71 | If MODREG $=$ MMNUMBER or FLAGWRD9 bit 9 (LETABORT) $=0$ or FLAGWRD7 bit 5 (AVEGFLAG) $=0$ : |
|  | Proceed to "ABORTALM" |
| P71A | $T S=2$ |
|  | Inhibit interrupts |
|  | Cause the "Resume" instruction to resume operations at "ABRTJASK" |
|  | Resume |
|  | (The purpose of the above manipulation of the "Resume" instruction is to cause the instructions beginning at "ABRTJASK" to be performed immediately. "ABRTJASK" will appear as a task to all other jobs, i.e. "ABRTJASK" will be performed prior to the performance of any other job. Note also that "ABRTJASK" is performed under interrupt inhibit so that no tasks which are scheduled on program interrupts will be performed until after "ABRTJASK" is completed.) |
| ABRTJASK | $\mathrm{TSa}=70$ |
|  | If $T S \neq 0$ : |
|  | $\mathrm{TSa}=71$ |
|  | Switch FLGWRD10 bit 13 (APSFLAG) to 1 <br> (tell DAP we are on ascent stage) |
|  | MODREG $=$ TSa |
|  | DISPDEX $=$ TSa (positive to kill "CLOKTASK") |
|  | Switch DAPBOOLS bit 6 (ULLAGER) to 0 |
|  | Switch DAPBOOLS bit 8 (DRIFTBIT) to 0 |
|  | Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (allow X -axis override) |
|  | Switch DAPBOOLS bit 15 (PULSES) to 0 $\mathrm{DB}=\mathrm{K}: 1 \mathrm{DEGDB}$ |

```
 Switch FLAGWRD5 bit 7(ENGONFLG) to 1
 Switch bits 14 and 13 of channel 11 to 012 (ensure engine ov)
 Switch FLGWRD11 to 40000 % (bypass LR updates)
 Switch FLAGWRDO bit 2(R10FLAG) to 1
 TEVENT = TIMENOW
 AVEGEXIT = "SERVEXIT"
 Cause "ENEMA" to restart P70 or P71 at."GOABORT"
 Cause "ENEMA" to maintain "SERVICER" and "R10,R11"
 Clear all other restart logic
 Proceed to "ENEMA".
GOABORT DVCNTR = 4
WHICH = "ABRTABLE"
Switch FLAGWRD9 bit 10 (FLRCS) to 0
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 0
Switch DAPBOOLS bit 11 (ACC4OR2X) to 1
Switch FLAGWRD9 bit 13 (P7071FLG) to 1
Perform "INITCDUW"
If MODREG = 70:
 (P70)
 TGO = TIMENOW - TIG
 TBUP = MASS / K:MDOTDPS
 DV1 = (MASS / K:DVD) / K:2SEC
 DV2 = DV1
 DV3 = DV1
 AT = K:ATD / DV1
 TTO = K:100PCTTO
 VE = - K:DPSVEX
```

$$
\text { ASCT - } 4
$$

$$
\text { (If MODREG }=70: \text { ) }
$$

Proceed to "INJTARG"
Switch FLAGWRD9 bit 9 (IETABORT) to 0
DVTHRUSH $=\mathrm{K}:$ THRESH2
Perform "P12INIT"
If FLAGWRD9 bit 8 (FLAP) $=1$ :
TGO1 $=2$ TGO
$\mathrm{TGO}=\mathrm{TGO1}$
Proceed to the third step of "UPTHROT"
TGO = TIMENOW - TIG
INJTARG RDOTD $=$ ABTRDOT
$Y=$ RCO (UNITR • QAXIS)
$T S=|Y|-Y L I M$
If $\mathrm{TS} \geq 0, \mathrm{YCO}=\mathrm{TS} \operatorname{signY}$
XRANGE $=Y C O-Y$
Switch FLAGWRD9 bit 14 (FLVR) to 1
$T S=(u n i t R C S M * u n i t \underline{R}) \cdot \underline{W}$
TS1 $=$ signTS arccos(unitRCSM - unitR)
If TS1 $\geq$ THETCRIT:
JPARM $=$ J2PARM
$K P A R M=K 2 P A R M$
$R P=$ THETCRIT (this step included only because of coding efficiency)
If TS1<THETCRIT:
JPARM $=$ J1PARM
$K P A R M=K 1 P A R M$
$R P=$ J2PARM (this step included only because of coding efficiency)

```
 RP = RCO
 Switch FLAGWRD9 bit 6 (ROTFLAG) to }
 UPTHROT Perform "THROTUP"
 SWitch FLAGWRD9 bit 8 (FLAP) to 1
 Perform "P40AUTO"
 Perform "THROTUP"
 Change job priority to 17 (pr17)
 AVEGEXIT = "ATMAG"
 End job
 THROTUP THRUST = K:MAXTHRUST
 Switch bit 4 of channel 14 to 1
 Return
 P12INIT DV3 = K:DVA
 DV2 = K:DVA
 DV1 = K:DVA
 AT = K:ATA
 TBUP = K:TBUPA
 TTO = - K:ATDECAY
 VE = - K:APSVEX
 If FLAGWRD9 bit 8 (FLAP) = 1, return
COMMTNIT RCO = K:HINJECT + LANDMAG
 TXO = 0
 YCO = O
 YDOTD = 0
 QAXIS = unit([REFSMMAT] (VRECTCSM * RRECTCSM))
 Return
```

Perform "RELDSP"
Proceed to "PINBRNCH"
ATMAG (Entered via AVEGEXIT at the end of each "SERVICER" cycle) RDOT $=$ HDOTDISP (documentation convenience; RDOT and HDOTDISP are the same cells in the computer; as are ZAXIS and UH2P)

If FLAGWRD9 bit 10 (FLRCS) $=1$ :
Proceed to "ASCENT"
If $A B D V C O N V<K: M I N A B D V:$
Perform "STOPRATE" with interrupts inhibited
Proceed to "ASCTERM1"
Switch FLAGWRD8 bit 8 (SURFFIAG) to 0
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
DVO = DV1
DV1 $=$ DV2
DV2 = DV3
DV3 $=\mathrm{K}:$ ONE / ABDVCONV
$T S=(D V O+D V 1+D V 2+D V 3) V E K: 2 S E C 9 / 4$
TBUP $=(T S+T B U P-K: 6 S E C 18) / 2$
$\mathrm{AT}=\mathrm{VE} / \mathrm{TBUP}$
ASCENT $\quad$ RMAG $=|\underline{R}|$
2DOT = ZAXIS • $\underline{V}$
IAXIS = ZAXIS * UNITR
YDOT $=\underline{\text { LAXIS }} \cdot \underline{V}$
$Y=R C O$ (UNITR • QAXIS)
GEFF $=(\underline{G D T 1} / \mathrm{K}: 2$ SEC18 $) \cdot \underline{\text { UNITR }}+\left(|\underline{U N I T R} * \underline{V}|^{2} /\right.$ RMAG $)$

```
 If FLAGWRD9 bit 13 (P7071FLG) = 1, perform "ZDOTDCMP"
 DZDOT = ZDOTD - ZDOT
 DYDOT = YDOTD - YDOT
 DRDOT = RDOTD - RDOT
 VGVECT = DRDOT UNITR + DYDOT IAXIS + DZDOT ZAXIS
 VGVECT = VGVECT - -
 VGBODY = [XNBPIP] VGVECT
 If FLAGWRD9 bit 10 (FLRCS) = 1:
 TGO = |VGVECT | / K:ATRCS
 PCONS = 0
 PRATE = 0
 Perform "RPCOMP2"
 End job
 MAINENG TS1 = | VGVECT |/VE
 TGO = TBUP TS1 (1 - 0.5 TS1) - TTO
 TTOGO = - TGO
 If FLAGWRD7 bit 7 (IDLEFLAG) = 0:
 If TGO< K:4SEC17:
 TS = - (TIMENOW - PIPTIME + TTOGO)
 If TS
 ENGOFFDT = TS
 Call "ENGOFF1" in ENGOFFDT centiseconds
 Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
 If TGO< K:T2A:
 Proceed to "CMPONENT"
 TS = (TBUP - TGO) / TBUP
 TSa = - 増eg
 ASCT - 8
```

```
 D12 = TBUP - (TGO / TSa)
 If FLAGWRD9 bit 12 (FLPC) = 1:
 PRATE = 0
 YRATE = 0
 Proceed to "CONST"
 If TGO< K:T3:
 Switch FLAGWRD9 bit 12 (FLPC) to 1
 PRATE = 0
 YRATE = 0
 Proceed to "CONST"
 D21 = TGO - D12
 TSe = \frac{1}{2}}\textrm{TGO}-\textrm{D}2
 PRATE = (DRDOT D21 + TGO RDOT + RMAG - RCO) / (TSe TGO)
 YRATE = (DYDOT D21 + TGO YDOT + Y - YCO) / (TSe TGO)
 If PRATE \geq0:
 PRATE = 0
 Proceed to "CONST"
 If PRATE / TBUP < K:PRLIMIT:
 PRATE = K:PRLIMIT TBUP
 CONST PCONS = (DRDOT / TSa) - PRATE D12
 YCONS = (DYDOT / TSa) - YRATE D12
 CMPONENT If FLAGWRD9 bit 13 (P7071FLG) = 1, perform "RPCOMP2"
 ATR = {(K:100CS PRATE + PCONS)/TBUP } - GEFF
 ATY = (K:100CS YRATE + YCONS) / TBUP
 AH = ATY LAAXIS + ATR UNITR
 AMMAG = |⿻肀二
```

ATPSQ = (AT )
If ATPSQ <0:
AH}=(AT/AHMAG) A
ATP = 0
Skip next step
ATP = \sqrt{}{\mathrm{ ATPSQ }}\operatorname{sign(DZDOT)}
UNFC = ATP Z_AXIS + AH
If FLAGWRD9 bit 11 (FLPI) = 1:
Proceed to "P12RET"
If FLAGWRD9 bit 14 (FLVR) = 1:
If RMAG - LANDMAG < K:25KFT:
Switch DAPBOOLS bit }9\mathrm{ (XOVINHIB) to }
TS = unit(ATY LAXIS + ATP ZAXIS)
If RDOT < K: 4OFPS:
UNWC = TS
UNFC = UNITR
Proceed to "ASCTERM"
Switch FLAGWRD9 bit 6 (ROTFLAG) to 0
Switch FLAGWRD9 bit 14 (FLVR) to 0
If FLAGWRD9 bit 6 (ROTFLAG) = 0:
TXO = PIPTIME + K:10SECS
UNWCG = - UNITR
If TXO \PIPTIME:
Proceed to "ASCTERM"

```
```

            If FLAGWRD9 bit 6 (ROTFLAG) = 1:
                            TS = (UNFG - XNBPIP) - COSTHET1
                            If TS<0:
                TS = (\underline{XNBPIP • UNITR) - COSTHET2}
                If TS<0:
                    UNFC = UNNITR
                    Proceed to "ASCTERM"
                    Switch FLAGWRD9 bit 6 (ROTFLAG) to 0
    Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (allow x-axis override)
        If FLAGWRD9 bit 13 (P7071FLG) = 0:
            Switch FLAGWRD3 bit 11 (NOR29FLG) to 0
    ASCTERM If FLAGWRD9 bit 10 (FLRCS) = 1:
        End job
        Perform "FINDCDUW"
    ASCTERM1 If FLAGWRD9 bit 10 (FLRCS) = 1:
        End job
        If FLAGWRD8 bit 10 (FLUNDISP) = 1:
        End job
    Proceed to "GODSP" with TS = K:V06N63 (ABVEL, HDOTDISP, HCAIC1)
    ENGOFF1 Perform "ENGINOF2"
Establish "CUTOFF" (pr17)
End task

```
 ASCT - 11

\title{
Proceed to "GOFLASH" with TS = K:V16N63 (ABVEL, HDOTDISP, HCALC1) \\ (If terminate, proceed to "TERMASC"; if proceed, continue with next step; if other response, repeat this step.)
}

Inhibit interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Proceed to "GOFLASH" with TS = K:V16N85
(VGBODY)
(If terminate, proceed to "TERMASC"; if proceed, proceed to "TERMASC"; if other response, repeat this step.)

TERMASC Inhibit interrupts
Perform "RESTORDB"
Switch FLAGWRD9 bit 9 (LETABORT) to 0
Release interrupt inhibit
Proceed to "GOTOPOOH"
\(\underline{R P C O M P 2} \quad \mathrm{RP}=\mathrm{RMAG}+\mathrm{RDOT} T G O+\frac{\text { PCONS TGO }^{2}}{2 \mathrm{TBUP}}+\frac{\text { PRATE TGO }^{3}}{6 \mathrm{TBUP}}\)
Return
ZDOTDCMP \(T S=(\) unitRCSM * unitR \() \cdot \underline{W M}\)
TS1 \(=\) signTS arccos(unitRCSM \(\cdot\) unitR)
\(R A=J P A R M+K P A R M T S 1-R P\)
If \(\mathrm{RA}<\) RAMIN, \(\mathrm{RA}=\) RAMIN
ZDOTD \(=\sqrt{2 \mathrm{~K}: \mathrm{MUMm} 37 \mathrm{RA} /(\mathrm{RA}+\mathrm{RP}) \mathrm{RP}}\)
Return

ABDVCONV: Double precision magnitude of sensed change in velocity converted to units of meters per centisecond and scaled B5.

ABRTABLE: see WHICH of the BURN section.
ABTRDOT: Double precision erasable memory constant representing the radial rate required at insertion for aborts from powered descent, scaled B7 in units of meters per centisecond.

AH: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

AHMAG: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

AT: Double precision LM thrust acceleration magnitude, scaled B-9 in units of meters per centisecond squared.

ATP: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

ATPSQ: Double precision intermediate computation, scaled B-18 in units of meters squared per centiseconds to the fourth power.

ATR: Double precision required radial acceleration, scaled B-9 in units of meters per centisecond squared.

ATY: Double precision required crossrange acceleration, scaled B-9 in units of meters per centisecond squared.

AVEGEXIT: see SERV section.
COSTHET1: Double precision erasable memory constant, scaled B-8
in units of meters per centisecond squared.
COSTHET2: Double precision erasable memory constant, scaled B2 and unitless.

DB: see DAPB section.
DISPDEX: see BURN section.
DRDOT, DYDOT, DZDOT: Double precision velocity-to-be-gained components in the radial, crossrange, and downrange directions respectively, scaled B7 in units of meters per centisecond.

DVCNTR: see SERV section.
DVTHRUSH: see SERV section.

DVO, DV1, DV2, DV3: Double precision quantities representing the reciprocal of successive PIPA readings, scaled B7 in units of centiseconds per meter; program notation \(1 / D V 0,1 / D V 1,1 / D V 2,1 / D V 3\).

D12: Double precision intermediate computation, scaled B17 in units of centiseconds.

D21: Double precision intermediate computation, scaled B17 in units of centiseconds.

ENGOFFDT: Single precision delta time for engine cutoff, scaled B14 in units of centiseconds.

GDT1: see SERV section.
GEFF: Double precision effective gravity, scaled B-9 in units of meters per centiseconds squared.

HCALC1: See DESC section.
HDOTDISP: See SERV section.
JPARM: Double precision parameter used in the calculation of ZDOTD for aborts from the powered descent, scaled B24 in units of meters (see note following K2PARM). JPARM contains J1PARM or J2PARM.

J1PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is less than THETCRIT, scaled B24 in units of meters (see note following K2PARM); part of the erasable load.

J2PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is greater than or equal to THETCRIT, scaled B24 in units of meters (see note following K2PARM); part of the erasable load.

KPARM: Double precision parameter used in the calculation of ZDOTD for aborts from the powered descent, scaled B24 in units of meters per revolution (see note following K2PARM). KPARM contains K1PARM or K2PARM.

K1PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the IM to CSM phase angle is less than THETCRIT, scaled B24 in units of meters per revolution (see note following K2PARM); part of the erasable load.

K2PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is greater than or equal to THETCRIT, scaled B24 in units of meters per revolution (see note below); part of the erasable load.

Note: JPARM and KPARM are considered in this document to be scaled B24; thus the erasable parameters J1PARM, J2PARM, K1PARM, K2PARM are expected to be multiplied by 2 and then scaled B24 (of course this is the same as scaling by B23) in order to introduce a factor of 2 into the equation which calculates RA.

K:APSVEX: Single precision constant stored as \(-30.3 \times 2^{-5}\), scaled B5 in units of meters per centisecond. Equation value: - 30.3
K:ATA: Double precision constant stored as \(3.2883 \mathrm{E}-4 \times \mathrm{X}^{9}\), scaled B-9 in units of meters per centisecond squared; program notation (AT)A. Equation value: \(3.2883 \mathrm{E}-4\)

K:ATD: Double precision constant stored as 0.02 , scaled B-2 in units of reciprocal centiseconds; program notation \(K(A T)\). Equation value: 0.005
K:ATDECAY: Double precision constant stored as -10 . X \(2^{-28}\), scaled B28 in units of centiseconds. Equation value: - 10.

K:ATRCS: Double precision constant stored as \(0.785 \mathrm{E}-4 \times 2^{10}\), scaled B-10 in units of meters per centisecond squared; program notation AT/RCS. Equation value: \(0.785 \mathrm{E}-4\)

K:DPSVEX: Single precision constant stored as \(-29.5588868 \times 2^{-5}\), scaled B5 in units of meters per centisecond. Equation value: - 29.5588868.

K:DVA: Double precision constant stored as \(15.2 \times 2^{-7}\), scaled B7 in units of centiseconds per meter; program notation (1/DV)A. Equation value: 15.2

K:DVD: Double precision constant stored as \(436.7 \times 2^{-9}\), scaled B9 in units of kilogram-meters per centisecond-second; program notation \(\mathrm{K}(1 / \mathrm{DV})\). Constant corresponds to K:DPSVEX times K:MDOTDPS converted to the units shown above. Equation value: 436.7

K:HINJECT: Double precision constant stored as 18288. X \(2^{-24}\), scaled B24 in units of meters. Equation value: 18288. (equivalent to 60,000 feet)

K:MAXTHRUST: Single precision constant stored as 10000 g, scaled 14 in units of DPS throttle pulses; program notation BI T13. Equation value: 4096. (enough to oversaturate the throttle -- see THRUST)
K:MDOTDPS: Double precision constant stored as \(0.148 \times 2^{-3}\), scaled B3 in units of kilograms per centisecond. Equation value: 0.148 (equivalent to 32.62 pounds mass per second.)

K:MINABDV: Double precision constant stored as \(0.0356 \mathrm{X}^{-5}\), scaled B5 in units of meters per centisecond. Equation value: 0.0356

K:MOONRATE: Double precision constant stored as 0.2661699489 E-7 X \(2^{19}\), scaled B-19 in units of radians per centisecond. Equation value: \(0.2661699489 \mathrm{E}-7\)

K:MUMm37: Double precision constant stored as 4.902778 E \(8 \times 2^{-37}\), scaled B37 in units of meters cubed per centisecond sqtared; program notation MUM (-37). Equation value: 4.902778 E 8

K:ONE: Single precision constant stored as 00004 , scaled B12 and unitless; program notation BIT3H. Equation value: 1.0.

K:PRLIMIT: Double precision constant stored as - 0.0639 , scaled B-21 in units of meters per centisecond cubed. Equation value: -0.3048 E-7.
K:RDOTDNOM: Double precision constant stored as \(0.059436 \mathrm{X}^{-7}\), scaled B7 in units of meters per centisecond. Equation value: 0.059436. (Corresponds to 19.5 feet per second.)

K:TBUPA: Double precision constant stored as 91902. X \(2^{-17}\), scaled B17 in units of centiseconds; program notation (TBUP)A. Equation value: 91902.

K:TGOA: Double precision constant stored as 3.7 E \(4 \times 2^{-17}\), scaled B17 in units of centiseconds; program notation (TGO)A. Equation value: 3.7 E 4

K:THRESH2: Double precision constant stored as 308 . \(X^{-14}\), scaled B14 in units of centimeters per second. Equation value: 308.
K:T2A: Double precision constant stored as 200. X \(2^{-17}\), scaled B17 in units of centiseconds. Equation value: 200.
K:T3: Double precision constant stored as 1000 . X \(2^{-17}\), scaled B17 in units of centiseconds. Equation value: 1000.

K:UNITZ: Double precision constant vector stored as (\(0,0,0.5\)), scaled B1 and unitless. Equation value: \((0,0,1)\)
K:VINJNOM: Double precision constant stored as \(16.7924 \times 2^{-7}\), scaled \(B 7\) in units of meters per centisecond. Equation value: 16.7924. (Equivalent to 5509.5 feet per second.)
K:10SECS: Double precision constant stored as \(1000 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 1000.
K:100PCTTO: Double precision constant stored as \(38 \times 2^{-17}\), scaled B17 in units of centiseconds. Equation value: 38.
K:100cS: Double precision constant stored as \(200 \times 2^{-18}\), scaled B17 in units of centiseconds. Equation value: 100.

K: 1DEGDB: Single precision constant stored as 00554 , scaled B-3 in units of revolutions. Equation value: 0.00277. (Equivalent to 1 degree.)
K:2SEC: Implicit program constant equal to two. (2) seconds.
K:2SEC18: Double precision constant stored as 200. X \(2^{-18}\), scaled B18 in units of centiseconds; program notation \(2 \operatorname{SEC}(18)\). Equation value: 200.
K:2SEC9: Double precision constant stored as 200. X \(2^{-9}\), scaled B9 in units of centiseconds; program notation \(2 \operatorname{SEC}(9)\). Equation value: 200.

K:25KFT: Double precision constant stored as 7620 . X \(2^{-24}\), scaled B24 in units of meters. Equation value: 7620.
K:4SEC17: Double precision constant stored as 400. X \(2^{-17}\), scaled B17 in units of centiseconds; program notation 4SEC(17). Equation value: 400.

K:49FPS: Double precision constant representing the expected LM RDOT at the end of the vertical rise phase, stored as \(0.149352 \mathrm{X}^{-6}\), scaled B6 in units of meters per centisecond. Equation value: 0.149352
K:40FPS: Double precision constant stored as \(0.12192 \times 2^{-7}\), scaled B7 in units of meters per centisecond. Equation value: 0.12192
K:6SEC18: Double precision constant stored as 600 . \(X 2^{-18}\), scaled B18 in units of centiseconds; program notation \(6 \mathrm{SEC}(18)\). Equation value: 600.

LANDMAG: Double precision magnitude of lunar landing (or launch) site radius, scaled B24 in units of meters; program notation /LAND/.

LAXIS: Double precision crossrange unit vector, scaled B1, unitless, and expressed in the Platform Coordinate system.

LM504: Double precision libration vector of the moon, scaled BO in units of radians and expressed in moon-centered, moon-fixed coordinates.

MASS: see SERV section.
MMNUMBER: see PGSR section.
MODREG: see DATA section.
[MOONMAT]: Double precision, \(3 \times 3\) orthogonal transformation matrix, scaled \(B 1\) and unitless. Defined such that Asg \(=[M O O N M A T]\) Aref, where \(A\) is a vector expressed in selenographic and reference coordinates respectively.

PCONS: Double precision pitch guidance coefficient, scaled B9 in units of meters per centisecond .

PIPTIME, PIPTIME1: see. SERV section.
PITCH: Double precision predicted FDAI pitch angle at the end of the pitch over maneuver, scaled BO in units of revolutions.

PRATE: Double precision pitch rate guidance coefficient, scaled B-8 in units of meters per centisecond squared.

P12TABLE: see WHICH of the BURN section.
QAXIS: Double precision unit vector, scaled B1, unitless, and expressed in the Platform Coordinate system.

R: Double precision present navigated vector position of the LM, measured from the center of the moon, scaled B24 in units of meters and expressed in the Platform Coordinate system.

RA: Double precision distance from the center of the moon to the apogee of the desired insertion orbit, scaled B24 in units of meters.

RAMIN: Double precision parameter which is the minimum value allowed for RA, scalec B24 in units of meters; part of the erasable load.

RATT, VATT, TAT: see ORBI section.
RCO: Double precision desired insertion radius magnitude, scaled B24
in units of meters.
RCSM: see SERV section.
RDOT, YDOT, ZDOT: Double precision velocity components in the radial, crossrange, and downrange directions respectively, scaled B7 in units of meters per centisecond.

RDOTD, YDOTD, ZDOTD: Double precision desired velocity components in the radial, crossrange, and downrange direction respectively, scaled B7 in units of meters per centisecond.
[REFSMMAT]: see COOR section.
RLS: Double precision lunar landing (or launch) site vector, measured from the center of the moon, scaled B27 in units of meters and expressed in the Platform coordinate system.

RMAG: Double precision magnitude of the LM position vector, scaled B24 in units of meters.

RP: Double precision predicted insertion radius magnitude measured from the center of the moon, scaled B24 in units of meters.

RRECTCSM, VRECTCSM: see ORBI section.
TBUP: Double precision ratio of mass to mass flow rate, scaled B17 in units of centiseconds.

TDEC 1: see ORBI section.
TEVENT: Double precision time-of-event for downlink information (as used in this section time-of-abort), scaled B28 in units of centiseconds.

TGO, TGO1: Dauble precision predicted length of burn, scaled B17 in units of centiseconds.

THETCRIT: Double precision LM to CSM phase angle at which abort targets are switched, scaled BO in units of revolutions; part of the erasable load.

TIG: Double precision time of engine ignition, scaled B28 in units of centiseconds.

TIME5: see DAPA section.
THRUST: Cell used to provide DPS throttle commands when Bit 4 of channel 14 is set, scaled B14 in units of DPS throttle pulses. One pulse corresponds to about 2.8 pounds of thrust. The maximum command recognized by the throttle is 3428 pulses.

TIMENOW: Current time scaled B28 in units of centiseconds, incremented every centisecond.

TRKMKCNT: see RNAV section.
TTO: Double precision time delay from the issuance of the engine OFF signal to actual thrust decay, scaled B17 in units of centiseconds.

TTOGO: Double precision negative of time-to-go for display purposes, scaled B28 in units of centiseconds.

TXO: Double precision time at which X-axis override is permitted in ascent guidance, scaled B28 in units of centiseconds.

UHZP: see SERV section.
UNITR: Double precision unit vector in the radial direction, scaled B1, unitless, and expressed in the Platform coordinate system; program notation UNIT/R/.

UNFC: see BURN section.
UNWC: see Burn section.
V: Double precision present navigated velocity vector of the LM, scaled B7 in units of meters per centisecond and expressed in the Platform coordinate system.

VE: Double precision engine exhaust velocity, scaled B7 in units of meters per centisecond.

VGBODY: Double precision velocity-to-be-gained vector in body coordinates, scaled B7 in units of meters per centisecond.

VGVECT: Double precision velocity-to-be-gained vector in Platform coordinates, scaled B7 in units of meters per centisecond.

V1S: Double precision LM velocity vector at TIG, scaled B7 in units of meters per centisecond.

WHICH: see BURN section.

WM: Double precision lunar rotation rate vector, i.e. lunar rotation rate times the lunar rotation axis vector, scaled B-17 in units of radians per centisecond.
[XNBPIP]: Double precision matrix with the first row equal to the components of XNBPIP, the second row equal to the components of YNBPIP, and the third row equal to the components of ZNBPIP, where XNBPIP, YNBPIP, ZNBPIP are unit vectors along the X, Y, and \(Z\) spacecraft axes, scaled B1 and expressed in the Platform coordinate system at PIPTIME.

XRANGE: Double precision magnitude of the crossrange distance to be removed during the ascent maneuver, scaled B29 in units of meters.

Y: Double precision magnitude of the out-of-CSM-plane position, scaled B24 in units of meters.

YAW: Double precision predicted FDAI yaw angle at the end of the vertical rise phase, scaled BO in units of revolutions.

YCO: Double precision desired crossrange position at orbit insertion, scaled B24 in units of meters.

YCONS: Double precision yaw guidance coefficient, scaled B9 in units of meters per centisecond.

YDOT: see RDOT.
YDOTD: see RDOTD.

YLIM: Double precision erasable memory constant representing the maximum cross-range distance to be removed during an abort from the powered descent, scaled B24 in units of meters.

YNBPIP: see [XNBPIP].
YRATE: Double precision yaw rate guidance coefficient, scaled B-8 in units of meters per centisecond squared.

ZAXIS: Double precision unit vector in the downrange direction, scaled B1 and unitless; program notation ZAXIS1.

2DOT: see RDOT.
ZDOTD: see RDOTD.
\(\sum\)
\(E+1\)
\(E+1\)

R60LEM TEMPR60 \(=\) return address
Switch FLAGWRDO bit 4 (NEEDLFLG) to 1
Switch FLAGWRDO bit 15 (NEED2FLG) to 0
If FLAGWRD5 bit 6 (3AXISFLG) \(=0\) :
Perform "VECPOINT"
THETAD = TS
Perform "BALLANGS"
TOBALL Perform "GOPERF2R" with TS = K:VO6N18 (display FDAI angles)
(If terminate, proceed to "R61TEST"; if proceed, proceed to "REDOMANC"; if other response, proceed to "ENDMANU1".)

Perform "CHKLINUS" (make display priority if necessary)
End job
REDOMANC If FLAGWRD5 bit 6 (3AXISFLG) \(=0\) :
Perform "VECPOINT"
THETAD = TS
Perform "BALLANGS"
If bit 10 of channel \(30=1\) (not PGNCS control), or if bit 14 of channel \(31=1\) (not AUTO control mode):

Proceed to "TOBALL" (not AU'TO)
Perform "GODSPR" with TS = K:VO6N18
(display FDAI angles)
Perform "CHKLINUS" (make display priority if necessary)
GOMANUR If ATTCADR \(\neq 0\) :
\(T S 1_{d p}=\) address of last display ("TOBALL")
Proceed to "BAILOUT1" with \(T S=31210_{8}\)
ATTCADR \(=\) calling address +1 , in 2 CADR format
ATTPRIO \(=\) bits \(14-10\) of PRIORITY (pr37; the priority of calling job)
Proceed to "KALCMAN3"
```

ENDMANUV Proceed to "TOBALL"

```
```

ENDMANU1 Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Return via TEMPR60
R61TEST If MODREG = 0, proceed to "ENDMANU1"
If FLAGWRD4 bit 12 (PDSPFLAG) = 1, proceed to "TRMTRACK"
Proceed to "GOTOPOOH"
BALLANGS BALLLEXIT = return address
Perform "CD*TR*GS" with ANG = THETAD
TS
SINTH = SINMGA
COSTH = COSOGA COSMGA
Perform "ARCTAN"
TS
COSTH = COSOGA COSIGA - SINMGA SINOGA SINIGA
SINTH = SINIGA COSOGA + SINMGA SINOGA COSIGA
Perform "ARCTAN"
TS y = THETA
FDAI = TS converted to two's complement form
Return via BALLEXIT

```

VECPNT1 VECQTEMP = return address
Skip next two steps
VECPOINT VECQTEMP = return address
TScdu \(=\underline{C D U}\)
Perform "CDUTODCM"
\([\) MIS \(]=\) [TSmat \(]\)
TSfinal \(=\operatorname{unit}(\underline{P} O I N T V S M\) [MIS] \()\)
\(\underline{\text { COF }}=-\) unit (TSfinal \(*\) SCAXIS)
TSang \(=\arccos (\) SCAXIS \(\cdot\) TSfinal \()\)
If overflow or if \(\mid\) ISfinal \(*\) SCAXIS \(\mid<2^{-12}\) :
If TSfinal - SCAXIS \(\geq 0\) :
\[
\underline{T} S=\underline{T} S c d u \quad(\text { specify zero maneuver })
\]

Return via VECQTEMP
\[
\underline{Y S M}_{S C}=\underline{K}: \text { UNITY [MIS] }
\]
\[
\underline{T} S=\operatorname{unit}\left(\underline{Y} \mathbb{Y M}_{S C} * \underline{K}: U N I T X\right) * \underline{S C A X I S}
\]
\[
\underline{C O F}=\text { unit } T S
\]
\[
\text { If overflow or if }|\underline{T}|<2^{-12} \text { : }
\]
\[
\underline{C O F}=\underline{K}: \text { UNITX }
\]
\[
\text { TSang }=\frac{1}{2}
\]

Perform "DELCOMP"
\([\) TSmat \(]=[\) MIS \(]\) [DELMAT]
\(\underline{Y}_{\text {SM }_{\text {Scd }}}=\underline{K}:\) UNITY [TSmat]

If \(\mid\) SCAXIS \(_{x} \mid \geq K: S I N V E C 1\), proceed to "FINDGIMB"
(Otherwise, the vector being pointed is something other than the thrust vector and an effort will be made to avoid gimbal lock with a preliminary roll.)
\([\) MIS \(]=[\) TSmat \(]\)
\(\underline{Y S M}_{\text {SC }}=\underline{K}\) : UNITY [MIS]

COF \(=-\) SCAXIS \(^{\operatorname{signTS}}{ }_{x}\)
If \(\mid\) SCAXIS \(_{x} \mid \geq K: S I N V E C 2\), TSang \(=K:\) VECANG1 (AOT)
If \(\mid\) SCAXIS \(_{\mathrm{x}} \mid<K\) SINVEC2, TSang \(=\mathrm{K}:\) VECANG2 \(\quad\) (Radar, Y or Z)
Perform "DELCOMP"
[TSmat] \(=\) [MIS] [DELMAT]
FINDGIMB Perform "DCMTOCDU"
\(\underline{T S}=\) TScdud converted to two's complement form
Return via VECQTEMP
\[
\begin{aligned}
& \underline{\text { KALCMAN3 }} \quad \underline{B C D U}=\underline{C D U} \\
& \text { If } \mid \text { THETAD }_{z} \mid \geq K: \text { LOCKANGL: } \\
& \text { Perform "ALARM" with TS }=00401_{8} \\
& \text { Proceed to "NOGO" } \\
& \underline{\underline{T} S c d u}=\underline{B C D U} \\
& \text { Perform "CDUTODCM" } \\
& {[\mathrm{MIS}]=[\text { TSmat }]} \\
& \underline{\underline{T} S c d u}=\underline{\text { THETAD }} \\
& \text { Perform "CDUTODCM" } \\
& {[\mathrm{MFS}]=[\mathrm{TSmat}]} \\
& {[\mathrm{TMLS}]=[\mathrm{MIS}]^{\mathrm{t}}} \\
& {[\mathrm{MFI}]=[\mathrm{TMIS}][\mathrm{MFS}]} \\
& {[\mathrm{TMFI}]=[\mathrm{MFI}]^{\mathrm{t}}} \\
& \text { COFSKEW }_{\mathrm{Z}}=\frac{1}{2}\left(\mathrm{TMFI}_{12}-\mathrm{MFI}_{12}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { COFSKEW }_{\mathrm{y}}=\frac{1}{2}\left(\mathrm{MFI}_{13}-\mathrm{TMFI}_{13}\right) \\
& \text { COFSKEW }_{\mathrm{x}}=\frac{1}{2}\left(\mathrm{TMFI}_{23}-\mathrm{MFI}_{23}\right) \\
& C A M=\frac{1}{2}\left(M F I_{11}+M F I_{22}+M F I_{33}-1\right) \\
& \mathrm{AM}=\arccos C A M \\
& \text { If } A M<K: M I N A N G: \quad \text { (No need for rate limited maneuver) } \\
& \underline{C D U D}=\text { THETAD } \\
& \text { Proceed to "NOGO" } \\
& \text { If AM < K:MAXANG: } \\
& \text { COF }=\text { unitCOFSKEW (normal path) } \\
& \text { Switch FLAGWRD2 bit } 3 \text { (CALCMANB) to } 1 \\
& \text { Proceed to "WCALC" } \\
& {[\mathrm{MFISYM}]=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]([\mathrm{MFI}]+[\mathrm{MMFI}])} \\
& T S=1-C A M \\
& \text { If }|T S| \geq 2, T S=K: p o s m a x d p \text { signTS } \\
& \mathrm{COF}_{z}=\sqrt{2\left(\text { NFISYM }_{33}-\mathrm{CAM}\right) / \mathrm{TS}} \\
& \operatorname{COF}_{\mathrm{y}}=\sqrt{2\left(\text { MFISYM }_{22}-\right.\text { CAM)/TS }} \\
& \operatorname{COF}_{\mathrm{x}}=\sqrt{2 \text { (MFISYM }} 11 \text {-CAM)/TS } \\
& \text { COF }=\text { unitCOF } \quad \text { (eliminates common factors) } \\
& \text { If } \mathrm{COF}_{\mathrm{x}} \geq \mathrm{COF}_{\mathrm{y}} \text { and } \mathrm{COF}_{\mathrm{x}} \geq \mathrm{COF}_{\mathrm{z}} \text { : (method 1) } \\
& \text { COF }_{x}=\text { COF }_{x} \text { signCOFSKEW }{ }_{x} \\
& \mathrm{COF}_{\mathrm{y}}=\mathrm{COF}_{\mathrm{y}} \text { signCOFSKEW } \mathrm{X}_{\mathrm{x}} \operatorname{signMFISYM}_{12} \\
& \mathrm{COF}_{\mathrm{z}}=\mathrm{COF}_{\mathrm{z}} \text { signCOFSKEN } \mathrm{X}_{\mathrm{x}} \text { signMFISYM } 13 \\
& \text { Switch FLAGWRD2 bit } 3 \text { (CALCMAN3) to } 1 \\
& \text { Proceed to "WCALC" }
\end{aligned}
\]

If \(\operatorname{COF}_{\mathrm{y}}>\operatorname{COF}_{\mathrm{x}}\) and \(\mathrm{COF}_{\mathrm{y}} \geq \mathrm{COF}_{\mathrm{z}}\) : (method 2)
COF \(_{\mathrm{x}}=\) COF \(_{\mathrm{x}}\) signCOFSKEW \(\mathrm{y}_{\mathrm{y}}\) signMFISYM 12
\(\mathrm{COF}_{\mathrm{y}}=\mathrm{COF}_{\mathrm{y}}\) signCOFSKEW \({ }_{\mathrm{y}}\)
\(\mathrm{COF}_{\mathrm{z}}=\mathrm{COF}_{\mathrm{z}}\) signCOFSKEW \({ }_{\mathrm{y}}\) signMFISYM 23
Switch FLAGWRD2 bit 3 (CALCMAN3) to 1
Proceed to "WCALC"
(Otherwise, \(\mathrm{COF}_{\mathrm{z}}>\mathrm{COF}_{\mathrm{y}}\) and \(\mathrm{COF}_{\mathrm{z}}>\mathrm{COF}_{\mathrm{x}}\)).
\(\operatorname{COF}_{\mathrm{x}}=\operatorname{COF}_{\mathrm{x}} \operatorname{signCOFSKEW}_{\mathrm{z}} \operatorname{signMFISYM} 13\) (method 3)
\(\mathrm{COF}_{\mathrm{y}}=\mathrm{COF}_{\mathrm{y}}\) signCOFSKEW \(_{\mathrm{z}}\) signMFISYM \(_{23}\)
\(\mathrm{COF}_{\mathrm{z}}=\mathrm{COF}_{\mathrm{z}}\) signCOFSKEW \({ }_{\mathrm{z}}\)
Switch FLAGWRD2 bit 3 (CALCMAN3) to 1
WCALC Perform "DELCOMP" with TSang \(=K\) :ARATE RATEINDX
BRATE \(=K:\) ARATE \(_{\text {RATEINDX }}\) COF
TM = AM K:ANGLTTME / K:ARATE RATEINDX
Switch FLAGWRD2 bit 2 (CALCMAN2) to 1
NEWANGL \([\) MIS \(]=[\) MIS \(]\) [DELMAT]
Perform "DCMTOCDU" with [TSmat] \(=\) [MIS]
NCDU \(=\) TScdud converted from one's to two's complement form If FLAGWRD2 bit 2 (CALCMAN2) \(=1\) :

Switch FLAGWRD2 bit 2 (CALCMAN2) to 0
\(\mathrm{TM}=\mathrm{TM}+\mathrm{T}\) IMENOW \(-\mathrm{K}:\) ONESEK
Inhibit interrupts
OMEGARD \(=\) BRATE \(_{z}\)
DELREROR \(=\mid\) OMEGARD \(\mid \mathrm{K}:\) BIASCALE OMEGARD \(/ 1 \mathrm{JACCR}\)
OMEGAQD \(=\) BRATE \(_{y}\)
(If FLAGWRD2 bit \(2=1\))
DEIQEROR \(=\mid\) OMEGAQD \(\mid \mathrm{K}:\) BIASCALE OMEGAQD / 1JACCQ
\(O M E G A P D=\) BRATE \(_{x}\)
DELPEROR \(=\mid\) OMBGA PD \(\mid K:\) BIASCALE OMEGAPD \(/ 1 \mathrm{JACCP}\)
NEXTIME \(=\) TIMENOW \(+K\) : ONESEK (less significant halves only)
\(\underline{D E L C D U}=\mathrm{K}: \mathrm{DTdTAU}\) (\(\underline{B C D U}-\underline{N C D U)}\) (two's complement difference)
\(\underline{C D U D}=\underline{B C D U}\)
\(\underline{B C D U}=\underline{N C D U}\)
Release interrupt inhibit
TS = TM - TTMENOW
If \(\mathrm{TS}>0\), proceed to "CONTMMANU"
If \(T S=0\) :
Call "MANUSTOP" in 1 second
End job
\(T S=T S+K:\) ONESEK +1
If \(T S \leq 0, T S=1\)
Call "MANUSTOP" in TS centiseconds
End job
CONIMANU TS = NEXTIME - TIMENOW (less significant halves only)
If \(\mathrm{TS}<0, \mathrm{TS}=2^{14}+\mathrm{TS}\)
Call "UPDTCALJ" in TS centiseconds
NEXTIME \(=\) NEXTIME +K :ONESEK (less significant halves only)
End job

End task
NEWDELHI If bit 14 of channel \(31=1\) (not AUTO control mode):
Perform "ZATTEROR"
Proceed to "NOGO"
Proceed to "NEWANGL"
NOGO Perform "STOPRATE"
Call "GOODMANU" in 0.02 seconds
End job
MANUSTOP DELCDU \(=0\)
OMEGARD \(=0\)
DELREROR \(=0\)
OMEGAQD \(=0\)
DELQEROR \(=0\)
\(\underline{C D U D}=\underline{T H E T A D}\)
OMEGAPD \(=0\)
DELPEROR \(=0\)
GOODMANU TS = ATTCADR
ATTCADR \(=+0\)
Establish a job starting at the address specified in TS with priority equal to that it had before entering "KALCMAN3" (Essentially equivalent to "returning" to that job)

End task

CDUTODCM \(\phi=\operatorname{TScdu}_{x}\) converted to one's complement form (outer gimbal) \(\theta=T S c d u_{y}\) converted to one's complement form (inner gimbal) \(\psi=T_{S c d u}^{z}\) converted to one's complement form (middle gimbal)
\([\) TSmat \(]=\left[\begin{array}{ccc}\cos \theta \cos \psi & -\sin \theta \sin \phi & \sin \theta \cos \phi \\ \sin \psi & \cos \psi \cos \phi \sin \psi & +\cos \theta \\ & \cos \theta \sin \phi \sin \psi \\ -\sin \theta \cos \psi \sin \phi \\ +\cos \theta \sin \phi & \cos \theta \cos \phi \\ & & \end{array}\right]\)
Return
\[
\begin{aligned}
& \text { DCMTOCDU } \psi=\operatorname{arcsinTSmat}_{21} \text { (limited to within } \pm \frac{1}{4} \text {) } \\
& \text { TScos }=\cos \psi \\
& \text { If }|\mathrm{TScos}| \geq 1 \text {, TScos }=\left(1-2^{-28}\right) \text { signTScos } \\
& \theta=\arcsin \left(- \text { TSmat }_{31} / \text { TSCos }\right) \\
& \text { If TSmat }{ }_{11}<0, \theta=\frac{1}{2} \operatorname{sign} \theta-\theta \\
& \phi=\arcsin \left(- \text { TSmat }_{23} / \mathrm{TScos}\right) \\
& \text { If TSmat }{ }_{22}<0, \phi=\frac{1}{2} \operatorname{sign} \phi-\phi \\
& \text { IScdud }=(\phi, \theta, \psi) \\
& \text { Return }
\end{aligned}
\]

DELCOMP TSs \(=\operatorname{sinTSang}\)
TSc \(=\) cosTSang
TSd \(=1-\operatorname{cosTSang}\)
If \(|T S d| \geq 2\) (overflow), TSd = K:posmaxdp signTSd
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{x}}{ }^{2} \mathrm{TSd}+\mathrm{TSc}\)
If \(|T S| \geq 1\), TS = K:posmaxdp signTS
DELMAT \(_{11}=\mathrm{TS}\)
\[
\begin{aligned}
& \mathrm{TS}=\mathrm{COF}_{\mathrm{y}}{ }^{2} \mathrm{TSd}+\mathrm{TSc} \\
& \text { If }|T S| \geq 1, T S=K: \text { posmaxdp signTS } \\
& \text { DELMAT }_{22}=T S \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{z}}^{2} \mathrm{TSd}+\mathrm{TSc} \\
& \text { If }|\mathrm{TS}| \geq 1, \mathrm{TS}=\mathrm{K}: \text { posmaxdp signTS } \\
& \text { DELMAT }_{33}=T S \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{y}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{z}} \mathrm{TSS} \\
& \text { If }|\mathrm{TS}| \geq 1 \text {, } \mathrm{TS}=\mathrm{K}: \text { posmaxdp signTS } \\
& \text { DELMAT }_{21}=\mathrm{TS} \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{y}} \mathrm{TSD}-\mathrm{COF}_{\mathrm{z}} \mathrm{TSS} \\
& \text { If }|T S| \geq 1, T S=K: \text { posmaxdp signTS } \\
& \text { DELMAT }_{12}=\mathrm{TS} \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{y}} \mathrm{TSs} \\
& \text { If }|T S| \geq 1, T S=K: \operatorname{posmaxdp} \operatorname{signTS} \\
& \text { DELMAT }_{13}=T S \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}-\mathrm{COF}_{\mathrm{y}} \mathrm{TSS} \\
& \text { If }|\mathrm{TS}| \geq 1, \mathrm{TS}=\mathrm{K}: \operatorname{posmaxdp} \text { signTS } \\
& \text { DELMAT }_{31}=\mathrm{TS} \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{y}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{x}} \mathrm{TSs} \\
& \text { If }|T S| \geq 1 \text {, } T S=K: \text { posmaxdp signTS } \\
& \text { DELMAT }_{32}=\mathrm{TS} \\
& \mathrm{TS}=\mathrm{COF}_{\mathrm{y}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}-\mathrm{COF}_{\mathrm{x}} \mathrm{TS} \\
& \text { If }|\mathrm{TS}| \geq 1 \text {, } \mathrm{TS}=\mathrm{K}: \text { posmaxdp signTS } \\
& \text { DELMAT }_{23}=T S
\end{aligned}
\]
```

R62DISP Proceed to "GOFLASH" with TS = K:VO6N22 (THETAD)
(If terminate, proceed to "ENDEXT"; if proceed,
continue at next step; if other response, repeat
this step.)
Switch FLAGWRD5 bit 6 (3AXISFLG) to 1
Perform "R60LEM"
Proceed to "ENDEXT"
V89CALL Perform "RO2BOTH"
OPTIONX }=
OPTIONX = 1
Proceed to "GOFLASH" with TS = K:VOLN12 (OPTIONX ( , OPTIONX
(If terminate, proceed to "ENDEXT", if proceed,
continue at next step; if other response, repeat
this step.)
V89RECL TSt = TIMENOW + K:DP1MIN
TDEC1 = TSt
Perform "CSMCONIC"
TSr = RATT
TDEC1 = TSt
Perform "IEMCONIC"
TS = [REFSMMAT](TSr - RATT) (adjusted to prevent overflow
POINTVSM = unitTS
If OPTIONX }=1,\quadSCAXIS = K:\mathrm{ UNITZ and skip next step
SCAXIS = K:UNITX
Perform "VECPOINT"
THETAD = TS
Perform "BALLANGS"

```
ATTM - 11

Proceed to "GOFLASH" with TS = K:VO6N18 (FDAI)
(If terminate, proceed to "ENDEXT"; if proceed, continue at next step; if other response, proceed to "V89RECL".)

Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R60LEM"
Proceed to "ENDEXT"
CHKLINUS If FLAGWRD4 bit 12 (PDSPFLAG) \(=0\), return
TBASE2 \(=\) return address of last display (prior to call of "CHKLINUS")

Set restart group 2 to phase 13 (causes "RELINUS" to be established with priority \(10_{8}\) if restart.)

Perform "BLANKET" with TS \(=0^{00100_{8}}\)
Return
RELINUS (Entered for restart group 2.13, due to "CHKLINUS")
Perform "PRIOCHNG" with \(A=26000_{8}\) (chg priority to \(26_{8}\))
If FLAGWRD1 bit 5 (TRACKFLG) \(=1\) :
Switch FLAGWRD4 bit 12 (PDSPFLAG) to 1
Return to address specified by TBASE2 (to display generated prior to calling of "CHKLINUS")

If FLAGWRDO bit 7 (RNDVZFLG) \(=1\) : (P20 running)
Set restart group 2 to phase 7 and TBASE2 \(=-\) TIME1 ("P2OLEMC1" will start 15 seconds after overflow of TTME1 counter)

End job
Set restart group 2 to phase 11 and TBASE2 \(=-\) TIME1 (causes "P25LEM1" to be established with priority 148 if restart.)

End job

\section*{1JACCP, 1JACCQ, 1JACCR: See DAFB section.}

A: See MATX section.
AM: Angle of rotation, a double precision angle between 0 and \(\frac{1}{2}\) and \(180^{\circ}\)), scaled BO in units of revolutions.

ANG: See COOR section.
ATTCADR: Double precision address storage set to to when the attitude maneuver routine (KALCMAN3) is not is use.

ATTPRIO: Priority of job calling "GOMANUR".
BALLEXIT: Single precision octal return address storage.
BCDU: Single precision vector storage for the three "present" gimbal angles throughout an attitude maneuver. The \(X, Y\) and \(Z\) components contain the outer, inner and middle gimbal angles respectively, scaled B-1 in units of revolutions and stored in two's complement form.

BRATE: Double precision vector containing the desired maneuver rates about each of the three principal axes, scaled B-3 in units of revolutions per second.

CAM: Double precision cosine of the total maneuver angle, scaled B1 and unitless.

CDU: See COOR section.
CDUD: See DAPA section.
COF: A double precision unit vector defining the axis of rotation of the calculated maneuver in terms of present spacecraft coordinates, scaled B1. Extracted from the transformation matrix [MFI] by one of two procedures depending on the magnitude of the rotation angle.

COFSKEW: Double precision calculation of COF from the off-diagonal terms of \([\mathrm{MFI}]\); equivalent to COF or used to supplement a calculation of \(\mathbf{C O F}\) from the diagonal terms of [MFI] by supplying sign information; scaled B1 and unitless.

COSOGA, COSIGA, COSMGA: See COOR section.
COSTH: See COOR section.

IFLCDU: See DAPA section.
[DFLMAT]: Double precision, \(3 \times 3\) transformation matrix describing a rotation about COF through a particular angle. Used in "NEWANGL" to update [MIS] at one-second intervals; scaled BO and unitless.

DELPEROR, DELQEROR, DELREROR: See DAPA section.
FDAI: Single precision vector containing the values expected to appear on the FDAI at the completion of an attitude maneuver (astronaut roll, pitch and yaw in that order), scaled B-1 in units of revolutions.

K:ANCLTIME: Double precision constant stored as 0.0001907349 , scaled B19 in units of centiseconds per second. Equation value: 100. (Used with a right shift of 5 to convert from seconds scaled B4 to centiseconds scaled B28.)

K:ARATE : Table of four double precision constants, scaled B-4 in units of \({ }^{1}\) revolutions per second.
\begin{tabular}{llll}
i & Stored Value & Equation Value & Equivalent \\
0 & 0.0088888888 & 0.0005555555 & 0.2 degrees \(/\) second \\
1 & 0.0222222222 & 0.0013876388 & 0.5 degrees \(/\) second \\
2 & 0.0888888888 & 0.0055505550 & 2.0 degrees \(/\) second \\
3 & 0.4444444444 & 0.0277777778 & 10.0 degrees \(/\) second
\end{tabular}
\(\mathrm{K}:\) BIASCAIE: Single precision constant stored as 757778 , scaled B2 and unitless. Equation value: \(\frac{1}{4}\).

K: DTdTAU: Single precision constant stored as O.l, scaled BO in units of seconds per DAP cycle. Equation value: 0.1.

K:IOCKANGL: Single precision constant stored as 0.388889 , scaled \(\mathrm{B}-1\) in units of revolutions. Equation value: 0.194445. (Equivalent to 70 degrees.)

K:MAXANG: Double precision constant stored as 0.472222222 , scaled BO in units of revolutions. Equation value: 0.472222222 . (Equivalent to 170 degrees.)

K:DP1MIN: Double precision constant stored as 0.0000223517 , scaled B28 in units of centiseconds. Equation value: one minute.

K:MINANG: Double precision constant stored as 0.00069375 , scaled BO in units of revolutions. Equation value: 0.00069375 . (Equivalent to 0.25 degrees.)

K :ONESEK: Double precision constant stored as \(100 \times \mathrm{c}^{-28}\), scaled B28 in units of centiseconds. Equation value: 100.

K: posmaxdp: See list of Major Variables.
K:SINGIMLC: Double precision constant stored as 0.4285836003 , scaled BI and unitless. Equation value: 0.8571672 . (Corresponds to the sine of 59 degrees.)
k: SINVEC1: Double precision constant stored as \(U .3796356537\), scaled BI and unitiess. Equation value: 0.7592713074. (Corresponds to the sine of 49.4 degrees.)

K:SINVECZ: Double precision constant stored as 0.24(i\&ll7800, scaled Bl and unitless. Equation value: 0.49242356 . (Corresponds to the sine of 29.5 degrees.)
 unitless. Equation value: \((1,0,0),(0,1,0)\) and \((0,0,1)\).

K:VECANG1: Double precision constant stored as 0.1388888889, scaled BO in units of revolutions. Equation value: 0.1388888889. (Equivalent to 50 degrees.)

K:VECANG2: Double precision constant stored as 0.09722222222 , scaled BO in units of revolutions. Equation value: 0.09722222222 . (Equivalent to 35 degrees.)

K:VxxNxx: See list of Major Variables.
[MFI]: Double precision, \(3 \times 3\) transformation matrix, scaled B2 and defined such that Asc [[MFI] Ascd where A is a vector expressed in terms of "present spacecraft" and "desired spacecraft" coordinate systems, respectively.
[MFISYM]: A double precision, \(3 \times 3\) matrix synthesized from [MFI] and its transpose to enable an accurate computation of COF from the diagonal terms; scaled B2.
[MFS]: A double precision, \(3 \times 3\) transformation matrix, scaled B1 and defined such that Asm = [MFS] Ascd where \(\underline{A}\) is a vector expressed in terms of "stable member" and "desired spacecraft" coordinate systems, respectively.
[MIS]: A double precision, \(3 \times 3\) transformation matrix scaled Bl and defined such that \(\underline{A} s m=[M I S]\) Asc where \(\underline{A}\) is a vector expressed in terms of "stable member" and "present spacecraft" coordinate systems, respectively.

MODREG: See DATA section.
NCDU: Single precision vector storage for the gimbal angles desired after the next one-second period, scaled B-1 in units of revolutions and stored in two's complement form.

NEXITME: Single precision scheduled time of the next "UPDTCALL" cycle, scaled B14 in units of centiseconds.

OMEGAPD, OMEGAQD, OMEGARD: See DAPA section.
OPTIONX \({ }_{0}\), OPTIONX \({ }_{1}\) : See EXVB section.
POINTVSM: Double precision "desired direction" vector, a unit vector scaled B1 and expressed in terms of "stable member" coordinates.
RATEINDX: See DAPB section.
RATT: See ORBI section.
[REFSMMAT]: See COOR section.
SCAXIS: Double precision unit vector defining the spacecraft axis that is to be pointed in the "desired direction", scaled B1 and expressed in "present spacecraft" coordinates.

SINOGA, SINIGA, SINMGA: See COOR section.
SINTH: See COOR section.
TBASE2: Cell used for address storage purposes in "CHKLINUS" to fermit restoration of program display after a restart. The cell is s;ingle precision and is normally used to contain waitlist restart information (as it is in "RELINUS".)

TDEC1: See ORBI section.
TEMPR60: Single precision octal return address storage.

THETA: See COOR section.
THETAD: Single precision vector containing the gimbal angles that define the desired orientation to which the attitude maneuver routines are to maneuver; scaled B-1 in units of revolutions and stored in two's complement form. Also called CPHI in program.

TIME1: The least signifigant half of TIMENOW. See EXVB section.
TIMENOW: See EXVB section.
TM: Double precision time of maneuver end, calculated on the first pass through "NEWANGL" and scaled B28 in units of centiseconds.
[TMFI]: Double precision, \(3 \times 3\) matrix equal to the transpose of [MFI]; scaled B2.
[TMIS|: Double precision, \(3 \times 3\) matrix equal to the transpose of \([\) MIS]; scaled B1.

VECQTEMP: Single precision octal return address storage.
\(Y_{S C}, Y_{S M} M_{S c d}\) : Double precision unit vector along the \(Y\)-axis of the "stable member" coordinate system expressed in terms of "present spacecraft" and "desired spacecraft" coordinate systems, respectively; scaled \(B 1\).
\(-\)
-
```

P4OLM WHICH $=$ "P4OTABLE"
If FLGWRD10 bit 13 (APSFLAG) $=1$, proceed to "P40ALM"
Perform "RO2BOTH"
DVTHRUSH = K:THRESH1 + K:THRESH3
If DAPBOOLS bit 13 (CSMDOCKD) $=1$, DVTHRUSH $=$ K:THRESH3
DVCNTR $=4$
Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
$F=K: F D P S$
MDOT $=\mathrm{K}:$ MDOTDPS
TDECAY = K:DTDECAY
VEX $=-2 \mathrm{~K}:$ DPSVEX
Proceed to "P4OIN"
P42LM $\quad$ WHICH $=$ "P42TABLE"
If FLGWRD10 bit 13 (APSFLAG) $=0$, proceed to "P40ALM"
P42STAGE Perform "RO2BOTH"
DVTHRUSH = K:THRESH2
DVCNTR $=4$
Switch FLAGWRD2 bit 5 (AVFLAG) to 1 (LM active)
$F=K: F A P S$
MDOT $=\mathrm{K}:$ MDOTAPS
TDECAY $=\mathrm{K}: A T D E C A Y$
VEX $=-2 \mathrm{~K}: A P S V E X$
P4OIN Perform "S40.1" (get initial target vectors)
Perform "S40.2,3" (get initial attitude)

```
BURN - 1
Perform "PFLITEDB" with interrupts inhibited
Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R60LEM"
Proceed to "BURNBABY"
P41LM
Perform "RO2BOTH"
If FLAGWRD1 bit 15 (NJETSFLG) \(=0, \mathrm{~F}=\mathrm{K}:\) FRCS4
If FLAGWRD1 bit 15 (NJETSFLG) \(=1, \mathrm{~F}=\mathrm{K}:\) FRCS2
Perform "S40.1" (get initial target vectors)
Perform "S40.2,3" (get initial attitude)
Inhibit interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R60LEM" (return after attitude maneuver complete)
Perform "S41.1" with TSref = VGPREV
VGBODY = TSbody
Perform "GODSPRET" with TS = K:V16N85 (VGBODY)
DISPDEX \(=2\) (positive to enable "DYNMDISP")
Establish "DYNMDISP" (pr05)
Proceed to the third step of "BURNBABY"
PLOALM Perform "ALARM" with TS \(=01706_{8}\)
REP4OALM Proceed to "GOFLASH" with TS = K:VO5NO9(If terminate, proceed to "GOTOPOOH"; if proceed, continue atnext step; if other response, repeat this step.)
Proceed according to fourteenth entry in WHICH table
(-----, REP4OALM:- ----, P42STAGE, -----, -----)

\section*{BURNBABY DVTOTAL \(=0\)}

Perform "P40AUTO" (assure proper mode switching)
GOBLTIME \(=\) TIG
Perform "ENGINOF3" with interrupts inhibited
Proceed according to the fifth entry in WHICH table (P4OSPOT, P4OSPOT, P41SPOT, P4OSPOT, P41SPOT, ---)

P4OSPOT DISPDEX = - 15 ("CLOKTASK" controlled otherwise by P41, P63)
Perform "STCLOK3" (start computation of TTOGO)
P41SPOT TDEC1 = TIG - K:D29.9SEC ("CLOKTASK" already running if P63)
Perform "INITCDUW" (initialize steering)
If FLAGWRD6 bit 8 (MUNFLAG) \(=1\) :
Perform "CSMPREC"
\(\underline{\text { VCSM }}=[\) REFSMMAT \(] \underline{\text { VATT }}\)
\(\underline{R C S M}=[\) REF'SMMAT \(] \underline{R A T T}\)
Perform "MUNGRAV" with \(\underline{T} S r=\) RCSM
GCSM \(=\) GDT1
TDEC1 \(=\) TAT
Perform "MIDTOAV1"
If TSerror = 1: (did not finish in time)
\[
\text { TIG }=\text { PIPTIME1 }+\mathrm{K}: \text { D29.9SEC }
\]

SAVET \(=\) TSt \(-K: 5 S E C D P\)
Call "TIG-35" in SAVET centiseconds
If MODREG = 63:
\[
\begin{aligned}
& \text { DISPDEX }=-15 \quad \text { (enable display of TTOGO) } \\
& \text { ABVEL }=|\underline{\mathrm{VN}} 1|
\end{aligned}
\]

End job
TIG-35 Call "TIG-30" in 5 seconds
DISPDEX \(=-2\) (cause "CLOKTASK" to blank display)If the 6th entry in WHICH table \(<0\) :(P41)
Call "TIG-30.1" in 4.9 seconds
Establish "P41BLANK" (pr17)
End task
P41BLANK Perform "CIEANDSP"
End job
TIG-30.1 Establish "TIG-30A" (pr17)
End task
TIG-30A Proceed to "REGODSP" with TS = K:V16N85 (VGBODY)
TIG-30 (Entered at TIG - 29.9 seconds)
Call "TIG-5" in 24.9 seconds
DISPDEX \(=-15\) (enable TTOGO display)
TSt \(=6\) th entry in WHICH table (\(0,2240,-1,2640,2240,-\cdots--)\)
If \(T S t \leq 0\), proceed to "ULLGNOT"
Perform "ULIGTASK" in TSt centisecondsProceed according to first entry in WHICH table(ULLGNOT, ULLGNOT,-----, WANTAPS, ULIGNOT, ULLGNOT)
WANTAPS Switch FLGWRD10 bit 13 (APSFLAG) to 1
ULLGNOT AVEGEXIT = 7th entry in WHICH table(SERVEXIT, STEERING, CALCN85, STEERING, SERVEXIT,------)
Proceed to "PREREAD"
ULLGTASK Switch DAPBOOLS bit 6 (ULLAGER) to 1
End task
TIG-5 Call "TIG-0" in 5 seconds
Switch FLAGWRD7 bits 13 (IGNFLAG) and 12 (ASTNFLAG) to 0
Switch FLAGWRD5 bit 8 (Z00MFLAG) to 0
Proceed according to 11th entry in WHICH table(DISPCHNG, P4OSJUNK, End task, P4OSJUNK, DISPCHNG, DISPCHNG)
P4OSJUNK If "S40.13" is running, proceed to "DISPCHNG" (indicated by

End task
\#PROCEED Switch FLAGWRD7 bit 12 (ASTNFLAG) to 1
If FLAGWRD7 bit 13 (IGNFLAG) = 1:
Call "IGNITION" in 0.01 seconds
DISPDEX \(=-15\) (display only)
End job
TIG-0 Switch FLAGWRD7 bit 13 (IGNFLAG) to 1
If MODREG \(=63\), call "ZOOM" in ZOOMTIME centiseconds
If FLAGWRD7 bit 12 (ASTNFLAG) \(=1\), proceed to "IGNITION"
Proceed according to the 12th entry in WHICH table (End task, End task, TIGTASK, End task, End task, End task)

TIGTASK
Establish "TIGNOW"

Switch DAPBOOLS bit 15 (PULSES) to 0
End task
IGNITION Switch FLAGWRD5 bit 7 (ENGONFLG) to 1
Switch bit 14 of channel 11 to 0
(send ignition command)
Switch bit 13 of channel 11 to 1
TEVENT = TIMENOW

Switch DAPBOOLS bit 15 (PULSES) to 0
TIG \(=\) TGO + TIMENOW (now contains cutoff time)
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
Proceed according to the 13 th entry in WHICH table (P12IGN, P40IGN, ---, P42IGN, P63IGN, ABRTIGN)

P12IGN
AOSQ \(=\) IGNAOSQ
(Initialize DAP bias acceleration estimates)
AOSR \(=\) IGNAOSR
ABRTIGN DISPDEX \(=\mathrm{Z}\)
(positive to kill "CLOKTASK")
AVEGEXIT \(=\) "ATMAG"
Switch FLAGWRD7 bit 11 (SWANDISP) to 1
Proceed to "P42IGN" BURN - 5

AVEGEXIT \(=\) "LUNLAND"
DISPDEX \(=2\) (positive to kill "CLOKTASK")

Switch FLAGWRD9 bit 9 (LETABORT) to 1
Switch FLAGWRD7 bit 11 (SWANDISP) to 1
TIG = TIMENOW
WCHPHASE \(=0\)
WCHPHOLD \(=0\)
FLPASSO \(=2\)
Proceed to "P42IGN"

P4OIGN If FLAGWRD5 bit 12 (NOTHROTL) \(=0:\)
Call "ZOOM" in ZOOMTIME centiseconds
P42IGN Switch DAPBOOLS bit 8 (DRIFTBIT) to 0
If FLAGWRD2 bit 9 (IMPULSW) \(=1\) :
If \(T G O \leq 0, T G O=1\)
\(T G O=2^{14}\) (fractional part of TGO \(/ 2^{14}\)) (more significant half zeroed)
Call "ENGOFTSK" in TGO centiseconds
Switch FLAGWRD7 bits 13 (IGNFLAG) and 12 (ASTNFLAG) to 0
Switch FLAGWRD2 bit 9 (IMPULSW) to 0
Delay 0.5 second
Switch DAPBOOLS bit 6 (ULLAGER) to 0
End task
Switch FLAGWRD7 bits 13 (IGNFLAG) and 12 (ASTNFLAG) to 0
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 0
Delay 0.5 second
```

    Switch DAPBOOLS bit 6(ULLAGER) to 0
    End task
    ZOOM If MODREG = 63: (If P63 running)
        Proceed to "P63Z00M" (otherwise it's P40)
    P4OZOOM THRUST = K:MAXTHRUST
    Switch bit 4 of channel }14\mathrm{ to 1
    End task
    |63Z00M Switch FLAGWRD5 bit 8 (Z00MFLAG) to 1
Perform "FLATOUT"
End task
STEERING Perform "UPDATEVG"
If FLAGWRD2 bit 9 (IMPULSW) = 0, proceed to "SERVEXIT"
If FLAGWRD7 bit 7 (IDLEFLAG) = 1, proceed to "SERVEXIT"
Perform "STOPRATE"
Switch FLAGWRD2 bit 9 (IMPULSW) to 0
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
Inhibit interrupts
TSt = TIG - TIMENOW
If TSt < 0, TSt = 1
TSt = 2 14 (fractional part of TSt / 2 14) (more significant
Call "ENGOFTSK" in TSt centiseconds
Release interrupt inhibit
End job
ENGOFTSK Perform "ENGINOFF"
End task
ENGINOFF Establish "POSTBURN"
(pr12)
BURN - }

```
```

ENGINOF2 Call "COASTSET" in 0.01 second
ENGINOF1 Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
Switch DAPBOOLS bit 6 (ULLAGER) to 0
ENGINOF4 TEVENT = TIMENOW
ENGINOF3 Switch FLAGWRD5 bit 7 (ENGONFLG) to 0
Switch bit }13\mathrm{ of channel }11\mathrm{ to 0
Switch bit 14 of channel 11 to 1
Switch DAPBOOLS bit 14 (USEQRJTS) to 1
THRUST = - K:MAXTHRUST (wipe out any throttle setting above
that specified manually)
Switch bit 4 of channel 14 to 1
Return
COASTSET Perform "ALLCOAST"
End task
POSTBURN DISPDEX = Z. (positive to kill "CLOKTASK")
AVEGEXIT = "CALCN85"
Perform "GOFLASHR" with TS = K:V16N40 (TTOGO, DELVSAB, DVTOTAL)
(If terminate, proceed to "TERM4O"; if proceed, proceed to
"TIGNOW"; if other response, proceed to "POSTBURN".)
End job
TIGNOW Inhibitt interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Perform "REFLASHR" with TS = K:V16N85 (VGBODY)
(If terminate, proceed to "TERM4O"; if proceed, proceed to
"TERM4O"; if other response, repeat this step.)

```
End job
```

TERM4O AVEGEXIT = "SERVEXIT"
TRKMKCNT = 0
DISPDEX = Z (positive to kill "CLOKTASK")
Perform "RESTORDB" with interrupts inhibited
Proceed to "GOTOPOOH"
STCLOK3 TSt = TIG - TIMENOW (modulo 2 }\mp@subsup{}{}{19}\mathrm{ centiseconds)
TSt = 2 + 100 (fractional part of TSt / 100)
(If TIG - TIMENOW were 4723 centiseconds, TSt would be 25
centiseconds, starting "CLOKTASK" at TIG - 46.98 seconds.)
Call "CLOKTASK" in TSt centiseconds
Return
COMPTGO DISPDEX = 0 (compute TTOGO but do not display)
Call "CLOKTASK" in 0.02 second
Return
CLOKTASK If DISPDEX> 0, end task
Establish "CLOKJOB"
(pr27)
Delay 1 second
Proceed to "CLOKTASK"
CLOKJOB TTOGO = TIMENOW - TIG
If DISPDEX = - 29:
NVWORD1 = -0 (to specify a verb 97 paste)
Proceed to "CLOCPLAY" with TS = NVWORD }
(If terminate, proceed to "STOPCLOK"; if proceed,
proceed according to the serond entry in WHICH
table: COMFAIL3, COMFAIL4,,----, COMFAII4,
COMF;IL3, COMF:IL3; if other response, proceed
to "COMFAIL2".)

```

Proceed to "REFLASH" with TS = K:VO6N61
(If terminate, proceed to "STOPCLOK"; if proceed, continue at next step; if other response, repeat this step.)

DISPDEX \(=0\)
Establish "ASTNRET" (pr13)
End job
If DISPDEX \(=-15:\)
Proceed to "REGODSP" with TS = zero entry in WHICH table (V06N74, V06N4O, ---, V06N4O, V06N62, V06N63)

If DISPDEX = - 11:
V99RECYC
NVWORD1 \(=773778\) (to specify a verb 99 paste)
Proceed to "CLOGPLAY" with TS = zero entry in WHICH table (V06N74, V06N4O, ----, V06N4O, VO6N62, VO6N63)
(If terminate, rroneed to "STOPCIOK"; if proneed proceed to "*PROCEED"; if other response, proceed to "*ENTER".)

If DISPDEX \(=-2\) :
Perform "CLEANDSP"
End job

STOPCLOK Switch DAPBOOLS bit 6 (ULLAGER) to 0
Remove "ULLGTASK" from the waitlist if it is there
DISPDEX \(=\mathrm{Z}\) (positive to kill "CLOKTASK")
Proceed to "GOTOPOOH"
*ENTER Inhibit interrupts
Proceed according to the 3rd entry in WHICH table (GOCUTOFF, GOPOST, ---, GOPOST, V99RECYC, GOCUTOFF)Establish "POSTBURN"Inhibit interruptsPerform "ALLCOAST"Switch DAPBOOLS bit 6 (ULLAGER) to 0Remove "ULLGTASK" from the waitlist if it is thereDISPDEX \(=Z\) (positive to kill "CLOKTASK")Release interrupt inhibitEnd job
```

GOCUTOFF Establish "CUTOFF" ..... (pr17)
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
Inhibit interrupts
Perform "ALLCOAST"
Switch DAPBOOLS bit 6 (ULLAGER) to 0
Remove "ULLGTASK" from the waitlist if it is there
DISPDEX = Z (positive to kill "CLOKTASK")
Release interrupt inhibit
End job
COMFAIL Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
Switch FLAGWRD8 bit 10 (FLUNDISP) to 1
DVCNTR $=4$
If DISPDEX >0:
DISPDEX $=0$
Perform "STCLOK3"
DISPDEX $=-29$ (initiate fail branch display)
End job

Remove "ZOOM" from the waitilist if it is there
Perform "ENGINOF4"
Switch DAPBOOLS bit 8 (DRIFTBIT) to 1
Invert DAPBOOLS bit 10 (AORBTRAN)
Switch DAPBOOLS bit 6 (ULLAGER) to 1
Call "TIG-5" in 0.01 second
End job
COMFAIL3 DISPDEX = $\mathbf{2}$ (positive to kill "CLOKTASK")
Skip next step
COMFAIL4 DISPDEX $=-15$
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 0
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
End job
DYNMDISP If DISPDEX $\leq 0$, end job ("CLOKTASK" has started)
Perform "S41.1" with TSref = VGPREV
$\underline{\text { VGBODY }}=$ TSbody
Delay 1 second
Proceed to "DYNMDISP"
CALCN85 Perform "UPDATEVG"
Perform "S41.1" with TSref = VGPREV
VGBODY = TSbody
Proceed to "SERVEXIT"
S41.1 Perform "CDUTRIG"
Perform "SMTONB"

TSbody $=[$ SMNBMAT $][$ REFSMMAT $]$ TSref
Return
P4OAUTO If FLGWRD10 bit 13 (APSFLAG) $=1$ and bit 10 of channel $30=0$ (PGNCS) and bit 14 of channel $31=0$ (DAP in Auto mode) or if FLGWRD10 bit 13 (APSFLAG) $=0$ and bit 10 of channel $30=0$ and bit 14 of channel $31=0$ and bit 5 of channel $30=0$ (Auto throttle mode also required if descent):

Return (switch configuration proper)
Proceed to "GOPERF1" with $T S=00203$ (request proper moding)
(If terminate, proceed to "GOTO POOH"; if proceed, proceed to "P4OAUTO"; if other response, continue at next step.)

Return
P47LM Perform "RO2BOTH"
Perform "MIDTOAV2"
Call "STARTP47" in TSt centiseconds (TSt modulo 2 ${ }^{14}$ )
End job
STARTP47 AVEGEXIT = "CALCN83"
Establish "P47BODY"
(pr20)
Proceed to "PREREAD"
P47BODY DELVIMU $=0$
DELVCTL $=0$
Perform "GOFLASHR" with TS = K:V16N83 (DELVIMU)
(If terminate, proceed to "GOTOPOOH"; if proceed, proceed to "GOTOPOOH"; if other response, proceed to "P47BODY".)

End job
CALCN83 DELVSIN $=$ DELVCTL + DELVREF
Perform "S41.1" with TSref = DELVSIN
DELVIMU = TSbody
DELVCTL = DELVSIN
Proceed to "SERVEXIT"

UPDATEVG QTEMP1 = return address

## Perform "S40.8"

If FLAGWRD2 bit 8 (XDELVFLG) $=1$, return via QTEMP1
If FLAGWRD7 bit 10 (NORMSW) $=0$ :
TS = PIPTIME - TIGSAVE - TNEWA
If $T S<0$, proceed to "GETRANS"
TStp = TIGSAVE + TNEWA
If "S40.9" is still active: (as indicated by restart tables)
Return via QTEMP1
Establish "S40.9" (pr10)
TIGSAVE $=$ TStp
RINIT $=\underline{R N}$
VINIT $=\underline{\text { VN }}$
GETRANS DELLT4 $=$ TPASS $4-$ PIPTIME
Return via QTEMP1
S40.8 If FLAGWRD2 bit 8 (XDELVFLG) $=0$, proceed to "RASTEER1"
TS $1=\underline{\text { VGPREV }}-\underline{\text { DELVREF }}$
VGAIN* $\quad \underline{V G}=\underline{T} 1$
$\underline{\text { UNFC }}=[$ REFSMMAT $] \underline{\mathrm{VG}}$
DELVSAB $=|\underline{V G}|$
$\underline{V G P R E V}=\underline{V G}$
If FLAGWRD2 bit 11 (STEERSW) $=0$, return
$T S=u n i t(-\underline{D E L V R E F}) \cdot \underline{V G}$

If $T S \geq 0:$
Perform "ALARM" with TS $=01407_{8}$
Perform "FINDCDUW"
Return (to caller of "S40.8")
$T S 1=1+(T S / V E X)$
TGO $=(K: m F O U R D T$ TS TS1 $/|\underline{D E L V R E F}|)+$ TDECAY
TIG $=$ TGO + PIPTIME
If TGO $>\mathrm{K}:$ FOURSECS:
Perform "FINDCDUW"
Return (to caller of "S40.8")
Switch FLAGWRD2 bit 9 (IMPULSW) to 1
Switch FLAGWRD2 bit 11 (STEERSW) to 0
Return (to caller of "S40.8")
S40.1 QTEMP = return address
TIGSAVE $=$ TIG
If FLAGWRD2 bit 8 (XDELVFLG) $=0$, proceed to "S40.1B"
VINIT $=$ VTIG
$T S=|\underline{V T I G} * \underline{R T I G}|$
$\underline{U T}=\operatorname{unit}(\underline{V T I G} * \underline{R T I G})$
$\underline{\text { RINIT }}=\underline{\text { RTIG }}$
TSang $=\left(T S ~ K: T H E T A C O N /|\underline{R T I G}|^{2}\right)$ (DELVSAB MASS $/ \mathrm{F}$ )
$\underline{T} S a=(\underline{D} E L V S I N \cdot \underline{U T}) \underline{U T}$
$\underline{T} S b=\underline{D E L V S I N}-\underline{T S a}$
$\underline{V G P R E V}=\underline{T} S a+|\underline{T S b}|$ (sinTSang unit(TSb * UT) + cosTSang unitTSb)
$\underline{U} T=u n i t \underline{V G P R E V}$

```
 Perform "GET.LVC" with TS = VGPREV
 Return via QTEMP
S40.1B}\quad\mathrm{ TDEC1 = TIG
 DELLT4 = TPASS4 - TIG
 Perform "LEMPREC"
 RTIG = R_RATT and \underline{RINIT = RATT}
 UNITR = unitRATT
 VTIG = VATT
 VINIT = VATT
 VTARGTAG = 0
 CNANGL = K:EPS1
 If FLAGWRD7 bit 10 (NORMSW) = 1, CNANGL = K:EPS1 + K:EPS2
 RTX1 = MUDEX
 RTX2 = PBODY
 Perform "INITVEL"
 VGPREV = DELVEET3
 UT = unitVGPREV
 DELVSAB = | VGPREV
 Perform "GET.LVC" with TS = DELVEET3
 Return via QTEMP
S40.2.3 POINTVSM = [REFSMMAT] UT
SCAXIS = K
XXMDrf = UT
TSa = unit(\underline{XSMDrf * RTIG)}
```

```
 TS dp
 If the most significant half of TS }\mp@subsup{\textrm{dp}}{0}{}=0\mathrm{ :
 TSa = unit(\underline{XSMDrf * VTIG)}
 YSMDrf = TSa
 ZSMDrf = - YSMDrf * XSMDrf
 Switch FLAGWRD2 bit 4 (PFRATFLG) to 1
 Return
S40.9 SWitch FLAGWRD2 bit 5 (AVFLAG) to 1
 CNANGL = K:EPS1
 If FLAGWRD7 bit 10 (NORMSW) = 1, CNANGL = K:EPS1 + K:EPS2
 Perform "HAVEGUES" with VTARGTAG = 0
 End job
RASTEER1 RMAG = | RN|
TSuc = unit(\underline{RTARG - RN})
TSc = |RTARG - RN| (quasi floating point)
TSrlc = TSc RMAG (quasi floating point)
TSsST}=(\mathrm{ RMAG + RTMAG + TSc) / 2
TS1 = (MUASTEER - (TSSS - TSc)) MUdA / 2
TSa =[2(TSss - RMAG)TS1/TSr1c}\mp@subsup{]}{}{\frac{1}{2}}\mathrm{ signGEOMSGN
TS1 = MUASTEER - TSss MUdA / 2
TSb = [2(TSSs - RTMAG)TS1/TSr1c] }\mp@subsup{]}{}{\frac{1}{2}
TS1 = [(TSss - TSc)/TSss] }\mp@subsup{]}{}{\frac{1}{2}
TS1 = K:2PI+3 arcsinTS1 - (TSc/TSSs)}\mp@subsup{)}{}{\frac{1}{2}}(TS1
TS1 = TS1 signGEOMSGN
TS =[TSss }\mp@subsup{}{}{3}/(2 MUASTEER) 笽年(K:2pi+1 - TS1) - TPASS4 + PIPTIME
```

```
 TS = TSb signTS
 If FLAGWRD7 bit 10 (NORMSW) = 1:
 If TSuc e UNITR < O, proceed to "NEGPROD"
 TS1 = unit(\underline{UNITR + TSuc)}
 TS2 = unit((- TS1 * UN) signGEOMSGN) TS
 VIPRIME = TSN1 TSa + TS2
 DELVEET3 = VIPRIME - VN1
 Proceed to "FIRSTTME"
 TST = unit(\underline{TSuc - UNITR) TS}
 VIPRIME = unit(\underline{TSuc + \underline{NITR) TSa + TS1}}\mathbf{~}=\underline{N}
 DELVEET3 = VIPRIME - VN1
 Proceed to "FIRSTTME"
NEGPROD
 TS1 = unit(TSuc - UNITR)
 TS2 = unit((\underline{TS1 * UN) signGEOMSGN) TSa}
 VIPRIME = TS1 TS + TS2
 DELVEET3 = VIPRIME - VN1
FIRSTTME If RTX2 = 0:
 (earth centered orbit)
 TS = UNITGOBL (PIPTIME - GOBLTIME) K:EARTHMU / |RN| |
 DELVEET3 = DELVEET3 + TS
 TS1 = DELVEET3 and skip next step
 TS1 = DELVEET3
 Proceed to "VGAIN*"
S40.13 Switch FLAGWRD2 bit 9 (IMPULSW) to 0
 TS = |VGPREV | - K:4SEC K:FRCS2 / MASS
 If FLGWRD10 bit 13 (APSFLAG) = 0, proceed to "S40.13D"
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 1
```

```
 TSa = TS - (K:K1VAL / MASS)
 If TSa<0:
 TSt = (TS MASS + K:K2VAL) / K:K3VAL
 Proceed to "S40.132"
 TSb = F K:5SECS / (MASS - MDOT K:3.5SEC)
 TSc = TSa - TSb
 If TSc\geq 0, proceed to "S40.13D"
 (TGO \geq6 seconds)
 TSt = K:1SEC2D + K:5SECS TSa/TSb
 Proceed to "S40.132"
S40.13D TS = TS MASS
 If FLGWRD10 bit 13 (APSFLAG) = 1:
 TSt = TS / K:FAPS
 Proceed to second step of "S40.132"
 TSt = TS / K:S40.136
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
 If overflow (TSt\geq 2 14})
 TGO = TS MASS / K:S40.136*
 End job
 If TSt< K:6SEC: (TGO< 6 seconds)
 Proceed to "S40.132"
 If TSt< (K:6SEC + K:89SECS): (TGO< }95\mathrm{ seconds)
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 1
 Proceed to the second step of "S40.132"
S40.132 Switch FLAGWRD2 bit 9 (IMPULSW) to 1
 TGO = (0,TSt ms)
 End job
 BURN - 19
```

$\underline{U N F V}=\underline{K}: U N I T X$
UNWC $=\underline{K}:$ UNITX
Return
FINDCDUW TSnewthrust $=$ UNFC
QCDUWUSR $=$ return address
NDXCDUW = bit 13 of DAPBOOLS (CSMDOCKD) (1 or 0)
FLPAUTNO $=1$
FLAGOODW = bit 9 of DAPBOOLS (XOVINHIB) (1 or 0)
Inhibit interrupts
$\underline{A N G}=\underline{C D U}$
If bit 10 of channel $30=0$ and bit 14 of channel $31=0$ : (PGNCS control; DAP in Auto mode)

FLPAUTNO $=0$
ANG $=\underline{\text { CDUD }}$
Release interrupt inhibit
UNX = unitTSnewthrust (argument of unit
UNZ $=$ unit $\underline{U N W C}$
Perform "QUICTRIG"
If overflow (in either unit operation above), proceed to "NOATTCNT"
$\underline{T} S=u n i t D E L V$
If no overflow ( $|\underline{D E L V}| \geqslant 2^{-7} \mathrm{~cm} / \mathrm{sec}$ ):
Perform "SMTONB"
$\underline{T S d v}=[$ SMNBMAT $] \underline{T S}$
$T S=\left(T S d v_{y}-U N F V_{y}\right) K:$ GAINFLTR $_{\text {NDXCDUW }}$
If $|T S|>K: D U N F V L I M, T S=K: D U N F V L I M ~ s i g n T S$
(If no overflow:)
$\mathrm{UNFV}_{\mathrm{y}}=\mathrm{UNFV}_{\mathrm{y}}+\mathrm{TS}$
If $\mid$ UNFV $_{\mathrm{y}} \mid>\mathrm{K}:$ UNFVLIM, $^{\text {, UNFV }}{ }_{\mathrm{y}}=\mathrm{K}$ :UNFVLIM signUNFV ${ }_{\mathrm{y}}$
$\mathrm{TS}=\left(\mathrm{TSdv}_{\mathrm{z}}-\mathrm{UNFV}_{\mathrm{z}}\right) \mathrm{K}: \mathrm{GAINFLTR}_{\text {NDXCDUW }}$
If $|T S|>K: D U N F V L I M, T S=K: D U N F V L I M$ signTS
$\mathrm{UNFV}_{\mathrm{z}}=\mathrm{UNFV}_{\mathrm{z}}+\mathrm{TS}$
If $\left|U N F V_{z}\right|>K:$ UNFVLIM, $_{z}$ UNFV $_{z}=K$ :UNFVLIM signUNFV ${ }_{z}$ If FLAGOODW $=1$ :

If (UNZ $\cdot \underline{U N X})^{2}<\mathrm{K}:$ DOTSWFMX:
Proceed to "DCMCL"
FLAGOODW $=0$
$\underline{U N Z}=\underline{Z N B P I P}$
If (UNZ $\cdot \underline{U N X})^{2}<\mathrm{K}:$ DOTSWFMX:
Proceed to "DCMCL"
FLAGOODW $=0$
$\underline{U N Z}=-\underline{X N B P I P}$
DCMCL $\quad \underline{U N Y}=$ unit( $\underline{U N Z} * \underline{\text { UnNX }})$
$\underline{U N Z}=\underline{U N Y} * \underline{U N X}$
$\underline{U N X}=$ unit (UNX $\left.+\operatorname{UNFV}_{z} \underline{U N Z}^{\underline{U}}-\operatorname{UNFV}_{\mathrm{y}} \underline{U N Y}\right)$
$\underline{\mathrm{UN} Y}=\underline{\mathrm{UN} X} * \underline{\mathrm{UNZ}}$
$\underline{U} N Z=-\underline{U} N Y * \underline{U N X}$
Perform "NB2CDUSP"
If $\mid$ TScdu ${ }_{z} \mid>K$ :CDUZDLIM:
TScdu $_{z}=K:$ CDUZDLIM signTScdu $_{z}$
Perform "ALARM" with TS $=004018$

Inhibit interrupts
THETAD $=$ TScdu
$\underline{\underline{m} D E L G M B}=-(\underline{T} S c d u-\underline{C D U D})$
If $\mathrm{mDELGMB}_{\mathrm{y}}^{2}+\mathrm{K}: \mathrm{HI} 5>0$, FLAGOODW $=0$
If $\mathrm{mDELGMB}_{\mathrm{z}}^{2}+\mathrm{K}: \mathrm{HI} 5>0$, FLAGOODW $=0$
If FLPAUTNO $>0$ or if FLAGWRD5 bit 7 (ENGONFLG) $=0$ :
Proceed to the second step of "NOATTCNT"
$i=$ NDXCDUW
If $\left|\mathrm{mDELGMB}_{z}\right|>K: \operatorname{DAZMAX}_{i}, \operatorname{mDELGMB}_{z}=K: \operatorname{DAZMAX}_{i} \operatorname{sign}\left(\operatorname{mDELGMB}_{z}\right)$ $T S=m D E L G M B{ }_{y}$ COSMGA
If $|T S|>K:$ DAYd2MAX $_{i}, T S=K:$ DAYd2MAX $_{i}$ signTS
$T S a=m D E L G M B{ }_{y}$
mDELGMB $_{\mathrm{y}}=\mathrm{TS} / \mathrm{COSMGA}$
$T S=-$ SINMGA $T S a-$ DDELGMB $_{x}$
If $|T S|>K:$ DAXMAX $_{i}, T S=K:$ DAXMAX $_{i}$ signTS
${ }_{\mathrm{mDELGMB}}^{\mathrm{x}}=-\mathrm{TS}$
If FLAGOODW $=0, \operatorname{mDELGMB}_{x}=0$
$\mathrm{mDELGMB}_{x}=\mathrm{mDELGMB}_{x}-$ SINMGA $_{\mathrm{mDELGMB}}^{y}$
OMEGAPD $=\mathrm{K}$ :dvtoacc $\left(-\right.$ mDELGMB $_{x}-$ SINMGA mDELGMB $\left._{y}\right)$
OMEGAQD $=\mathrm{K}$ :dvtoacc ( - COSOGA COSMGA mDELGMB $y_{y}$ - SINOGA mDELGMB ${ }_{z}$ )
OMEGARD $=K$ :dvtoacc (SINOGA COSMGA mDELGMB $y_{y}-$ COSOGA mDELGMB ${ }_{z}$ )
DELCDU $=K:$ DTdDELT mDELGMB (converted to two's comp. form)
$T S=|O M E G A R D|$ OMEGARD K:biascale / 1JACCR
If $|T S|>K: D E L E R L I M, T S=K: D E L E R L I M$ signTS
DELREROR $=T S$

```
 TS = |OMEGAQD | OMEGAQD K:biascale / 1JACCQ
 If |TS |> K:DELERLIM,TS = K:DELERLIM signTS
 DELQEROR = TS
 TS = |OMEGAPD | OMEGAPD K:biascale / 1JACCP
 If |TS|> K:DELERLIM,TS = K:DELERLIM signTS
 DELPEROR = TS
 Release interrupt inhibit
 Return via QCDUWUSR
NOATTCNT Perform "ALARM" with TS = 00402g
 Perform "STOPRATE" with interrupts inhibited
 Return via QCDUWUSR
QUICTRIG Inhibit interrupts
SIMMGA \(=\sin _{S p}\) ANG \(_{z}\)
COSMGA \(=\cos _{\text {sp }}{ }^{\text {ANG }}{ }_{z}\)
SINIGA \(=\sin _{\text {sp }}\) ANG \(_{y}\)
COSIGA \(=\cos _{\text {sp }}{ }^{\text {ANG }} \mathrm{y}\)
SINOGA \(=\sin _{s p}{ }^{A N G} x\)
COSOGA \(=\cos _{s_{p}}{ }^{\text {ANG }} x\)
Release interrupt inhibit
Return
NB2CDUSP \(T S=1-\) UNX \(_{y}^{2}\)
If \(\mathrm{TS}<0, \mathrm{TS}=0\)
TScosmga \(=\sqrt{\mathrm{TS}}\)
If TScosmga \(\geqslant 1\), TScosmga \(=\mathrm{K}\) : posmaxsp
TScos \(=\) TScosmga
```

$$
\begin{aligned}
& T S \sin =U N X_{y} \\
& \text { Perform "ARCTRGSP" } \\
& \text { TScdu }{ }_{z}=\text { TSang } \\
& T S=T S c o s m g a-\left|U N X_{X}\right| \\
& \text { If } T S>0, T S=U N X_{X} / T S c o s m g a \\
& \text { TScos }=\text { TS } \\
& T S=T S c o s m g a-\left|U N X_{z}\right| \\
& \text { If } \mathrm{TS}>0, \mathrm{TS}=\mathrm{UNX}_{\mathrm{z}} / \mathrm{TScosmga} \\
& \text { TSsin = - TS } \\
& \text { Perform "ARCTRGSP" } \\
& \text { TScdu }{ }_{y}=\text { TSang } \\
& T S=T S c o s m g a-\left|U N Y_{y}\right| \\
& \text { If } \mathrm{TS}>0, \mathrm{TS}=\mathrm{UNY} \mathrm{Y}_{\mathrm{y}} / \mathrm{TS} \text { cosmga } \\
& \mathrm{TScos}=\mathrm{TS} \\
& T S=T S c o s m g a-|U N Z y| \\
& \text { If } \mathrm{TS}>0, \mathrm{TS}=\mathrm{UNZ} \mathrm{y}_{\mathrm{y}} / \mathrm{TS} \text { cosmga } \\
& T S \sin =-T S \\
& \text { Perform "ARCTRGSP" } \\
& \text { TScdu }{ }_{x}=\text { TSang } \\
& \text { Return } \\
& \text { ARCTRGSP If TSsin }=0 \text { : } \\
& \text { If TScos } \geq 0, \text { TSang }=0 \\
& \text { If TScos < 0, TSang }=-K \text { : posmaxsp } \\
& \text { Return } \\
& \text { TSsec }=T S c o s / T S s i n
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { If } \mid \text { TSsec } \mid \geq 1: \\
\text { If TScos } \geq+0, \text { TSang }=0 \\
\text { If TScos } \leq-0: \\
\text { TSsin }=- \text { TSsin } \\
\text { TSang }=-\mathrm{K}: \text { posmaxsp } \\
\text { TSang }=\arcsin _{s p} \text { (TSsin) - TSang } \\
\text { Return }
\end{array} \begin{array}{c}
\text { (converted to two's } \\
\text { comp. form) }
\end{array}\right] \begin{aligned}
& \text { (converted to two's } \\
& \text { TSang }=\frac{1}{2}+\arcsin \mathrm{sp}^{(-T S c o s)} \\
& \text { If TSsin }<0, \mathrm{TSang}=-\mathrm{TSang} \\
& \text { Return }
\end{aligned}
$$

1JACCP, 1JACCQ, 1JACCR: See DAPB section.
ABVEL: See SERV section. (Displayed by nouns 62 and 63 in "CLOKJOB".)
ANG: See COOR section.
AOSQ, AOSR: See DAPA section.
AVEGEXIT: See SERV section.

CDU: See IMUC section.
CDUD: See DAPA section.
CNANGL: See TRGL section.
COSIGA, COSMGA, COSOGA: See COOR section.
DAPBOOLS, DELCDU: See DAPA section.
DELLT4: See TRGL section.
DELPEROR, DELUEROR, DELREROR: See DAPA section.
DELV: See SERV section.
DELVCTL: Double precision vector sum of velocity gained since the initiation of the Delta-v monitor program, P47, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.
DELVEET3: See TRGL section.
DELVIMU: Double precision vector equivalent to DELVCTL, but expressed in the Body coordinate system for display.
DELVREF: Double precision sensed-change-in-velocity vector, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.
DELVSAB: Double precision magnitude of velocity to be gained, program notation also VGDISP, scaled B7 in units of meters per centisecond; generated in the External Delta-V targeting routines and in the Burn routines.
DELVSIN: Double precision vector scaled B7 in units of centiseconds and expressed in the Reference coordinate system. Represents the velocity-to-be-gained vector generated by the External Delta-V targeting routines during P40, P41 and P42. Represents the total accumulated change-in-velocity during P47.

DISPDEX: Single precision index controlling the function of "CLOKJOB" and "CLOKTASK", scaled B14 and unitless. "CLOKJOB" and "CLOKTASK" operate semi-independently of the guidance programs and the primary interface between them and guidance is DISPDEX.

DVCNTR, DVTHRUSH: See SERV section.
DVTOTAL: See SERV section. (Displayed by nouns 40 and 62 in "CLOKJOB".)
F: Double precision thrust expected during the burn, scaled B7 in units of kilogram meters per centisecond squared.

FLAGOODW: Single precision flag set or reset on every pass through "FINDCDUW" to indicate whether steering is or is not based on the desired window pointing vector; scaled B6 and unitless.

FLPASSO: See DESC section.
FLPAUTNO: Single precision flag set to indicate that the burn is not under automatic control and reset to indicate that the DAP control quantities are to be calculated, scaled $B 6$ and unitless.

GCSM, GDT, GDT1: See SERV section.
GEOMSGN: See TRGL section.
GOBLTIME: Double precision storage for TIG, scaled B28 in units of centiseconds; used to bias the velocity-to-be-gained vector to offset the effect of gravity during an extented Lambert burn.

HCALC1, HDOTDISP: See SERV section. (Displayed by noun 63 in "CLOKJOB".)
IGNAOSQ, IGNAOSR: Single precision initial DAP bias acceleration estimates, scaled B-2 in units of revolutions per second squared; a pad loaded quantity.

K:1SEC2D: Double precision constant stored as $100 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 100.
K:200b29: Double precision constant stored as $100 \times 2^{-28}$, program notation 100B28, scaled B29 in units of centiseconds. Equation value: 200.

K:2pi+1: Double precision constant stored as $3.141592653 \times 2^{-2}$, scaled B1 in units of radians. Equation value: $\pi / 2$. Program notation: $2 P I+3$
K:2PI+3: Double precision constant stored as $3.14159653 \times 2^{-2}$, scaled B3 in units of radians per revolution. Equation value: $2 \pi$.
K:3.5SEC: Double precision constant stored as $350 \times 2^{-13}$, scaled B13 in units of centiseconds. Equation value: 350.
K: 4 SEC : Double precision constant stored as $400 \times 2^{-17}$, scaled B17 in units of centiseconds. Equation value: 400.
K: 5SECDP: Double precision constant stored as $500 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 500.

K:5SECS: Double precision constant stored as $500 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 500.

K:6SEC: Double precision constant stored as $600 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 600.
K:89SECS: Double precision constant stored as $8900 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 8900.

K:APSVEX: Single precision constant stored as - $30.30 \times 2^{-5}$, scaled B5 in units of meters per centisecond. Equation value: - 30.30
K:ATDECAY: Double precision constant stored as $-10 . \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: - 10.

K:biascale: Single precision constant stored as $02000_{8}$, scaled B2 and unitless; program notation BIT11. Equation value: 0.25

K:CDUZDLIM: Single precision constant stored as 0.3888888888 , scaled B-1 in units of revolutions. Equation value: 0.1944444444 (Equivalent to 70 degrees.)
K:D29.9SEC: Double precision constant stored as 2990. X $2^{-28}$, scaled B28 in units of centiseconds. Equation value: 2990.

K:DAXMAX $:$ Single precision constant stored as 0.11111111111 , scaled B-1 in units of revolutions. Equation value: 0.05555555555 (Equivalent to 20 degrees.)

K:DAXMAX : Single precision constant stored as 0.01111111111 , scaled B-1 in units of revolutions. Equation value: 0.00555555555 (Equivalent to 2 degrees.)

K:DAYdN1AX ${ }_{0}$ : Single precision constant stored as 0.05555555555 , scaled BO in units of revolutions. Equation value: 0.05555555555 (Equivalent to 20 degrees.)

K:DAYd2MAX ${ }_{1}$ : Single precision constant stored as 0.0055555555 , scaled BO in units of revolutions. Equation value: 0.0055555555 (Equivalent to 2 degrees.)

K: DAZIMAX ${ }_{0}$ : Single precision constant identical to $K: \operatorname{DAXMAX}_{0}$.
K:DAZMAX ${ }_{1}$ : Single precision constant identical to $K: D_{A X M A X}^{1} 1$.
K:DELERLIM: Single precision constant stored as 0.05555555555 , scaled $\mathrm{B}-1$ in units of revolutions. Equation value: 0.02777777777 (Equivalent to 10 degrees.)
K:DOTSWFMX: Single precision constant stored as $0.93302 \mathrm{X}^{-4}$, scaled B4 and unitless. Equation value: 0.93302 (Equivalent to the square of the cosine of 15 degrees.)

K:DPSVEX: Single precision constant stored as - $29.5588868 \times 2^{-5}$, scaled B5 in units of meters per centisecond. Equation value: - 29.5588868.

K:DTADELT: Single precision constant stored as 0.05 , scaled BO in units of guidance cycles per DAP cycle. Equation value: 0.05

K:DTDECAY: Double precision constant stored as $-38 . \mathrm{X}^{-28}$, scaled B28 in units of centiseconds. Equation value: - 38 .

K:DUNFVLTM: Single precision constant stored as $0.007 \times 2^{-1}$, scaled B1 and unitless. Equation value: 0.007.

K:dvtoacc: Constant implicit in the 2-second navigation cycle, scaled $B-1$ in units of seconds to the minus one power. Equation value: $\frac{1}{2}$.
K:EARTHMU: Double precision constant stored as -3.986032 E10 $\times 2^{-36}$ scaled B36 in units of meters cubed per centisecond squared. Equation value: -3.986032 E10.

K:EPS1: Double precision constant stored as $2.777777778 \mathrm{E}-2$, scaled BO in units of revolutions. Equation value: $2.777777778 \mathrm{E}-2$. (Equivalent to 10 degrees.)

K:EPS2: Double precision constant stored as 9.72222222 E-2, scaled BO in units of revolutions. Equation value: 9.722222222 E-2. (Equivalent to 35 degrees.)
K:FAPS: Double precision constant stored as $1.5569 \times 2^{-7}$, scaled B7 in units of kilogram meters per centisecond squared. Equation value: 1.5569 (Equivalent to 3500 pounds force.)

K:FDPS: Double precision constant stored as $4.3670 \times 2^{-7}$, scaled B7 in units of kilogram meters per centisecond squared. Equation value: 4.3670 . (Equivalent to 9817.5 pounds force.)
K:FOURSECS: Double precision constant stored as $400 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 400.
K:FRCS2: Double precision constant stored as $0.08896 \times 2^{-7}$, scaled B7 in units of kilogram meters per centisecond squared. Equation value: 0.08896 . (Equivalent to 200 pounds force.)
K:FRCS4: Double precision constant stored as $0.17792 \times 2^{-7}$, scaled B7 in units of kilogram meters per centisecond squared. Equation value: 0.17792 . (Equivalent to 400 pounds force.)
K:GAINFLTR ${ }_{0}$ : Single precision constant stored as 0.2 , scaled BO and unitless. Equation value: 0.2

K:GAINFLTR : Single precision constant stored as 0.1 , scaled BO and unitless. Equation value: 0.1

K:HI5: Single precision constant stored as $76000_{8}$, scaled B-2 in units of revolutions squared. Equation value: -0.015625. (Equivalent to about minus the square of 45 degrees.)
K:KlVAL: Double precision constant stored as $124.55 \times 2^{-23}$, scaled B23 in units of kilogram meters per centisecond. Equation value: 124.55.
K:K2VAL: Double precision constant stored as $31.138 \times 2^{-24}$, scaled B24 in units of kilogram meters per centisecond. Equation value: 31.138.

K:K3VAL: Double precision constant stored as $1.5569 \mathrm{X}^{-10}$, scaled B10 in units of kilogram meters per centisecond squared. Equation value: 1.5569

K:MAXTHRUST: Single precision constant stored as 10000 g, scaled B14 in units of DPS throttle pulses. Equation value: 4096. (See THRUST).
K:MDOTAPS: Double precision constant stored as $0.05135 \times 2^{-3}$, scaled B3 in units of kilograms per centisecond. Equation value: 0.05135 (Equivalent to 11.32 pounds mass per second.)
K:MDOTDPS: Double precision constant stored as $0.148 \times 2^{-3}$, scaled B3 in units of kilograms per centisecond. Equation value: 0.148
K:mFOURDT: Double precision constant stored as - 800. X $2^{-18}$, scaled B16 in units of centiseconds. Equation value: - 200.
. K:posmaxsp: see Major Variables.
K:S40.136: Double precision constant stored as $0.4671 \times 2^{-9}$, scaled B9 in units of kilogram-meters per centisecond squared. Equation value: 0.4671 (Equivalent to 1050. pounds force).

K:S40.136*: Double precision constant stored as $0.4671 \times 2^{1}$, scaled B-1 in units of kilogram-meters per centisecond squared. Equation value: 0.4671

K:THETACON: Double precision constant stored as $0.31830989 \times 2^{-8}$, scaled B6 in units of revolutions per radian. Equation value: $1 / 4$.
K:THRESH1: Single precision constant stored as $24 . \times 2^{-14}$, scaled B14 in units of centimeters per second. Equation value: 24.

K:THRESH2: Single precision constant stored as 308 . $\times 2^{-14}$, scaled B14 in units of centimeters per second. Equation value: 308.

K:THRESH3: Single precision constant stored as $12 . X 2^{-14}$, scaled B14 in units of centimeters per second. Equation value: 12.

K:UNFVLIM: Single precision constant stored as $0.129 \times 2^{-1}$, scaled B1 and unitless. Equation value: 0.129

K:UNITX: Single precision constant vector stored as ( $0.5,0,0$ ), scaled B1 and unitless. Equation value: $(1,0,0)$

MASS: see SERV section.
mDELGMB: Single precision vector containing the complement of the proposed additions to the desired gimbal angle conmand to be issued to the DAP, scaled B-1 in units of revolutions.

MDOT: Double precision nominal mass flow rate during thrust, scaled B3 in units of kilograms per centisecond.

$$
\text { BURN - } 30
$$

MUdA, MUASTEER: See TRGL section.
MUDEX: see ORBI section.
NDXCDUW: Single precision index (0 or 1) to select the proper steering constante for LM alone or CSM-LM configuration, scaled B14 and unitless.
NVWORL1: Single precision cell used to specify either a V97 or V99 display.
$\mathrm{NVWORD}_{2}$ : See DINT section.
OMEGAPD, OMEGAQD, OMEGARD: See DAPA section.
OUTOFPLN: See DESC section. (Displayed by noun 61 in "CLOKJOB".)
PBODY: See ORBI section.
PIP'rIME, PIPTIME1: See SERV section.
PITCH: See ASCT section. (Displayed by noun 74 in "CLOKJOB".)
POINTVSM: See ATTM section.
QCDUWUSR: Single precision octal return address storage.
QTEMP, QTEMPI: Single precision octal return address storage.
RATT, VATT, TAT: See ORBI section.
RCSM, VCSM: See SERV section.
[REFSMMAT]: See COOR section.
RINIT, VINIT: See TRGL section.
RMAG: See ASCT section. Scaled B29 (earth) or B27 (moon) here.
RN, VN: See SERV section.
RTARG: See TRGL section.
RTIG, VTIG: See TRGX section.
RTX1, RTX2: See ORBI section.
SAVET: Double precision temporary storage cell for time information, scaled B28 in units of centiseconds.

SCAXIS: See ATTM section.
SINIGA, SINMGA, SINOGA: See COOR section.
[SmNBMAT]: See COOR section.
TDEC1: See ORBI section.
TDECAY: Double precision thrust decay time added to TGO, scaled B28 in units of centiseconds.

TEVENT: Double precision time-of-event for downlink information, scaled B28 in units of centiseconds.

TGO: Double precision predicted length of burn, scaled B28 in units of centiseconds.

THETAD: See IMUC section.
THRUST: See DESC section.
TIG: Double precision predicted time of ignition input to the burn routines, or predicted cutoff time, scaled B28 in units of centiseconds.
TIGSAVE: Double precision storage for the effective time of the last performance of the Lambert routine; scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
TNEWA: Double precision pad loaded quantity giving the Lambert cycle period; scaled B28 in units of centiseconds.

TNIT, TNITPREV: Double precision times used to determine the number of navigation cycles between successive entries into "S40.9", scaled B28 in units of centiseconds.

TPASS4: See TRGL section.
TRKMKCNT: See RNAV section
TTFDISP: See DESC section. (Displayed by noun 61 in "CLOKJOB".)
TTOGO: Double precision time until engine ignition (or cutoff), scaled B28 in units of centiseconds.

UNFC: Double precision desired thrust acceleration vector, with variable scaling in units of meters per centisecond squared and expressed in the Platform coordinate system.
UNFV: Double precision filtered value of the sensed thrust direction vector, scaled Bl and unitless, and expressed in what might best be called the "theoretical" body coordinate system. The X component is not used, but the $Y$ and $Z$ components are used to bias the desired thrust vector with respect to the spacecraft so that the desirnd direction of thrust passes through the center of gravity of the spacecraft.

UNITGOBL: Double precision vector used to bias the velocity-to-begained vector to offset the effect of gravity during an extended Lambert burn, scaled B1 and expressed in the Reference coordinate system.

## UNIT'R: See SERV section.

UNWC: Double precision vector along the desired pointing direction of the landing window, scaling and units variable, expressed in the Platform coordinate system.

UT: Double precision unit vector in the direction of velocity to be gained, used to determine initial attitude for burns, scaled Bl and expressed in the Reference coordinate system.

UNX, UNY, UNZ: Double precision unit vectors along the desired directions of the Three body axes, scaled Bl and expressed in the Platform coordinate system.

VEX: Double precision engine exhaust velocity, scaled B7 in units of meters per centisecond.

VG: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in the reference coordinate system.

VGBODY: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in the Body coordinate system.

VGPREV: Double precision previous value of VG, program notation also VGTIG, scaled B'7 in units of meters per centisecond and expressed in the reference coordinate system.

YIPRIME: See TRGL section.
VN1: See SERV section.
VTARGTAG: See TRGL section.
WCHPHOLD, WCHPIIASE: See DESC section.
WHICH: Single precision octal address of one of the following tables:
Table entry number Tables

| P12TABLE | PLOTABLE | P41TABLE | P | P63TABLE | ABRTABLI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| :V06N74 | K:V06N40 |  | K:V06N40 | K:VO6N | K:V06N63 |
| ULLGNOT | ULLGNOT |  | WANTAPS | ULILNO | ULLCNOT |
| COMFAIL3 | COMFAIL4 |  | COMFAIL | COMFAIL3 | COMFAIL3 |
| GOCUTOFF | GOPOST |  | GOPOST | V99RECYC | GOCUTOF |
| End task | End task |  | End task | End task | End tas |
| PLOSPOT | PLOSPOT | P41SPOT | PLOSPOT | P41SPOT |  |
| 0 | 2240 | -1 | 2640 | 2240 |  |
| SERVEXIT | STEERING | CALCN85 | STEERING | SERVEXIT |  |
| DISPCHNG | PLOSJUNK | End task | PLOSJUNK | DISPCHNG | DISPCHN |
| End task | End task | TIGTASK | End task | End tas | End tas |
| P12IGN | P40IGN |  | P42IGN | P63IGN | ABRTIGN |
|  | REP $40 A L M$ |  | P42STAC |  |  |

XNBPIP, YNBPIP, ZNBPIP: See SERV section.
XSMDrf, YSMDrf, ZSMDrf: See ALIN section.
YAW: See ASCT section. (Displayed by noun 74 in "CLOKJOB".)
ZOOMTIME: Single precision time after ignition at which the DPS is to be commanded to full throttle, scaled B14 in units of centiseconds.

Z: Z register, or program counter. Cantains the address of the next step. The contents of $Z$ are always a positive number.
-

TIMERAD RTNCONC = return address Perform "PARAM" with $\underline{T} S r=$ RVEC and $\underline{T} S v=\underline{\text { VVEC }}$ If overflow (in "PARAM"):

Switch FLAAGWRD8 bit 4 (COGAFLAG) to 1
Proceed to "FOODOO" with TS $=206078$
$\underline{T S e}=(1-\mathrm{RdA}) \underline{\mathrm{UR}} 1-\sqrt{\mathrm{P}(2-\mathrm{RdA})}$ COGA $\underline{\mathrm{U}} 2$
If overflow (or if $|\underline{T S e}|<2^{-18}$ ):
Switch FLAAGWRD5 bit 3 (SOLNSW) to 1
Proceed to "POODOO" with TS $=20607_{g}$
TSue = unitTSe
$\operatorname{COSF}=[(\mathrm{R} 1 \mathrm{P} / \mathrm{RDESIRED})-1] /|\underline{T} \mathrm{Se}|$
If $\left(1-\operatorname{CosF}^{2}\right)<0$ :
$\operatorname{COSF}=1 \operatorname{signCOSF}$
$\mathrm{TS}=0$
Switch FLAGWRD8 bit 5 (APSESW) to 1
If $\left(1-\operatorname{cosF}^{2}\right) \geq 0$ :
TSs $=\sqrt{1-\operatorname{COSF}^{2}}$ signSGNRDOT
Switch FLAGWRD8 bit 5 (APSESW) to 0
$\underline{T}$ Su2 $=$ TSs $\underline{\text { UN }} *$ tiSue + COSF TSue
CSTH $=$ TSu2 $\cdot \underline{U R 1 ~(m a g n i t u d e ~ l i m i t e d ~ t o ~ l e s s ~ t h a n ~ 1) ~}$
SNTH $=\underline{U} R 1 * \underline{T} S u 2 \cdot \underline{U N}$
$T S p=P$
Perform "GETX"
Switch FLAGWRD5 bit 3 (SOLNSW) to 0
Proceed to "COMMNOUT"

APSIDES RTNCONC $=$ return address
TSr = RVEC
$\underline{T S v}=\underline{V V E C}$
Perform "PARAM"
(Ignore any overflow)
$E C C=\sqrt{1-P R d A}$
$T S r p=R 1 P /(1+E C C)$
$T S r a=(2 R I / R d A)-T S r p$
If TSra < 0 or if overflow, TSra $=\mathrm{K}:$ posmaxdp
Return via RTNCONC
TIMETHET RTNCONC $=$ return address
$\underline{T S r}=\underline{R V E C}$
$T S v=V V E C$
Perform "PARAM"
If overflow (anywhere above):
Switch FLAGWRD8 bit 4 (COGAFLAG) to 1
Proceed to "POODOO" with TS $=20607_{8}$
$T S p=P$
Perform "GETX"
COMMNOUT If FLAGWRD8 bit 7 (INFINFLG) $=1$, proceed to "POODOO" with $\mathrm{TS}=206078$ Switch FLAGWRD8 bit 4 (COGAFLAG) to 0

Perform "DELTIME"
If FLAGWRD7 bit 9 (RVSW) $=0$, perform "NEWSTATE"
Return via RTNCONC
i = MUDEX + 2
(always entered from "KEPPREP")
ldMU = K:MUTABLEE
ROOTMU = K:MUTABLEE
IdROOTMU = K:MUTABLEE
ITERCTR = 20
URRECT = unitRRECT
R1 = | RRECT
KEPCI = RRECT • VRECT IdROOTMU
KEPC2 = VRECT - VRECT ldMU RI - I
ALPHA = (1 - KEPC2) / RI
If ALPHA < O:
TS = K:m50SC / ALPHA
TS = \sqrt{}{TS}
If overflow, TS = K:posmaxdp
If ALPHA\geq0:
TS = K:2PISC / \sqrt{}{ALPHA}
If overflow, TS = K:posmaxdp
XMAX = TS
TSperiod = XMAX ldROOTMU / ALPHA
PERIODCH If 0\leqTSperiod < 2 28 and if |TAU | \TSperiod:
TAU =[|TAU | - TSperiod }]\mathrm{ signTAU
CONC - 3

```

Proceed to "PERIODCH"
\[
\begin{aligned}
& \mathrm{X}=\mathrm{XKEPNEW} \\
& \text { If } X \text { signTAU } \leq 0 \text { or if } \mid X \text { signTAU } \mid \geq X M A X, X=(X M A X / 2) \text { signTAU } \\
& \text { If } \mathrm{TAU}<0 \text { : } \\
& X M I N=-X M A X \\
& X M A X=0 \\
& \text { Proceed to "DXCOMP" } \\
& X M I N=0 \\
& \text { Proceed to "DXCOMP" } \\
& \text { DXCOMP EPSILONT }=\mid \text { TAU K }: \text { BEE22 } \mid \\
& \text { DELX }=\mathrm{X} \text { - XPREV } \\
& \text { KEPLOOP } \quad \text { TSx2 }=X^{2} \\
& X I=X^{2} \text { ALPHA } \\
& \text { Perform "DELTIME" } \\
& \text { If overflow, (somewhere above): } \\
& \text { If } \mathrm{X}<0, \mathrm{XMIN}=\mathrm{X} \\
& \text { If } X \geq 0, X M A X=X \\
& \text { DELX }=\text { DELX } / 2 \\
& \text { If DELX }=0 \text {, Return via KEPRTN } \\
& \mathrm{X}=\mathrm{X}-\mathrm{DELX}
\end{aligned}
\]
(If overflow)
\[
T=T C
\]

Proceed to "BRNCHCTR"
DELT = TAU - T
If \(\mid\) DELT \(\mid \leq\) EPSILONT, proceed to "KEPCONVG"
\(T S=D E L X\) DELT \(/(T-T C)\)
If \(T S<0\) :
\(X M A X=X\)
DELX \(=T S\)

DELX \(=(\) XMIN \(-X) K: D P 9 d 10\)
If \(T S \geq 0:\)
XMIN \(=\mathrm{X}\)
\(\mathrm{DELX}=\mathrm{TS}\)
If \(T S>X M A X-X M I N\) or if (XMAX - XMIN - TS) overflows:
DELX \(=(X M A X-X) K: D P 9 d 10\)
If \(|D E L X|<2^{b-28}\) (\(b\) is the scale factor of \(D E L X\)):
Proceed to "KEPCONVG"
\(\mathbf{X}=\mathbf{X}+\operatorname{DELX}\)
\(T C=T\)
Proceed to "BRNCHCTR"
BRNCHCTR ITERCTR = ITERCTR - 1
If . ITERCTR \(=0\), proceed to "KEPCONVG"
Proceed to "KEPLOOP"
KEPCONVG \(\cdot \underline{R C V}=(R I-X S Q C X 1)\) URRECT \(+\left(T-X^{3} 1 d R O O T M U S X 1\right)\) VRECT
\(\underline{T} S V=[(X I\) Sxi -1\()\) ROOTMU \(X /|\underline{R C V}|]\) URRECT
```

VCV =( 1 - XSQCxi / |RCV |) VRECT + ISV
TC=T
XPREV = X
Return via KEPRTN (to caller of "KEPPREP")
LAMBERT RTNCONC = return address
Switch FLAGWRD5 bit 3 (SOLNSW) to 0
1 = MUDEX + 2
IdMU = K:MUTABLEE
ROOTMU = K:MUTABLE
IdROOTMU = K:MUTABLEE
EPSILONL = TDESIRED K:BEE19
Switch FLAGWRDl bit 3 (SLOPESW) to l
TSrl = RlVEC
TS2 = R2VEC
Perform "GEOM"
SNTH = TSsin
TSlam = Rl / MAGVEC2
CSTH = TScos
1mCSTH = 1 - CSTH
If |ImCSTH | < 2-27:
Switch FLAGWRD5 bit 3 (SOLNSW) to 1
Return via RTNCONC
TS = \sqrt{}{2 TSlam / 1mCSTH }+\mathrm{ SNTH / 1mCSTH}
If overflow or if TS \geq K:COGUPLIM, TS = K:COGUPLIM
COGAMAX = TS
CSTHmRHO = CSTH - TSlam

```
CONC - 6
```

    TS = CSTHmRHO / SNTH
    If overflow (|TS|\geq 25) or if GEOMSGN < 0, TS = K:COGLOLIM
    COGAMIN = TS
    If FTAGWNRDI bit 2 (GUESSW) = 0, TWEEKIT = 2-14
    If FLAGWRD1 bit 2 (GUESSW) = 1:
    TWEEKIT = 2-2
        COGA = 交 (COGAMIN + COGAMAX)
        DCOGA = COGA
    LAMBLOOP TS = ImCSTH / (COCA SNTH - CSTHmRHO)
If TS \leq 0:
If DCOGA \geq0, proceed to "LOENERGY"
Proceed to "HIENERGY"
P = TS
RdA =2-P(1+COGA 2}
If overflow (P or RdA), proceed to "HIENERGY"
TSp = P
Perform "GETX"
TPREV = T
If FLLAGWRD8 bit 7 (INFINFLG) = 1:
If DCOGA }20\mathrm{ , proceed to "LOENERGY"
Proceed to "HIENERGY"
Perform "DELTTIME"
If overflow:
T = TPREV
Proceed to "LOENERGY"
CONC - 7

```

TERRLAMB \(=\) TDESIRED \(-T\)
If \(\mid\) TERRLAMB \(\mid \leq\) EPSILONL, proceed to "INITV"
ITERCTR = ITERCTR - 1
If ITERCTR \(=0\), proceed to "SUFFCHEK"
If FLAGWRDI bit 3 (SLOPESW) \(=0\) :
If T - TPREV \(=0\), proceed to "SUFFCHEK"
Perform "ITERATOR" with INDEP = COGA, DELINDEP = DCOGA, DEP = T, DEPREV \(=\) TPREV, DELDEP \(=\) TERRLAMB, MAX \(=\) COGAMAX and MIN \(=\) COGAMIN

DCOGA \(=\) DELINDEP
COGAMAX \(=\) MAX
COGAMIN \(=\) MIN
If \(\mid\) DCOGA \(\mid<2^{-23}\), proceed to "SUFFCHEK"
COGA \(=\mathrm{COGA}+\mathrm{DCOGA}\)
Proceed to "LAMBLOOP"
LOENERGY COGAMAX \(=\) COGA
Skip next step
HIENERGY COGAMIN \(=\) COGA
DCOGA \(=\) DCOGA \(/ 2\)
If \(\mid\) DCOGA \(\mid<2^{-23}\), proceed to "SUFFCHEK"
COGA \(=\) COGA - DCOGA
Proceed to "LAMBLOOP"
SUFFCHEK If \(\mid\) TERRLAMB \(\mid>K:\) BEEI7 TDESIRED \(+1:\)
Switch FLAGWRD5 bit 3 (SOLNSW) to 1
Proceed to "INITV"
Proceed to "INITV"
INITV \(T S=\sqrt{P / R I}\) ROOTMU
\(\underline{V V E C}=T S ~ C O G A \underline{U R I}+T S \underline{U N} * \underline{U R I}\)
```

    If VTARGTAG = 0:
        R2 = MAGVEC2
        Perform "LAMENTER"
        VTARGET = TSv
    Return via RTNCONC
    PARAM RTNPRM = return address
Switch FLAGWRD7 bit 10 (NORMSW) to 0
Switch FLAGWRD8 bit 4 (COGAFLAG) to 0
GEOMSGN = 27777% (positive)
TSrl = TSr
TS2 = TSv
Perform "GEOM"
COGA = TScos / TSsin
i = MUDEX + 2
ldMU = K:MUTABLE
ROOTMU = K:MUTABLE E i+2
IdROOTMU = K:MUTABLE
TS = MAGVEC2 2 IdMU RI
RdA=2-TS
P = TS TSsin
Return via RTNPRM
GEOM U
MAGVEC2 = |IS2 |
URI = unitTSrl
TScos = URI - U2
RI=|TSrl|
$\underline{T} S=\underline{U R I} * \underline{U} 2$
If FLAGWRD7 bit 10 (NORMSW) $=0$ :
UN $=$ unitTS signGEOMSGN
If overflow (unit vector poorly defined), $\underline{U} N=\underline{U N} / 2$
$T S_{s i n}=|I S|$ signGEOMSGN
Return
GETX
$i=1$
Switch FLAGWRD8 bit 1 (360SW) to 0
TSsqp $=\sqrt{\text { TSp }}$
$\mathrm{TS}=\mathrm{SNTH} /(1-\mathrm{CSTH})$
If overflow ( $|T S| \geq 2^{5}$ ):
If TS $<0$, Switch FLAGWRD8 bit 1 (360SW) to 1
Proceed to "INVRSEQN"
$T S=(T S-C O G A) T S s q p$
If overflow (|TS| $\geq 2^{5}$ ):
If TS < 0, Switch FLAGWRD8 bit 1 (360SW) to 1
Proceed to "INVRSEQN"
WLOOP $\quad$ TSw $=T S$
$\mathrm{TS}=\mathrm{RdA}+\mathrm{TSW}^{2}$
If $T S<0$, proceed to "INFINITY"
$T S=\sqrt{T S}+T S W$
If overflow ( $\mid$ TS $\mid \geq 2^{5}$ ):
$i=1$
If $T S<0$, Switch FLAGWRD8 bit 1 (360SW) to 1
Proceed to "INVRSEQN"

$$
\text { CONC - } 10
$$

```
 If i < 3:
 i=i+l
 Proceed to "WLDOP"
 TS = 1/TS
 If overflow (}|\textrm{TS}|\geq\mp@subsup{2}{}{2}\mathrm{), proceed to "INFINITY"
 Proceed to "POLYCOEF"
 INURSEQN TSWZ = |SNTH / (1 + CSTH - SNTH COGA) \sqrt{}{P}
 TSw3 = 1
1/WLOOP TS = RdA TSW2
 If TS < 0, proceed to "INFINITY"
 TSw3 = \sqrt{}{TS}+TSw3
 If i. < 3:
 i=i+1
 Proceed to "1/WLOOP"
 TS = TSW2 / TSW3
POLYCOEF If TS < O, proceed to "INFINITY"
 x = RdA TS }\mp@subsup{}{}{2
 TS = 16 TS (K:unia +K:unib x +K:unic x m + ... +K:unig x *)
 If FLAGWRD8 bit l (360SW) = l:
 If RdA < 0, proceed to "INFINITY"
 TS = (K:2PISC / \sqrt{}{\textrm{RdA}})-TS
 XI = RdA TS }\mp@subsup{}{}{2
 X= \sqrt{}{RI}TS
 TSx2 = x
 KEPCI = \sqrt{}{PRI COGA}
```

    KEPC2 = 1 - RdA
    Switch FLAGWRD8 bit 7 (INFINFLG) to 0
    Return
    INFINITY (Clear overflow indicator if set)
Switch FLAGWRD8 bit 7 (INFINFLG) to I
Return
DELTIME Sxi = K:SO + K:SIXI + K:S2 XI'

```

```

    XSQCxi = TSx2 Cxi
    T = ldROOTMU ( X (RI + TSx2 Sxi KEPC2) + KEPCI XSQCxi )
    Return
    NEWSTATE TSr = (RI - XSQCxi) URI + (T - X I IdROOTMU SXi) VVEC
R2 = |TSr|
LAMENTER TS = ( ROOTMU (XI Sxi - 1) X / R2 ) URI
TSv = IS + (I - XSQCxi / R2) VVEC
Return
ITERATOR If FLAGWRDI bit 3 (SLOPESW) = 0:
TS = DELDEP DELINDEP / (DEP - DEPREV)
If FLAGWRD8 bit 6 (ORDERSW) = I, TS = |TS | signDELDEP
If FLAGWRDI bit 3 (SLOPBSW) = 1:
Switch FLAGWRDI bit 3 to 0
TS = (MAX TWEEKIT - MIN TWEEKIT) signDELDEP
If TS < 0:
If FLAGWRD8 bit 6 (ORDERSW) = 0, MAX = INDEP
CONC - 12

```
```

    (If TS< 0)
        If INDEP + TS S MIN or if overflow:
        TS = K:DP9d10 (MIN - INDEP)
        DELINDEP = TS
        Return
    If FLAGWRD8 bit 6 (ORDERSW) = 0, MIN = INDEP
    If INDEP + TS > MAX or if overflow:
        TS = K:DP9d10 (MAX - INDEP)
        DELINDEP = TS
        Return
    PERIAPO1 WVEC = ISv (rescaled for lunar orbit computations)
RVEC = TSr (rescaled for lunar orbit computations)
PERIAPO NORMEX = return address
TSo = K:RPAD
If Mudex \& 0, TSo = |RLS
XXXALT = TSo
Perform "APSIDES"
TSha = TSra - XXXALT
TShp = TSrp - XXXALT
Return via NORMEX

```
ldMU: Double precision storage register for the gravitational constant for the moon or the earth, whichever is the central body; scaled B-34 (earth) or \(B-28\) (moon) in units of centiseconds squared/meters cubed.
ldROOTMU: Double precision square root of ldMU, scaled B-17 (earth) or \(\mathrm{B}-14\) (moon) in units of centiseconds / meters 3/2.

ImCSTH: Double precision storage for (1-CSTH), scaled B2 and unitless.
ALPHA: Double precision inverse of the semi-major axis for the universal form of Kepler's equation, scaled \(\mathrm{B}-22\) (earth) or \(\mathrm{B}-20\) (moon) in units of meters \({ }^{-1}\).

COGA: Double precision cotangent of flight path angle (measured from vertical), scaled B5 and unitless.

COGAMAX, COGAMIN: Upper and lower bounds on COGA, scaled B5 and unitless.
COSF: Double precision cosine of the true anomaly at the desired radius in the time-radius problem, scaled Bl and unitless.

CSTH: Double precision cosine of the true anomaly difference or of the angle between present and desired position vectors, scaled Bl and unitless.

CSTHmRHO: Double precision intermediate quantity used in the calculation of \(P\) and COGAMIN, scaled B7 and unitless.

Cxi: One of the two special functions used in the universal formulation of the conic equation; double precision, scaled B4 and unitless.

DCOGA: Double precision change in COGA in Lambert iteration step, scaled Bl and unitless.

DELDEP: Double precision change in the dependent variable for the "ITERATOR" subroutine, variable scaling and units.

DELINDEP: Double precision change in the independent variable for the "ITERATOR" subroutine, variable scaling and units.

DELT: Double precision difference between the desired time interval and the computed approximation to it during the "KEPLERN" iteration, scaled B28 in units of centiseconds.

DELX: Difference between successive values of the universal conic parameter X, scaled Bl7 (earth) or Bl6 (moon) in units of radians meters \({ }^{1 / 2}\).

IEF, IEPREV: Double precision storage for two successive values of the independent variable to be used in the "ITERATOR" subroutine; scaling and units variable.

ECC: Double precision eccentricity computed in the "APSIDES" routine, scaled B3 and unitless.

EPSILONL, EPSILONT: Double precision definitions of convergence in the Lambert and Kepler iteration loops respectively, scaled B28 in units of centiseconds.

GEOMSGN: Single precision sign for the sine of the true anomaly difference, scaled BO and unitless.
i: Single precision index, scaled Bl4, and unitless.
INDEP: Double precision independent variable for the "ITERATOR" subroutine; scaling and units variable.

ITERCTR: Single precision iteration counter, scaled B14 and unitless.

KEPCl: Double precision coefficient in the Kepler equation, scaled Bl7 (earth) or Bl6 (moon) in units of meters.

KEPC2: Double precision coefficient in the Kepler equation, scaled B6 and unitless.
KEPRTN: Single precision octal return address storage.
K:2PISC: Double precision constant, stored as \(6.2831853 \times 2^{-6}\), scaled B6 and unitless. Equation value: 6.2831853.

K: BEE17: Double precision constant stored as \(2^{-17}\), scaled \(B O\) and unitless. Equation value: \(2^{-17}\).
K: BEE19: Double precision constant stored as \(2^{-19}\), scaled BO and unitless. Equation value: \(2^{-19}\).
K: BEE22: Double precision constant stored as \(2^{-22}\), scaled \(B O\) and unitless. Equation value: \(2^{-22}\).

K:CO,...K:C9: Ten double precision constants defining the special function \(C(x)\), all unitless.

Scale
Factor

Theoretical
Value

B4 0.5
B-2
B-8
\(B-14\)
B-20
B-26
B-32
B-38
B-44
B-50
\(-0.041666667\)
\(1.38888889 \mathrm{E}-3\)
\(-2.48015873 \mathrm{E}-5\)
\(2.75573192 \mathrm{E}-7\)
-2.08767570 E-9
\(1.14707456 \mathrm{E}-11\)
\(-4.77947733 \mathrm{E}-14\)
\(1.56192070 \mathrm{E}-16\)
-4.11031'762 E-19
0.031250001 \(-0.166666619\)
K:Cl
K:C2
K:C3
K:C4
K:C5
K:C6
\(\mathrm{K}: \mathrm{C} 7\)
K:C8
K:C9
0.355555413
\(-0.406347410\)
0.288962094
\(-0.140117894\)
0.049247387
\(-0.013081923\)
0.002806389
\(-0.000529414\)

Equation Value

K:COGLOLIM: Double precision const,ant stored as -0.999511597 , scaled B5 and unitless. Equation value: - 31.9843711 . (Cot \(1^{\circ} 48^{\prime}\).)

K:COGUPLIM: Double precision constant stored as 0.999511597 , scaled B5 and unitless. Equation value: 31.9843711.

K:DP9d10: Double precision constant, stored as 0.9 , scaled BO and unitless. Equation value: 0.9 .
K:m50SC: Double precision constant, stored as \(-50.0 \times 2^{-12}\), scaled B12 and unitless. Equation value: \(\mathbf{- 5 0 . 0}\).

K:MUTABLE \({ }_{i}\) : A table of constants containing four gravitational constants for the earth and four for the moon.

Scale
Factor

B36
B-34
B]. 8
B-17
B30
B-28
B15
B-1.

Units
meters \({ }^{3} / \mathrm{cs}^{2}\)
\(\mathrm{cs}^{2} / \mathrm{m}^{3}\)
\(\mathrm{m}^{3 / 2} / \mathrm{cs}\)
cs/m \(\mathrm{m}^{3 / 2}\)
\(\mathrm{m}^{3} / \mathrm{cs}^{2}\)
\(c s^{2} / \mathrm{m}^{3}\)
\(m^{3 / 2} \mathrm{cs}\)
\(\mathrm{cs} / \mathrm{m}^{3 / 2}\)

Equation Value
3.986032 ElO
0.25087606 E-10
1.99650495 E 5
0.50087529 E-5
4.902775 E8
0.203966 E-8
2.21422176 E4
\(0.45162595 \mathrm{E}-4\)
\(\sqrt{1 / \mu_{m}}\)

K: RPAD: Double precision stored as \(6373338 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 6,373,338. (Equivalent to 20,909,901.57 feet.)

K:SO, ...K:S9: Ten double precision constants defining the special function \(S(x)\), all unitless.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Stored Value & Scale Factor & \multicolumn{2}{|l|}{Theoretical Value} & Equation Value \\
\hline K: SO & 0.083333334 & B1 & 0.166666667 & & \(1.66666668 \mathrm{E}-1\) \\
\hline K:Sl & -0.266666684 & B-5 & -8.33333333 & E-3 & -8.33333387 E-3 \\
\hline K:S2 & 0.406349155 & B-11 & 1.98412698 & E-4 & \(1.98412673 \mathrm{E}-4\) \\
\hline K:S3 & -0.361198675 & B-17 & -2.75573192 & E-6 & -2.75572720 E-6 \\
\hline K:S4 & 0.210153242 & B-23 & 2.50521084 & E-8 & \(2.50522187 \mathrm{E}-8\) \\
\hline K:S5 & -0.086221951 & B-29 & -1.60590438 & E-10 & -1.60600899 E-10 \\
\hline K:S6 & 0.026268812 & B-35 & 7.64716373 & E-13 & \(7.64523051 \mathrm{E}-13\) \\
\hline K: S7 & -0.006163316 & B-47 & -2.81145725 & E-15 & -2.80275162 E-15 \\
\hline K: S8 & 0.001177342 & B-47 & 8.22063525 & E-18 & \(8.36551806 \mathrm{E}-18\) \\
\hline K:S9 & -0.000199055 & B-53 & -1.95729421 & E-20 & -2.20995444 E-20 \\
\hline
\end{tabular}

K:unia,...K:unig: Seven double precision constants used in the definition of the independent variable for the universal formulation of Kepler's equation, scaled Bl and unitless

Stored Value
Equation Value
K:unia
0.5
1.0

K:unib \(\quad-0.166666770\)
K:unic 0.100000392
K:unid -0.071401086
\(-0.33333354\)
-0.071401086
0.200000784
\(-0.142802172\)
K:unie
\(-0.047264098\)
K:unig
0.040694204
0.111006584
\(-0.094528196\)
0.081388408

MAGVEC2: Magnitude of the second vector input to the "GEOM" routine, double precision with variable scaling and units.

MAX, MIN: Double precision maximum and minimum bounds for the "ITERATOR" subroutine; .variable scaling and units.

MUIEX: Single precision index indicating whether the gravitational constant for the earth (0) or the moon (8) should be used in the conic equations, scaled B14 and unitless. MDEX \(=-\mathrm{X1}-2\) where X1 is index register one in the listing.
\[
\text { CONC - } 17
\]

NORMEX: Single precision octal return address storage.
P: Double precision ratio of semi-Iatus rectum and magnitude of present position, scaled \(\mathrm{B}_{4}\) and unitless.

Rl, R2: Double precision magnitudes of present and desired position vectors, respectively, scaled B29 (earth) or B27 (moon) in units of meters.

RIVEC, R2VEC: Double precision vector inputs to the "LAMBERT" routine; present and desired position, respectively, scaled B29 (earth) or B27 (moon) in units of meters.

RCV: Double precision vector output of the "KEPLERN" routine; conic position vector at the specified time, scaled B29 (earth) or B27 (moon) in units of meters.

RdA: Double precision ratio of present radius to semi-major axds, scaled B6 and unitless.

RLESIRED: Double precision input to the "TIMERAD" routine scaled B29 (earth) or B27 (moon) in units of meters.

श्रLS: Double precision position vector at the lunar surface, scaled B27 in units of meters and expressed in selenographic coordinates.

ROOTMU: Double precision square root of the relevant gravitational constant, scaled B18 (earth) or B15 (moon) in units of meters 3/2/cs.

RRECT: Double precision vector input to the "KEPLERN" routine; the position vector to be advanced through the specified time, scaled B29 (earth) or B27 (moon), in units of meters.

RTNCONC, RTNPFM: Single precision, octal return address storage cells.
RVEC: Double precision vector input to the majority of the conic routines, a position scaled B29 (earțh) or B27 (moon) in units of meters.

SGNRDOT: Single precision flag indicating the sign of the radial velocity desired at the desired radius.

SNTH: Double precision sine of true anomaly difference or of the angle between present and desired position vectors, scaled Bl and unitless.

Sod: Ono of the two special mnctions used in the universal formulation of the conic equation; dowble precirion, ecaled \(\mathrm{V}_{1}\) and unitless.

T: Double precision time (computed in "DELTTME") to go from present position to desired position, scaled B28 in units of centiseconds.

TAU: Desired transfer time input to the "KEPLERN" routine; double precision. scaled B28 in units of centiseconds.

TC: Double precision time since latest rectification, scaled B28 in units of centiseconds. See ORBI section.

TDESIRED: Double precision input to the "LAMBERT" routine; desired transfer time, scaled B28 in units of centiseconds.

TERRLAMB: Double precision difference between desired and computed transfer tima during the "LAMBERT" iterations, scaled B28 in units of centiseconds.

TPREV: Previous value of T, scaled B28 in units of centiseconds and double precision.

TWEEKIT: Single precision factor used in the initiation of the "ITERATOR" routine, set large or small depending on whether or not a good first approximation of COGA is available.

U2, URI: Double precision unit vectors in the directions of the two vectors input into the "GEOM" routine, scaled Bl and unitless.

UN: Unit normal vector, scaled BI and unitless.
URRECT: Unit vector in the direction of RRECT, scaled Bl and unitless.
VCV: Double precision vector output of the "KEPLERN" routine; the velocity vector at the specified time, scaled B7 (earth) or B5 (moon) in units of meters/centisecond.

VRECT: Double precision vector input to the "KEPLERN" routine; the velocity vector to be advanced through the specified time, scaled B7 (earth) or B5 (moon) in units of meters/centisecond.

VTARGET: Double precision velocity vector output of the "LAMBERT" routine; velocity at R2VEC, scaled B7 (earth) or B5 (moon) in units of meters/centisecond.

VTARGTAG: Single precision flag input to "LAMBERT" to indicate that VTARGET is to be computed (if VTARGTAG \(=0\)).

VVEC: Double precision vector input to the majority of the conic routines; velocity, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.
x: Double precision temporary storage cell used in "POLYCOEF", scaled BO and unitless.

X: Double precision universal conic parameter equal to the product of semi-major axis and eccentric anomaly difference (for the ellipse) or to the product of the hyperbolic analogs of eccentric anomaly difference and semi-major axis (for the hyperbola). scaled B17 (earth) or Bl6 (moon) in units of meters to the one-half power.

XI: Double precision square of the eccentric anomaly difference for an ellipse, or the negative of the square of its hyperbolac analog for a hyperbola, scaled B6 in units of radians squared.

XKEPNEW: Double precision value of \(\mathbf{X}\) at entry to "KEPLERN", scaled B17 (earth) or B16 (moon) in units of meters to the one-half power.

XMAX, XMIN: Double precision upper and lower bounds on \(X\), scaled B17 (earth) or Bl6 (moon) in units of meters to the one-half power.

XPREV: Previous value of \(X\); same units and scaling as \(X\).
XSQCxi: Double precision product of \(\mathrm{X}^{2}\) and Exi, scaled B33 (earth) or B31 (moon) in unj.ts of meters.

XXXALT: Value of base altitude for computing apogee and perigee information, scale factor B29 (earth) or B27 (moon), units meters.
```

CDUTRIG $\quad \underline{A N G}=\underline{C D U}$
CD*TR*GS ANG = ANG converted to one's complement form
SINOGA $=\operatorname{sinANG}_{x}$
COSOGA $=\operatorname{cosANG}_{x}$
SINIGA $=\operatorname{sinANG}_{y}$
$\operatorname{COSIGA}=\operatorname{cosANG}_{y}$
SINMGA $=\operatorname{sinANG}_{z}$
COSMGA $=\operatorname{cosANG}_{z}$
Return
NBTOSM $[$ TS1 $]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { COSOGA } & - \text { SINOGA } \\ 0 & \text { SINOGA } & \text { COSOGA }\end{array}\right]$
[TS2] $=\left[\begin{array}{ccc}\text { COSMGA } & - \text { SINMGA } & 0 \\ \text { SINMGA } & \text { COSMGA } & 0 \\ 0 & 0 & 1\end{array}\right]$
$[\mathrm{TS} 3]=\left[\begin{array}{ccc}\text { COSIGA } & 0 & \text { SINIGA } \\ 0 & 1 & 0 \\ - \text { SINIGA } & 0 & \text { COSIGA }\end{array}\right]$
[nBSMMAT] $=[$ TS3 $][\mathrm{TS2}][$ TS1]
Return
CALCSMSC XNBsm = (COSIGA COSMGA , SINMGA , -SINIGA COSMGA)
$T S=$ SINOGA SINMGA

```
\(\mathrm{ZNBsm}_{\mathrm{z}}=\) COSIGA COSOGA - SINIGA TS
\(2 \mathrm{ZNBAM}_{y}=-\) SINOGA COSMGA
ZNBsm \(_{x}=\) COSOGA SINIGA \(+\operatorname{COSIGA} T S\)
YNBsm \(=\) ZNBsm \(*\) XNBsm

\section*{Return}

SMTONB
\[
[\text { TSI }]=\left[\begin{array}{ccc}
\operatorname{Cosica} & 0 & -\operatorname{sinIGA} \\
0 & 1 & 0 \\
\text { SINIGA } & 0 & \operatorname{cosicA}
\end{array}\right]
\]
\([\) TS2 \(]=\left[\begin{array}{ccc}\text { cosmat } & \text { simaca } & 0 \\ -\operatorname{sinmas} & \operatorname{cosmat} & 0 \\ 0 & 0 & 1\end{array}\right]\)
\([\) [S3] \(]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \operatorname{cosoca} & \text { sinoga } \\ 0 & -\operatorname{sinoga} & \operatorname{cosoca}\end{array}\right]\)
\([\) SMNEMAT \(]=[T \mathrm{TS} 3][\mathrm{TS} 2][\mathrm{TS} 1]\)
Return

EARTHMX AZ504 = AZO + K:WEARTH (TEPHEM + TSt)
If overflow \((|A Z|, \geq 1), A Z=\) iractional part of \(A Z\)
[FARTHMAT] \(=\left[\begin{array}{ccc}\cos A Z 504 & \sin A 2504 & 0 \\ -\sin A Z 504 & \cos A Z 504 & 0 \\ 0 & 0 & 1\end{array}\right]\)
\(\mathrm{LE}_{\mathrm{E}} \mathrm{O}_{4}=\left(-\right.\) UNITW \(_{y}\), UNITW \(\left._{x}, 0\right)\)
Return

MOONMX
\[
\begin{aligned}
& \mathrm{EI}=\mathrm{K}: \text { BSUBO }+\mathrm{K}: \text { BDOT (TEPHEM + TSt) } \\
& \mathrm{MR}=\mathrm{K}: \text { FSUBO }+\mathrm{K}: \text { FDOT (TEPPHEM + TSt) } \\
& \mathrm{MN}=\mathrm{K}: \text { NODIO }+\mathrm{K}: \text { NODDOT (TEPHEM }+\mathrm{TSt} \text {) } \\
& \underline{T S b}=(-\sin M N, \cos M N \cos E I, \cos M N \sin E I) \\
& \text { TSa }=(\cos M N, \operatorname{sinMN} \operatorname{cosEI}, \operatorname{sinMN} \sin E I) \\
& \underline{T} S c=(0,-s i n E I, \cos E I)
\end{aligned}
\]
\[
\begin{aligned}
& \text { [MNMAT2] }=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & K: \operatorname{COSI} & -K: S I N I \\
0 & K: S I N I & K: \operatorname{COSI}
\end{array}\right] \\
& {[\text { MNMAT3 }]=\left[\begin{array}{ccc}
-\cos M R & -\sin M R & 0 \\
\sin M R & -\cos M R & 0 \\
0 & 0 & 1
\end{array}\right] \quad=\left[\begin{array}{cll}
\cos \left(\frac{1}{2}+M R\right) & \sin \left(\frac{1}{2}+M R\right) & 0 \\
-\sin \left(\frac{1}{2}+M R\right) & \cos \left(\frac{1}{2}+M R\right) & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \text { [MOONMAT] }=\text { MNMAT3] [MNMAT2] [MNMAT1] }
\end{aligned}
\]

Return
LAT-LONG ALPHAM \(=|\underline{\text { ALPHAV }}|^{\circ}\)
If FLAGWRD3 bit 12 (IUNAFIAG) \(=1\) :
Perform "MOONMX"
\(\underline{T S}=[\) MOONMAT \(]\) (ATPHAV \(-\left([\text { MOONMAT }]^{T}\right.\) IM504 \() *\) ALPHAV)
ALPHAV = unitTS
GAMRP \(=\mathrm{K}: 1 \mathrm{~B} 1\)
If FLLAGWRD1 bit 13 (ERAIFLAG) \(=1\), ERADM \(=\mathrm{K}: 504 \mathrm{RM}\)
If FLAGWRD1 bit 13 (ERADFIAG) \(=0\), ERADM \(=|R I S|\)

If FLAGWRD3 bit 12 (INNAFLAG) \(=0\) :
Perform "EARTHMX"
\(T S=[\) EARTHLAT \(](\angle L P H A V-I E 504 *\) ALPHAV \()\)
ALPHAV = unitis
GAMRP \(=\mathrm{K}:\) B2dA2
If FLAGWRD1 bit 13 (ERALFIAG) = 1:
\[
\begin{aligned}
& T S=1-\text { ALPHAD }_{2}^{2} \\
& \text { BRADM }=\sqrt{K: B 2 X S C C /(1-K: E K E T S)}
\end{aligned}
\]

If FLAGWRD1 bit 13 (ERADFLAG) \(=0\), ERADM \(=K: E R A D\)
\(\operatorname{COSTH}=\) GAMRP \(\sqrt{\text { ALPHAV }_{x}{ }^{2}+\text { ALPHAV }_{6}^{\prime}{ }^{2}}\)
SINTH \(=\) ALPHAV \(_{\mathbf{z}}\)
Perform "ARCTAN"
LAT = THETA
\(\operatorname{COSTH}=\) ALPHAV \(_{\mathrm{x}}\)
SINTH \(=\) ALPHAV \(_{y}\)
Perform "ARCTAN"
LONG \(=\) THETA
ALT \(=\) ALPHAM - ERADM

\section*{Return}

LALOTORV If FLAGWRD3 bit 12 (IUNAFIAG) \(=1\), GAMRP \(=\mathrm{K}: 1 \mathrm{~B} 1\)
If FLAGWRD3 bit 12 (IUNAFIAG) \(=0\), GAMRP \(=\mathrm{K}:\) B2dA2
\(\mathrm{TS}_{\mathrm{z}}=\) GAMRP sinIAT
\(T S_{y}=\sin L O N G \cos L A T\)
\(\mathrm{TS}_{\mathrm{x}}=\cos L O N G \cos L A T\)
ALPHAV \(=\) unitis

If FLAGNRD3 bit 12 (LUNAFLAG) = 1:
If FLAGWRDI bit 13 (ERADFLAG) \(=1\), \(\operatorname{ERADM}=K: 504 R M\)
If FLAGNRD1 bit 13 (ERADFLAG) \(=0\), ERADM \(=\mid\) RLS \(\mid\)
Perform "MOONMX"
\(\underline{T} S=[\text { MOONMAT }]^{T}\) (\(\underline{A L P H A V ~}+\underline{\text { LM }} 504\) * ALPHAV)
If FLAGWRD3 bit 12 (LUNAFLAG) \(=0\) :
If FLAGWRDI bit 13 (ERADFLAG) \(=1\) :
\(T S=1-\) ALPHAV \(_{z}^{2}\)
ERADM \(=\sqrt{K: B 2 X S C /(1-K: E E T S)}\)
If FLAGWRDI bit 13 (ERADFLAG) \(=0\), \(\operatorname{ERADM}=K: \operatorname{ERAD}\)
Perform "EARTHMX"
\(\underline{T S}=[\text { EARTHMAT }]^{T}\) (LLLPHAV \(+([\) EARTHMAT \(]\) LE504 \() *\) ALPHAV \()\)
ALPHAV \(=\underline{T} S(E R A D M+A L T)\)
Return
ARCTAN \(\quad\) TS \(=\operatorname{SINTH}^{2}+\operatorname{COSTH}^{2}\)
If \(\mathrm{TS}=0\) :
THETA \(=0\)
Return
\(T S=S I N T H / \sqrt{T S}\)
If \(|T S| \geq 1\) :
THETA \(=\frac{1}{4} \operatorname{signSINTH}\)
Return
THETA \(=\) arcsinTS
If COSTH \(<0\), THETA \(=-\) THETA \(+\frac{1}{2}\) signTHETA
Return

CALCGA (entered with XNBrf and XSMrf etc., XNBsm and XSMnb etc., etc.) \(\underline{T S}=u n i t(\underline{X} N B * \underline{Y} S M)\)
\(\operatorname{COSTH}=\underline{T S} \cdot \underline{Z N B}\)
SINTH = TS • YNB
Perform "ARCTRIG"
OGC = THETA
\(\operatorname{COSTH}=\mathrm{TS} * \underline{X N B} \cdot \underline{Y} S M\)
SINTH \(=\underline{Y} S M \cdot \underline{X N B}\)
Perform "ARCTRIG"
MGC = THETA
If \(\mid\) MGC \(\mid \geq K\) : gloktest:
Perform "ALARM" with \(T S=00401_{8}\)
Switch FLAGWRD3 bit 14 (CLOKFAIL) to 1
\(\operatorname{COSTH}=\underline{Z S M} \cdot \underline{T S}\)
SINTH \(=\) XSM • TS
Perform "ARCTRIG"
IGC \(=\) THETA
\(\underline{T} S=(O G C, I G C, M G C)\) converted to two's complement form
THETAD \(=\mathbb{T S}\)
Return
ARCTRIG If \(|S I N T H| \geq K: Q T S N 45\), THETA \(=\operatorname{arccosCOSTH} \operatorname{signSINTH}\)
If \(\mid\) SINTH \(\mid<K:\) QTSN45:
THETA \(=\operatorname{arcsinSINTH}\)
If \(\operatorname{COSTH}<0\), THETA \(=\frac{1}{2}\) signS INTH - THETA
Return
\[
\begin{aligned}
& \text { CALCGTA TS }=\text { unit }\left(- \text { DCMAT }_{13}, 0, \text { DCMAT }_{11}\right) \\
& \text { SINTH }=T S_{x} \\
& \operatorname{COSTH}=\mathrm{TS}_{\mathrm{z}} \\
& \text { Perform "ARCTRIG" } \\
& \text { IGC }=\text { THETA } \\
& \text { SINTH }=\text { DCMAT }_{12} \\
& \operatorname{COSTH}=\mathrm{TS}_{z} \text { DCMAT }_{11}-\mathrm{TS}_{x} \text { DCMAT }_{13} \\
& \text { Perform "ARCTRIG" } \\
& \text { MGC = THETA } \\
& \operatorname{COSTH}=\mathrm{TS} \cdot\left(\mathrm{DCMAT}_{31}, \text { DCMAT }_{32}, \text { DCMAT }_{33}\right) \\
& \text { SINTH }=\text { TS } \cdot\left(\text { DCMAT }_{21}, \text { DCMAT }_{22}, \text { DCMAT }_{23}\right) \\
& \text { Perform "ARCTRIG" } \\
& \text { OGC = THETA } \\
& \text { LSPOS } \quad \text { TSt }=(T S t+\text { TEPHEM }) / K: \text { CSTODAY } \\
& \text { Switch FLAGWRDO bit } 3 \text { (FREEFLAG) to } 0 \\
& \text { GTMP }=\mathrm{K}: \operatorname{amod} \sin (\mathrm{K}: 1 \mathrm{~d} 27 \mathrm{TSt}+\mathrm{K}: \text { aarg }) \\
& \text { Switch FLAGWRDO bit } 3 \text { (FREEFLAG) to } 1 \\
& \text { GTMP }=\text { GTMP }+\mathrm{K}: \text { bmod } \sin (\mathrm{K}: 1 \mathrm{~d} 32 \mathrm{TSt}+\mathrm{K}: \text { barg }) \\
& \text { STMP } 0=K \text { : lomo }+\mathrm{K} \text { : lomr TSt - GTMP } \\
& \text { GTMP }=\mathrm{K}: \text { cmod } \sin (\mathrm{K}: 1 \mathrm{~d} 365 \mathrm{TSt}+\mathrm{K}: \text { carg }) \\
& \text { STMP }_{2}=\mathrm{K}: \text { loso }+\mathrm{K}: \text { losr TSt }-\mathrm{GTMP} \\
& \operatorname{STMP}_{4}=K \text { Klono }+ \text { K:Ionr TSt }
\end{aligned}
\]
\(\underline{T S}=[K: K O N M A T]\left(\begin{array}{l}\cos S T M P_{O} \\ \operatorname{sinSTMP} \\ \sin \left(S T M P_{O}-\operatorname{STMP}_{4}\right)\end{array}\right)\)
VMOON = unitTIS
\(\underline{T} S=[K: K O N M A T]\left(\begin{array}{c}\operatorname{cosSTMP}_{2} \\ \operatorname{sinSTMP} 2 \\ 0\end{array}\right)\)
VSUN \(=\) unitTS
TSsum \(=\) unitTS
Return

MFREF \(\quad \mathrm{TS}_{1}=\underline{\mathrm{VEC}} \mathrm{C}_{1}\)
TST = TMMENOW
Perform "MOONMX"
\(\underline{V E C}_{1}=\left(\underline{T S}_{1} * \underline{\mathrm{LM} 504}+\underline{\mathrm{TS}}_{1}\right)\) [MOONMAT \(]\)
\(\mathrm{TS}_{1}=\mathrm{VEC}_{2}\)
Perform "MOONME"
\(\mathrm{VEC}_{2}=\left(\mathrm{TS}_{1} * \underline{L M}_{\mathrm{LK}} \mathrm{SO}+\mathrm{TS}_{1}\right)[\) MOONMAT \(]\)
Roturn
REFMF Porform "CDUTRIG"
TST \(=\) TMEENOW
Perform "CALCSMSC"
\(\underline{T S}_{1}=\operatorname{umlt}(\) INBEm \([\) RRFSMMAT] \()\)
Perform "MOONME"
\(\underline{T S}=\underline{L} \underline{L M}_{504}[\) MOONMAT]

\(\mathrm{IS}_{1}=\operatorname{unit}(\underline{Z N B a m}[\) REFSMMAT] \()\)
Perform "MOONMX"
\(\underline{T S}=\underline{\text { LM504 }}[\) MOONMAT \(]\)
\(\underline{\text { ZNBSAV }}=[\) MOONMAT \(]\left(\underline{T S}_{1}-\underline{T} S^{*} \underline{T S}_{1}\right)\)
Switch FLAGWRD6 bit 1 (ATTFLAG) to 1
Return

ALPHAM: Magnitude of position vector input to "LAT-LONG" routine.
ALPHAV: Working storage for the position vector or unit position vector in reference, selenographic, or geographic coordinates.

ALT: Double precision altitude, scaled B29 in units of meters.
ANG: Single precision vector containing the outer, inner, and middle gimbal angles in its \(X, Y\), and \(Z\) components, respectively, stored in units of revolutions in two's complement form scaled \(B-1\) or in one's complement form scaled BO.

AZ504: Double precision angle of rotation of the earth around its polar axis, scaled BO in units of revolutions. Progran notation "504AZ".

AZO: Double precision position angle of the earth at the time when TEPHEM equals zero, scaled BO in units of revolutions; included in the erasable load.

CDU (CDU \({ }_{x}, \operatorname{CDU}_{y}, \operatorname{CDU}_{z}\)): Single precision vector containing the measured values of the \(I M U^{2}\) gimbal angles (outer, inner and middle gimbal in \(X, Y\) and \(Z\) components respectively), scaled \(B-1\) in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.

COSIGA, COSMGA, COSOGA: Double precision cosines of the inner, middle and outer gimbal angles respectively, scaled B1 and unitless. Program notation "CoSCDU \({ }_{0}, \operatorname{CoSCDU}_{2}, \operatorname{cosCDU}_{4}\)."

COSTH: Double precision cosine scaled B1 in "ARCTAN" and B2 in "ARCTRIG."
[DCMAT]: See ALIN section.
[EARTHMAT]: Double precision, \(3 \times 3\), orthogonal transformation matrix, scaled Bl and unitless. Agd = [EARTHMAT] Aref, where A is a vector expressed in geodetic and reference coordinates respectively.

EI: Double precision angle of inclination of the equatorial plane measured from the ecliptic plane around the earth-to-sun vector at the vernal equinox, scaled \(B O\) in units of revolutions. Used to transform from reference coordinates to a right-handed, orthogonal system whose X-axis is along the earth-to-sun vector at the vernal equinox and whose Z-axis is perpendicular to the ecliptic.

ERADM: Double precision radius of earth or moon, scaled B29 in pnits of meters.

GAMRP: Double precision square of the ratio of polar radius to equatorial radius, scaled Bl and unitless.

GTMP: Working storage in "LSPOS" scaled BO in units of revolutions.
\(K: 1 B l\) : Double precision constant stored as \(2^{-1}\), scaled Bl and unitless. Equation value: l. (Corresponds to the square of the ratio of: polar radius to equatorial radius for the moon.)
\(\mathrm{K}: 1 \mathrm{~d} 27\) : Double precision constant stored as \(0.036291712 \times 2\), program notation VAL67+4, scaled B-l and unitless. Equation value: 0.036291712 . (Equivalent to \(1 / 27.5545\) and used in the extension of the circular approximation to the moon's orbit to account for eccentricity and rotation of the line of apsides.)

K:ld32: Double precision constant stored as \(0.03125 \times 2\), program notation VAL67+10, scaled B-1 in units of revolutions. Equation value: 0.03125 .

K:ld365: Double precision constant stored as \(0.002737925 \times 2\), program notation VAL67+16, scaled B-l and unitless. Equation value: 0.002737925 . (Equivalent to \(1 / 365.2401\).)
\(\mathrm{K}: 504 \mathrm{RM}\) : Double precision constant stored as \(1738090 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 1738090.

K:aarg: Double precision constant stored as 0.530784445 , program notation VAL67+2, scaled BO in units of revolutions. Equation value: 0.530784445 .

K:amod: Double precision constant stored as \(0.017266666 \times 2\), program notation VAL67, scaled B-1 in units of revolutions per radian. Equation value: 0.017266666 . (Corresponds to \(2 \mathrm{e} / 2 \pi\) where e is the mean eccentricity of the moon's orbit \(=0.05426\).)
\(\mathrm{K}:\) B2dA2: Double precision constant stored as \(0.9933064884 \times \mathrm{x}^{-1}\), scaled Bl and unitless. Equation value: 0.9933064884. (cor \({ }^{2}\) responds to the square of the ratio of polar radius to equatorial radius for the earth.)

K:2XSC: Double precision constant stored as 0.0179450689 , scaled B51 in units of meters squared. Equation value: 6356784 squared. (Corresponds to the square of the polar radius of the earth.)

K:barg: Double precision constant stored as 0.585365625 , program notation VAL67+8, scaled BO in units of revolutions. Equation value: 0.585365625.

K:BDOT: Double precision constant stored as \(-1.145529388 \mathrm{E}-16 \times 2^{28}\), scaled B-28 in units of revolutions per centisecond. Equation value: -1.145529388 E-16. (Equivalent to 7.197573418 E-14 radians per second or \(2,766,240\) years per revolution.)

K: bmod: Double precision constant stored as \(0.003505277 \times 2\), program notation VAL67+6, scaled B-1 in units of revolutions per radian. Equation value 0.003505277 .

K:BSUBO: Double precision constant stored as 6.512013939 E-2, scaled BO in units of revolutions. Equation value 6.512013939 E-2. (Equivalent to \(4.09161903 \mathrm{E}-1\). radians.)

K:carg: Double precision constant, stored as -0.011063410 , program notation VAL67+14, scaled BO and unitless. Equation value: \(\mathbf{- 0 . 0 1 1 0 6 3 4 1 0 .}\)

K:cmod: Double precision constant stored as \(0.005328507 \times 2\), program notation VAL67+12, scaled B-1 in units of revolutions per radian. Equation value: 0;005328507. (Corresponds to \(2 \mathrm{e} / 2 \pi\) where e is the mean eccentricity of the geocentric solar orbit \(=0.01674\).)

K:COSI: Double precision constant stored as \(0.99964173 \times 2^{-1}\), scaled Bl and unitless. Equation value 0.99964173.
K:CSTODAY: Double precision constant stored as \(8640000 \times 2^{-33}\), scaled B33 in units of centiseconds. Equation value: 8640000.

K:EE: Double precision constant stored as 6.6935116 E-3, scaled BO and unitless. Equation value: 6.6935116 E-3. (Corresponds to the square of the eccentricity of the Fischer elipsoid.)
K:ERAD: Double precision constant stored as \(6373338 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 6373338. (Corresponds to the pad radius on the earth.)

K:FDOT: Double precision constant stored as 4.253263473 E-9 x \(2^{27}\), scaled B-27 in units of revolutions per centisecond. Equation value: 4.253263473 E-9. (Equivalent to 2.672404256 E-6 radians per second or 27.21 days per revolution.)

K:FSUBO: Double precision constant stored as 8.290901511 E-l, scaled BO in units of revolutions. Equation value: 8.29090151l E-1. (Equivalent to 5.209327056.)

K:gloktest: Double precision constant stored as 0.1666666667 , scaled BO in units of revolutions. Equation value: 0.1666666667 . (Equivalent to 60 degrees.) Program notation ".l66...".

K:KONMAT : Double precision \(3 \times 3\) matrix, scaled Bl and unitless. Used to transform from ecliptic to equatorial, earth-centered coordinates. Equation value:
\(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d\end{array}\right]\)
where \(\mathrm{a}=0.91745, \mathrm{~b}=-0.03571(-0.39784 \times 0.08976), \mathrm{c}=0.39784\) and \(d=0.082354(0.91745 \times 0.08976)\). The quantities 0.39784 and 0.91745 are the sine and cosine respectively of 23.444 degrees; 0.08976 is the sine of 5.150 degrees. Note that the factor 0.08976 has no effect on the transformation of the sun's position vector and is actually a parameter of the lunar orbit.

K:lomo: Double precision constant stored as 0.815282336 , program notation RATESP +6 , scaled BO in units of revolutions. Equation value: 0.815282336 . (Corresponds to the position of the moon in it's orbit at July l, 1969.)
K:lomr: Double precision constant stored as \(0.03660098 \times 2^{4}\), program notation RATESP, scaled B-4 in units of revolutions per day. Equation value: 0.03660098. (Equivalent to l revolution per 27.32167 days. Corresponds to the sidereal period of the moon.)

K:lono: A double precision constant stored as 0.986209499, program notation RATESP+10, scaled BO in units of revolutions. Equation value: 0.986209499 . (Corresponds to the position of the mean ascending node of the lunar orbit on the ecliptic at July 1, 1969.)

K:lonr: Double precision constant stored as \(-0.00014719 \times 2^{4}\), program notation RATESP+4, scaled B-4 in units of revolutions per day. Equation value: -0.00014719.

K:loso: Double precision constant stored as 0.274674910 , program notation RATESP+8, scaled BO in units of revolutions. Equation value: 0.274674910 . (Corresponds to the position of the sun at July 1, 1969.)
K:losr: Double precision constant stored as \(0.00273779 \times 2^{4}\), program notation RATESP+2, scaled B-4 in units of revolutions per day. Equation value: 0.00273779. (Equivalent to 1 revolution per 365.2581 days. Corresponds as closely to the sidereal year as to the anomalistic year.)
\[
\text { COOR - } 13
\]

K:NODDOT: Double precision constant stored as -1.703706190 E-11 \(\times 2^{28}\), scaled B-28 in units of revolutions per centisecond. Equation Value: -1.703706190 E-11. (Equivalent to-1.070470170 E-8 radians per second or 18.600 years per revolution.)

K:NODIO: Double precision constant stored as 9.862094363 E-I, scaled BO in units of revolutions. Equation value: 9.862094363 E-1. (Equivalent to 6.196536640 radians.)

KQTSN45: Double precision constant stored as 0.1768 , scaled B2 and unitless. Equation value: 0.7072. (Equivalent to the sine of \(45^{\circ}\).)
K:SINI: Double precision constant stored as \(0.02676579 \times 2^{-1}\), scaled B1 and unitless. Equation value: 0.02676579.
K:WEARTH: Double precision constant stored as 1.160576171 E-7 \(\times 2^{23}\), scaled B-23 in units of revolutions per centisecond. Equation value: \(1.160576171 \mathrm{E}-7\). (Equivalent to \(7.292115147 \mathrm{E}-5\) radians per second.)

LAT: Double precision geodetic or selenographic latitude, scaled BO in units of revolutions.

LE504: Double precision vector to account for precession and nutation of the earth's polar axis (the deviation of the true pole from the mean pole), scaled BO, unitless and expressed in reference coordinates; used in an approximate transformation from reference to true equatorial coordinates.

LM504: Double precision vector to account for precession and nutation of the moon's polar axis (the deviation of the true pole from the mean pole), scaled BO in units of radians and expressed in selenographic coordinates; an approximation most accurate at the nominal midpoint of a mission. Program notation "504LM".

LONG: Double precision geodetic or selenographic longitude, scaled BO in units of revolutions.

MN: Double precision angle in the ecliptic plane, measured from the earth-to-sun vector at the vernal equinox to the moon-to-sun vector at the mean descending node on the ecliptic of the moon's orbit around the earth. Used to rotate the \(\mathbb{X}\)-axis in the ecliptic plane.
[MNMAT1], [MNMAT2], [MNMAT3]: Three double precision, \(3 \times 3\), orthogonal transformation matrices, scaled B1 and unitless. [MNMAT] incorporates a rotation around the \(X\) reference axis through the angle of inclination of the earth's polar axis followed by a rotation around the \(Z\) axis (now perpendicular to the ecliptic) through the angle to the descending node on the ecliptic of the moon's orbit around the earth. [MNMAT2] rotates the system around the new \(\mathbb{X}\)
\[
\text { COOR - } 14
\]
axis through the angle of inclination of the moon's true polar axis. [MNMAT3] completes the transformation to selenographic coordinates by rotating around the moon's poliar axis from the descending node to the present position relative to that node.
[MOONMAT]: Double precision, \(3 x 3\), orthogonal transformation matrix, scaled B1 and unitless. Asg = [MOONMAT] Aref where A is a vector expressed in selenographic and reference coordinates respectively.

MR: Double precision angle of rotation of the moon around its true polar axis, scaled \(B O\) in units of revolutions.
[NBSMMAT]: Double precision, \(3 x 3\), orthogonal transformation matrix, scaled Bl and unitless. Asm \(=\) [NBSMMAT] Anb where A is a vector expressed in stable member and navigation base (body) coordinates respectively.

OGC,IGC,MGC: Double precision commanded gimbal angles scaled BO in units of revolutions or (equivalently) scaled B21 in units of gyro torque nulses of \(2^{-21}\) revolutions each.
[REFSMMAT]: Double precision, \(3 \times 3\) transformation matrix, scaled Bl and unitless. Defined such that Asm = [REFSMMAT] Arf where A is a vector expressed in stable member and reference coordinates respectively.

RLS: See CONC section.
SINIGA, SINMGA, SINOGA: Double precision sines of the inner, middle and outer gimbal angles respectively, scaled B1 and unitless. Program notation SINCDU \(_{0}\), SINCDU \(_{2}\), SINCDU \(_{4}\).

SINTH: Double.precision sine, scaled Bl in the "ARCTAN" routine and B2 in the "ARCTRIG" routine.
[SMNBMAT]: Double precision, \(3 \times 3\), orthogonal transformation matrix, scaled Bl and unitless. Anb \(=\) [SMNBMAT] Asm where A is a vector expressed in navigation base (body) and stable member coordinates respectively.
\(S_{T M P}(i=0,2,4):\) Three double precision working storage registers in "LSPOS" scaled BO in units of revolutions.

TEPHEM: Triple precision elapsed time between July 1.0, universal time and the time the LGC clock is zeroed, scaled Bi2 in units of centiseconds; included in the erasable load.

THETA: Dcuble precision angle computed from SINTH and COSTH, scaled BO in units of revolutions.

THETAD: See ATTM section.

TSsun: Double precision vector contents of the MPAC when return from "LSPOS", representing the unit position vector of the sun, scaled Bl and unitless.

UNITW: Double precision vector which gives the polar axis in the reference coordinate system. The \(x\) component (program notation "mAYO") gives the true to mean pole rotation about the \(-I\) axis"; the \(y\) component (program notation "AXO") gives the "true to mean pole rotation about the +X axis".
\(V^{V E C}{ }_{1}, V_{E C}\) : Working storages for the position vectors or unit position vectors in reference, selenographic, or geographic conrdinates.

VMOON, VSUN: Dnuble precision unit position vectors of the moon and aun, scaled B1 and unitlesa.
 unit vectors along the \(X, \bar{Y}\) and \(Z\) navigation base axes (body axis) respectively, scaled \(B 1\), unitless, and expressed in reference or stable member coordinates.

XSM, YSM, ZSM (XSMrf, YSMrf, ZSMrf; XSMnb, YSMnb, Z SMnb): Double precision unit vectors along the \(X, \bar{I}\) and \(Z\) stable member axes respectively, scaled Bl, unitless, and expressed in reference or navigation base coordinates.

XSMD, YSMD, ZSMD (XSMDrf, YSMDrf, ZSMDrf): Double precision unit vectors along the decired तirections of the \(X, Y\) and \(Z\) stable member. scaled Bl, unitless, and expressed in reference coordinates.

INBSAV, ZNBSAV: Working storages for the YNB and ZNB unit vectors in moon fixed coordinates.

\section*{DIGITAL AUTOPILOT CONTROL ROUTINES}

T5RUPT (Bntered on program interrupt \#2)
Proceed to address specified in T5ADR
DOT6RUPT (Entered on program interrupt \#1)
Perform "T6JOBCHK"
Resume
T6JOBCHK If TIME6 < 0 or TIME6 \(=+0\), proceed to "CCSHOLE"
If TIME6 > 0, return
\(i=\) NXT6AXIS
TTME6 \(=\) T6NEXTTM \(_{0}\)
NXT6AXIS \(=\) TGNEXTAX \(_{1}\)
TGNEXTTM \(_{0}=\) TGNEXTTM \(_{2}\)
\(\mathrm{T}_{6} \mathrm{NEXTAX}_{1}=\mathrm{T}^{2} \mathrm{NEXTAX}_{3}\)
\(\mathrm{T}_{6} \mathrm{NEXTHM}_{2}=\mathrm{K}:\) posmaxsp
\(\mathrm{TGNEXTAX}_{3}=0\)
Perform "C13STALL" protecting the L and Q registers
If TIME6 \(\geq\) K:T6lim, TTME6 = K:posmaxsp
If TIME6 < K:T6Iim:
Switch bit 15 of channel 13 to 1 (enable TIME6 counter)
If T6NEXTTM \(M_{0} \geq \mathrm{K}:\) T6lim, T6NEXTTM \({ }_{0}=\mathrm{K}:\) posmaxsp
If \(i=0\), perform "WRITEP" with TS = NEXTP
If \(i=4\), perform "WRITEU" with TS = NEXTU
If \(i=13\), perform "WRITEV" with TS = NEXIV
Return

JTLST
\[
T S=\text { TIME } 6
\]
```

If $T 6 \mathrm{NEXTTM}_{2}$ < TS: (new jet time shorter than smallest
remaining jet-on time)
$T S t=T S-$ T NEXTTM $_{2}$
$T S a=$ NXT6AXIS
TIME6 $=$ T6NEXTTM $_{2}$
NXT6AXIS $=$ TGNEXTAX $_{3}$
$\mathrm{T} 6 \mathrm{NEXTTM}_{2}=\mathrm{T}_{2} \mathrm{NEXTTM}_{0}$
$\operatorname{TGNEXTAX}_{3}=$ TGNEXTAX $_{1}$
T6NEXTTM ${ }_{0}=T S t$
$\mathrm{TGNEXTAX}_{1}=\mathrm{TSa}$
Perform "C13STALL"
Switch bit 15 of channel 13 to 1 (Enable TIME6 counter)
Return
$T S=T S+$ T 2 NEXTTM $_{0}$
If TGNEXTTM ${ }_{2}$ < TS: (New jet time shorter than second remaining
jet-on time in list)
TSt $=\mathrm{TS}-\mathrm{T}^{2} \mathrm{NEXTM}_{2}$
$\mathrm{TSa}=\mathrm{T}_{\mathrm{W}} \mathrm{NEXTAX}_{1}$

```

```

    \(\mathrm{T}_{6} \mathrm{NEXTAX}_{1}=\mathrm{T}^{2} \mathrm{NEXTAX}_{3}\)
    \(\mathrm{T}_{6 \mathrm{NEXTTM}_{2}}=\mathrm{TSt}\)
    \(\mathrm{T}_{6 \mathrm{NEXTAX}}^{3}\) \(=\mathrm{TSa}\)
    Return
    $\mathrm{T}_{6} \mathrm{NEXTTM}_{2}=\mathrm{T}_{6} \mathrm{NEXTTM}_{2}-\mathrm{TS}$ (New time is longest)
Return

```

DAPIDLER If RCSFLAGS bit \(13=0\) :
Switch RCSFLAGS bit 13 to 1
Establish "1/ACCSET"
(pr 27)
Perform "CHEKBITS"
If DAPBOOLS bit 3 (ACCSOKAY) \(=1\) :
Proceed to "STARTDAP"
MOREIDLE Perform "QERRCALC"
Perform "CALCPERR"
T5ADR \(=\) "DAPIDLER"
NEXTP, NEXTU and NEXIV \(=00000_{8}\)
Switch channels 5 and 6 to \(00000_{8} \quad\) (all jets off)
Switch bits \(12-9\) of channel 12 to 0 (gimbal drive bits)
Set TIME5 to cause program interrupt \#2 in 100 milliseconds
Resume
CHEKBITS If bits 13 and 14 of channel 31 both \(=1\) :
Proceed to "MOREIDLE" (No longer in Held or Auto mode)
If IMODES33 bit \(6=1: \quad\) (Internal DAP disable)
Switch RCSFLAGS bit 3 (DSTEPONE) to 1
Proceed to third step of "MOREIDLE"
Perform "ALTDSPLY"
If channel 30 bit \(10=1\), Proceed to "MOREIDLE"
Return
ALTDSPLY Invert RCSFLAGS bit 4 (DSPLYALT)
If RCSFLAGS bit 4 (DSPLYALT) \(=1\), proceed to "NEEDLER"
If FLAGWRDO bit 15 (NEED2FLG) = 1:
\(\underline{A K}=-(\) OMEGAP, OMEGAQ, OMEGAR)
Return

If FLAGNRDO bit 4 (NEEDLFLG) \(=1\) :
\[
\begin{aligned}
& \text { TStheta }=\text { THETAD }_{y}-\text { CDJ }_{y} \quad \text { (converted to one's comp form) } \\
& T S p s i=T_{\mathrm{THETAD}}^{\mathrm{z}}-\mathrm{CDU}_{\mathrm{z}} \quad \text { (similarly converted) } \\
& \mathrm{AK}_{\mathrm{Y}}=\mathrm{MR1} \text { TStheta }+\mathrm{M} 22 \mathrm{TSpsi} \quad \text { (limited within } \pm \frac{1}{2} \text {) } \\
& \mathrm{AK}_{\mathbf{z}}=\text { M31 TStheta }+ \text { M32 TSpsi (limited within } \pm \frac{1}{2} \text {) } \\
& \text { TSphi }=\text { THETAD }_{X}-\text { CDU }_{X} \quad \text { (converted to one's comp form) } \\
& A K_{x}=\text { M11 TStheta }+ \text { TSphi (limited to within } \pm \frac{1}{2} \text {) }
\end{aligned}
\]

If FLAGNRDO bit 4 (NEEDLFLG) \(=0\), \(A K=-\) (PERROR, QERROR, RERROR)
Return
NEEDLER If RCSFLAGS bit 3 (DSTEPONE) = 1:
Switch bit 6 of channel 12 to 0 (Reset ICDU Error Counter enable discrete)
\(\mathrm{AK}=0 \quad(-0)\)
EDRIVE \(=0 \quad(-0)\)
\(C D U_{i} C M D=0\) for \(i=x, y, z \quad(-0)\)
Switch RCSFLAGS bit 3 (DSTEPONE) to 0
Switch RCSFLAGS bit 2 (DSTEPTWO) to 1
Return
If RCSFLAGS bit 2 (DSTEPTWO) \(=1\) :
Switch bit 6 of channel 12 to 1
Switch RCSFLAGS bits 2 (DSTEPTWO) and 3 (DSTEPONE) to 0 Return

If bit 6 of channel \(12=0\) : (ICDU Error Counters have been disabled)
Switch RCSFLAGS bit 3 (DSTEPONE) to 1
Return

NEEDLES Perform the indented steps for \(i=z\), then \(y\), then \(x\)
\[
\begin{aligned}
& \text { TS }=- \text { AK }_{i} K: \text { ONETENTH } \\
& \text { If }|T S| \geq K: e c l i m, ~ T S ~=~ K: e c l i m ~ s i g n T S ~ \\
& \text { CDU }_{i} \mathrm{CMD}=\mathrm{CDU}_{i} \mathrm{CMD}+\mathrm{K}: \text { trvtoc (TS }- \text { EDRIVE }_{i} \text {) } \\
& \text { EDRIVE }_{i}=\mathrm{TS}
\end{aligned}
\]

Switch bits 13,14 and 15 of channel 14 to 1 (send \(C D U_{i} C M D^{\prime}\) s)
Keturn
STARTDAP Perform "ZATTEROR"
```

TJ
OMEGAP, OMEGAQ, and OMEGAR = O
TRAPEDP, TRAPEDQ, and TRAPEDR = 0
AOSQ and AOSR = 0
ALPHAQ and ALPHAR = 0
NEGU
AOSQTERM and AOSRTERM = 0
QACCDOT and RACCDOT = 0
ALLOWGTS = 0
COTROLER = 0
INGTS = 0
QGIMTIMR and RGIMTIMR = 0
OLDPMIN and OLDQRMIN = 0
PJETCTR i = 0 (i = 1,2,3)
Switch RCSFLAGS bits 1,5,10,11 to 0
OLDXFORP = CDU
OLDYFORP = CDU y
OLDZFORQ = CDU
Switch RCSFLAGS bit }12\mathrm{ to }

```
```

SKIPUN $_{0}$ and SKIPUN $_{1}=4$
TIME6 $=\mathrm{K}:$ posmaxsp
T6NEXTTM $_{0}$ and T6NEXTTM $_{2}=\mathrm{K}:$ posmaxsp
$\mathrm{T}_{6} \mathrm{NEXTAX}_{1}$ and $\mathrm{TGNEXTAX}_{3}=0$
NXT6AXIS $=0$
NEXTP, NEXTU, and $\operatorname{NEXTV}=0^{00000_{8}}$
DAPZRUPT $=-10$
NPTRAPS, NQTRAPS and NRTRAPS $=2$
$\mathrm{T} 5 \mathrm{ADR}=$ "PAXIṢ"
Set TIME5 to cause program interrupt \#2 in 100 milliseconds
Resume
PAXIS Set TMME5 to cause program interrupt \#2 in (100-TIME5) milliseconds
If DAPZRUPT $>0$, proceed to "BAILOUT" with $T S=32000_{8}$
(previous DAP cycle still in progress)
Perform "CHEKBITS"
CDUiTMP $=$ CDUi $\quad . \quad(i=x, y, z)$
CDUD $=\underline{\text { CDUD }}-\underline{\text { DELCDU }}$
$\mathrm{TCP}=\mathrm{TCP}-1$
$T C Q R=T C Q R-1$
Proceed to "PAXFILT"
$T \mathrm{~S}_{\mathrm{q}}=2 \mathrm{i}$
If $T J_{i}=0, T S t=0$
If $\mathrm{TJ}_{\mathrm{i}} \neq 0$ :
If $\left|T J_{i}\right| \leq K: 100 \mathrm{msT6}$ :
TSt $=\mathrm{K}:$ T6tosec $\mathrm{TJ}_{\mathrm{i}}$
$\mathrm{TJ}_{\mathrm{i}}=0$

```
RATELOOP \(i=2\)
\[
\begin{aligned}
& \text { (If } T J_{i} \neq 0 \text {) } \\
& \text { If }\left|\mathrm{TJ}_{i}\right|>K: 100 \mathrm{msT} 6: \\
& \mathrm{TJ}_{i}=\mathrm{TJ}_{i}-\mathrm{K}: 100 \mathrm{~ms} \mathrm{~T} 6 \text { signTJ }_{i} \\
& T S t=K: 01 \mathrm{sec} B 0 \operatorname{signTJ}_{1} \\
& T S_{i}=T S t \text { NUMJETS }_{i} \\
& \mathrm{TSdn} \ln =\mathrm{K}: \mathrm{BIT}^{10} \mathrm{TS}_{\mathrm{i}} \\
& \text { If TSdnln } \leq 0 \text { : } \\
& \text { TSdnln }=-T S d n l n \\
& \mathrm{TSq}=\mathrm{TSq}+1 \\
& \text { DOWNTORK }_{\text {TSq }}=\text { DOWNTORK }_{\text {TSq }}+\mathrm{TSdn} \ln \\
& \text { If } i>0 \text { : } \\
& \mathbf{i}=\mathbf{i}-1 \\
& \text { Proceed to 2nd step of "RATELOOP" } \\
& \text { JETRATER }=1 \mathrm{JACCR}\left(\mathrm{TS}_{1}+\mathrm{TS}_{2}\right) \\
& \text { JETRATEQ }=1 \mathrm{JACCQ}\left(\mathrm{TS}_{1}-\mathrm{TS}_{2}\right) \\
& \text { BACKP JETRATEP }=1 \mathrm{JACCP} \mathrm{TS}_{0} \\
& T S=\text { CDUxTMP } \\
& \text { TSX = TS - OLDXFORP (converted to one's complement form) } \\
& \text { OLDXFORP = TS } \\
& \text { TRAPEDP }=\text { TRAPEDP }-\frac{1}{2} \text { JETRATEP } \\
& \text { TRAPEDQ }=\text { TRAPEDQ }-\frac{1}{2}(J E T R A T E Q+A O S Q T E R M) \\
& \text { TRAPEDR }=\text { TRAPEDR }-\frac{1}{2}(J E T R A T E R+\text { AOSRTERM }) \\
& \text { TS = CDUyTMP } \\
& \text { TSy }=T S \text { - OLDYFORP (converted to one's complement form) } \\
& \text { OLDYFORP = TS }
\end{aligned}
\]
```

MEASRATE = (TSx + M11 TSy) / K:1d40
(limited)
TRAPEDP = TRAPEDP + MEASRATE - OMEGAP (Ifmited)
DXERROR = DXERROR + (M11 TSy + TSx) - K:1d40 PLAST
TS = CDUzTMP
TSz = TS - OLDZFORQ (converted to one's complement form)
OLDZFORQ = TS
MEASRATE = (M21 TSy + MR2 TSz) / K:1d40 (Iimited)
TRAPEDQ = TRAPEDQ + MEASRATE - OMEGAQ (limited)
DYERROR = DYERROR + (MR1 TSy + MR2 TSz) - K:1d40 QLAST
MEASRATE = (M31 TSy + M32 TSz) / K:1d40 (limited)
TRAPEDR = TRAPEDR + MEASRATE - OMEGAR
DZERROR = DZERROR + (M31 TSy + M32 TSz) - K:1d4O RLAST
If DAPBOOLS bit 13 (CSMDOCKD) = 1:
n = DKOMEGAN
na = DKKAOSN
TRAPSIZE = DKTRAP
If DAPBOOLS bit 13 (CSMDOCKD) = 0:
n = LMOMEGAN
na = LMKAOSN
TRAPSIZE = LMTRAP
If |TRAPEDP| > - IRAPSIZE:
OMEGAP = OMEGAP + TRAPEDP / NPTRAPS (limited)
TRAPEDP = 0
NPTRAPS = n
NPTRAPS = NPTRAPS + 1

```
```

OMEGAP = OMEGAP + JETRATEP
(limited)
If |TRAPEDQ| > - TRAPSIZE:
QKALERR = TRAPEDQ / NQTRAPS
TRAPEDQ = 0
OMEGAQ = OMEGAQ + QKALERR
(limited)
AOSQ = AOSQ + K:1d100ms QKALERR / (NQTRAPS + na)
NQTRAPS = n
NQTRAPS = NQTRAPS + }
OMEGAQ = OMEGAQ +JETRATEQ + AOSQTERM
(limited)
If |TRAPEDR| > - TRAPSIZE:
RKALERR = TRAPEDR / NRTRAPS
TRAPEDR = 0
OMEGAR = OMEGAR + RKALERR
(limited)
AOSR = AOSR + K:1d100ms RKALERR / (NRTRAPS + na)
NRTRAPS = n
NRTRAPS = NRTRAPS + 1
OMEGAR = OMEGAR + JETRATER + AOSRTERM
(limited)
If DAPBOOLS bit 8 (DRIFTBIT) = 1:
ALPHAQ and ALPHAR = 0
AOSQTERM and AOSRTERM = 0
AOSQ and AOSR = O
(sp)
If DAPBOOLS bit 8 (DRIFTBIT) = 0:
AOSQ = AOSQ + K:CALLCODE QACCDOT
ALPHAQ = AOSQ
AOSQTERM = K:aosint AOSQ

```
 DAPA - 9
```

    (If DAPBOOLS bit 8 (DRIFTBIT) = 0)
        AOSR = AOSR + K:CALLCODE RACCDOT
        ALPHAR = AOSR
        AOSRTERM = K:aosint AOSR
    Proceed to 2nd line of "SUPERJOB"
    PAXFILI The following coding causes the "Resume" instruction to
resume operations at "SUPERJOB" instead of at the job that
was interrupted
If RCSFLAGS bit 5 (CALLGMBL) = 1:
Perform "ACDT+C12"
DAPARUPT = ARUPT
DAPBQRPT = BRUPT
DAPBQRPT +1 = QRUPT
DAPZRUPT = ZRUPT
BRUPT = Instruction stored at location SUPERJOB
ZRUPT = Address of SUPERJOB + 1
Resume
The purpose of this unusual manipulation of the "Resume"
instruction is to establish "SUPERJOB" on a time-critical
basis--immediately--while still allowing it to be interrupted
by tasks and other interrupts.
SUPERJOB Proceed to "RATELOOP"
If QGIMTIMR = 0:
NEGU
QACCDOT = 0
Switch bits 9 and 10 of channel 12 to 0 (Q GTS drives)
QGIMT IMR = - K:posmaxsp
If QGIMTIMR > 0:
QGIMTIMR = QGIMTIMR - 1

```
```

    If RGIMTIMR = 0:
    NEGU
    RACCDOT = 0
    Switch bits 11 and 12 of channel 12 to 0 (R GTS drives)
    RGIMTIMR = - K:posmaxsp
    If RGIMTIMR > 0:
    RGIMTIMR = RGIMTIMR - 1
    \mp@subsup{PJETCTR}{i}{\prime}=\mp@subsup{\mathrm{ PJETCTR }}{i}{}-1 signPJETCTR i (i = 1,2,3) (zero unchanged)
    If RCSFLAGS bit 12 = 1, proceed to "CHKVISFZ"
    SKIPPAXS Switch RCSFLAGS bit 12 to 1
Proceed to "QRAXIS"
CHKVISFZ TS = - contents of channel 31 (all bits complemented)
If bits 9-12 of TS all = 0:
TS = 000000
Proceed to "TSNEXTP"
i = bits 9-12 of TS shifted right 8 to bit positions 1-4
ROTINDEX = K:INDXYZ i (if somehow i is illegal, proceed to
two steps before "TSNEXTP")
TRYUORV NUMBERT = 6
Perform "SEIECTP" with i = NUMBERT
If NUMBERT = 6: (required jets are all available)
TS = POLYTEMP
Proceed to "TSNEXTP"
If ROTINDEX \leq 5: (Principal axis translation cannot be
accomplished because of jet failure; try tacking along
an appropriate U or V axis)
TS = 000000
Invert RCSFLAGS bit 1
If RCSFLAGS bit 1 = 1, TS = 00001%

```
(If ROTINDEX \(\leq 5\))
ROTINDEX \(=\) ROTINDEX \(+T S+4\)
Proceed to "TRYUORV"
If NUMBERT \(\geq 4\) (One combination of jets is available to accomplish a \(U\) or \(V\) axis translation)
\(T S=\) POLYTEMP
Proceed to "TSNEXTP"
Perform "ALARM" with TS \(=020018\)
Invert RCSFLAGS bit 1
\(T S=00000_{8}\)
TSNEXTP NEXTP \(=T S\)
If bit 13 of channel \(31=1\) and DAPBOOLS bit \(9(\) XOVINHIB \()=1\) :
Proceed to "PURGENCY" (Auto with X-axis override disabled)
If bit 13 of channel \(31=1\) or DAPBOOLS bit 15 (PULSES) \(=0\) :
Proceed to "DETENTCK" (Minimum impulse not allowed or not specified by DAPBOOLS)
(otherwise, minimum impulse mode)
PERROR \(=0\)
\(\operatorname{CDUD}_{\mathrm{x}}=\mathrm{CDU}_{\mathrm{x}}\)
If OLDPMIN \(>0\) : (not returned to detent since jets fired)
\(T S=-\) contents of channel 31 (all bits complemented)
OLDPMIN \(=\) bits 3 and 4 of TS
Proceed to "JETSOFF"
(Otherwise, OLDPMIN = 0, indication that no yaw commands were present during last DAP cycle)

If bits 3 and 4 of channel 31 both \(=1\), proceed to "JETSOFF"
If bit 4 of channel \(31=0, T J_{0}=-K: m i n i m p t j \quad(-P)\)

If bit 3 of channel \(31=0, T J_{0}=K: m i n i m p t j\)
OLDPMIN = 1

NUMBERT \(=4\)
If FLAGWRD5 bit 5 (AORBSFLG) \(=1\), NUMBERT \(=5\)
Proceed to "PJETSLEC"
ZEROENBL SAVEHAND \({ }_{0}=R H C Q\)
SAVEHAND \(_{1}=\) RHCR
RHCP, RHCQ, and RHCR \(=0\)
Perform "C13STALL" with interrupts inhibited
Switch bits 8 and 9 of channel 13 to 1 (Start RHC read and enable RHC counters)

Return

DETENTCK \(\mathrm{TS}_{\operatorname{ch} 31}=\) channel 31
If \(\mathrm{TS}_{\text {ch } 31}\) bit \(15=1\) and DAPBOOLS bit 12 (OURRCBIT) \(=0\) :
Proceed to "PURGENCY"
If \(T S_{\text {ch } 31}\) bit \(15=0\) and DAPBOOLS bit \(12(\) OURRCBIT) \(=1:\)
Proceed to "RATERROR"
If \(T S_{\operatorname{ch} 31}\) bit \(15=0\) and DAPBOOLS bit 12 (OURRCBIT) \(=0\) :
PERROR \(=0\)
Switch DAPBOOLS bit 12 (OURRCBIT) to 1
\(\mathrm{DXEPROR}_{\mathrm{dp}}=0\)
DYEPROR \(_{\mathrm{dp}}=0\)
DZERROR \(_{d p}=0\)
PLAST \(=0\)
QLAST \(=0\)
RIAST \(=0\)
\(R H C Q=0\)
```

    (If TS ch31 bit 15 = 0 and DAPBOOLS bit 12 (OURRCBIT) = 0)
    RHCR = 0
    Switch RCSFLAGS bits }10\mathrm{ and 11 to 0
    Switch RCSFLAGS bit 9 to 1
    Perform "ZEROENBL"
    Proceed to " JETSOFF"
    If TS ch31 bit 15 = 1 and DAPBOOLS bit. 12 (OURRCBIT) = 1:
If RCSFLAGS bit 9 (JUSTIN) = 1:
If.channel }31\mathrm{ bit 13=0, proceed to "RATEDAMP"
Switch RCSFLAGS bits 9 \& 11 (JUSTIN \& QRBIT) to 0
Proceed to "RATEDAMP"
If RCSFLAGS bit 10 (PBIT) = 1, proceed to "RATEDAMP"
If RCSFLAGS bit 11 (QRBIT) = 1, proceed to "RATEDAMP"
Switch DAPBOOLS bit 12 (OURRCBIT) to 0
If channel 31 bit 13 = 1:
CDUD
Proceed to "PURGENCY"

```
 Perform "ZATTEROR"
 Proceed to "PURGENCY"
RATERROR \(\operatorname{CDUD}_{x}=\operatorname{CDU}_{\mathrm{x}}\)
 \(T S p=\) PLAST

 TS1 = PLAST -TSp
 Perform "ZEROENBL"
 EDOT = OMEGAP - PLAST
```

    If |TS1| > RATEDB:
        TCP = K:40cyc
        Proceed to "PEGI"
    If RCSFLAGS bit 10 (PBIT) = 1, proceed to "PEGI"
    E = DXERROR
    PERROR = DXERROR
    Proceed to third line of "PURCENCY"
    RATEDAMP RHCP = 0
Proceed to "RATERROR"
PEGI }\quad\mp@subsup{CDUD}{x}{}=\mp@subsup{CDUU}{x}{
DXERROR
PERROR = 0
ABSEDOTP = |EDOT |
If ABSEDOTP > RATEDB and if TCP > 0:
Switch RCSFLAGS bit 10 (PBIT) to 1
Skip next step
Switch RCSFLAGS bit 10 (PBIT) to 0
TJ
If ABSEDOTP > 2JETLIM:
NUMBERT = 6
Proceed to "PJETSLEC"
TJ O}=2T\mp@subsup{J}{0}{
NUMBERT = 4
If FLAGWRD5 bit 5 (AORBSFLG) = 1, NUMBERT = 5
Proceed to "PJETSLEC"

```
```

    CALCPERR \(\mathrm{E}=\mathrm{M} 11\left(\mathrm{CDU}_{\mathrm{y}}-\mathrm{CDUD}_{\mathrm{y}}\right)\)
    \(\mathrm{E}=\mathrm{E}+\mathrm{CDU}_{\mathrm{x}}-\) CDUD \(_{\mathrm{x}}+\) DELPEROR
    PERROR \(=\mathrm{E}\)
    Return
    PURGENCY Perform "CALCPERR"
    EDOT \(=\) OMEGAP - OMEGAPD
    AXISCTR \(=-1\)
    If DAPBOOLS bit 13 (CSMDOCKD) \(=1\) :
        Perform ".SPSRCS" with interrupts inhibited
        If \(T J_{0}=0\) :
        Invert FLAGWRD5 bit 5 (AORBSFLG)
                Proceed to "JETSOFF"
        NUMBERT \(=4\)
        If FLAGWRD5 bit 5 (AORBSFLG) \(=1\), NUMBERT \(=5\)
        Proceed to "PJETSLEC"
    SENSETYP \(=0\)
    Perform "TJETLAW" with interrupts inhibited
    NUMBERT \(=6\)
    If FIREFCT \(\geq K: m F O U R D E G\) or if \(|T J O| \leq K: 160 m s T 6:\)
        NUMBERT \(=4\)
        If FLAGWRD5 bit 5 (AORBSFLG) \(=1\), NUMBERT \(=5\)
    PJETSLEC TS \(=1\)
    If \(T J_{0}=0\), proceed to "JETSOFF"
    If \(T J_{0}<0, T S=0\)
    ```
```

    ABSTJ = |TJ |
    ROTINDEX = TS
    Porform "SELECTP" with i = 6
    If NUMBERT = 6, TS = 4 (jets all available for 4-jet rotation)
    If NUMBERT }=6,TS=
    NUMJETS
    Perform "WRITEP" with TS = POLYTEMP . (turn on rotation)
    If ABSTJ \geq K:150msT6, proceed to "QRAXIS"
    If ABSTJ < K:150msT6 - K:136msT6:
        ABSTJ = K:150msT6 - K:136msT6
        TJ O K:MINTTMES signTJ
    Inhibit interrupts
    T6NEXTTM 
    T6NEXTAX 
    Perform "JTLST"
    Switch RCSFLAGS bit 12 to 0
    Invert FLAGWRD5 bit 5 (AORBSFLG)
    Release interrupt inhibit
    Proceed to "QRAXIS"
    JETSOFF Perform "WRITEP" with TS = NEXTP
TJ O}=
Proceed to "QRAXIS"
WRITEP Set bits 1-8 of channel 6 = bits 1-8 of TS
Return
SELECTP TSa = K:quadsP NUMBERT

```
\(\mathrm{TSb}=\mathrm{K}:\) typman \(_{\text {ROTINDEX }}\)
POLYTEMP \(=T S a \wedge T S b\) (logic "and" function)
If any of the binary bits that are 1 in POLYTEMP are also 1 in CH6MASK (at least one of the required jets has been failed)

If \(i=0\) : (i cannot be zero in selection of translation jets)

Perform "ALARM" with \(T S=02003\) g (rotation failure)
Proceed to "JETSOFF"
\(i=i-1\)
NUMBERT \(=1\)
Proceed to "SELECTP"
Return
```

QRAXIS EDOTR $=$ OMEGAR - OMEGARD
$E D O T Q=O M E G A Q-O M E G A Q D$
(limited)
(limited)
If channel 31 bit $13=0$ :
If DAPBOOLS bit 12 (OURRCBIT) $=1$, skip next step
Perform "QERRCALC"
If COTROLER $=0$, proceed to "TRYGTS"
If COTROLER > 0, proceed to "GTS"
Proceed to "RCS"
QERRCALC $T S y=C D U_{y}-\operatorname{CDUD}_{\mathrm{y}}$
(converted to one's comp. form)
$T S z=C D U_{z}-\operatorname{CDUD}_{z}$
QERROR $=$ M21 TSy + MR2 TSz + DELQEROR
RERROR $=$ M31 TSy + M32 TSz + DELREROR
Return
RCS $\quad$ COTROLER $=0$

```
```

        OMEGAU = - COEFFQ EDOTQ + COEFFR EDOTR
        OMEGAV = COEFFQ EDOTQ + COEFFR EDOTR
    If channel }31\mathrm{ bit 7=0:
        TS = 5
        Proceed to "+XORULGE"
    If channel 31 bit 8=0:
        TS = 4
        Proceed to "+XORULGE"
    If DAPBOOLS bit 6 (ULAGER) = 1:
        TS = 5
        Proceed to "+XORIJLGE"
        NEXTU = 0
        NEXTV = 0
        If DAPBOOLS bit 8 (DRIFTBIT) = 1:
        SENSETYP = 0
        Proceed to 3rd step of "TSNEXTS"
    SENSETYP = 0
    If FLGWRD10 bit 13 (APSFLAG) = 1, SENSETYP = 2
    Proceed to 3rd step of "TSNEXTS"
    +XORULGE ROTINDEX = TS
SENSETYP = ROTINDEX - 3
If DAPBOOLS bit 11 (4JTXTRAN) = 1:
TS1 = 4 and skip next 3 steps
If DAPBOOLS bit 10 (AORBTRAN) = 1:
TS1 = 3 and skip next step
TS1 = 2

```

NUMBERT = TS1
Perform "SELCTSUB"
If POLYTEMP > 0, proceed to "TSNEXTS"
Perform "ALARM" with TS \(=020028\)
TSNEXTS
NEXTU = bits 8,7, 4 and 3 of POLYTEMP
NEXTV \(=\) bits 6,5,2 and 1 of POLYTEMP
(Note that translation codes in NEXTU and NEXTV may not be implemented at the same time, but each cell contains codes for a jet pair on diagonally opposite quads.)

If channel 31 bit \(13=1\), proceed to "ATTSTEER"
If DAPBOOLS bit 15 (PULSES) \(=0\), proceed to "CHEKSTIK"
(Otherwise, minimum impulse)
Perform "ZATTEROR" with interrupts inhibited
QERROR \(=0\)
RERROR \(=0\)
TS = - contents of channel 31 (all bits complemented)
If OLDQRMIN \(>0\) : (not returned to detent since jets fired)
OLDQRMIN \(=\) bits \(1,2,5\) and 6 of TS (\(+Q,-Q,+R,-R\))
Proceed to "XTRANS"
(Otherwise, OLDQRMIN \(=0\), indication that no \(Q\) or \(R\) commands were present during the last DAP cycle)

If bits 1,2,5 and 6 of \(T S\) all \(=0\), proceed to "XTRANS"
If bit 1 of \(T S=1: \quad(+Q)\)
\[
\begin{align*}
& T J_{1}=K: p T J M I N T 6 \tag{U}\\
& T J_{2}=-K: p T J M I N T 6 \tag{V}
\end{align*}
\]

Proceed to "MINQR"
```

        If bit 2 of TS = 1: (-Q)
    TJ = - K:pTJMINT6
    (U)
    TJ 2 = K:pTJMINT6
        (V)
    Proceed to "MINQR"
    If bit 5 of TS = 1:
(+R)
TJ = K: pTJMINT6
TJ = K:pTJMINT6
Proceed to "MINQR"
If bit 6 of TS = 1:

$$
\begin{equation*}
\mathrm{TJ}_{1}=-\mathrm{K}: \mathrm{pTJMINT} 6 \tag{U}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{TJ}_{2}=-\mathrm{K}: \mathrm{pTJMINT} 6 \tag{V}
\end{equation*}
$$

MINQR RETJADR = "MINTRN"
OLDQRMIN = 1
AXISCTR $=1$
MINRTN If DAPBOOLS bit 13 (CSMDOCKD) $=1$ :
$T J_{\text {AXISCTR }}=\operatorname{signT}_{\text {AXISCTR }} \mathrm{K}: 60 \mathrm{msT} 6$
NUMBERT $=2$
If DAPBOOLS bit 10 (AORBTRAN) $=1$, NUMBERT $=3$
Proceed to "AFTERTJ"
CHEKSTIK INGTS $=0$
COTROLER $=-1$
If $\mathrm{TS}_{\text {ch31 }}$ bit $15=0$, proceed to "RHCACTIV" (TS ${ }_{\text {ch31 }}$ was loaded
If DAPBOOLS bit 12 (OURRCBIT) $=0$ : in "DETENTCK")
Proceed to "ATTSTEER"
If DAPBOOLS bit 12 (OURRCBIT) = 1:
Switch RCSFLAGS bit 9 to 0
SAVEHAND $_{0}=0$
SAVEHAND $_{1}=0$

```
```

RHCACTIV TSq = QLAST
QLAST = STIKSENS ( SAVEHAND }\mp@subsup{0}{0}{}|\mp@subsup{\mathrm{ SAVEHAND }}{0}{}|+\mathrm{ K:LINRAT SAVEHAND
TS3 = QLAST - TSq
TSr = RLAST
RLAST = STIKSENS (SAVEHAND 1 |SAVEHAND | + K:LINRAT SAVEHAND
TS4 = RLAST - TSr
QRATEDIF = OMEGAQ - QLAST
RRATEDIF = OMEGAR - RLAST
URATEDIF = - COEFFQ QRATEDIF + COEFFR RRATEDIF
VRATEDIF = COEFFQ QRATEDIF + COEFFR RRATEDIF
If |TS3| > RATEDB, proceed to "ENTERUV"
If |TS4| > RATEDB, proceed to "ENTERUV"
If RCSFLAGS bit 11 (QRBIT) = 1:
Proceed to 2nd step of "ENTERUV"
Proceed to "ATTSTEER"
ENTERUV TCQR = K:40cyc
Inhibit interrupts
Perform "ZATTEROR"
Release interrupt inhibit
DYERROR }\mp@subsup{d}{dp}{}=
DZERROR }\mp@subsup{|}{dp}{}=
If |URATEDIF| < RATEDB:
If |VRATEDIF| < RATEDB
Proceed to "TOPSEUDO"
URATEDIF = 0
Proceed to "QRTIME"

```
```

    If |VRATEDIF| < RATEDB:
    VRATEDIF = 0
    QRTIME If TCQR > 0:
Switch RCSFLAGS bit 11 (QRBIT) to 1
Skip next step
TOPSEUDO Switch RCSFLAGS bit 11 (QRBIT) to 0
RETJADR = "BACKHAND"
AXISCTR = 1
BACKHAND NUMBERT = 4
If SKIPUW AXISCTR }=0
SKIPUV
If AXISCTR = 0, proceed to "CLOSEOUT"
AXISCTR = AXISCTR - 1
Proceed to "BACKHAND"
TS = URATEDIF
If AXISCTR = 1, TS = VRATEDIF
i=16 AXISCTR + 2 (2 or 18)
If TS > 0, i=i + 1 (index the proper 2-jet acceler-
ation in the direction of desired
acceleration)
TSt = - K:bkscl TS 1dANET
If |TSt| \geq L:bklim, TSt = TSt / 3 (still > K:150msQR)
i = AXISCTR + 1
TJ i
Proceed to "AFTERTJ"
ATTSTEER UERROR = - COEFFQ QERROR + COEFFR RERROR
(limited)
VERROR = COEFFQ QERROR + COEFFR RERROR
(limited)
DAPA - 23

```
```

TJLAW RET.JADR = "TJLAW4"
AXISCTR $=1$
TJLAW4 If SKIPUV ${ }_{\text {AXISCTR }}=0$ :
SKIPUV $_{\text {AXISCTR }}=4$
If $\operatorname{AXISCTR}=0$, proceed to "CLOSEOUT"
AXISCTR $=$ AXISCTR -1
Proceed to location stored in RETJADR
If $\mathrm{AXISCTR}=1$ :
$\mathrm{E}=\mathrm{VERROR}$
EDOT = OMEGAV
If AXISCTR = 0 :
$\mathrm{E}=\mathrm{UERROR}$
EDOT = OMEGAU
If DAPBOOLS bit 13 (CSMDOCKD) $=1$ :
If DAPBOOLS bit 14 (USEQRJTS) $=0$, COTROLER $=8191$
Perform "SPSRCS" with interrupts inhibited
NUMBERT $=4$
Proceed to "AFTERTJ"
Perform "TJETLAW"
AFTERTJ If FLAGWRD5 bit 13 (SNUFFER) = 0, proceed to "DOROTAT"
If FLGWRD10 bit 13 (APSFLAG) $=1$, proceed to "DOROTAT"
If DAPBOOLS bit 8 (DRIFTBIT) $=0$, proceed to "XTRANS"
DOROTAT $i=$ AXISCTR +1
If $T J_{1}=0$ : (no rotation command; execute trans command)
If $\operatorname{AXISCTR}=1$ :
Perform "WRITEV" with TS = NEXTV

```
 DAPA - 24
```

    (If AXISCIR = 1:)
    AXISCTR = 0
    Proceed to address specified by RETJADR
        Ferform "WRITEU" with TS = NEXTU
        Proceed to "CLOSEOUT"
    TS = 2
If TJ
ABSTJ = |TJ |
ROTINDEX = AXISCTR + TS (0,1,2,3)
If ABSTJ > K:150msQR
Perform "SELCTSUB"
If AXISCTR = 1, perform "WRITEV" with TS = POLYTEMP
If AXISCTR = 0, perform "WRITEU" with TS = POLYTEMP
Proceed to "FEEDBACK"
If ABSTJ < K:pTJMINT6:
ABSTJ = K:pTJMINT6
i = AXISCTR + 1
TJ
NUMBERT = 0
If bit 1 of channel 4 = 1, NUMBERT = 1
(Bit 1 of channel 4 is used here as sort of a
random number generator; it is part of the computer
clock and oscillates at a frequency of 3200 pps.)
If SENSETYP > 0, NUMBERT = SENSETYP - 1
Perform "SELCTSUB"
If AXISCTR = 1, TS = 13
If AXISCTR = 0, TS =-4

> Inhibit interrupts
> $\mathrm{T} \mathrm{NEXTAX}_{3}=\mathrm{TS}$
> If T6NEXTAX $_{3}=13$, perform "WRITEV" with TS $=$ POLYTEMP
> If TGNEXTAX $_{3}=4$, perform "WRITEU" with TS $=$ POLYTEMP
> $\mathrm{T}_{\mathrm{WEXTHM}}^{2} 2=\mathrm{ABSTJ}$
> Perform "JTLST"
> Release interrupt inhibit
> SKIPUV $_{\text {AXISCTR }}=0 \quad$ (cause this axis to be skipped next cycle)
> FEEDBACK $i=A X I S C T R+1$
> If NUMBERT $>3$, NUMJETS ${ }_{i}=2$
> If NUMBERT $\leq 3$, NUMJETS ${ }_{i}=1$
> If $A X I S C T R=0$, proceed to "CLOSEOUT"
> AXISCIR $=$ AXISCIR -1
> Proceed to address specified in RETJADR
> XTRANS $\quad T J_{1}=0$
> $T \mathrm{~J}_{2}=0$
> Inhibit interrupts
> If SKIPUV $_{0} \neq 0$, perform "WRITEU" with TS $=$ NEXTU
> SKIPUV $_{0}=4$
> If $\operatorname{SKIPUV}_{1} \neq 0$, perform "WRITEV" with TS $=$ NEXTV
> SKIPUV $_{1}=4$
> Release interrupt inhibit
> Proceed to "CLOSEOUT"
> WRITEU Set bits 3,4,7 and 8 of channel $5=$ bits $3,4,7$ and 8 of TS Return
> WRITEV Set bits $1,2,5$ and 6 of channel $5=$ bits $1,2,5$ and 6 of TS Return

$$
\text { DAPA }-26
$$

```
SELCTSUB TSa = K:quadsQR NUMBERT
 TSb = K: typmanQRROTINDEX
 POLYTEMP = TSa }~ TSb (logic "and" function)
 If any of the binary bits that are 1 in POLYTEMP are also
 1 in CH5MASK (at least one of the required jets is flagged
 as failed):
 NUMBERT = 3
 Proceed to "FALOOP"
 Return
FALLOOP TSa = K:quadsQR
 TSb = K: typmanQR ROTINDEX
 POLYTEMP = TSa ^ TSb . (logic "and" function)
 If POLYTEMP ^ CH5MASK }\not=0000088
 If NUMBERT = 0:
 Perform "ALARM" with TS = 020048
 If AXISCTR = 0:
 TJ = =
 Perform "WRITEU" with TS = NEXTU
 Proceed to "CLOSEOUT"
 TJ2}=
 Perform "WRITEV" with TS = NEXTV
 AXISCTR = 0
 Proceed to address specified by RETJADR
 NUMBERT = NUMBERT - 1
 Proceed to "FAIlOOP"
 Return (to routine that called "SELCTSUB")
TRYGTS If DAPBOOLS bit 14 (USEQRJTS) = 1, proceed to "RCS"
```

```
 If ALLOWGTS = 0, proceed to "RCS"
 If channel 5 = 00000 g, proceed to "GTS"
 If INGTS = 0, proceed t.o "RCS"
 Perform "TIMEGMBL" with interrupts inhibited
 INGTS = 0
 Proceed to "RCS"
GIS COTROLER = -1
 SKIPUV}\mp@subsup{}{0}{}=
 SKIPUV
 INGTS = 2
 QGIMTIMR = 2
 RGIMTIMR = 2
 QRCNTR = 2
 TS L
 (limited)
 WCENTRAL = EDOTR
 ACENTRAL = TS L
 KCENTRAL = RDAPK
 If KCENTRAL = 0:
 K2THETA = 0
 Proceed to "NEGUSUM"
 TS = RERROR
 ALGORTHM K2THETA = KCENTRAL TS
 If ACENTRAL }\mp@subsup{}{}{2}/2\geq KCENTRAL
 A2CNTRAL = K:posmax
 Skip next step
 AZCNTRAL = ACENTRAL }\mp@subsup{}{}{2}/(2 KCENTRAL)
 K2CNTRAL = WCENTRAL (rescaled to B3)
```

$$
\begin{aligned}
& \text { FUNCTION }=\text { K2CNTRAL }+ \text { ACENTRAL } \mid \text { ACENTRAL } \mid / 2 \text { KCENTRAL } \\
& \text { DEL }=1 \text { signFunction } \\
& \text { If } \mid \text { FUNCTIION } \mid<2^{-25}, \text { DEL }=0 \\
& \text { K2CNTRAL }=\text { DEL K2CNTRAL }+ \text { A2CNTRAL } \\
& \text { A2CNTRAL }=\text { K2CNTRAL }- \text { ACENTRAL }^{2} / 6 \text { KCENTRAL } \\
& \text { K2THETA }=\text { K2THETA + ACENTRAL A2CNTRAL } \\
& \text { FUNCTION = KCENTRAL K2CNTRAL } \\
& \text { K2CNTRAL = DEL K2CNTRAL } \\
& \text { If } D E L=0 \text {, proceed to "NEGUSUM" } \\
& \text { RSTOFGTS Perform "GTSQRT" } \\
& \text { K2CNTRAL }=T S_{\text {sqrt }} \text { K2CNTRAL } \\
& \text { SHFTFLAG }=\text { ININDEX } / 2+\text { SHFTFLAG } \\
& T S=2^{- \text {SHFTFLAG }} \text { K2CNTRAL } \\
& \text { K2THETA }=\text { K2THETA }+\mathrm{TS} \\
& \mathrm{TS}_{\text {sign }}=\text { signK2THETA signNEGU }_{\text {QRCNTR }} \\
& \text { NEGUSUM } \text { NEGU }_{\text {QRCNTR }}=1 \text { signK2THETA } \\
& \text { If K2THETA }<2^{-28}, \text { NEGU }_{\text {QRCNTR }}=0 \\
& \begin{array}{c}
\text { If } T S_{\text {sign }}<0: \quad \begin{array}{l}
\text { (If a reversal of gimbal drive direction } \\
\text { is called for) }
\end{array} \\
Q A C C D O T_{Q R C N T R}=0
\end{array} \\
& \text { If QRCNTR > } 0 \text { : } \\
& \text { Set bits } 11 \text { \& } 12 \text { of channel } 12=0 \\
& \text { Skip next step } \\
& \text { Set bits } 9 \text { \& } 10 \text { of channel } 12=0 \\
& \text { If } \mathrm{TS}_{\text {sign }} \leq 0 \text {, set bit } 5 \text { of RCSFLAGS }=1
\end{aligned}
$$

```
 If QRCNTR = 2:
 QRCNTR = O
 WCENTRAL = EDOTQ
 ACENTRAL = AOSQ (rescaled to B-3) (limited)
 KCENTRAL = QDAPK
 If KCENTRAL = 0:
 K2THETA = 0
 Proceed to "NEGUSUM"
TS = QERROR
Proceed to "AL.GORTHM"
CLOSEOUT The following equations cause the "resume" instruction to
 resume operations at the job whose address is in DAPZRUFT
 (thus ending a prolonged semi-interrupt of that job)
 ARUPT
 BRUPT = DAPBQRUPT
 Q = DAPBQRUPT +1
 ZRUPT
 DAPZRUPT = - K:posmaxsp
 Resume
```

ACDT+C12 QACCDOT $=-$ NEGU $_{0}$ ACCDOTQ
RACCDOT $=-\mathrm{NEGU}_{2}$ ACCDOTR
$T S=00000_{8}$
If $\mathrm{NEGU}_{0}=1$, switch bit 10 of TS to 1
If $\mathrm{NEGU}_{0}=-1$, switch bit 9 of TS to 1
If $\mathrm{NEGU}_{2}=1$, switch bit 12 of TS to 1
If $\mathrm{NEGU}_{2}=-1$, switch bit 11 of TS to 1
Set bits $9-12$ of channel $12=$ bits $9-12$ of TS
Switch bit 5 of RCSFLAGS to 0
Return
TIMEGMBL ALLOWGTS $=1$
$\mathrm{NEGU}_{2}=0$
If $A C C D O T R \leq 0$ or if $A O S R=0$, proceed to "TIMQGMBL"
$\mathrm{TS}=-\mathrm{K}: 0.4 \mathrm{gts}$ AOSR
$\mathrm{NEGU}_{2}=-1$ signTS (If TS $=0$, NEGU will be zeroed below)
If $|T S| \geq 2$ ACCDOTR:
RGIMTIMR $=\mathrm{K}:$ OCT31
ALLOWGTS $=0$
Proceed to "TTMQGMBL"
$T S t=|T S| \mathrm{K}: 00 T 00240 /$ ACCDOTR (units of 100 milliseconds)
If TSt < K:gtstmin, NEGU $_{2}=0$
If $T S t \geq$ K:gtstmin, RGIMTIMR $=$ TSt
TIMQGMBL $\mathrm{NEGUO}_{O}=0$
If $A C C D O T Q \leq 0$ or if $A O S Q=0$, proceed to "DONEYET2"
$T S=-K: 0.4 \mathrm{gts} A O S Q$
$\mathrm{NEGU}_{\mathrm{O}}=-1$ signTS

```
 If }|TS|\geq2 ACCDOTQ
 QGIMTIMR = K:OCT31
 ALLOWGTS = 0
 Proceed to "DONEYET2"
 TSt = |TS K:OCT00240/ACCDOTQ (units of 100 milliseconds)
 If TSt < K:gtstmin, NEGUO = 0
 If TSt \geq K:gtstmin, QGIMTIMR = TSt
 DONEYET2 Perform "ACDT+C12"
 Return
 ALLCOAST Perform "STOPRATE"
 AOSQ and AOSR = O
 ALPHAQ and ALPHAR = 0
 AOSQTERM and AOSRTERM = 0
 Switch DAPBOOLS bit 8 (DRIFTBIT) to 1
 Perform "RESTORDB"
 Return
```

ZATTEROR CDUD $=\underline{\text { CDU }}$

```
 STOPRATE OMEGAPD, OMEGAQD and OMEGARD = 0
 DELCDU = 0
 DELPEROR, DELQEROR, and DELREROR = 0
 Return
 DAPT4S (Entered every 240 milliseconds from "T4RUPT"; also called
 GPMATRIX. This calculates the gimbal rate to body rate matrix)
 M11 = sin}\mp@subsup{\textrm{sp}}{}{CDU
 COSMG = cos }\mp@subsup{\textrm{sp}}{}{CDU
```

$\mathrm{MR2}=\sin _{\mathrm{sp}} \mathrm{CDU} \mathrm{x}$M31 $=-$ COSMG M22$\mathrm{M} 32=\cos _{\mathrm{sp}} \mathrm{CDU}_{\mathrm{x}}$M21 $=$ COSMG M32
Return
RCSMONIT (Entered every 480 milliseconds from "T4RUPT", also called RCSMON)
$\mathrm{TS}=$ - contents of channel 32 (all bits complemented)
$T S q=$ bits $1-8$ of $T S \quad$ (RCS thruster fail discretes)
$T S=00000_{8}$
For $1=1,2,3,4,5,6,7$ and 8 : If bit $i$ of TSq $\neq$ bit 1 ofPVALVEST, switch bit 1 of TS to 1
If $T S=00000_{8}$, return (no change)
For $i=8$ through 1, in that order, examine bit $i$ of TS; upon
finding the first bit that is a "1", continue at next stepwith $i=$ that bit number.
If bit i of PVALVEST = 1, proceed to "VOPENED"
Switch bit of CH5MASK indicated by K: 5FAILTAB ${ }_{i}$ to 1
Switch bit of CH6MASK indicated by K: 6FAILTAB ${ }_{i}$ to 1
Switch bit 1 of PVALVEST to 1
Establish "1/ACCJOB" ..... (pr 27)
Return
VOPENED Switch bit of CH5MASK indicated by K:5FAILTAB ${ }_{i}$ to 0
Switch bit of CH6MASK indicated by K: 6FAILTAB ${ }_{i}$ to 0
Switch bit i of PVALVEST to 0
Establish "1/ACCJOB"(pr27)
Return

```
GTSQRT If FUNCTION \(\leq 0\) : (bad argument for square root)
 SHFTFLAG \(=0\)
 \(\mathrm{TS}_{\text {sqrt }}=0\)
 Return
 SHFTFLAG \(=0\)
 If FUNCTION \(<2^{-20}: \quad\) (most significant half \(=0\))
 SHFTFLAG \(=7\)
 FUNCTION \(=\) FUNCTION \(2^{14} \quad\) (operate on least significant half)
 ININDEX = 12
SCALLOOP If \(2^{\text {-ININDEX }-6}\) - FUNCTION \(\leq 0\) :
 ININDEX = ININDEX - 2
 If ININDEX \(=0\), Skip next step
 Proceed to "SCALLOOP"
\(T S=\) FUNCTION \(/ 2^{-6}\) - ININDEX (rescaled for square root accuracy)
HALFARG \(=T S / 2\)
\(\mathrm{TS}_{\text {sqrt }}=\mathrm{K}:\) ROOTHALF
If \(H A L F A R G \geq \frac{1}{4}, T S_{\text {sqrt }}=1\)
\(T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+\) HALFARG/TS sqrt (Newton algorithm)
\(T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+\) HALFARG/TS sqrt
\(T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+\) HALFARG/TS sqrt
Return
```


## QUANTITIES IN COMPUTATIONS

$1 \mathrm{dANET}_{i}(i=2,3,18,19)$ : See DAPB section.
1dANETP: Single precision inverse of the acceleration expected from the simultaneous firing of two P-axis RCS jets scaled B8 in units of seconds squared per revolution.

1 JACCP, 1 JACCQ, 1 JACCR: See DAPB section.
2JETLIM: Single precision rate limit used in "PEGI" to decide if two or four jets should be used for a P-axis rotation, scaled B-3 in units of revolutions per second. Actually stored as a negative quantity with the program notation -2J.TLIM, but interpreted in this document as positive.

A2CNTRAL: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $\alpha^{2} / 2 \mathrm{~K}$ scaled B3 with units rev/sec; when next used it contains $-\Delta \omega+\alpha^{2} / 3 K$ scaled B3 with units revs/sec.

ABSEDOTP: Temporary single precision storage for the magnitude of EDOT in "PEGI" scaled B-3 in units of revolutions per second. Actually ABSEDOTP = the magnitude of EDOT minus one least increment (not compensated for CCS instruction)

ABSTJ: Temporary storage for the magnitude of $\mathrm{TJ}_{i}$, scaled B 10 in units of centiseconds.

ACCDOTQ, ACCDOTR: See DAPB section.
ACENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains $\alpha$, the disturbing acceleration scaled B-3 with units of revs/sec ${ }^{2}$.

AK: Single precision vector containing the desired setting of the FDAI error needles, scaled B-1 in units of revolutions for attitude errors and B-3 in units of revs/sec for rate errors.

ALLOWGTS: A single precision, binary switch set to allow entry into the Gimbal Trim System attitude control law if other conditions are satisfied, scaled B14 and unitless.

ALPHAQ, ALPHAR: Single precision storage for the most significant halves of $A O S Q$ and AOSR for down telemetry, scaled B-2 in units of revolutions per second squared.

AOSQ, AOSR: Double precision disturbing acceleration due to thrust vector/c.g. offset of other external torques, scaled B-2 in units of revolutions per second squared.

AOSQTERM, AOSRTERM: Single precision addition to vehicle rate that woud be added during one 100 millisecond period as a result of disturbing accelerations, scaled B-3 in units of revolutions per second.

ARUPT, BRUPT, ZRUPT, and Q: Special cells used with the interrupt and resume instructions. $Q$ is also the return address register.

AXISCTR: Single precision index used to differentiate among the three axes, scaled B14 and unitless. A value of 1 corresponds to the $V$ axis, 0 to the $U$ axis and -1 to the $P$ axis.
$\operatorname{CDU}\left(\mathrm{CDU}_{\mathrm{x}}, \mathrm{CDU}_{\mathrm{y}}, \mathrm{CDU}_{\mathrm{z}}\right)$ : Single precision vector containing the measured values of the IMU gimbal angles (outer, inner and middle gimbal in $\mathrm{X}, \mathrm{Y}$ and Z components, respectively), scaled B-1 in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.

CDU ${ }_{x} C M D, C D U_{y} C M D, C D U_{z} C M D$ : See IMUC section.
CDUiTMP ( $i=x, y, z$ ): Single precision storage locations for values of $C D U_{x}, C D U$ and $C D U$ respectively. Used to obtain a synchronous sample ${ }^{x}$ of the $C D U$ values for rate estimation.

CDUD: Single precision vector interface with steering and attitude maneuver routines containing the desired values for the IMU gimbal angles (outer, inner and middle gimbal angles in $x, y$ and $z$ components, respectively), scaled B-1 in units of revolutions and stored in two's complement form.

CH5MASK, CH6MASK: Single precision octal flagwords whose individual bits ( 1 through 8 only) are set to indicate jet failures (in "RCSMONIT"). See description of K:5FAILTAB and K: 6FAILTAB.

COEFFQ: Single precision negative of the quantity used for the first column of the matrix taking a vector expressed in $Q, R$ coordinates to one expressed in the non-orthogonal U', Vi coordinates. Scaled BO and unitless.

COEFFR: Single precision quantity used for the second column of the matrix taking a vector expressed in $Q, R$ coordinates to one expressed in the non-orthogonal $U^{\prime}, V^{\prime}$ coordinates. Scaled $B O$ and unitless.

COSMG: Single precision cosine of middle gimbal angle, scaled BO and unitless.

COTROLER: Single precision variable cell scaled B14 and unitless controlling access to the $Q, R$-axis gimbal trim system.

DAPBOOLS: Single precision flagword whose individual bits have the following meanings:

## Bit Mnemonic Meaning when set (1) Meaning when clear (0)

15 PULSES Minimum impulse Not minimum impulse

14 USEQRJTS GTS not allowed GTS allowed
13 CSMDOCKD CSM attached to IM CSM not attached Backup SPS DAP Normal LM DAP

12 OURRCBIT Still in Rate Command Not in Rate Command Mode

11 ACC4OR2X 4-jet P-axis transla- 2-jet P-axis translation tion requested

10 AORBTRAN X-trans B system X-trans A system
9 XOVINHIB LPD phase; X-axis Not in Landing Point overide disabled Designation Phase

8 DRIFTBIT Assume that offset Offset acceleration likely acceleration is zero

7 RHCSCALE Normal RHC scaling Fine RHC scaling
6 ULLAGER Internal ullage No program ullage request
request
5 DBSLECT2 Bits 4 and 5 are used together to select attitude
4 DBSELECT deadbands. The meanings are:

$\frac{\text { bit } 5}{1}$	$\frac{\text { bit } 4}{1}$	$\frac{\text { Deadband }}{5^{\circ}}$
1	0	$5^{\circ}$
0	1	$1^{\circ}$
0	0	$0.3^{\circ}$

3 ACCSOKAY Computed accelerations Computed accelerations probably correct probably incorrect

2 AUTRATE2 Used together to determine index (RATEINDX)
1 AUTRATE1 which is used to select attitude maneuver rate
DAPARUPT, DAPBQRUPT, DAPZRUPT: Double precision storage locations for the accumulator, L register, $Q, B$, and $Z$ registers for the job interrupted by "SUPERJOB".

DEL: Single precision switch which is described in MIT's Luminary GSOP, Section 3, as a capital delta ( $\Delta$ ); scaled B14 and unitless.

DELCDU: Interface with steering and attitude maneuver routines, minus desired change in gimbal angles per 100 millisecond period, scaled B-1 in units of revolutions, stored in two's complement form.

DELPEROR, DELQEROR, DELREROR: Single precision smoothing terms calculated during attitude maneuver and steering routines, used in automatic control portions of the DAP. Scaled B-1 in units of revolutions.

DKOMEGAN, DKKAOSN: Single precision Kalman filter gains for the docked configuration, scaled B14 and unitless. See discussion of the "Recursive State Estimator" in Section 3 of the Luminary GSOP. Part of the erasable load.

DKTRAP: Single precision deadband for the state estimator in the docked configuration, scaled B-3 in units of revolutions per second. Part of the erasable load.

DOWNTORK $_{i}(1=0-5)$ : Single precision table of quantities for downlink which give cumulative jet on times for the various axes; the correspondence is ( $0,+\mathrm{P} ; 1,-\mathrm{P} ; 2,+\mathrm{U} ; 3,-\mathrm{U} ; 4,+\mathrm{V} ; 5,-\mathrm{V}$ ); Scaled B5 in units of seconds.

DXERROR, DYERROR, DZERROR: Double precision cumulative error between the actual rate and the rate requested through the handcontroler. Scaled B-1 with units of revolutions.

E, EDOT: See DAPB section.
EDOTQ, EDOTR: Single precision biased rate estimates, scaled B-3 in units of revolutions per second.

EDRIVE: Single precision vector containing the present settings of the FDAI error needles, scaled B-1 in units of ten revolutions for attitude errors or $B-3$ in units of 10 revs $/ \mathrm{sec}$ for rate errors.

## FIREFCT: See DAPB section.

FUNCTION: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains first $\omega+\alpha|\alpha| / 2 \mathrm{~K}$ scaled B3 with units of revs / sec ; second it contains $K\left(-\Delta \omega+\alpha^{2} / 2 K\right)$ scaled $B-6$ with units of revs ${ }^{2} / \sec ^{4}$.
HALFARG: One half of the argument, in single precision, for the square root iteration in "AL CORTHM", scaling variable and units "revolutions per second squared" squared.

IMODES33: See INTR section.

ININDEX: Single precision variable used in the same way as SHFTFLAG to count multiplications by four in the square-root routine.

INGTS: Single precision two-valued switch set to indicate that the GTS attitude control law was operating during the previous cycle, scaled B14 and unitless.

JETRATEP, JETRATEQ, JETRATER: Single precision addition to vehicle rate expected to have been contributed by the RCS jets during the last period, scaled B-3 in units of revolutions per second. Alternate program notations, JETRATE+0, JETRATE+1, JETRATE+2.

K:0.1secBO: Single precision constant, program notation -100MS, stored as -0.1, scaled BO in units of seconds. Equation value; 0.1 . (Equivalent to $+100 \mathrm{milliseconds)}$.

K:0.4gts: Single precision constant actually equal to $1+0.6$ (stored value 0.6 , program notation OCT23146, added to 1) but scaled B-2 and unitless. Equation value: 0.4

K:100msT6: Single precisjon constant, program notation -100MST6, stored as $-160 \times 2^{-14}$, scaled B10 in units of centiseconds. Equation value: +10. (Equivalent to +100 milliseconds)

K:136msT6: Single precision constant, program notation -136MST6, stored as 774458, scaled B10 in units of centiseconds. Equation value: +13.625 (Equivalent to +136.25 milliseconds)
 stored as 77417 g , scaled B10 in units of centiseconds. Equation value: +15 (Equivalent to +150 milliseconds)

K:150msT6: Single precision constant, program notation +150MST6, stored as 003608 , scaled B10 in units of centiseconds. Equation value: +15 (Equivalent to +150 milliseconds)

K:160msT6: Single precision constant, program notation -160MST6, stored as 773778, scaled B10 in units of centiseconds. Equation value: +16 . (Equivalent to +160 milliseconds)

K:1d100ms: Single precision constant stored as 00005 g, program notation FIVE, scaled B15 in units of seconds ${ }^{-1}$. Equation value: 10 (Equivalent to $1 / 0.100$ )

K:1d40: Single precision constant, program notation 1/40, stored as $00632_{8}$, scaled B2 in units of seconds. Used to convert sensed vehicle attitude change data, scaled $B-1$ in units of revolutions, to vehicle rate data, scaled $B-3$ in units of revolutions per second. Equation value: 0.10 (Equivalent to 100 milliseconds)

K:25B5: Single precision constant, program notation 25/32, stored as $31000_{\delta}$, scaled B5 in units of centiseconds per second. Equation value: 25 (Used with a factor of 4 to convert from seconds to centiseconds)
K:40cyc: Single precision constant, program notation 4OCYCL stored as 00050 , scaled B14 with units of deci-seconds. Used as the initial setting for the timing cell for the "direct" manual control mode. Equation value: 40

K: 5FAILTAB ${ }_{i}$ : Table of eight single precision octal constants indicating which bit of channel 5 is to be disabled by each one of bits $1-8$ of channel 32 .

$\underline{i}$	K:5FAILTAB	jet \#		Channel 5 code and bit \#	
	00040	10		$2 D$	6
7	00020	9		2 U	5
6	00100	13		1 U	7
5	00200	14		$1 D$	8
4	00010	6	$3 D$	4	
3	00001	1	$4 U$	1	
2	00004	5	$3 U$	3	
1	00002	2	$4 D$	2	

K:60msT6: Single precision constant stored as 00140 , scaled B10 in units of centiseconds. Equation value 6. Used as minimum impulse jet on time for the docked configuration.

K:GFAILTAB $:$ Table of eight single precision octal constants indicating which bit of channel 6 is to be disabled by each one of bits $1-8$ of channel 32.

$\underline{1}$	K: 6FAILTAB ${ }_{\text {i }}$	jet \#	Channel 6 code and bit \#	
8	00010	11	2 F	4
7	00020	12	25	5
6	00004	15	1 F	3
5	00200	16	1 S	8
4	00001	7	3 F	1
3	00002	3	4	2
2	00040	8	35	6
1	00100	4	45	7

K:aosint: Single precision constant, program notation 200MS, stored as 063158 , scaled B-1 in units of seconds. Equation value: 0.1 (Equivalent to $100 \mathrm{milliseconds)}$.

K:BIT10: Single precision constant, stored as 01000 , scaled BO and unitless. Used to rescale the jet on times for the downlink. Equation value $2^{-5}$.

K:bklim: Value of overflow in a quantity scaled B10 in units of centiseconds. Equation value: 1024

K:biscl: Actually not a constant as such, rather a multiplication by three implemented as a double and an add; effective units, centiseconds per second; effective scale factor, B5. Equation value: $100 \times 0.96$ ( 0.96 is the error introduced because the method is approximate).

K:CALLCODE: Single precision constant, stored as 00032g, scaled B6 in units of seconds. Equation value: 0.1016 (Equivalent to 102 milliseconds).

K:eclim: Single precision constant stored as 00600 , program notation DACLIMIT, scaled B-1 for attitude errors in units of ten revolutions or B-3 for rate errors in units of ten revolutions / second. Equation values are: attitude errors, 0.01171875 (equivalent to 42.1875 degrees); rate errors, 0.00292968 , (equivalent to 10.4976 $\mathrm{deg} / \mathrm{sec}$ ). Note however that the FDAI error needles are pinned by attitude commands of 5.015625 deg . and rate commands of 1.265625 deg/sec.

K:gtstmin: Value of least significant bit in a single precision quantity scaled B14 and unitless. Equation value: 1

K: INDXYZ ${ }_{i}$ : Table of eight single precision constants to translate any of the eight possible combinations of inputs from the $Q$ and $R$ axes of the translational hand controller (bits 9-12 of channel 31) into an index to select the proper jets from the table of K:typmanP; scaled B14, unitless and stored as follows:

$\underline{1}$	function	$\underline{\mathrm{K} \text { INDXXZ }^{\text {i }} \text { i }}$
1	+Q	4
2	-Q	2
3	error	
4	+R	5
5	+U	9
6	+V	10
7	error	
8	-R	3
9	-V	8
10	-U	7

K:LINRAT: Single precision constant stored as $00056_{8}$, scaled B12 in units of RHC counts. Used as the coefficient of the linear term in the quadratic expression for hand controller response. Equation value: 11.5

K:mFOURDEG: Single precision constant, program notation -FOURDEG, stored as 75117 , scaled B-3 in units of revolutions. Equation value: -0.01111 (Equivalent to -3.9996 deg)

K:minimpt.j: Single precision constant stored as 00012 , program notation TEN, scaled B10 in units of centiseconds. Equation value: 0.625 (corrected to true minimum impulse time in jet selection routine)

K:MINTIMES: Single precision constant stored as 77751 g, scaled B10 in units of centiseconds. Equation value: 1.375.

K:0CT00240: Single precision constant stored as. 00240 g, scaled B10 in units of $1 /$ seconds (actually computation cycles per second). Equation value: 10.

K:OCT31: Single precision constant stored as 00031 g, scaled B14 and unitless. Equation value: 25. (Corresponds to an interval of 2.5 seconds, 25 cycles at 100 ms per cycle.)

K: ONETENTH: Single precision constant stored as 03146 , scaled BO and unitless. Equation value: 0.10 .

K:pTJMINT6: Single precision constant, program notation +TJMINT6, stored as 00026 , scaled B10 in units of centiseconds. Equation value: 1.375 (Equivalent to 13.75 milliseconds).

K: quadsP ${ }_{\dot{j}}$ : Table of seven single precision octal constants, program notation TYPEP, containing the binary codes for various jet pairs that can be used to accomplish a given maneuver, stored in order of their desirability ( $i \geq 4$, more desirable; $i \leq 3$, less desirable). The constants and their significance is indicated below.

$\underline{\text { i }}$	K: quadsP ${ }_{\text {i }}$	Bits 8-1
6	00377	11111111
5	00245	10100101
4	00132	01011010
3	00151	01101001
2	00231	10011001
1	00226	10010110
0	00146	01100110

## Use

All quads; translation or rotation
Quads 1 and 3; jets 7,8,15,16 Quads 2 and 4; jets 3,4,11,12 2-jet rotations above use diagonal quads
2-jet rotations below use adjacent quads
Rotation using jets 4,7 or 8,11 Rotation using jets 7,12 or 11,6 Rotation using jets 12,15 or 3,16 Rotation using jets 4,15 or 8,16

K:quadsQR, Table of five single precision octal constants, program notation TYPEPOLY, containing the binary codes for primary and secondary jet combinations that can be used to accomplish rotations around an axis in the $Q-R$ plane and translations perpendicular to the Q-R plane.

$\underline{1}$	K: quadsQR ${ }_{\text {i }}$	Bits 8-1	Use
4	00377	11111111	All quads; 2-jet rotation, 4-jet trans
3	00231	10011001	1-jet rotation, B-system ( $1,6,9,14$ )
			+X jets 6,14 (quads 1,3); -X jets 1,9 (quads 2,4)
2	00146	01100110	1-je.t rotation, A-system (2,5,10,13)
			$+X$ jets 2,10 (quads 2,4); -X jets 5,13 (quads 1,3)
1	00252	10101010	1 -jet rotation using only +X jets
0	00125	01010101	1 -jet rotation using only -X jets

K:T6lim: Single precision constant, program notation 1 - PRIO37, stored as $\left(40000_{8}-37000_{8}\right)$, scaled B10 in units of centiseconds. Equation value: 32. (equivalent to 320 milliseconds)

K:T6tosec: Single precision constant, program notation ELEVEN, stored as 00013 , used in such a way (L register retained after multiplication) that effective scaling is B-10 in units of seconds per centisecond. Equation value 11/1024 or 0.010742 .

K:trvtoc: Constant implicit in the FDAI error counter, equation interface, scaled B15 in units of ICDU error counter increments per ten revolutions for attitude errors or ten revs per second for rate errors. Equation value 32768. (one least increment to the error counter represents about 0.11 degrees on the FDAI error needles)

K:typmanP $\mathrm{P}_{\mathrm{i}}$ : Table of eleven single precision octal constants, program notation JETSALL, each containing the binary codes for all the jet pairs that can be used to accomplish a particular maneuver. The constants and their significance is indicated below.

$\underline{i}$	K: typman i	Bits 8-1	Maneuver (jet numbers)
0	00252	10101010	-P rotation ( $3,8,11,16$ )
1	00125	01010101	+P rotation ( $4,7,12,15$ )
2	00140	01100000	-Y translation ( 4,8 )
3	00006	00000110	-Z translation ( 3,15 )
4	00220	10010000	+Y translation (12,6)
5	00011	00001001	+Z translation ( 7,11 )
6	00151	01101001	+V translation ( 4,11 and 7,8)
7	00146	01100110	-U translation ( 8,15 and 3,4 )
8	00226	10010110	$-V$ translation ( 3,12 and 15, 16)
9	00231	10011001	+U translation (7,16 and 11, 12)
10	00151	01101001	+V translation ( 4,11 and 7,8)

K:typmanQR: Table of six single precision octal constants, program notation ALLJETS, each containing the binary codes for all the jets that can be used to accomplish rotations around an axis in the $Q-R$ plane and translations perpendicular to the Q-R plane.

$\underline{i}$	$\underline{\mathrm{K}, \operatorname{typman}^{\text {a }} \mathrm{R}_{i}}$	Bits 8-1	Maneuver (jet numbers)
0	00110	01001000	-U rotation ( 6,13 )
1	00022	00010010	-V rotation ( 2,9 )
2	00204	10000100	+U rotation ( 5,14 )
3	00041	00100001	+V rotation (1,10)
4	00125	01010101	-X translation (1,5,9,13)
5	00252	10101010	+X translation ( $2,6,10,14$ )

K2CNTRAL: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $\omega$ scaled B3 with units of revs / sec; second it contains $-\Delta \omega+\alpha^{2} / 2 \mathrm{~K}$ scaled B3 with units of revs / sec ; third it contains $-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)$ scaled $B 3$ with units of revs / sec; fourth it contains (K $\left.\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right)^{\frac{1}{2}}\left(-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right.$ ) with scaling undetermined at this point because of variable scale return from square root routine and with units of $\mathrm{rev}^{2} / \mathrm{sec}^{3}$.

K2THETA: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $K 0$ scaled $B O$ in units of revs ${ }^{2} / \mathrm{sec}^{3}$; second it contains $K \theta+\alpha\left(-\Delta \omega+\alpha^{2} / 3 K\right)$ scaled BO with units of revs ${ }^{2} / \sec ^{3}$; third it contains $K \theta+\alpha\left(-\Delta \omega+\alpha^{2} / 3 K\right)+\left(K\left(-\Delta \omega+\alpha^{3} / 2 K\right)\right)^{\frac{1}{2}}\left(-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right)$, or $U$ ', scaled BO with units of revs $2 / \mathrm{sec}^{3}$.

KCENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains K , three tenths of the "jerk" or time derivative of angular acceleration, scaled B-9 with units of rev / sech.

LMOMEGAN, LMKAOSN: Single precision Kalman filter gains for the LM alone configuration, scaled B14 and unitless. See discussion of the "Recursive State Estimator" in section 3 of the Luminary GSOP. Part of the erasable load.

LMTRAP: Single precision deadband for the state estimator in the LM alone configuration, scaled B-3 in units of revolutions per second. Part of the erasable load.

M11, M21, M22, M31, M32: Single precision factors used in transforming from gimbal angle differences into body axis rotations, scaled $B O$ and unitless.

MEASRATE: Single precision temporary storage for measured rate, program notation OMEGAU, scaled B-3 in units of revolutions per second. Carefully limited in case of overflow to $\pm 0.12499$ ( $\pm 44.997$ degrees $/ \mathrm{sec}$ )

NEGU $_{0}$, NEGU 2 : Single precision switches, program notations NEGUQ and NEGUR, indicating whether the DPS gimbal drives should be driven and whose signs indicate the complement of the direction in which each gimbal is to be driven; scaled B14 and unitless. See MIT Space Guidance Analysis Memo No. 4-66, dated 20 January 1966.

NEXTP, NEXTU, NEXTV: Single precision storage for the P,U and V-axis translation jet codes to be implemented as soon as rotation commands are completed. Stored as octal quantities and set to 00000 g to indicate that all jets are to be turned off.

NPTRAPS, NQTRAPS, NRTRAPS: Single precision time varying portion of the Kalman filter gain, scaled B14 and unitless.

NUMBERT: Single precision index used to select the number of jets to be used for a particular maneuver and to specify which jet quads will be used, scaled B14 and unitless.

NUMJETS $_{2}$, NUMJETS, , NUMJETS ${ }_{2}$ : Single precision number of jets used for'P,U and V-axis rotation, respectively, scaled B14 and unitless. Program notations NO.PJETS, NO.UJETS, and NO.VJETS.

NXT6AXIS: Single precision quantity used to indicate which set of jets is to be turned off at the next TIME6 interrupt ( 0 for $P$, 4 for $U$, and 13 for $V$ ), program notation NXT6ADR, scaled B14 and unitless.

OLDPMIN, OLDQRMIN: Single precision flagwords set greater than zero when a minimum impulse command is sensed and reset to zero when no commands are present.

OLDXFORP, OLDYFORP, OLDZFORQ: Single precision storage for the value of the gimbal angles at the previous sample, used to calculate rate of change of gimbal angles, scaled B-1 in units of revolutions and stored in two's complement form.

OMEGAP, OMEGAQ, OMEGAR, OMEGAU, OMEGAV: Single precision estimated vehicle rate, calculated using commanded accelerations and times, scaled B-3 in units of revolutions per second. Limited to $\pm 0.12499$ ( $\pm 44.997$ degrees $/ \mathrm{sec}$ ) by orerflow checks

OMEGAPD, OMEGAQD, OMEGARD: Single precision rate biases generated in the attitude maneuver and steering routines, scaled B-3 in units of revs / sec.

PERROR: Single precision P -axis error, scaled B-1 in units of revolutions.

PJETCTR ( $i=1,2,3$ ): Single precision timing counters used to separate RCS Jet firings for the docked configuration. The index correspondence is 1 - Paxis; 2 - U axis; 3 - Vaxis. Scaled B14 with units of deci-seconds.

PLAST, QLAST, RLAST: A single precision quantity, giving the rate requested by the astronaut via the hand controller. Scaled $\mathrm{B}-3$ with units of revolutions per second.

POLYTEMP: Single precision logical intersection of octal constants from the tables K:typman and K:quads. Bits 9 through 15 will be zero and bits 1 through 8 will contain, at most, four binary ones indicating four jets to be actuated to perform a maneuver. See tables below showing codes for various types of maneuvers.

PVALVEST: Single precision octal quantity reflecting the latest estimation of the state of the jet failure bits in CH5MASK and CH6MASK.

QACCDOT, RACCDOT: Actual rate of change of the rotational rates induced by the thrust vector/c.g. offset, single precision, scaled B-8 in units of revolutions per second cubed; equal to zero or plus or minus ACCDOTQ and ACCDOTR, respectively; These can be loaded by indexing as in the routine "NEGUSUM".

QDAPK, RDAPK: Single precision derivatives of angular acceleration about the positive $Q$ and $R$ axes, respectively, multiplied by a fractional gain (in "SPSCONT") and scaled B-9 in units of revs per second cubed. Program notations KQ and KR or KQDAP and KRDAP.

QERROR, RERROR: Single precision $Q$ and R-axis error, scaled B-1 in units of revolutions.

QGIMTIMR, RGIMTIMR: Single precision counters scaled B14 in units of 100 millisecond intervals.

QKALERR, RKALERR: Single precision filtered difference between calculated rate and measured rate, scaled B-3 in units of revolutions per second. Program notations DAPTEMP1 and DAPTEMP2.

QRATEDIF, RRATEDIF: Single precision storage for difference between desired rate and actual rate for the $Q$ and $R$ axes, respectively, used only in non-automatic modes, scaled B-3 in units of revolutions per second.

QRCNTR: Single precision index scaled B14 and unitless.
RATEDB: Single precision rate deadband, scaled B-3 in units of revolutions per second. RATEDB is called -RATEDB in the program and is stored as a negative quantity for convenience. In this document however, for convenience. in interpretation, the sign has been changed and RATEDB is a positive quantity.

RCSFLAGS: Listed separately on next page.
RETJADR: Return address used to distinguish between manual and automatic modes during the $Q, R-a x i s$ computations when the same routine must be performed twice. Equals "BACKHAND", "TJLAW4", or "MINRTN".

RHCP, RHCQ, RHCR: Three single precision counters, program notations P-RHCCTR, Q-RHCCTR and R-RHCCTR, scaled B14 in units of counts from the Rotational Hand Controller. The value of these counts in terms of commanded rate is variable and determined by the astronaut through the DAP Data Load Routine (03).
$\mathrm{K}:$ ROOTHALF: Single precision constant, stored as 26501 , scaled BO and unitless. Used as a starting value of the Newton algorithm in the GTS law square root routine. Equation value 0.70710.

ROTINDEX: Single precision index indicating the type of maneuver for which jets are to be selected, scaled B14 and unitless. See detailed descriptions of K:INDXYZ.

SAVEHAND $_{0}$, SAVEHAND $_{1}$ : Temporary storage for the Rotational Hand Controller inputs from the $Q$ and $R$ axes, necessary because all the RHC counters are reset at once during the P -axis routines.

SENSETYP: Single precision quantity scaled B14 and unitless. Used to indicate $X$-axis translational sense desired during $U$ and $V$ rotations. A value of 0 implies balanced couples, 1 implies $-X$, and 2 implies $+X$.

RaSFLAGS: Single precision flagword whose individual bits have the following meanings (note that not all bits are used at present):
Bit Mnemonic Meaning_when set (1) Meaning when reset (0)

15	-----	--	-----
$\cdot 14$	-----	-----	-----
13	-----	Job to calculate DAP parameters not needed at present	Set up job to calculate DAP parameters
12	-----	Perform P-axis calcu-. lations	Skip P-axis calculations
11	QRBIT	In "direct" rate comnand for $\mathrm{Q}, \mathrm{R}$ axes	Not in "direct" rate command
10	PBIT	In "direct" rate command for P-axis	Not in "direct" rate command
9	JUSTIN	Hand-controller just sensed as out of detent	Hand-controller just sensed as in detent
8	-----		-----
7	-----	-----	-----
6	-----		-----
5	CALLGMBL	Perform "ACDT+C12" routine to set engine gimbal drive bits	"ACDT+Cl2" not being called
4	DSPLYALT	Output errors to FDAI	Calculate the errors (this bit controls the display-calculate cycle)
3	DSTEPONE	Initialize FDAI error drive	Drive already initialized
2	DSTEPTWO	Initialize the displaycalculate cycle for the FDAI errors	Cycle already initialized
1	-----	Used to alternate in "tacking" translation policies	Used to alternate in "tacking" translation policies

SHFTFLAG: Single precision variable used to count multiplications by four, ased in the square-root routine to maintain accuracy.

SKIPUV $_{0}$, SKIPUV ${ }_{1}$ : Single precision flags set equal to zero when either U or V -axis computations are to be skipped because of a short jet firing was calculated on the last DAP pass. Scaled B14 and unitless.

STIKSENS: A single precision conversion factor which converts a quadratic expression in hand-controller counts to a rate desired in revolutions per second. Scaled B-15 in units of revolutions per second per RHC-count squared.

T5ADR: Double precision variable starting address for the TIME5 interrupt. Set equal to "PAXIS" or "DAPIDLER".

T6NEXTAX ${ }_{1}$, T6NEXTAX ${ }_{3}$ : Single precision quantities, program notations TGNEXT +1 and T6FURTHA +1 , respectively, used to form a list of jets to be cut off at various intervals after the next TIME6 interrupt, scaled B14 and unitless. See description of NXT6AXIS.

T6NEXTTM, T6NEXTTM ${ }_{2}$ : Single precision quantities, program notations T6NEXT and T6FURTHA, respectively, used to store the time interval after the next TIME6 interrupt when the jets indicated in TGNEXTAX ${ }_{1}$ and T6NEXTAX ${ }_{3}$ are to be cut off, scaled B10 in units of centiseconds.

TCP, TCQR: A single precision timer used in the "direct" manual rate control. Scaled B14 with units of deciseconds.

THETAD: See list of major variables.
TIME5: Single precision counter incremented every 10 milliseconds (every centisecond) which causes the "T5RUPT" routine to be entered in the interrupt mode whenever it overflows.

TIME6: Single precision counter decremented every 0.625 milliseconds when enabled (channel 13, bit 15); causes the "DOT6RUPT" routine to be entered as an interrupt whenever it is reduced to zero ( -0 ).
$T J_{0}, T J_{1}, T J_{2}$ : Single precision jet fire times for the $P, U$ and $V$ axes, rêspectively, scaled B10 in units of centiseconds. Program notations TJP, TJU, and TJV.

TRAPEDP, TRAPEDQ, TRAPEDR: Transient rate error measured as the difference between measured rate and calculated rate at every 100 millisecond interval, filtered and used to correct rate calculation parameters, scaled B-3 in units of revolutions per second. Carefully limited in case of overflow to $\pm 0.12499$ ( $\pm 44.997$ degrees).

TRAPSIZE: Single precision filter deadband, stored as a negative quantity. Scaled B-3 in units of revolutions per second.

UERROR, VERROR: Single precision storage for the attitude errors around the $U$ and $V$ axes, scaled $B-1$ in units of revolutions.

URATEDIF, VRATEDIF: Single precision storage for attitude rate error in non-automatic modes of operation, scaled B-3 in units of revolutions per second.

WCENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains $\omega$, the angular velocity, scaled B-3 with units of rev/sec.

## Maneuver Codes

Codes for jets with thrust perpendicular to the P-axis
Bits 1-8 of channel 6 (in the order 8765 4321)
(Jets $16,4,8,12,11,15,3,7)$
NUMBERT -P Rotation +P Rotation -Y Trans. -Z Trans.

6	10101010	01010101	01100000	00000110
5	10100000	0000 0101	0010 0000*	0000 0100*
4	00001010	01010000	0100 0000\%	0000 0010*
3	00101000	01000001	0110 0000*	0000 0030*
2	10001000	00010001	0000 0000*	0000 0000*
1	10000010	00010100	0000 0000*	0000 0110*
0	00100010	01003100	0110 0000*	0000 2110*
	+Y Trans.   TINDEX =	+Z Trans.   TINDEZ =	+V Trans.   TINDEX $=6$	


6	10010000	00001001	01101001	
5	1000 0003*	0500 0301*	00100001	
4	0001 0000\%	0000 1000*	01001000	
3210	meaningless	meaningless	meaningless	(see above and below)
	-U Trans.   ROTINDEX $=7$	-V Trans.   OTINDEX $=8$	+U Trans.   OTINDEX = 9	+V Trans. ROTINDEX = 10


| 6 | 01100110 | 10010110 | 10011001 | 01101001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 00100100 | 10000100 | 10000001 | 00100001 |
| 4 | 01000010 | 00010010 | 00011000 | 01001000 |
| 3 | $01100000^{*}$ | $0000000^{*}$ | $00001001^{*}$ | $01101001^{*}$ |
| 2 | $00000000^{*}$ | $10010000^{*}$ | $10011001^{*}$ | $00001001^{*}$ |
| 1 | $00000110^{*}$ | $10010110^{*}$ | $10010000^{*}$ | $00000000^{*}$ |
| 0 | $01100110^{*}$ | $00000110^{*}$ | $00000000^{*}$ | $01100000^{*}$ |

* Those codes immediately followed by asterisks are meaningless because 1) they include less than two binary one's (less than two jets would be actuated), 2) they are identical to a code higher in the list, or 3) they contain one pair of binary one's but this pair does not accomplish the required maneuver.

Maneuver Codes
Codes for jets with thrust perpendicular to the Q-R plane
Channel 5 bits $1-8$ (in the order 8765,4321 ) (jets $14,13,10,9,6,5,2,1$ )
NUMBERI -U Rotation -V Rotation +U Rotation +V Rotation
ROTINDEX $=0$ ROTINDEX $=1 \quad$ ROTINDEX $=2 \quad$ RJTINDEX $=3$

4	01001000	00010010
3	00031000	00010000
2	01030000	00000010
1	0000 1000*	0000 0510*
0	O100 0000*	0001 0000*
	-X Trans. ROTINDEX $=4$	+X Trans. ROTINDEX $=5$
4	01010101	10101010
3	00010001	10001000
2	01000100	00100010
1	0350 วงJ0*	1010 1010*
0	0101 0101*	0000 0000*

* Those codes immediately followed by asterisks are meaningless because, for the rotations, they are identical to a code higher in the list, and for the translations, they are identical to a code higher in the list or are zero. It should be noted that the rotation codes derived with NUMBERT = 0 or 1 are valid and are used to assure that l-jet rotation commands will complement $X$ translation commands in effect.

Jet Thrust Directions, Numbers and Channel 5 or 6 codes (each jet indicated as belonging to either system $A$ or $B$ )

1. Horizontal jets, P-axis rotations and $Y, Z$ translations

2. Vertical jets, $U, V$ axis rotations and $P$ translations


DAPA - 53

## DIGITAL AUTOPILOT PHASE PLANE LOGIC

```
1/ACCSET AOSQ and AOSR = 0 (most significant halves of d.p. words)
ALPHAQ and ALPHAR = 0
1/ACCJOB Perform "1/ACCS"
End Job
1/ACCS DOCKTEMP = bit 13 of DAPBOOLS (CSMDOCKD)
LEMMASS = MASS
If DOCKTEMP = 1, LEMMASS = MASS - CSMMASS
Inhibit interrupts
If FLGWRD10 bit 13 (APSFLAG) = 1: (ascent or lunar surface)
 2JETLIM = K:romaxjts
 i=12
 If LEMMASS < K:LOASCENT, LEMMASS = K:LOASCENT
 If LEMMASS \geq HIASCENT, LEMMASS = HIASCENT
If FLGWRD10 bit 13 (APSFLAG) = 0:
 2JETLIM == K:2jlimdwn
 i=6
 If LEMMASS < K:LODESCNT + HIASCENT:
 LEMMASS = K:LODESCNT + HIASCENT
 If LEMMASS \geq K:HIDESCNT, LEMMASS = K:HIDESCNT
MASS = LEMMASS
If DOCKTEMP = 1, MASS = LEMMASS + CSMMASS
Release interrupt inhibit
If DOCKTEMP = 1, proceed to "DOCKED"
i=i - 2
```



```
i=i - 2
1JACCQ = K:INERCONB }\mp@subsup{i}{i}{+K:INERCONA
i = i - 2
1JACCP = K:INERCONB }\mp@subsup{i}{i}{+K}\mp@subsup{\}{\mathrm{ INERCONA }}{i
Perform "COMMEQS"
 (see pg. DAPB - 22)
1JACCU = -COEFFQ 1JACCQ + COEFFR 1JACCR (rescaled to B-2)
1JACCV = 1JACCU
If i > 0: (ascent)
 ALLOWGTS = 0
 INGTS = 0
 Proceed to "1/ACCONT"
LPVTARM = K:LconB + K:LconA / (LEMMASS + K:LconC)
MPAC O = (K:dvtoacc ABDELV MASS / K:GFACTM) LPVTARM (limited)
Inhibit interrupts
ACCDOTR = MPAC O 1JACCR / K:TORKJET1 (limited)
ACCDOTQ = MPAC O 1JACCQ / K:TORKJET1 (limited)
Proceed to "SPSCONT"
DOCKED MPAC O K:inrtcofC LEMMASS CSMMASS + K:inrtcofF
MPAC}0=MPAC O + (L:inrtcofA CSMMASS + K:inrtcofD) CSMMASS
MPAC O = MPAC O + (L:inrtcofB LEMMASS + K:inrtcofE) LEMMASS
MPAC
MPAC O = K:cgcoefC LEMMASS CSMMASS + K:cgcoefF
MPAC}0=MPAC O + (K:cgcoefA CSMMASS + K:cgcoefD) CSMMASS
MPAC
1JACCP = K:1JACCON / MASS
(Iimited)
1dANET_14 = K:posmax
1dANET+2 = K:posmax
```

$$
\begin{aligned}
& 1 \mathrm{dANET}_{+3}=\mathrm{K}: \text { posmax } \\
& 1 \mathrm{dANET}_{+18}=\mathrm{K}: \text { posmax } \\
& 1 \mathrm{dANET}_{+19}=\mathrm{K}: \text { posmax }
\end{aligned}
$$

Inhibit interrupts
$1 \mathrm{JACCQ}=\mathrm{K}:$ TORQCONS $/ \mathrm{MPAC}_{1}$
$1 \mathrm{JACCR}=1 \mathrm{JACCQ}$
$\mathrm{COEFFQ}=-0.70711$
COEFFR $=0.70711$
$\operatorname{ACCDOTR}=\mathrm{K}$ : dvtoacc ABDELV MASS MPAC ${ }_{0} / \mathrm{MPAC}_{1}$
$\mathrm{ACCDOTQ}=\mathrm{ACCDOTR}$

SPSCONT QDAPK = ACCDOTQ K:DGBF
RDAPK $=$ ACCDOTR $K: D G B F$
$\mathrm{MPAC}_{1}=$ channel 12
$T S=$ bits $12(-\mathrm{RGTS})$ and $11(+\mathrm{RGTS})$ of MPAC ${ }_{1}$
If $T S=0$, RACCDOT $=0$
If $T S \neq 0$ :
If bit 12 of $\mathrm{MPAC}_{1}=0$, RACCDOT $=\operatorname{ACCDOTR} \quad(+\mathrm{R}$ GTS $)$
If bit 12 of $\mathrm{MPAC}_{1}=1$, RACCDOT $=-\operatorname{ACCDOTR} \quad(-\mathrm{R}$ GTS $)$
$\mathrm{TS}=$ bits $10(-\mathrm{Q} \mathrm{GTS})$ and $9(+\mathrm{Q}$ GTS $)$ of $\mathrm{MPAC}_{1}$
If $T S=0, Q A C C D O T=0$
If TS $\neq 0$ :
If bit 10 of $\mathrm{MPAC}_{1}=0, \mathrm{QACCDOT}=\mathrm{ACCDOTQ}$
(+Q GTS)
If bit 10 of $\mathrm{MPAC}_{1}=1, \mathrm{QACCDOT}=-\operatorname{ACCDOTQ}$
(-Q GTS)
If DAPBOOLS bit 14 (USEQRJTS) $=1$ :
ALLOWGTS $=0$
INGTS $=0$
Proceed to "DOCKTEST"

DAPB - 3

If T5ADR $\neq$ "PAXIS":
ALLOWGTS $=0$
INGTS $=0$
Proceed to "DOCKTEST"
If INGTS $=0$, periform "TLMEMMBL"
DOCKTEST If DOCKTEMP $=1$, proceed to "1/ACCRET"
1/ACCONT DBVAL1 $=\mathrm{DB}$
DBVAL2 $=-3 \mathrm{DB} / 4$
DBVAL3 $=\mathrm{DB} / 2$
Inhibit interrupts
AOSU $=-$ COEFFQ AOSQ + COEFFR AOSR
AOSV $=$ COEFFQ AOSQ + COEFFR AOSR
Release interrupt inhibit
DRIFTER $=$ bit $8 \cap \mathrm{f}$ DAPBOOLS (DRIFTBI'r)
FLATEMP $=0$
If ALLOWGTS = 1 or DRIFTER = 1:
FLATEMP $=$ K:FLATVAL
Z3TEM $=0$
If DRIFTER = 1:
Z3TEM $=\mathrm{K}:$ ZONE 3 MAX
$T S=1+21 J A C C P / K: a c p$
Inhibit interrupts
1dANET $_{-14}=1 /\binom{21}{\mathrm{JACCP}}$
1dANET $_{-13}=1 /(21 \cdot \mathrm{JACCP})$
ACCFCT $_{-14}=-1 /\left(21 \mathrm{JACCP}+41 \cdot \mathrm{JACCP}^{2} / \mathrm{K}: \mathrm{acp}\right)$
ACCFCT $_{-13}=$ ACCFCT $_{-14}$
$1 \mathrm{dACOAST}_{-16}=\mathrm{K}: 1 \mathrm{dp0} 3$
1dACOAST $_{-15}=\mathrm{K}:$ 1dp0 2

```
 Release interrupt inhibit
 If DRIFTER = 1, AOSU and AOSV = 0
 UV = 0
BOTHAXES i = 0
If UV = 0:
 If AOSU \leq O,i=1
 ABSAOS = |AOSU|
If WV = 1:
 If AOSV \leq 0, i = 1
 ABSAOS = |AOSV |
DBB1 = DBVAL1
DBB2 = DBVAL1
If ABSAOS \leq K:miniacc, proceed to "NOTMUCH"
If FLATEMP = 0: (powered flight without fine GTS)
 If i = 0:
 DBB2 = DBB2 + DBVAL1
 DBB4 = DBB2
 If ABSAOS \leq K:m.1875
 DBB1 = (1 - 32 ABSAOS) DB
 Skip next step
 DBB1 = - DBVAL3
 DBB3 = DBVAL2
 If i = 1:
 DBB1 = DBB1 + DBVAL1
 DBB3 = DBB1
 If ABSAOS \leq K:m.1875
 DBB2 = (1 - 32 ABSAOS) DB
 Skip next step
 DBB2 = - DBVAL3
 DBB4 = DBVAL2
j = |i - 1 |
1dACOSTT
1dACOSTT
```

$$
\begin{aligned}
& T S=1+(21 J A C C U+A B S A O S) / K: a c p \\
& \text { If overflow }\left(|T S| \geq 2^{6}\right) \text { : (ANET } \geq 88.6 \text { degrees } / \text { second }{ }^{2} \text { ) } \\
& \mathrm{ANET}=1 \mathrm{JACCU}+\frac{1}{2} \mathrm{ABSAOS} \\
& \text { 1dATEMP }=\frac{1}{2} / \mathrm{ANET} \\
& T S f=-\frac{1}{2} 1 \mathrm{dATEMP} /\left(\frac{1}{2}+\operatorname{ANET} / \mathrm{K}: a c p\right) \\
& \text { Proceed to "ACCTHERE" } \\
& \text { ANET }=21 \mathrm{JACCU}+\mathrm{ABSAOS} \\
& \text { 1dATEMP }=1 / \text { ANET } \\
& \text { TSf }=-1 \mathrm{dATEMP} . /(1+\operatorname{ANET} / \mathrm{K}: \mathrm{acp}) \\
& \text { Proceed to "ACCTHERE" } \\
& \text { NOTMUCH } 1 \mathrm{dACOSTT} \mathrm{O}_{\mathrm{O}}=\mathrm{K}: 1 \mathrm{dp} 03 \\
& 1 \mathrm{dACOSTT}_{1}=\mathrm{K}: 1 \mathrm{dp0} 3 \\
& \text { If FLATEMP }=0 \text { : } \\
& \text { If } i=0 \text { : } \\
& \text { DBB3 }=\text { DBVAL3 } \\
& \text { DBB4 }=2 \text { DBVAL3 } \\
& \text { If } i=1 \text { : } \\
& \mathrm{DBE}_{4}=\text { DBVAL3 } \\
& \text { DBB3 }=2 \text { DBVAL3 } \\
& \text { If ABSAOS S K:miniacc - K:tinyace: } \\
& \text { DBB3 = DBVAL1 } \\
& \text { DBB4 }=\text { DBVALI } \\
& \text { ANET }=2 \text { 1JACCU }+ \text { ABSAOS } \\
& \text { 1dATEAP }=1 / \text { ANET } \\
& \text { TSP }=-1 \text { dATERP } /(1+\text { ANET } / K: a c p)
\end{aligned}
$$

$$
\begin{aligned}
& j=|i-1| \\
& \text { ACCTHERE }^{A^{\prime}} \text { ACTEM }_{j+2}=\text { TSf } \\
& \text { 1dATEM1 }_{j+2}=\text { 1dATEMP } \\
& T S=1+(1 J A C C U+A B S A O S) / K: a c p \\
& \text { If overflow }\left(|T S| \geq 2^{6}\right) \text { : } \\
& \mathrm{TS}=\mathrm{K}: \text { posmaxsp } \\
& \text { ANET = K:acp (TS - 1) } \\
& \text { 1dATEMP }=1 / \operatorname{ANET} \\
& \mathrm{TSf}=-1 \mathrm{dATEMP} /(1+\mathrm{ANET} / \mathrm{K}: \mathrm{acp}) \\
& \text { ACFTEM }_{j}=\mathrm{TSf} \\
& 1 \mathrm{dATEMI}_{j}=1 \mathrm{dATEMP} \\
& A N E T=21 J A C C U-A B S A O S \\
& \text { ACCSWTEM }=0 \\
& \text { If ANET } \leq \mathrm{K}: \text { miniacc: } \\
& \text { ANET }=K \text { :miniacc } \\
& \text { 1dATEMP }=1 / \text { ANET } \\
& \text { TSf }=-1 \mathrm{dATEMP} /\left(1+\operatorname{ANET} 1 \mathrm{dACOSTT}_{j}\right) \\
& \text { ACFTEM }_{i+2}=T S f \\
& \text { 1dATEMI }_{i+2}=1 \text { dATEMP } \\
& \text { ANET }=1 \mathrm{JACCU}-\mathrm{ABSAOS} \\
& \text { If ANET } \leq K \text { :miniacc: (replace } 1 \text {-jet params with 2-jet params } \\
& \text { ACCSWTEM }=2 \text { i-1 } \\
& \text { If } U V=0 \text { and } i=0 \text { and bits } 4 \text { and } 7 \text { of CH5MASK }=0 \text { : } \\
& \text { Proceed to "STMIN-" (no minus U jets failed) }
\end{aligned}
$$

If $U V=0$ and $i=1$ and bits 3 and 8 of CH5MASK $=0$ :
Proceed to "STMEN-" (no plus U jets failed)
If $U V=1$ and $i=0$ and bits 2 and 5 of CH5MASK $=0$ :
Proceed to "STYITN-" (no minus $V$ jets failed)
If $\mathrm{UV}=1$ and $1=1$ and bits 1 and 6 of CH5MASK $=0$ :
Proceed to "STMIN-" (no plus V jets failed)
ANET $=K:$ miniacc $\quad$ (jet failure; use $K: m i n i a c c$ instead of 2-jet parameters)
1dATEMP $=1 /$ ANET

```
TSf = - 1dATEMP / (1 + ANET 1dACOSTT
```

STMIN- $\quad$ ACFTEM $_{i}=T S f$
1dATEMM $_{i}=1$ dATEMP
If $\mathrm{UV}=0$ and bit 3 or 8 of $\mathrm{CH} 5 \mathrm{MASK}=1$, or if $\mathrm{UV}=1$ and bit 1 or 6 of CH5MASK $=1$ : (jet failure - positite torque)

$$
\begin{aligned}
& 1 \mathrm{dATEM}_{3}=1 \mathrm{dATEM1}_{1} \\
& \text { ACFTEM }_{3}=\text { ACFTEM }_{1}
\end{aligned}
$$

If $\mathrm{UV}=0$ and bit 4 or 7 of CH5MASK $=1$, or if $\mathrm{UV}=1$ and bit 2 or 5 of CH5MASK = 1: (jet failure - negative torque)

$$
\begin{aligned}
& 1 \mathrm{dATEM}_{2}=1 \mathrm{dATEM}_{0} \\
& \mathrm{ACFTEM}_{2}=\text { ACFTEM }_{0}
\end{aligned}
$$

AXDSTEM $_{0}=$ FLATEMP + DBB1 - DBB3
AXDSTEM $_{1}=$ FLATEMP $+\mathrm{DBB}_{2}-\mathrm{DBB}_{4}$
Inhibit interrupts
ACCSW $_{\text {UV }}=$ ACCSWTEM
If $\mathrm{UV}=0$ :

$$
1 \mathrm{dANET}_{0}=1 \mathrm{dATEM1}_{0}
$$

```
(If UV = 0)
 1dANET
 1dANET}2=1\mp@subsup{|ATHEM1}{2}{2
 1dANET}3=1\mp@subsup{\textrm{dATEMI}}{3}{
 1dACOAST
 1dACOAST
 ACCFCT
 ACCFCT
 ACCFCT}2=\mp@subsup{ACFTEM}{2}{2
 ACCFCT}3=\mp@subsup{A}{3}{}\mp@subsup{ACFTEM}{3}{
 Release interrupt inhibit
 UDB1 = DBB1
 UDB2 = DBB2
 UDB3 = DBB3
 UDB4 = DBB4
 UAXDIST
 UAXDIST }1=\mp@subsup{A}{1}{}=\mp@subsup{AXDSTTEM}{1}{
 UV = 1
 Proceed to "BOTHAXES"
1dANET
1dANET 17
1dANET
1d\mp@subsup{ANET}{19}{}=1\mp@subsup{\textrm{dATEMM}}{3}{}
1dACOAST }16=1\mp@subsup{\textrm{dACOSTT}}{0}{
1dACOAST
```

$$
\begin{aligned}
& \text { ACCFCT }_{16}=\text { ACFTHM }_{0} \\
& \mathrm{ACCFCT}_{17}=\text { ACFTEM }_{1} \\
& \mathrm{ACCFCT}_{18}=\mathrm{ACFTEM}_{2} \\
& \mathrm{ACCFCT}_{19}=\mathrm{ACFIEM}_{3} \\
& \text { FLAT }=\text { FLATEMP } \\
& \text { ZONE3LTM }=\text { Z3TEAM } \\
& \text { FIREDB }_{-16}=\text { DBVAL1 } \\
& \text { FIREDB }_{-15}=\text { DBVAL1 } \\
& \text { COASTDB }_{-16}=\text { DBVAL1 + FLAT } \\
& \text { COASTDB }_{-15}=\text { DBVAL1 }^{+} \text {FLAT } \\
& \text { AXISDIST }_{-16}=0 \\
& \text { AXISDIST }_{-15}=0 \\
& \text { If FLAT > } 0 \text { : } \\
& \text { FIREDB }_{0}=\text { DBVALI } \\
& \text { FIREDB }_{1}=\text { DBVALI } \\
& \text { FIREDB }_{16}=\text { DBVAL1 } \\
& \text { FIREDB }_{17}=\text { DBVAL1 } \\
& \text { COASTDB }_{0}=\text { DBVAL1 }+ \text { FLAT } \\
& \mathrm{COASTDB}_{1}=\text { DBVALI }+ \text { FLAT } \\
& \text { COASTDB }_{16}=\text { DBVALLI }+ \text { FLAT } \\
& \mathrm{COASTDB}_{17}=\text { DBVALI }+ \text { FLAT } \\
& \text { AXISDIST } 0=0 \\
& \mathrm{AXISDIST}_{1}=0 \\
& \text { AXISDIST } 16=0 \\
& \operatorname{AXISDIST}_{17}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \mathrm{FLAT}=0: \quad \text { (Powered flight without fine GTS) } \\
& \text { FIREDB }_{0}=\text { UDB1 } \\
& \text { FIREDB }_{1}=\text { UDB2 } \\
& \mathrm{COASIDB}_{\mathrm{O}}=\text { UDB4 } \\
& \text { COASTDB }_{1}=\text { UDB3 } \\
& \text { AXISDIST }_{0}=\text { UAXDIST }_{0} \\
& \operatorname{AXISDIST}_{1}=\mathrm{UAXDIST}_{1} \\
& \text { FIREDB }_{16}=\text { DBB1 } \\
& \text { FIREDB }_{17}=\text { DBB2 } \\
& \mathrm{COASTDB}_{16}=\mathrm{DBB}_{4} \\
& \mathrm{COASTDB}_{17}=\mathrm{DBB} 3 \\
& \operatorname{AXISDIST}_{16}=\text { AXDSTEM }_{0} \\
& \operatorname{AXISDIST}_{17}=\text { AXDSTEM }_{1} \\
& \text { 1/ACCRET Switch DAPBOOLS bit } 3 \text { (ACCSOKAY) to } 1 \\
& \text { Release interrupt inhibit } \\
& \text { Return }
\end{aligned}
$$

HOLDQ $=$ return address

```
ADRSDIF1 = K:AXISDIFF AXISCTR
If EDOT > 0:
 ADRSDIF2 = ADRSDIF1
 ROTSENSE = K:SENSOR
If EDOT \leq O:
 E=-E
 EDOT = - EDOT
 ADRSDIF1 = ADRSDIF1 + 1
 ADRSDIF2 = ADRSDIF1
 ROTSENSE = - K:SENSSOR
i = ADRSDIF1
If }|E|\geq\mp@subsup{2}{}{-5}:\quad(|E|\geq11.25\mathrm{ degrees)
 If E < O, proceed to "RUFLAW1"
 If E > 0, proceed to "RUFLAW2""
(E = E rescaled from B-1 to B-3)
If }|EDOT|\geq\mp@subsup{2}{}{-6}\mathrm{ , proceed to "RUFLAW3" (EDOT }\geq5.625 deg/sec)
(EDOT = EDOT rescaled from B-3 to B-6)
EDOTSQ = EDOT}\mp@subsup{}{}{2
If |E| \leq FIREDB
 NUMBERT = SENSETYP - 1
If |E|> FIREDB i - K:m3deg or if SENSETYP = 0:
 ADRSDIF2 = ADRSDIF2 + 2 (index 2-jet parameters rather
 NUMBERT = 4
j = ADRSDIF2
```

FIREFCT $=$ FIREDB $_{i}-\frac{1}{2} 1^{\text {dANET }_{j}}$ EDOTSQ $-E$
If FIREFCT $\leq 0$ :
Perform "Z123CCMP"
If FIREFCT + FLAT $\leq 0$ :
TS = FIREFCT + FLAT
Proceed to "ZONE1" (reverse rate error and reach switch curve)
If TTOAXIS > ZONE3LIM, proceed to "ZONE2" (null rate error)
Proceed to "ZONE3" (minimum impulse zone)
$\mathrm{TS}=$ COASTDB $_{i}+\frac{\frac{1}{2}}{} 1 \mathrm{dACOAST}_{i} \mathrm{EDOTSQ}+\mathrm{E}$
If $T S>0$, proceed to "ZONE4" (coast zone)
Proceed to "ZONE5" (increase error rate and reach switch curve)
Z123COMP ROTSENSE $=-$ ROTSENSE
TTOAXIS = EDOT $1 \mathrm{dANET}_{\mathrm{j}}$
If TTOAXIS $>\mathrm{K}: \mathrm{tjmax}$ :
$\mathrm{TSt}=\mathrm{K}: 250 \mathrm{~ms} \mathrm{~B} 2$
Proceed to "RETURNTJ"
Return
ZONE1
$\mathrm{HH}=2\left(\mathrm{TS}-\right.$ AXISDIST $\left._{i}\right)$ ACCFCT $_{j}$
$T S=(T T O A X I S-K: t j \max )^{2}-H H \quad$ (only high half of HH used)
If $T S \leq 0: \quad$ (total time greater than $K: t j \max$ )
$\mathrm{TSt}=\mathrm{K}: 250 \mathrm{msB} 2$

Proceed to "RETURNTJ"
If $\mathrm{HH}>\mathrm{K}: 50 \mathrm{mssq}$ : ( H between 44 and 150 milliseconds)
$\mathrm{TSt}=(\mathrm{HH} / \mathrm{K}: 200 \mathrm{msB} 2)+\mathrm{K}: 37 \cdot 5 \mathrm{msB} 2+\mathrm{TTOAXIS}$

If $\mathrm{HH} \leq K: 50 \mathrm{mssq}$ : ( H between 0 and 44 milliseconds)
TSt $=(\mathrm{HH} / \mathrm{K}: 50 \mathrm{msB} 2)+$ TTOAXIS
If TSt $\leq K: t j \min , T S t=0$
Proceed to "RETURNTJ"
ZONE2 $\quad$ TSt $=$ TTOAXIS
Proceed to "RETURNTJ"
ZONE3 $\quad$ TSt $=K:$ minimpt
If $\mathrm{EDOT}<2^{-20}, \mathrm{TSt}=0$
(illegally small jet on time changed to minimum impulse in "PJETSLEC" or "AFTERTJ")

Proceed to "RETURNITJ"
ZONE $4 \quad k=A X I S C T R+1$

> If $\mathrm{TJ}_{\mathrm{k}}$ ROTSENSE $<0: \quad$ (jets on and firing toward desired state)
> If FLAT $=0$ and AXISDIST $_{i}-$ FIREFCT $>0:$

Perform "Z123COMP"
$\mathrm{TS}=\mathrm{FIREFCT}$
Proceed to "ZONE1"
If FLAT $>0$ and FIREFCT -2 FIREDB $_{i} \leq 0$ :
Perform "Z123C0MP"
If TTOAXIS > ZONE3LIM, proceed to "ZONE2"
Proceed to "ZONE3"
(In all other cases, coast)
$\mathrm{TSt}=0$
Proceed to "RETURNTJ"
ZONE5 If ROTSENSE $<0, j=j-1$ (indices were chosen to select ( If ROTSENSE $>0, j=j+1$ zone 5, acceleration should $\mathrm{HH}=2 \mathrm{TS} \mathrm{ACCFCT}_{j}$

```
 TTOAXIS = 1dANET j EDOT
 TS = HH - K:100msB2 TTOAXIS - K:50mssq (more sig half of HH)
 If TS \leq 0:
 TSt = \frac{1}{2} HH / (TTOAXIS + K:25msB2)
 If TSt \leq K:tjmin, TSt = 0
 Proceed to "RETURNTJ"
 TS = HH - K:300msB2 TTOAXIS - K:150mssq
 If TS > 0:
 TSt = K:250msB2
 Proceed to "RETURNTJ"
```



```
Proceed to "RETURNTJ"
RUFLAW1 EDOT = EDOT - K:RUFRATE
 If EDOT \leq O: (rate below 6.50 degrees per second)
 NUMBERT = 4
 FIREFCT = - K:posmaxsp (if P-axis, call for 4 jets)
 ADRSDIF2 = ADRSDIF2 + 1 signROTSENSE
 TS = - ENOT
 Proceed to "RUFLAW12"
 ROTSENSE = - ROTSENSE
 NUMBERT = 4
 FIREFCT = - K:posmaxsp
 TS = EDOT
 Proceed to "RUFLAW12"
RUFLAW2 ROTSENSE = - ROTSENSE
```

```
 NUMBERT = 4
 FIREFCT = - K:posmaxsp
 (if P-axis, call for 4 jets)
TS = EDOT + K:RUFRATE
 If overflow (}|\textrm{TS}|\geq\mp@subsup{2}{}{-3}\mathrm{):
 TSt = K:250msB2
 Proceed to "RETURNTJ"
RUFLAW12 }j=ADRSDIF2 + 2
 TSt = TS 1dANET j
 If TSt \geq K:4secB5:
 TSt = K:250msB2
 Proceed to "RETURNTJ"
 TSt = TSt rescaled from B5 to B2
 If TSt \leq K:tjmin, TSt = 0
 Proceed to "RETURNTJ"
RUFLAW3 ROTSENSE = - ROTSENSE
 NUMBERTT = 4
 FIREFCT = - K:posmaxsp (if P-axis, call for 4 jets)
 i = ADRSDIF1 + 2 (= ADRSDIF2 + 2)
 TS =E + \frac{1}{2}1\mp@subsup{\textrm{dANET}}{i}{}\mp@subsup{\textrm{EDOT}}{}{2}-\mp@subsup{\mathrm{ FIREDB }}{i-2}{}
 If TS > 0, TSt = K:250msB2
 If TS \leq 0, TSt = 0
RETURNTJ i = AXISCTR + 1
 TJ 立 = TSt ROTSENSE
 If TJ i ACCSW AXISCTR }>0: \quad(Note that for P-axis, this
 NUMBERT = 4
 Return via HOLDQ
 test is not valid, but
 NUMBERT is set after
 "TJETLAW")
```

SPSRCS
$i=\operatorname{AXISCTR}+1$

If $\mathrm{TJ}_{\mathrm{i}}=0:$

$$
\text { OLDSENSE = } 0
$$

Proceed to "SPSSTART"

OLDSENSE $=1$ signTJ $_{i}$
$\mathrm{TS}_{1}=-$ OLDSENSE EDOT
If DAPBOOLS bit 8 (DRIFTBIT) $=0: \quad$ (powered flight)

$$
\mathrm{TS}_{1}=\mathrm{TS} 1+\mathrm{K}: \operatorname{RATEDB} 1
$$

If $\mathrm{TS}_{1}>0$, proceed to 2nd line of "POSTHRST"
SPSSTART If $\mid E D O T$ K:RATELIM1 $\mid \geq 1: \quad$ (check to see if outer rate limit $T S_{t}=-0.5$ signEDOT

Proceed to "POSTHRST"
$\mathrm{TS}_{2}=\operatorname{DKDB}(\mathrm{K}: \mathrm{m} 3$ tom 1 EDOT +E$)$
$T S t=0$
If $\left|\mathrm{TS}_{2}\right|<1$, proceed to "POSTHRST" (E will be less than the deadband within 4 seconds without firing)
If $\mathrm{TS}_{2}<0$ and EDOT $\leq \mathrm{K}:$ RATELIM2, $\mathrm{TSt}=0.5$
If $\mathrm{TS}_{2}>0$ and EDOT $>-\mathrm{K}:$ RATELIM2, $\mathrm{TS}=-0.5$ (if within the inner rate limit fire toward it)
POSTHRST $\mathrm{TJ}_{i}=\mathrm{K}:$ BOtoB10 TSt
If OLDSENSE $=0$, proceed to "CTRCHECK"
If OLDSENSE > 0 :
$T S=T J_{i}$
Skip next step
$T S=-T J_{i}$
(OLDSENSE
0)
$I \sim T S>0$, return
PJETCTR $_{i}=K$ UTIME $_{i}$
$\mathrm{TJ}_{\mathrm{i}}=.0$
Return
CTRCHECK If PJETCTR $_{i}=0$, return
$\mathrm{TJ}_{\mathrm{i}}=0$
Return
RESTORDB If DAPBOOLS bit 5 (DBSLECT2) $=1$, proceed to "SETMAXDB"
If DAPBOOLS bit 4 (DBSELECT) $=1$, proceed to "SETMINDB"
$D B=K:$ POWERDB
Proceed to 2nd step of "SETMAXDB"
SETMINDB $\quad D B=K:$ NARROWDB
Establish "1/ACCJOB"
Return
SETMAXDB $\quad D 3=K: W I D E D B$
Establish "1/ACCJOB"
Return
PFLITEDB Perform "ZATTEROR"
$D E=K:$ POWERDB
Establish "1/ACGJOB"
Return
(Entered from a verb 48, this is Routine 03)

```
DAPDATA1 DAPDATRi = bits 13, 11, 10, 7, 5, 4, 2 and 1 of DAPBOOLS
 (CSMDOCKD,ACC4OR2X,AORBTRAN, RHCSCALE, DBSLECT2,DBSELECT,
 AUTRATE2, AUTRATE1)
 If FLUWNRD10, bit 13 = 1: DAPDATR1, bit 14 = 0, otherwise
 DAPDATR1 bit 14 = 1
 If DAPDATR1, bits 13 and 14=0, set bit 13 of DAPDATR1 = 1
 Perform "GOXDSPFR" with TS = K:V01N46 (display DAPDATR1)
 (If terminate, proceed to "ENDEXT"; If proceed, proceed to
 "DPDAT1"; other response, skip next two steps)
```

    Perform "BLANKET" with TS \(=0^{00006} 8\)
    End job
    DAPDATR1 \(=\) bits \(14,13,11,10,7,5,4,2\) and 1 of DAPDATR1
    Proceed to third step of "DAPDATA1"
    DPDAT1 Inhibit interrupts
    FLGWRD10, bit 13 = complement of DAPDATR1, but 14
    If DAPDATR1, bits 13 and \(14 \neq 1\), bit 13 of DAPDATR1 \(=0\)
    Set bits \(13,11,10,7,5,4,2\) and 1 of DAPBOOLS \(=\) bits \(13,11,10,7\),
    \(5,4,2\) and 1 of DAPDATR1
    MASS \(=\) LEMMASS
    If DAPBOOLS bit \(13=1\), MASS \(=\) MASS + CSMMASS
    If DAPBOOLS bit \(11=1\), switch FLAGWRD1 bit 15 (NJETSFLG) to 0
    If DAPBOOLS bit 11 (ACC4OR2X) \(=0\) :
        Switch FLAGWRD1 bit 15 (NJETSFLG) to 1
    RATEINDX = bits 2 and 1 of DAPBOOLS
    STIKLOAD STIKSENS = K:FINE
    If DAPBOOLS bit 7 (RHCSCALE) \(=1\) :
        STIKSENS \(=\) STIKSENS \(+\mathrm{K}:\) NORMAL
    ```
 RATEDB = K:m0.6DdS
 If DAPBOOLS bit 13 (CSMDOCKD) = 1:
 STIKSENS = K:1d10 STIKSENS
 RATEDB = K:m0.3DdS
Release interrupt inhibit
DAPDATA2 Perform "GOXDSPFR" with TS = K:VO6N47 (LEMMASS, CSMMASS)
 (If terminate, proceed to "ENDRO3"; if proceed, skip
 next two steps; if other response, repeat this step.)
Perform "BLANKET" with TS = 00004g
End Job
TS = K:MINMINIM (ascent)
If FLGWRD10 bit 13 (APSFLAG) = 0, TS = TS + K:MINLMD (descent)
If LEMMASS \leqTS, proceed to "DAPDATA2"
MASS = LEMMASS
If DAPBOOLS bit 13 (CSMDOCKD) = 1:
 If CSMMASS \leq K:MINCSM, proceed to "DAPDATA2"
 MASS = LEMMASS + CSMMASS
Perform "RESTORDB" with interrupts inhibited
If FLGNRD10 bit 13 (APSFLAG) = 1, proceed to "ENDEXT" (ascent)
Perform "GOXDSPFR" with TS = K:VO6N43 (PITTIME, ROLLTIME)
 (If terminate, proceed to "ENDEXT"; if proceed, skip
 next two steps; if other response, repeat this step)
Perform "BLANKET" with TS = 00004g (blank R3)
End Job
Call "TRIMGIMB" in 0.01 second
End Job
```

```
TRIMGIMB Switch FLAGWRD6 bit 10 (GMBDRVSW) to 0
 Switch bits 12 and 10 of channel 12 to 0 (-Q and -R off)
 Switch bits 11 and 9 of channel 12 to 1 (+Q and +R on)
 Delay 60 seconds (drive gimbals to stops)
 Switch bits }11\mathrm{ and }9\mathrm{ of channel 12 to 0
 Switch bits 12 and 10 of channel 12 to 1
 Call "PITCHOFF" in PITTIME centiseconds
 Delay ROLLTIME centiseconds
 Switch bit }12\mathrm{ of channel 12 to 0
 Skip next step
 PITCHOFF Switch bit 10 of channel 12 to 0
 If FLAGWRD6 bit 10 (GMBDRVSW) = 1, establish "TRIMDONE" (pr10)
 If FLAGWRD6 bit 10=0, switch FLAGWRD6 bit 10 to 1
 End task
TRIMDONE Perform "GOMARK3R" with TS = K:V50N48 (PITTIME, ROLLTIME) The
 TS is formed by adding 13000g to K:VO6N48
 (If terminate, proceed to "ENDEXT"; if proceed, proceed
 to "ENDEXT"; If other response, proceed to "ENDEXT")
 Perform "BLANKET" with TS = 00024g (PERFREQ and R3BLNK)
 End job
ENDRO3 Inhibit interrupts
 Perform "RESTORDB"
 Proceed to "ENDEXT"
```

        DAPB - 21
    COMMEQS If 1JACCR 5 1JACCQ, proceed to "BIGIQ"

```
 EPSILON = (1JACCQ - 1JACCR) / 1JACCQ
 If EPSILON > K:EPSMAX, EPSILON = K:EPSMAX
 COEFFR = K:0.707 + K:0.35356 EPSILON
 COEFFQ = (-1 + EPSILON) COEFFR
 Return
BIGIQ mEPSILON = (1JACCQ - 1JACCR) / 1JACCR
If |mEPSILON| > K:EPSMAX, mEPSILON = -K:EPSMAX
COEFFQ = -K:0.707 + K:0.35356 mEPSILON
COEFFR = (-1 - mEPSILON) COEFFQ
Return
```

1dACOAST -16, 1dACOAST $_{0}, 1 \mathrm{dACOAST}_{16}, 1 \mathrm{dACOSTT}_{0}$ : Single precision inverse of magnitude of offset acceleration expected to oppese positive jet torques, scaled B8 in units of seconds squared per revolution. Limited to a maximum value. See description of storage sequence below.
$1 \mathrm{dACOAST}_{-15}, 1 \mathrm{dACOAST} \mathrm{I}_{1}, 1 \mathrm{dACOAST}_{17}, 1 \mathrm{dACOSTT}_{1}$ : Single precision inverse of magnitude of offset acceleration expected to oppose negative jet torques, scaled B8 in units of seconds squared per revolution. Limited to a maximum value. See description of storage sequence below.
$1 \mathrm{dANET}_{0}$, 1dANET $_{16}$, 1dATEM1 ${ }_{0}$, 1dATEMP: Single precision inverse of the 1-jet, net acceleration expected in a negative sense around an axis, scaled B8 in units of seconds squared per revolution. If this 1-jet acceleration cannot counteract an opposing offset acceleration and the required jets are not failed, the appropriate ACCSW is set to -1 and the inverse of the 2 -jet, net acceleration is stored in this cell. See description of storage sequence below.
1dANET ${ }_{1}$, 1dANET ${ }_{17}$, 1dATEM1 1 , 1dATEMP: Single precision inverse of the 1-jet, net acceleration expected in a positive sense around an axis, scaled B8 in units of seconds squared per revolution. If this 1-jet acceleration cannot counteract an opposing offset acceleration and the required jets are not failed, the appropriate ACCSW is set to 1 and the inverse of the 2 -jet, net acceleration is stored in this cell. See description of storage sequence below.
1dANET -14 , 1dANET $2,1 \mathrm{dANET}$ 18, 1dATEM1 2 , 1dATEMP: Single precision inverse of the 2 -jet, net acceleration expected in a negative sense around an axis, scaled $B 8$ in units of seconds squared per revolution. If a jet failure is present for the axis in question, the 1 -jet, net acceleration is stored in this cell. See description of storage sequence below.
1dANET 13 , 1dANET 3 , 1dANET 19 , 1dATEM1 3, 1dATEMP: Single precision inverse of the 2 -jet, net acceleration expected in a positive sense around an axis, scaled B8 in units of seconds squared per revolution. If a jet failure is present for the axis in question, the 1 -jet, net acceleration is stored in this cell. See description of storage sequence below.
1JACCP, 1JACCQ, 1JACCR: (Program notation also 1JACC, 1JACC +1, and $1 \mathrm{JACC}+2$, respectively). Single precision angular accelerations expected from a single RCS jet fired around the $P, Q$ and $R$ axes, respectively; computed in "1/ACCS" or in "DOCKED" from empirical functions of the mass of the vehicle, scaled B-3 in units of revolutions per second squared.

1JACCU, 1JACCV: Single precision anguiar acceleration expected from a single RCS jet fired around the $U$ or $V$ axes; computed from a function of $1 J A C C Q$ and 1JACCR and scaled B-2 in units of revolutions per second squared.

2JETLIM: See DAPA section.

ABDELV: Double precision magnitude of sensed change in velocity, scaled B14 in units of centimeters per second.
ABSAOS: Single precision magnitude of sensed offset acceleration, scaled B-2 in units of revolutions per second squared.
ACCDOTQ, ACCDOTR: Magnitude of rate of change of the offset acceleration; a function of inertia and c.g. position for the DPS whose gimbals are driven at a constant rate; zero for the APS which has no gimbals; scaled B-8 in units of revolutions per second cubed.
$A^{\prime} C F C T T_{0}$, $A^{\prime} C C F C T{ }_{16}$, ACFTEM $_{0}$ : Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the l-jet, net acceleration expected in a negative sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a positive sense around an axis. If no offset acceleration is expected in a positive sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
ACCFCT ${ }^{\text {, }}$ ACCFCT 17 , ACFTEM ${ }_{1}$ : Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the l-jet, net acceleration expected in a positive sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a negative sense around an axis. If no offset acceleration is expected in a negative sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
ACCFCT
the -14 , ACCFCT ${ }_{2}$, ACCFCT 18 , ACFTEM ${ }_{2}$ : Single precision function defining (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the $2-j e t$, net acceleration expected in a negative sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a positive sense around an axis. If no offset acceleration is expected in a positive sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
$\operatorname{ACCFCT}_{-13}, \mathrm{ACCFCT}_{3}, \operatorname{ACCFCT}_{19}, \mathrm{ACFTEM}_{3}:$ Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the 2 -jet, net acceleration expected in a positive sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a negative sense around an axis. If no offset acceleration is expected in a negative sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
ACCSW $_{0}$, ACCSW ${ }_{1}$, ACCSWTEM: Single precision, three-option switches for the $U$ and $V$ axes, respectively, scaled 314 and unitless. Set if the net acceleration on one direction is very small (large opposing offset acceleration) to indicate to "TJETLAW" that maximum jets must be used if a rotation in that direction is required. (See "RETURNTJ".)
ADRSDIF1, ADRSDIF2: Single precision address indices, scaled B14 and unitless. ADRSDIF1 distinguishes among the 3 axes and between positive and negative torque and acceleration parameters; ADRSDIF2 distinguishes between one and two jet parameters. (Only $2-j e t$ parameters computed for the P-axis.)
ALLOWGTS: See DAPA Section.
ALPHAQ, ALPHAR: See DAPA Section.
ANET: Single precision expected net acceleration, scaled B-2 in units of revolutions per second squared.

AOSQ, AOSR: See DAPA Section.
AOSU, AOSV: Single precision disturbing acceleration due to thrust vector/ c.g. offset or other external torques around the $U$ and $V$ axes respectively, scaled B-2 in units of revolutions per second squared.
AXISCTR: See DAPA Section.
AXISDIST ${ }_{i}$ : Single precision difference between the $E$ axis intercept defining the zone 1 boundary and the $E$ axis intercept defining the cutoff parabola, scaled B-3 in units of revolutions. The cutoff parabola is one with slope defined by Amin and intercept at FIREDB + FLAT on the same side of the EDOT axis, or the cutoff parabola is one with slope defined by offset acceleration and intercept at 0.75 FIREDB on the other side of the EDOT axis.

AXISDIST-16, AXISDIST $_{0}$, AXISDIST $_{16}$, AXDSTEM $_{0}, \operatorname{UAXDIST}_{0}:$ AXISDIST $^{\text {for }}$ positive EDOT.

AXISDIST $_{-15}$, AXISDIST $_{1}, \operatorname{AXISDIST}_{17}, \operatorname{AXDSTEM}_{1}$, UAXDIST $_{1}:$ AXISDIST for negative EDOT.

CH5MASK: See DAPA Section.
$\operatorname{COASTDB}_{i}(i=-16,-15,0,1,16,17):$ Single precision deadbund defining the ZONE,4, ZONE5 border, scaled B-3 in units of revolutions. See description of storage sequence below.

COEFFQ, COEFFR: See DAPA Section.
CSMMASS: Single precision astronaut input of the mass of the CSM, scaled Bl6 in units of kilograms.

DAPBOOLS: See DAPA Section.
DAPDATRl: Single precision communication cell usen in the astronaut interface routine to allow him to change APSFLAG and selected bits of DAPBOOLS.

DB: Single precision RCS deadband, set by the astronaut or by internal programs at one of 3 fixed values, scaled B-3 in nnits of revolutions.

DBBl, DBB4: FIREDB and COASTDB for positive EDOT, scaled B-3 in units of revolutions.

D3B2, DBB3: FIREDB and COASTDB for negative EDOT, scaled B-3 in units of revolutions.

DBVALl, DBVAL2, DBVAL3: Single precision modifications to the basic deadband used to define COASTDB and FIREDB under various different operational conditions of the DAP, scaled B-3 in units of revolutions.

DKDB: Single precision inverse of the attitude deadband in the CSM-docked RCS control law, scaled Bl5 in units of revs ${ }^{-1}$; initialized to 00200 (corresponding to $1 / 1.4 \mathrm{deg}$ ) by a fresh start.

DOCKTEMP: Single precision storage for bit 13 of DAPBOOLS to assure uniformity of docked assumption throughout "l/ACCS," scaled B14 and unitless.

DRIFTER: Single precision storage for bit 8 of DAPBOOLS to assure uniformity of drifting flight assumptions throughout "l/ACCS," scaled B14 and unitless.

E, EDOT: Single precision attitude error and attitude rate error used to define positions on the phase plane and calculate the duration of any RSS jet firings that are deemed necessary, scaled B-1 and B-3, respectively in units of revolutions and revolutions per second at entry to "TJETLAW" and "SPSRCS" subroutines. Note that EDOT is also used as rate-to-be-gained in response to RHC commands.

EDOTSQ: Single precision square of EDOT, scaled B-l0 in units of revolutions squared per second squared.

EPSILON: Single precision quantity providing a measure of control torque cross-coupling. It is equal to the ratio of the Q-axis inertia to the R-axis inertia subtracted from one. Scaled BO and unitless.

FIREDB $_{i}(i=-16,-15,0,1,16,17):$ Single precision deadband defining the $Z O N E 123, Z O N E 4$ border, scaled B-3 in units of revolutions.

FIREECT: Single precision function of E, EDOT, net acceleration and FIREDB used to define zones $1-2-3$ and $4-5$ and used with ACCFCT and TTOAXIS to calculate the duration of the RCS jet firing time, scaled B-3 in units of revolutions. See description of storage sequence below.

FLAT, FLATEMP: Single precision deadband defining the ZONE1, ZONE2-3 boundary, scaled B-3 in units of revolutions.

HH : The double precision square of the time from the E-axis to the intersection of the parabolic phase plane trajectories and the parabolic switch surve, scaled B4 in units of seconds squared.

HIASCENT: Single precision upper bound on the mass of the assent stage, scaled B16 in units of kilograms. Initialized in fresh start and/or loaded with the erasable load.

HOLDQ: Single precision octal return address storage.
INGTS: See DAPA Section.
K:0.35356: Single precision constant, stored as $13241_{8}$. It is equal to $\sqrt{2} / 4$, scaled $B O$ and unitless.

K:0.707: Single precision constant, program notation . 707 , stored as $26501_{8}$, scaled BO and unitless. Equation value: 0.70709

K:100msB2: Single precision constant, program notation -.05AT2 or .1AT4, stored at $\pm 0.025$, scaled $B 2$ in units of seconds. Equation value: +0.1 (equivalent to 100 milliseconds)

K:I50mssq: Single precision constant, program notation -.O112A8, stored as 77750 , scaled B4 in units of seconds squared. Equation value: +0.02256 (equivalent to $150.2^{2}$ milliseconds ${ }^{2}$ )

K:ldl0: Single precision constant stored as 031468, program notation $1 / 10$, scaled BO and unitless. Equation value: 0.1

K:ldp03: Single precision constant stored as 37777 , scaled B8 in units of seconds squared per revolution. Equation value: 255.98 (equivalent to $I /\left(1.407 \mathrm{deg} / \mathrm{sec}^{2}\right)$ )

K:IJACCON: Single precision constant stored as 001678 and scaled Bl3 in units of rev- $\mathrm{Kg} / \mathrm{sec}^{2}$. Equation value 59.47. Used to obtain p-axis control authority for the docked configuration.

K:200msB2: Single precision constant, program notation .lAT2, stored as 014638 , scaled B2 in units of seconds. Equation value: 0.2

K:250msB2: Single precision constant, program notation BITll, stored as $0200 \mathrm{~J}_{8}$, scaled B2 in units of seconds. Equation value: 0.25.

K:25msB2: Single precision constant, program notation -.025AT4, stored as $77631_{8}$, scaled B2 in units of seconds. Equation value: 0.025

K:2jlimdwn: Single precision constant stored as 01000 g , program notation BITIO scaled B-3 in units of revolutions per second. Equation value: 0.00391 (equivalent to 1.4 degrees per second)

K: 300msB2: Single precision constant, program notation -. 15 AT 2 , stored as 75462 , scaled B2 in units of seconds. Equation value: 0.3

K:37.5msB2: Single precision constant, program notation .0375 AT4, stored as 00232 , scaled B2 in units of seconds. Equation value: 0.03752

K: 4 sec B5: Single precision constant stored as 737778, program notation $-1 / 8$, scaled $B 5$ in units of seconds. Equation value: +4.0

K:50msB2: Single precision constant, program notation -.025AT2, stored as -0.0125, scaled B2 in units of seconds. Equation value: +0.05 (equivalent to +50 milliseconds)

K:50mssq: Single precision constant, program notation NEG2, stored as 777758 , scaled B 4 in units of $\mathrm{f}_{2}$ seconds squared. Equation value: +0.001953 (equivalent to $44.2^{2}$ milliseconds squared)

K:85mssq: Double precision constant, program notation .00375A8, stored as $0.00375 \times 2^{-3}$, scaled $B 4$ in units of seconds squared. Equation value: 0.0075 (equivalent to $86.6^{2}$ milliseconds squared)

K:acp: Constant implicit in addition of two quantities of unequal scaling, scaled B-8 in units of revolutions per second squared. Equation value: 0.00390625 (equivalent to 1.4 degrees per second squared)
$\mathrm{K}: \mathrm{AXISDIFF}_{i}:$ Three single precision constants, scaled $\mathrm{B} 1_{4}$ and unitless. Equation value: $-16,0$ and 16 for $i=-1,0$ and 1.

K: BOtoBlO: Effective scale factor introduced by treating a quantity scaled BO as if it were scaled BlO, scaled BlO in units of centiseconds. Equation value: 1024 (equivalent to 10.24 seconds)

K:cgcoefA, $B, C, D, E, F$ Six single precision coefficients for a curve fit of the form $A x^{2}+\mathrm{By}^{2}+\mathrm{Cxy}+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}$, used to find the rate of change of the DPS moment arm around the c.g. of the docked configuration.

Program Stored Scale Notation

| COEFF+9 | -0.37142 | B-31 |
| :--- | ---: | :--- |
| COEFF+8 | 0.75704 | B-31 |
| COEFF+6 | 0.20096 | B-31 |
| COEFF+11 | 0.41179 | B-15 |
| COEFF+10 | -0.63117 | B-15 |
| COEFF+7 | 0.13564 | Bl |

Units
rev $\mathrm{rad}^{-1}$
rev $\mathrm{rad}^{-1}$
rev $\mathrm{rad}^{-1}$
rev $\mathrm{rad}^{-1}$
rev $\mathrm{rad}^{-1}$
rev $\mathrm{rad}^{+1}$

Equation Value

| $\mathrm{kg}^{-2}$ | $-1.7296 \mathrm{E}-10$ |
| :---: | :---: |
| $\mathrm{~kg}^{-2}$ | $3.5252 \mathrm{E}-10$ |
| $\mathrm{~kg}^{-2}$ | $9.3579 \mathrm{E}-11$ |
| $\mathrm{~kg}^{-1}$ | $1.2567 \mathrm{E}-5$ |
| $\mathrm{~kg}^{-1}$ | $-1.9262 \mathrm{E}-5$ |
|  | 0.27128 |

The equation value of each constant embodies the two constant factors $1 / 2 \pi$ and 0.2 degrees per second. The first is a conversion factor to convert radians to revolutions; the second is the DPS gimbal rate. If the equation value is multiplied by $2 \pi$ and divided by 0.2 , the resulting coefficients will give an idea of the programmed value for DPS moment arm per degree of thrust vector/c.g. offset. For example, (0.27128 $2 \pi /$ 0.2) $360=2 \pi 488.3$, the circumference of a circle with radius equal to the c.g. to pivot point distance. Thus, using only the constant term of the polynomial, this distance is about 500 centimeters or about 200 inches.

K:DGBF: Single precision constant, stored as 231468 , scaled B-1 and unitless. Equation value: 0.3

K:dvtoacc: Constant implicit in the 2-second navigation cycle, scaled B-l in anits of seconds to the minus one power. Equation value: $\frac{1}{2}$

K:EPSMAX: Single precision constant, stored as 623628 , but used in this writeup as though it were positive. It provides the magnitude limit for EPSILON and mEPSILON. Scaled BO and unitless. Effectively constrains the $U^{\prime}$ and $V '$ axes within 15 deg. from the $U, V$ axes. Equation value: 0.422668

K:FINE: Single precision constant stored as 05220 g , scaled B-15 in units of revolutions per second per RHC-count squared. See definition of STIKSENS in the DAPA Section.

K:FLATVAL: Single precision constant, stored as 00443 g, scaled B-3 in units of revolutions. Equation value: 0.00222 (equivalent to 0.8 degrees)

K:GFACTM: Single precision constant stored as 00337 g , used to convert from units of pounds (force) to units of $\mathrm{kg} \mathrm{cm} / \mathrm{second}^{2}$; scaled B15 in units of $\mathrm{kg} \mathrm{cm} \mathrm{sec}-2 / 1 \mathrm{bs}$. Equation value: 446 (corresponds to 4.4482 newtons per pound times $100 \mathrm{~cm} /$ meter)

K:HIDESCNT: Single precision constant stored as $07361_{8}$, ssaled Bl6 in units of kilograms. It is the upper bound on descent stage mass. Equation value: 15300

K:INERCONA $A_{i}$ : Set of six double precision constants scaled Bl3 in units of revolutions $/ \mathrm{sec}^{2} \mathrm{~kg}^{-1}$.

| i | Stored value |  |  |
| ---: | :--- | :--- | :--- |
| 0 | 0.0059347674 |  | Equation value |
| 0 | 0.0014979264 |  | 12.6176145 |
| 4 | 0.0010451889 |  | 8.5621875 |
| 6 | 0.0065443852 |  | 53.6116036 |
| 8 | 0.0035784354 |  | 29.3145428 |
| 10 | 0.0056946631 |  | 46.6506801 |

K:INERCONB ${ }_{i}$ : Set of six single precision constants scaled B-3 in units of revolutions per second squared.

| i | Stored value |  | Equation value |
| ---: | :--- | :--- | :--- |
| 0 | 0.002989 |  | $3.7363 \mathrm{~J}-4$ |
| 2 | 0.018791 | $2.3489 \mathrm{E}-3$ |  |
| 4 | 0.021345 | $2.6681 \mathrm{E}-3$ |  |
| 6 | 0.000032 | $4.0030 \mathrm{E}-6$ |  |
| 8 | 0.162862 | $2.0358 \mathrm{E}-2$ |  |
| 10 | 0.009312 | $1.1640 \mathrm{E}-3$ |  |

K:INERWONC ${ }_{i}$ : Set of six single precision constants scaled Bl6 in units of kilograms.

| i | Stored value |  | Equation value |
| :---: | :---: | :---: | :---: |
| 0 | 0.008721 |  | 571.5 |
| 2 | -0.068163 | -4467.1 |  |
| 4 | -0.066027 | -4327.1 |  |
| 6 | -0.006923 | -453.7 |  |
| 8 | 0.002588 | 169.6 |  |
| 10 | -0.023608 | -1547.2 |  |

K:inrtcofA, B, C, D, E and F: Six single precision coefficients of a curve fit of the form $A x^{2}+B y^{2}+C x y+D x+E y+F$ used to find the approximate moment of inertia around an axis in the $Q-R$ plane of the combined CSM CM.

|  | Program Notation | Stored Value | Scale Factor | Units | Equation <br> Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | COEFF + 3 | -0.03709 | B6 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}^{2}$ | -2.37376 |
| B | COEFF +2 | -0.17670 | B6 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}{ }^{2}$ | -1.13088 E1 |
| C | COEFF +0 | 0.19518 | B6 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg} 2$ | 1.24915 El |
| D | COEFF +5 | 0.02569 | B22 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}$ | 1.07752 E 5 |
| E | COEFF +4 | 0.06974 | B22 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}$ | 2.92511 E5 |
| F | COEFF +1 | -0.00529 | B38 | $\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad}$ | -1.45410 E9 |

K:LconA: Double precision constant, program notation INERCONA -2, stored as 0.0410511917, scaled B19 in units of kilograms feet per radian. Equation value: 21522.647

K:LconB: Single presision constant, program notation INERCONB -2, stored as 0.155044 , scaled B3 in units of feet per radian. Equation value: 1.240352

K:LconC: Single precision constant, program notation INERCONC -2, stored as -0.025233 , scaled Bl6 in units of kilograms. Equation value: -1653.7

K:LOASCENT: Single precision sonstant stored as $2200 \times 2^{-16}$; the lower bound on ascent stage mass, scaled Bl6 in units of kilograms. Equation value: 2200

K:LODESCNT: Single precision constant stored as $00666_{8}$, scaled Bl6 in units of kilograms. It plus HIASCENT is the lower bound on the unstaged LM mass. Equation value 1752

K:m.1875: Single precision constant stored as 717778, but used in this writeup as though it were positive. Scaled B-2 with units of revs/ $\sec ^{2}$. Equation value: 0.04687 (corresponds to $16.87 \mathrm{deg} / \mathrm{sec}^{2}$ )

K:m0.3DdS: Single precision constant stored as 776228, program notation $-0.3 D / \mathrm{S}$, scaled B-3 in units of revolutions per second. Equation value: 0.00083 (equivalent to 0.3 degrees per second)

K:m0.6DdS: Single precision zonstant, program notation $-0.6 \mathrm{D} / \mathrm{S}$, stored as 774458 , scaled B-3 in units of revolutions per second. Equation value: 0.00166 (equivalent to 0.6 degrees per second)

K:m3deg: Single precision constant stored as 756738. Scaled B-3 in
 degrees)

K:m3tonl: Constant implied in combining EDOT, scaled B-3 in units of revolutions per second, with $E$, scaled $B-1$ in units of revolutions; scale factor B2, units seconds. This is the inverse of the slops of the switch curves in the docked RCS phase plane. Equation value: 4

K:MINCSM: Single precision constant stored as $02000_{8}$, scaled Bl6 in units of kilograms. Equation value: 4096

K:miniacc: Single precision constant, program notation -.03R/S2, stored as 773778 , scaled B-2 in units of revolutions per second squared. Equation value: +0.0039 (corresponds to 0.02454 radians per second squared or $1.4060 / \mathrm{sec}^{2}$ )

K:minimpt: Single precision constant, stored as 000408 , program notation BIT6, scaled B2 in units of seconds. Equation value: $2^{-7}$ (equivalent to 7.8 ms )

K:MINLMD: Single precision constant stored as 764668 , scaled Bl6 in units of kilograms. Equation value: -2852

K:MINMINLM: Single precision constant stored as $7673 l_{8}$, scaled B16 in nits of kilograms. Equation value: -2200

K: NARROWDB: Single precision constant stored as 001558, scale. $\mathrm{B}-3$ in units of revolutions. Equation value: 0.00083 (equivalent to $0.2994^{\circ}$ )

K:nomaxjts: Single precision constant stored as 400008, scaled B-3 in units of revolutions per second. Equation value: to. 12499 (equivalent to 44.997 degrees per second)

K: NORMAL: Single precision constant stored as $25101_{8}$, scaled B-15 in units of revolutions per second per RHC-count squared. Equation value: 0.000020148 . See definition of STIKSENS in the DAPA Section.

K: POWERDB: Single precision constant stored as 005548 , scaled B-3 in units of revolutions. Equation value: 0.00277 (equivalent to 1 degree)

K: RATEDBl: Single precision constant, stored as 000458 , scaled B-3 in units of revolutions per second. Equation value: 0.0002823 (equivalent to $0.102^{\circ} / \mathrm{sec}$ )

K: RATELIMI: Single precision constant, stored as $00032_{8}$, scaled B17 in units of seconds per revolution. Equation value: 208 or 1.0/0.0048 (equivalent to $1 / 1.730 / \mathrm{sec}$ )

K: RATELIM2: Single precision zonstant stored as 006328, scaled B-3 in units of revolutions per second. Equation value: 0.003128 (equivalent to $1.126^{\circ} / \mathrm{sec}$ )

K: RUFRATE: Single precision constant stored as 044768, scaled B-3 in units of revs/sec. Used as a rate limit in TJETLAW phase plane calculations. Equation value: 0.01805 (equivalent to 6.5 degrees $/ \mathrm{sec}$ )

K:SENSOR: Single precision constant stored as 144008 , scaled B8 in units of centiseconds per second. Used to convert scaling used in "TJETLAW" to that used for TIME6 calculations. Equation value: 100

K:tinyacc: Single precision constant, program notation $.023 \mathrm{R} / \mathrm{S} 2$, stored as 003558 , scaled B-2 in units of revolutions per second squared. Equation value: 0.003631 (equivalent to 0.02281 radians per $\sec ^{2}$ or 1.307 degree $/ \mathrm{sec}^{2}$ )

K:tjmax: Single precision constant, program notation -TJMAX, stored as -0.0375, scaled B2 in units of seconds. Equation value: +0.15 (equivalent to +150 milliseconds)

K:tjmin: Single precision constant, program notation -TJMIN or TJMIN, stored as $\pm 0.005$, scaled B2 in units of seconds. Equation value: +0.02 (equivalent to 20 milliseconds)

K:TORKJETl: Single precision constant stored as 0.03757, scaled B22 in units of foot-pounds/radians sec ${ }^{-1}$. Equation value: 157580 (corresponds to about 550/0.00349). The torque expected from one RCS jet is 550 foot-pounds and the rotation rate of the DPS gimbals is nominally $0.2^{\circ} / \mathrm{sec}$.

K:TORQCONS: Double precision constant stored as $0.51443 \times 2-14$, scaled B35 in units of kilogram centimeters squared revolutions/radians seconds squared. Equation value: 1078837.90 (equivalent to 500 foot-poinds $x 13557 \mathrm{~kg} \mathrm{~cm}^{2}$ per ft-lb $\mathrm{x} 1 / 6.2832 \mathrm{rev} / \mathrm{rad}$ )

K:UTIME ${ }_{i}(i=1,2,3)$ : Single precision constants giving time in deciseconds between RES jet firings for the docked configuration. Stored as: 000048 for the P-axis, 00012 for the U-axis, $00012 g$ for the $V$-axis. Scaled B14 with units of deciseconds. Equation values: 4, 10, and 10, respectively

K:WIDEDB: Single precision constant stored as 034348 , scaled B-3 in units of revolutions. Equation value: 0.013885 (equivalent to 4.9990 )

K: ZONE3MAX: Single precision constant stored as 0.004375 , scaled B2 in units of seconds. Equation value: 0.0175 (equivalent to 35 msec . of single jet firing)

LEMMASS: Single precision astronaut input of the mass of the LM, scaled B16 in units of kilograms.

LPVTARM: Single precision proportionality factor between the DPS gimbal angle and the moment arm of the thrust around the c.g., scaled B3 in units of feet per radian, program notation L,PVT-CG. Because the DPS gimbal angles are small, LPVTARM is approximately equal to the distance between the c.g. and the DPS pivot point.

MASS: Double precision mass of the vehicle, scaled B16 in units of kilograms
mEPSILON: Single precision quantity with same function as EPSILON. It is equal to one subtracted from the ratio of the R-axis inertia to the Q-axis inertia. Scaled BO and unitless.
$1 \mathbb{P A C}_{0}$ : Single precision working storage used in "l/ACCS" to store the torque expected from the DPS engine, scaled Bl7 in units of foot-lbs per radian (radians of rotation of the DPS bell); used in "DOCKED" to store the rate of change of the DPS moment arm, scaled Bl in units of centimeters per second-revolutions per radian.

MPAC $]_{1}$ : Single precision working storage used in "DOCKED" to store the combined vehicle moment of inertia around an axis in the Q-R plane, scaled B38 in units of kilogram centimeters squared per radian.

NUMBERT: See DAPA Section.
OLDSENSE: Single precision quantity giving the sign of the jet firing time, calculated in the preceding pass through the DAP, for the axis under consideration. Scaled Bl4 with units of deciseconds.

PITTIME: Single precision time to drive the DPS gimbal in a positive direction around the Q-axis starting at the hard stop to position it prior to a burn, scaled Bl4 in units of centiseconds.

PJETCTR $_{i}$ : See DAPA Section.
QACCDOT, RACCDOT: See DAPA Section.
QDAPK, RDAPK: See DAPA Section.
RATEDB: See DAPA Section.
RATEINDX: Single precision index used by large attitude maneuver calculation routines to select the maneuver rate, scaled B14 and unitless. Determined by the setting of bits 1 and 2 of DAPBOOLS: possible values $0,1,2$, or 3 . The program uses these values doubled for convenience in indexing.

ROLLTIME: Single precision time to drive the DPS gimbal in a positive direction around the R-axis starting at the hard stop to position it prior to a burn, scaled Bl4 in units of centiseconds.

ROTSENSE: Single precision, two-valued switch specifying the direction of desired rotation, scaled B8 in units of centiseconds per seconł.

SENSETYP: See DAPA Section.
STIKSENS: See DAPA Section.
T5ADR: See DAPA Section.
$T J_{0}, T J_{1}, T_{2}:$ See DAPA Section.
TTOAXIS: Time from the present point on the phase plane to the E-axis along the parabolic trajectory defined by the net acceleration, scaled B2 in units of seconds.
$\operatorname{UAXDIST}_{i}:$ See AXISDIST pgs. DAPB 25 and 26.
UDB1, U.JB2, UDB3, UDB4: Temporary storage for DBB1, DBB2, DBB3, and DBB4 as computed for the U-axis, scaled B-3 in units of revolutions.

UV: Single precision index to distinguish between $U$ and $V$ axes, scaled Bl4 and unitless.

Z3TEM: Temporary storage with same scaling as K:ZONE3MAX.
ZONE3LIM: Single precision time defining the border between ZONE2 and ZONE3, scaled B2 in units of seconds.

E-memory Register

BLOCKTOP+0
BLOCKTOP+1
BLOCKTOP+2
BLOCKTOP +3
BLOCKTOP +4
BLOCKTOP+5
BLOCKTOP+6
BLOCKTOP+7
BLOCKTOP+8
BLOCKTOP+9
BLOCKTOP+10
BLOCKTOP+11
BLOCKTOP +12
BLOCKTOP+13
BLOCKTOP+14
BLOCKTOP+15
BLOCKTOP+16
BLOCKTOP +17
BLOCKTOP+18
BLOCKTOP+19
BLOCKTOP+20
BLOCKTOP+21
BLOCKTOP+22
BLOCKTOP +23
BLOCKTOP +24
BLOCKTOP +25
BLOCKTOP +26
BLOCKTOP + 27
BLOCKTOP+28
BLOCKTOP+29
BLOCKTOP+30
BLOCKTOP + 31
BLOCKTOP +32 through
BLOCKTOP +47

Contents of cell

ACCSWU
ACCSWV
1dANET for negative, 2-jet acceleration around P-axis
1dANET for positive, $2-j e t$ acceleration around P-axis 1dACOAST, negative around $P$ 1 dACOAST, positive around $P$ FLAT
ZONE3LTM
ACCFCT corresponding to negative, 2-jet acceleration around $P$
ACCFCT corresponding to positive, 2-jet acceleration around $P$ FIREDB for positive EDOT around P FIREDB for negative EDOT around $P$ COASTDB for positive EDOT around $P$ COASTDB for negative EDOT around P AXISDIST for positive EDOT, P-axis AXISDIST for negative EDOT, P-axis

1dANET for negative, 1-jet acceleration around U-axis 1dANET for positive, 1-jet acceleration around U-axis 1dANET for negative, $2-j e t$ acceleration around U-axis 1dANET for positive, 2 -jet acceleration around U-axis 1 dACOAST, negative around U 1 dACOAST, positive around U ACCFCT corresponding to negative, 1 -jet acceleration around U ACCFCT corresponding to positive, 1 -jet acceleration around U ACCFCT corresponding to negative, 2-jet acceleration around U ACCFCT corresponding to positive, 2-jet acceleration around U
FIREDB for positive EDOT around U FIREDB for negative EDOT around U COASTDB for positive EDOT, U-axis COASTDB for negative EDOT, U-axis AXISDIST for positive EDOT, U-axis AXISDIST for negative EDOT, U-axis

V-axis parameters identical in description to U-axis parameters but around $V$-axis instead of U-axis

Address used in Computations

ACCSW
ACCSW
1dANET-14
1dANET-13
1dACOAST
1 dACOAST $_{-15}^{-16}$
FLAT
ZONE3LTM
ACCFCT-14
ACCFCT $_{-13}$
FIREDB
FIREDB ${ }^{-16}$
COASTD ${ }^{1}$
COASTDB ${ }^{-16}$
AXISDIST ${ }^{15}$
AXISD IST $_{-15}^{-16}$
1dANET 0
1dANET 1
$1 \mathrm{dANET}_{2}$
1 dANET $_{3}$
1 dACOAST
$1 \mathrm{dACOAST}_{1}^{0}$
$\mathrm{ACCFCT}_{0}$
$\mathrm{ACCFCT}_{1}$
ACCFCT $_{2}$
$\mathrm{ACCFCT}_{3}$
FIREDB
F'IREDB ${ }_{1}^{0}$
COASTDB
COASTDB
AXISDIST AXISD IST $_{1}^{0}$

U-axis subscripts plus 16
-

DarA

NVSUB
(Entered with TSvn and TSmonopt in A and L)
NVTEMP $=$ TSvn (verb-noun code)
FREEDSKY $=0$
If DSPLOCK > O, return (astronaut using DSKY)
If bit 14 of MONSAVE1 = 1, return (externally initiated monitor)
NVQTEM = return address
MONSAVE2 $=$ TSmonopt (monitor options)
MONSAVE1 $=40000_{8} \quad$ (terminate monitor)
ENTRET = "NVSUBEND"
If |NVTEMP| = 0, proceed to "DSPALARM"
If NVTEMP < O, proceed to "BLANKDSP"
TSnoun = low 7 bits of NVTEMP
TSverb $=$ bits $14-8$ of NVTEMP shifted right 7 places
If TS noun $=0$ :
VERBREG $=$ TSverb
Perform "UPDATVB"
REQRET $=$ to (process verb-noun information)
Proceed to "NVSUBEND"
If TSverb $=0$ :
NOUNREG $=$ TSnoun
Perform "UPDATNN"
Proceed to "NVSUBEND"
TSadr $=\mathrm{MPAC}_{2}$
$\left(\mathrm{MPAC}_{5}\right)$
VERBREG $=$ TSverb
Perform "UPDATVB"

```
NOUNREG = TSnoun
 Perform "UPDATNN"
 LOADSTAT = +0
CLPASS = 0
REQRET = +0
MPAC
Proceed to "ENTPASO"
BLANKDSP CODE = 6 + NVTIEMP|
(CODE = 7, 8, }9\mathrm{ or 10 for legal options;
 illegal options cause error)
 Inhibit interrupts
 Perform indented steps for i = CODE, CODE - 1, ... 4, 3, 2, 1, 0
 If DSPTAB }\mp@subsup{\mp@code{i}}{}{>}>0,\mathrm{ NOUT }=\mathrm{ NOUT + 1
 DSPTAB}\mp@subsup{}{\mathbf{i}}{}=04000\mp@subsup{0}{8}{}\mathrm{ complemented to flag for output
 (end of "indented steps")
 Release interrupt inhibit
 If NVTEMP }\leq-3\mathrm{ , VERBREG = 0
 If NVTEMP }\leq-2, NOUNREG =0
 CLPASS = 0
 DSPCOUNT = - 19 (inhibit all numerical inputs)
 Switch bit 6 of channel }11\mathrm{ to O (flash off)
 REQRET = +0 , (process verb-noun information)
NVSUBEND FRREEDSKY = 1
 Return via NVQTEM
```

NOUNCADR $=$ NNADTEM
EBANK = bits 11-9 of NNADTEM
NOUNADD $=01400_{8}+$ bits $8-1$ of NOUNCADR
Proceed to "VERBFAN"
If $N N A D T E M=+0$, proceed to "DSPALARM" (noun is not valid)
If $\operatorname{NNADTEM}=-0: \quad$ (increment present noun address)
NOUNCADR $=$ NOUNCADR +1
EBANK = bits 11-9 of NOUNCADR
NOUNADD $=01400_{8}+$ bits $8-1$ of NOUNCADR
If VERBREG $\neq 5$ : (verb 5 uses R3; cannot display NOUNCADR)
DSPCOUNT $=\mathrm{K}:$ R3D1
Perform "DSPOCTWD" with TSWd = NOUNCADR
Proceed to "VERBFAN"
(Otherwise, address is to be specified)
CLPASS $=-K:$ posmaxsp $\quad$ (to prevent multiple clears)
If ENTRET $=$ "ENDOFJOB": (internal)
NOUNCADR $=\mathrm{MPAC}_{2}$
EBANK = bits 11-9 of NOUNCADR

```
 (If internal "address to be specified")
 NOUNADD = 01400 8
 If VERBREG }=5\mathrm{ 5:
 DSPCOUNT = K:R3D1
 Perform "DSPOCTWD" with TSwd = NOUNCADR
 Proceed to "VERBFAN"
 Perform "REQDATZ" (request noun address; return via REQRET)
 If DECBRNCH }\not=0000008\mathrm{ g, proceed to "ALMCYYCLE"
 DSPCOUNT = - 19 (to block further numerical characters)
 If CADRSTOR }\not=+0\mathrm{ : (internal display request interrupted)
 Switch bit 6 of channel 11 to 1 (leave flash on)
 NOUNCADR = ZREG (loaded in "REQDATZ")
 EBANK = bits 11-9 of NOUNCADR
 NOUNADD = 01400.8
 Perform "LODNNTAB" (reload NNTYPTEM)
Proceed to "VERBFAN"
LODNNTAB NNADTEM = K:NNADTAB
NNTYPTEM = K: NNTYPTAB
If NOUNREG < 40: ("normal" noun)
 MIXBR = 1
 Return
MIXBR = 2 (mixed noun)
RUTMXTEM = K:RUTMXTAB }\mp@subsup{\mathrm{ NOUNREG}}{}{
i = low 10 bits of NNADTEM
IDADTEM
IDADTEM
DATA - 4
```

IDADTEM $_{3}=\mathrm{K}:$ IDADTAB $_{\mathrm{i}+2}$
Return
MIXNOUN
If NNADTEM $=+$ o, proceed to "DSPALARM"
(noun not valid)
If VERBREG $>6$, proceed to "VERBFAN" ( not a display verb)
Perform the indented steps for $i=2,1$, and 0
NOUNTEM $=$ IDADTEM $_{i+1}$
TS = high 5 ( $i=2$ ), mid 5 ( $i=1$ ) or low 5 ( $i=0$ ) bits of RUTMXTEM shifted right 10, 5 or 0 places to bit positions 5 through 1

If $\mathrm{TS}=4,5,7$ or 10: (double precision)
NOUNTEM $=$ NOUNTEM +1 (specify minor part for octal display)
EBANK = bits 11-9 of NOUNTEM
TSadr $=014008$ low 8 bits of NOUNTEM
MIXTEMP $_{i}=$ contents of address specified in TSadr
(End of "indented steps")
NOUNADD $=$ "MIXTEMP 0 (In a routine such as "DSPABC" then, the "contents of cell specified by ( $2+$ NOUNADD)" will be the contents of MIXTEMP 2 , loaded above.)

Proceed to "VERBFAiN"
DSPALARM If ENTRET $=$ "NVSUBEND", proceed to "POODOO" with $T S=21501_{8}$
If ENTRET = "PASTEVB":
MONSAVEI $=40000_{8}$
Switch bit 7 of channel 11 to 1 (operator error)
Proceed to "PASTEVB"
Switch bit 7 of channel 11 to 1
End job
VERBFAN If VERBREG $\geq$ 40: (extended verb)
TSextfan = VERBREG - 40
Perform "RELDSP"

Proceed to routine specified by the contents of VERBREG


If $\operatorname{MLXBR}=2, \mathrm{TS}=$ high 5 bits of NNADTEM
If bit 14 of $T S=1$, proceed to "DSPALARM" (noun is decimal only)
If $\operatorname{NNADTEM}=-1$ : (noun specified a channel)
BUF $_{0}=-\begin{gathered}\text { (contents of channel specified by } \\ \text { NOUNCADR })\end{gathered}$ Proceed to "DSPCOM2"

If $\operatorname{MDXBR}=1$ :
TS = mid 5 bits of NNTYPTEM shifted right 5
If $T S=4,5,7$ or $10 ;$ NOUNADD $=$ NOUNADD +1 (specify minor part if double precision)
(minor part already specified for mixed nouns in "MTXNOUN" logic)

BUF $_{\mathrm{O}}=-$ contents of cell specified by NOUNADD
(mixed noun specifies MIXTEMP ${ }_{0}$ )
Proceed to "DSPCOM2"
DSPB If $\operatorname{MDXBR}=1, \mathrm{TS}=$ high 5 bits of NNTYPTEM
If $\operatorname{MLXBR}=2$, $\mathrm{TS}=$ high 5 bits of NNADTEM
If bit 14 of $\mathrm{TS}=1$, proceed to "DSPALARM"
TS = low 2 bits of (TS shifted right 10)
If $\mathrm{TS}<1$, proceed to "DSPALARM" (noun has no second component)
BUF $_{0}=-$ contents of cell specified by
(mixed noun specifies $(1+$ NOUNADD $)$
Proceed to "DSPCOM2"
DSPC If MLXBR = 1, TS = high 5 bits of NNTYPTEM
If $\operatorname{MLXBR}=2$, $\mathrm{TS}=$ high 5 bits of NNADTEM
If bit 14 of $T S=1$, proceed to "DSPALARM"
$\mathrm{TS}=$ low 2 bits of (TS shifted right 10)
If TS < 2, proceed to "DSPALARM"
$\mathrm{BUF}_{\mathrm{O}}=-$ contents of cell specified by $(2+$ NOUNADD $)$
Proceed to "DSPCOMQ"

DSPAB
If MDXBR $=1$, TS $=$ bits $12-11$ of NNTYPTEM shifted right 10 If MIXBR $=2$, TS $=$ bits $12-11$ of NNADTEM shifted right 10 If $\mathrm{TS}<1$, proceed to "DSPALARM" (noun has no second component) BUF $_{1}=-$ contents of cell specified by ( $1+$ NOUNADD)
Proceed to "DSPA"
DSPABC If MDXBR $=1$, TS = bits 12-11 of NNTYPTEM shifted right 10 If $\operatorname{MLXBR}=2$, TS = bits 12-11 of NNADTEM shifted right 10 If $T S<2$, proceed to "DSPALARM" (noun has no third component) $\mathrm{BUF}_{2}=-$ contents of cell specified by ( $2+\mathrm{NOUNADD}$ )
Proceed to "DSPAB"

## DSPCOM2

$i=0$
If VERBREG $=4, i=1$
If $\operatorname{VERBREG}=5$, $i=2$
If $i=2$ :
DSPCOUNT $=\mathrm{K}:$ R3D1 (4)
Perform "DSPOCTWD" with TSwd $=-\mathrm{BUF}_{2}$
$i=i-1$
If $i=1$ :
DSPCOUNT $=\mathrm{K}:$ R2D1
Perform "DSPOCTWD" with $T$ Wwd $=-$ BUF $_{1}$
DSPCOUNT $=\mathrm{K}:$ R1D1
Perform "DSPOCTWD" with $T S w d=-B_{0}$
If ENTRET = "ENDOFJOB", end job
Proceed to address specified by ENTRET

DECDSP If MIXBR = 1, DECOUNT = bits 12-11 of NNTYPTEM
If MIXBR $=2$, DECOUNT $=$ bits 12-11 of NNADTEM $\quad$ B4 to B14)
If DECOUNT = 2: (three components)
ZREG $=-$ contents of cell specified by ( $2+$ NOUNADD $)$
If DECOUNT $\geq 1$ : (two or three components)
YREG $=$ - contents of cell specified by ( $1+$ NOUNADD)
$X R E G=-$ contents of cell specified by NOUNADD
DSPDCPUT If DECOUNT $=2$ :
DSPCOUNT $=K: R 3 D I$
$\mathrm{MPAC}_{s p}=-$ ZREG
If $M I X B R=1$, $\mathbf{i}=$ low 5 bits of NNTYPTEM
If MIXBR $=2$, $i=$ high 5 bits of NNTYPTEM shifted right 10
If DECOUNT = I:
DSPCOUNT $=\mathrm{K}:$ R2DI
$\mathrm{MPAC}_{\text {sp }}=-\mathrm{YREG}$
If $\operatorname{MIXBR}=1$, $\mathrm{i}=$ Iow 5 bits of NNTYPTEM
If $\operatorname{MIXBR}=2$, $i=\operatorname{mid} 5$ bits of NNTYPTEM shifted right 5
If DECOUNT $=0$ :
DSPCOUNT $=\mathrm{K}:$ RIDI
$\mathrm{MPAC}_{s p}=-\mathrm{XREG}$
If $\operatorname{MIXBR}=1$, $\mathbf{i}=$ low 5 bits of NNTYPTEM
If $\operatorname{MIXBR}=2$, $i=$ low 5 bits of NNTYPTEM
SFTEMPI $=K:$ SFOUTAB $_{i}$
If $\operatorname{MIXBR}=2$, $i=$ high 5, mid 5 or low 5 bits of RUPMXTEM shifted right 10,5 or 0 according to whether DECOUNT $=2,1$ or 0

$$
\text { DATA - } 9
$$

```
 If MIXBR = l, i = mid 5 bits of NNTYPTEM shifted right 5
 (i now contains the index determining the type of display)
DECDSP3 If i = 0: (octal only noun)
 DSPCOUNT = -19
 Proceed to "DSPALARM"
 If i = l, proceed to "DSPDCEND"
 If i = 2, proceed to "DEGOUTSF"
 If i= 3, proceed to "ARTOUTSF"
 If i = 4:
 Perform "DPOUT"
 MPAC
 If i= 5 or 10:
 Perform "DPOUT"
 If i = 6, proceed to "LRPOSOUT"
 If i = 7:
 Perform "DPOUT"
 MPAC
 If i = 8, proceed to "HMSOUT"
 If i = 9, proceed to "M/SOUT"
 If i = ll, MPAC
 If i = 12, proceed to "2INTOUT"
 If i = 13, proceed to "360-CDUO"
 If i = 14, proceed to "RRANGOUT"
 If i = 15, proceed to "RRDOTOUT"
 Proceed to "DSPDCEND"
ARTOUTSF If MPAC O}=-0,MPAC (Mp = -0
```

$\mathrm{MPAC}_{\mathrm{dp}}=$ SFTEMP1 MPAC ${ }_{\mathrm{sp}}$
Proceed to "DSPDCEND"
DEGOUTSF (Entered with SFTEMPI $=0$ and $M_{\text {PAC }}$ between $-\frac{1}{2}$ and $+\frac{1}{2}$ revs B-1) MPAC $=M_{\text {PAC }}$ converted to one's complement form
If MPAC $<0$ :
$M P A C=M P A C+\frac{1}{2}$
SFTEMPI $=\frac{1}{2}$
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}: 0.180(\mathrm{MPAC}+\mathrm{SFTEMP1})$
(exit with MPAC ${ }_{d p}$ between 0 and 360 degrees scaled E3)
Proceed to "DSPDCEND"
DPOUT If $\mathrm{MIXBR}=1, \mathrm{TS}=$ NOUNADD
If $\mathrm{MIXBR}=2:$
$i=\operatorname{DECOUNT}+1$
EBANK = bits ll-9 of IDADTEM $_{\text {i }}$
TS $=01400_{8}+$ bits $8-1$ of IDADTEM ${ }_{i}$
$\begin{array}{rl}M P A C & d p \\ = & \text { contents of double precision register whose address is } \\ \text { specified by TS }\end{array}$
Force sign agreement between two halves of $M P A C d p$
$\mathrm{MPAC}_{t \mathrm{p}}=\mathrm{MPAC}_{\mathrm{dp}}$ SFTEMP1
Return
LRPOSOUT $M_{s p}=-$ bits $7-6$ of channel 33 shifted right 5
Proceed to "ARTOUTSE"
HMSOUT If MIXBR = 2:

$$
\mathbf{i}=\mathrm{DECOUNT}+1
$$

EBANK = bits ll-9 of IDADTEM $_{i}$
$\mathrm{TS}=\mathrm{Ol}_{400}+$ bits 8-1 of IDADTEM $_{i}$

```
If MIXBR = 1, TS = NOUNADD
MPAC
Force sign agreement between two halves of MPAC dp
TS
HITEMOUT = most significant third of TS tp
LOTEMOUT = second most significant third of TS
MPAC
MPAC
DSPCOUNT = K:R3DI
Perform "DSPDECWD"
Discard fractional part of LOTEMOUT (shift right 12 then left 12)
MPAC }\mp@subsup{tp}{\mathrm{ = K:MINCON1 (HITEMOUT + LOTEMOUT added with regard for}}{
 scaling) (yields hours in MPAC
 MPAC
HITEMOUT = most significant third of MPAC tp (MPAC }
MPAC
DSPCOUNT = K:R2D1
Perform "DSPDECWD"
MPAC
DSPCOUNT = K:R1DI
Perform "DSPDECWD"
If ENTRET = "ENDOFJOB", end job
Proceed to address specified by ENTRET
```

If $\operatorname{MTXBR}=2$ :
$i=$ DECOUNT +1
EBANK = bits 11-9 of IDADTEM $_{i}$
$T S=01400{ }_{8}+$ bits $8-1$ of IDADTEM $_{i}$
$\begin{aligned} M P A C \\ d p\end{aligned}=\begin{gathered}\text { contents of double precision register whose address } \\ \\ \text { is specified by } T S\end{gathered}$
Force sign agreement between two halves of $M P A C ~ d p$
If $\left|M P A C_{d p}\right| \geq|K: M A S C O N 1|, M P A C_{d p}=K: M d S C O N 3 \operatorname{signMPAC}_{d p}$
If $\left|M P A C_{d p}\right|<|K: M d S C O N 1|, M P A C_{d p}=M P A C_{d p}+K:$ RNDCON signMPAC ${ }_{d p}$
$T S_{t p}=K$ :SECON1 MPAC ${ }_{d p}$
HITEMOUT $=$ most significant third of $\mathrm{TS}_{t p}$
LOTEMOUT $=$ second most significant third of $\mathrm{TS}_{\mathrm{tp}}$
$M P A C_{d p}=$ fractional part of $T S_{t p} \quad$ (accurate to 1 centisecond)
$M_{\mathrm{MPAC}}^{\mathrm{dp}}$ $=\mathrm{K}:$ HISECON MPAC ${ }_{\mathrm{dp}}$
DSPCOUNT $=$ DSPCOUNT -3 (previously set in "DSPDCPUT")
Perform "DSPDC2NR" (display seconds in RxD4 and RxD5)
$\mathrm{CODE}=0$
TS $=\mathrm{K}:$ R1D1, $\mathrm{K}:$ R2D1 or $\mathrm{K}:$ R3D1 according to whether $\operatorname{DECOUNT}=0,1$ or 2
COUNT $=T S-2$
Perform "DSPIN" (blank middle digit)
Discard fractional part of LOTEMOUT (shift right 12 then left 12)

$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}: \mathrm{HIMINCON} \mathrm{MPAC}_{1}$
DSPCOUNT $=K: R 3 D 1, K: R 2 D 1$ or $K: R 1 D 1$ according to whether DECOUNT equals 2,1 or 0

```
 Perform "DSPDC2NR" (display minutes in RxD1 and RxD2)
 Proceed to second step of "DSPDCEND"
 (display already performed)
2INTOUT Perform "5BLANK"
 Perform "+ON"
 Perform "DSPDECVN" with TS = MPAC sp (first integer to RxD1 and D2)
 TS = K:R1D1, K:R2D1 or K:R3D1 according to whether DECOUNT = 0, 1 or 2
 DSPCOUNT = TS - 3
 If MTXBR = 1, TS = 1 + NOUNADD
 If MIXBR = 2:
 i = DECOUNT + 1
 EBANK = bits 11-9 of IDADTEM i
 TS = 014008
 MPAC
 Perform "DSPDECVN" with TS = MPAC 1 (second to RxD4 and RxD5)
 Proceed to second step of "DSPDCEND" (display already performed)
360-CDUO If MPAC
 MPAC sp = - MPAC sp (two's complement)
 Proceed to "DEGOUTSF"
 DSPDCEND Perform "DSPDECWD"
 If DECOUNT > 0:
 DECOUNT = DECOUNT - 1
 Proceed. to "DSPDCPUT"
If ENTRETT= "ENDOFJOB", end job
Proceed to address specified by ENTRET
```

DSPDPDEC If MIXBR $=2$, proceed to "DSPALARM"
$\begin{aligned} M P A C \\ d p\end{aligned}=\begin{gathered}\text { contents of double precision register whose address } \\ \text { is specified by NOUNADD }\end{gathered}$
DSPCOUNT $=K: R 1 D 1$
Force sign agreement in MPAC ${ }_{d p}$
Perform "DSP2DEC"
If ENTRET = "ENDOFJOB", end job
Proceed to address specified by ENTRET
MONITOR TSadr = NOUNCADR with bits 15 and 14 switched to 0
If ENTRET = "ENDOFJOB" (externally initiated)
Switch bit 14 of TSadr to 1
MONSAVE2 $=00000_{8} \quad$ (set in "NVSUB" if internal)
TSvn $=$ (bits 7-1 of VERBREG shifted left 7) + NOUNREG
DSPLOCK $=0$
If CADRSTOR $=0$, perform "RELDSP1"
Inhibit interrupts
If MONSAVE $=0$, call "MONREQ" in 0.01 second
MONSAVE $=$ TSvn
MONSAVE1 $=$ TSadr
Release interrupt inhibit
If ENTRET = "ENDOFJOB", end job
Proceed to address specified by ENTRET
MONREQ SAMPTIME $=$ TIMENOW
If bit 15 of MONSAVE1 = 1:
MONSAVE $=0$

```
 (If bit 15 of MONSAVE1 = 1)
 MONSAVE1 = 00000
 End task
 Call "MONREQ" in 1 second
 Establish "MONDO"
 (pr30)
 End task
MONDO If bit 15 of MONSAVE1 = 1, end job
 If DSPIOCK > 0:
 Switch bit 5 of channel }11\mathrm{ to 1 (key release lamp)
 End job
 NOUNREGG = bits 7-1 of MONSAVE
 Perform "UPDATNN"
 VERBREG = (bits 14-8 of MONSAVE shifted right 7) - 10
 ENTRET = "PASTEVB"
MPAC}2= bits 13-1 of MONSAVE1 (address)
Proceed to "TESTNN" (continues at "PASTEVB" after display
 verb is executed)
PASTEVB TS = bits 14-8 of MONSAVE2
 If TS = 0, TS = bits 14-8 of MONSAVE
 VERRREG = TS shifted right 7 places
 Perform "UPDATVB"
 REQRET = +0
 TSblank = MONSAVE2
 Perform "BLANKSUB"
 End job
```

```
UPDATNN Perform "LODNNTAB"
 If NNADTEM }\geq+0
 NOUNCADR = NNADTEM
 EBANK = bits 11-9 of NNADTEM
 NOUNADD = 014008
 DSPCOUNT = K:ND1
 Perform "DSPDECVN" with TS = NOUNREG
 Return
UPDATVB DSPCOUNT = K:VD1
 Perform "DSPDECVN" with TS = VERBREG
 Return
DSPMMJOB TSmmtemp = DSPCOUNT
 DSPCOUNT = K:MD1
 If MODREG = -0, perform "2BLANK"
 If MODREG \geq+0, perform "DSPDECVN" with TS = MODREG
 DSPCOUNT = TSmmtemp
 End job
ALMCYCLE Switch bit 7 of channel 11 to 1 (operator error lamp)
 REQRET = - VERBSAVE (to make it positive)
 VERBREG = - VERBSAVE
 Perform "UPDATVB"
CLPASS = O
ENTRET = "ENDDOFJOB"
Proceed to "ENTPASO"
```

DATA - 17

| ALOAD | Perform "REQDATX" (return is via REQRET after data entry) |
| :---: | :---: |
|  | Perform "LODNNTAB" |
|  | Perform "PUTCOM" with DECOUNT $=0$ |
|  | Store TS from "PUTCOM" in address specified by NOUNADD |
|  | Proceed to "LOADLV" |
| BLOAD | Perform "GETCOMP" |
|  | TS = low 2 bits of (TS shifted right 10) |
|  | If $T S<1$, proceed to "DSPALARM" (noun has no 2nd component) |
|  | CLPASS $=-\mathrm{K}:$ posmaxsp |
|  | Perform "REQDATY" (return is via REQRET after data entry) |
|  | Perform "LODNNTAB" |
|  | Perform "PUTCOM" with DECOUNT $=1$ |
|  | Store TS from "PUTCOM" in address specified by ( $1+$ NOUNADD) |
|  | Proceed to "LOADLV" |
| CLOAD | Perform "GETCOMP" |
|  | TS = low 2 bits of (TS shifted right 10) |
|  | If $\mathrm{TS}<2$, proceed to "DSPALARM" (noun has no 3rd component) |
|  | CLPASS $=-\mathrm{K}:$ posmaxsp |
|  | Perform "REQDATZ" (return is via REQRET after data entry) |
|  | Perform "LODNNTAB". |
|  | Perform "PUTCOM" with DECOUNT $=2$ |
|  | Store TS from "PUTCOM" in address specified by ( $2+$ NOUNADD) |
|  | Proceed to "LOADLV" |

ABLOAD Perform "GETCOMP"
TS = low 2 bits of (TS shifted right 10)
If $T S<1$, proceed to "DSPALARM" (noun has no 2nd component)
Perform "GETCOMP"
If bit 15 of $T S=1$, proceed to "DSPALARM" ("no-load" noun)
VERBREG $=\mathrm{K}: V B 21$
Perform "UPDATVB"
Perform "REQDATX" (return is via REQRET after data entry)
VERBREG $=\mathrm{K}:$ VB22
Perform "UPDATVB"
Perform "REQDATY"
Bits 5 and 4 of DECBRNCH now indicate whether the numbers loaded were decimal (1) or octal.(0). (See routine "BOTHSGN") If both are not the same (one component octal, the other decimal):

Proceed to "ALMCYCLE"
Perform "LODNNTAB"
Perform "PUTCOM" with DECOUNT $=0$
Store TS from "PUTCOM" in address specified by NOUNADD
Perform "PUTCOM" with DECOUNT = 1
Store TS from "PUTCOM" in address specified by (1 + NOUNADD)
Proceed to "LOADLV"
ABCLOAD Perform "GETCOMP"
TS = low 2 bits of (TS shifted right 10)
If $T S<2$, proceed to "DSPALARM" (noun has no 3rd component)
Perform "GETCOMP"
If bit 15 of $T S=1$, proceed to "DSPALARM" ("no-load" noun)

```
VERBREG = K:VB21
Perform "UPDATVB"
Perform "REQDATX" (return is via REQRET after data entry)
VERBREG = K:VB22
Perform "UPDATVB"
Perform "REQDATY"
VERBREG =: K:VB23
Perform "UPDATVB"
Perform "REQDATZ"
Bits 3, 4 and 5 of DECBRNCH now indicate whether the numbers
loaded were decimal (1) or octal (0). If the three bits are
not all 1 or all O (some components octal and some decimal):
 Proceed to "ALMCYCLE"
Perform "LODNNTAB"
Perform "PUTCOM" with DECOUNT = 0
Store TS from "PUTCOM" in address specified by NOUNADD
Perform "PUTCOM" with DECOUNT = 1
Store TS from "PUTCOM" in address specified by (1 + NOUNADD)
Perform "PUTCOM" with DECOUNT = 2
Store TS from "PUTCOM" in address specified by (2 + NOUNADD)
If NOUNREG }\not=7\mathrm{ , proceed to "LOADLV"
EBANK = bits 11-9 of XREG
NOUNADD = 01400 8}+\mathrm{ + bits 8-1 of XRFG
Inhibit interrupts
TS = contents of flagword specified by NOUNADD
```

$T S=T S \AA$ YREG (all bits in TS that correspond to bits in YREG that are " 1 " are switched to 0 ; others remain unchanged)

If $Z R E G \neq 0, T S=T S+Y R E G$
Store TS in flagword specified by NOUNADD
Release interrupt inhibit
Proceed to "IOADLV"
GETCOMP If MIXBR = 1, TS = high 5 bits of NNTYPTEM
If $\operatorname{MLXBR}=2, \mathrm{TS}=$ high 5 bits of NNADTEM
Return
PUTCOM DECRET = return address
Set overflow indicator to 0
$\begin{aligned} \mathrm{MPAC}_{\mathrm{dp}}= & (\mathrm{XREG}+\mathrm{XREGLP}),(\text { YREG }+ \text { YREGLP) or }(\text { ZREG }+ \text { ZREGLP }) \\ & \text { according to whether DECOUNT }=0,1 \text { or } 2\end{aligned}$
If $\operatorname{MIXBR}=1$, proceed to "PUTNORM"
$\mathbf{i}=$ DECOUNT +1
NOUNCADR = low 11 bits of IDADTEM $_{\text {i }}$
EBANK = bits 11-9 of NOUNCADR
NOUNADD $=\left(01400_{8}+\right.$ bits $8-1$ of NOUNCADR $)-$ DECOUNT
If DECBRNCH $>0$ : (decimal)
Perform "GETI" with TS = NNTYPTEM
SFTEMP1 $=\mathrm{K}:$ SFINTAB $_{i}$
Perform "GETI" with TS = RUTMXTEM
Proceed to "PUTDCSF2"
Perform "GETCOMP"
If bit 14 of $T S=1$, proceed to "ALMCYCLE" (decimal only)
Perform "GETI" with TS = RUTMXTEM

If $i=4,5,7$ or 10 : (double precision noun)
Set (the more significant half of the double precision register specified by NOUNADD + DECOUNT) $=0$

NOUNADD $=$ NOUNADD +1 (specify minor part)
Proceed to "PUTCOM2"

| GETI | $i=$ high 5 bits (DECOUNT = 2), mid 5 bits (DECOUNT = 1) or |
| :---: | :---: |
|  | low 5 bits (DECOUNT $=0$ ) of TS shifted right 10,5 or 0 places according to whether DECOUNT $=2,1$ or 0 . |
|  | (i is of the form $0000000000 \times \mathrm{xxx} \mathrm{K}_{2}$ ) |
|  | Return |
| PUTNORM | EBANK = bits 11-9 of NOUNCADR (NOUNCADR set in "TESTNN") |
|  | NOUNADD $=014008$ + bits $8-1$ of NOUNCADR |
|  | If DECBRNCH $>0$ : (decimal) |
|  | i = low 5 bits of NNTYPTEM |
|  | SFTEMP1 $=$ K: SFINTAB ${ }_{\text {i }}$ |
|  | $i=m i d 5$ bits of NNTYPTEM shifted right 5 |
|  | Proceed to "PUTDCSF2" |
|  | Perform "GETCOMP" |
|  | If bit 14 of TS = 1, proceed to "ALMCYCLE" (decimal only) |
|  | $i=m i d 5$ bits of NNTYPTEM shifted right 5 |
|  | If $i=4,5,7$ or 10: (double precision noun) |
|  | Set (the more significant half of the double precision register specified by NOUNADD) $=0$ |
|  | NOUNADD $=$ NOUNADD +1 |
|  | Proceed to "PUTCOM2" |

If NNADTEM = -1: (channel load)
If $N O U N C A D R=7$, proceed to "LOADLV"
Set channel specified by NOUNCADR equal to the more significant half of $M P A C$ dp (in low 9 bits of NOUNCADR)
Proceed to "LOADLV"
Proceed to "PUTCOM2"

```
PUTDCSF2 If \(i=0\), proceed to "ALMCYCLE" (octal only)
 If \(i=1\), proceed to "BINROUND"
 If \(i=2\), proceed to "DEGINSF"
 If \(i=3\) :
 \(\mathrm{MPAC}_{\mathrm{dp}}=\) SFTEMP1 K:bOtobm14 MPAC \({ }_{\mathrm{dp}}\)
 If overflow, proceed to "ALMCYCLE"
 Proceed to "BINROUND"
 If \(i=4\) or 7 :
 \(M P A C_{t p}=\) SFTEMP1 \(_{\text {MPAC }}^{\text {dp }}\)
 Proceed to "DPINSF+2"
 If \(i=5\) :
 \(M_{P A C}^{t p}=\) SFTEMP1 \(\mathrm{K}:\) bOtobm7 MPAC \({ }_{\mathrm{dp}}\)
```

Proceed to "DPINSF+2"
If $i=6$, proceed to "DSPALARM" (LR position is display only)
If $i=8$, proceed to "HMSIN"
If $i=9$, proceed to "DSPALARM" ( $\mathrm{min} / \mathrm{sec}$ cannot be loaded)
If $i=10$ :
$M_{P A C}{ }_{\text {tp }}=$ SFTEMP1 K:bOtobm3 MPAC ${ }_{\mathrm{dp}}$
Proceed to "DPINSF+2"

$$
\text { DATA }-23
$$

If $\mathrm{i}=11:$

$$
\text { MPAC }_{d p}=\text { MPAC }_{d p} \text { SFTEMPI }
$$

Proceed to "BINROUND"
If $i=12$, proceed to "DSPALARM" (2INT cannot be loaded)
If $i=13$, proceed to "DEGINSF" (test for 360-CDU in "DEGINSF")
If $i=14$ or 15 , proceed to "DSPALARM" ( $R R$ data cannot be loaded)
BINROUND $M P A C$ sp $=M P A C_{d p}$ rounded off
If overflow, proceed to "ALMCYCLE"
Proceed to "PUTCOM2"
DPINSF+2 $\quad M P A C C_{d p}=M P A C_{t p}$ rounded off
If overflow, proceed to "ALMCYCLE"
If $\operatorname{MIXBR}=1, T S=$ NOUNADD
If $\operatorname{MTXBR}=2, \mathrm{TS}=$ NOUNADD +DECOUNT
Store less significant half of MPAC ${ }_{d p}$ in less significant half of double precision register specified by TS

MPAC $_{\text {sp }}=$ more significant half of MPAC ${ }_{d p}$
Proceed to "PUTCOM2"
DEGINSF $\quad M_{\text {PAC }}=K:$ DEGCON1 $_{\mathrm{dp}}$ MPAC $_{\mathrm{dp}}$
$M P A C_{s p}=M P A C C_{d p}$ rounded off and rescaled to $B-1$ (sl3)
If $\left|\mathrm{MPAC}_{\text {sp }}\right| \geq 1\left(360^{\circ}\right)$, proceed to "ALMCYCLE"
MPAC $=$ MPAC $_{\text {sp }}$ converted to two's complement form
If MPAC $\geq \frac{1}{2}\left(180^{\circ}\right)$ :

$$
M P A C=-(1-M P A C)
$$

If MPAC $<-1$ :

$$
M P A C=M P A C+1
$$

If MIXBR $=1$, $i=$ mid 5 bits of NNTYPTEM shifted right 5

If $\mathrm{MLXBR}=2$, perform "GETI" with TS = RUTMXTEM
If i $\neq 2: \quad(360-C D U)$
If MPAC $\neq 0$ or $-1, \mathrm{MPAC}=-\mathrm{MPAC} \quad$ (two's complement)
$M P A C_{s p}=\mathrm{MPAC}$
Proceed to "PUTCOM2"
HMSIN If bits 3, 4 and 5 of DECBRNCH are not all 1: (three decimal components have not been loaded)

VERBSAVE $=-\mathrm{K}:$ VB25 $\quad$ (initiate ABCLOAD)
Proceed to "ALMCYCLE"
$\mathrm{TS}=\mathrm{K}: \mathrm{HRCON}\left(10^{5} \mathrm{MPAC}_{\mathrm{dp}}\right.$ rounded to whole hours)
If $|T S| \geq 2^{28}$, proceed to "AIMCYCLE" (745 hour max)
HITEMIN $=T S$
$T S=10^{5}$ (YREG + YREGLP) rounded to whole minutes
If $|\mathrm{TS}|>\mathrm{K}: 59 \mathrm{MIN}$, proceed to "ALMCYCLE"
HITEMIN $=$ HITEMIN $+K:$ MINCON TS
If $\mid$ HITEMIN $\mid \geq 2^{28}$, proceed to "ALMCYCLE"
$T S=10^{5}$ (ZREG + ZREGLP) rounded to whole centiseconds
If $|T S|>K: 59.99 S E C$, proceed to "ALMCYCLE"
$T S=$ HITEMIN + TS
If $|T S| \geq 2^{28}$, proceed to "ALMCYCLE"
$M_{\mathrm{MPAC}}^{\mathrm{dp}}$ $=T S$ with forced sign agreement between two halves
Store MPAC $_{d p}$ in double precision register specified by NOUNADD
Proceed to "LOADLV"
PUTCOMR $\quad T S=M P A C_{s p}$
Return via DECRET

$$
\text { DATA - } 25
$$

If NOUNCADR $\neq 11 \mathrm{x} \operatorname{xxx} \operatorname{xxx} \times x \times x_{2} x_{2}$ :

$$
\begin{aligned}
\mathrm{TS}= & \text { contents of fixed memory cell whose address is specified } \\
& \text { by information in NOUNCADR (Standard fixed memory CADR } \\
& \text { format contains FBANK information in bits } 15-11 \text { and } \\
& \text { S-register information in bits 10-1.) }
\end{aligned}
$$

If $\operatorname{NOUNCADR}=11 \mathrm{x} \operatorname{xxx} \operatorname{xxx} \operatorname{xxx} \mathrm{xxx}_{2}$ :
$T S=$ contents of fixed memory cell whose address is specified by information in NOUNCADR and in DSPTEM1 ${ }_{2}$. (DSPTEM1 ${ }_{2}$ contains FBANK extension or "Superbank" information in bits 7-5 and must be loaded prior to verb 27 entry with a verb 23, noun 26 for access to fixed memory banks $30_{8}$ through $438^{\circ}$ )

Perform "DSPOCTWD"
End job
MMCHANG
Perform "REQMM" (return is via REQRET on data entry)
If DSPCOUNT $\neq-16$, proceed to "ALMCYCLE"
TS = NOUNREG (which contains desired major mode)
NOUNREG $=0$
Perform "2BLANK" with DSPCOUNT = K:ND1
DSPCOUNT $=-19 \quad$ (to block further numerical entries)
MMNUMBER $=T S$
Proceed to "V37"
RRANGOUP $^{M P A C}{ }_{d p}=M P A C_{s p}$ ( 15 magnitude bits) converted to double precision
If RADMODES bit 3 (RRRSFLAG) $=0$ : (low scale)
Stip next step
$\mathrm{MPAC}_{\mathrm{dp}}=8 \stackrel{M P A C}{d p}^{\mathrm{M}}$
MPAC $_{t \mathrm{p}}=$ MPAC $_{\mathrm{dp}}$ SFTEMPI
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}: \mathrm{bl}_{4} \mathrm{tob0} \mathrm{MPAC}_{\mathrm{tp}}$
Proceed to "DSPDCEND"

$$
\text { DATA - } 26
$$

RRDOTOUT $M_{\text {PAC }}=M P A C_{s p}$ ( 15 magnitude bits) converted to double precision
$M P A C_{d p}=$ MPAC $_{d p}-17000 \quad$ (subtract bias of 17000 counts)

MPAC $_{t p}=$ MPAC $_{d p}$ SFTEMPI
MPAC $_{d p}=K: b 14$ tob0 MPAC $_{t p}$
Proceed to "DSPDCEND"
$\mathrm{BUF}_{i}(i=0,1,2)$ : Three single precision octal working storage cells.

CADRSTOR: See DINT section.
CLPASS, CODE, COUNT: See DSKY section.

DECBRNCH: See DSKY section.
DECOUNT: Single precision number of components in a noun display, extracted from the relevant bits of NNTYPTEM or NNADTEM, scaled B14 and unitless. (Number of components $=$ DECOUNT +1. )

DECRET: Single precision octal return address storage.
DSPCOUNT, DSPLOCK: See DSKY section.
DSPTAB $_{i}(i=0-10):$ See DSKY section.
DSPTEM1, DSPTEM2, DSPTEMX: Single, double or triple precision display interface registers with variable scaling and units. See tables below.

EBANK: See MATX section.

ENTRET: Single precision octal address indicating whether the data input/output is under control of the astronaut or of internal programs.
FBANK: See MATX section.
FREEDSKY: Variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether "NVSUB" finds the DSKY free or unavailable for use by internal programs.

HITEMIN: Double precision working storage in "HMSIN", scaled B28 in units of centiseconds.

HITEMOUT: Single precision working storage for minutes scaled B16 or hours scaled B14.

IDADTEM ( $i=1,2,3$ ): Three single precision octal words containing the address and EBANK information for each of the three separate registers that can be displayed or loaded by a mixed noun. (Equal to to if the component of the mixed noun is not utilized.)

K:O.180: Double precision constant stored as 05605803656 , scaled B1 in units of degrees per revolution. Equation value: $360 / 1000$.

K:59MIN: Single precision constant stored as 00073 , scaled B14 in units of minutes. Equation value: 59.

K:59.99SEC: Single precision constant stored as 135578, scaled B14 in units of centiseconds. Equation value: 5999.

K:bOtobm14: Constant representing the effect of a left shift of 14 , scaled B-14 and unitless. Equation value: 1.

K: bOtobm3: Constant representing the effect of a left shift of 3 , scaled B-3 and unitless. Equation value: 1.

K: bOtobm7: Constant representing the effect of a left shift of 7, scaled B-7 and unitless. Equation value: 1.

K:b14tobO: Constant representing the effect of a left shift of 14 , scaled B-14 and unitless. Equation value: 1.

K:b7tobC: Constant representing the effect of a left shift of 7 , scaled B-7 and unitless. Equation value: 1.
K:DEGCON1: Double precision constant stored as $5.555555555 \times 2^{-3}$, scaled B2 in units of revolutions per degree. Equation value: $1000 / 360$.

K:HIMINCON: Single precision constant stored as 23346 , scaled BO in units of minutes per hour. Equation value: $60.8 / 100$ (for round off).

K:HISECON: Single precision constant stored as 23147 , scaled BO in units of seconds per minute. Equation value: $60 \$ 100$.

K:HRCON: Double precision constant stored as 00025 g 37100 , scaled B28 in units of centiseconds per hour. Equation value: 368,000.

K:HRCON1: Double precision constant stored as 0.16384 , scaled B-14 and unitless. Equation value: 0.00001.

K:IDADTAB ( $\mathrm{i}=0-179$ ): Table of single precision addresses for mixed nouns, ${ }^{1}$ loaded into IDADTEM $_{i+1}$ according to the value of NNADTEM Program name: IDADDTAB.

K:MDI: Single precision constant to cause a numerical display to be started in the first digit of the major mode (program) register, scaled B14 and unitless. Equation value: 21.

K:MdSCONL: Double precision constant stored as 77753 , 41126 , scaled B28 in units of centiseconds. Equation value: $-359,850{ }^{\circ}$ (Equivalent to $-59: 58.5=-25 \mathrm{~g} 36652_{8}$ because of CCS.)

K:MdSCON3: Double precision constant stored as 00025 g 37016 , scaled B28 in units of centiseconds. Equation value: 359,950. ${ }^{8}$ (Equivalent to 59:59.5.)

K:MINCON: Single precision constant stored as $13560_{8}$, scaled B14 in units of centiseconds per minute. Equation value: 6000.

K:MINCONL: Double precision constant stored as 02104 g 10422 , scaled $B-2$ in units of hours per minute. Equation value: $1 / 60$.

K:MINCON2: Double precision constant stored as $0001 l_{8} 32445$, scaled BO in units of minutes per hour. Equation value: 60\%100000.

K:NDI: See DSKY section.
K:NNADTAB ( $\mathrm{i}=0-99$ ): Table of single precision constants to be loaded into NFADTEM according to the value of NOUNREG. See tables 1 and 2 below.

K:NNTYPTAB; (i $=0-99$ ): Table of single precision constants to be loaded into NNTYPTEM according to the value of NOUNREG. See tables 1 and 2 below.

K:posmaxsp: See "Major Variables" section.
K:RID1, K:R2D1, K:R3Dl: See DSKY section.
K:RNDCON: Double precision constant stored as $00000{ }_{8} 00062$, scaled B28 in units of centiseconds. Equation value: 50.

K:RUTMXTAB ( $\quad=40-99$ ): Table of single precision constants to be loaded into RUTMXTEM according to the value of NOUNREG. See table 2 below.
K:SECONL: Double precision constant stored as $1.66666666 \mathrm{E}-4 \times 2^{12}$, scaled B-12 in units of minutes per centisecond. Equation value: 1/6000.

K:SECON2: Double precision constant stored as 01727 g 01217g, scaled B-14 in units of seconds per minute. Equation value: 68/1000.

K:SFINTAB ( $i=0-27$ ): Table of double precision constants with variable scaling and units, used to convert from units used on a DSKY display into units used in the LGG. See table 3 below.

K:SFOUTAB ( $1=0-27$ ): Table of double precision constants with variable scaling and units, used to convert from units used in the LGC to units used on a DSKY display. See table 3 below.

K:VB21, K:VB22, K:VB23, K:VB25: Single precision constants stored as $21,22,23$, and 25 times two to the minus fourteenth power, scaled B14 and unitless. Equation values respectively: $21,22,23,25$.

K:VDl: See DSKY section.
LOADSTAT: See DINT section.
LOTEMOUT:" Single precision working storage for minutes, scaled B2.
MIXBR: Single precision index indicating whether the noun being processed is a "mixed" noun (addresses non-consecutive E-memory cells) or a "normal" noun (addresses one or more consecutive E-memory cells); scaled B14 and unitless.

MIXTEMP. ( $i=0,1,2$ ): Three consecutive single precision E-memory cells loaded with the values of the three non-consecutive registers addressed by a mixed noun so that the same display logic can be used for both normal and mixed after the MIXTEMP; are loaded and NOUNADD is set equal to the address of MIXTEMP $0^{\circ}$

MMNUMBER: See PGSR section.
MODREG: Single precision register reflecting the status of the "major mode" or "program" number on the DSKY, scaled B14 and unitless.

MONSAVE: Single precision storage for monitor verb and noun (verb number in bits 14-8, noun in bits 7-1).

MONSAVEI: Single precision octal storage for the address of the noun to be displayed by the monitor routines. Bits 15 and 14 are used as flag bits, Bit 15 is set to terminate the monitor, and bit 14 is set to indicate that the monitor was initiated by the astronaut and thus takes priority over displays requested by the program.

MONSAVE2: Single precision storage for an octal blanking code and/or a verb to be "pasted" over the display verb during a monitor.

$$
\text { DATA - } 31
$$

IMPAC, $\mathbb{N P A C}_{s p}, \mathbb{M P A C}_{t p}$ : Single, double and triple precision working

$\mathrm{MPAC}_{2}$ : Single precision storage for an octal address when and "address-tô-be-specified noun" is used by LGC programs. Instead of requesting the address from the astronaut, the program finds it in $\mathrm{MPAC}_{2}$. (see "TESTNN").

NNADTEM: Single precision octal word containing the following information. If the noun is a normal noun, NNADTEM contains the normal noun address and EBANK. If the noun is a mixed noun, NNADTEM contains the "no-load" and "decimal only' indicators (bits 15 and 14), the indication of the number of components in the noun (bits 12-11), and the index used to load IDADTEM ${ }_{i}$ (see "LODNNTAB").

NNTYPTEM: Single precision octal word containing the following information. If the noun is a normal noun, NNTYPTEM contains the "no-load" and "decimal only" indicators (bits 15 and 14), the indication of the number of components in the noun (bits 12-11), the specification of the routine to be used for input/output (bits 10-6), and the index used in selecting the scale factor to be used in input/output scaling (bits $5-1$ ). If the noun is a mixed noun, NNTYPTEM contains the index used in selecting the scale factor for each of the three components. Bits 15-11 contain the index for the third component, bits $10-6$ contain the index for the second component, and bits 5-1 contain the index for the first component.

NOUNADD: Single precision octal address of register or registers to be displayed or loaded by the noun being processed.

NOUNCADR: Single precision octal address of the most recent register displayed by a normal noun or loaded.

NOUNREG: Single precision storage for the value of the number currently displayed in the noun register on the DSKY, scaled B14 and unitless.

NOUNTEM: Single precision temporary storage for the address of one of the components of a mixed noun.

NOUT: See INTR section.
NVQTEM: Single precision octal return address storage.
NVTEMP: Single precision storage for verb-noun combination, the noun number stored in bits 7-1 and the verb number stored in bits 14-8; used instead to indicate a desired blanking option if bit 15 is set (if NVTEMP is negative).

OPTION1, OPTION2, OPTION3: Three single precision option codes for display to the astronaut via noun 6. The first indicates the subject of the decision to be made, the second indicates the choice made, which he may accept or change, the third indicates flagbit settings.
RADMODES: See RADR section.
REQRET: See DSKY section.
RUTMXTEM: Single precision octal word loaded only for mixed nouns. Bits 15-11 specify the routine to be used in input/output of the third component of the mixed noun; bits 10-6 specify the routine for the second component; bits 5-1 specify the routine for the first component.

SAMPTIME: See DSKY section.
SFTEMPI: Double, precision storage for the conversion/scale factor in decimal input/output routines.

TIMENOW: See EXVB section.
VERBREG: Single precision storage for the value of the number currently display in the verb register on the DSKY, scaled B14 and unitless.

VERBSAVE: Single precision storage for the value of VERBREG (complemented at the beginning of verb processing (see "ALMCYCLE").

VGDISP: See DELVSAB in BURN section.
XREG, XREGLP: Two halves (most and least significant) of the five digit number currently input into the first data register on the DSKY (RI), scaled BO assuming that the decimal point is on the left of the display register.

YREG, YREGLP: The equivalent of XREG and XREGLP for R2 instead of RI.
ZREG, ZREGLP: The equivalent of XREG and XREGLP for $R 3$ instead of $R 1$.

Table 1
Normal Nouns





| Noun | K:NNADTAB |  |  |  | K:IDADTAB | K : NNTYPPTAB |  |  | K:RUTMX'TAB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85 | 0 | 10 | 2 | 135 | VGBODY $X_{X}$ VGBODYy VGBODY | 01010 | 01.010 | 01010 | 00111 | 00111 | 00111 |
| 86 | 0 | 10 | 2 | 138 | DELVLVCx DELVLVCy DELVLVCz | 01010 | Olol0 | 01010 | 00111 | Oclll | 00111 |
| 87 | 0 | 00 | 1 | 141 | $\begin{aligned} & A Z \\ & E L \\ & +0 \end{aligned}$ | 00000 | 00010 | 00010 | 00000 | 00010 | 00010 |
| 88 | 0 | 10 | 2 | 144 | STARADOX STARADOy STARADOz | 00000 | 00000 | 00000 | 00001 | 00001 | 00001 |
| 89 | 0 | 10 | 2 | 147 | LANDLAT IANDLONG IANDALT | 00111 | 00011 | 0001.1 | 00100 | 00111 | Or lll |
| 90 | 0 | 10 |  | 150 | RANGE RRATE | 00100 | 01010 | 00111 | 01010 | 00111 | 0.100 |
| 91 | 0 | 00 |  | 153 | $\begin{aligned} & \text { RTHETA } \\ & \text { P2IALT } \\ & \text { P2IVEI } \\ & \text { P21GAM } \end{aligned}$ | 00100 | 01001 | 01000 | 01010 | 01010 | 00111 |
| 92 | 0 | 00 | 0 | 0 | +0 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 |
|  |  |  |  |  | $\begin{aligned} & +0 \\ & +0 \end{aligned}$ |  |  |  |  |  |  |
| 93 | 0 | 00 | 2 | 159 | OGC | 00011 | 00011 | 00011 | 00111 | 00111 | 00.111 |
|  |  |  |  |  | $\begin{aligned} & \text { IGC } \\ & \text { MGC } \end{aligned}$ |  |  |  |  |  |  |
| 94 | 0 | 00 | 0 | 0 | +0 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
| 95 | 0 | 00 | 0 | 0 | +0 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
| 96 | 0 | 00 |  | 0 | +0 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
|  |  |  |  |  | +0 |  |  |  |  |  |  |
| 97 | 0 | 00 |  | 171 | DSPTEMI DSPTEM17 | 00000 | 00000 | 00000 | 00011 | 00011 | 00011 |
|  |  |  |  |  | DSPTEMI2 |  |  |  |  |  |  |
| 98 | 0 | 00 |  | 174 | DSPTEM2 | 00000 | 00000 | 00000 | 00011 | 00001 | 00011 |
|  |  |  |  |  | DSPTEM2 1 DSPTEM2 |  |  |  |  |  |  |
| 99 | 0 | 102 |  | 177 | WWPOS | 11100 | 11011 | 11010 | 01010 | 00101 | 00111 |
|  |  |  |  |  | WWVEL WWBIAS |  |  |  |  |  |  |

Each description in the table is arranged in the following order:
Equation value
Scale factor and units
Stored value
(comment)

| Index | K :SFINTAB i | K : SFOUTAB ${ }_{\text {i }}$ |
| :---: | :---: | :---: |
| 0 | $10^{5}$ <br> B28, unitless 000068032408 | $\begin{aligned} & 10^{-5} \\ & \text { B-14, unitless } \\ & 0517483.32618 \end{aligned}$ |
|  | (used with nouns $2,14,21,25,27$ | 49,55,79,80,97,98) |
| 1 | +0 | +0 (not used) |
| 2 | 0 <br> B-l, revolutions <br> 0 <br> (used with nouns $3: 18,20,22,41,72$ | $+0$ $2,72,79,87)$ |
| 3 | when used with noun 89 $(100 / 360)+2^{-28}$ <br> BO, revolutions per degree <br> 107078034358 | ```360 / 100 B7, degrees per revolution 007148314638``` |
| 3 | when used with noun 93 $\begin{aligned} & (100 / 360) 2^{-21}+2^{-7} \\ & B-21, \text { gyro torque pulses/deg } \\ & 107078034358 \end{aligned}$ | $\begin{aligned} & 2^{21} 360 / 100 \\ & \text { B28 degrees per gyro pulse } \\ & 00714_{8} 314638 \end{aligned}$ |
| 4 | $(1000 / 360)+2^{-25}$ <br> B3, revolutions per degree $13070_{8} \quad 343458$ <br> (used with nouns $4,5,43,45,51$, | $\begin{aligned} & 360 / 100 \\ & \text { BO, degrees per revolution } \\ & 134128075348 \\ & 52,55,56,74,80,90,91) \end{aligned}$ |
| 5 | ```1000 / 360 Bl3, revolutions per degree 000058 216168 (not used)``` | $360 / 1000$ <br> Bl, degrees per revolution <br> 056058036568 |

$6 \quad 10^{5} \times 0.45359237$ Bl6, kilograms per pound 261138317133
(used with noun 47)
$1852 \times 10^{3}$
B29, meters per nmi $00070_{8} 204608$
(used with nouns $54,89,90$ )
$1852 \times 10^{4}$
B29, meters per nmi 010658057408
$(0.3048 / 100) \times 10^{5}$
Blo, meters/cs per fps $11414_{8} \quad 314638$
(used with noun 91)
(used with noun 78)
$-1.59286 \times 10^{5}$
B28, RR rate counts per fps $7776685^{507118}$

## $\mathrm{K}:$ SFOUTA $_{\mathrm{i}}$

$2.2046268 / 10^{5}$
B-2, pounds per kilogram $00001_{8} 161708$
$5.3996 \times 10^{-4} / 10^{3}$
B-15, nmi per meter $00441_{8} 343068$
$5.3996 \times 10^{-4} / 10^{4}$
B-22, nmi per meter 071768216038
(used with nouns $42,43,44,49,58,75,76,91$ )
$2.859024 / 10^{3}$
B-14 nmi per RR range count 006368145528
$-0.6278 / 105$
B-14, fps per RR rate count 745528703078
(used with noun 78)

## $\underline{K}$ SFOUTAB $_{i}$

$1.0790 / 10^{5}$
B-14, feet per LR alt count
$1.079 \mathrm{E}-5 \times 214$
$2.345 / 10^{5}$
B-14, feet per bit 142268317578
$0.5 / 10^{5}$
B-14, fps per bit $02476805531_{8}$
$0.5571 / 10^{5}$
B-14, fps per bit 027278164158
$360 / 10^{5}$
B-3, deg/sec per rev $000078{ }^{137348}$
$-0.6440 / 10^{5}$
B-14, fps per LRVX count $-0.6440 \mathrm{E}-5 \times 2^{14}$
$1.212 / 10^{5}$
$\mathrm{B}-14$, fps per $1 \frac{\mathrm{IRVY}}{4}$ count $1.212 \mathrm{E}-5 \times 2^{14}$
$0.8668 / 10^{5}$
B-14, fps per LRVZ count $0.8668 \mathrm{E}-5 \times 2^{14}$

Index $\mathrm{K}:$ SFINTAB $_{i}$
22
$1852 \times 10^{4}$
B27, meters per nmi 043248276008
(used with nouns 61,68)
$10^{3} / 0.002$
B28, centiseconds per deg 000368204408
(used with noun 48)
$0.3048 \times 10^{5}$
B24, meters per foot 000358304008
(used with nouns $60,63,64,68$,
$10^{4}$
B14, unitless
234208000008
(not used)
30480
B19, meters per foot $30480 \times 2^{-19}$
(used with noun 99)
$0.003048 \times 10^{4}$ B7, meters/cs per fps $30.48 \times 2^{-7}$
(used with noun 99)
100
B8, unitless
$100 \times 2^{-8}$
(used with noun 99)

## $\mathrm{K}: \mathrm{SFOUTAB}_{i}$

$$
5.399568 \times 10^{-4} / 10^{4}
$$

B-24, nmi per meter

$$
347728070168
$$

$0.002 / 10^{3}$
B-14, deg per centisecond $0103083_{8} 3675$
$3.2808399 / 10^{5}$
B-10, feet per meter 010468157008
$10^{-4}$
B-7, unitless $00321_{8} 2670$ ó8
17.2010499

B7, feet per meter
$17.2010499 \times 2^{-7}$
$328.08399 / 10^{4}$
BO, fps per meter
0.032808399
$2^{5} \times 10^{-2}$
BO, unitless
0.32

ABVEL: See SERV section.
ACTCENT: See TRGL section.
ALMCADR: See PGSR section.
ALPHASB: Same as PITCHANG, see EXVB section.
ALT: See COOR section.
AOTCODE: See ALIN section.
APO: See ASCT section.
AZ: See ALIN section.
BETASB: Same as YANANG, see EXVB section.
CDU: See "Major Variables" section.
CDU s: See RADR section.
$\operatorname{CDU}_{t}$ : See RADR section.
CENTANG: See TRGL section.
CSMMASS: See DAPB section.
CURSOR: See ALIN section.
DAPDATRI: See DAPB section.
DATAGOOD: See RNAV section.
DELTAH: See SERV section.
DELVIMU $_{x, y, z}$ : See BURN section.
DELVLVC $_{x, y, z}$ : See TRGX section.
DELVOV $_{x, y, z}$ : See ORBI section.
DELVTPF: See TRGL section.
DELVTPI: See TRGL section.
DIFFALT: See TRGX section.
DLAitDX,DLANDY,DLANDZ: See DESC section.
DNRRANGE: See RADR section.
DNRRDOT: See RADR section.
DSPTEMX: See DATA. section.
DSPTEMI: See DATA section.
DSPTEM2: See DATA section.
$\operatorname{DVLOS}_{x, y, z}$ : See TRGL section.
DVTOTAL: See SERV section.
EL: See ALIN section.
ELEV: See TRGL section.
ERCOUNT: See TEST section.

FAILREG: See PGSR section.
FDAI: See ATTM section.
FUNNYDSP: See DESC section.
HAPO: See TRGX section.
HAPOX: See EXVB section.
HCALC: See SERV section.
HCALCl: See SERV section.
HDOTDISP: See SERV section.
HPER: See TRGX section.
HPERX: See EXVB section.
IGC: See COOR section.
LANDALT: See ALIN section.
LANDIAT: See ALIN section.
LANDLONG: See ALIN section.
LAT: See COOR section.
IEMMASS: See DAPB section.
LONG: See COOR section.
MGC: See COOR section.
mTPER: See EXVB section.
NN: See TRGX section.
OGC: See COOR section.
OMEGDISP: See RNAV section.
OPTIONX: See EXVB section.
OPTION1: See DATA section.
OPTION2: See DATA section.
OUTOFPLN: See DESC section.
PIPA: See SERV section.
PITCH: See ASCT section.
PITTIME: See DAPB section.
pMGA: See TRGX section.
POSCODE: See ALIN section.
POSTTPI: See TRGL section.
P2IALT: See RNAV section.
P2lGAM: See RNAV section.
P2lVEL: See RNAV section.

RANGE: See EXVB section.
RANGEDSP: See DESC section.
RDOTD: See ASCT section.
ROLLTTME: See DAPB section.
RRATE: See EXVB section.
RR-AZ: See RNAV section.
RR-ELEV: See RNAV section.
RSTACK: See RNAV section.
RTHETA: See EXVB section.
R22DISP: See R22DISPR in RNAV section.
R22DISP+2: See R22DISPV in RNAV section.
SAMPTIME: See DSKY section.
SMODE: See TEST section.
SPIRAL: See ALIN section.
STARAD: See ALIN section.
TANG: See RADR section.
TCDH: See TRGX section.
TCSI: See TRGX section.
TET: See ORBI section.
TFF: See EXVB section.
THETAD: See COOR section.
TIG: See BURN section.
TIMENOW: See EXVB section.
TRKMKCNT: See RNAV section.
TTFDISP: See DESC section.
TTOGO: See BURN section.
1 TTOTIG: See RADR section.
TTPI: See TRGL section.
TITOT2: See TRGX section.
T2TOT3: See TRGX section.
VGBODY: See BURN section.
VGDISF: Same as DELVSAB, see BURN section.
VHORIZ: See DESC section.
WHCHREAD: See RNAV section.
WWBIAS: See RNAV section.
WWPOS: See RNAV section.

WWVEL: See RNAV section.
XRANGE: See ASCT section. XREG: See DATA section.
YAW: See ASCT section.
YDOT: See ASCT section.
YREG: See DATA section.
ZDOTD: See ASCT section.
ZREG: See DATA section.
-K:posmaxsp: See "Major Variables" section.

```
P63LM Perform "R02BOTH" (assure that IMU is operating)
WHICH = "P63TABLE"
DVTHRUSH = K:DPSTHRSH
DVCNTR = 4
WCHPHASE = - 1
FLPASSO = 0
Switch bit }14\mathrm{ of channel 12 to O (disable RR tracker)
Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
Switch FLAGWRD6 bit 6 (REDFLAG) to 0
Switch FLGWRD11 bit 15 (LRBYPASS) to 0
Switch FLAGWRD6 bit }8\mathrm{ (MUNFLAG) to }
Switch FLAGWRDO bit 9 (P25FLAG) to 0
Switch FLAGWRDO bit 7 (RNDVZFLG) to 0
TPIP = TLAND
TSt = TLAND
Perform "MOONMX"
LAND =[REFSMMAT] [MOONMAT] T (RLS + LMSO4 * RLS)
TSt = TIMENOW
Perform "MOONMX"
WM = K:MOONRATE [REFSMMAT] [MOONMAT] 'T (K:UNITZ + LM504 * K
LANDMAG = |RLS
TDEC1 = TLAND - K:GUIDDURN
Perform "LEMPREC"
NIGNLOOP = 40
```

$[$ GCMAT $]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
DELTAH $=\mathrm{K}: 99999 \mathrm{CON}$
$\underline{U N F C}=0$
$T T F=0$
IGNALOOP PIPTIME1 = TAT
$\underline{R}=[$ REFSMMAT $]$ RATT
Perform "MUNGRAV" with $\underline{T} S r=\underline{R}$
GDT $=$ GDT1
NGUIDSUB $=2$
(continues at "EXGSUB"
Proceed to the second step of "GUILDRET" after one iteration of guidance computations)
EXGSUB UNFC $=$ K:TRIMACCL ZOOMTIME unitUNFC (argument of unit operation
If NGUIDSUB $>0$ :
NGUIDSUB $=$ NGUIDSUB -1
Proceed to "CALCRGVG"
If NIGNLOOP $=0$ :
Perform "ALARM" with $T S=01412$ g
$T S=3326_{8} \quad$ (S-register portion of adतress of cell containing alarm pattern)
If NIGNLOOP $>0$ :
$\mathrm{TS}=$ NIGNLOOP -1
NIGNLOOP $=T S$
TSden $=$ VGU $_{z}-$ DESKIGNX VGU $_{x}$
TSnum $=\left(\right.$ DESIGNRZ - RGU $\left._{z}\right)+$ DESKIGNY RGU $_{y}^{2}+\operatorname{DESKIGNX~(RGU}{ }_{x}-$ DESIGNRX)
TSv $=$ DESKIGNV (|VGU $\mid-$ DESIGNV)
$T S t=(T S v+T S n u m) / T S d e n$
TDEC1 $=$ PIPTIME1 + TSt.

```
If }|TSt|\geq K:DDIMCRIT: (reiterate)
 Perform "INTSTALT,"
 Switch FLAGWRD3 bit 4 (INTYPFLG) to 1
 Switch FLAGWRDO bit 12 (MOONFLAG) to 1
 TET = PIPTIME}
 RCV = RATT
 VCV = VATT
 Perform "INTEGRVS"
 Proceed .to "IGNAL00P"
TIG = TDEC1 - ZOOMTIME
OUTOFPLN = unit(\underline{V}*\underline{R})}\cdot\underline{LAND
ŔnOSAVE = UNFC
DISPDEX = - 21 (enable astronaut branch to "ASTNRET")
Perform "STCLOK3"
End job
ASTNRET Proceed to "GOPERF1" with TS = 000148
 (If terminate, proceed to "GOTO POOH"; if proceed, continue
 at next step; if other response, skip next step.)
Perform "R51"
POINTVSM = unitR60SAVE
SCAXIS = K
Perform "PFLITEDB" with interrupts inhibited
Perform "R6OLEM"
If bit 6 of channel 33=1: (LR not in position #1)
 Proceed to "GOPERF1" with TS = 00500
 (If terminate, proceed to "GOTO POOH"; if proceed, continue
 at previous step; if other response, continue at next ster.
Perform "SETPOS1" (Initialize landing radar control)
```

```
 Proceed to "BURNBABY"
 (Standard pre-ignition sequence; initializes average-g
 navigation at TIG-30 seconds; calls "P63IGN" at time of
 ignition which sets AVEGEXIT to "LUNLAND" establishing the
 two-second guidance loop; calls "P63200M" at throttle-up
 time.)
 LUNLAND If FLAGWRD5 bit 8 (Z00MFLAG) = 0:
 (R13)
 Proceed to "DISPEXIT" (do display only; no throttle-up yet)
 If bit 5 of channel 30=1: (auto throttle disabled)
 Proceed to "STARTP67"
 If MODREG = 67, proceed to "STARTP66"
 If MODREG = 66, proceed to "RESTART?"
 If bit 13 of channel 31=0:
 If MODREG = 66, proceed to "RESTART?"
 If RODCOUNT }\not=0\mathrm{ , proceed to "STARTP66"
 Proceed to "GUILDRET"
 RESTART? If FLAGWRD1 bit 12 (RODFLAG) = 0:
 Proceed to "STRTP66A"
 Proceed to "VERTGUID"
 GUILDRET RODCOUNT = 0
 TPIPOLD = TPIP
 TPIP = PIPTIME1
 TTFTMP = TTF
 If FLPASSO > 0, proceed to "TTFINCR"
 Proceed to K:NEWPHASE WCHPHASE
 (TTFINCR, TTFINCR, STARTP64, P65START)
STARTP64 MODREG = 64
Establish "DSPMMJOB"
(pr30)
TTFTMP = TTFTMP + DELTTFAP
```

Inhibit interrupts
Perform "C13STALL"
Switch bit 12 of channel 13 to 1 (enable RHC interrupt \#10)
$D B=K: P 64 D B$
Switch FLAGWRD6 bit 6 (REDFLAG) to 0
Release interrupt inhibit
TTFINCR $\quad$ TSt $=$ TPIP - TPIPOLD (rescaled to B17 centiseconds)
LANDTEMP $=$ LANDMAG unit (LAND - TSt LAND * WM) (argument of unit
TTFTMP $=$ TTFTMP + TSt operation adjusted to prevent overflow)
$\mathrm{TTF}=\mathrm{TTFTMP}$
Perform "'rDISPSET"
Change job priority to 31
LAND $=$ LANDTEMP + DLAND
LANDMAG $=\mid$ IAND $\mid$
DLAND $=0$
Change job priority to 20
Proceed to K:PREGUIDE ${ }_{\text {WCHPHASE }}$
(CALCRGVG, RGVGCALC, REDESIG, RGVGCALC)

REDESIG If FLAGWRD6 bit 6 (REDFLAG) $=0$ or if TREDES $=0$ :
Proceed to "RGVGCAIC"
Inhibit interrupts

| ELINCR $_{d p}=($ ELINCR1, 0$)$ | (AZINCR1 and EIINCR1 are |
| :--- | :--- |
| AZINCR $_{\text {dp }}=($ AZINCR1, 0) | updated in routines |
| ELINCR1 $=0$ | "PITFALI" and "REDESMON" |
|  | which are called by |
| wrogram interrupt \#10) |  |

AZINCR1 $=0$
Release interrupt inhibit
$\underline{T} S=u n i t(\underline{L} A N D-\underline{R})$
$\underline{T} S=\underline{T}+A Z I N C R$ YNBPIP - ELINCR $T S$ * YNBPIP

If $\mathrm{TS}_{\mathrm{x}} \geq \mathrm{K}:$ DEPRCRIT, $\mathrm{TS}_{\mathrm{x}}=\mathrm{K}:$ DEPRCRIT
LANDTEMP $=$ LANDMAG unit $\left(\underline{R}+\underline{T} S\left(\right.\right.$ LaND $\left.\left._{x}-R_{x}\right) / T_{x}\right)$
LAND = LANDTEMP
Proceed to "RGVGCALC"
CALCRGVG $\underline{V}=[$ REFSMMAT $]$ VATT $+\underline{\text { UNFC }}$ (VATT used here is VATT1 scaled
RGVGCALC $\quad$ ANGTERM $=\underline{R} * \underline{W} M+\underline{V}$

```
VGU \(=[\) GCMAT \(]\) ANGTERM
VHORIZ \(=\sqrt{\text { VGU }_{z}^{2}+\text { VGU }_{y}^{2}}\)
\(\underline{T} S=\underline{R}-\underline{L} A N D\)
RGU \(=[\) GCMAT \(]\) TS
RANGEDSP \(=\mid\) RGU \(\mid\)
LOOKANGL \(=\) K:180degs \(\left(\arcsin _{\text {sp }}\left(\right.\right.\) unit TS \(\left.^{\text {XNBPIP }}\right)+\mathrm{K}: 1\) d2DEG \()\)
```

Proceed to K:WHATGUID WCHPHASE
(TTF/8CL, TTF/8CL, TTF/8CL, VERTGUID)
TTF/8CL LUNDEX $=\mathrm{K}:$ TARGTDEX $_{\text {WCHPHASE }}$
(0, 0, 28)

$$
\begin{aligned}
& A_{3}=T T F J D G Z_{\text {LUNDEX }} \\
& \left(j_{D Z G}\right) \\
& A_{2}=T T F A D G Z_{\text {LUNDEX }} \\
& \left(6 a_{D Z G}\right) \\
& \mathrm{A}_{1}=\mathrm{K}: \mathrm{ttf} 6 \mathrm{~b} 3 \mathrm{VGU}_{2}+\mathrm{TTFVDGZ}_{\text {LUNDEX }} \\
& \left(6 \mathrm{VGU}_{\mathrm{z}}+18 \mathrm{v}_{\mathrm{DZG}}\right) \\
& \underline{T S}=\text { TARGRDG }_{\text {LUNDEX }} \\
& A_{0}=K: \operatorname{ttf} 24 b 6\left(T S_{z}-R G U_{z}\right) \\
& \operatorname{PREC}=2^{-7} \\
& \text { ROOTPS }=\text { TTF } \\
& \mathrm{n}=3 \\
& \text { Perform "ROOTPSRS" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If ROOTGOOD }=0 \text {, proceed to } \mathrm{K}: \text { WHATALM }_{\text {WCHPHASE }} \\
& \text { (1406P00, 1406ALM, 1406ALM) } \\
& \text { TTF = ROOTPS } \\
& \text { If } \mathrm{TSt}<0, \mathrm{TSt}=0 \\
& \mathrm{RA}=\mathrm{TSt} / \mathrm{TTF}_{\mathrm{ms}} \\
& \text { ( }-\mathrm{r} \text { ) } \\
& T S 1=2 R A^{2}+R A \\
& \left(2 r^{2}-r\right) \\
& T S 2=3 R A^{2}+2 R A \\
& \left(3 r^{2}-2 r\right) \\
& T S 3=4 R A^{2}+3 R A \\
& \left(4 r^{2}-3 r\right. \text { ) } \\
& T S 4=6\left(\mathrm{RA}^{2}+\mathrm{RA}\right)+\mathrm{K}: \text { posmaxsp } \\
& \left(6 r^{2}-6 r+1\right) \\
& \text { LUNDEX }=\text { K:TARGTDEX } \text { WGHPHASE } \\
& \text { (0, 0, 28) } \\
& \underline{T} S \mathrm{~b}=\mathrm{TS} 1 \mathrm{VGU} \\
& \underline{T S c}=T S 3 \underline{T A R G V D G}_{\text {LUNDEX }}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{T} S e=K: t t f 6 b 3(\underline{T} S b+\underline{T} S c+\underline{T} S d) / T T F
\end{aligned}
$$

> (desired acceleration)
> AFCCALC1 UNFC $=[\text { GCMAT }]^{T} \underline{T} S a-\underline{G D T} / \mathrm{K}:$ GSCALE
> AFCMAG $=\mid$ UNFC $\mid$
> $T S=(K: H I G H E S T F / M A S S)^{2}-$ UNFC $_{y}^{2}-$ UNFC $_{x}{ }^{2}$
> If $\mathrm{TS}<0, \mathrm{TS}=0$
> If $\mathrm{UNFG}_{z}<-\sqrt{T S}, \mathrm{UNFG}_{z}=-\sqrt{T S}$
> WCHPHOID = WCHPHASE
> FIPASSO $=$ FLPASSO +1
> Proceed to $\mathrm{K}: \mathrm{AFTRGUID}_{\text {WCHPHASE }}$
> (CGCALC, EXTLOGIC, EXTLOGIC, STEER?)

EXTLOGIC $\quad$ TSt $=T E N D_{\text {WCHPHASE }}+T T F_{\text {ms }}$
If TSt $>0$ :
WCHPHASE $=$ WCHPHOLD +1
FLPASSO $=0$
CGCALC
 $(0,0,28)$

If $T T F_{m s}<-T C G I_{i}$ or $\left.T T F_{m s}\right\rangle-$ TCGF $_{i}$ :
Proceed to K:WHATEXIT WCHPHOLD
(EXGSUB, EXBRAK, EXNORM, -----)
LUNDEX $=$ K:TARGTDEX WCHPHASE
(0, 0, 28)
$\underline{T S a}=$ unitlaND
$\underline{T S b}=$ unit (unit(GAIN LUNDEX TTF ANGTERM +4 I_AND $-4 \underline{R}) *$ IAND $)$
$\underline{T S} c=\underline{T S} a^{*} \underline{T S b}$
$\left[\right.$ GCMAT $\left.^{2}\right]=\left[\begin{array}{ccc}T S a_{x} & T S a_{y} & T_{z} \\ \operatorname{TSb}_{x} & \text { TSb }_{y} & \operatorname{TSb}_{z} \\ T S c_{x} & T S c_{y} & T S c_{z}\end{array}\right]$
Proceed to K:WHATEXIT ${ }_{\text {WCHPHOLD }}$
(EXGSUB, EXBRAK, EXNORM, ----)

EXBRAK UNWC $=$ UNITR
Proceed to "STEER?"
EXNORM UNWC $=$ unit (IAND $-\underline{R})$
$\underline{T S}=$ second row of $[G C M A T] \quad\left(\underline{Y}^{\text {Y GGC }}{ }_{S m}\right)$
PROJ $=\underline{\text { UNWC }} *$ KINBPIP $\cdot \underline{T} S$
PROJ1 $=K:$ PROJMAX - PROJ
If PROJ1 $\leq 0$, PROJ1 $=0$
PROJ2 = PROJ $-\mathrm{K}:$ PROJMIN

$$
\text { DESC - } 8
$$

```
 If PROJ2 S 0, PROJ2 = 0
 UNWC
 UNWC
 UNWC
STEER? If FLAGWRD2 bit 11 (STEERSW) = 0:
 If bit 13 of channel 31 = 1:
 Perform "STOPRATE"
 Proceed to "DISPEXIT"
EXVERT If overflow occured anywhere above:
 Perform "AIARM" with TS = 014108
 If bit 13 of channel 31 = 1:
 Perform "STOPRATE"
 Proceed to "DISPEXIT"
 Perform "THROTTIE"
 Perform "FINDCDUW"
DISPEXIT If FLAGWRD8 bit 10 (FLUNDISP) = 1, end job
 Proceed to K:WHATDISP WCHPHOLD
 (---, P63DISPS, P64DISPS, VERTDISP)
P63DISPS Proceed to "REGODSP" with TS = K:VO6N63 (ABVEL, HDOTDISP, HCALC1)
P64DISPS If TREDES = 0:
 Switch FLAGWRD6 bit 6 (REDFLAG) to 0
 Proceed to "REGODSP" with TS = K:VO6N64
 If FLAGWRD6 bit 6 (REDFLAG) = 1:
 Proceed to "REGODSP" with TS = K:VO6N64
 Proceed to "REFLASH" with TS = K:VO6N64 (FUNNYDSP, HDOTDISP, HCALC)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; if other response, proceed to
 "P64DISPS".)
 DESC - 9
```

```
 ELINCR1 = 0
 AZINGR1 = 0
 Switch FLAGWRD6 bit 6 (REDFIAG) to }
 End job
VERTDISP Proceed to "REFTLASH" with TS = K:VO6N60 (VHORIZ, HDOTDISP, HCALC1)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; if other response, continue
 at next step.)
 Perform "ZATTEROR" with interrupts inhibited
 End job
TDISPSET TTFDISP = K:TSCALINV TTF ms
 TSt = K:TREDESCL (TCGF 28}+TTF ms) - 103
 If TSt\geq0:
 TREDES = 99
 Return
 TSt = TSt + 99
 If TSt\leq O:
 TREDES = 0
 Return
 TREDES = TSt
 Return
P65START MODREG = 65
 Establish "DSPMMJOB" (pr30)
 WCHVERT = -2
 Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (permit X-axis override)
 Proceed to "TTFINCR"
```

        DESC - 10
    ```
STARTP66 MODREG = 66
 Establish "DSPMMJOB"
 (pr30)
 VDGVERT = HDOTDISP
STRTP66A TS = (PIPABIAS
 VBIAS = K:BIASFACT TS
 Switch FLAGWRD1 bit 12 (RODFLAG) to 1
 OLDPIPA = - IEM
 DELVROD = 0
 RODSCAL1 = RODSCALE
 LASTTPIP = PIPTIME
 FCOLD
 FWEIGHT }\mp@subsup{\mp@code{dp}}{}{=}=
 WCHVERT = O
 Proceed to "VRTSTART"
STARTP67 MODREG = 67
 Establish "DSPMMJOB"
 (pr30)
 RODCOUNT = 0
 WCHVERT = 10
VRTSTART WCHPHOLD = 2
 WCHPHASE == 2
 Perform "STOPRATE"
 Switch DAPBOOLS bit 9 (XOVINHIB) to O
 Switch FLAGWRD6 bit 6 (REDFLAG) to 0
 Proceed to "VERTGUID"
```


## $\underline{T S a}=(\underline{\text { V }} 2 \mathrm{FG}-\underline{\mathrm{VGU}}) /$ TAUVERT $\quad$ (desired acceleration)

Proceed to "AFCCALC1"
If WCHVERT $=0$ :
Proceed to "P66VERT"
If WCHVERT $>0$ :
VHORIZ $=\mid \underline{\mathrm{V}}+$ DELVS - HDOTDISP unitR $\mid$
Proceed to "DISPEXIT"
P66VERT Call "RODTASK" in 1.0 second
(note that "RODCOMP" will be performed now and again in 1.0 second)

RODTASK Establish "RODCOMP"
End task
RODCOMP Inhibit interrupts
VDGVERT $=$ VDGVERT + RODCOUNT RODSCAL1 (activation of the R.O.D.
RODCOT - 0 switch causes routine
RODCOUNT $=0 \quad$ "DESCBITS" to be entered
POLDPIPA $=\underline{O L D P I P A}$
$\underline{\text { OLDPIPA }}=\underline{P} I P A$
THISTPIP $=$ TIMENOW
$\underline{T S}_{s p}=\underline{O L D P I P A}+\underline{\text { PIPATMP }}$
DELVROD $=$ IEM - OLDPIPA $+\underline{P O L D P I P A ~}$
$\underline{T S}_{d p}=\underline{T S}_{s p} \quad$ (least significant components set to 0 )
TEM $=0$
Release interrupt inhibit
$\underline{T S}=K: K P I P 1 T S{ }_{T p}$
TSdelt $=$ THISTPIP - PIPTIME

```
T}Sv=(TSdelt / K:4SECb28) (\frac{1}{2} GDT - 京 VBIAS) + \underline{V}+\underline{T}
HDOTDISP = TSv • unitR
HCALC1 = TSdelt HDOTDISP + |R}|-\mathrm{ LANDMAG
TS1 = (VDGVERT - HDOTDISP) / TAUROD
TS2 = |GDT |/K:GSCAIE
TS3 = TS2 + TS1
Perform "CDUTRIG"
Perform "NBTOSM"
TS = [NBSMMAT] K
TS4 = TS • unitR
(PDL22-23; B2)
AFCMAG = TS3/TS4
TS1 = |K:KPIP1 DELVROD + 交 VBIAS
(PDLO-1; B7)
TSt3 = THISTPIP - LASTTPIP
(PDL2-3; B28)
LASTTPIP = THISTPIP
TSacc = TS1 / (TSt3 / K:SHFTFACT) (measured acgeleration in PDLO-1
 a.t. B-L m/cs}\mp@subsup{}{}{2}
TS5 = (FWEIGHT K:BIT1H) / (MASS K:SCALEFAC) + TSacc (PDL2-3; B-4)
AFCMAG = AFCMAG + IAGdTAU ((TS2 / TS4) - TS5) (PDL2-3; B-4)
TSafcmax = MAXFORCE / MASS
(PDL/4-5; B-4)
TSafcmin = MINFORCE / MASS
 (PDL6-7; B-4)
If AFCMAG < TSafcmin , AFCMAG = TSafcmin
If AFCMAG \geqTSafcmax , AFCMAG = TSafcmax
TSthrot = TSacc
Perform "THROTTLE" (starting at second step; return will be
VHORIZ = |TSv + DELVS - HDOTDISP unitR
Proceed to "DISPEXIT"
```

DESC - 13

THROTTLE TSthrot = K:ABAFCNST ABDELV
RTNHOLD $=$ return address
$\mathrm{FP}_{\mathrm{dp}}=\mathrm{K}:$ SCALEFAC MASS TSthrot
If $\mathrm{FP}_{\mathrm{dp}} \geq \mathrm{K}:$ fmax, $\mathrm{FP}_{\mathrm{sp}}=\mathrm{K}$ :posmaxsp
$\mathrm{FCODD}_{\mathrm{dp}}=\mathrm{K}:$ SCALEFAC MASS AFCMAG
If $\mathrm{FCODD}_{\mathrm{dp}} \geq \mathrm{K}:$ fmax, $\mathrm{FCODD}_{\text {sp }}=\mathrm{K}$ : posmaxsp
$\mathrm{FC}=\mathrm{FCODD}$
TSt = (less significant half of TIMENOW) - TPHROT
If $\mathrm{TSt} \leq 0, \mathrm{TSt}=16384+\mathrm{TSt}$
If TSt < K:3SECS:

$$
F P_{d p}=F P+F W E I G H T
$$

PIFPSET $=0$
If FCOLD $>$ HIGHCRIT:
If FCODD ${ }_{\text {sp }} \leq$ LOWCRIT: PIFPSET $=F_{\text {sp }}-K:$ FMAXODD
If $\mathrm{FCODD}_{\mathrm{sp}}>$ LOWCRIT:
$\mathrm{FCODD}=\mathrm{FP}$
PIFPSET $=\mathrm{K}:$ FEXTRA
If FCOLD $\leq$ HIGHCRIT:
If $\mathrm{FCODD}_{\mathrm{sp}}>$ HIGHCRIT:
FCODD $=K:$ FMAXPOS
PIFPSET $=\mathrm{K}:$ FEXTRA
FCOLD $=$ FCODD
$P I F=F C O D D-F P$

Proceed to "DOIT"
FCOLD = 0
$P I F=0$

RTNHOLD $=$ return address (to caller of "FLATOUT")
DOIT $\quad$ PSEUD055 $=\mathrm{PIF}_{\mathrm{sp}}+$ PIFPSET
THRUST = PSEUD055
Switch bit 4 of channel 14 to 1 (send throttle command from THRUST)
TTHROT = less significant half of TIMENOW
TS1 $=$ THISTPIP ${ }^{\text {Is }}$
TS2 = K:2SECS
If MODREG $\neq 66$ :
TS1 $=$ PIPTIME $_{1 \mathrm{~s}}$
$\mathrm{TS} 2=\mathrm{K}: 4 \mathrm{SECS}$
TS3 $=$ TS2 K:BIT6
TS4 $=$ TS3 $_{1 \mathrm{~s}}$
TSt $=\mathrm{K}:$ THROTIAG + TIMENOW $_{1_{s}}-$ TS1
If TSt $<0$, TSt $=|T S t|$
If ${ }^{8}$ TSt $\geq 2^{8}$ centiseconds, truncate bits $\geq 2^{8}$ (i.e. subtract
$2^{8}$ until TSt is less than $2^{8}$ centiseconds)
FWEIGHT $=2$ PIF TSt $/ \mathrm{TS} 2$
FWEIGHT $=$ FWEIGHT $+\mid$ PIF $\mid$ PIF $/ \mathrm{TS}_{4}$
Return via RTNHOLD


DESCBITS (Entered from "MARKRUPT" with contents of channel 16 in TS)
If bit 7 of $T S=1$, RODCOUNT $=$ RODCOUNT -1
If bit 7 of $T S=0$, RODCOUNT $=$ RODCOUNT +1 (assume bit $6=1$ )
Resume
ROOTPSRS DXCRIT $=\mid$ PREC ROOTPS $\mid$
$\mathrm{p}=\mathrm{n}-1$
$\underline{\text { DERCLOOP }} \mathrm{DA}_{\mathrm{p}}=(\mathrm{p}+1) \mathrm{A}_{\mathrm{p}+1}$
If $p>0$ :
$p=p-1$
Proceed to "DERCLOOP"
ROOTLOOP TSderiv $=D A_{0}+D A_{1}$ ROOTPS $+\ldots+D A_{n-1}$ ROOTPS $^{n-1}$
TSfunct $=A_{0}+A_{1}$ ROOTPS $+\ldots+A_{n-1}$ ROOTPS $^{n-1}+A_{n}$ ROOTPS n
TSdelt $=$ - TSfunct $/$ TSderiv
ROOTPS $=$ ROOTPS + TSdelt
If $\mathrm{p}=8:$
ROOTGOOD $=0$
Return
$p=p+1$
If $\mid$ TSdelt $\mid>$ DXCRIT, proceed to "ROOTLOOP"
ROOTGOOD $=2$
Return
1406 P00 Proceed to "POODOO" with TS $=21406_{8}$
1406ALM Perform "ALARM" with $T S=01406_{8}$
If bit 13 of channel $31=1$ :
Perform "STOPRATE"
Proceed to "DISPEXIT"

## Perform "ZATTEROR"

## Release interrupt inhibit

Switch DAPBOOLS bit 15 (PULSES) to 1
Switch FLAGwRD8 bit 8 (SURFFLAG) to 1
Switch FLAGWRD9 bit 9 (LETABORT) to 0
Switch FLGwRD10 bit 13 (APSFLAG) to 1
$\mathrm{ALPHAV}=\underline{\mathrm{R} N}$
TSt $=$ PIPTIME
Switch FLAGWRD3 bit 12 (LUNAFLAG) to 1
Perform "LAT-LONG"
TSt $=$ PIPTIME
Perform "MOONMX"
RLS $=[$ MOONMAT $]\left(\underline{R N}-\left([\text { MOONMAT }]^{T} \underline{L M 504)}\right)^{*} \underline{R N}\right)$
Proceed to "GOFLASH" with TS = K:VO6N43 ..... (LAT, LONG, ALT)(If terminate, proceed to "GOTOPOOH"; if proceed, continueat next step; if other response, repeat this step.)
GSAV $=\underline{K}$ :UNITX
Perform "REFMF"
Proceed to "GOTOPOOH"
DESC - ..... 18
$A_{i}(i=0,1,2, \ldots):$ Double precision coefficients of the polynomial input to "ROOTPSRS", unitless and scaled B3O, B13, B-4 and B-21 when generated in "TTF/8CL".

ABDELV, ABVEL: See SERV section.
AFCMAG: Double precision magnitude of desired thrust acceleration, program notation/AFC/, scaled B-4 in units of meters per centisecond squared.
ALPLAV: See COOR section.
 the rotating moon, scaleu B9 in units of meters per centisecond and expressed in the Platform coordinatc system.

AZINCR, AZINCRI: Double precision and single precision storage for tine desired aduition to the landing site azimuti, scaled BO in units of radians.

DA. ( $i=0,1 .$. ): Double precision coefficients of the polynomial doni-ative of the polynomial input to "ROOTPSRS"; unitless and scaled B13, B-4, and B-21 when generated in response to the polynomial input from "TTF/8CL".
D.APBOOLS: see DAPA section.

DB: see DAPB section.
DELTAH: see SERV section.
DELTTFAP: Single precision time constant added to TTF at the start of P64, scaled B17 in units of centiseconds. DELTTFAP is a negative number and is part of the erasable load.

DELVROD: Double precision sensed-change-in-velocity vector for P66 (R.O.D.) computations, scaled B14 in units of centimeters per second.

DELVS: See SERV section.
DESIGNRX, DESIGNRZ: Double precision components of desired position relative to the landing site (desired crossrange position component; is zero), scaled B24 in units of meters and expressed in the Descent Guidance coordinate system; program notations RIGiNX and RIGNZ respectively; pari of the erasabie load.
DESIGNV: Double precision speed desired at ignition, relative bo the rotating moon, scaled B10 in units of metcrs per centisecond; program notation VIGN, part of the erasable load.
DESKIGNV: Double precision speed error scale factor used in the ignition-time test quantity, scaled B1S in units of centiseconds; program notation KIGNV/B4; part of the erasable load.

DESKIGNX: Double precision landing site vertical error scale factor used in the ignition-time test quantity, scaled B4 and unitless; program notation KIGNX/B4; part of the erasable load.

DESKIGNY: Double precision crossrange error scale factor used in the ignition-time test quantity, scaled B-10́ in units of meters to the minus one power; program notation KIGNY/ 138 ; part of the erasable load.

DISPDEX: see BURN section.
DIAND: Double precision vector expressed in the Platform coordinate system representing the correction to the Landing site vector IAND, scaled B24 in units of meters. DLAND is padloaded to zero and may be loaded by the crew in Noun 69 in the order DLAND ${ }_{z}$, DLAND $y_{y}$, DLAND ${ }_{x}$.
DVCNTR, DVTHRUSH: see SERV section.
DXCRIT: Double precision criterion for the convergence of the iterative calculation in "ROOTPSRS", with scaling and units identical to those of ROOTPS.

ELINCR, ELINCR1: Double precision and single precision storage for the complement of the desired addition to landing site elevation, scaled BO in units of radians. (Sign changed to compensate for the inversion of the cross product in "REDESIG".)

ELVIRA: Single precision storage for the status of the landing site redesignation discretes from channel 31.

FC: Single precision storage for the magnitude of desired thrust, scaled B14 in units of DPS throttle pulses.

FCODD: Double precision magnitude of desired thrust, scaled B14 in units of DPS throttle pulses. (The less significant half is not always maintained.)

FCOLD: Single precision magnitude of previous value of desired thrust, scaled B14 in units of DPS throttle pulses.

FLPASSO: Single precision flag set to zero at the beginning of a new guidance phase (except at the beginning of P66 or P67) to initialize guidance quantities for the new guidance phase.

FP: Double precision estimate of the magnitude of the present thrust, scaled B14 in units of DPS throttle pulses. (The less significant half is not always maintained.)

FUNNYDSP: Special display of LOOKANGL and TREDES in the same display register, both displayed in two digits only.

FWEIGHT: Double precision change in sensed thrust expected to have occurred since the sampling of the accelerometers, scaled B14 in units of DPS throttle pulses.

GAIN ${ }_{0}$ : Double precision gain constant used in the computation of the orientation of the Descent Guidance Coordinate System for the braking phase, scaled BO and unitless. Program notation: GAINBRAK; part of the erasable load.

GAIN $_{28}$ : Double precision gain constant used in the computation of the orientation of the Descent Guidance Coordinate System for the approach phase, scaled BO and unitless. Program notation: GAJNAPPR; part of the erasable load.
[GCIMAT] : Double precision, $3 \times 3$ transformation matrix defined such that Adgc $=[G C M A T]$ Asmc, where $A$ is a vector expressed in the Descent Guidance and Platform (sm) coordinate systems respectively; scaled B1 and unitless; program notation CG+0 through CG+17.

The Descent Guidance coordinate system is an orthogonal, cartesian system where the $X$ axis is along the radius from the center of the moon through the present landing site, the $Y$ axis is defined such that the velocity, acceleration and jerk vectors at the landing site lie entirely in the $X-Z$ plane, and the $Z$ axis is defined such as to complete the right handed system.
GDT, GDT1: See SERV section.
GSAV: See ALIN section
HCALC, HDOTDISP: See SERV section.
HCALC1: Double precision calculated altitude above the landing site radius for display in Noun 63 and Noun 60, scaled B24 in units of meters. HCALC1 is set to HCALC in the SERV section and is calculated once per second in "RODCOMP".

HIGHCRIT: Single precision upper limit on the variable throttle region in a situation of increasing thrust commands, scaled B14 in units of DPS throttle pulses. If the throttle setting is in the variable region, the throttle setting commanded by the program will correspond directly with the desired thrust until the desired thrust exceeds HIGHCRIT. Then the program will comimand full throttle. HIGHCRIT is part of the erasable load.

K:180DEGS: Single precision constant stored as $180 \times 2^{-14}$, scaled B15 in units of degrees per revolution. Equation value: 360.
K:1d2DEG: Sirigle.precision constant stored as 0.00278 , scaled B-1 in units of revolutions. Equation value: 0.00139. (Equivalent to one-half of one degree.)

K:2SECS: Single precision constant stored as $200 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 200.

K:3SECS: Single precision constant stored as $300 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 300.
K:4SECb28: Double precision constant stored as $400 \times 2^{-28}$, scaled B26 in units of centiseconds. Equation value: 100.
K: 4 SECS: Single precision constant stored as $400 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 400.
K:99999CON: Double precision constant stored as $30479.7 \times 2^{-24}$, scaled B24 in units of meters. Equation value: 30479.7. (Equivalent to 99999 fect.)
K:ABAFCNST: Single precision constant stored as 0.13107 , program notation/AF/CNST, scalod $\mathrm{B}-18$ in urits of meters per centisecond squared centimeters per second per guidance cycle. Equation value: $5 \mathrm{E}-7$. (Equivalent to $\frac{1}{2} \times 0.01$ cubed.)

K:AFTRGUID ${ }_{i}(i=-1$ thru 2): Table of single precision addresses for branching. Indexed in the order -1 thru 2, they are the addresses of: CGCALC, EXTLOGIC, EXTLOGIC, STEER?.
K:AZEACH: Single precision constant stored as 0.03491 , scaled BO ir units of radians. Equation value: 0.03491 . (Equivalent to 2 degrees.)
K:BTASFACT: Double precision constant stored as $655.36 \times 2^{-26}$, scaled B11 in units of seconds meters per centimeter. Equation value: 0.02. (Stored value corresponds to $2 \sec \times 0.01 \mathrm{~m} / \mathrm{cm} \times 2^{-11}$.)

K:BIT1H: Single precision constant stored as $1 \times 2^{-14}$, scaled B14 and unitless. Equation value: 1.0

K:BIT6: Single precision constant stored as 00040 , scaled 314 in units of DPS throttle pulses per centisecond. Equation value: 32.
K:DDUMCRIT: Double precision constant stored as $8 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 8.

K:DEPRCRIT: Double precision constant stored as $-0.02 \times 2^{-1}$, scaled B1 and unitless. Equation value: -0.02. (Depression angle criterion.)
K:DPSTHRSH: Single precision constant stored as $36 \times 2^{-14}$, scaled B14 in units of centimeters per second. Equation value: 36. (Equivalent to $\mathrm{K}:$ THRESH1 $+\mathrm{K}:$ THRESH2 of the BURN section.)

K:EIEACH: Single precision constant stored as 0.00873 , scaled BO in units of radians. Equation value: 0.00873. (Equivalent to one-half of one degree.)

K:FEXTRA: Single precision constant stored as 10000 , program notation also BIT13, scaled B14 in units of DPS throttle pulses. Equation value: 4096. (Equivalent to 51,331 newtons or 11,540 pounds force based on the value of K:SCALEFAC.)
K:fmax: Value of overflow bit on a quantity scaled B14 in units of DPS throttle pulses. Equation value: 16384.
K: FMAXODD: Single precision constant stored as $384.1 \times 2^{-14}$, scaled B14 in units of DPS throttle pulses. Equation value: 3841. (Equivalent to 48,135 newtons or 10,821 pounds force based on the value of $\mathrm{K}:$ SCALEFAC.)
K: FMAXPOS: Single precision constant stored as $3467 \times 2^{-14}$, scaled B14 in units of DPS throttle pulses. Equation value: 3467. (Equivalent to $43,1,48$ newtons or 9,767 pounds force based on the value of $\mathrm{K}:$ SCALEFAC.)
K:GSCALE: Double precision constant stored as $100 \times 2^{-11}$, scaled B12 in units of centiseconds per navigation cycle. Equation value: 200.
K:GUIDDURN: Double precision constant stored as $6641.0 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 66440.
K:HIGHESTF: Double precision constant stored as $4.34546769 \times 2^{-12}$; scaled B12 in units of kilogram meters per centisecond squared. Equation value: 4.34546769. (Equivalent to 9,769 pounds force.)
K:KPIP1: See SERV section.
K:MOONRATE: Double precision constant stored as $0.2661699489 \mathrm{E}-7 \times 2^{19}$, scaled B-19 in units of radians per centisecond. Equation value: $0.2661699489 \mathrm{E}-7$.

K:NEWPHASE $i_{i}(i=-1$ thru 2): Table of single precision addresses for branching. Indexed in the order -1 through 2, they are the addresses of: TTFINCR, TTFINCR, STARTP64, P65START.

K:P64DB: Single precision constant stored as 00155 , scaled B-3 in units of revolutions. Equation value: 0.00083. (Equivalent to 0.2994 degrees.)

K:PREGUIDE (i = -1 thru 2): Table of single precision addresses for branching. Indexed in the order - 1 through 2, they are the addresses of: CALCRGVG, RGVGCALC, REDESIG, RGVGCAIC.
K:PROJMAX: Single precision constant stored as $0.42262 \mathrm{X}^{-3}$, scaled B3 and unitless. Equation value: 0.42262. (Equivalent to the sine of 25 degrees.)
K:PROJMIN: Single precision constant stored as $0.25882 \mathrm{X}^{-3}$, scaled B3 and unitless. Equation value: 0.25882. (Equivalent to the sine of 15 degrees.)

K:SCALFFAC: Double precision constant stored as $797.959872 \times 2^{-16}$, scaled B16 in units of DPS throttle pulses / kilogram meter per centisecond squared. Equation value: 797.959872. (Equivalent to 12.532 newtons or 2.8173 pounds force per pulse.)

K:SHFTFACT: Double precision constant stored as $1 \times 2^{-17}$, scaled B17 and unitless. Equation value: 1.0.

K:TARGTDEX ( $i=-1$ thru 1): Table of single precision indexes, scaled B14 and unitless. Equation value indexed in the order -1 through 1: $0,0,28$.
K:THROTLAG: Single precision constant stored as $20 . \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 20.

K:TREDESCL: Single precision constant stored as -0.08 , scaled B-3 in units of seconds per centiseconds. Equation value: -0.01.
K:TRIMACCL: Double precision constant stored as $3.50132708 \mathrm{E}-5 \times 2^{8}$, scaled B-8 in units of meters per centisecond squared. Equation value: $3.50132708 \mathrm{E}-5$.

K:TSCALINV: Single precision constant stored as $00010_{\text {g }}$, scaled B11 and unitless. Equation value: 1.

K:ttf6b3: Double precision constant stored as 0.75 , program notation 3/4DP, scaled B3 and unitless. Equation value: 6 .

K:ttf24b6: Double precision constant stored as 0.375, program notation 3/8DP, scaled B6 and unitless. Equation value: 24.

K:UNITX, K:UNITZ: Double precision vector constants, stored as ( $0.5,0,0$ ) and ( $0,0,0.5$ ) respectively, scaled B1 and unitless. Equation values: $(1,0,0)$ and $(0,0,1)$.

K:WHATALM ( $\mathrm{i}_{\mathrm{F}}=-1$ thru 1): Table of single precision addresses for branchIng. Indexed in the order -1 through 1 they are the addresses of: 1406P00, 1406ALM, 1406ALM.

K:WHATDISP $(i=0$ thru 2): Table of single precision addresses for branching. Indexed in the order 0 through 2 they are the addresses of: P63DISPS, P64DISPS, VERTDISP.

K:WHATEXIT $(i=-1$ thru 1$)$ : Table of single precision addresses for branching. Indexed in the order -1 through 1, they are the addresses of: EXGSUB, EXBRAK, EXNORM.

K:WHATGUID , $^{(i=-1}$ thru 2): Table of single precision addresses for branching. Indexed in the order -1 through 2, they are the addresses of: TTF/8CL, TTF/8CL, TTF/8CL, VERTGUID.

IAGdTAU: Double precision lag time divided by TAUROD, scaled BO and unitless. Program notation LAG/TAU; part of the erasable load.

LAND, LANDTEMP: Double precision position vector of the landing site, scaled B24 in units of meters, measured from the center of the moon and expressed in the Platform coordinate system.

LANDMAG: Double precision radius magnitude of the landing site, scaled B24 in units of meters; program notation /LAND/.

LASTTPIP: Double precision storage for the time of the previous PIPA reading during P66 (R.O.D.) computations, scaled B28 in units of centiseconds.

LEADTIME: Single precision negative of the time increment specifying how far the guidance computations are to be projected forward in P63 and P64, scaled B17. In units of centiseconds; part of the erasable load.

LM504: see COOR section.
LOOKANGL: Single precisinn 7 anding site elevatinn angle, scaled B14 in units of degreer. LOOKANGL is calculated as the complement of the angle between the LM $+X$ axis and the negat,ive LOS, which is equivalent to the angle between the LM $Y$ Z plane and the positive LOS.

LOWCRIT: Single precision upper limit on the variable throttle region in a situation of decreasing thrust commands, scaled B14 in units of DPS throttle pulses. If the throttle is set at maximum thrust, the desired thrust must fall below this limit before the program will command a throttle setting below maximum. LOWCRIT is part of the erasable load.

LUNDEX: Single precision index scaled B14 and unitless.
MASS: See SERV section.
MAXFORCE: Double precision maximum thrust that P66 will command, scaled B12 in units of kilogram meter per centisecond squared; part of the erasable load.

MINFORCE: Double precision minimum thrust that P66 will command, scaled B12 in units of kilogram meter per centisecond squared; part of the erasable load.

MODREG: See DATA section.
[MOONMAT]: See COOR section.
[NBSMMAT]: See COOR section.
NGUIDSUB: Single precision counter scaled B14 and unitless.
NIGNLOOP: Single precision counter scaled B14 and unitless.
OLDPIPA: Single precision storage for the accelerometer readings (PIPA) performed at time THISTPIP for P66 computations, scaled B14 in units of centimeters per second. Note that this is different from the normal two second cycle PIPA reading which is made at PIPTIME.

OUTOFPLN: Double precision distance of the landing site from the LM orbital plane at the projected time of ignition, scaled B24 in units of meters. (Positive if the orbital plane is to the right of the landing site, looking in the direction of travel.)
PIF: Double precision change in the desired thrust level, scaled B14 in units of DPS throttle pulses.
PIFPSET: Single precision bias on the throttle command, scaled B14 in units of DPS throttle pulses.

PIPA, PIPATMP: See SERV section.
PIPABIAS $_{x}$, PIPABIAS $_{y}$, PIPABIAS $_{z}$ : See IMUC section.
PIPTIME, PIPTIME1: See SERV section.
POINTVSM: See ATTM section.
POLDPIPA: Single precision storage for the previous cycle value of OLDPIPA, scaled B14 in units of centimeters per second; program notation RUPTREG.

PREC: Single precision specification of the precision to which "ROOTPSRS" is to converge, scaled BO and unitless.

PROJ, PROJ1, PROJ2: Single precision projection of the Y Descent Guidance coordinate system axis onto the unit normal to the plane defined by the $X$ body axis and the line-of-sight vector, and the difference between that projection and its upper and lower bounds; scaled B3 and unitless.

PSEUD055: Single precision storage for telemetry of the throttle command sent to the descent engine, scaled B14 in units of throttle pulses. (See definition of THRUST.)

R60SAVE: Double precision temporary storage for the UNFC vector, scaled B7 in units of meters per centisecond.

R: Double precision navigated present position vector of the LM, scaled B24 in units of meters, measured from the center of the moon and expressed in the Platform coordinate system.

RA: Single precision ratio of the lag-diminished TTF to TTF, scaled BO and unitless.

RANGEDSP: Double precision distance from the LM to the estimated landing site, scaled B24 in units of meters (displayed by noun 68).

RATT, VATT, TAT: see ORBI section.
RCV, VCV: see ORBI section.
[REFSMMAT]: see COOR section.
RGU: Double precision position vector of the LM, scaled B24 in units of meters, measured from the landing site on the moon's surface and expressed in the Descent Guidance coordinate system.

RLS: Double precision vector position of the landing site relative to the center of the moon, scaled B27 in units of meters and expressed in the Selenographic (moon-fixed) coordinate system; part of the erasable load.

RN, VN: see SERV section.
RODCOUNT: Single precision count of the number and direction of astronaut deflections of the rate-of-descent switch, scaled B14 and unitless.

RODSCAL1: Single precision working storage for RODSCALE, scaled B-7 in units of meters per centisecond.

RODSCALE: Single precision erasable memory quantity representing the velocity increment to be added or subtracted per each deflection of the R.O.D. switch during P66, scaled B-7 in units of meters per centisecond; part of the erasable load.

ROOTGOOD: Variable introduced as a substitute for a variable return address: Set to 2 or 0 to indicate a successful or non-successful convergence on the root of the "ROOTPSRS" polynomial.

ROOTPS: Double precision root extracted from an arbitrary polynomial by the Newton iteration method, scaling and units variable.

RTNHOLD: Single precision octal return address storage.
SCAXIS: see ATTM section.
TARGADG: Double precision Hi-gate acceleration aimpoint vector, scaled B-4 in units of meters per centisecond squared and expressed in the Descent Guidance coordinate system; program notation ADG or ABRFG; part of the erasable load.

TARGADG 28 : Double precision Lo-gate acceleration aimpoint vector, scaled B-4 in units of meters per centisecond squared and expressed in the Descent Guidance coordinate system; program notation AAPFG; part of the erasable load.

TARGRDG $_{0}$ : Double precision Hi-gate position aimpoint vector, scaled B24 in units of meters and expressed in the Descent Guidance coordinate system; program notation RDG or RBRFG; part of the erasable load.

TARGRDG $_{28}$ : Double precision Lo-gate position aimpoint vector, scaled B24 in units of meters and expressed in the Descent Guidance coordinate system; program notation RAPFG; part of the erasable load.

TARGVDG ${ }_{0}$ : Double precision Hi-gate velocity aimpoint vector, scaled B10 in units of meters per centisecond and expressed in the Descent Guidance coordinate system; program notation VDG or VBRFG; part of the erasable load.

TARGVDG ${ }_{28}$ : Double precision Lo-gate velocity aimpoint vector, scaled B10 in units of meters per centisecond and expressed in the Descent Guidance coordinate system; program notation VAPFG; part of the erasable load.

TAT: See ORBI section.
TAUROD: Double precision time constant for P66 (R.O.D.), scaled B9 in units of centiseconds; part of the erasable load.
TAUVERT: Double precision time constant for P65 (Auto landing), scaled B14 in units of centiseconds; part of the erasable load.

TCGF: Single precision quantity representing the latest time at which the Descent Guidance coordinate system is erected in the braking phase (P63, WCHPHASE $=0$ ), scaled B17 in units of centiseconds; program notation TCGFBRAK; part of the erasable load.

TCGF $_{28}$ : Single precision quantity representing the latest time at which the Descent Guidance coordinate system is erected in the approach phase (P64, WCHPHASE = 1), scaled B17 in units of centiseconds; program notation TCGFAPPR; part of the erasable load.
TCGI : Single precision quantity representing the earliest time at which the Descent Guidance coordinate system is erected in the Braking phase (P63, WCHPHASE $=0$ ), scaled B17 in units of centiseconds; program notation TCGIBRAK; part of the erasable load.

TCGI 28 : Single precision quantity representing the earliest time at which the Descent Guidance coordinate system is erected in the approach phase (P64, WCHPHASE = 1), scaled B17 in units of centiseconds; program notation TCGIAPPR; part of the erasable load.
$\mathrm{TEND}_{0}$ : Single precision quantity representing the time at which the approach phase (P64) is selected (i.e. WCHPHASE goes from 0 to 1 thus selecting P64), scaled B17 in units of centiseconds; program notation TENDBRAK; part of the erasable load.

TEND ${ }_{1}$ : Single precision quantity representing the time at which the vertical phase (P65) is selected (i.e. WCHPHASE goes from 1 to 2 thus selecting P65 provided the Auto throttle and Auto DAP switches are in the AUTO position; otherwise P66 or P67 is selected), scaled B17 in units of centiseconds; program notation TENDAPPR; part of the erasable load.

TET: See ORBI section.
THISTPIP: Double precision time of PIPA readings for P66 (R.O.D.) computations, scaled B28 in units of centiseconds. Note that this is a different reading than that which is taken at PIPTIME.

THRUST: Cell used to provide DPS throttle commands by setting bit 4 of channel 14; scaled B14 in units of DPS throttle pulses. One pulse corresponds to about 12.532 newtons or 2.8173 pounds force (depending on erosion of the DPS nozzle), and the maximum command recognized by the throttle is 3428 pulses or about 42,960 newtons or 9658 pounds force.

TIG: see BURN section.
TIMENOW: see EXVB section.
TLAND: Double precision nominal time of lunar landing, scaled B28 in units of centiseconds; part of the erasable load.

TPIP, TPIPOLD: Double precision storage for consecutive times of entry in the TTF incrementing routine, scaled B28 in units of centiseconds and used to increment TTF.

TREDES: Single precision time remaining to redesignate the landing site, scaled B14 in units of seconds (limited to 99).

TRKMKCNT: See RNAV section.
TTF, TTFTMP: Double precision negative time from the end of the present descent guidance phase, scaled B17 in units of centiseconds.

TTFADGZ ${ }_{0}$ : Double precision $Z$ component of TARGADG ${ }_{0}$ multiplied by 6; scaled B-4 in units of meters per centisecond squared; program notation $A B R F G^{*}$ or $A^{2 D G 2 T T F}{ }_{0}$; part of the erasable load.

TTFADGZ $28^{\text {: }}$ Double precision $Z$ component of TARGADG 28 multiplied by 6 ; scaled $B-4$ in units of meters per centisecond squared; program notation AAPFG* or $A^{*}$ DLSTTF $_{28}$; part of the erasable load.
TTFDISP: Double precision storage for TTF for display purposes, scaled B28 in units of centiseconds.

TTFJDGZ ${ }_{0}$ : Double precision Hi-gate jerk aimpoint, $Z$ component only, scaled B-21 in units of meters per centisecond cubed; program notation JBRFG* or JD\{̧2TTF 0 ; part of the erasable load.

TTFJDGZ 28: Double precision Lo-gate jerk aimpoint, $Z$ component only, scaled B-21 in units of meters per centisecond cubed; program notation JAPFG* or JDG2TTF $_{28}$; part of the erasable load.

TTFVDGZ ${ }_{0}$ Double precision $Z$ component of TARGVDG ${ }_{0}$ multiplied by 18 ; scaled B13 in units of meters per centisecond; program notation VBRFG* or $\mathrm{VDG2TTF}_{0}$; part of the erasable load.

TTFVDGZ 28 : Double precision $Z$ component of TARGVDG $_{28}$ multiplied by 18; scaled 13 in units of meters per centisecond; program notation VAPFG* or VDG2TTF 28 ; part of the erasable load.

TTHROT: Single precision time of the last throttle command, scaled B14 in units of centiseconds.

UNITR: See SERV section.
UNFC: See BURN section. During the pre-ignition phase computations for the powered descent maneuver (P63), UNFC represents the Delta-V vector for the pre-full throttle thrust, scaled B7 in units of meters per centisecond.

UNWC: See BURN section.
V2FG: Double precision vector constant representing the velocity aim conditions for P65 velocity nulling computations, scaled B1O in units of meters per centisecond; part of the erasable load.

V: Double precision present navigated velocity vector of the LM, scaled B7 in units of meters per centisecond and expressed in the Platform coordinate system.

VBIAS: Double precision velocity bias factor based on PIPA bias values for P66 (R.O.D.) computations, scaled B8 in units of meters per centisecond.

VDGVERT: Double precision vertical component of velocity desired in the final (vertical) phase of descent, scaled B7 in units of meters per centisecond; altered in response to astronaut commands during manual descent control.

VGU: Double precision velocity vector of the LM relative to the rotating moon, scaled B10 in units of meters per centisecond and expressed in the Descent Guidance coordinate system.

VHORIZ: Double precision horizontal velocity computed for display during the vertical descent phase, scaled B7 in units of meters per centisecond.

WCHPHASE: Single precision index scaled B14 and unitless. Set to -1 in the pre-ignition phase ("P63LM"), 0 at ignition ("P63IGN"), 1 when TTF (negative) is greater than minus TEND ("EXTLOGIC"), and 2 when TTF is greater than minus TEND 1 or when the astronaut switches out of automatic control selecting P66 or P67 ("EXTLOGIC" or "LUNLAND").

WCHPHOLD: Single precision storage for WCHPHASE to preserve the present guidance mode through the present guidance cycle when WCHPHASE changes.

WCHVERT: Single precision flag to indicate whether the final (vertical) phase of guidance is under control of P65 (WCHVERT $=-2$ ), P66 (WCHVERT $=0$ ) or P67 (WCHVERT $=10$ ), scaled B14 and unitless.

WHICH: See BURN section.
WM: Double precision mean angular velocity vector of the moon, scaled B-17 in units of radians per centisecond and expressed in the Platform coordinate system.

XNBPIP, YNBPIP, ZNBPIP: See SERV section.
ZERLINA: Single precision counter scaled B14 and unitless.
ZOOMTIME: See BURN section.

GODSP $T$ Saddr $=$ address of step that proceeded to "GODSP"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=00000_{8}$
Proceed to "GOFLASH2"
GODSPR TSaddr = address of step that performed "GODSPR"
$M P A C=T S$
$\mathrm{MPAC}_{4}=00000_{8}$
Proceed to "GODSPRSS1"
GODSPRET TSaddr = address of step that performed "GODSPRET"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=0004 \mathrm{O}_{8} \quad$ (DOTHNRET)
Proceed to "GOFLASH2"
GOFLASH TSaddr = address of step that proceeded to "GOFLASH"
$M P A C 1=T S$
$\mathrm{MPAC}_{4}=00010_{8} \quad$ (FLREQ)
Proceed to "GOFLASH2"
GOFLASHR TSaddr = address of step that performed "GOFLASHR"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=\mathrm{OOO1O}_{8}$ (FLREQ)
Proceed to "GODSPRS1"
GOPERF1 TSaddr $=$ address of step that proceeded to "GOPERF1"
DSPTEM1 $=$ TS
MPAC $C_{1}=K:$ VO1N25 (octal display of DSPTEM1 in R1)
$\mathrm{MPAC}_{4}=\mathrm{OOO36}_{8} \quad$ (PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GOFLASH2"

GOPERF1R TSaddr = address of step that performed "GOPERF1R"
DSPTEM1 $=\mathrm{TS}$
MPAC $_{1}=\mathrm{K}:$ VO1N25 (octal display of DSPTEM1 in R1)
$\mathrm{MPAC}_{4}=00036_{8} \quad$ (PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GODSPRS1"
GOPERF2 TSaddr = address of step that proceeded to "GOPERF2"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=00030_{8} \quad$ (PERFREQ, FLREQ)
Proceed to "GOFLASH2"
GOPERF2R TSaddr = address of step that performed "GOPERF2R"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=00030_{8} \quad$ (PERFREQ, FLREQ)
Proceed to "GODSPRS1"
GOPERF4 TSaddr $=$ address of step that proceeded to "GOPERF4"
$\mathrm{MPAC}_{1}=\mathrm{K}:$ VO4NO6 (octal display of OPTION1 and OPTION2)
$\mathrm{MPAC}_{4}=000148$ (FLREQ, R3BLNK)
Proceed to "GOFLASH2"
GOPERF4R TSaddr = address of step that performed "GOPERF4R"
MPAC $1=\mathrm{K}:$ VO4NO6 (octal display of OPTION1 and OPTION2)
$\mathrm{MPAC}_{4}=00014_{8} \quad$ (FLREQ, R3BLNK)
Proceed to "GODSPRS1"
REGODSP TSaddr = address of step that proceeded to "REGODSP"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=20000_{8} \quad$ (RESETREQ)
Proceed to "GOFLASH2"

REGODSPR TSaddr = address of step that performed "REGODSPR"
$M P A C 1=T S$
$\mathrm{MPAC}_{4}=20000_{8} \quad$ (RESETREQ)
Proceed to "GODSPRS1"
REFLASH TSaddr = address of step that proceeded to "REFLASH"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}={20010_{8} \quad(\mathrm{RESETREQ}, \mathrm{FLREQ})}^{8}$
Proceed to "GOFLASH2"
REFLASHR TSaddr = address of step that performed "REFLASHR"
$M P A C 1=T S$
$\mathrm{MPAC}_{4}=20010_{8} \quad$ (RESETREQ, FLREQ)
Proceed to "GODSPRS1"
CLEANDSP TSaddr $=$ address of step that proceeded to "CLEANDSP"
$\mathrm{MPAC}_{1}=00000_{8}$
$\mathrm{MPAC}_{4}=20010_{8} \quad$ (RESETREQ, FLREQ)
Proceed to "GOFLA.SH2"
GOXDSP TSaddr = address of step that proceeded to "GOXDSP"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=40000_{8} \quad$ (MKEXREQ)
Proceed to "GOFLASH2"
GOXDSPR TSaddr = address of step that performed "GOXDSPR"
$M P A C_{1}=T S$
MPAC $_{4}=4_{4} 0000_{8} \quad$ (MKEXREQ)
Proceed to "GODSPRS1"
EXDSPRET TSaddr = address of step that performed "EXDSPRET"
$M P A C=T S$
$\mathrm{MPAC}_{4}=40040_{8} \quad$ (MKEXREQ, DOTHNRET)
Proceed to "GOFLASH2"
GOXDSPF TSaddr $=$ address of step that proceeded to "GOXDSPF"
(GOMARKF)
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=40010_{8} \quad$ (MKFXREQ, FLREQ)
Proceed to "GOFLASH2"
GOXDSPFR TSaddr = address of step that performed "GOXDSPFR"
(GOMARKFR)
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=40010_{8} \quad$ (MKFXREQ, FLREQ)
Proceed to "GODSPRS1"
GOMARK2 TSaddr = address of step that proceeded to "GOMARK2"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=4_{40030_{8} \quad \text { (MKEXREQ, PERFREQ, FLREQ) }}^{8}$
Proceed to "GOFLASH2"
GOMARK2R TSaddr = address of step that performed "GOMARK2R"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=4_{40030_{8} \quad \text { (MKEXREQ, PERFREQ, FLREQ) }}^{8}$
Proceed to "GODSPRS1"
GOMARK3 TSaddr = address of step that proceeded to "GOMARK3"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=40230_{8} \quad$ (MKEXREQ, DECVERB, PERFREQ, FLREQ)
Proceed to "GOFLASH2"
GOMARK3R Analogous to "GOMARK2R" except MPAC $4=40230_{8}$

GOMARK4 $T$ Saddr $=$ address of step that proceeded to "GOMARK4"
$\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=40036$ (MKEXREQ, PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GOFLASH2"
KIEENEX TSaddr = address of step that proceeded to "KLEENEX"
$\mathrm{MPAC}_{1}=00000_{8}$
$\mathrm{MPAC}_{4}=40010_{8} \quad$ (MKEXREQ, FLLEQ)
Proceed to "GOFLASH2"
PRIODSP TSaddr = address of step that proceeded to "PRIODSP"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=00110_{8} \quad$ (PRIOREQ, FLREQ)
Proceed to "GOFLASH2"
PRIODSPR TSaddr = address of step that performed "PRIODSPR" or "PRIOLARM"
$M P A C_{1}=T S$
$\mathrm{MPAC}_{4}=0_{8} \quad$ (PRIOREQ, FLREQ)
Proceed to "GODSPRS1"
GOFLASH2 Inhibit interrupts
Set bits 11-9 of $\mathrm{MPAC}_{4}=$ EBANK
$M P A_{3}=\mathrm{TSaddr}$
Release interrupt inhibit
Proceed to "MAKEPLAY"
GODSPRS1 Inhibit interrupts
Establish "MAKEPLAY" (if a flashing register display use VAC, if not no VAC)
Set bits 11-9 of $\mathrm{MPAC}_{4}=$ EBANK
$\mathrm{MPAC}_{3}=\mathrm{TSaddr}$

Set MFAC ${ }_{i}$ of "MAKEPLAY" job $=\mathrm{MPAC}_{i}$ of present job for $i=1-4$
Release interrupt inhibit
Return (in listing return is to calling address +4 )
BLANKET Switch MPAC 4 bits indicated by a binary 1 in TS to 1
Set $\mathrm{MPAC}_{4}$ of "MAKEPLAY" job $=\mathrm{MPAC}_{4}$ of present job
Return

MAKEPLAY USERPRIO = priority of present job
Change priority to 33 (higher than "CHARIN")
If bit 15 of $\mathrm{MPAC}_{4}$ (MKEXREQ) $=1$, proceed to "MAKEMARK"
If bit 7 of $\mathrm{MPAC}_{4}$ (PRIOREQ) = 1 , proceed to "MAKEPRIO"
COPINDEX $=2$
If bit 14 of $\mathrm{MPAC}_{4}$ (RESETREQ) = 1 : (REGODSP, REFLASH, CLEANDSP)
If $\mathrm{CADRFLSH}_{2} \neq \mathrm{MPAC}_{3}$, proceed to "OKTOPLAY"
If DSPLOCK $=0$, proceed to "OKTOPLAY"
End job (display is already set and DSKY is busy; see "CLOKJOB" for example)
If DSPFLG ${ }_{2}$ bit 4 (FLREQ) $=0$, proceed to "OKTOPLAY"
(Normal displays not requiring astronaut action can be replaced by other normal displays)

If FLAGWRD 4 bits 13 (NRMIDFLG), 10 (NWAITFLG), 8 (NRMNVFLG) and 4 (NRUPTFLG) are all zero, proceed to "OKTOPLAY"
(not replacing a display that has not yet been displayed)
Proceed to "BAILOUT" with TS $=31502 \mathrm{~g}$
(two simultaneous requests for normal display)
OKTOPLAY Inhibit interrupts
$\mathrm{DSPFLG}_{2}=\mathrm{MPAC}_{4}$
If DSPFIG $_{2}$ bit 6 (DOTHNRET) or 4 (FLREQ) $=1$ :
$\mathrm{CADRFLSH}_{2}=\mathrm{MPAC}_{3}$
$\mathrm{NVWORD}_{2}=\mathrm{MPAC}_{1}$
Release interrupt inhibit
If FLAGWRD 4 bit 15 (MRKIDFLG), 14 (PRIODFLG), 12 (PDSPFLAG), 11 (MWAITFLG), 9 (MRKNVFLG), 7 (PRONVFLG), 5 (MRUPTFLG) or $1($ XDSPFLAG $)=1$ :

Switch FLAGWRD4 bit 10 (NWAITFLG) to 1
$M P A C_{0}=$ COPINDEX -1
If a job with LOC = "PLAYJUML" is asleep:
Awaken it and set its LOC = "ENDOFJOB"
Put this job to sleep with a LOC $=$ "PLAYJUM1" $\quad\left(M_{P A C}\right.$
maintained in sleep $)$
When awakened, proceed to address specified in its LOC
(Otherwise, this job is free to proceed to use the DSKY)
Perform "WITCHONE"
If a job with $L O C=T S$ is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
PLAYJUMI COPINDEX $=2$ (COPINDEX not maintained by sleeping job)
Proceed to "NVDSP"
MAKEMARK COPINDEX $=1$
Inhibit interrupts
$\mathrm{DSPFLG}_{1}=\mathrm{MPAC}_{4}$
If DSPFLG $_{1}$ bit 6 (DOTHNRET) or 4 (FLREQ) $=1$ :
$\mathrm{CADRFLSH}_{1}=\mathrm{MPAC}_{3}$
$\mathrm{NVWORD}_{1}=\mathrm{MPAC}_{1}$
Release interrupt inhibit
If FLAGWRD4 bit 14 (PRIODFLG), 13 (NRMIDFLG), 12 (PDSPFLAG), 8 (NRMNVFLG) and 7 (PRONVFLG) are all 0: (no normal or priority display waiting for a response or a key release)

```
 If FLAGWRD4 bit 9 (MRKNVFLG) = 1, end job
 Proceed to "MARKPLAY"
 If FLAGWRD4 bit 14 (PRIODFLG), 12 (PDSPFLAG) and 7 (PRONVFLG)
 are all 0: (interrupt if a normal display)
 Switch FLAGWRD4 bit 3 (MKOVFLAG) to l
 MPAC O}=
 Proceed to "JOBXCHS" (substitute mark for normal display)
 If FLAGWRD4 bit ll (MWAITFLG) or 5 (MRUPTFLG) = 1, end job
 (otherwise, put mark to sleep until prio display is over)
 Switch FLAGWRD4 bit ll (MWAITFLG) to l
 MPAC
 If a job with LOC = "MARKPLAY" is asleep:
 Awaken it and set its LOC = "ENDOFJOB" (kill it)
 Put this job to sleep with a LOC = "MARKPLAY"
 When awakened, proceed to address specified in its LOC
MARKPLAY Inhibit interrupts
 Switch FLAGWRD4 bit 3 (MKOVFLAG) to 0 and bit l (XDSPFLAG) to l
 Release interrupt inhibit
 If DSPFLG
 COPINDEX = 1
 Proceed to "NVDSP"
 MAKEPRIO COPINDEX = 0
 If bit 14.(RESETREQ) of MPAC
 If FLAGWRD4 bit 14 (PRIODFLG) or }7\mathrm{ (PRONVFLG) = 1, proceed
 to "BAILOUT" with TS = 315028 (too many priority displays)
```

If bit 14 of $\mathrm{MPAC}_{4}$ (RESETREQ) = 1: (not expected)
If $\mathrm{CADRFLSH}_{0}=\mathrm{MPAC}_{3}$ and DSPLOCK $>0$, end job
If FLAGWRD4 bit 15 (MRKIDFLG) or 9 (MRKNVFLG) $=1$ :
$M P A C_{0}=0$
Proceed to "JOBXCHS" (replace mark with prio display)
If FLAGWRD4 bit 13 (NRMIDFLG) or 8 (NRMNVFLG) = 1 :
$\mathrm{MPAC}_{\mathrm{O}}=1$
Proceed to "JOBXCHS" (replace norm with prio display)
OKTOCOPY COPINDEX $=0$.
Inhibit interrupts
$\mathrm{DSPFLG}_{\mathrm{O}}=\mathrm{MPAC}_{4}$
If DSPFLG $_{0}$ bit 6 (DOTHNRET) or 4 (FLREQ) $=1$ :
$\mathrm{CADRFLSH}_{\mathrm{O}}=\mathrm{MPAC}_{3}$
$\mathrm{NWWORD}_{0}=\mathrm{MPAC}_{1}$
Release interrupt inhibit
Perform "WITCHONE"
If a job with $\mathrm{LOC}=\mathrm{TS}$ is asleep:
Awaken it and set its LOC = "ENDOFJOB"
REDOPRIO PRIOTIME = less significant half of TIMENOW
COPINDEX $=0$
Proceed to "NVDSP"
JOBXCHS Perform "WITCHONE"
If a job with $\mathrm{LOC}=\mathrm{TS}$ is asleep:
Awaken it and set its LOC = "XCHSLEEP" (to cause it to continue at "XCHSLEEP" when this job is finished)
(If a job with LOC $=T S$ is asleep)
Set MPAC ${ }_{0}$ of awakened job $=M P A C_{O}$ of this job
If $M P A C_{0}=0: \quad$ (mark display replaced by a priority display)
Switch FLAGNRD4 bits 15 (MRKIDFLG) and 9 (MRKNVFLG) to 0
Switch FLAGWRD4 bit 5 (MRUPTFLG) to 1
If $\mathrm{MPAC}_{0}=1: \quad$ (normal display replaced by mark or prio)
Switch FLAGWRD4 bits 13 (NRMIDFLG) and 8 (NRMNVFLG) to 0
Switch FLAGWRD4 bit 4 (NRUPTFLG) to 1
If FLAGWRD4 bit 3 (MKOVFLAG) $=1$, proceed to "MARKPLAY"
Proceed to "OKTOCOPY" (priority)
XCHSLEEP If $M P A C=0, T S=$ "MARKPLAY"
If $\mathrm{MPAC}_{0}=1, \mathrm{TS}=$ "PLAYJUM1"
If a job with LOC $=T S$ is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
Put this job to sleep and set its LOC = TS
When awakened, proceed to the address specified in its LOC
WITCHONE Switch bit 5 of channel 11 to 0 (key release lamp off)
If FLAGWRD4 bit 9 (MRKNVFLG), 8 (NRMNVFLG) or 7 (PRONVFLG) $=1$ :
$\mathrm{TS}=$ DSPLIST
DSPLIST $=+0$
Return
$T S=$ CADRSTOR
CADRSTOR $=+0$
Return
(job active in the display interface routines is one that is awaiting' astronaut release of the DSKY)
(job active in the display interface routines is one that is awaiting an astronaut response)

GENMASK $=K:$ dspoctab $_{i}$

$$
\mathrm{MPAC}_{4}=\mathrm{DSPFLG}_{\mathrm{i}}
$$

$$
\text { EBANK }=\text { bits } 11-9 \text { of } \text { DSPFLG }_{i}
$$

$$
\text { TSmonopt }=\text { bits } 3-1 \text { of } \text { DSPFLG }_{i}
$$

$$
\text { Switch } \text { DSPFLG }_{i} \text { bit } 13 \text { (2NDPERF) to } 0
$$

$$
\text { TSdec }=\text { bit } 8 \text { of } \text { DSPFLG }_{i} \quad(\text { DECVERB })
$$

MPAC2SAV $=M P A C_{2}$
MARK2PAC $=M P A C_{2}$
If $\mathrm{NVWORD}_{i}=0$ :

Proceed to second step of "FLASHSUB"
If $\mathrm{NVWORD}_{i}>0:$

$$
\mathrm{TSvn}=\mathrm{NVWORD}_{i}
$$

If NVWORD ${ }_{i}<0: \quad$ (expected only with marks)

$$
\mathrm{NVWORD}_{1}=-\mathrm{NVWORD}_{1}
$$

$$
T S=K: V O 5 N O O
$$

$$
\text { If } \mathrm{TSdec}=00200_{8}(\text { bit } 8=1), \mathrm{TS}=\mathrm{K}: \mathrm{VO6NOO}
$$

$$
\mathrm{TSvn}=\mathrm{TS}+\text { low } 7 \text { bits of } \mathrm{NVWORD}_{1} \quad \text { (verb } 5 \text { or } 6 \text { with noun) }
$$

NV50DSP Perform "NVSUB"
If FREEDSKY $=0$ : (display system in use externally)
If CADRSTOR $\neq 0$, end job If COPINDEX $=0$ (GENMASK $=20144_{\mathrm{g}}$ ):

Switch FLAGWRD4 bit 7 (PRONVFLG) to 1
TSadr $=$ "REDOPRIO"
(If FREEDSKY = 0 )
If COPINDEX $=1$ (GENMASK $=42424_{8}$ ):
Switch FLAGWRD4 bit 9 (MRKNVFLG) to 1
TSadr = "MARKPLAY"
If COPINDEX $=2$ (GENMASK $=11254_{8}$ ):
Switch FLAGWRD4 bit 8 (NRMNVFLG) to 1
TSadr = "PLAYJUM1"
(CADRSTOR = 0 from above)
If DSPLIST $\neq 0$, proceed to "BAILOUT" with $T S=31206_{8}$
Switch bit 5 of channel 11 to 1 (light key release lamp)
DSPLIST = TSadr
Put this job to sleep with a LOC = TSadr
When awakened, proceed to address specified in its LOC
Switch bit 6 of channel 11 to 0 (verb-noun flash off)
$\mathrm{MPAC}_{2}=$ MPAC2SAV
$\mathrm{i}=$ COPINDEX
GENMASK $=\mathrm{K}:$ dspoctab $_{i}$
$\mathrm{MPAC}_{4}=$ DSPFLG $_{\mathrm{i}}$
EBANK = bits 11-9 of MPAC 4
Switch FLAGWRD4 bits 9 (MRKNVFLG), 8 (NRMNVFLG) and 7 (PRONVFLG) to 0
Perform "BLANKSUB" with TSblank $=$ MPAC $_{4} \quad$ (blank extraneous Registers)
If FREEDSKY $=0$, proceed to "NVDSP"
If $\mathrm{MPAC}_{4}$ bit 5 (PERFREQ) $=1$ and bit 13 (2NDPERF) $=0$ :
Switch DSPFLG i $_{i}$ bit 13 (2NDPERF) to 1
TSvn = bits $14-7$ of $\mathrm{NVWORD}_{1} \quad$ (mark verb code)
TSmonopt $=00000_{8}$
If DSPFLG $_{i}$ bit 15 (MKREQ) $=1$, proceed to "NV50DSP"
(If PERFPRQ = 1 and $2 N D P E R F=0$ )
If DSPFLG $\mathrm{I}_{\mathrm{i}}$ bit 12 (BURNREQ) $=1, \mathrm{TSm}=\mathrm{K}:$ V97NOO-NVWORDI
If DSPFLG $_{i}$ bit 12 (BURNREQ) $=0$, $T S v n=K: V 50 N 00$
Proceed to "NV50DSP"
If $\mathrm{MPAC}_{4}$ bit 4 (FLREQ) $=1$, proceed to "FLASHSUB"
If MPAC ${ }_{4}$ bit 6 (DOTHNRET) $=1$ :
Change priority of this job to that stored in USERPRIO
Proceed to step following that whose address is stored in CADRFLSH COPINDEX
If low 7 bits of $\mathrm{NVWORD}_{i}=0$, proceed to "FLASHSUB"
End job
RELDSP Switch bit 14 of MONSAVE1 to 0 (turn off external monitor priority indicator)
If DSPLIST > 0: (display job waiting for key release)
Awaken job with LOC $=$ DSPLIST
DSPLIST $=0$
Switch bit 5 of channel 11 to 0 (key release lamp off)
DSPLOCK $=0$
Return
RELDSP1 If DSPLIST $=0$, switch bit 5 of channel 11 to 0 (key rel off)
DSPLOCK $=0$
Return
FLASHSUB Switch bit 6 of channel 11 to 1 (start verb-noun flash)
$\mathrm{MPAC}_{3}=\mathrm{COPINDEX}$
If GENMASK $=20144^{8}$, switch FLAGWRD4 bit 14 (PRIODFLG) to 1
If GENMASK $=42424$, switch FLAGWRD 4 bit 15 (MRKIDFLG) to 1

If GENMASK $=11254$ g, switch FLAGWRD4 bit 13 (NRMIDFLG) to 1
If COPINDEX $=1$ and R1SAVE $=2$ :
R1SAVE $=0$
Return to step following that whose address is in CADRFLSH ${ }_{1}$ If CADRSTOR $\neq 0$ :

If FLAGWRD 4 bits 15 (MRKIDFLG) and 6 (PINBRFLG) both $=0$ :
Proceed to "BAILOUT" with $T S=31502_{8}$
End job
If DSPLIST $\neq 0$, proceed to "BAILOUT" with $T S=31206_{8}$
CADRSTOR $=K:$ DLERET1
Put this job to sleep with a $\mathrm{IOC}=$ CADRSTOR
When awakened, proceed to address specified in its IOC
VBTERM
LOADSTAT $=-1 \quad($ verb 34$)$
Skip next 3 steps
VBPROC
LOADSTAT $=1$ (verb 33)

Skip next step
VBRESEQ
LOADSTAT $=-0$ (verb 32)

MONSAVE1 $=40000_{8} \quad$ (kill monitor)
Perform "RELDSP"
Switch bit 6 of channel 11 to 0 (verb-noun flash off)
Proceed to "RECALTST"
LOADLV DECBRNCH $=0_{8} \quad$ (data entry, mark verb etc.)
LOADSTAT $=-0$
Perform "RELDSP"
DSPCOUNT $=-19$
Proceed to "RECALTST"

$$
\text { DINT - } 14
$$

RECALTST If CADRSTOR $=0$, end job
TSadr $=$ CALESTOR
CADRSTOR $=0$
Inhibit interrupts
Awaken job with LOC = TSadr
If LOADSTAT $=-1$, set LOC of awakened job to "TERMATE"
If LOADSTAT $=1$, set LOC of awakened job to "PROCEED"
If LOADSTAT $=-0$, set LOC of awakened job to "IDLERET3"
TSnoun $=$ NOUNREG $\quad\left(M P A C_{1}\right.$ of awakened job)
TSverb $=$ VERBREG $\quad\left(M P A C_{O}\right.$ of awakened job)
Release interrupt inhibit
Perform "RELDSP"
End job
IDLERET3 If TSverb $=21,22$ or 23: (data load) $\mathbf{i}=\mathrm{MPAC}_{3} \quad$ (COPINDEX)
If TSnoun $\neq$ low 7 bits of NVWORD ${ }_{i}$, proceed to "PINBRNCH" (load is not in response to request)

OUTHERE $=2$
Skip next 3 steps
PROCEED OUTHERE $=1$
Skip next step
TERMATE OUTHERE $=0$
If FLAGWRD4 bit 15 (MRKIDFLG) = 1, proceed to "MARKRET"
If FLAGWRD4 bit 14 (PRIODFLG) $=0$, proceed to "NORMRET"
TS = (less significant half of TIMENOW) - PRIOTIME

If $\mathrm{TS}<0, \mathrm{TS}=16384+\mathrm{TS}$
If $T S \leq K: 2 s e c B 14: \quad$ (Priority display not up for 2 seconds)
COPINDEX $=0$
Proceed to "NVDSP"
NORMRET If FLAGWRD4 bit 11 (MWAITFLG) or 5 (MRUPTFLG) $=1$ :
Proceed to "MARKWAKE"
If FLAGWRD4 bit 10 (NWAITFLG) or 4 (NRUPTFLG) $=1$ :
Proceed to "NORMWAKE"
If DSPFLG $_{2}$ bits 4 (FLREQ) and 6 (DOTHENRET) both $=0$ and $\mathrm{NVWORD}_{2} \neq 0$ :
Establish "PLAYJUM1" (pr15)
Skip next step
MARKRET Switch FLAGWRD4 bit 3 (MKOVFLAG) to 0 (also bit 2 - meaningless)
ENDRET If OUTHERE < 0, end job
If GENMASK $=20144$, switch FLAGWRD4 bits 14 (PRIODFLG) and 6 (PINBRFLG) to 0

If GENMASK $=42424_{8}$, switch FLAGWRD 4 bit 15 (MRKIDFLG) to 0
If GENMASK $=11254$, switch FLAGWRD4 bits 13 (NRMIDFLG) and 6 (PINBRFLG) to $0^{\circ}$
$\operatorname{TSvn}=-3$
TSmonopt $=0$
Perform "NVSUB" (Blank display excepting MM number)
Change priority of this job to that specified in USERPRIO
$i=M_{P A C} \quad$ (COPINDEX)
$\mathrm{MPAC}_{3}=\mathrm{CADRFLSH}_{i}$
If OUTHERE $=0$, proceed as specified in the "if terminate" option at the step whose address is stored in MPAC ${ }_{3}$

If OUTHERE = 1, proceed as specified in the "if proceed" option at the step whose address is stored in $1 \mathbb{P P A C} 3$
If OUTHERE $=2$, proceed as specified in the "other response" option at the step whose address is stored in $\mathrm{MPAC}_{3}$
NORMWAKE Switch FLAGWRD4 bit 4 (NRUPTFLG) and 10 (NWAITFLG) to 0 Awaken job with LOC = "PLAYJUML"

Proceed to "ENDRET"
MARKWAKE Switch FLAGWRD4 bit 5 (MRUPTFLG) and 11 (MWAITFLG) to 0 Awaken job with LOC $=$ "MARKPLAY!",

Proceed to "ENDRET"
PINBRNCH Release interrupt inhibit (if any)
$M P A C=$ MARK2PAC
If FLAGWRD4 bits 15 (MRKIDFLG), 14 (PRIODFLG), and 13 (NRMIDFLG) all $=0$ :
$T S v n=-3$
TSmonopt $=00000_{8}$
Perform "NVSUB"
End job
If FLAGWRD4 bit 15 (MRKIDFLG) $=1$, proceed to "MARKPLAY"
Proceed to "NORMBNCH"
ENDEXT EXTVBACT $=00000_{8}$
Inhibit interrupts
Switch FLAGWRD4 bit 1 (XDSPFLAG) to 0
Release interrupt inhibit
OUTHERE = -1
If FLAGWRD4 bit 14 (PRIODFLG) and 13 (NRMIDFLG) are both zero:
Proceed to "NORMRET"

NORMBNCH Switch FLAGWRD4 bit 6 (PINBRFLG) to 1
If FLAGWRD4 bit 14 (PRIODFLG) $=1$ :
COPINDEX $=0$
Proceed to "NVDSP"
Proceed to "PLAYJUMI"
JAMTERM REQRET $=34$
DSPCOUNT $=-19$
Proceed to "VBTERM"
PRIOLARM Perform "ALARM"
Proceed to "PRIODSPR" with $T S=K: V 05 N 09$
CLOCPIAY TSaddr = address of step that proceeded to "CLOCPLAY" $\mathrm{MPAC}_{1}=\mathrm{TS}$
$\mathrm{MPAC}_{4}=24030_{8}$ (RESETREQ, BURNREQ, PERFREQ, FLREQ)
Proceed to "GOFLASH2"
$\mathrm{CADRFLSH}_{i}(i=0,1,2)$ : Three single precision cells for storage of return address information required by priority, mark and normal display requests. In the program itself, CADRFLSH is used for storage of the address of the step after that at which the display interface routine is called; in this writeup, CADRFLSH refers to the address of the step that called a display interface routine.
CADRSTOR: Single precision storage for the address of the job that is asleep while awaiting an astronaut response.
COPINDEX: Single precision index used to determine which display control parameters are relevant (priority, mark/extended verb, or normal $=0$, 1, or 2), scaled B14 and unitless.

DECBRNCH: See DSKY section.
DSPCOUNT: See DSKY section.
DSPFLG $_{i}(i=0,1,2)$ : Three single precision flagwords containing control discretes for one priority ( $i=0$ ), one mark ( $i=1$ ) and one normal display ( $i=2$ ) simultaneously. The individual bits have the same significance in each of the three flagwords (one would not expect bit 15 to be set in DSPFLG or DSPFLG $_{2}$, etc.). The following is a list of the significance of each when it is set (1).

Bit	Mnemonic	Significance   Mark or extended verb display. (Higher priority
14	RESEXREQ	than a normal display.)   Reset request; replaces active display of same   priority.
13	2NDPERF	Second loop through a "please perform" type   display; the first loop displays the noun using   a display verb. The second loop replaces the   display verb with the appropriate "please perform"
verb.	BURNREQ	The "please perform" verb is to be 97/99 rather   than 50.

Bits ll-9 are used to store the setting of EBANK from the program using a display interface routine.
8 DECVERB The noun to be displayed with a "please perform" verb requires a decimal display verb in the first loop.
7 PRIOREQ
6 DOTHNRET
5 PERFREQ
4 FLREQ

Priority display. (Higher priority than a mark or a normal display.)
Return only after display is executed. (Used only with displays that do not require astronaut action.) A "please perforn" type display request. This display requires astronaut response; set the verb and noun registers flashing.

Bit Mnemonic Significance
3 R3BLNK Blank register 3.

2 R2BLNK Blank register 2.
1 R1BLNK Blank register 1.
Program notations EBANKSAV, MARKEBAN and EBANKTEM or DSPFLG, MARKFLAG and SAVEFLAG, respectively. $\mathrm{DSPFLG}_{2}$ is set to $00000_{8}$ in "DOFSTRT1".

DSPLIST: Single precision storage for the address of the job that is asleep while waiting for the astronaut to release control of the DSKY.
DSPLOCK: Single precision flagword set positive when the astronaut has control of the DSKY, and reset to zero when the DSKY is free for use by internal programs.
DSPTEM1: See DATA section.
DSPTEM2: See DATA section.

EBANK: See MATX section.

EXTVBACT: See EXVB section.
FREEDSKY: See DATA section.
GENMASK: Single precision flagword indicating which bits of the DSPFLG ${ }_{i}$ are to be set.
K:2secB14: Single precision constant stored as $-200 \times 2^{-14}$, program notation -2SEC, scaled B14 in units of centiseconds. Equation value: 200.
$\mathrm{K}:$ dspoctab $\mathrm{i}^{(i=0,1,2): \text { Three single precision octal constants, program }}$ notation PRIOOCT $+0,+1,+2$, stored as 201448,424248 , and 112548 .

K:IDLERET1: Single precision octal address changed in "RECALTST" to cause a flashing display interface routine to branch to "TERMATE", "PROCEED" or "IDLERET3".

K:VxxNxx: Single precision constant containing a seven-bit verb code (0-99) in bit positions 14-8 and a seven-bit noun code (0-99) in bit positions 7-1.

LOADSTAT: Single precision flag indicating whether an astronat response is verb 34, verb 33, or verb 32 or a data entry or entry of a "please perform" verb.
LOC: See MATX section.

MARK2PAC: Single precision storage for MPAC $_{2}$.
MONSAVEI: See DATA section.
$\mathrm{MPAC}_{i}(i=0-7):$ A set of eight single precision cells associated with a particular job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, MPAC ${ }_{0-7}$ are saved to be reset exactly as they were when the interrupted job is reestablished. See MATX section.
$M_{P A C}$ : Used as a flag to determine if a job being put to sleep is one handling a normal display or one handling a mark display.
$\mathrm{MPAC}_{1}$ : Used to store the verb-noun code at entry to the display interface logic.
$M P A C_{2}$ : Used to store the address for an "address to be specified" noun when that noun is used by a program (as opposed to use of that noun by the astronaut, in which case he would enter the address via the DSKY).

MPAC $_{3}$ : Used as temporary storage for CADRFLSH ${ }_{i}$ or COPINDEX.
$\mathrm{MPAC}_{4}$ : Used as temporary storage for DSPFLG $_{i}$.
MPAC2SAV: Storage for $M P A C 2$ while it is being used as working storage.
NOUNREG: See DATA section.
NVWORD, (i $=0,1,2$ ): Set of three single precision erasable memory cells used to retain values of the verb-noun pattern (verb code in bits 14-8, noun code in bits 7-1) for priority, mark/extended verb, and normal displays, respectively. Program notations NVWORD, MARKNV and NVSAVE, respectively. $\mathrm{NVWORD}_{2}$ is initialized as 0 in "DOFSTRT1".

NVWORDI: See BURN section.
OPTION1, OPTION2: See DATA section.
OUTHERE: Single precision index used to determine the return from the display interface routines based on the type of $\varepsilon$ stronaut response.

PRIOTIME: Single precision time when a priority display is activiated, scaled Bl4 in units of centiseconds. Used to assure that a reply to an interrupted normal or mark/extended verb display is not interpreted as a response to the interrupting priority display.

RISAVE: Single precision cell, initialized to 0 in "STARTS32", used in "FLASHSUB" to control a special return to the calling routine.

REQRET: See DSKY section.
TIMENOW: See EXVB section.
USERPRIO: Single precision storage for the priority of the job using the display interface routines. (Actually equal to MPAC ${ }_{7}$ and therefore maintained while the job is asleep.)

VERBREG: See DATA section.

```
KEYRUPT1 (Entered on program interrupt #5)
 SAMPTIME = TIMENOW (for noun 65)
 TS = low 5 bits of channel 15 (five bit key code)
 Switch FLAGWRD5 bit 15 (DSKYFLAG) to 1
 Establish "CHARIN"
 (pr30)
 Set MPAC O of "CHARIN" job = TS
 Resume
CHARIN 21d22REG = DSPLOCK
 DSPLOCK = 1
 If CADRSTOR }\not=+0\mathrm{ and MPAC
 Switch bit 5 of channel 11 to 1 (key release lamp)
CHAR = MPACO
If CHAR = 1,2,3,4,5,6 or 7: (numbers 1 through 7)
 Proceed to "NUM"
If CHAR = 10g or 11g:
 (numbers 8 and 9)
 If DSPCOUNT \leq -0, end job
 If bit 2 or 1 of DECBRNCH = 1, proceed to "NUM"
 Proceed to "CHARALRM" (decimal numbers not allowed)
If CHAR = 20 g: (the number zero)
 CHAR = O
 Proceed to "NUM"
If CHAR = 21g, proceed to "VERB" (verb)
If CHAR = 22g, proceed to "ERROR" (error reset)
If CHAR = 318, proceed to "VBRELDSP" (key release)
If CHAR = 32g, proceed to "POSGN" (+ sign)
DSKY - 1
```



If bit 1 or bit 2 of DECBRNCH = 1: ( + or - decimal)
$T S=$ VERBRE ${ }^{\circ}$, NOUNREG; XREG, YREG or ZRFG according to whether INREL $=0,1,2,3$ or 4
$T S=10 \mathrm{TS}+\mathrm{CHAR}$
If $T S \geq 16384$, proceed to "DECEND" (must be 5 th character)
If $\operatorname{INREL}=0$, set VERBREG $=T S$ and $i=18$
If $\operatorname{INREL}=1$, set NOUNREG $=T S$ and $i=16$
If INREL $=2$, set XREG $=T S$ and $i=10$
If $\operatorname{INREL}=3$, set YREG $=T S$ and $i=5$
If INREL $=4$, set $Z R E G=T S$ and $i=0$
If i $\neq$ DSPCOUNT: (more characters may be inserted)
DSPCOUNT $=$ DSPCOUNT -1
End job
If bit 1 or bit 2 of DECBRNCH $=1$, proceed to "DECEND" DSPCOUNT $=-$ DSPCOUNT (block further numerical characters) End job

## DECEND

If $\operatorname{INREL}=0$ or $1: \quad$ (verb or noun registers)
DSPCOUNT $=-$ DSPCOUNT $\quad$ (scaling already B14)
End job
If bit 1 of DECBRNCH $=1, \mathrm{TS}_{\mathrm{dp}}=10^{-5} \mathrm{TS}$
If bit 2 of DECBRNCH $=1, \mathrm{TS} \mathrm{dp}=-10^{-5} \mathrm{TS}$
If INREL $=2$, store $T S_{d p}$ in XREG and XREGLP ( $L P=$ lower half)
If INREL $=3$, store $T S_{d p}$ in YREG and YREGGLP
If INREL $=4$, store $T S_{d p}$ in ZREG and ZREGLP
DSPCOUNT $=-$ DSPCOUNT
End job

```
DSKY - 3
```

GETINREL Set INREL in accordance with DSPCOUNT and the following table:
DSPCOUNT INREL Significance

0 thru 4	4	Register \#3, digits 5 (lowest) thru 1
5 thru 9	3	Register \#2, digits 5 thru 1
10 thru 14	2	Register \#1, digits 5 thru 1
16 or 17	1	Noun register, digits 2 or 1
18 or 19	0	Verb register, digits 2 or 1
15,20 or over meaningless		

Return
POSGN Perform "SIGNTEST"
Perform "GETINREL"
SGNOFF $=5,3$ or 0 according to whether INREL $=2,3$ or 4
SGNON $=$ SGNOFF +1
Perform "SGNCOM"
Switch bit 1 of DECBRNCH to 1 (to indicate + decimal)
Proceed to "BOTHSGN"
NEGSGN Perform "SIGNTEST"
Perform "GETINREL"
SGNON $=5,3$ or 0 according to whether $\operatorname{INREL}=2,3$ or 4
SGNOFF $=$ SGNON +1
Perform "SGNCOM"
Switch bit 2 of DECBRNCH to 1 (to indicate - decimal)
Proceed to "BOTHSGN"
SGNCOM CODE $=0$
Perform "11DSPIN" with TS = SGNOFF
Switch bit 11 of CODE to 1
Perform "11DSPIN" with TS = SGNON
Return

```
SIGNTEST If bit 1 or bit 2 of DECBRNCH = 1, end job (sign already set)
 If DSPCOUNT }\not=\mp@subsup{1}{&}{\prime}(R1D1),9(R2D1) or 4 (R3D1), end job
 Return
BOTHSGN If INREL = 2, switch bit 5 of DECBRNCH to 1
 If INREL = 3, switch bit 4 of DECBRNCH to 1
 If INREL = 4, switch bit 3 of DECBRNCH to 1
 If CLPASS > 0, CLPASS =0
 End job
REQDATX DSPCOUNT = K:R1D1(14)Skip next 3 steps
```

REQDATY $\operatorname{DSPCOUNT}=K: R 2 D 1$

```(9)
```

Skip next step
REQDATZ DSPCOUNT $=K: R 3 D 1$ ..... (4)

```RERRET = - return address (to cause "ENTER" to branch to callerof "REQDATX" etc. when requested dataPerform "5BLANK"is entered)Switch bit 6 of channel 11 to 1 (verb-noun flash)Proceed to address specified by ENTRET
```

REQMM REQRET $=$ - return address
DSPCOUNT $=\mathrm{K}:$ ND1

```(17)
```

NOUNREG $=0$

```Perform "2BLANK"Switch bit 6 of channel 11 to 1 (verb-noun flash)DECBRNCH \(=00001_{g} \quad\) (bit \(1=1\) to indicate + decimal)Proceed to address specified by ENTRET
```

ENTER

CLEAR
TS = DSPCOUNT
Perform "GETINREL" with DSPCOUNT $=\mid$ DSPCOUNT $\mid$
DSPCOUNT $=T S$
If CLPASS $\leq 0: \quad$ (first "clear" since the last enter)
If INREL $\leq 1$, end job (the verb and noun registers are not cleared, they are changed)

Perform "5BLANK" skipping the first step (have INREL already)
CLPASS $=$ CLPASS $+1 \quad$ (enable multiple clears if needed)
End job
(Otherwise, it's a multiple component clear)
INREL = INREL - 1 (Register \#n has already been cleared; decrement INREL to indicate that register $\# n-1$ is to be cleared as well.)

If INREL $\leq 1$, end job (Registers 1, 2 and 3 are already cleared; "CLEAR" can do no more.)

REQRET $=$ REQRET +3 (Change return address to loading program to force it to back up to a previous step in the loading process; frcm "perform 'REQDATY'" to "perform 'REQDATX'" etc.)

VERBREG $=$ VERBREG -1 (INREL saved; equals WDCNT)
Perform "UPDATVB" (Change verb display to reflect the change in the component to be loaded.)

Perform "5BLANK" skipping the first step
CLPASS $=$ CLPASS $+1 \quad$ (Enable clear of register \#1 after \#3 and \#2)
End job
ERROR DSPLOCK = 21d22REG (error reset leaves DSPLOCK unchanged)
Inhibit interrupts
Switch bit 10 of channel 11 to 1 (reset "Restart" lamp)
Switch DSPTAB 11 to $100000000 \times 0 \times 000_{2}$
(Reset "Program Check Fail" and "Tracker fail" lamps, bits 9 and 8. Leave bits 6 and 4 alone; "Gimbal lock" and "No attitude" lamps.)

Switch bits 13, 12 and 11 of IMODES33 to 1
(Set PIPA good, Downlink good and Uplink good bits)
Switch bit 10 of IMODES3O to 1
(Set PIPA good bit)
Switch RADMODES bits 8 (LRVELFLG), 5 (LRALTFLG) and 4 (RRDATAFL) to 0
Switch RADMODES bit 7 (RCDUFAIL) to 1
Perform "Cl3STALL"
Switch bit 10 of channel 13 to $0 \quad$ (Reset "test alarms" discrete)
Switch bits 7 and 3 of channel 11 to 0 (Reset "Operator Error" and "Uplink Activity" lamps)
$\operatorname{DSPTAB}_{i}=\left(\left|\mathrm{DSPTAB}_{i}\right|\right.$ with bit 12 set $\left.=1\right) \operatorname{signDSPTAB}_{i}$ for all values of i from 10 through 0

Release interrupt inhibit
FAILREG $_{i}=0$ for $i=0,1$
SFAIL $=0$
End jobVBRETDSP Switch bit 3 of channel 11 to 0 (Reset Uplink Activity lamp)
If $21 \mathrm{~d} 22 \mathrm{REG}>0$ and bit 14 of MONSAVE1 = 1: (monitor going)DSPLOCK $=0$
If CADRSTOR $=+0$, perform "RELDSP1"
End jobPerform "RELDSP"If CADRSTOR $\neq+0$, proceed to "PINBRNCH"End job
$W D C N T=4$

```
WDAGAIN TSwd = TSwd cycled left 3 places
```

(bit 15 shifted into bit 3 position, 14 into 2, etc.)

```
i = low 3 bits of TSwd
CODE \(=\) Low 5 bits of \(\mathrm{K}: \mathrm{RELTAB}_{i}\)
COUNT \(=\) DSPCOUNT
If DSPCOUNT \(>0\), DSPCOUNT \(=\) DSPCOUNT -1
Perform "DSPIN" (display digit in position specified by COUNT)
If WDCNT \(>0\) :
```

WDCNT $=$ WDCNT -1
Proceed to "WDAGAIN"
DSPCOUNT $=-19$
Return via WDRET
DSPDECWD WDRET = return address
Perform "DSPSIGN" (returns with MPAC ${ }_{d p}=\left|M P A C_{d p}\right|$ )
$M P A C_{d p}=M P A C_{d p}+K:$ DECROUND
If overflow $\left(\right.$ MPAC $_{d p} \geq 1$ ), MPAC ${ }_{d p}=K$ : posmaxdp
$W D C N T=4$
DSPDCWD1 $i=$ integral part of ( $10 \mathrm{MPAC}{ }_{\mathrm{dp}}$ ) (highest digit first)
CODE $=$ low five bits of $K:$ RELTAB $_{i} \quad$ (character code)
$M P A C_{d p}=$ fractional part of ( $10 \mathrm{MPAC}{ }_{d p}$ )
COUNT $=$ DSPCOUNT
If DSPCOUNT $>0$, DSPCOUNT $=$ DSPCOUNT -1
Perform "DSPIN"

If WDCNT $>0$ :

$$
\text { WDCNT }=\text { WDCNT }-1
$$

Proceed to "DSPDCWD1"
DSPCOUNT $=-19$
Return via WDRET
DSPSIGN If MPAC ${ }_{d p} \geq+0$, perform "+ON"
If $M P A C C_{d p} \leq-0$, perform "-ON"'
$M P A C_{d p}=\left|M P A C_{d p}\right|$
Return
$+\mathrm{ON}$
-ON Perform "GETINREL"
SGNON $=5,3$ or 0 according to whether $\operatorname{INREL}=2,3$ or 4
SGNOFF $=$ SGNON +1
$\operatorname{CODE}=00000_{8} \quad($ bit $11=0)$
Perform "11DSPIN" with TS = SGNOFF:
Switch bit 11 of CODE to 1
Perform "11DSPIN" with TS = SGNON
Return

```
DSPDC2NR WDRET = return address
 Perform "DSFSIGN"
 WDCNT = 1
 Proceed to "DSPDCWD1"
DSPDECVN WDRET = return address
 MPAC
 WDCNT = 1
 Proceed to "DSPDCWD1"
DSP2DEC WDRET = return address
 CODE = 0000088 (bit 11 = 0)
 Perform "11DSPIN" with TS = 3 (-R2S off)
 Perform "11DSPIN" with TS = 4 (+R2S off)
 Perform "DSPSIGN"
 WDCNT = 9
 Proceed to "DSPDCWD1"
BLANKSUB FREEDSKY =0
 If DSPLOCK > 0, return
 If bit 14 of MONSAVE1 = 1, return (no blank for externally
 initiated monitor)
 If bits 3-1 of TSblank all = 0, return
 TScnt = DSPCOUNT
 If bit 1 of TSblank = 1, perform "5BLANK" with DSPCOUNT = K:R1D1
 If bit 2 of TSblank = 1, perform "5BLANK" with DSPCOUNT = K:R2D1
 If bit 3 of TSblank =1, perform "5BLANK" with DSPCOUNT = K:R3D1
 DSPCOUNT = TScnt
 FREFDSKY = 1
 Return
```

5BLANK Perform "GETINREL"

```
CODE = 0
If INREL = 2:
 XREG = 0
 XREGLP = 0
 Set bits 5, 2 and l of DECBRNCH = 0
 Perform "DSPIN" with COUNT = 14 (RIDI)
 Perform "2BLANK" twice, with DSPCOUNT = 13, then ll
 DSPCOUNT = K:RlDI
If INREL = 3:
 YREG =0
 YREGLP = 0
 Set bits 4, 2 and l of DECBRNCH = 0
 Perform "DSPIN" with COUNT = 5 (R2D5)
 Perform "2BLANK" twice, with DSPCOUNT =9, then 7
 DSPCOUNT = K:R2DI
If INREL = 4:
 ZREG = 0
 ZREGLP = 0
 Set bits 3, 2 and 1 of DECBRNCH = 0
 Perform "DSPIN" with COUNT = 4 (R3DI)
 Perform "2BLANK" twice, with DSPCOUNT = 3, then 1
 DSPCOUNT = K:R3DI
```

Return
$i=$ integral part of $\frac{1}{2}$ DSPCOUNT
If the sign of DSPTAB $\mathrm{D}_{i}$ is positive, NOUT $=$ NOUT +1
$\mathrm{DSPTAB}_{i}=-0_{4} 000_{8} \quad$ (minus to flag for output)
Return
11DSPIN
$i=T S$
COUNT $=2$
Proceed to "DSPIN1"
DSPIN
i = integral part of $\frac{1}{2}$ (low 5 bits of COUNT)
If bit 1 of COUNT $=0$ : (COUNT is even)
COUN'T $=0$
Proceed to "DSPIN1"
CODE $=$ CODE shifted left five places (to positions 6-10)
If bit 14 of COUNT $=0$ :
COUNT = 1
Proceed to "DSPIN1"
COUNT $=3$ (sign to be changed as well as digit)
DSPIN1 Inhibit interrupts
$T S=\left|D S P T A B_{i}\right|$
If COUNT $=0$, set bits 1-5 of TS = bits 1-5 of CODE
If COUNT $=1$, set bits $6-10$ of $\mathrm{TS}=$ bits $6-10$ of CODE
If $\operatorname{COUNT}=2$, set bit 11 of $T S=$ bit 11 of CODE
If COUNT $=3$, set bits 6-11 of TS $=$ bits 6-11 of CODE
If $T S=\left|D S P T A B_{i}\right|$, skip next two steps
If DSPTAB $_{i}$ not already flagged for output, NOUT $=$ NOUT +1
$\mathrm{DSPTAB}_{i}=-\mathrm{TS}$ (complemented to flag for output)
Release interrupt inhibit
Return

21d22REG: Single precision storage for the DSPLOCK indication so that an "error reset" may leave DSPLOCK unchanged.

CADRSTOR: See DINT section.
CHAR: The five bit octal keycode extracted from bits 5 through 1 of channel 15 when a keyboard interrupt is triggered by the depression of any of the DSKY keyboard buttons. The DSKY buttons and the binary codes gated into channel 15 by their respective depressions are:

10001	VERB	00010	2	01000	8
11111	NOUN	00011	3	01001	9
11010	+	00100	4	11110	CLR
11011	-	00101	5	11001	KEY REL
10000	0	00110	6	11100	ENTR
00001	1	00111	7	10010	RSET

CLPASS: A single precision register used to direct the logic enabling multiple-clearing of the three five-digit display registers. Set to zero whenever a valid numerical character or a sign is processed unless it has been previously set to a large negative number to disable multiple clears. See routine "CLEAR".

CODE: A five-bit, binary relay code to select the configuration of the DSKY illumination relays to form the proper character. The character codes are:

10101	0	01111	4	11101	8
00011	1	11110	5	11111	9
11001	2	11100	6	00000	blank
11011	3	10011	7		

COUNT: Single precision register used as working storage in the "DSPIN" routine, first to designate the DSPTAB word to be changed, and second to indicate which of the two digits controlled by one DSPTAB word is to be changed and whether a sign is to be changed or blanked.

DECBRNCH: A single precision flagword whose bits have the following significance:
$\begin{array}{ll}\text { Bit } 1 & \text { Plus decimal } \\ 2 & \text { Minus decimal }\end{array}$ (not octal)
3 Register \#3 contains a decimal number
4 Register \#2 contains a decimal number
5 Register \#1 contains a decimal number
6-15 spare
Bits 3-5 are used in multiple component loads to assure all components are decimal or octal.

DSPCOUNT: A single precision quantity which indicates the register and digit position on the DSKY into which a number is to be placed. See description of DSPTAB registers. DSPCOUNT is set negative to indicate that further depressions of numerical keys are to be ignored by the program until another "command" key is depressed (VERB, NOUN, ENTR, etc.).

DSPLOCK: Single precision flag set to some non-zero value to indicate when the display and keyboard are being used by the astronaut (or uplink).

DSPTAB ( $\mathrm{i}=0-10$ ): Computer storage of the DSKY illumination relay settings. Bits 15 thru 13 are zero and bit 12 is 1 except when the DSPTAB register is complemented to direct the "T4RUPT" routine to change the displays.

R1, R2 and R3 are the three digital display registers, with D5 the least significant digit and Dl the most significant. Each of these registers has an associated sign bit, indicated below by - RiS or + RiS. If no sign is to be indicated, neither sign bit is set.

The two-digit (decimal) "noun", "verb" and "mode" or "program" registers are indicated below by $N, V$ and $M$ respectively and again, Dl is the more significant of the two digits.

The portion of the display that is controlled by each DSPTAB register is indicated below.

Register	Bit 11	Bits 6-10	Bits 1-5
$\mathrm{DSPTAB}_{10}$		MD1	MD2
DSPTAB9		VD1	VD2
DSP TAB8		ND1	ND2
$\mathrm{DSPTAB}_{7}$			R1D1
DSPTAB6	+R1S	R1D2	R1D3
DSPTAB 5	-R1S	R1D4	R1D5
$\mathrm{DSPTAB}_{4}$	+R2S	R2D1	R2D2
DSPTAB3	-R2S	R2D3	R2D4
DSPTAB2		R2D5	R3D1
$\mathrm{DSPTAB}_{1}$	+R3S	R3D2	R3D3
DSPTAB 0	-R3S	R3D4	R3D 5

DSPTAB $_{11}$ : See INTR section.
ENTRET: See DATA section.
FAILREG $_{i}(i=0,1,2)$ : Sae PGSR section.
FREEDSKY: See DATA section.
IMODES30: See IMUC section.

INREL: Single precision index to indicate whether numerical characters are to be placed into the verb register, the noun register or one of the five-digit registers R1, R2 or R3.

K:DECROUND: Double precision constant stored as $00000_{8} 02476$. Equation value: 0.000005 at a scaling of $B O$. Used to round a double precision AGC quantity to five decimal digits for display.

K:MD1: Single precision constant stored as 21 , scaled B14. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of the mode register. See description of DSPTAB $_{0}$ - DSPTAB $_{10}$.

K:ND1: Single precision constant stored as 17 , scaled B14. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of the noun register. See description of $\mathrm{DSPTAB}_{0}-\mathrm{DSPTAB}_{10}$.

K:R1D1, K:R2D1, K:R3D1: Single precision constants stored as 14,9 and 4. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of R1, R2 or R3. See description of DSPTAB $_{0}-$ DSPTAB $_{10} 0^{\circ}$

K: RELTAB ${ }_{i}(i=0-10)$ : Set of twelve single precision octal constants stored as follows:

$i$		$i$	
0	04025	6	34034
1	10003	7	40023
2	14031	8	44035
3	20033	9	50037
4	24017	10	54000
5	30036	11	60000

K:VD1: Single precision constant stored as 19 , scaled B14. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of the verb register. See description of DSPTAB $_{0}$ - DSPTAB $_{10} 0^{\circ}$

K:VNDSPCON: Single precision constant stored as 00244 . Equation value: 0.01. Used to convert decimal verb, noun and mode numbers (stored as whole numbers scaled B14) into fractions in preparation for the decimal display routine.

MONSAVE1: See DATA section.
$M P A C_{0}$ : Multiple precision accumulator associated with a particular job. Used in "KEYRUPT1" to store the keycode in the accumulator of the "CHARIN" job.

NOUNREG: See DATA section.
NOUT: See INTR section.
RADMODES: See RADR section.
REQRET: Single precision storage for the return address to an internal routine that has requested an astronaut input. Used also as a flag to avoid the processing of verb/noun information normally initiated by the "enter" keycode. Set equal to +0 to indicate that data is not a response to an internal request and that verb/noun information should be processed. Incremented by +3 to step backwards in the process of a multiple register load (from "REQDATY" to "REQDATX" for example). A "return address" is always a positive arithmetic quantity.

SAMPTIME: Double precision value of TIMENOW at the time of astronat entry of most recent keycode, scaled B28 in units of centiseconds.

SFAIL: See TEST section.
SGNOFF: Single precision index designating the DSPTAB register whose bit 11 is to be cleared to prevent illumination of both signs together.

SGNON: Single precision index designating the DSPTAB register whose bit 11 is to be set to illuminate a plus or minus sign in R1, R2 or R3. See description of DSPTAB $_{0}-$ DSPTAB $_{10} 0^{\circ}$

TIMENOW: See EXVB section.
VERBREG: See DATA section.
WDCNT: Single precision index scaled B14 and unitless.
WDRET: Single precision octal return address storage.
XREG, XREGLP, YREG, YREGLP, ZREG, ZREGLP: See DATA section.

GOEXTVB Proceed to routine specified by the contents of TSextfan

TSextfan	Starting address of routine	Function
	(verb)	
0	40	VBZERO

```
\(\frac{\text { TSextfan }}{(v e r b)}\) Starting address of routine Function
 (verb)
 40 80 LEMVEC
 41 81 CSMVEC
 42 S2 V82PERF
 43 83 V83PERF
 4 4 ~ A L M / E N D ~
 45 85 VERB85
 4 6 ~ A L M / E N D ~
 4 7 ~ A L M / E N D ~
 4 8 ~ A L M / E N D
 49 89 V89PERF
 50 90 V90PERF
 51 91 GOSHOSUM
 52 92 SYSTEST
 53 93 WMATRXNG
 54 AIM/END
 55 95 UPDATOFF
 56 96 VERB96
 57 97 GOLOADLV
 58 ALM/END
 59 99 GOLOADLV
 update LM state vector
 update CSM state vector
 request orbit param display (R30)
 request rend param display (R31)
 not defined
 display RR LOS azimuth and elevation
 not defined
 not defined
 not defined
 align X or Z LM axis along LOS (R63)
 out of plane rend display
 display bank sum
 operate IMU performance test
 clear RENDWFLG
 not defined
 no state vector update allowed
 interrupt integration and go to POOH
 please verify engine failure
 not defined
 please enable engine
 ALM/END Switch bit 7 of channel ll to l (operator error)
 Proceed to "PINBRNCH"
 TESTXACT If EXTVBACT>0, proceed to "ALM/END"
 If FLAGWRD4 bit 14 (PRIODFLG), 12 (PDSPFLAG) or 7 (PRONVFLG) = 1:
 Proceed to "ALM/END"
 EXTVBACT = 000258 (set bits 1, 3, and 5)
 TSvn = -2
 Perform "NVSUB" with TSmonopt = 000008
 Return
```

Perform "IMUZERO"
Perform "IMUSTALL"
Proceed to "PINBRNCH"
If NOUNREG $=72$ :
(RRCDU)
Perform "RDRUSECK"
Perform "RRZERO"
Perform "RADSTALL"
Proceed to "PINBRNCH"
Proceed to "ALM/END" (If NOUNREG $\neq 20$ or 72)
VBCOARK If NOUNREG $=20$ and $I M U C A D R=0: \quad$ (vb41)
Perform "TESTXACT"
Proceed to "GOXDSPF" with TS $=\mathrm{K}: \mathrm{V} 25 \mathrm{~N} 22$ (load THETAD)
(If terminate, proceed to "ENDEXT"; if proceed, continue at next step; if other response, continue at next step.)

Perform "EXDSPRET" with TS = K:V4INOO (coarse align verb)
Perform "IMUCOARS"
Perform "IMUSTALL"
Proceed to "ENDEXT"
If NOUNREG $=72$ :
Perform "RDRUSECK"
Perform "TESTXACT"

Switch RADMODES bits 15 (CDESFLAG) and 10 (DESIGFLG) to 0

```
 Proceed to "GOXDSPF" with TS = K:V24N73
 (load TANG O,1)
 (If terminate, proceed to "ENDEXI"; if proceed, repèat
 this step; if other response, continue at next step.)
 OPTIONX_ = 2
 OPTIONX }=
 Perform "GOXDSPFR" with TS = K:VOLN12 (OPTIONX %,1)
 next two steps; if other response, repeat this step.)
Perform "BLANKET" with TS = 00004g
End job
If bit 2 of OPTIONX = 0: (OPTIONX = 0,1,4,5,\ldots.)
 Switch FLAGWRDO bit 5 (LOKONSW) to l
If bit 2 of OPTIONX = 1: (OPTIONX
 Switch FLAGWRDO bit 5 (LOKONSW) to O
 Switch RADMODES bit 15 (CONTDESG) to 1
 Switch FLAGNRD5 bit 4 (NORRMON) to l
Release interrupt inhibit
Perform "EXDSPRET" with TS = K:V4INOO
Establish "RRDESK2"Proceed to "ENDEXT"
```

Proceed to "ALM/END" (NOUNREG $\neq 20$ or 72)
IMUFINEK If IMUCADR $\neq 0$, proceed to "ALM/END" ..... (vb42)
Perform "TEXTXACT"
Proceed to "GOXDSPF" with TS = K:V25N93 (OGC, IGC, MGC)

```
 (If terminate, proceed to "ENDEXT"; if proceed, continue
 at next step; if other response, continue at next step.)
Perform "EXDSPRET" with TS = K:V42NOO
Perform "IMUFINE"
Perform "IMUSTALL"
```

If ISSGOOD $=0$, proceed to "ENDEXT"
Perform "IMUPULSE" with TS = address of (OGC, IGC, MGC)
Perform "IMUSTALL"
Proceed to "ENDEXT"
IMUATTCK If MODREG $\neq 0$, proceed to "ALM/END"
If bit 4 or 5 of channel 12 is 1 , proceed to "ALM/END" (not allowed if in coarse align or zeroing mode)
If bit 13 or bit 14 of channel $31=0$, proceed to "ALM/END" (DAP is on)
Perform "TESTXACT"
Prnaged to "GOXDSPF" with TS = K:V25N22 (load THETAD)
(If terminate, proceed to "ENDEXT"; if proceed, continue at next step; if other response, continue at next step.)
Perform "EXDSPRET" with TS = K:V43N00
Switch bit 6 of channel 12 to 1 (Enable ICDU error counters)
Call "ATTCK2" in 0.02 second (See IMUC section)
Proceed to "ENDEXT"
RRDESK2 Perform "RRDESNB" (established by verb 41 routine)
Perform "RADSTALL".
If RADGOOD $=0$, perform "ALARM" with $\mathrm{TS}=00503_{\mathrm{g}}$
End job
RRDESEND If RADMODES bit 15 (CDESFLAG) $=1$ :
Inhibit interrupts
Switch bits 15 (CDESFLAG) and 10 (DESIGFLG) of RADMODES to 0
Switch bit 2 of channel 12 to 0 (disable RR error counter)
Delay 1 secona
Switch FLAGWRD5 bit 4 (IORRMON) to 0
Proceed to "PINBRNCH"V47TXACT Perform "TESTXACT"(vb47)
Establish "AGSINIT" (this section) ..... (pr04)
End job
DAPDISP Perform "TESTXACT" ..... (vb48)
Proceed to "DAPDATA1" (DAPB section)(pr07)
CREWMANU If MODREG $\neq 0$, proceed to "ALM/END"(vb49)
Perform "TESTXACT"
Establish "R62DISP" (ATTM section) ..... (pr10)
End job
GOLOADLV Switch bit 6 of channel 11 to 0 (verb/noun flash) ..... (vb50,52,
Proceed to "LOADLV" (DINT section) ..... 53,54, ..... 97,99)
ALINTIME Perform "TESTXACT"(vb55)(If terminate, proceed to "ENDEXT"; if proceed, ppoceedto "ENDEXT"; if other response, continue at next step.)
If TSverb $\left(M P A C_{0}\right) \neq 23$, proceed to "ENDEXT"
Inhibit interrupts
MPAC $_{d p}=$ TIMENOW
(exchange)
TIMENOW $=0$
MPAC $_{d p}=$ MPAC $_{d p}+$ DSPTEMX $_{d p}$
Force sign agreement in the two halves of MPAC ${ }_{d p}$
TIMENOW $=$ TIMENOW + MPAC $_{d p}$
Release interrupt inhibit
Proceed to "ENDEXT"
TRMTRACK If FLAGWRDO bits 7 (RNDVZFLG) and 9 (P25FLAG) both $=0$ :(vb56)
Proceed to "PINBRNCH"
Switch FLAGWRDO bits 7 (RNDV7FLG) and 9 (P25FLAG) to 0
Switch FLAGWRD2 bit 14 (SRCHOPTN) to 0

If FLAGWRDI bit 5 (TRACKFLG) $=0$, proceed to "PINBRNCH" Switch FLAGWRDI bits 5 (TRACKFLG) and 7 (UPDATFLG) to 0 Switch FLAGWRDO bit 8 (IMUSE) to 0

Perform "INTSTALL"
Clear P20, P25 restart logic and inhibit interrupts
Perform "STOPRATE"
Perform "RESTORDB"
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0

Proceed to "GOPROG2"
LRON Perform "TESTXACT" (vb57)

LROFF Switch FLGWRDIl bit 8 (LRINH) to 0 (vb58)
Proceed to "PINBRNCH"
LRPOS2K Perform "RDRUSECK" ( bb 59 )
Perform "LRPOS2" (RADR section)
Perform "RADSTALL"
If RADGOOD $=0$, perform "ALARM" with $T S=00523_{8}$
Proceed to "PINBRNCH"
(RATEDISP Switch FLAGWRDO bit 15 (NEED2FLG) to 1 (vb60)
Proceed to "PINBRNCH"
DAPATTER Switch FLAGWRDO bits 4 (NEEDLFLG) and 15 (NEED2FLG) to 0 (vb6I) Proceed to "PINBRNCH"
| TOTATTER Switch FLAGWRDO bits 4 (NEEDLFLG) and 15 (NEED2FLG) to 1 (vb62) Proceed to "PINBRNCH"

RO4 Perform "RDRUSECK" (this section) (vb63)


If MODREG $\neq 0$ :

Switch bit 7 of channel 11 to 1	(operator error)
Switch bit 3 of channel 11 to 0	(uplink activity)
Proceed to "ENDEXT"	

Proceed to "UPUPDATE" (this section)
$\begin{array}{llc}\text { DNEDUMP } & \text { DNTMGOTO = "DNDUMPI" } & \text { (vb74) } \\ & \text { Proceed to "PINBRNCH" } & \\ \text { OUTSNUFF } & \text { Switch FLAGWRD5 bit } 13 \text { (SNUFFER) to } 0 & \text { (vb75) } \\ & \text { Proceed to "PINBRNCH" } & \end{array}$
|
MINIMP Switch DAPBOOLS bit 15 (PULSES) to 1 (vb76)
Proceed to "PINBRNCH"
NOMINIMP Switch DAPBOOIS bit 15 (PUISES) to 0
(vb77)
Inhibit interrupts
Perform "ZATTEROR" (DAPA section)
Proceed to "PINBRNCH" (releases interrupt inhibit)
R77 Perform "RDRUSECK"
(vb78)
If FLAGWRD3 bit 9 (ROLFLAG) = 1, proceed to "ALM/END"
Switch FLAGWRD5 bit 11 (R77FLAG) to 1
Proceed to "RO4Z" (RADR section)
R77END $\quad$ RSAMPDT $=0$
Delay 0.32 second
Switch FLAGWRD5 bit ll (R77FLAG) to 0
Proceed to "PINBRNCE"
LEMVEC Switch FLAGWRDI bit 8 (VEHUPFLG) to 0
Skip next step
CSMVEC Switch FLAGWRDI bit 8 (VEHUPFLG) to 1 ..... (vb81)
Switch FLAGWRDI bit 6 (NOUPFLAG) to 0
Proceed to "PINBRNCH"
V82PERF Perform "TESTXACT" ..... (vb82)
Proceed to "V82CALL" (this section) ..... (pr07)
V83PERF Perform "TESTXACT" ..... (vb83)
Call "R31CALL" in 0.02 seconds (this section)
End job
VERB85 Perform "TESTXACT" ..... (vb85)
Proceed to "DSPRRLOS" (RNAV section)
V89PERF If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb89)
Perform "TESTXACT"
Establish "V89CALL" (ATTM section) ..... (prl0)
End job
V90PERF Perform "TEXTXACT" ..... (vb90)Establish "R36"(this section)(pr07)
End job
GOSHOSUM If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb91)
Perform "TESTXACT"
Proceed to "SHOWSUM2" (TEST section)
SYSTEST If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb92)Perform "TEXTXACT"Establish "REDO" (TEST section) (pr22)
End job
WMATRXNG Inhibit interrupts ..... (vb93)
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
$\left.\begin{array}{lll} & \begin{array}{l}\text { Proceed to "PINBRNCH" }\end{array} & \text { (releases interrupt inhibit) }\end{array}\right)$ (vb95)

Perform "ALARM" with TS $=0^{0022 O_{8}}$
Proceed to "ENDEXT"
DSPTEMX = AGSK
AGSDISPK Proceed to "GOXDSPF" with TS $=\mathrm{K}:$ VO6N16 (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to "AGSVCALC"; if other response, continue at next step.)

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32: \quad$ (recycle)
AGSK $=$ SAMPTIME $\quad($ time when enter button pushed)
If TSverb $\neq 32$, AGSK $=$ DSPTEMX $_{d p}$
DSPTEMX $=\mathrm{AGSK}$
Proceed to "AGSDISPK"
AGSVCALC Switch FLAGWRD2 bit 1 (NODOFLAG) to 1
Switch FLAGWRD4 bit 1 (XDSPFLAG) to 1
Perform "EXDSPRET" with TS = K:VO6N16
TDECI $=$ TIMENOW
Perform "LEMPREC"
TSv $=$ [REFSMMAT] VATT K:VSCALE rescaled to Bl5 or Bl3 feet per second rounded off to single precision and converted to 2 's complement

TSr $=$ [REFSMMAT] RATT K:RSCALE rescaled to B25 or B23 feet, rounded off to single precision and converted to $2^{1}$ s complement form
$\mathrm{AGSBUFF}_{0}=T S r_{\mathrm{x}}$
$\mathrm{AGSBUFF}_{1}=T S v_{\mathrm{x}}$
$\operatorname{AGSBUFF}_{2}=T S r_{y}$
AGSBUFF $_{3}=T S v_{y}$
$\operatorname{AGSBUFF}_{4}=\mathrm{TSr}_{z}$
$\operatorname{AGSBUFF}_{5}=T S v_{z}$

## Perform "CSMPREC"

$\underline{T S v}=[$ REFSMMAT] VATT K:VSCALE rescaled to Bl5 or Bl3 feet per second, rounded off to single precision and converted to 2's complement

TSr = [REFSMMAT] RATT K:RSCALE rescaled to B25 or B23 feet, rounded off to single precision and converted to 2 's complement form

AGSBUFF $_{6}=\mathrm{TSr}_{\mathrm{x}}$
AGSBUFF $_{7}=\mathrm{TSv}_{\mathrm{x}}$
AGSBUFF $_{8}=\mathrm{TSr}_{\mathrm{y}}$
AGSBUFF $_{9}=\mathrm{TSv}_{\mathrm{y}}$
AGSBUFF $_{10}=\mathrm{TSr}_{\mathrm{z}}$
$\mathrm{AGSBUFF}_{11}=\mathrm{TSv}_{\mathrm{z}}$
TSt $=($ TAT $-\operatorname{AGSK}) / \mathrm{K}:$ TSCALE
AGSBUFF $_{12}=$ most significant half of TSt
AGSBUFF $_{13}=$ least significant half of TSt
DNLSTCOD = 1
Delay 20 seconds (for downlink of AGS downlist)
DNLSTCOD = AGSWORD (restore downlist)
If FLAGWRDO bit 8 (IMUSE) $=0$ :
If IMUCADR $\neq+0$, delay 0.1 second, then repeat this step
Perform "IMUZERO"
Perform "IMUSTALL"
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
Proceed to "GOMARK3" with TS = K:V50N16 (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to "ENDEXT"; if other response, proceed to "ENDEXT".)

UPVERB = UPVERBSV
UPCOUNT $=1$
DNLSTCOD = 1
MODREG $=27$
Establish "DSPMMJOB"
If UPVERB $=1$ or 2 , proceed to "OHWELLl" (get \# of components)
COMPNUMB $=2$
Proceed to "OHWELL2" (verbs 70 and 73 have only 2 components)
OHWELLI $\mathrm{MPAC}_{2}=$ "UPBUFF $_{0} "$ (address of $\mathrm{UPBUFF}_{0}$ )
Proceed to "GOXDSPF" with TS = K:V21NOl
(If terminate, proceed to "UPOUT4"; if proceed, repeat this step; if other response, continue at next step.)

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32$, repeat previous step (recycle)
If $U^{2} P_{B U F F}<3$, proceed to second line of "OHWELLI"
If UPBUFF $_{0}>20$, proceed to second line of "OHWELLI"
COMPNUMB $=$ UPBUFF $_{0}$
UPCOUNT = UPCOUNT +1
OHWELL2 $i=$ UPCOUNT - 1
$\mathrm{MPAC}_{2}=$ "UPBUFF ${ }_{\mathrm{i}}$ " (address of)
Proceed to "GOXDSPF" with TS = K:V21NO1
(If terminate, proceed to "UPOUT4"; if proceed, repeat this step; if other response, continue at next step.,

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32$, repeat previous step (recycle)
If UPCOUNT $\geq$ COMPNUMB, proceed to "UPVERIFY"
UPCOUNT $=$ UPCOUNT +1
Proceed to "OHWELL2"

UPVERIFY $\mathrm{MPAC}_{2}=$ "UPTEMP"
Proceed to "GOXDSPF" with TS = K:V21N02
(If terminate, proceed to "UPOUT4"; if proceed, proceed to "UPSTORE"; if other response, continue at next step.)

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32$, repeat previous step (recycle)
If UPTEMP $\leq 0$, proceed to "UPVERIFY"
If UPTEMP > COMPNUMB, proceed to "UPVERIFY"
$i=$ UPTEMP -1
Proceed to second step of "OHWELL2"

## UPSTORE Inhibit interrupts

Invert bit 3 of FLAGWRD7 (VERIFLAG)
If UPVERB $>2$, proceed to "UPEND73"
Establish "UPJOB"
End job
UPEND73 UPBUFF $_{8,9}=$ UPBUFF $_{0,1}$
Perform "TIMEDIDL"
Switch bit 7 of channel 11 to 1 (operator error)
Proceed to "UPOUT4"
TIMEDIDL UPBUFF $_{18,19}=$ TIMENOW $^{\prime}$
(exchange)
TIMENOW $=0$
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{UPBUFF}_{8,9}$
UPBUFF $_{8,9}=0$
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{MPAC}_{\mathrm{dp}}+\mathrm{UPBUFF}_{18,19}$
If overflow ( $\mid$ MPAC $_{d p} \mid \geq 2^{28}$ ):

$$
\text { TIMENOW }=\text { TIMENOW }+ \text { UPBUFF }_{18,19}
$$

$$
\text { UPBUFF }_{18,19}=0
$$

(If overflow)
Return to caller + one line (indicating an error return)

Force sign agreement between components of MPAC ${ }_{d p}$
TIMENOW $=$ TIMENOW + MPAC $_{d p}$
Return to caller + two lines (indicating a non-error return)
UPJOB Perform "INTSTALL"
Switch FLGWRDIO bit 7 (REINTFLG) to 1
If UPVERB $=0$, proceed to "UPEND70"
If UPVERB $=1$, proceed to "UPEND71"
If UPVERB $=2$, proceed to "UPEND72"
UPEND70 UPBUFF $8,9=-$ UPBUFF $_{0,1}$
Prrform "TIMEDIDL"
Siritch bit, 7 of channel 11 to 1 and skip next four lines (error
TETCSM $=$ TETCSM - UPBUFF $_{0,1}$
TETLEM $=$ TETLEM - UPBUFF $_{0,1}$
$\mathrm{UPBUFF}_{i}=0$ for $i=10$ through 13
TEPHEM $=$ TEPHEM + UPBUFF $_{0,1} \quad$ (UPBUFF ${ }_{0,1}$ zeroed in process)
Perform "INTWAKEU"
Proceed to "UPOUT4"
UPEND71 E3ANK $=$ bits 11-9 of UPBUFF $_{1}$
UPTEMP = low 8 bits of UPBUFF $_{1}$
$i=$ COMPNUMB -3
If UPTEMP $+i \geq 00400_{8}$, proceed to "UPERROUT" (block of addresses
$E_{j+U P T E M P}=$ UPBUFF $_{j+2}$ for $j=0$ through $i \quad$ of EBANK )
Perform "INTWAKEU"

```
 Proceed to "UPOUT4"
If COMPNUMB is an even number, proceed to "UPERROUT"
Perform indented steps for \(i=1,3,5, \ldots\) through COMPNUMB -2 EBANK = bits 11-9 of UPBUFF \({ }_{i}\)
TSadr \(=\) low 8 bits of UPBUFF \(_{i}\) \(\mathrm{E}_{\mathrm{TrSadr}}=\) UPBUFF \(_{\mathrm{i}+1}\) (load specified address with given data) (end of "indented steps")
Perform "INTWAKEU"
UPOUT4 4 MODREG \(=\) UPOLDMOD
Establish "DSPMMJOB"
DNLSTCOD \(=0\)
Switch bit 3 of channel 11 to 0 (uplink activity lamp)
Proceed to "ENDEXT"
UPERROUT Switch bit 7 of channel 11 to 1 (operator error)
Perform "InTWAKEU"
Proceed to "UPOUT4"
V82CALL If FLAGWRD7 bit 5 (AVEGFLAG) \(=1\), proceed to "V82GON"
\(\operatorname{OPTIONX}_{0}=2\)
\(\mathrm{OPTIONX}_{1}=1\)
Proceed to "GOXDSPF" with TS = K:VOLN12
(If terminate, proceed to "ENDEXT"; if proceed, continue at next step; if other response, repeat this step.)
Call "TICKTEST" in 0.08 second
V82GOFLP V82FLAGS \(=00000_{8}\)
Establish "V82GOFF1"
If bits 1 and 2 of V82FLAGS both \(=0\), delay one second and then try this test again (i.e. delay until either is set to one)
```

```
 Proceed to "GOXDSPF" with TS = K:VI6N44 (HAPOX, HPERX,TFF)
 (If terminate, switch bit 5 of EXTVBACT to 0 and end job;
 if proceed, switch bit 5 of EXTVBACT to 0 and end job;
 if other response, proceed to "V82GOFLP".)
Y82GOFF1 TDEC1 = TIMENOW
 TSTART82 = TDECI
 If OPTIONX
 If OPTIONX
 RONE = RATT
 VONE = VATT
 If PBODY = 0:
 TFFdRTMU = K:IdRTMUE
 HPERMIN = K:MINPERE
 Switch FLAGWRD7 bit 2 (V82EMFLG) to 0
 TS = K:RPAD
 Proceed to "BOTHPAD"
If PBODY = 2:
 TFFdRTMU = K:ldRTMUM
 HPERMIN = K:MINPERM
 TS = \RLS\
 Switch FLAGWRD7 bit 2 (V82EMFLG) to 1
BOTHPAD RPADTEM = TS
Perform "SR30.1" (get HAPOX, HPERX, TFF, mTPER)
TSTART82 =. TIMENON - TSTART82
If mTPER }\not=0\mathrm{ 0:
 mTPER = TSTART82 + mTPER
 Set V82FLAGS to }00001
 EXVB - 18
```

```
 (If mTPER }\underset{~}{\boldsymbol{f}}0\mathrm{)
 End job
 TFF = TFF + TSTART82
 Set V82FLAGS to 000028
 End job
TICKTEST If bit 5 of EXTVBACT = 0:
 Establish "ENDEXT" (pr25)
 End task
 Call "TICKTEST" in l second
 If bit l of V82FLAGS = l:
 mTPER = mTPER + K:ISEC
 If bit 2 of V82FLAGS = 1:
 TFF = TFF + K:ISEC
 End task
V82GON Establish "V82GON1" (pr07)
 If NEWJOB > 0, perform "CHANG1"
 Proceed to "GOXDSPF" with TS = K:V16N44 (HAPOX,HPERX, TFF)
 (If terminate, continue at next step; if proceed, continue
 at next step; if other response, repeat this step.)
 Switch bit 5 of EXTVBACT to 0
 End job
#82GON1 RONE = RN
 (loaded so as to prevent update of state vector
 VONE = VN between storage of R and V)
 If FLAGWRD8 bit ll (LMOONFLG) = 1: (moon)
 Switch FLAGWNRD7 bit 2(V82EMFLG) to l
 TFFdRTMU = K:IdRTMUM
```

    EXVB - 19
    HPERMIN $=\mathrm{K}:$ MINPERM
$T S=|R L S|$
Proceed to "V82GON2"
If FLAGNRD8 bit 11 (LMOONFLG) $=0$ : (earth)
Switch FLAGNRD7 bit 2 (V82EMFLG) to 0
TFFdRTMU $=\mathrm{K}: 1$ INTMUE
HPERMIN $=\mathrm{K}:$ MINPERE
$T S=K: R P A D$
V82GON2 RPADTEM $=T S$
Perform "SR30.1"
If bit 5 of EXIVBACT $=0$, proceed to "ENDEXT"
Delay 1 second
Proceed to "V82GON1"
SR30.1 If FLAGWRD7 bit 2 (V82EMFLG) $=1$ : (moon)
RONE $=$ RONE, shifted left 2 places (B27)
VONE $=$ VONE, shifted left 2 places (B5)
RMAGI $=\mid$ RONE $\mid$
VONEPR $=$ TFFdRTMU VONE
TFFNP $=\mid($ RMAGI VONEPR $) * u_{\text {It }}$ RONE $\left.\right|^{2}$
TFFVSQ $=-|\underline{\text { VONEPR }}|^{2}$
TFFALFA $=2 /$ RMAGI + TFFVSQ
TFFRTALF $=\sqrt{\mid \text { TFFALFA| }}$
TS $=$ TFFRTALF ${ }^{2}$ signTFFALFA
If $T S=0$ :
TFFldALF $=0$
Skip next line

```
TFFldALF = 1/ TS
TS = \sqrt{}{|1-TFFALFA TFFNP|}
RPER = TFFNP / (I + TS)
TS1 = (1 + TS) TFFldALF
If TSI> 0:
 If }|TSI| \leqK:posmaxdp
 RAPO = TSI
 Skip next line
RAPO = K:posmaxdp
TS = RAPO - RPADTEM
If FLAGWRD7 bit 2 (V82EMFLG) = 1: (moon centered)
 TS = TS, shifted right 2 places
HAPOX = TS (limited to SK:MAXNM)
TS = RPER - RPADTEM
If FLAGWRD7 bit 2 (V82EMFLG) = 1:
 TS = TS, shifted right 2 places
HPERX = TS (limited to S K:MAXNM)
If HPERX < HPERMIN, mTPER = +0
If HPERXX \ HPERMIN:
 TSr = RPER
 Perform "CALCTPER"
 mTPER = - TSt
TSr = HPERMIN + RPADTEM
Perform "CALCTFF"
TFF = -TSt
Return
```

CALCTPER Switch FLAGWRD7 bit 1 (TFFSW) to 1
Skip next step
CALCTFF Switch FLAGWRD7 bit 1 (TFFSW) to 0
$\operatorname{RTERM}=\mathrm{TSr}$
TSqsq $=(2-$ RTERM TFFALFA) RTERM - TFFNP
If FLAGWRD7 bit 1 (TFFSW) $=1$, TSqsq $=0$
If TSqsq <0: (trajectory does not cross RTERM)
TSt = K:posmaxdp
Return
QTERM $=\sqrt{\text { TSqsq }}$
TFFQ1 = VONEPR • RONE, shifted left 3 places
If TFFQI $\geq 0$ : (outbound)
TSnum $=-$ QTERM - TFFQ1 (meters ${ }^{\frac{1}{2}}$ )
TSden $=2$ - RTERM TFFALFA - TFFALFA RMAGl (unitless)
If $\mid$ TSden $\mid<2^{-19}$, TSden $=0$
If $\mathrm{TFFQ1}<0$ : (inbound)
TSnum $=$ RTERM - RMAGI (meters)
TSden $=-$ QTERM + TFFQI
(meters ${ }^{\frac{1}{2}}$ )
If $\mid$ TSden $\mid<2^{-6}$ or $2^{-7}$, TSden $=0 \quad\left(2^{-6}\right.$ earth, $2^{-7}$ moon $)$
If TSden $=0$ :
If TFFALFA $\leq 0$ :
TSt $=0$
Return
TSldz $=0$
Proceed to "TFFELL"
If $\mid$ TSnum TFFRTALF / TSden $\mid \geq 1$ :
$T S z=T S n u m / T S d e n$
TFFTEM $=\mathrm{TSz}^{2}$ TFFNP signTSz (used only in CSM)
$\mathrm{TFFX}=\mathrm{TSz}^{2}$ TFFALFA
TSpoly $=\mathrm{K}: \mathrm{TFFO}+\mathrm{K}: \mathrm{TFF1} \mathrm{TFFX}+\mathrm{K}: \mathrm{TFF} 2 \mathrm{TFFX}{ }^{2}+\ldots+\mathrm{K}: \mathrm{TFF} 5 \mathrm{TFFX}{ }^{5}$
TStrtmu $=\mathrm{TSz}$ (RTERM $-2 \mathrm{TSz}^{2} \mathrm{TSpoly}+$ RMAGI)
If TStrtmu $\geq 0$, proceed to "ENDTFF"
If TStrtmu signTFFQ1 $\geq 0$, proceed to "ENDTFF"
If TFFIdALF $\leq 0$, proceed to "ENDTFF"
TStrtmu $=$ TStrtmu + TFFldALF K:PIdl6 / TFFRTALF
Proceed to "ENDTFF"
TFFELI TFFDELQ $=-$ QTERM $-T F F Q I$
$T F F X=T S l Z^{2}$ TFFIdALF
If $|T F F X| \geq 1$, TFFX $=K$ :posmaxdp sign TFFX
TSpoly $=\mathrm{K}: \mathrm{TFFO}+\mathrm{K}: T F F 1 \mathrm{TFFX}+\mathrm{K}: T \mathrm{TF} 2 \mathrm{TFFX}{ }^{2}+\ldots+\mathrm{K}: T F F 5 \mathrm{TFFX}{ }^{5}$
$T S=$ TSIdz TFFIdALF (TFFX TSpoly - I)
TFFTEM $=$ TFFNP TFFldALF sign(TSldz RMAGl + TFFQ1) (CSM only)
TStrtmu $=$ TFFIdALF $\left(2 T S+\frac{1}{2} \sqrt{\text { TFFldALF }} \mathrm{K}:\right.$ PIdl6 - TFFDELQ $)$
ENDTFF $\quad$ TSt $=$ TStrtmu TFFdRTMU
If overflow, TSt $=\mathrm{K}:$ posmaxdp
Return
R31CALL Establish "V83CALL" (pr03)
Delay 1 second
If bit 12 EXTVBACT $=0$, proceed to second line of "R3ICALL"
Establish "DISPN5X"
(pr05)
End Task

```
DISPN5X Proceed to "GOXDSPF" with TS = K:VI6N54 (RANGE, RRATE, RTHETA)
 (If terminate or proceed, set bit 5 of EXTVBACT = 0; if
 other response, repeat this step.)
 End job
V83CALL If FLAGWRD7 bit 5 (AVEGFLAG) = I:
 If FLAGWRD6 bit & (MUNFLAG) = I, proceed to "GETRVN"
 Proceed to "DOCMBASE" with TS6 = TIMENOW
 If FLAGWRD8 bit & (SURFFLAG) = l, proceed to "DOCMBASE" with
 TS6 = TIMENOW
TDECI = TIMENOW
Perform "LEMPREC"
BASETHP = RATT
BASETHV = VATT
TS6 = TAT
DOCMBASE BASETIME = TS6
TDECI = TS6
Perform "CSMPREC"
BASEOTP = RATT . (scaled B29 or B27)
BASEOTV = VATT (scaled B7 or B5)
REV83 If FLAGWRD7 bit 5 (AVEGFLG) = 1, proceed to "GETRVN"
If FLAGWRD8 bit 8 (SURFFLAG) = l:
 TDECI = TIMENOW
 Perform "IEMPREC"
 Proceed to "OTHCONIC"
TDECI = TIMENOW
Perform "INTSTALL"
Switch FLAGWRDO bit l2 (MOONFLAG) to 0
RCV = BASETHP
```

    VCV = BASETHV
    If FLAGWRD8 bit ll (IMOONFLG) = 1:
        Switch FLAGWRDO bit 12 (MOONFLAG) to I
    Switch FLAGWRD3 bit 4 (INTYPFLG) to I
    TET = BASETIME
    Perform "INTEGRVS"
    OTHCONIC RONE = RATT
VONE = VATT
Perform "INTSTALL"
Switch FLAGWRD3 bit 4 (INTYPFIG) to 1
TS = TAT
OTHINT TDECI = TS
Switch FLAGWRDO bit 12 (MOONFLAG) to O
RCV = BASEOTP
VCV = BASEOTV
If FLAGWRD8 bit ll (LMOONFIG) = 1:
Switch FLAGWRDO bit 12 (MOONFLAG) to l
TET = BASETIME
Perform "INTEGRVS"
COMPDISP RANGE = |RATT - RONE|

```

```

    Perform "CDUTRIG"
    Perform "NBTOSM"
    ZNBrf = [REFSMMAT] T}[NBSMMAT] K-KNITZ
    TSp = unit(\underline{ZNBrf - (\underline{ZNBrf}}\cdot\underline{unitRONE) unitRONE)}
    TSu = ((unitRONE * VONE) * unitRONE) - TSp
        EXVB - 25
    ```
```

    RTHETA = arccos(ISp . ZNBrf signTSu)
    If unitRONE - ZNBrf<0, RTHETA = 1 - RTHETA
    If bit 5 of EXTVBACT = 0, proceed to "ENDEXT"
    Set bit 12 of EXTVBACT to I
    Proceed to "REV83"
    GETRVN
RONE = RN
VONE = NN
TS1 = VCSM
TS2 = RCSM
TS = PIPTIME
If FLAGWRD6 bit 8 (MUNFLAG) = 0:
Perform "INTSTALL"
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
Proceed to "OTHINT"
RATT = TS2 [REFSMMAT] (note that RATT and VATT are
VATT = TSI [REFSMMAT]
Proceed to "COMPDISP"
R36
DSPTEMX
Proceed to "GOXDSPF" with TS = K:V06N16 (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, continue
at next step; if other response, repeat this step.)
TDECI = DSPTEMX
If DSPTEMX = O, TDECI = TIMENOW
Perform "CSMPREC"
RPASS36 = RATT
UNP36 = unit(VATT * unitRATT)
TDECI = TAT
Perform "IEMPREC"
TSIos = RPASS36 - RATT\mathbf{T}=\mp@code{T}
EXVB - 26

```
```

    RANGE = RATT | UNP36
    RRATE = VATT • UNP36
    TSuf = unit((unit\underline{RATT * VATT) * unitRATT)}
    If overflow, TSuf = unit(1, TSuf y, TSuf z
    TSulos = unit(TSSlos - (unitRATT - TSlos) unitRAT'I'
    If overflow, TSulos = unit(l, TSulos y, TSulos 
    RTHETA = arcos(TSulos.TSuf)
    If (TSulos * TSufe RATT) < 0, PSI = 1 - PSI
    DSPTEMX = TAT
    Proceed to "GOXDSPF" with TS = K:VO6N90 (RANGE, RRATE, RTHETA)
    (If terminate, proceed to "ENDEXT"; if proceed, proceed to
        "ENDEXT"; if other response, proceed to second step of "R36".)
    SBANDANT TDECI = TIMENOW
    Perform "LEMCONIG"
    If PBODY = 0: (means earth)
    TS = RATT
    Skip next three lines
    TSt = TAT
Perform "LSPOS"
TS = (K:REMDIST VMOON) + RATT
TS = -unitTS
Perform "CDUTRIG"
TS = [REFSMMAT TS (transform to stable member)
PITCHANG
YAWANG
Perform "SMTONB"

```
```

    RLM = [SMNBMAT] TS
    RLLMTEMP = RLM
    RLMYTEMP = RLMM
    RLM
    RLM}\mp@subsup{M}{x}{}=(\mathrm{ RLMYTEMP + RLM M
    TSS2 = RLM - (RLM •\underline{K}:UNITY) K
    TS2 = unitTS2; if overflow, proceed to "SBANDEX"
    RLM= -(TS2 * K:UNITZ )
    TS = RLM • K:UNITY
    PITCHANG = arcsin(signTS |RLM|)
    TSI = TSS2•\underline{K}:UNITZ
    If TSI<0:
        PITCHANG = 0.5 - PITCHANG
    RLM = unitRLMTEMP * TS2
    TS = (\underline{K}:UNITX cosPITCHANG) - (K
    TS = TS R RLM
    YAWANG = arcsin(signTS |_RLM|)
    SBANDEX If bit 5 of EXTVBACT = 0, proceed to "ENDEXT"
(change to pr05)
Perform "GOXDSPFR" with TS = K:V06N51 (PITCHANG, YAWANG)
(If terminate or proceed, set bit 5 of EXTVBACT = 0 and end
job; if other response, end job.)
TS = 100 2
Perform "BLANKET"
Proceed to "SBANDANT"
ATTACHIT Perform "INTSTALL"
Switch FLAGWRD8 bit 12 (CMOONFLG) to l

```

If FLAGWRD8 bit 11 (LMOONFLG) = 0 :
Switch FLAGWRD8 bit 12 (CMOONFLG) to 0
Inhibit interrupts
XKEPCSM \(=\) XKEPLEM
TCCSM \(=\) TCLEM
VCVCSM = VCVLEM
\(\underline{R C V C S M}=\) RCVIEEM
NOVCSM \(=\) NUVLEM
DELTACSM = DETTALEM
TETCSM = TETLEM
VRECTCSM = VRECTLEM
RRECTCSM \(=\) RRECTLEM
Release interrupt inhibit
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\), proceed to "USEPIOS"
Perform "MOVEPLEM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 11 (LINOONFLG)
\(\operatorname{PBODY}=0\)
If FLAGWRDO bit 12 (MOONFLAG) \(=1\), PBODY \(=2\)
Perform "SVDWN1" (scaling controled by PBODY)
QPRET = "PINBRNCH"
Proceed to "INTWAKE"
RDRUSECK If FLAGWRD3 bit 17 (NOR29FL \(G\)) \(=0\), proceed to "ALM/END"
If FLAGWRD5 bit 11 (R77FLAG) \(=1\), proceed to "ALM/END"
If FLAGWRD'7 bit 6 (V37FLAG) \(=0\), skip next line
If FLGWRDII bit 15 (LRBYPASS) \(=0\), proceed to "ALM/END"

If FLAGWRDI bit 5 (TRACKFLG) \(=0\), return
Proceed to "ALM/END"
DSP68 Perform "GOXDSPFR" with TS = K:VO6N68 (RRANGEDSP, TTFDISP, DELTAH) (If terminate, set bits 5 and 1 of EXTVBACT \(=0\) and end job; if proceed, proceed to "SET57"; if other response, end job.)

WAIT68 Delay two seconds
If bit 5 and bit \(I\) of EXTVBACT \(=0\), proceed to "ENDEXT"
If bit 5 of EXTVBACT \(=1\), proceed to "DSP68"
Perform "GOMARK3R" with TS \(=\) K:V50N68 (RRANGEDSP, TTTFDISP, DELTAH)
(If terminate or proceed, set bits 5 and 1 of EXTVBACT \(=0\) and end job; if other response, proceed to "RESET57".)
(TS is formed by adding \(13000_{8}\) to \(\mathrm{K}:\) V06N68)
Proceed to "WAIT68"
SET57 Switch FLGNRDII bit 8 (LRINH) to 1
Set bit 5 of EXTVBACT \(=0\)
End job
RESET57 Switch FLGWRDIl bit 8 (LRINH) to 0
EXTVBACT \(=000258\)
End job

AGSBUFF \(0,2,4^{\text {: }}\) Single precision \(X, Y\) and \(Z\) components of the LM position vector, scaled B25 (earth) and B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF \(_{7,3,5^{*}}\) : Single precision \(X, Y\) and \(Z\) components of the LM velocity vector, scaled B13 (moon) or B15 (earth) in units of feet/second and in stable member coordinates.

AGSBUFF \(_{6,8,10^{\circ}}\) Single precision \(X, Y\) and \(Z\) components of the CSM position vector, scaled B25 (earth) or B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF \(_{7,9,11}\) : Single precision \(X, Y\) and \(Z\) components of the CSM velocity vector, scaled B15 (earth) or B13 (moon) in units of feet/second and in stable member coordinates.

AGSBUFF \(_{12,13}\) : Double precision difference between the timetag of the state vectors in AGSBUFF \({ }_{0-11}\) and the time stored in AGSK, scaled Bl8 in units of seconds.

AGSK: Double precision time of AGS initialization, scaled B28 in units of centiseconds.

AGSWORD: Single precision storage for the value of DNLSTCOD when a list is temporarily interrupted to change to another list.

BASEOTP, BASEOTV: Double precision vector storage for position and velocity of the CSM at BASETIME, scaled B29 (earth) or B27 (moon) for position; B7 (earth) or B5 (moon) for velocity. Position is in units of meters, and velocity is in units of meters/centisecond.

BASETHP, BASETHV: Double precision vector storage for position and velocity of the LM at BASETIME, scaled B29 (earth) or B27 (moon) for position in units of meters; B7 (earth) or B5 (moon) for velocity in units of meters per centisecond.

BASETIME: Double precision reference time for verb 83 routines, scaled B28 in units of centiseconds.

COMPNUMB: Single precision number of components (each single precision octal) in a program 27 update, scaled Bl4 and unitless.

DAPBOOLS: See DAPA section.
DELTACSM, DELTALEM: See ORBI section.

DNLSTCOD: See TELE section.
DSPTEM2, DSPTEMX: See DATA section.
\({ }^{E_{A D R}}\) : Single precision erasable memory cell whose address is in ADR.
EBANK: See MATX section.
EXTVBACT: Single precision flagword indicating when extended verbs are in action.

HAPOX, HPERX: Double precision heights above the earth or moon at apogee and perigee, scaled B29 in units of meters; displayed by N44.

HPERMIN: Double precision minimum perigee altitude, scaled B29 (earth) or B27 (moon) in units of meters; used to define the entry interface altitude

IMUCADR, ISSGOOD: See IMUC section.
K:ldRTMUE: Double precision constant, prggram notation l/RTMUE , scale factor B-17, value \(0.50087529 \mathrm{E}-5 \times 2 \mathrm{C}\). Corresponding to the reciprocal of root of unmodified earth \(\mu\).

K:ldRTMUM: Double precision constant, program notation l/RTMUM , scale factor \(\mathrm{B}-14\), value \(0.45162595 \mathrm{E}-4 \times 2^{14}\). Corresponding to the reciprocal of root of moon \(\mu\).

K:IOVSQRT2: Double precision constant stored as 0.7071067815 , corresponding to \(1 / \sqrt{2}\). Equation value: 0.7071067815.
K:lSEC: Single precision constant stored as \(100 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 100.

K:MAXNM: Double precision constant stored as \(01065_{8} 05603\) g, scaled B29 in units of meters. Equation value: 18519814. \({ }^{8}\) (Equivalent to about 9999.8995 nautical miles.)

K:MINPERE: Double precision constant stored as \(91440 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 91440.
K:MINPERM: Double precision constant stored as \(10668 \times 2^{-27}\), scaled B27 in units of meters. Equation value: 10668.
K:PIdl6: Double precision constant stored as \(3.141592653 \times 2^{-4}\), scaled B5 and unitless. Equation value: 6.2831853.

K:posmaxdp: See "Major Variables" section.
K:REMDIST: Double precision constant stored as \(384402000 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 384402000.

K:RPAD: Double precision constant stored as \(6373338 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 6373338.

K:RSCALE: Double precision constant stored as \(3.280839 \times 2^{-3}\), scaled B3 in units of feet per meter. Equation value: 3.280839.

K:TFFO, K:TFF1, K:TFF2, K:TFF3, K:TFF4, K:TFF5: Six double precision constant coefficients of a polynomial approximation. Scaled BO and unitless. Equation value:
0.3333333333
-0.1999819135
0.1418148467
-0. 101310997
0.05609004986
\(-0.01536156925\)
K:TSCALE: Double precision constant stored as \(100 \times 2^{-10}\), scaled B10 in units of centiseconds per second. Equation value: 100.
\(\underline{K}: T N I T X, \underline{K}: U N I T Z, \underline{K}:\) UNITY: See SERV section.
K:VSCALE: Double precision constant stored as \(328.0839 \times 2^{-9}\), scaled B9 in units of feet per second/meters per centisecond. Equation value: 328.0839 .

MMNUMBER: See PGSR section.
MODREG: See DATA section.
MPAC: See DINT section.
mTPER: Double precision time to perigee, scaled B28 in units of centiseconds.
NEWJOB: See MATX section.
NUVCSM, NUVLEM: See ORBI section.
[NBSMMAT] : See COOR section.
NOUNREG: See DATA section.
OPTIONX \({ }_{0}\), OPTIONX: Display registers used by noun 12 with extended verbs. Similar to OPTION1, OPTION2. Same register as DSPTEMX.

PBODY: See ORBI section.
PIPTIME: See SERV section.
PITCHANG: Cell used to contain the pitch gimbal angle required to point the S-band antenna toward the center of the earth. Scaled BO, in units of revolutions.

QPRET: See ORBI section.
QTERM: Double precision product of the cotangent of flight path angle at RTERM and the square root of semi-latus rectum, scaled B16 (earth) or Bl5 (moon) in units of meters to the one-half power.

RADCADR, RADGOOD, RADMODES: See RADR section.
RANGF, RRATE: Double precision range and range-rate, scaled B29 for range in units of meters and B7 for range-rate in units of meters per centisecond.

RAPO, RPER: Double precision radius at apogee and perigee, scaled B29 (earth) or B27 (moon) in units of metcrs.

RATT, VATT, TAT: See ORBI section.
RCSM: See SERV section.
RCV, VCV: See CONC section.
RCVCSM, RCVLEM: See ORBI section.
RRECTCSM, RRECTLEM: See ORBI section.
[REFSMMAT] : See COOR section.
RLM: Double precision vector defined by transforming the unit line-of-sight vector (reference coordinates) first into stable member then into navigation base coordinates, and finally rotated and compensated by the orientation of the \(S\)-band antenna mount with respect to the navigation base.

RLMTEMP: Temporary storage location for RLM to be used in later calculations.
RLMYTEMP: Temporary storage location for RLM \(y^{\text {. }}\)
RLS: See CONC section.
RMAGI: Double precision magnitude of RONE, scaled B29 (earth) or B27 (moon) in units of meters.

RN, VN: See SERV section.
RONE, VONE: Double precision position and velocity vectors at TSTART82; scaled B29 (earth) or B27 (moon) for position, and B7 (earth) or B5 (moon) for velocity. Position is in units of meters, with velocity in units of meters/centisecond.

RPADTEM: Double precision radius of launch site on earth or moon for use
as a base for computing altitude, scaled B29 (earth) or B27 (moon) in units of meters.

RPASS36: Double precision vector storage for CSM position vector in routine 36, scaled B29 in units of meters.

RSAMPDT: See RADR section.
RTERM: Double precision terminal radius for calculation of TFF, scaled B29 (earth) or B27 (moon) in units of meters.

RTHETA: Double precision angle between LM +Z axis and the local horizontal, scaled BO in units of revolutions.

SAMPTIME: See DSKY section.
[SMNBMAT]: See ORBI section.
TCCSM, TCLEM: See ORBI section.
TDECI: See ORBI section.

TEPHEM: See COOR section.
TET, TETCSM, TETLEM: See ORBI section.
TFF: Double precision time of free fall to RTERM, scaled B28 in units of centiseconds.

TFFldALF: Double precision semi-major axis, stored in units of meters with variable scaling.

TFFALFA: Double precision reciprocal of the semi-major axis, stored in units of meters with variable scaling.

TFFDELQ: Double precision difference between - QTERM and TFFQ1, scaled B16 (earth) or B15 (moon).

TFFdRTMU: Double precision reciprocal of the square ront of mu of primary body; variable scaling.

TFFNP: Double precision semi-latus rectum, stored in units of meters with variable scaling.

TFFQ1: Intermediate quantity calculated in "CALCTFF", scaled B16 (earth) or B15 (moon).

TFFRTALF: Double precision square root of TFFALFA, stored in meters with variable scaling.

TFFTEM: Double precision intermediate variable used in "CALCTFF", stored in units of meters with variable scaling.

TFFVSQ: Double precision value of the complement of the square of the velocity divided by the root of mu; variable scaling.

TFFX: Double precision universal variable, scaled BO and unitless.
THETAD: See COOR section.
TIMENOW: Double precision current time scaled B28 in units of centiseconds; a: computer counter incremented every centisecond automatically, and modified by verbs 55, 70 and 73.

TSTART82: Double precision start time of the verb 82 routines, scaled B28 in centiseconds; used to update TFF from its value at the time of verb 82 initialization to a value corresponding to the time at which it is displayed. Also used to update mTPER.

UNP36: Double precision vector storage for normal to the CSM orbital plane, scaled Bl and unitless.

UPBUFF \({ }_{0-19}\) : Single precision buffer cells for P27 updates.
UPCOUNT: Single precision number of components received in a P27 update, scaled B14 and unitless.

UPOLDMOD: Single precision storage for the value of MODREG at the initialization of a P27 update.

UPTEMP: Single precision storage for the number of a P27 update component to be corrected or for an address of a cell to be updated.

UPVERBSV, UPVERB: Single precision indication of the verb that initiated a P27 update, scaled B14 and unitless.

V82FLAGS: Single precision flagword used in verb 82 routines. Bit two is set when only TFF is computed and bit one is set when mTPER is computed.

VMOON: See COOR section.
VONEPR: Double precision value of VONE TFFdRTMU, scaled B-10 (earth) or B-9 (monn).

VCSM: See SERV section.
VCVCSM, VCVIEM: See ORBI section.
VRECTCSM, VRECTLEM: See ORBI section.

YAWANG: Cell used to contain the yaw gimbal angle required to point the S-band antenna toward the center of the earth, scaled BO in revolutions.

ZNBrf: See COOR section.
```

SVCT3 (This task is used as part of the waitlist control and
is entered every 81.93 seconds)
If FLAGWRD2 bit 15 (DRIFTFLG) = 1:
If IMUCADR = +0, establish "NBDONLY" (pr35)
If IMUCADR }\not=+0, call "SVCT3" in 5.0 second
End task
1/GYRO GCOMP = GCOMP rescaled to B21 pulses (truncated at 2 2-7 pulses)
TS = address of GCOMP
Perform "IMUPULSE"
Perform "IMUSTALL"
If ISSGOOD = 0, End job
GCOMP = fractional part of GCOMP rescaled to B14 pulses
End job
NBDONLY If GCOMPSW < 0, End job
Inhibit interrupts
If FLAGNRD2 bit 15 (DRIFTFLG) = 0, End job
TS = 0
If FLAGWRD8 bit 8 (SURFFLAG) = 1:
TS = 00200%
Perform "PIPASR" skipping first step
TS1 = 1dPIPADT
1dPIPADT = TIMENOW ls (load present time)
Release interrupt inhibit
TSt = 1dPIPADT - TS1 (present time - previous time)

```

NBD2 TSt \(=\) TSt (corrected for possible overflow of TIMENOW counter)
GCOMPSW \(=0\)
If \(T S>0\) (SURFFLAG set)
\[
\underline{T} S 1=K: d v t o a c c \text { DELV }
\]
\[
G C O M P=\underline{G C O M P}+\left[\begin{array}{ccc}
-\operatorname{ADIAX} & \text { ADSRAX } & 0 \\
0 & - \text { ADIAY } & \text { ADSRAY } \\
0 & - \text { ADSRAZ } & -\operatorname{ADIAZ}
\end{array}\right] \underline{T} S 1
\]

GCOMP = GCOMP -TSt \(\left[\begin{array}{c}\text { NBDX } \\ \text { NBDY } \\ -N B D Z\end{array}\right]\)
If \(\left|\operatorname{GCOMP}_{x}\right|>2, \operatorname{GCOMPSW}=\left|\operatorname{GCOMP}_{x}\right|-2\)
If \(\left|\operatorname{GCOMP}_{\mathrm{y}}\right|>2\), GCOMPSW \(=\left|\operatorname{GCOMP}_{\mathrm{y}}\right|-2\)
If \(\left|\operatorname{GCOMP}_{z}\right|>2, \operatorname{GCOMPSW}=\left|\operatorname{GCOMP}_{z}\right|-2\)
If GCOMPSW \(>0\), proceed to "1/GYRO"
End job
1/PIPA If GCOMPSW < 0, return
\(\underline{D E L V}_{d p}=\underline{D E L V}_{s p}+\left[\begin{array}{llll}\text { PIPASCF }_{x} & 0 & 0 \\ 0 & \text { PIPASCF }_{y} & 0 \\ 0 & 0 & \text { PIPASCF }_{z}\end{array}\right] \underline{\text { DELV }}_{s p}-1 d \operatorname{PIPADT}\left(\begin{array}{l}\text { PIPABIAS }_{x} \\ \text { PIPABIAS }_{\mathbf{y}} \\ \text { PIPABIAS }_{z}\end{array}\right)\)
GCOMPSW \(=0\)
\(\underline{T S}=K\) dvtoacc \(\underline{\text { DELV }}\)
GCOMP \(=\operatorname{GCOMP}+\left[\begin{array}{ccc}-A D I A X & \text { ADSRAX } & 0 \\ 0 & \text {-ADIAY } & \text { ADSRAY } \\ 0 & -A D S R A Z & -A D I A Z\end{array}\right]\) TS - 1dPIPADT \(\left(\begin{array}{c}\text { NBDX } \\ \text { NBDY } \\ -N B D Z\end{array}\right)\)
If \(\left|\operatorname{GCOMP}_{x}\right|>2, \operatorname{GCOMPSW}^{\prime}=\left|\operatorname{GCOMP}_{x}\right|-2\)
If \(\left|\operatorname{GCOMP}_{\mathrm{y}}\right|>2, \operatorname{GCOMPSW}=\left|\operatorname{GCOMP}_{\mathrm{Y}}\right|-2\)
```

    If }|\mp@subsup{\operatorname{GCOMP}}{z}{}|>>2,GCOMPSW = |GCOMP z | \ - 2
    If GCOMPSW > 0, establish "1/GYRO"
    Return
    LASTBIAS Perform "PIPUSE", skipping 1st step
If GCOMPSW < 0, End job
TS = 0
If FLAGNRD8 bit 8 (SURFFLAG) = 1,TS = 00200
TSt = PIPTIME }\mp@subsup{1}{s}{}-1dPIPAD
1dPIPADT = K:pip2sec
Proceed to "NBD2"
PIPUSE PIPA = O (-0)
If bit 6 of IMODES30 = 1: (IMU caged)
Return
Inhibit interrupts
Switch bit 1 of IMODES30 to 0 (Enable PIPA fail monitor)
Perform "SETISSW"
Release interrupt inhibit
Return
-
PIPFREE Inhibit interrupts
Switch bit 1 of IMODES3O to 1 (Disable PIPA fail monitor)
If bit 10 of IMODES30 = 0: (PIPA failure)
Perform "ALARM" with TS = 00212g
Perform "SETISSW"
Release interrupt inhibit
Return

```
 IMUC - 3
\(T S=00000_{8}\)
For \(i=15,14,13,12,11\) and 9 , set bit \(i\) of \(T S\) to 1 if bit \(i\) of IMODES3O is not equal to bit \(i\) of channel 30

If \(T S=00000\), proceed to "TNONTEST"
(no change in IMU related discretes on channel 30)
Set bits 15-11 and 9 of IMODES30 equal to bits 15-11 and 9 of channel 30

If bit 15 of \(T S=1: \quad\) (change in IMU temperature discrete)
Switch bit 15 of \(T S\) to 0
If bit 15 of IMODES \(30=1\) : (IMU temp exceeding limits)
Switch bit 4 of channel 11 to 1 (turn on temperature caution lamp)

If bit 15 of IMODES \(30=0\) : (temp returned within limits)
If bit 1 of IMODES33 = 0, switch bit 4 of channel 11 to 0 (turn lamp off unless lamp test in progress)

If \(T S=00000_{8}\), proceed to "TNONTEST" (no further changes)
If bit 14 of \(T S=1: \quad\) (change in ISS turn-on delay discrete)
Switch bit 14 of TS to 0
If bit 2 of IMODES \(30=0\) : (no turn-on sequence failure in effect)

If bit 14 of IMODES3O = 0, perform "ITURNON2" (ISS turn-on initiate; start turn-on sequence)

If bit 14 of IMODES \(30=1\) : (ISS turn-on delay just terminated)

If bit 15 of channel \(12=0\) : (ISS turn-on delay was not terminated by LGC; set bit 2 to indicate turn-on-sequence failure)

Switch bit 2 of IMODES3O to 1
Perform "ALARM" with \(T S=00207_{8}\)
If \(T S=00000_{8}\), proceed to "TNONTEST"

If bit 13 of \(T S=1\) : (change in status of IMU fail discrete)
Switch bit 13 of TS to 0
Perform "SETISSW"
If TS \(=00000_{8}\), proceed to "TNONTEST"
If bit 12 of \(T S=1: \quad\) (change in status of ICDU fail discrete)
Switch bit 12 of TS to 0

Perform "SETISSW"
If \(\mathrm{TS}=0^{00000_{g}}\), proceed to "TNONTEST"
If bit 11 of \(T S=1: \quad\) (change in status of IMU cage discrete)
Switch bit 11 of TS to 0
If bit 11 of IMODES \(30=0\) : (IMU caged externally)
Switch bits 15-10 of channel 14 to 0 (stop all ICDU and RRCDU drive pulses)

Switch bits 8, 6, 5, 4 and 2 of channel 12 to 0 (disable inertial data display, disable ICDU Error Counters, reset ICDU zero discrete, remove coarse align enable discrete, disable RRCDU Error Counters)

Switch FLLAGWRD5 bit 7 (ENGONFLG) to 0
Switch bit 13 of channel 11 to 0 and bit 14 of channel 11 to 1 (engine control discretes to off)

Perform "CAGESUB1"
Perform "RNDREFDR" (reset TRACK, DRIFT and REFSM flags)
\(C D U_{i} C M D=0\) for \(i=x, y\) and \(z \quad(-0)\)
GYROCMD \(=0\)
Switch bits 9-6 of channel 14 to 0 (remove all gyro-torque logic discretes)

If bit 11 of IMODES \(30=1\), proceed to "ISSZERO"
If TS \(=000008\), proceed to "TNONTEST"

If bit 9 of \(T S=1\) : (IMU power on/off)
Switch bit 9 of TS to 0
If bit 9 of TMODES30 \(=1\) : (IMU power off)
Switch bit 6 of IMODES33 to 1 (disable DAP)
Perform "RNDREFDR"
If FLAGWRDO bit 8 (IMUSE) \(=1\) :
Perform "ALARM" with TS \(=00214_{8}\)
Switch FLAGWRDO bits 8 (IMUSE) and 7 (RNDVZFLG) to 0 If bit 9 of IMODES30 \(=0\) : (IMU power on)

> If bit 2 of IMODES \(30=0\), perform "ITURNON2" (Start turn-on sequence if no turn-on-sequence failure indication present)

TNONTEST If bit 7 of TMODES3O \(=0\), proceed to "C33TEST"
If bit 8 of IMODES3O \(=0\); (Delay till next TLRUPT cycle)
Switch bit 8 of TMODES30 to 1
Proceed to "C33TEST"
Switch bits 7 and 8 of INODES30 to 0
If bit 14 of IMODES3O = 1: (ISS power on without initiation of turn-on delay, e.g. verb 36)

If bit 4 of channel \(12=1\), proceed to "C33TEST" (coarse align enabled; may be near gimbal lock)

If FLAGWRDO bit 8 (IMUSE) \(=1\), proceed to "C33TEST"
Perform "CAGESUB2"
Proceed to "ISSZERO"
If bit 9 of TMODES \(30=1\), perform "ALARM" with \(T S=00213 g\)
(Turn-on delay initiated without ISS power on)
Perform "CAGESUB"

Call "ENDTNON" in 90 seconds
Proceed to "C33TEST"
ISSZERO
Switch bit 4 of \(\operatorname{DSPTAB}_{11}\) to 0 (turn off no attitude lamp)
Switch bit 15 of DSPTAB \(_{11}\) to 1 (to flag for output)
Switch bit 5 of channel 12 to 1 (ICDU zero)
\(\underline{C D U}=0\)
Call "UNZZ" in 0.32 second
C33TEST TS \(=00000_{8}\)
For \(i=13,12\) and 11, switch bit \(i\) of \(T S\) to 1 if bit \(i\) of IMODES33 is not equal to bit \(i\) of channel 33

If \(T S=00000_{8}\), return (to "TLRUPT" routine)
Set bits 13-11 of IMODES33 = bits 13-11 of channel 33
(Channel 33 flip-flops reset by WAND instruction)
If bit 13 of \(T S=1: \quad\) (change in status of PIPA fail discrete)
Switch bit 13 of TS to 0
Set bit 10 of IMODES 30 = bit 13 of IMODES33
Perform "SETISSW"
If bit 1 of IMODES3O = 1: (primary PIPA monitor inhibited)
If bits 10, 9, 8, 7 and 5 of IMODES30 all \(=0\) :
(PIPA fail, IMU power on, turn-on delay complete, turn-on delay not just initialized, and secondary PIPA fail monitor enabled ("PFAILOK"))

Perform "ALARM" with TS \(=00212_{8}\)
If \(\mathrm{TS}=00000_{8}\), return (to "T4RUPT" routine)
If bit 12 of \(T S=1\) : (Downlink)
Switch bit 12 of TS to 0
Perform "DNTMFAST"
If \(T S=00000_{8}\), return (to "TLRUPT" routine)
```

    If bit 11 of TS = 1: (Uplink)
    Switch bit 11 of TS to 0
    Perform "UPTMFAST"
    Return (to TLRUPT routine)
    CAGESUB Switch bits }6\mathrm{ and }15\mathrm{ of channel }12\mathrm{ to 0
    (Disable ICDU Error Counter and reset "Turn-on delay
        complete" discrete.)
    Switch bits 4 and 5 of channel 12 to 1
    (Set coarse align discrete and ICDU zero discrete)
    CAGESUB1 Switch bit 4 of DSPTAB $_{11}$ to 1 and flag for output (No attitude lamp on)
CAGBSUB2 Switch bits $1,3,4,5$ and 6 of IMODES30 to 1
(Inhibit PIPA, CDU and IMU fail monitors, inhibit secondary PIPA fail monitor, and set IMU caged flaga
Switch bit 6 of IMODES33 to 1 (Disable DAP)
Return
SETISSW TS $=00000_{8}$
If bits 13 and 4 of IMODES3O both $=0, T S=10000_{8}$ (IMU fail)
If bits 12 and 3 of IMODES3O both $=0, T S=04000_{8}+T S$ (ICDU)
If bits 10 and 1 of IMODES3O both $=0, T S=01000{ }_{8}+T S$ (PIPA)
If TS $\neq 00000_{8}: \quad$ (failure)
Perform "ALARM" with $T S=T S-00001_{8}$
Switch bit 1 of channel 11 to 1 (ISS warning lamp)
Return
If bit 1 of IMODES33 $=0$, switch bit 1 of channel 11 to 0
(Extinguish ISS warning lamp if lamp test not in progress)
Return
GLOCKMON TS $=00000_{8}$
If $\mid$ CDU $_{z} \mid \leq K: 70 d e g s$, proceed to "SETGLOCK"
Switch bit 6 of TS to 1
If $\left|\mathrm{CDU}_{\mathrm{z}}\right| \leq \mathrm{K}: 85 \mathrm{degs}$, proceed to "SETGLOCK"
If bit 4 of channel $12=1$, proceed to "SETGLOCK"
(already in coarse align)

## Perform "SETCOARS"

Call "CA ECE" in 0.06 second
SETGLOCK If bit 6 of DSPTAB $_{11} \neq$ bit 6 of TS:
If bit 6 of $\mathrm{DSPTAB}_{11}=1: \quad$ (bit 6 of $\mathrm{TS}=0$ )
If bit 1 of IMODES33 = 1, return (lamp test)
Invert bit 6 of DSPTAB ${ }_{11}$ and flag for output (Gimbal lock warnting light on or off)
Return (to TLRUPT routine)
CA+ECE Switch bit 6 of channel 12 to 1 (Enable ICDU Errar Counters)
End task
UNZ2 $\quad$ CDU $=0$
Switch bits 4 and 5 of channel 12 to 0
(Disable coarse align mode, reset ICDU zero discrete)
Delay 10.24 seconds
Switch bits 3, 4 and 6 of IMODES30 to 0 (Enable ICDU and IMU fail monitors and reset IMU caged flag)
Switch bit 6 of IMODES 33 to 0 (Enable DAP)
If FLAGwRD2 bit 15 (DRIFTFLG) $=0$ :
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
1dPIPADT = less significant half of TIMENOW
Perform "SETISSW"
Switch bit 15 of channel 12 to 0
(Switchover to normal operate mode should be complete)
Call "PFALLOK" in 4 seconds
End task

```
ITURNON2 Switch bit 7 of INODES3O to 1 (initiate IMU turn-on delas)
RADMDDES = 001028
Return
ENDTNON If bit 2 of IMODES3O = 1: (turn-on sequence failure)
 Switch bit }2\mathrm{ of INODES30 to 0
 If bit 14 of DMODES3O = 0: (turn-on delay still in effect)
 Delay }90\mathrm{ seconds
 Proceed to "ENDTNON"
 If FLAGWRDO bit 8 (IMUSE) = 1, proceed to "IMUBAD"
 Find task
 Switch bit }15\mathrm{ of channol }12\mathrm{ to 1
 (Switch ISS to normal operate mode)
 Switch bit 4 of DSPTAB to to and flag for output
 (Turn off no attitulde lamp)
 Proceed to "UNZ2"
PFALIOK If bit 6 of DMODES3O = 1, end task
(IMU caged)
 Switch bit 10 of IMODES3O to 1 (reset PIPA fail bit)
 Switch bit }13\mathrm{ of IMODES33 to 1 (reset PIPA fail bit)
 Switch bit 5 of IMODES3O to 0 (Enable secondary PIPA fail mon.)
 Perform "SETISSW"
 End task
IMUPULSE MPAC
 If bit 6 of IMODES3O = 1: (IMU caged)
 IMUCADR = -0
 Return
 If LGYRO = 0: (gyro free for torquing)
 Switch bit 6 of channel 14 to 1 (Enable gyro torquing)
 TSt = 0.04
```

        IDUC - 10
    If LGYRO $>0$ : (gyro already being torqued)
Put this job to sleep
When awakened, continue at next step if LGYRO then $=0$, or proceed to previous step if LGYRO is still $>0$.
$\mathrm{TSt}=0.01$
Call "STRTGYRU" in TSt seconds
LGYRO $=$ MPAC $_{5}$
GYRODEX $=0$
Force sign agreement within each component of $E_{\text {LGYRO }}$
Return

```
STRTGYRO Switch bits 7, 8, 9 and 10 of channel 14 to 0
 (reset gyro select discretes, sign bit, gyro activity bit)
 If bit 6 of IMODES3O = 1, proceed to "IMUBAD"
STRTGYR2 If GYRODEX = 3: (finished)
 LGYRO = O
 Awaken any jobs put to sleep in "IMUPULSE"
 Proceed to "IMUFINED"
 If GYRODEX = 2: (torque X gyro about its output axis)
 LGYRO = LGYRO - 4 (index X component)
 If GYRODEX = 1: (torque Z gyro)
 LGYRO = LGYRO + 2 (index Z component)
 If GYRODEX = O: (torque Y gyro first)
 LGYRO = LGYRO + 2 (indeX Y component)
 GYRODEX = GYRODEX + 1
```

$T S_{d p}=E_{\text {LGYRO }} \quad(X, Y$ or $Z$ component of vector specified at input) If $\mid$ TS ${ }_{\mathrm{dF}} \mid<\mathrm{K}:$ gyromin, proceed to "STRTGYR2"
$T S_{d p}=T S_{d p}+K:$ GYROFRAC signTS $_{d p}$
If $\mathrm{TS}_{\mathrm{dp}}<0$, switch bit 9 of channel 14 to 1 (negative torque)
If GYRODEX $=1$, switch bit 8 of channel 14 to 1 ( $Y$ )
If GYRODEX $=2$, switch bits 7 and 8 of channel 14 to 1
If GYRODEX $=3$, switch bit 7 of channel 14 to 1 ( X )
RUPTREG2 = fractional part of $\mathrm{TS}_{\mathrm{dp}}$ (bits 1-7 of LS half)
TScmd $=8192$ [fractional part of ( $\mathrm{TS}_{\mathrm{dp}}-$ RUPTREG2) / 8192]
RUPTREG1 $=\left|T S_{d p}-T S c m d\right|$
If RUPTREG1 $\leq 8192$ : $\therefore$ (equals 0 or 8192 )
If RUPTREG1 $\neq 0$, TScmd $=$ TScmd +8192
$\mathrm{E}_{\text {LGYRO }}=$ RUPTREG2 (portion of cormand less than one pulse)
GYROCMD $=$ TScmd
TSt $=\mathrm{K}:$ gyrtm GYROCMD +0.03
Call "STRTGYRO" in TSt seconds
Proceed to "GYROEXIT"
$\mathrm{E}_{\text {LGYRO }}=$ RUPTREG1 $-16384+$ RUPTREG2
GYROCMD $=8192+$ TScmd
TSt $=\mathrm{K}:$ gyrtm GYROCMD -0.03
Call "8192AUG" in TSt seconds
Proceed to "GYROEXIT"
8192AUG
If bit 6 of IMODES $30=1$, proceed to "IMUBAD" (INU cagod)
If bit 4 of channel $12=1$, proceed to "IMUBAD"
(coarse align enabled; disables gyro torquing)
$T S=E_{\text {LGYRO }} \begin{aligned} & \text { rounded off to nearest multiple of } 8192 \\ & \left(\mathrm{E}_{\text {LGYRO }} \text { contains multiples of } 8192 \text { plus a fraction }\right. \\ & \text { of one pulse; fraction is ignored })\end{aligned}$

GYROCMD $=$ GYROCMD +8192
$\mathrm{TSt}=\mathrm{K}:$ gyrtm GYROCMD +0.03
Call "STRTGYRO" in TSt seconds
Proceed to "GYROEXIT"
$E_{\text {LGYRO }}=E_{\text {LGYRO }}-8192$
GYROCMD $=$ GYROCMD +8192
TSt $=\mathrm{K}:$ gyrtm GYROCMD - 0.03
Call "8122AUG" in TSt seconds

GYROEXIT Switch bit 10 of channel 14 to 1 (send GYROCMD)
End task
IMUZERO Inhibit intermupts
If bits 4 and 6 of DSPTAB $_{11}$ both $=1$ :
(No attitude and "Ginbal Lock" lamps both on)
Perform "ALARM" with $T S=00206_{8}$
IMUCADR $=-0$
Release interrupt inhibit
Return
If bit 6 of IMODES30 $=1: \quad$ (IMU caged)
IMUCADR $=-0$
Release interrupt inhibit
Return
Switch bits 5 and 6 of IMODES 33 to 1
(Indicate zeroing in progress; disable DAP)
Switch bits 3 and 4 of IMODES3O to 1(Inhibit ICDU and DUN fail monitors)
Switch bits 4 and 6 of channel 12 to 0(Disable Coarse align mode and ICDU Error Counters)
Switch bit 4 of DSPTAB $_{1}$ to 0 and flag for output(Turn off "no attitude" lemp)
Switch bit 5 of chanal 12 to 1(2ero ICDU's)
$\mathrm{COU}=0$
Catl "MuJEROR" in 0.32 second
If bit 9 of IMODES3O = 1: (IMU not operating)
Perform "ALARM" with TS $=0_{0210}^{8}$
Release interrupt inhibit
Return

```IMUZERO2If bit 6 of IMODES30 \(=1\), proceed to "IMUBAD"
Switch bit 5 of channel 12 to 0 (Release ICDU's)
Delay 10.24 seconds
If bit 6 of IMDDES \(30=1\), proceed to "IMUBAD"
Switch bits 4 and 3 of IMODES3O to 0
(Renove IMU and ICDU fail monitor inhibit bits)
Switch bits 6 and 5 of TMODES33 to 0(Enable DAP and reset zeroing indication)
Perform "SETISSW"Proceed to "ENDIMU"IMUCOARS If bit 6 of D:ODES3O = 1: (IMU caged)
IMUCADR \(=-0\)
Return
Inhibit interrupts
IMUC - 14

Perform "SETCOARS"
Call "COARS" in 0.06 second
Release interrupt inhibit
Return
SETCOARS If bit 4 of channel \(12=1\), return (already in coarse align)
Switch bit 6 of channel 12 to 0 (disable ICDU error counters)
Switch bit 10 of channel 14 to 0 (disable gyro torque pulses)
GYROCMD \(=0 \quad(-0)\)
Switch bit 4 of channel 12 to 1 (Switch ICDU to coarse align)
Switch bit 4 of DSPTAB \({ }_{11}\) to 1 and flag for output
(turn on "No attitude" lamp)
Switch bit 6 of IMODES33 to 1 (disable DAP)
Switch bit 4 of IMODES3O to 1 (inhibit IMU fail monitor)
RNDREFDR Switch FLAGWRDI bit 5 (TRACKFIG) to 0
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 0
Switch FLAGWRD3 bit 13 (REFSMFLG) to 0
Return
COARS If bit 6 of MMODES \(30=1\), proceed to "IMMBAD" (caged) Switch bit 6 of channel 12 to 1 (Enable ICDU Error Counters)
\(\operatorname{COMMAND}_{z}=\operatorname{THETAD}_{z}-\mathrm{CDU}_{z}\)
\(\operatorname{COMMAND}_{y}=\operatorname{THETAD}_{y}-\operatorname{CDU}_{y} \quad\) converted to one's complement
COMMAND \(_{\mathrm{x}}=\) THETAD \(_{\mathrm{x}}-\operatorname{CDU}_{\mathrm{x}}\)
Delay 0.02 second
COARS2 If bit
\(i=0\)

Perform the indented steps 3 times, for \(j=z\), then \(y\), then \(x\)
If \(\mid\) COMMAND \({ }_{j} \mid=0, \quad C D U_{j} C M D=-0\)
If \(\mid\) COMMAND \(j \mid \leq K\) : commax:
\(\mathrm{CDU}_{j} \mathrm{CMD}=\mathrm{COMMAND}_{j}\)
\(\mathrm{COMMAND}_{j}=0\)
\(i=i+1\)
If \(\mid\) COMMAND \(_{j} \mid>K\) : commax:
\(\mathrm{CDU}_{j} \mathrm{CMD}=\mathrm{K}\) : commax signCOMMAND \({ }_{\mathrm{j}}\)
COMMAND \(_{j}=\) COMMAND \(_{j}-\) CDU \(_{j}\) CMD
\(i=i+1\)
(End of "indented steps")
If i \(>0\) : (command is not zero)
Switch bits 13,14 and 15 of channel 14 to 1 (Send output pulses to ICDU Error Counters from CDU \({ }_{j}\) CMD cells)

Delay 0.6 second
Proceed to "COARS2"
Delay 1.5 seconds
Perform the indented steps 3 times (or until "ALARM" situation is encountered), for \(\mathbf{j}=\mathbf{z}\), then \(y\), then \(x\)
\(T S=C D U_{j}-\) THETAD \(_{j}\) converted to one's complement form
If \(|T S|>K\) :COARSTOL: (coarse align error)
Perform "ALARM" with \(T S=00211_{8}\)
Proceed to "IMUBAD"
(End of "indented steps")
Proceed to "ENDIMU"
\[
\text { IMUC }-16
\]
 IMUCADR \(=-0\)
 Release interrupt inhibit Return

Switch bits 4 and 5 of channel 12 to 0 (Reset ICDU coarse align and zeroing discretes)

Switch bit 6 of IMODES33 to 0 (Enable DAP)
Switch bit 4 of DSPTAB \({ }_{11}\) to 0 and flag for output (Turn off "No Attitude" lamp)

Call "IFAILOK" in 5.12 seconds
Call "IMUFINED" in 2 seconds
Release interrupt inhibit
Return
IMUFINED If bit 6 of IMODES \(30=1\), proceed to "IMUBAD" (caged)
Proceed to "ENDIMU"
IFAILOK If bit 6 of IMODES30 \(=1\), end task
If bit 4 of channel \(12=1\), end task (Coarse align mode)

Switch bit 13 of IMODES3O to 1 (reset IMU fail bit)
Switch bit 4 of IMODES30 to 0 (enable IMU fail monitor)
Perform "SETISSW"
End task
IMUSTALL Inhibit interrupts
If IMUCADR \(>0\) or if IMUCADR < -1 :
TS1 = Return address of routine calling "IMUSTALL" Proceed to "BAILOUT1" with \(\mathrm{TS}=31210_{8}\)
```

    If IMUCADR = -1: (operation already complete and good)
    IMUCADR = +0
    Release interrupt inhibit
    ISSGOOD = 1
    Return
    If IMUCADR = -0: (operation already complete and bad)
    IMUCADR = +O
    Release interrupt inhibit
    ISSGOOD = 0
    Return
    IMUCADR = return address (to caller of "IMUSTALL")
    Put present job to sleep
    When awakened, return via LOC
    ENDIMU If bit 1 of channel 11 = 1, proceed to "IMUBAD" (ISS bad)
IMUGOOD If IMUCADR = +o: ("IMUSTALU" not entered yet)
IMUCADR = -1
End task
IOC = IMUCADR
ISSGOOD = 1
Wake job put to sleep in "IMUSTALL"
IMUCADR = +0
End task
IMUBAD If IMUCADR. = +0:
IMUCADR = -0
Fnd task

```
 IMUC - 18

LOC = IMUCADR
ISSGOOD \(=0\)
Wake job put to sleep in "IMUSTALL"
IMUCADR \(=+0\)
End task
APTCK2 CDU \(_{z}\) CMD \(=\) THETAD \(_{z} \mathrm{~K}:\) ONETENTH
CDU \(\mathrm{y}_{\mathrm{y}} \mathrm{CMD}=\) THETAD \(_{\mathrm{y}} \mathrm{K}:\) ONETENTH
CDU \(\mathrm{x}_{\mathrm{x}} \mathrm{CMD}=\) THETAD \(_{\mathrm{x}} \mathrm{K}\) : ONETENTH
Switch bits 13,14 and 15 of channel 14 to 1 (send CDU \(\mathrm{CMD}^{\prime}\) s)
End task
RO2BOTH If FLAGWRD3 bit 13 (REFSMFLG) = 1:
Switch FLAGWRDO bit 8 (IMUSE) to 1
Return
If bit 9 of IMODES \(30=1\) : (IMU not operating)
Perform "ALARM" with TS \(=00210_{8}\)
If bit 9 of IMODES30 \(=0\) : (REFSMMAT invalid)
Perform "ALARM" with TS \(=00220_{8}\)
Proceed to "GOTOPOOH"
ldPIPADT: Single precision time interval for application of PIPA biases and gyro drift compensation, scaled B8, or storage for present time for the purpose of computing that time interval, scaled Bl4, in units of centiseconds.

ADIAX: Single precision angular drift of the \(X\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the X gyro input axis (+XSM), scaled B-5 in units of gyro pulses / centimeters per second squared. (One gyro pulse corresponds to \(2^{-21}\) revolutions.)
ADIAY: Single precision angular drift of the \(Y\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the \(Y\) gyro input axis (+YSM), scaled B-5 in units of gyro pulses / centimeters per second squared.

AIIAZ: Single precision angular drift of the \(Z\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the \(Z\) gyro input axis (+ZSM), scaled B-5 in units of gyro pulses / centimeters per second squared.

ADSRAX: Single precision angular drift of the \(X\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the X gyro spin-reference axis (-YSM), scaled B-5 in units of gyro pulses / centimeters per second squared.
ADSRAY: Single precision angular drift of the \(Y\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the Y gyro spin-reference axis (-ZSM), scaled B-5 in units of gyro pulses / centimeters per second squared.
ADSRAZ: Single precision angular drift of the \(Z\) gyro around its output axis caused by linear acceleration of the IMU in the direction of the \(Z\) gyro spin-reference axis (+YSM), scaled B-5 in units of gyro pulses / centimeters per second squared.

CDU (CDU \(\left., C D U_{y}, C D U_{z}\right)\) : Single precision vector containing the measured values of the IMU gimbal angles (outer, inner and middle gimbal in \(X\), \(Y\), and \(Z\) components, respectively), scaled B-1 in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.
CDU \(C M D:(i=x, y\) or \(z)\) : Three single precision counters scaled B1 in units of revolutions, gated to the ICDU Error Counters by setting bits 15, 14 and 13 of channel 14 . Bits \(15-13\) reset when respective counters reach -0 .

COMMAND: Tempory storage for changes to the three gimbal angles during coarse alignment, scaled B1 in units of revolutions.

DELV: See SERV section.

E_GYRO: Double precision vector containing three desired gyro torque angles whose address is specified at entry to the IMUPULSE routine, scaled B2l in units of revolutions. \(\mathrm{E}_{\text {L }}\) GYRO \(=\) GCOMP or (OGC, IGC, MGC).

GCOMP: Double precision vector containing required gyro compensation angles, scaled Bl4 (or B21) in units of gyro pulses (l gyro pulse \(=2^{-21}\) revolutions).
GCOMPSW: Single precision switch indicating whether gyro compensation is required or inhibited, scaled Bl4 and unitless.
GYROCMD: Computercell counted down as torquing pulses are sent to one of the gyros, scaled B14 in units of gyro pulses. Used for commands to all three gyros; the pulse train is initiated by setting bit 10 of Channel 1.4 and it is routed to the appropriate gyro torque motor by the setting in bits 7 and 8 of Channel 14.

GYRODEX: An index equivalent to that maintained by the program in bits 15-13 of LGYRO; used to indicate which gyro is being torqued and assigned a separate label merely for convenience in functional representation.
i,j: Single precision index registers, scaled B14 and unitless.
IMODES30: Single precision flagword whose individual bits have the following meanings:

Bit 15 (1) IMU temperature not within prescribed limits
(0) IMU temperature within limits

Bit 14 (1) ISS turn-on delay not in effect
(0) ISS tum-on delay initiated and in effect

Bit 13 (1) IMU good
(0) IMU fail

Bit 12 (1) ICDU good
(0) ICDU fail

Bit 11 (1) IMU not externally caged
(0) IMU caged, externally

Bit 10 (l) PIPA good (identical to bit 13 of IMODES33)
Bit 9 (I) IMU off
(0) IMU operating

Bit 8 (1) IMU turn-on delay in progress
(0) IMU turn-on delay complete or not initiated

Bit 7 (1) IMU turn-on delay initiate
(0) IMU turn-on delay not initiated

Bit 6 (I) IMU caged (Internally)
(0) IMU not caged
\begin{tabular}{ll}
Bit 5 & \begin{tabular}{l}
(1) Secondary PIPA fail monitor inhibited \\
(0) Secondary PIPA fail monitor enabled
\end{tabular} \\
Bit 4 & \begin{tabular}{l}
(1) IMU fail monitor inhibited \\
(0) DMU fail monitor enabled
\end{tabular} \\
Bit 3 & \begin{tabular}{l}
(I) CDU fail monitor inhibited \\
Bit 2
\end{tabular} \\
& \begin{tabular}{l}
(0) CDU fail monitor enabled
\end{tabular} \\
(I) ISS turn-on sequence failure \\
Bit 1 & (I) Primary PIPA fail monitor inhibited \\
& (0) Primary PIPA fail monitor enabled
\end{tabular}

IMORES33: See INTR section.
IMUCADR: Single precision octal storage for address to return to program that is making use of the ISS and waiting for a particular operation to be accomplished.

ISSGOOD: Variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether an IMU mode switch was successfully completed (1) or not (0).
K:70degs: Single precision constant stored as -0.38888 , program notation "-70DEGS," scaled B-1 in units of revolutions. Equation value: +0.19444. (Equivalent to +69.9984 degrees).
K:85degs: Single precision constant stored as \(-0.38888+-0.08333\), scaled B-1 in units of revolutions. Equation value: to.23610. (Equivalent to +84.99 degrees.)

K:COARSTOL: Single precision constant stored as -0.01111 , scaled \(\mathrm{B}-1\) in units of revolutions. Equation value: 0.005555 . (Equivalent to +1. 9998 degrees.)
K:commax: Single precision constant stored as \(-191 \times 2^{-14}\) and \(-192 \times 2^{-14}\), program notations "-COMMAX" and "-COMMAX-", scaled B1 in units of revolutions. Equation value: +0.0234375. (Equivalent to +8.4375 degrees or half the mechanical limit of the ICDU Error Counter.)
K:dvtoacc: Implicit constant introduced by the scaling of IFLV and the fact that the powered flight navigation cycle is 2 seconds long, scaled \(B-1\) in units of navigation cycles per second. Equation value: \(\frac{1}{2}\).
K:GYROFRAC: Double precision constant stored as \(0.215 \times 2^{-27}\), scaled B21 in units of gyro torque pulses. Equation value: 0.21875 . (The closest approximation to 0.215 with a least increment of 0.0078125 .)
K:gyromin: Single precision constant stored as \(77601_{8}\), program notation "GYROMIN," scaled B7 in units of gyro torque pulses. Equation value: 1.0. (1 gyro pulse is equivalent to \(2^{-21}\) revolutions.)
\(\mathrm{K}:\) gyrtm: Single precision constant stored as \(01000_{\text {g }}\), program notation "BIT10," scaled BO in units of seconds per gyro torquing pulse. Equation value: \(1 / 3200\).

K:ONETENTH: See DAPA section.
K: rip2sec: Single precision cnnstant stored as 31000 , program nntation "YRIO31", scaled B8 in units of centiseconds. Equation value: 200.

LGYRO: Single precision octal address (positive) of cell containing gyro torquing comrand.

LOC: See MATX section.
MPAC: See DINT section.
NBDX, NBDY: Single precision angular drift around the output axes of the \(X\) and \(Y\) gyros caused by the passage of time, scaled B-5 in units of gyro pulses per centisecond.

NBDZ: Single precision complement of the drift around the output axis of the \(Z\) gyro caused by the passage of time, scaled B-5 in units of gyro pulses per centisecond.

PIPA: Single precision sensed-change-in-velocity vector scaled B14 in units of centimeters per second, expressed in stable member (IMU) coordinates. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the IMU.

PIPABIAS \(_{x}\), PIPABIAS \(_{y}\), PIPABIAS \(_{z}\) : Single precision bias factors for the \(X, Y\) and \(Z\) PIPA's, scaled \(B-3\) in units of centimeters per second per centisecond (equivalent to PIPA counts per centisecond).

PIPASCF \(_{x}\), PIPASCF \(y_{y}\), PIPASCF \(_{z}\) : Single precision scale factor errors associated with the \(X, Y\) and \(Z\) PIPA's respectively, scaled B-9 and unitless (accelerometer counts per accelerometer count).

PIPTIME, PIPTIME1: See SERV section.
RADMODES: See RADR section.
RUPTREG1: Single precision storage for portions of gyro torque commands greater thap or equal to \(2^{2}\) pulses, scaled B27 in units of gyro pulses (\(2^{-2 \mid}\) revolutions).

RIPTREG2: Single precision storage for portions of gyro torque command less than one pulse, scaled B7 in units of gyro torque pulses. Fractional values of commands are not issued except in the case of gyro compensation commands. They are stonred for addition to future commands.

THETAD: Single precision vector containing the gimbal angles that define a desired orientation between the IMU and the spacecraft for attitude maneuvers or IMU alignment, scaled B-1 in units of revolutions and stored in two's complement form.

TIMENOW: See EXVB section.

IMUC - 24
-

Caused by underflow of counter TIME6, starting address \(4004_{8}\) Proceed to "DOT6RUPT"

Caused by overflow of counter TTME5, starting address \(4010_{8}\) Proceed to "T5RUPT"

Caused by overflow of counter TIME3, starting address 40148 Proceed to "T3RUPT" (start scheduled task)

Caused by overflow of counter TIME 4 , starting address \(4020_{8}\)
Proceed to "TLRUPT"
Caused by depression of a key on the DSKY keyboard, starting address \(4024_{8}\)
Proceed to "KEYRUPT1"
Caused by depression of mark or reject buttons or crew indication of change in desired descent rate, starting address \(4030_{8}\)
Proceed to "MARKRUPT"
Caused by overflow of uplink serial input buffer, starting address \(4_{8} 034_{8}\)
Proceed to "UPRUPT"
Caused by end pulse from the downlink system, starting address 40408
Proceed to "DODOWNTM"
Caused by expiration of time delay (\(85-95 \mathrm{~ms}\)) after bit 4 of channel 13 is set, starting address \(4044_{8}\)

Proceed to "RaDAREAD"
\#10 Caused by input from the rotational hand controller, starting address \(4050_{8}\)
Proceed to "PITFALL"
\#11 Caused by hardware difficulties, starting address \(4000_{8}\) Proceed to "GOPROG"

If DSRUPTSW < O, proceed to "QUIKDSP"
If DSRUPTSW \(=0\), DSRUPTSW \(=8\)
DSRUPTSW = DSRUPTSW - 1
TSruptsw = DSRUPTSW
If bit 15 of \(\operatorname{DSPTAB}_{11}=1\) : (flagged for output)
Switch bits 15-12 of DSPTAB 11 to 0
OUTO \(=\) DSPTAB \(_{11}+60000_{8}\)
DSRUPTSW \(=\) DSRUPTSW \(-8192-(5)(256)\)
Set TIME 4 to cause "T4RUPT" in 20 milliseconds
Proceed to "PROCEEDE"
If FLAGWRD5 bit 15 (DSKYFLAG) \(=0\) or if NOUT \(=0\) :
OUTO \(=00000_{8}\)
Set TIME 4 to cause "T4RUPT" in 120 milliseconds
Proceed to "PROCEEEE"
NOUT \(=\) NOUT -1
\(T S=-0\)
Perform "DSPSCAN"
If SENTCODE = 0 :
OUTO \(=00000_{8}\)
Set TIME4 to cause "TLRUPT" in 120 milliseconds
Proceed to "PROCEEDE"
DSRUPTSW \(=\) DSRUPTSW \(-8192-(5)(256)\)
Set TTME4 to cause "TLRUPT" in 20 milliseconds
Proceed to "PROCEEDE"
\[
\text { INTR - } 2
\]

Set bit 14 of \(\operatorname{IMODES} 33=\) bit 14 of channel 32
If bit 14 of IMODES33 \(=0\) : (proceed button just pushed)
Establish "PROCKEY"
If TSruptsw \(=0\) or 4:
Perform "RCSMONIT"
If TSruptsw \(=1\) or 5:
Perform "RRAUTCHK"
Perform "DAPT4S"
If TSruptsw \(=2\) or 6:
Perform "IMUMON"
Perform "GLOCKMON"
If TSruptsw \(=3\) or 7:
Perform "DAPT4S"
Resume
PROCKEY If \(\mid 22\) - VERBREG \(\mid \leq 1\) :
Proceed to "CHARALRM"
REQRET \(=0\)
DSPCOUNT \(=-19\)
Proceed to "VBPROC"

QUIKDSP
If DSRUPTSW < -8192:
(bit \(14=0\))
OUTO \(=0^{00000} 8\)
Set TIME4 to cause "T4RUPT" in 20 milliseconds
DSRUPTSW \(=\) DSRUPTSW \(+256+8192\)
Resume
If NOUT = 0 :
OUTO \(=0^{00000}{ }_{8}\)
Proceed to "SYNCT4"
NOUT = NOUT - 1
\(T S=-0\)
Perform "DSPSCAN"
If SENTCODE \(=0\) : (no display to be changed)
OUTO \(=00000_{8}\)
Proceed to "SYNCT4"
Set TIME 4 to cause "T4RUPT" in 20 milliseconds
DSRUPTSW \(=\) DSRUPTSW \(-8192+256\)
Resume
DSPSCAN If bit 15 of DSPTAB \(_{\text {DSPCNT }}=1\) : (negative to flag for output)
DSPTAB \(_{\text {DSPCNT }}=\mid\) DSPTAB \(_{\text {DSPCNT }} \mid\)
OUTO \(=\) bits \(15-11\) of \(K:\) RELTAB \(_{\text {DSPCNT }}+\) bits \(11-1\) of DSPTAB DSPCNT
SENTCODE \(=1\)
Return
If DSPCNT \(>0\) :
DSPCNT = DSPCNT - I
Proceed to "DSPSCAN"
```

If TS = -0: (first time through list)
TS = +0
DSPCNT = 10
Proceed to "DSPSCAN"
NOUT = 0
SENTCODE = 0
Return
SYNCT4 TS = 20
DSRUPTSW = DSRUPTSW + 256
If DSRUPTSW < 0:
TS = TS + 20
Proceed to second step of "SYNCT4"
Set TIME4 to call "T4RUPT" in TS milliseconds
Resume

```

DSPCNT: Single precision permanent index, scaled B14 and unitless.
DSPCOUNT: See DSKY section.
DSPTAB \(_{i}(i=0-10):\) See DSKY section.
DSPTAB \(_{11}\) : Single precision flagword whose bits designate relays to be set to illuminate lamps on the DSKY. Bit 9 lights the "program alarm" (PROG) lamp when set; bit 8 lights the "tracker fail" (TRACKER) lamp when set; bit 6 lights the "gimbal lock warning" (GIMBAL LOCK) lamp when set; bit 5 lights the "LR altitude fail" lamp when set; bit 4 lights the "no attitude" (NO ATT) lamp when set; and bit 3 lights the "LR velocity fail" lamp when set.

DSRUPTSW: Single precision index used to cycle through the display and monitor functions of "T4RUPT", scaled B14 and unitless.

IMODES 33: Single precision flagword whose individual bits have the following significance: (Bits \(15,10,9\), and \(4-2\) have no significance.)

Bit 14 (1) Proceed button not depressed during last "T4RUPT" cycle
(0) Proceed button just pushed

Bit 13 (1) PIPA good
(0) PIPA fail

Bit 12 (1) Downlink not too fast
(0) Downlink too fast

Bit 11 (1) Uplink not too fast
(0) Uplink too fast

Bit 8 (1) Inertial data just displayed
(0) Inertial data not displayed

Bit 7 (1) Display altitude
(0) Display altitude rate

Bit 6 (1) DAP disable
(0) DAP enabled

Bit 5 (1) ICDU zeroing (See IMUC section)
(0) ICDU not zeroing

Bit 1 (1) Lamp test in progress
(0) Lamp test not in progress

K:RELTAB. (i \(=0-10\)): Table of eleven single precision constants containing the routing codes for OUTO in bits 15-12. See DSKY section.

NOUT: Single precision count of the number of DSPTAB registers (excluding DSPTAB \(_{11}\)) to be output as soon as possible, scaled B14 and unitless.

OUTO: Single precision output register which routes an eleven-binarybit display relay code (in bits ll-1) according to the routing code in bits \(15-12\). OUTO remains set for only twenty milliseconds before being reset to \(00000_{8}\). (Equivalent to channel 10.)

REQRET: See DSKY section.
SENTCODE: Variable quantity introduced as a substitute for a variable return address, switched to 1 if a relay code is inserted in OUTO and switched to 0 if no code is inserted in OUTO.

TIME3: Single precision counter incremented every 10 milliseconds (every centisecond) in phase with the computer clock (TIMENOW). Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#3 (when TIME3 overflows) and initiate the first task in the waitlist. (A task is a routine initiated at a specified time by a "Call" instruction.)

TIME4: Single precision counter incremented every 10 milliseconds (every centisecond), 7.5 milliseconds after the TIME3 increment. Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#4.

TIME5: Single precision counter incremented every 10 milliseconds (every centisecond) in phase with TIME3. Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#2 (see DAPA section).

TIME6: Single precision counter decremented every 0.625 millisecond when bit 15 of channel 13 is set. Set under program control (to required delay in units of 0.0625 centiseconds) to cause program interrupt \#l (see DAPA section).

\section*{Mathematical Functions, Executive, Waitlist}

\section*{Sine, Cosine}

The routines "COSINE" and "SINE" are those normally used to calculate the cosine or sine of an angle. The angle is input in the multiple precision accumulator (MPAC) in one's complement form, scaled BO in units of revolutions. The output is a cosine or a sine in MPAC, scaled Bl and unitless.

COSINE \(\quad M P A C_{d p}=\frac{1}{4}-\left|M P A C_{d p}\right| \quad\left(\frac{1}{4}\right.\) corresponds to 90 degrees)
SINE If \(\left|M P A G_{d p}\right| \geq \frac{1}{2}:\)
MPAC \(_{d p}=\frac{1}{2} \operatorname{signMPAC}{ }_{d p}-\) MPAC \(_{d p}\)
If \(\left|M P A C_{d p}\right| \geq \frac{1}{4}\) :
\(M P A C_{d p}=\frac{1}{2}\) signMPAC \({ }_{d p}-M P A C_{d p}\)
\(x=M P A C \quad\) (rescaled to \(B-1\)) \(T S=K: \operatorname{snl} x+K: \operatorname{sn} 3 x^{3}+K: \operatorname{sn} 5 x^{5}+K: \operatorname{sn} 7 x^{7}+K: \operatorname{sn} 9 x^{9}\)
\(\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{TS}\) (rescaled from B3 to B1)
Return
Constant Coefficients
\begin{tabular}{lclc}
& Stored Value & Scaled & Equation Value \\
\(\mathrm{K}: \mathrm{sn} 1\) & 0.3926990796 & B 4 & \(2 \pi \quad(=6.28318527)\) \\
\(\mathrm{K}: \mathrm{sn} 3\) & -0.6459637111 & B 6 & \(-2 \pi^{3} 0.166666570\) \\
\(\mathrm{~K}: \mathrm{sn} 5\) & 0.318758717 & B 8 & \(2 \pi^{5} 0.00833302539\) \\
\(\mathrm{~K}: \mathrm{sn} 7\) & -0.074780249 & B 10 & \(-2 \pi^{7} 0.000198074150\) \\
\(\mathrm{~K}: \mathrm{sn} 9\) & 0.009694988 & B 12 & \(2 \pi^{9} 0.00000260188699\)
\end{tabular}

Single Precision Cosine and Sine (\(\cos _{s p}\) and \(\left.\sin _{s p}\right)\)
The routines "SPCOS" and "SPSIN" are used to calculate the cosine or the sine of an angle when only single precision accuracy is required. They make use of the trigonometric identities \(\cos (x)=\) \(\sin (x+\pi / 2)\) and \(\sin (x)=\sin (\pi-x)\) and of the Taylor series
\[
\sin (x)=\sum_{i=0}^{n}(-1)^{i} \frac{x^{i+1}}{(i+1)!}
\]
modified for maximum accuracy using only three terms. The input to both of the routines is an angle scaled B-l in units of revolutions. The output is a cosine or sine scaled BO. Input and output are both through the single precision accumulator, denoted by A. Entry to the routine is made at "SPCOS" to calculate the cosine and at "SPSIN" to calculate the sine.

SPCOS
\[
A=A+\frac{1}{4}
\]

SPSIN \(\quad X=A\)
\[
\begin{aligned}
& \text { If }|X| \geq \frac{1}{2}, X=\frac{1}{2} \operatorname{sign} X-X \\
& \text { If }|X| \geq \frac{1}{4}:
\end{aligned}
\]
\[
X=\frac{1}{2}-X
\]
\[
\text { If }|X|=\frac{1}{4}:
\]
\[
A=K: \text { posmaxsp sign } X \quad(K: \text { posmaxsp }=\text { almost } 1)
\]

Return
\[
T S=K: s n 1 s p X+K: \operatorname{sn} 3 s p X^{3}+K: \operatorname{sn} 5 s p X^{5}
\]
\[
\text { If }|\mathrm{TS}| \geq 1, \mathrm{TS}=\mathrm{K}: \text { posmaxsp signTS }
\]
\(A=T S\)
Return

\section*{Constant Coefficients}
\begin{tabular}{lllcl}
& Stored Value & Scaled & \multicolumn{2}{c}{ Equation Value } \\
\(\mathrm{K}: \mathrm{snl} \mathrm{sp}\) & 0.7853134 & B3 & \(2 \pi\) & \((=6.2824)\) \\
\(\mathrm{K}: \operatorname{sn3} \mathrm{sp}\) & -0.3216147 & B7 & \(-2 \pi^{3}\) & 0.16601 \\
\(\mathrm{~K}: \operatorname{sn} 5 \mathrm{sp}\) & 0.0363551 & B11 & \(2 \pi^{5}\) & 0.0076125
\end{tabular}
\[
\text { MATX - } 2
\]

\section*{Arcsine, Arccosine}

The routines "ARCSIN" and "ARCCOS" are those used to calculate the angle corresponding to a given sine or cosine. The input to the routine "ARCSIN" is a sine in MPAC, scaled Bl. The output from "ARCSIN" is an angle between \(-\frac{1}{4}\) and \(+\frac{1}{4}\) that corresponds to the sine. The input to the routine "ARCCOS" is a cosine in MPAC, scaled B1. The output from "ARCCOS" is an angle between 0 and \(\frac{1}{2}\) that corresponds to the cosine. The angle output is in MPAC and is scaled BO in units of revolutions (one's complement form). (\(\frac{1}{4}\) in units of revolutions is equivalent to 90 in units of degrees, etc.)

ARCSIN Perform "ARCSUB"
\(M P A C_{d p}=\frac{1}{4}-T S\)
Return
ARCCOS Perform "ARCSUB"
\(\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{TS}\)
Return
ARCSUB
If \(\left|\mathrm{MPAC}_{d p}\right|<2^{-27}\) :
\(T S=\frac{1}{4}\)
Return
If \(M P A C_{d p}>0, \operatorname{PorM}=0\)
If \(M P A C ~(d p<0\), PorM \(=1\)
\(X=\left|M P A C_{d p}\right|\)
If \(X \geq 1.000244\left(1+2^{-12}\right)\), or if the less significant half of \(X\) is negative and \(X>1.000122\left(1+2^{-13}\right)\) :
\[
T S I_{d p}=\left(L_{0}, \text { BANKSET }_{0}\right)
\]

Perform "ALARMI" with \(\mathrm{TS}=01301_{8}\)

If \(X \geq 1:\)
\(T S=\frac{1}{2}\) PorM
Return
\(T S=\sqrt{(1-X) / 2}\)
\(T S=T S\left(K: a s 0+K: a s l X+K a s 2 X^{2}+\ldots+K: a s 7 X^{7}\right)\)
If \(\operatorname{PorM}=1, T S=\frac{1}{2}-T S\)
Return

\section*{Constant Coefficients}
\begin{tabular}{|c|c|c|c|}
\hline & Stored Value & Scaled & Equation Value \\
\hline K:as0 & 0.353553385 & B0 & \(1.570796302 / \sqrt{2} \pi\) \\
\hline K:asl & -0.0483017006 x 2 & B-1 & -0.214,598801/ \({ }^{2} \pi\) \\
\hline K:as2 & \(0.0200273085 \times 2^{2}\) & B-2 & \(0.088978987 / \sqrt{2} \pi\) \\
\hline K:as3 & \(-0.0112931863 \times 2^{3}\) & B-3 & \(-0.050174305 / \sqrt{2} \pi\) \\
\hline K:as4 & \(0.00695311612 \times 2^{4}\) & B-4 & \(0.030891881 / \sqrt{2} \pi\) \\
\hline K:as5 & -0.00384617957 \(\times 2^{5}\) & B-5 & \(-0.017088126 / \sqrt{2} \pi\) \\
\hline K:as6 & \(0.001501297736 \times 2^{6}\) & B-6 & \(0.006670090 / \sqrt{2} \pi\) \\
\hline K:as7 & \(-0.000284160334 \times 2^{7}\) & B-7 & \(-0.001262491 / \sqrt{2} \pi\) \\
\hline
\end{tabular}

The numbers in the last column (excluding the factor of \(1 / \sqrt{2} \pi\)) agree closely with published Hastings series values.

\section*{Square Root}

The "SQRT" routine computes the double precision square root of a triple precision number with variable scale factor \(i\). The input is a triple precision scalar in MPAC with scale factor i. The output is a double precision scalar in MPAC with scale factor \(\frac{1}{2} i\). If \(i\) is an odd number, the output will have to be divided by the square root of 2 to reduce its scale factor to an integer.
\[
\text { MATX - } 4
\]
\[
\begin{aligned}
& i=\text { scale factor of } M P A C_{t p} \\
& X=M P A C_{t p} / 2^{i} \\
& \text { If } \mathrm{X} \leq 0 \text { : } \\
& \begin{array}{c}
\text { If } \mathrm{X}<-2^{-14} \text {, proceed to "POODOO1" with } T S=21302_{8} . \\
\text { and } T S 1_{\mathrm{dp}}=\left(\text { LOC }_{\mathrm{o}}, \text { BANKSET }{ }_{0}\right)
\end{array} \\
& \text { Return with } M P A C_{d p}=0 \\
& \text { If } X<\frac{1}{4} \text {, repeat the indented steps until } X \geq \frac{1}{4} \\
& \mathbf{i}=\mathbf{i}-2 \\
& \mathrm{X}=4 \mathrm{X} \\
& \text { (} \mathrm{X} \text { now double precision and between } \frac{1}{4} \text { and } 1 \text {) } \\
& T S_{s p}=\text { more significant half of } X \\
& \text { If } \mathrm{X} \geq \frac{1}{2}, \mathrm{BUF}_{\mathrm{sp}}=0.5884 \mathrm{TS}_{\mathrm{sp}}+0.4192 \\
& \text { If } \mathrm{X}<\frac{1}{2}, \mathrm{BUF}_{\mathrm{sp}}=0.8324 \mathrm{TS}_{\mathrm{sp}}+0.2974 \\
& \mathrm{BUF}_{\mathrm{sp}}=\frac{1}{2} \mathrm{BUF}_{\mathrm{sp}}+\frac{1}{2} \mathrm{TS}_{\mathrm{sp}} / \mathrm{BUF}_{\mathrm{sp}} \\
& T S_{d p}=\frac{1}{2} B U F_{s p}+\frac{1}{2} X / B U F_{s p} \\
& \text { If } T S_{d p} \geq 1, T S_{d p}=1-2^{-28} \\
& i=\frac{1}{2} i \\
& \text { MPAC }_{d p}=2^{i} T S_{d p} \\
& \text { Return }
\end{aligned}
\]

\section*{Natural Logarithm (complemented)}

The routine "LOGSUB" is used to calculate the natural logarithm of a scalar using the Taylor series approximation
\[
\text { MATX - } 5
\]
\[
\ln (x)=-\sum_{i=1}^{\infty} \frac{(1-x)^{i}}{i}
\]
truncated at \(i=7\) and modified for maximum accuracy in the domain \(\frac{1}{2} \leq x<1\). The input to the routine is the argument of the function, scaled BO and stored in MPAC (double precision). The output is the complement of the natural logarithm of the input, scaled B5 and stored in MPAC (double precision).

LOGSUB
\[
i=0
\]
\[
X=M P A C_{d p}
\]

If \(X<\frac{1}{2}\), repeat the indented steps until \(X \geq \frac{1}{2}\)
\[
\begin{aligned}
& i=i-1 \\
& X=2 X
\end{aligned}
\]
(X now between \(\frac{1}{2}\) and 1)
\(x=1-X-2^{-28}\)
\(T S_{d p}=K: \ln 0+K: \ln 1 x+K: \ln 2 x^{2}+\ldots+K: \ln 7 x^{7}+i K: c \ln 2\)
\(M P A C_{d p}=-T S_{d p}\)
Return

\section*{Constant Coefficients}
\begin{tabular}{lccc}
& Stored Value & Scaled & Equation Value \\
\(\mathrm{K}: \ln 0\) & 0.0000000060 & B5 & 0.0000001920 \\
\(\mathrm{~K}: \ln 1\) & -0.0312514377 & B5 & -1.0000460064 \\
\(\mathrm{~K}: \ln 2\) & -0.0155686771 & B5 & -0.4981976672 \\
\(\mathrm{~K}: \ln 3\) & -0.0112502068 & B5 & -0.3600066176 \\
\(\mathrm{~K}: \ln 4\) & -0.0018545108 & B5 & -0.0593443456
\end{tabular}
\[
\text { MATX - } 6
\]
Stored Value Scaled Equation Value
\begin{tabular}{lrlr}
K: \(\ln 5\) & -0.0286607906 & B5 & -0.9171452992 \\
K: \(\ln 6\) & 0.0385598563 & B5 & 1.2339154016 \\
K:ln7 & -0.0419361902 & B5 & -1.3419580864 \\
K:cln2 & 0.0216608494 & B5 & 0.6931471808
\end{tabular}

\section*{Conversion from Two's Complement Form to One's Complement Form}

Conversion from two's complement form into one's complement form is accomplished using the "CDULOGIC" routine. The input is a single precision angle in two's complement form, stored in the multiple precision accumulator MPAC and scaled B-1 in units of revolutions. The output is a double precision angle in one's complement form, stored in MPAC and scaled BO in units of revolutions.

CDULOGIC If MPAC \({ }_{s p} \geq 0\) : (one's complement binary equivalent to \(M P A C_{d p}=M P A C_{s p}\)
(shifted right one to change scaling from B-1 to BO)
If \(\mathrm{MPAC}_{\mathrm{sp}}<0\) : (one's complement binary equivalent to \(M_{\text {MPAC }}=M P A C_{s p}\) significant bit) (shifted right one to change scaling from B-1 to BO; minus \(2^{-15}\), the value of one least significant bit)

\section*{Return}

\section*{Conversion from One's Complement Form to Two's Complement Form}

Conversion from one's complement form to two's complement form is accomplished using one of the three routines "lSTO2S", "2V1STO2S" or "V1STO2S" and their common subroutine "lTO2SUB", depending on whether the quantity to be converted has one, two or three components. The input to "lTO2SUB" is a double precision angle in one's complement form, stored in MPAC and scaled BO in units of revolutions. The output from "lTO2SUB" is a single precision angle in two's complement form, stored in MPAC and scaled B-1 in units of revolutions.
\[
\text { MATX - } 7
\]

1STO2S Perform "lTO2SUB"
Return
2V1STO2S Perform "1T02SUB" with MPAC \({ }_{d p}=T S_{x}\)
\(T S_{x}=M P A C_{s p}\)
Perform "lTO2SUB" with MPAC \({ }_{d p}=T S_{y}\)
\(T S_{y}=\) MPAC \(_{s p}\)
Change interpretive mode to double precision (two single precision components stored as one double precision scalar)

Return
V1STO2S Perform "1T02SUB" with MPAC \({ }_{d p}=T S_{x}\)
\(T S_{x}=M P A C_{s p}\)
Perform "lTO2SUB" with \(M P A C C_{d p}=T S_{z}\)
\(T S_{z}=M P A C_{s p}\)
Perform "lTO2SUB" with MPAC \({ }_{d p}=T S_{y}\)
\(T S_{y}=M P A C_{s p}\)
Change interpretive mode to triple precision (three single precision components stored as one triple precision scalar)

Return
1TO2SUB If \(\mathrm{MPAC}_{\mathrm{dp}} \geq 0\) : (two's complement binary equivalent to one's complement binary)
\(M P A C_{s p}=M P A C_{d p}\)
(shifted left one to change scaling from \(B O\) to \(B-1\))
If \(M_{d p}=-0: \quad\) (there is only one "zero" in two's complement form and it is equivalent to the +0 in one's complement form)
\[
\mathrm{MPAC}_{\mathrm{sp}}=+0
\]
\[
\text { MATX - } 8
\]
\[
\begin{aligned}
& \text { If } \mathrm{MPAC}_{\mathrm{dp}}<0: \quad \begin{array}{l}
\text { (two's complement binary equivalent to } \\
\text { one's complement binary plus one least } \\
\text { significant bit) }
\end{array} \\
& \mathrm{MPAC}_{\text {sp }}=\mathrm{MPAC}_{\mathrm{dp}} \\
& \text { (shifted left one to change scaling from BO to B-1; } \\
& \text { plus } 2^{-15} \text {, the value of one least significant bit in } \\
& \text { single precision two's complement form scaled B-I) }
\end{aligned}
\]

\section*{Single Precision Arcsine Routine (\(\arcsin _{\text {sp }}\))}

The routine "SPARCSIN" is used to calculate an angle from a given sine of the angle when only single precision accuracy is required. The input to the routine is the sine of an angle (or cosine of an angle if the complement of the angle is desired), scaled BI and unitless. The output is the angle scaled B-1 in units of revolutions. Input and output are both through the single precision accumulator, denoted by A.

SPARCSIN \(A=2 \mathrm{~A} \quad\) (rescales to BO)
\[
\begin{aligned}
& \text { If overflow (i.e. }|A| \geq 1 \text {): } \\
& \quad A=\operatorname{signA} K: \text { posmaxsp } \\
& A= \\
& \text { K:DPLI } A / 2+\text { K:DPL3 } A^{3} / 2+\text { K:DPL5 } A^{5} / 2 \\
& \\
& \quad+\text { K:DPL7 } A^{7} / 2+\text { K:DLL9 } A^{9} / 2
\end{aligned}
\]

Return (A contains 2 times the angle in revolutions i.e., scaled B-1)

\section*{Constant Coefficients}

\section*{Value}

K: DPLI 0.64099121
K:DPL3 0.02636718
```

Value
K:DPL5 0.44555664
K:DPL7 -0.72039794
K:DPL9 0.51251221
DUMMYJB2 Release interrupt inhibit
Switch bit 2 of channel ll to 0 (COMP ACT of'f)
ADVAN If NEWJOB = -0: (no jobs; do self test)
SUPERBNK = 4
EBANK =2 (bits 3-1 of BBANK)
FBANK = 338 (bits 15-11 of BBANK)
Proceed to address specified in SELFRET
(return to self test routines where they left off)
If NEWJOB > 0: (A job has been awakened or established
with job core set other than zero.
Before the next step, an interrupt may
establish or awaken a job of higher
priority with job core zero; in that
case, NEWJOB would be reset to to be-
fore next step.)
Inhibit interrupts
If NEWJOB >0:
Switch bit 2 of channel ll to 1 (COMP ACT on)
TS
TS
Proceed to "CHANJOB4"
Release interrupt inhibit

```
MATX - 10
(Otherwise, NEWJOB \(=+0\))
Switch bit 2 of channel 11 to 1
SUPERBNK = bits 7-5 of BANKSET 0
EBANK = bits 3-1 of BANKSET \({ }_{0}\) (via BBANK)
FBANK \(=\) bits 15-ll of BANKSET \(_{0}\) (via BBANK)
Proceed to address specified in \(\mathrm{LOC}_{\mathrm{O}}\)
FINDVAC (Entered to "Establish" a job that requires working storage)
Inhibit interrupts
NEWPRIO = A (priority, octal, in bits 14-10 of accumulator)
NEWLOC \({ }_{d p}=\underset{\text { register }}{\text { contents }}\) of ouble precision cell specified in \(Q-\)
(stored in fixed memory after a "TC FINDVAC")
EXECTEMI = FBANK
FBANK \(=1\) (note: SUPERBNK setting does not affect FBANK \#l)

FINDVAC2 Scan VACiUSE for \(i=1-5\) for an available VAC area (If available, VACiUSE = its own address; if not, it \(=+0\))

If none available, proceed to "BAILOUTI" with \(T S=31201_{8}\) and \(T S l_{d p}=\) (Q-register, EXECTEML)

NEWPRIO = NEWPRIO + VACiUSE + I
(priority in bits \(14-10\); address of "1 + VACiUSE" in bits 9-1)
VACiUSE \(=+0\)
Proceed to "NOVAC2"
SPVAC (Entered with interrupts inhibited and priority in NEWPRIO to "Establish" a job that requires a working storage)

Q-register \(=\) Q-register -2
```

    NEWLOC }\mp@subsup{}{dp}{}=(A,L) (job starting address in accumulator
    EXECTEML = FBANK
    FBANK = l
    Proceed to "FINDVAC2"
    NOVAC (Entered to "Establish" a job that requires no working
Inhibit interrupts
NEWPRIO = A + "MPAC 6" - "QPRET"
NEWLOC }\mp@subsup{d}{p}{}=\underset{\mathrm{ contents of double precision cell specified in}}{\mathrm{ Q-register }
EXECTEMI = FBANK
FBANK = I
NOVAC2 LOCCTR = 0
EXECTEM2 = 7
NOVAC3 If PRIORITY LOCCTR }=-0\mathrm{ , proceed to "CORFOUND"
LOCCTR = LOCCTR + 12
If EXECTEMR > 0:
EXECTEM2 = EXECTEM2 - I
Proceed to "NOVAC3"
Proceed to "BAILOUT1" with TS = 31202g and TSl }\mp@subsup{\mp@code{dp}}{}{=
(Q-register, EXECTEMI) (No \&vailable dp job cores)
CORFOUND PRIORITY LOCCTR }= NEWPRIO
PUSHLOC [LOCCTR = bits 9-1 of NEWPRIO
If LOCCTR> 0, proceed to "SETLOC"

```
 MATX - 12

> OVFIND \(=0\)
> FIXLOC \(=\) PUSHLOC \(_{0}\)

SPECTEST If NEWJOB is negative or +O , proceed to "CCSHOLE"
If NEWJOB > 0, proceed to "SETLOC" (new job just established with job core zero, but job of higher priority awakened during same interrupt with job core other than zero)

NEWJOB \(=+0\)
\(L O C_{0}=\) more significant half of NEWLOC
BANKSET \({ }_{0}=\) less significant half of NEWLOC
FBANK \(=\) EXECTEMI
Return to \(2+\) address in Q-register
SETLOC \(\quad L_{\text {LOCCTR }}=\) more significant half of NEWLOC
BANKSET \(_{\text {LOCCTR }}=\) less significant half of NEWLOC
TS \(=\) PRIORITY \(_{\text {NEWJOB }}\)
If \(T S<N E W P R I O\), NEWJOB = LOCCTR (this job will be started at the next entry to "CHANJOB4" if NEWJOB is set here)

FBANK \(=\) EXECTEMI
Return to \(2+\) address in Q-register
CHANGI (Entered from jobs programmed in "basic" language to check for jobs of higher priority)
\(\mathrm{TS}_{0}=\) Q-register
\(\mathrm{TS}_{1}=\) FBANK + EBANK (FBANK in bits 15-11; EBANK in bits 3-1)
EBANK \(=2\) (bits 3-1 of BBANK)
FBANK \(=1 \quad\) (bits \(15-11\) of BBANK)
Inhibit interrupts
\(\mathrm{TS}_{1}=\mathrm{TS}_{1}+\) SUPERBNK (SUPERBNK in bits 7-5)
Proceed to "CHANJOB4"
CHANG2 (Entered after the completion of a line of interpretive
instructions to check for a job of higher priority)
\(T S_{0}=-L_{0}\)
EBANK \(=2\) (bits 3-1 of BBANK)
FBANK \(=1 \quad\) (bits \(15-11\) of BBANK)
Inhibit interrupts
\(\mathrm{TS}_{1}=\) BANKSET \(_{0}+\) SUPERBNK
CHANJOB4 \(\mathrm{LOC}_{0}=\mathrm{LOC}_{\text {NEWJOB }} \quad\) (no change if \(\mathrm{NEWJOB}=+0\))
BANKSET \(_{0}=\) BANKSET \(_{\text {NEWJOB }}\)
\(\mathrm{LOC}_{\text {NEWJOB }}=\mathrm{TS}_{0}\)
BANKSET \(_{\text {NEWJOB }}=\mathrm{TS}_{1}\)
SUPERBNK \(=\) bits \(7-5\) of BANKSET \(_{0}\)
Exchange \(\mathrm{MPAC}_{i}\) of this job with MPAC \({ }_{i}\) of new job for \(i=0-7\)
If OVFIND \(\neq 0\), PUSHLOC \(_{0}=-\) PUSHLOC \(_{0}\)
OVFIND \(=0\)
Exchange PUSHLOC \({ }_{0}\) with PUSHLOC \({ }_{\text {NEWJOB }}\)
Exchange PRIORITY \({ }_{0}\) with PRIORITY \({ }_{\text {NEWJOB }}\)
FIXLOC = bits 9-1 of PRIORITY 0
If PUSHLOC \({ }_{0}<0\) :
\[
\begin{aligned}
& \text { PUSHLOC }_{0}=- \text { PUSHLOC }_{0} \\
& \text { OVFIND }=1
\end{aligned}
\]
\(\mathrm{NEWJOB}=+\mathrm{O}\)
ENDPRCHG Release interrupt inhibit
If \(\mathrm{LOC}_{0} \leq 0\) :
\(L O C_{0}=-L O C_{0}+1\)
EBANK \(=\) bits \(3-1\) of BANKSET 0 (via BBANK)
FBANK \(=\) bits \(15-11\) of BANKSET \(_{0}\) (via BBANK)
Proceed to interpretive decoder
EBANK \(=\) bits \(3-1\) of BANKSET 0 (via BBANK)
FBANK \(=\) bits \(15-11\) of BANKSET 0 (via BBANK)
Proceed to job whose address is specified in \(L_{0} 0\)
PRIOCHNG Inhibit interrupts (Entered to "Change priority" of a job)
NEWPRIO \(=\mathrm{A} \quad\) (Priority in bits 14-10 of accumulator)
BANKSET \(_{0}=\) FBANK + EBANK (FBANK in bits 15-11; EBANK in bits 3-1)
EBANK \(=2\)

FBANK \(=1\)
\(\mathrm{LOC} \mathrm{O}_{\mathrm{O}}=\) Q-register
\(\mathrm{BUF}_{\mathrm{O}}=+0\)
PRIORITY \(_{O}=\underset{\text { NEWPRIO }+ \text { bits } 9-1 \text { of PRIORITY }}{ } \begin{aligned} & \text { (changing priority in bits } 14-10 \text { but leaving VAC }\end{aligned}\) address unchanged)
\(\mathrm{BUF}_{1}=-\) PRIORITY \(_{0}\)
Proceed to "EJSCAN"
JOBSLEEP (Entered with "address at which sleeping job is to begin when awakened" in accumulator)
\[
\begin{aligned}
& \operatorname{LOC}_{0}=A \\
& \text { FBANK }=1 \\
& \text { Inhibit interrupts } \\
& \text { PRIORITY }_{0}=- \text { PRIORITY }_{0} \text { (to indicate that job is asleep) } \\
& \text { BANKSET }{ }_{0}=\text { SUPERBNK }+ \text { EBANK } \\
& \mathrm{BUF}_{1}=-0 \\
& \text { Proceed to "EJSCAN" } \\
& \mathrm{BUF}_{0}=\mathrm{i} \quad \text { (effectively) }
\end{aligned}
\]
MATX - 16
MATX - 17
```

    (If PRIORITY LOCCTR }<0\mathrm{ and TS = LOC (LOCCTR:)
    NEWLOC }\mp@subsup{1}{1s}{}=\mathrm{ bits 15-11 of TS + BANKSET LOCCTR
    If LOCCTR > 0, proceed to "SETLOC"
    Proceed to "SPECTEST"
    LOCCTR = LOCCTR + 12
    If EXECTEM2 > 0:
    EXECTEM2 = EXECTEM2 - I
    Proceed to "JOBWAKE4"
    LOCCTR = -1 (indicating that no such sleeper was found)
    FBANK = EXECTEMI
    Return to 2 + address in Q-register
    DELAYJOB Inhibit interrupts
TSt = A
RUPTREGI = 2
DELLOOP If DELAYLOC RUPTREGI }\not=0\mathrm{ :
If RUPTREGI = 0, proceed to "BAILOUTI" with TS = 31104%
and TS1 }\mp@subsup{\textrm{dp}}{}{=}=(\mp@subsup{\textrm{BUF2}}{\textrm{o}}{,}\mp@subsup{\textrm{BUF2}}{1}{}
RUPTREGI = RUPTREGI - l
Proceed to "DELLOOP"
WAITEXIT = "TCGETCAD" - 2
L = FBANK + RUPTREGI (FBANK = 0)
WAITADR = "WAKER"
Proceed to "DLY2" ("returns" to "TCGETCAD")

```
 MATX - 18
TCGETCAD DELAYLOC \(_{\text {RUPTREG1 }}=\) bits \(10-1\) of BUF2 \(_{0}+\) BUF2 \(_{1}\)
Proceed to "JOBSLEEP" with \(A=\) DELAYLOC \(_{\text {RUPTREGI }}\)
WAKER (Must be in FBANK \#O)
\(i=\) FBANK + EBANK (= RUPTREGl of above)
\(A=\) DELAYLOC \(_{i}\)
DELAYLOC \(_{\mathbf{i}}=0\)
Perform "JOBWAKE"
Proceed to "TASKOVER"
WAITLIST (Entered to "Call" a task with "delta-time to interrupt" in accumulator)
Inhibit interrupts
WAITDELT \(=\mathrm{A}\)
WAITEXIT = Q-register ("Calling address" + 1)
\(T S_{d p}=\underset{\text { WAITEXIT }}{\text { contents }}\) of double precision register specified in
\(\mathrm{L}=\) less significant half of TS
WAITADR = more significant half of TS
Proceed to "DLY2"
TWIDDLE (Entered to "Call" a task with the same FBANK, SUPERBNK and EBANK as the caller.)
Inhibit interrupts
Q-register = Q-register - 1
L \(=\) FBANK + SUPERBNK + EBANK
Inhibit interrupts
\[
\text { MATX - } 19
\]
```

WAITDELT = A
WAITEXIT = Q-register
TSadr = Q-register + I
WAITADR = contents of single precision register specified in TSadr
DLY2 WAITBANK = FBANK + EBANK (FBANK in bits 15-ll; EBANK in bits 3-1)
EBANK = 3
FBANK = 1
If WAITDELT \leq O, proceed to "POODOOI" with TS = 21204g and
TSl }\mp@subsup{\textrm{dp}}{}{\prime}=\mathrm{ (WAITEXIT, WAITBANK)
If TIME3 > 128, Tl = 16384 - TTME3 (delta-t to first task
in list)
If TIME3 = 128, Tl = I (improper performance; unexpected)
If TIME3 < 128, T1 = - TIME3 (interrupt has occurred and
is waiting to be processed; TIME3 continues to count (every
centisecond) until it is reset)
TSdt = Tl
If WAITDELT> TSdt - I: (Call time greater than or equal to
time to earliest task, task zero)
i = 0
Proceed to "WTLST5"
TSt = (8192 - WAITDELT) + 8192 modulo 214
Exchange TTME3 and TSt (Switch contents of one to the other)
LST1 i = LST1 i-1 for i = 7 thru 0 in that order
LSTl_O = 1 - (16384 - TSt - WAITDELT)
TS = more significant half of LST2 16
LST2 }2i=\mp@subsup{LST2 2i-2 for i = 8 thru 0 in that order}{}{2

```

LST2 \({ }_{0}=\) (WAITADR , L) (double precision)
If TS \(\neq\) "SVCT3", proceed to "BAILOUTI" with \(\mathrm{TS}=31203_{8}\) and \(\mathrm{TS} 1_{\mathrm{dp}}=\) (WAITEXIT, WAITBANK)
EBANK \(=\) bits 3-1 of WAITBANK (via BBANK)
FBANK = bits \(15-11\) of WAITBANK (via BBANK)
TSadr \(=2+\) WAITEXIT
Proceed to address specified in TSadr (return to caller)
\(\underline{\text { WTLST5 }} \quad \mathrm{TSdt}=\mathrm{TSd}-\mathrm{LSTl}_{\mathbf{i}}+1 \quad\left(\mathrm{LSTl}_{\mathbf{i}}=1-\right.\) delta time between tasks i and \(i+1\) where time to task zero is counting down now)

If WAITDELT > TSdt - l:
\[
i=i+1
\]

If \(i=8\), proceed to "BAILOUTI" with \(\mathrm{TS}=31203_{8}\)
and \(\mathrm{TS} l_{\mathrm{dp}}=\) (WAITEXIT, WAITBANK)
Proceed to "WTLST5"
WAITTEMP = TSdt - WAITDELT - 1
\(L S T l_{i}=\operatorname{LST}_{i}+\) WAITTEMP \(+1 \quad(=1-\) "delta time from task i
LSTl \(_{j}=\) LSTI \(_{j-1}\) for \(j=7\) thru \(i+2\) in that order
\(\mathrm{LSTl}_{\mathrm{i}+1}=-\) WAITTEMP \(\quad(=1-\) "delta time from new task to task
TS = more significant half of LST2 16
\(\operatorname{LST}_{2 j}=\operatorname{LST}_{2 j-2}\) for \(j=8\) thru \(i+2\) in that order
LST2 \(_{2 i+2}=\) (WAITADR , L) (double precision)
If TS \(\neq\) "SVCT3", proceed to "BAILOUTl" with \(T S=31203_{8}\) and \(\mathrm{TSI}_{\mathrm{d} p}=\) (WAITEXIT, WAITBANK)
```

    EBANK = bits 3-l of WAITBANK (via BBANK)
    FBANK = bits 15-1l of WAITBANK (via BBANK)
    TSadr = 2 + WAITEXIT
    Proceed to address specified in TSadr (return to caller)
    T3RUPT BANKRUPT = FBANK + SUPERBNK + EBANK
QRUPT = Q-register
TS = LSTl
LST1 }\mp@subsup{i}{i}{}=LST\mp@subsup{l}{i+1}{}\mathrm{ for i=0 thru 6 in that order
LST1
RUPTAGN = -0
TIME3 = 16383 + TS + TIME3 (16384 - delta-time)
If overflow, RUPTAGN = l (two simultaneous tasks or tardy
"T3RUPT")
TSadr = more significant half of LST2}
TSbanks = less significant half of LST2}
LST2 }\mp@subsup{2}{i}{}=\mp@subsup{L}{LST2}{2i+2}\mp@code{for i = 0 thru 14 in that order
LST216 = "SVCT3" (less significant half insignificant)
SUPERBNK = bits 7-5 of TSbanks
FBANK = bits 15-ll of TSbanks (via BBANK)
EBANK = bits 3-l of TSbanks (via BBANK)
Proceed to address specified in TSadr
TASKOVER If RUPTAGN > 0:
EBANK = 3
FBANK = l
Proceed to third step of "T3RUPT"

```
 MATX - 22
```

    (0therwise , RUPTAGN = -0)
    SUPERBNK = bits 7-5 of BANKRUPT
    Q-register = QRUPT
    EBANK = bits 3-l of BANKRUPT (via BBANK)
    FBANK = bits 15-ll of BANKRUPT (via BBANK)
    A = ARUPT
    L = LRUPT
    Release any interrupt inhibits
    Resume
    LONGCALL LONGTIME
LONGGADR = contents of double precision register specified in
Q-register (stored in fixed at "calling address" + 1)
LONGEXIT }\mp@subsup{1}{1}{}= FBANK + EBAN
EBANK = 3
FBANK = l
LONGEXIT O = Q-register + 2
If LONGTIME ms > 0, proceed to "LONGCYCL"
If LONGTIME ms = 0 and LONGTIME }\mp@subsup{1}{s}{}\leq0\mathrm{ or if LONGTIME ms
proceed to "POODOO1" with TS = 21204g and TSl }\mp@subsup{\mp@code{dp}}{= = (LONGEXIT }{o
LONGEXIT }\mp@subsup{1}{1}{\prime
LONGCYCL LONGTIME = LONGTIME - }819
If LONGTIME }\mp@subsup{\textrm{dp}}{}{>}>0\mathrm{ :
Call "LONGGYCL" in 81.92 seconds

```
 MATX - 23
\[
\begin{aligned}
& \text { If LONGTIME }{ }_{\mathrm{dp}} \leq 0 \text { : } \\
& \text { TSt }=\text { LONGTMME }_{1 \mathrm{~s}}+8192 \\
& \text { Call "GETCADR" in TSt centiseconds } \\
& \text { EBANK = bits 3-1 of LONGEXIT } 1 \\
& \text { FBANK }=\text { bits } 15-11 \text { of } \text { LONGEXIT }_{1} \\
& \text { TSadr }=\text { LONGEXIT }_{0} \\
& \text { LONGEXIT }_{0}=\text { "TASKOVER" } \\
& \text { Proceed to address specified in TSadr (return or "End task") } \\
& \text { GETCADR TSbanks = less significant half of LONGCADR } \\
& \text { TSadr = more significant half of LONGCADR } \\
& \text { EBANK = bits 3-1 of TSbanks } \\
& \text { FBANK }=\text { bits 15-11 of TSbanks } \\
& \text { Proceed to address specified in TSadr }
\end{aligned}
\]

Routines used for inter-bank communication (not a complete list; included for example only)

BANKCALL BUF2 \({ }_{0}=A\)
\(\mathrm{BUF}_{1}=\mathrm{L}\)
\(A=\) contents of single precision cell specified in Q-register
Q-register = Q-register + 1
SWCALL \(\quad\) FCADR \(=A\)
\(T S=\) FBANK
FBANK = bits 15-11 of FCADR
TSadr \(=0^{02000} 8+\) bits 10-1 of FCADR
\(A=B U F 2_{0}\)
(to preserve their contents during a "BANKCALL")
\(\mathrm{L}=\mathrm{BUF}_{1}\)
\(\mathrm{BUF}_{\mathrm{O}}=\) Q-register
\(\mathrm{BUF}_{1}=\mathrm{TS}\)
Proceed to address specified in TSadr
SWRETURN FBANK \(=\) BUF2 \(_{1}\) (without disturbing contents of \(A\) or \(L\))
Proceed to address specified in BUF20
POSTJUMP TS = A
A = contents of single precision cell specified in Q-register
BANKJUMP FBANK = bits 15-11 of A
TSadr \(=\mathrm{O}_{\mathrm{O}} 000 \mathrm{O}_{8}+\) bits \(10-1\) of A
\(A=T S\)
Proceed to address specified in TSadr
```

MAKECADR FCADR = bits 15-11 of BUF2 1 + bits 10-1 of BUF20
Return
SUPDACAL TSmp = FBANK + SUPERBNK
FBANK = bits 15-11 of FCADR
TSadr = 02000% + bits 10-1 of FCADR
Inhibit interrupts
SUPERBNK = bits 7-5 of L
A = contents of cell whose address is specified in TSadr
SUPERBNK = bits 7-5 of TSmp
Release interrupt inhibit
FBANK = bits 15-1l of TSmp
Return

```
MATX - 26

A: Single precision accumulator with overflow bit in addition to the usual sign bit and fourteen magnitude bits. (Stored in ARUPT during an interrupt.)

BANKRUPT: Single precision storage for current bank settings when a job is interrupted and the banks are reset to process the interrupt.
\(\operatorname{BANKSET}_{\mathrm{i}}(\mathrm{i}=0,12,24,36,48,60,72,84)\) : Single precision storage for the FBANK, SUPERBNK, and EBANK settings required by each job; part of the job core assigned to each active job. (FBANK in bits 15-11; SUPERBNK in bits 7-5; EBANK in bits 3-1.)

BUF. (i \(=0,1\)): Single precision working storage cells used in "EJSCAN" to determine the job of highest priority if any are active.

BUF2 \(_{i}(i=0,1):\) Single precision storage for the return address and FBANK setting during a temporary transfer to another FBANK.

DELAYLOC \(_{i}\) (i = 0,l,2): Single precision address of one of three jobs being "delayed".

EBANK: Single precision register which controls erasable memory access; scaled B5 and expressed as an octal quantity between 0 and 7. Gated directly to bits 3-1 of BBANK.

EXECTEMD, EXECTEM2: Single precision temporary storage cells.
FBANK: Single precision register which controls fixed memory access in conjunction with the SUPFRBNK register; scaled B4 and expressed as an octal quantity between 0 and \(378^{\circ}\). Gated directly to bits 15-11 of BBANK.

FCADR: Single precision address with FBANK setting used for inter-bank communication with no change in the SUPERBNK setting. Bits 15-11 contain the FBANK setting and bits lo-l contain the address.

FIXLOC: Single precision address of the VAC area (or job core accumulator. \(\mathrm{MPAC}_{6}-42_{8}\)) of the job being executed.

L: Single precision "less significant" half of the accumulator when it contains a double precision number. (Stored in LRUPT during an interrupt.)

LOCi \((i=0,12,24,36,48,60,72,84):\) Single precision storage for the S-register portion of the starting address of a job; part of the job core assigned to each active job. If an interrupted job is using the interpreter language, LOC is complemented.

LOCCTR: Single precision job core index, scaled B14 and unitless.
LONGCADR: Double precision storage for starting address and bank settings for a task in "LONGCALL".

LONGEXIT \(_{i}\) (\(\mathrm{i}=0,1\)): Single precision storage for address and bank settings of routine that is "calling" a task via "LONGCALE".

LONGTIME: Double precision time interval from "now" to the time of initiation of a task in "LONGCALL"; scaled B28 in units of centiseconds.

LSTl \({ }^{(i=1-7): ~ S i n g l e ~ p r e c i s i o n ~ s t o r a g e ~ f o r ~ " o n e ~ m i n u s ~ t h e ~ d e l t a-t i m e ~}\) between tasks \(i\) and \(i+1\)," where task \(i=0\) is the one for which TIME3 is counting down; scaled B14 in units of centiseconds.
\(\operatorname{LSTR}_{i}(i=2,4,6,8,10,12,14,16):\) Double precision storage for address and bank settings for each task in the waitlist. Set equal to the address of "SVCT3" when not in use (to cause "SVCT3" to be executed every 81.93 seconds).
\(M P A C_{i}(i=0-7)\) : Multiple precision accumulator used automatically by jobs coded in the interpretive language (via the interpretive decoder) and sometimes by jobs coded in basic language. A set of eight single precision cells associated with a particular job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, MPAC \(0-7\) are saved as part of the "job core" reserved for that job, and they are reset exactly as they were when the interrupted job is re-established.

NEWJOB: Single precision index of the job core of the active job of highest priority, scaled B14 and unitless; set to -0 when no jobs are active.

NEWLOC: Double precision temporary storage for the LOC and BANKSET of a job being established.

NEWPRIO: Single precision temporary storage for the priority and VAC area address for a job being established.

OVFIND: Single precision overflow indicator associated with the job being executed.

PRIORITY \(_{i}(i=0,12,24,36,48,60,72,84):\) Single precision storage for the priority (bits 14-10) and VAC area address assigned to each active job; if a job is "sleeping", PRIORITY is negative; if the job core of which a particular PRIORITY \(i\) is a part is available, PRIORITY \({ }_{i}\) is equal tio -0. (Adjusted for a NOVAC job so that QPRET will equal \(\mathrm{MPAC}_{6}\).)

PUSHLOC \(_{i}(i=0,12,24,36,48,60,72,84):\) Single precision address of the next available position in the VAC area of a particular job, set equal to the first position in the list when a job is established. If a job is interrupted while the overflow indicator is set, PUSHLOC is complemented.

Q-register: Single precision return address register automatically set by a TC instruction (basic) equal to "calling address" +1 (address of instruction immediately following the TC instruction).

QPRET: Single precision octal return address storage cell loaded by interpretive transfer instructions (equals \(\mathrm{VAC}_{42}\) or \(\mathrm{MPAC}_{6}\)).

QRUPT: Single precision storage for current value of \(Q\)-register when a job is interrupted, for reloading the Q-register when the interrupt is completed.

RUPTAGN: Single precision cell used in "T3RUPT" to determine if more than one task must be processed at a single interrupt.

RUPTREGI: Single precision temporary storage cell.
SELFRET: See TEST section.
SUPERBNK: Single precision LGC channel which controls fixed memory access in conjunction with the FBANK register; scaled BlO and expressed as an octal quantity between 0 and 4 .

TIME3: See INTR section.
VACiUSE (\(i=1,2,3,4,5\)): Single precision register at the head of each of the five working storage areas (VAC areas) that may be assigned to jobs. Each VAC area contains 43 single precision cells plus VACiUSE.
\[
\text { MATX - } 29
\]

WAITADR: Single precision "S-register" portion of the address of a task being inserted in the waitlist.

WAITBANK: Single precision storage for current EBANK and FBANK while these banks are switched to enter a task in the waitlist.

WAITDELT: Single precision time interval between "now" and time at which a task is to start, scaled B14 in units of centiseconds.

WAITEXIT: Single precision return address to routine that is "calling" a task; used to locate the task address when it is stored in fixed memory at the calling address +1 and 2 .

WAITTEMP: Single precision delta-time between time-from-now at which task \(i+1\) will be executed (time to task zero is counting down "now") and time-from-now at which new task is to be executed.

1
-

\section*{Orbital Integration}
```

STATEINT Establish "STATINTl" (pr05)
End task
STATINT1 If FLLAGWRD9 bit 5 (QUITFLAG) = 1:
Switch FLAGWRD9 bit 5 (QUITFLAG) to 0
End job
TDECL = TIMENOW
Perform "INTSTALL" (wait until orbital integration free)
Switch FLAGWRD2 bit 1 (NODOFLAG) to l
Perform "SETIFLGS" (Set up for Encke without W-matrix)
Switch FLAGWRD3 bits 15 (POOHFLAG) and 3 (VINTFIAG) to l
If FLAGWRD8 bit 8 (SURFFLAG) = 1 and FLAGWRD5 bit l
(RENDWFLG) = I:
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 1 (6x6)
Switch FLAGWRD3 bit }8\mathrm{ (PREGIFLG) to 0
Perform "INTEGRV"
If FLAGWRD8 bit 8 (SURFFLLAG) = 1:
Switch FLAGWRD2 bit l (NODOFLAG) to O
Proceed to "ENDINT"
TDECI = TETCSM
Perform "INTSTALL"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
Perform "SETIFLGS"

```
```

    If FLAGNRD5 bit 1 (RENDWFLG)=1:
        Switch FLAGWRD3 bits I (DIMOFLAG) and 2 (D60R9FLG)
        to I
    Switch FLAGWRD3 bit 8 (PRECIFLG) to I
Perform "INTEGRV"
Switch FLAGWRD2 bit I (NODOFLAG) to 0
Proceed to "ENDINT"
SETIFLGS Switch FLAGWRD3 bit 5 (STATEFLG) to 1 (integrate stored state vector)
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0 (Specify Encke)
Switch FLAGWRD3 bits I (DIMOFLAG) and 2 (D60R9FLG) to 0
Return
ENDINT Switch FLAGWRD3 bit 5 (STATEFLG) to 0
Call "STATEINT" in 600 seconds
End job
CSMPREC Perform "INTSTALL"
IRETURN $=$ return address to caller of "CSMPREC"
Switch FLAGGRD3 bit 3 (VINTFLAG) to 1
Switch FLAGGNRD3 bit 8 (PRECIFLG) to I
Switch FLLAGWRD3 bits 1 (DIMOFLAG) and 4 (INTYPFLG) to 0
Proceed to second step of "INTEGRV"
LEMPREC Perform "INTSTALL"
IRETURN = return address to caller of "LEMPREC"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
Switch FLAGWRD3 bit 8 (PRECIFLG) to 1
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 4 (INTYPFLG) to 0
Proceed to second step of "INTEGRV"
CSMCONIC Perform "INTSTALL"
IRETURN = return address to caller of "CSMCONIC"
Switch FLAGWRD3 bits 3 (VINTFLAG) and 4 (INTYPFLG) to 1
Switch FLAGNRD3 bit 1 (DIMOFLAG) to 0
Proceed to second step of "INTEGRV"
IEMCONIC Perform "INTSTALL"
IRETURN $=$ return address to caller of "LEMCONIC"
Switch FLAGWRD3 bits 3 (VINTFLAG) and 1 (DIMOFLAG) to 0
Switch FLAGWRD3 bit 4 (INTYPFLG) to 1
Proceed to second step of "INTEGRV"
INTEGRV IRETURN = return address (to caller of "INTEGRV")
Switch FLAGWRD8 bits 15 (RPQFLAG) and 13 (NEWIFLG) to 1
If FLAGWRD3 bit 3 (VINTFLAG) $=1$ :
Perform "MOVEPCSM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGNRD8 bit 12 (CMOONFLG)
If FLLAGWRD3 bit 3 (VINTFLAG) $=0$ :
If FLAGWRD8 bit 8 (SURFFTAG) $=1$, proceed to "USEPIOS"
Perform "MOVEPLEM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 11 (LMOONFLG)
$\operatorname{PBODY}=0$

```
 If FLAGWRDO bit 12 (MOONFLAG) = 1, PBODY = 2
 Proceed to "ALOADED"
INTEGRVS IRETURN = return address
 Switch FLAGWRD3 bit 8 (PRECIFLG) to l
 PBODY = 0
 If FLAGNRDO bit 12 (MOONFLAG) = 1, PBODY = 2
 TDELTAV = 0
 TNUV = 0
 Perform "RECTIFY"
 Switch FLAGWRD3 bit l (DIMOFLAG) to 0
 Switch FLAGWRD8 bits 15 (RPQFLAG) and 13 (NEWIFLG) to I
ALOADED TDEC = TDECI
 If FLAGWRD3 bit 4 (INTYPFLG) = 0, proceed to "TESTLOOP"
RVCON TAU = TDEC - TET
 Perform "RECTIFY"
 Perform "KEPPREP"
 TET = TET + TC
REGTOUT Perform "RECTIFY"
 RATT = RRRECT
 VATT = VRECT
 TAT = TET
 TSmu = K:MU PBODY
 MUDEX = 0 (-2 in index register l, XI)
```

ORBI - 4

```
 If FLAGWRDO bit 12 (MOONFLAG) = 1, MUDEX = 8
 (-10 in index register 1, X1)
INTEXIT Switch FLAGWRD9 bit 1 (AVEMIDSW) to 0
 Switch FLAGWRD3 bit 8 (PRECIFLG) to 0
 Switch FLAGWRD3 bit 5 (STATEFLG) to 0
 Perform "INTWAKE" (awaken any jobs waiting to integrate)
 Return via IRETURN (with PBODY in index register 2, X2)
RECIIFY
 RRECT = RCV + IDEUTAV
 (Scaling
 RCV = RRECT controlled
 VRECT = VCV + TNUV by PBODY)
 VCV = VRECT
 TDELTAV = 0
 TNUV = 0
 TC=0
 XPREV = 0
 Return
TESTLOOP If FLAGWRD9 bit 5 (QUITFLAG) = 1:
 Switch FLAGWRD3 bit 5 (STATEFLG) to 0
 Proceed to "INTEXIT"
 i = PBODY
 Switch FLAGWRDO bit 13 (MIDFLAG) to 0 (MIDFLAG should
 remain zero in
 LUMINARY)
If |RCV | K:RM
 Switch FLAGWRDO bit 13 (MIDFLAG) to 1
```

TSstep $=K: p 3 D \sqrt{\text { RRCV| }^{3} / K: M U S i_{i} \quad \text { (truncated to }}$
TSstep $=2^{7}$ [integral part of (TSstep $\left./ 2^{7}\right]$ a multiple of 128 centiseconds)
If overflow or if TSstep > $2 \mathrm{~K}: D T d 2 M A X$, TSstep $=2 \mathrm{~K}:$ DTd2MAX
DTd2 $=\frac{1}{2}(T D E C-T E T)$
If overflow or if $|\mathrm{DTd} 2| \geq \frac{1}{2}$ TSstep, DTd2 $=\frac{1}{2}$ TSstep signDTd2
If $\mid$ DTd2 2 K:DTd2MIN, proceed to "A-PCHK" (convergence)
If FLAGWRD3 bit 15 (POOHFLAG) $=1$ and bit 8 (PRECIFLG)=0: ("STATEINT")
If DTd2 < $\frac{1}{2}$ TSstep, proceed to "A-PCHK" (don't integrate past even timestep)
If FLAGWRD8 bit 13 (NEWIFLG) $=1$ :
Switch FLAGWRD8 bit 13 (NEWIFLG) to 0
If TET > TDEC, proceed to "INTEXIT" (don't integrate backwards)

If (TDEC - TET) < 8 DTd2, proceed to "INTEXIT" (don't integrate unless more than 4 timesteps behind)

TIMESTEP If FLAGWRDO bit 13 (MIDFLAG) $=0$, proceed to "RECTEST" (MIDFLAG should remain zero in LUMINARV)

If DTd2 [nCV • VCV] < 0 , proceed to "RECTEST"
If FLAGWRDO bit 12 (MOONFLAG) $=1$, proceed to "LUNSPH"
If FLAGGRD8 bit 15 (RPQFLAG) $=1$ :
$\mathrm{TSt}=\mathrm{TET}$
Perform "ISPOS"
$\underline{R P Q V}=\underline{T S s u n}$
$i=\operatorname{PBODY}$
If | $\underline{R} C V$ - $\underline{R P Q V \mid ~<~ K: R S P H E R E: ~}$
Perform "ORIGCHNG"

```
 (If |\underline{RCV - RPQV| < K:RSPHERE:)}
 Proceed to "INTGRATE"
 Proceed to "RECTEST"
LUNSPH If |RCV| < K:RSPHERE, proceed to "RECTEST"
 If FLAGWRD8 bit 15 (RPQFLAG) = 1:
 TSt = TET
 Perform "LSPOS"
 RPQV = -TSsun
 Perform "ORIGCHNG"
 Proceed to "INTGRATE"
 ORIGCHNG Perform "RECTIFY"
 RRECT = \underline{RCV - - RPQV}
 RCV = RRECT
 If FLAGWRDO bit 12 (MOONFLAG) = 1:
 TS Syyy = - TS yyy (note that TS yyy is not defined)
 VRECT = VCV - TSSyyy
 VCV = VRECT
 If FLAGWRDO bit 12 (MOONFLAG) = 1:
 PBODY = 0
 Convert RCV, RRECT, VCV and VRFCT to earth scaling
 If FLAGWRDO bit 12 (MOONFLAG) = 0:
 PBODY = 2
```

```
 (If FLAGWRDO bit 12 (MOONFLAG) = 0:)
 Convert RCV, RRECT, VCV and VRECT to moon scaling
 Invert FLAGWRDO bit 12 (MOONFLAG)
 Return
RECTEST If |TDELTAV| \geq K:rectr, if |TDELTAV| / |RCV| \geq K:RECRATIO, or
 if |TNUV| \geq K:rectv:
 Perform "RECTIFY"
INTGRATE ZV = TNUV
 YV = TDELTAV
 Switch FLAGWRDO bit 14 (JSWITCH) to 0
 DIFEQCNT = 0
 ALPHAV = YV
 H=O
 If FLAGWRDO bit 14 (JSWITCH) = 1:
 Proceed to "DOW.."
ACCOMP i = PBODY
 FV=0
 BETAV = ALPHAV + RCV
 If FLAGWRD3 bit l (DIMOFLAG) = l:
 j = - DIFEQCNT
 \mp@subsup{VECTAB}{j}{j}= BETAV
 ALPHAM = |ALPHAV |
 Perform."GAMCOMP"
 ALPHAV = BETAV
 ORBI - 8
```

ALPHAM $=$ BETAM
If FLAGWRDO bit 13 (MIDFLAG) $=0$ : (MIDFLAG should remain zero in LUMINARY)
Perform "OBLATE"
Proceed to "NBRANGH"
TSt = TET
Perform "LSPOS"
$i=2$ (index MU of secondary body)
If FLAGWRDO bit 12 (MOONFLAG) $=1$ :
TSsun $=-$ TSsun

$$
i=0
$$

BETAV = TSsun
$\underline{R P Q V}=\underline{B E T A V}$
$\underline{R P S V}=\underline{T S x x x} \quad$ (note that TSxxx is not defined)
If MODREG $=23$ or if FLAGWRD3 bit 1 (DIMOFLAG) $=1$ :
$j=6-$ DIFEQCNT
VECTAB $_{j}=$ ALPHAV - BETAV
$\underline{R Q V V}=$ VECTAB $_{j}$
Switch FLAGWWD8 bit 15 (RPQFTAG) to 0
If FLAGWRDO bit 12 (MOONFLAG) $=1$, $\underline{R P S V}=\underline{R P S V}+\underline{R P Q V}$
Perform "GAMCOMP" $\quad(\underline{B E T A V}=$ RPQV)
BETAV $=$ RPSV
$i=4$ (to index MU of the sun)
Perform "GAMCOMP"

```
 Perform "OBLATE"
 Proceed to "NBRANCH"
GAMCOMP BETAM = |EETAV
 RHO = ALPHAM / BETAM
 q = RHO (RHO - 2 unitALPHAV - unitBETAV)
 DdBETA = \sqrt{}{1+q}
 3+3q+ q
 Fq=q
 TSgam = - K:MU i RHO (unitALPHAV + unitBETAV Fq / RHO)
 FV = F
 If overflow, proceed to "GOBAQUE"
 Return
OBLATE i = PBODY
 If ALPHAM \geqslant K:RD
 If FLAGWRDO bit 12 (MOONFLAG) = 0:
 COS\varnothing}=\textrm{Z}\mathrm{ component of unitALPHAV
 UZ = K}:UNIT
 If FLAGWRDO bit 12 (MOONFLAG) = 1:
 TSt = TET
 Perform "MOONMX"
 URPV = [MOONMAT] (unitALPHAV - ([MOONMAT] T LM504) *
 COS }\varnothing=Z\mathrm{ component of URPV
 unitALPHAV)
 TS = [MOONMAT]T (\underline{K}:UNITZ - (K
 UX = LMOONMAT 〕T (\underline{K}: UNITX - (\underline{K}:UNITX * LMM504))
 WZ
```

$P_{2}{ }^{\prime}=3 \cos \varnothing$
$P_{3}{ }^{\prime}=\frac{1}{2}\left(15 \cos \not p^{2}-3\right)$
$P_{4}{ }^{\prime}=(1 / 3)\left(7 P_{3}{ }^{\prime} \cos \varnothing-4 P_{2}{ }^{\prime}\right)$
$P_{5}{ }^{\prime}=\frac{1}{4}\left(9 P_{4}{ }^{\prime} \cos \varnothing-5 P_{3}{ }^{\prime}\right)$
TS $=\left[P_{3}{ }^{\prime}+\frac{K: j 3 j 2_{i}}{A^{\top} د P H A M}\left(P_{4^{\prime}}+\frac{K: j 4 j 3_{i}}{A L P H A M} P_{5}{ }^{\prime}\right)\right]$ unitALPHAV
$\underline{T} S=\underline{T} S-\left[P_{2}{ }^{\prime}+\frac{K: j 3 j 2_{i}}{A L P H A M}\left(P_{3}{ }^{\prime}+\frac{K: j 4 j 3_{i}}{A L P H A M} P_{4^{\prime}}\right)\right] \underline{U Z}$
TS = TS K: j2i/ALPHAM4 (computed quasi floating point)
$\underline{F V}=\underline{F V}+\underline{T} S$
If overflow, proceed to "GOBAQUE"
If FLAGWRDO bit 12 (MOONFLAG) $=0$, return


TS2 $=(\mathrm{E} 32 \mathrm{C} 31 \mathrm{RM} /$ ALPHAM $) \mathrm{TS}+\mathrm{E} 3 \mathrm{~J} 22 R 2 \mathrm{M}$ TSI
TS $=$ TS $2 /$ ALPHAM 4
$\underline{F} V=\underline{F V}+\underline{T} S$
If overflow, proceed to "GOBAQUE"
$i=P B O D Y$
Return

```
GOBAQUE If |TDELTAV }|=0\mathrm{ , proceed to "POODOO"
T TAU = TC - H with TS =204308
 TAU = TC - H
 TET = TET - H
 Perform "KEPPREP"
 Perform "RECTIFY"
 Switch FLAAGWRD8 bit 15 (RPQFLAG) to 1
 Proceed to "TESTLOOP"
NBRANCH If DIFEQCNT = -24, proceed to "DIFEQ+2"
 If DIFEQCNT = -12:
 PSIV = PHIV + 4 FV
 PHIV = PHIV + 2 FV
 If DIFEQCNT = 0:
 PHIV = FV
 H=H+DTd2
 DIFEQCNT = DIFEQCNT - 12
 ALPHAV = YV + H(ZV}+\frac{1}{2}H\underline{HV}
 If FLAGWRDO bit 14 (JSWITCH) = 1, proceed to "DOW.."
 TAU = TC + DTd2
 TET = TET + DTd2
 (DTd2 rounded to nearest centisecond if
 DIFEQCNT = -24)
 Perform "KEPPREP"
 Proceed to "ACCOMP"
```



```
\underline { Z V } = \underline { Z V } + (\underline { P } S I V ~ + \underline { E V } V) H / 6
If FLLAGNRDO bit 14 (JSWITCH) = 0, proceed to "ENDSTATE"
```

$\left(W_{4 n}, W_{5 n}, W_{6 n}\right)=\underline{Z V}$

$$
\left(W_{1 n}, W_{2 n}, W_{3 n}\right)=\underline{Y} V
$$

If overflow, proceed to "WMATEND"

$$
\text { If } n \leq 1:
$$

TDECl $=$ TDEC
Proceed to third step of "INTEGRV"
$\mathrm{n}=\mathrm{n}-\mathrm{l}$
Proceed to "NEXTCOL"
ENDSTATE If overflow, proceed to "GOBAQUE"
$\underline{T N U V}=\underline{Z V}$
TDELTAV $=\underline{Y} V$
If FLAGWRD9 bit 2 (MIDAVFLG) = 1, proceed to "CKMID2"
If FLAGWRD3 bit 1 (DIMOFLAG) $=0$, proceed to "TESTLOOP"
Switch FLGWRD10 bit 7 (REINTFLG) to 1
(integration routine to be restarted)
If FLAGWRD3 bit 3 (VINTFLAG) $=1$ :
Perform "MOVEACSM"
Switch FLAGGRDD bit 12 (CMOONFLG) to 1
Perform "SVDWNI"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
If FLAGWRD3 bit 3 (VINTFLAG) $=0$ :
Perform "MOVEALEM"
Switch FLAGWRD8 bit 11 (LMOONFLG) to 1
Perform "SVDWN2"

```
 (If FLAGWRD3 bit 3 (VINTFLAG)=0:)
 Set FLAGWRD8 bit ll (LMOONFLG) = FLAGWRDO bit 12
 (MOONFLAG)
 Switch FLAGWRDO bit 14 (JSWITCH) to I
 n=6
 If FLAGWRD3 bit 2 (D60R9FLG) = 1, n = 9
NEXTCOL
```



```
 ZV}=(\mp@subsup{W}{4n}{n},\mp@subsup{W}{5n}{},\mp@subsup{W}{6n}{}
 j = 0
 DIFEQCNT = 0
 ALPHAV = YV
 H=0
 If FLAGWRDO bit 14 (JSWITCH) = 0, proceed to "ACCOMP"
DOW.. i = PBODY
 BETAM = K:MU i
 TS = 3(ALPHAV • unitVECTAB j) unitVECTAB
```



```
 If FLAGWRDO bit }13\mathrm{ (MIDFLAG) = 0, proceed to "NBRANCH"
 (MIDFLAG should remain zero in LUMINARY)
 j = 6
 i = 2-PBODY (earth or moon)
 BETAM = K:MU
 TS = 3(_⿴囗LPHAV - unitVECTAB j)unitVECTAB
TS = TS BETAM / |VECTAB j |
```

    If FLAGNRDO bit 12 (MOONFLAG) = 0:
    Shift TS right 6 places for scaling
        FV}=\underline{F}V=\underline{T
        Proceed to "NBRANCH"
    KEPPREP KEPRTN = return address
i = PBODY

```

```

    A5 = \frac{1}{2}}\mathrm{ unitRCV - VCV
    Q = (TAU - TC) / |\underline{RCV}
    TS = \frac{1}{6}\mp@subsup{Q}{}{2}(K:MU
    XKEPNEW = XPREV + ROOTMU Q (1 - A5 Q + 2A5 2 Q Q +TS)
    MUDEX = 0 (-2 in index register 1, XI)
    If FLAGWRDO bit l2 (MOONFLAG) = 1, MUDEX = 8 (-10 in index
                                    register l, XI)
    Proceed to "KEPLERN" (return directly to calling program
                                from "KEPLERN")
    WMATEND Switch FLAGWRD3 bits l (DIMOFLAG) and 6 (ORBWFLAG) to 0
Switch FLAGWRD5 bit l (RENDWFLG) to 0
Switch FLAGWRD3 bit 5 (STATEFLG) to l
Perform "ALARM" with TS = 004218
Proceed to "TESTLOOP"
USEPIOS TSt = TDECl
TET = TDECI
Perform "MOONMX"

```
 ORBI - 15
\(\underline{R C V}=[\text { MOONMAT }]^{T} \quad(\underline{R L S}+\underline{L M} 504 * \underline{R L S})\)
Switch FLAGWRDO bit 12 (MOONFLAG) to 1
Perform "MOONMX"
\(\underline{T} S=[\text { MOONMAT }]^{T} \quad(\underline{K}:\) UNITZ \(+\underline{L M M 04} *\) K \(:\) UNITZ)
\(\underline{V} C V ~=~ K: O M E G M O O N ~ T S ~ * ~ R C V ~\)
\(\underline{T D E L T A V ~}=0\)
PBODY \(=2\)
\(\underline{T N U V ~}=0\)

A-PCHK If FLAGWRD3 bit 5 (STATEFLG) \(=0\), proceed to "RECTOUT"
Switch FLGWRD10 bit 7 (REINTFLG) to 1
If FLAGWRD3 bit 3 (VINTFLAG) = 1:
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (GMOONFLG) to 1
Perform "SVDWN1"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
If FLAGWRD3 bit 3 (VINTFLAG) \(=0\) :
Perform "MOVEALEM"
Switch FLAGWRD8 bit 11 (LMOONFLG) to 1
Perform "SVDWN2"
Set FLAGWRD8 bit 11 (LMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
Proceed to "RECTOUT"
MOVEPCSM \(\mathrm{XPREV}=\mathrm{XKEPCSM}\)
\[
\text { ORBI - } 16
\]
```

    TC = TCCSM
    VCV =\VCVCSM
    RCV = RCVCSM
    TNUN = NUWCSM
    TDELTAV = DELTACSM
    TET = TETCSM
    VRECT = VRECTCSM
    RRECT = RRECTCSM
    Return
    MOVEPLEM XPREV = XKEPLEM
TC = TCLEM
VCV = VCVLEM
RCV = RCVLEM
TNUN = NUNLEM
TDELTAV = DELTALEM
TET = TETLEM
VRECT = VRECTLEM
RRECT = RRRECTLEM
Return
MOVEACSM XKEPCSM = XPREV
TCCSM = TC
VCVCSM = VCV
RCVCSM = RCV

```
\[
\begin{aligned}
& \text { NUVCSM }=\text { TNUV } \\
& \text { DELTACSM }=\text { TDELTAV } \\
& \text { TETCSM }=\text { TET } \\
& \text { VRECTCSM }=\text { VRECT } \\
& \text { RRECTCSM }=\text { RRECT } \\
& \text { Return } \\
& \text { MOVEALEM } \\
& \hline
\end{aligned}
\]
```

    (If FLAGWRD5 bit 1 (RENDWFLG) or FLAGWRD3 bit 6 (ORBWFLAG) = 1:)
        TDECI = PIPTIME
        Perform "INTEGRV"
    Perform "INTSTALL"
    Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
    Perform "SETIFLGS"
    TDECI = PIPTIME
    Perform "INTEGRV"
    Perform "INTSTALL"
    RRECT = RN (scaling controlled by LMOONFLG)
    RCV = RN
    TET = PIPTIME
    VRECT = VN
    VCV = VN
    TDELTAV = 0
    TNUV = 0
    TC = 0
    XPREV = 0
    Perform "MOVEALEM"
    TRKMKCNT = 0
    Perform "INTWAKE"
    Return via EGRESS
    MIDTOAVI IRETURN1 = return address
TSerror = 0

```
 ORBI - 19
```

    Switch FLAGWRD9 bit 3 (MIDIFLAG) to 1
    If TDECI < TIMENOW + K:TIMEDELT:
    Switch FLAGWRD9 bit 3 (MIDIFLLAG) to 0
    TSerror = 1
    Perform "ALARM" with TS = 01703g
    TDECI = TIMENOW + K:TIMEDELT
    Skip next three steps
    MIDTOAV2 IRETURN1 = return address
Switch FLAAGWRD9 bit 3 (MIDIFLAG) to 0
TDECI = TIMENOW + K:TIMEDELT
Perform "INTSTALL"
Switch FLAGWRD3 bits 1 (DIMOFLAG), 3 (VINTFLAG) and 4
(INTYPFLG) to 0
Switch FLAGWRD9 bit 2 (MIDAVFLG) to 1
Perform "INTEGRV"
Switch FLAGWRD9 bit 2 (MIDAVFLG) to 0
RNI = RATT
VNI = VATT
PIPTIME1 = TAT
RTX2 = X2 (0 for earth, 2 for moon)
RTXI = Xl (-2 for earth, -10 for moon)
Inhibit interrupts
TSt = PIPTIME1 - TIMENOW
Return via IRETURN1

```

CKMID2 If FLAGWRD9 bit 3 (MID1FLAG) \(=1\) :
If TDEC \(\geq\) TIMENOW + K:TIMEDELT, proceed to "TESTLOOP"
Switch FLAGWRD9 bit 3 (MIDIFLAG) to 0
TSerror \(=1\)
Perform "ALARM" with TS \(=017038\)
TDEC \(=\) TIMENOW + K:TIMEDELT
Proceed to "TESTLOOP"
If \(\mid T D E C\) - TET \(<\mathrm{K}: 3 C S E C S\), proceed to "A-PCHK"
TDEC \(=\) TIMENOW + K:TIMEDELT
Proceed to "TESTLOOP"
INTSTALL QPRET = return address
If FLGWRD10 bit 14 (INTFLAG) or 7 (REINTFLG) \(=1\) :
Put present job to sleep
When awakened, job will resume at second step of "TNTSTALL" when jobs of higher priority have been completed

Switch FLGWRD10 bit 14 (INTFLAG) to 1
Return via QPRET.
INTWAKE If FLGWRD10 bit 7 (REINTFLG) \(=1\) : (means restarted)
TBASE2 = QPRET of present job
Set restart group 2 to resume computations at next step

QPRET (of present job) \(=\) TBASE2
If FLGWRD10 bit 7 (REINTFLG) \(=0\) : (i.e. if got a restart)
Return via QPRET (of present job)
```

INTWAKEI Awaken job or jobs put to sleep in "INTSTALL"
Switch FLGWRDIO bits 14 (INTFLAG) and 7 (REINTFLG) to 0
Return via QPRET (of present job)
INTWAKEU Release interrupt inhibit
If UPSVFLAG = 0: (UPSVFLAG is the third component of
of a state vector update)
Perform "INTWAKEl"
Return
RCV = RRECT
VCV = VRECT
TDELTAV = 0
TNUV = 0
TC = 0
XPREV = 0
i=0
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If |UPSVFLAG| = 2:
i = 2
Switch FLAGWRDO bit 12 (MOONFLAG) to l
If UPSVFLAG>0:
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to l
Perform "SVDWNI"

```
(If UPSVFLAG>0:)
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12(MOONFLAG)
Switch FLAGWRD3 bit 6 (ORBWFLAG) to 0
If UPSVFLAG < 0 :
Perform "MOVEALEM"
Switch FLAGWRD8 bit 11 (LMOONFLG) to 1
Perform "SVDWN2"
Set FLAGWRD8 bit 11 (LMOONFLG) = FLAGWRDO bit 12(MOONFLAG)
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
UPSVFLAG = 0
Perform "INTWAKE1"
Return
Switch FLAGWRDI bit 5 (TRACKFLG) to 1
DELVOV = DELVLVC
Proceed to "GOFLASH" with TS = K:V06N33 (TIG)(If terminate, proceed to "ENDP76" if proceed, continueat next step; other response, repeat this step.)
Proceed to "GOFLASH" with TS = K:VO6N84 (DELVOV)
(If terminate, proceed to "ENDP76" if proceed, continueat next step; other response, repeat this step.)
TDECI \(=\mathrm{TIG}\)
Perform "CSMPREC"

Perform "INTSTALL"
P76

Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 12 (CMOONFLG)
```

VCV = TSv (scaling controlled by MOONFLAG)
RCV = RATT
TET = TIG
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
TDECI = TETLEM
Perform "INTEGRVS"
Perform "INTSTALL"
RRECT = RATT
RCV = RATT
TET = TAT
VREGT = VATT
VCV = VATT
TDELTAV = 0
TNUV = O
TC = 0
XPREV = 0
Switch FLGWRD10 bit 7 (REINTFLG) to I
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to I
Perform "SVDWNI"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
Perform "INTWAKEl"

```
ORBI - 24

ENDP76 TRKMKCNT \(=0\)
Proceed to "GOTOPOOH"

A5: Double precision intermediate quantity used in calculation ol XKEPNEW, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

ALPHAM: Double precision magntiude of ALPHAV, with identical scaling and units.

ALPHAV: Working storage for double precision position deviation vector, scaled B22 (earth) or B18 (moon) in units of meters, or for totff position vector, scaled B29 (earth) or B2'7 (moon) in units in Actually, ALPHAV is changed to a unit vector, but this was not si . for ease in presentation.

BETAM: Double precision magntiude of BETAV or magnitude of \(K: M T_{i}\) w 1 th variable scaling and units.

BETAV: Double precision total position vector \(n\) ? the spacecr ift relation to the earth, moon or sun, expressed in reference coor in . .s with variable scaling in units of meters.

COS \(\varnothing\) : Double precision argument for "OBLATE" equations, scaled BI and unitless. Equivalent to the cosine of the angle between the unit polar vector (earth or moon) and the total position vector (earth or moon centered coordinates).

DdBETA: Double precision ratio of \(D\) divided by BETAM where \(D\) is the magnitude of the vector \(\underline{D}=\underline{B E T A V}\) - ALPHAV; scaled Bl and unities3.

DELVLVC: Double precision value of velocity increment in locul vul + coordinates, scale factor B7, units meters per centisecond.

DELVOV: Double precision, instantaneous delta-velocity vector to bre added (at time specified in TIG) to the permanent CSM state vector maintained in the LGC to reflect a burn performed by the CSM; scrled B7 in units of meters per centisecond and expressed in lonal rert in coordinates of the CSM at TIG.

DIFEQCNT: Single precision cell used for program control purposes, huviang values of \(0,-12\) and -24 at the beginning, middle and end of each integration step.

DTd2: Double precision time increment for precision integration corresponding to half of one integration time-step, scaled Bl9 in units of centiseconds.

E32C31RM: Single precision erasable memory constant, scale factor BSn, giving information on the \(\mathrm{C}_{31}\) term for the lunar gravity model. The cell contains \(C_{31} \times 1.5 \times \mathrm{r}_{\mathrm{M}}^{3} \times \mathrm{mu}_{\mathrm{m}}\). The value corresponds to \(C_{31} \times 1.5 \times\left(1.73809 \times 10^{6}\right)^{3} \times 0.4902778 \times 10^{9} \times 2^{-80}\).

E3J22R2M: Single precision erasable memory constant, scale factor B58, giving information on the \(J_{22}\) term for the lunar gravity model. The cell contains \(J_{22} \times 3 \times r_{M}^{2^{2}} \times \mathrm{mu}_{\mathrm{m}}\). The value corresponds to \(\mathrm{J}_{22} \times 3 \times\left(1.73809 \times 10^{6}\right)^{2} \times 0.4902778 \times 10^{9} \times 2^{-58}\).

EGRESS: Single precision octal return address storage cell.
Fq: Special function used in Encke's method of integration to achieve greater accuracy, double precision, scaled B1. See pages 11 and 190 in Astronautical Guidance by R. H. Battin (McGraw-Hill, 1964).

FV: Double precision disturbing acceleration vector, scaled B-16 (earth) or B-20 (moon) in units of meters per centisecond squared. See pages 189-191 of Astronautical Guidance by R. H. Battin (McGraw-Hill, 1964)

H: Double precision time since beginning of integration step, scaled B19 in units of centiseconds.
i: Single precision index scaled B14.
IRETURN, IRETURN1: Single precision octal return address storage cells.
j: Single precision index scaled B14.
KEPRTN: See CONC section.
K:3CSECS: Double precision constant stored as \(3 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 3.

K:DTA2MAX: Double precision constant stored as \(4 \times 10^{5} \times 2^{-20}\), scaled B19 in units of centiseconds. Equation value: 200,000.

K:DTd2MIN: Double precision constant stored as \(3 \times 2^{-20}\), scaled B19 in units of centiseconds. Equation value: 1.5.
K: \(\mathrm{j}_{\mathrm{O}}\) : Double precision constant stored as \(1.75501139 \times 10^{21} \times 2^{-72}\), program notation "J2REQSQ", scaled B72 in units of meters \(^{5} /\) centi-
 to \(3.986032 \times 10^{10} \times\left(6.378165 \times 10^{6}\right)^{2} \times 0.10823 \times 10^{-2}\).)
K:j22: Double precision constant stored as \(3.067493316 \times 10^{17} \times 2^{-60}\), program notation "J2REQSQ-2" , scaled B60 in units of meters \({ }^{5} /\) centi- \(^{5}\) second squared. Equation value: \(3.067493316 \times 10\). (Equivalent to \(0.4902778 \times 10^{9} \times\left(1.738090 \times 10^{6}\right)^{2} \times 0.207108 \times 10^{-3}\).)
K:j3j2 \({ }_{0}\) : Double precision constant stored as \(-1.355426363 \times 10^{4} \times 2^{-27}\), program notation "2J3RE/J2", scaled B27 in units of meters. Equation value: \(-1.355426363 \times 10^{4}\). (Equivalent to \(-0.23 \times 10^{-5} \times 6.378165 \times\) \(10^{6} / 0.10823 \times 10^{-2}\).)

K: \(\mathrm{j} 3 \mathrm{j} 2_{2}^{2}\) : Double precision constant stored as \(-1.7623602 \times 10^{5} \times\) i program notation "2J3RE/J2-2", scaled B25 in units of meters. Equation value: \(-1.76236023 \times 10^{5}\). (Equiyalent to \(^{\circ}\) \(\left(-2.1 \times 10^{2} / 0.207108 \times 10^{-3}\right) \times 1.73809 \times 10^{6} \times 2^{-25}\).)
K: j4j30: Double precision constant stored as \(4.991607391 \times 10^{6} 2^{-26}\), program notation "J4REQ/J3," scaled B26 in units of meters. Equation value: \(4.991607391 \times 10^{6}\). (Equivalent to \(-0.18 \times 10^{-5} \times\) \(6.378165 \times 10^{6} /-0.23 \times 10^{-5}\).)

K: \(34 j 3_{2}\) : Double precision constant stored as 0 , program notation "J4REQ/J3-2." Equation value: 0 .
K:MUO: Double precision constant stored as \(3.986032 \times 10^{10} 2^{-36}\), program notation "MUEARTH", scaled B36 in units of meters cubed/ centisecond squared. Equation value: \(3.986032 \times 10^{10}\).
\(\mathrm{K}: \mathrm{MU}_{2}\) : Double precision constant stored as \(4.9027780 \times 10^{8} 2^{-30}\), program notation "MUM", scaled B30 in units of meters cubed/ceni.1second squared. Equation value: \(4.9027780 \times 10^{8}\).
\(\mathrm{K}: \mathrm{MU}_{4}\) : Double precision constant stored as \(1.32715445 \times 10^{16} 2^{-54}\), program notation "MUEARTH-4," scaled B54 in units of meters cubed/ centisecond squared. Equation value: \(1.32715445 \times 10^{16}\).
K:OMEGMOON: Double precision constant stored as \(2.66169947 \times 10^{-8} 2^{23}\), scaled B-23 in units of radians per centisecond. Equation value: \(2.66169947 \times 10^{-8}\).
K:p3D: Double precision constant stored as \(0.3 \times 2^{-2}\), scaled B2 and unitless. Equation value: 0.3 .
\(\mathrm{K}: \mathrm{RD}_{0}\) : Double precision constant stored as \(80,467,200 \times 2^{-29}\), progran notation "RDE," scaled B29 in units of meters. Equation value: 80,467,200.
\(\mathrm{K}: \mathrm{RD}_{2}\) : Double precision constant stored as \(16,093,440 \times 2^{-27}\), program notation "RDM," scaled B27 in units of meters. Equation value: 16,093,440.

K:RECRATIO: Double precision constant stored as 0.01 , scaled \(B O\) and unitless. Equation value: 0.01.

K:rectr: Double precision constant stored as 0.75 , program notation "3/4," scaled B22 (earth) or B18 (moon) in units of meters. Equation value: 3,145,728 (earth) or 196,608 (moon).

K:rectv: Double precision constant stored as 0.75 , program notation "3/4," scaled B3 (earth) or B-1 (moon) in units of meters per centisecond. Equation value: 6 (earth) or 0.375 (moon).
\(\mathrm{K}: \mathrm{RM}_{\mathrm{O}}\) : Double precision constant stored as \(1-2^{-28}\), program notation "RME," scaled B29 in units of meters. Equation value: 536,870,910.

K:RM2: Double precision constant stored as \(1-2^{-28}\), program notation "RMM," scaled B27 in units of meters. Equation value: 134,217,727.5.

K:RSPHERE: Double precision constant stored as \(64,373,760 \times 2^{-29}\), scaled B29 in units of meters. Equation value: \(64,373,760\).
K:TIMEDELT: Double precision constant stored as \(2000 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 2000.

K:UNITX, K:UNITZ: See SERV section.

LM504: Double precision libration vector of the moon, scaled BO in units of radians, and expressed in moon-centered, moon-fixed coordinates.

MODREG: Program number from DSKY; see DATA section.
[MOONMAT]: See COOR section.
MUDEX: See CONC section.
n: Single precision index scaled B14 and used to indicate the column of the W-matrix that is being integrated.
\(P_{2}{ }^{\prime}, P_{3}{ }^{\prime}, P_{4}{ }^{\prime}, P_{5}{ }^{\prime}:\) Double precision Legendre polynomial derivatives, scaled \(\mathrm{B} 6, \mathrm{~B} 5, \mathrm{B7}\) and B10, respectively.

PBODY: Single precision index used to distinguish between constants pertaining to the earth (0) and the moon (2); scaled Bl4.

PHIV: Double precision intermediate storage for the disturbing acceleration vector, scaled B-13 (earth) or B-17 (moon) in units of meters per centisecond squared. Used to implement the second-order difference equation,
\[
\cdot \underline{R}_{t+h}=\underline{R}_{t}+h\left[\underline{V}_{t}+\frac{h}{6}\left(2 \underline{\underline{a}}_{t+\frac{1}{2} h}+\underline{\underline{a}}_{t}\right)\right]
\]
which is valid to the fourth degree. (\(\underline{R}_{t+h}\) is the position deviation vector at time \(t+h\), etc.)

PIPTIME, PIPTIMEI: See SERV section.
PSIV: Double precision vector storage for intermediate values of disturbing acceleration, scaled B-13 (earth) or B-17 (moon) in units of meters per centisecond squared. Used to implement the first-order difference equation,
\[
\underline{V}_{t+h}=\underline{V}_{t}+\frac{h}{6}\left(\underline{a}_{t+h}+4 \underline{a}_{t+\frac{1}{2} h}+\underline{a}_{t}\right)
\]
which is valid to the fourth degree. (\(\underline{a}_{t+\frac{1}{2} h}\) is the second derivative of the position deviation at time \(t+\frac{1}{2} h\), etc.)
\(\mathrm{q}:\) Double precision argument for Fq , scaled B 2 and unitless.
Q: Double precision intermediate quantity used in calculating an initial guess for the universal conic variable; scaling varies downard from BO (earth) and B2 (moon) ; units of centiseconds per meter.

QPRET: Single precision octal return address associated with a particular job, saved when a job is put to sleep; actually one of several mutually exclusive cells, each addressed only within a particular job. "QPRET" for one job is independent of and not affected by the address stored in "QPRET" by another job. See MATX section.

RATT: Double precision position vector output from orbital integration, valid at time TAT, scaled B29 in units of meters. (Called RATTl and scaled B29 (earth) or B27 (moon) for output to routines desīring segregated scaling.)

RCV: Double precision conic portion of the position vector at TET, computed from the osculating conic at rectification (TET - TC), scaled B29 (earth) or B27 (moon) in units of meters.

RCVCSM, RCVLEM: The permanent state vectors for the SSM and LM contain six double precision vectors and three double precision scalars - a total of twenty-one double precision components. They are listed below along with the name of the equivalent working variable used in precision integration of each.

CSM LM
\(\begin{array}{lll}\text { RCVCSM } & \text { RCVLEM } & \text { RCV } \\ \text { VCVCSM } & \text { V } C V L E M & \text { V } C V \\ \text { TCCSM } & \text { TCLEM } & \text { TC }\end{array}\)

ORBI - 30
\begin{tabular}{lll}
DELTACSM & DELTALEM & TDELTAV \\
NUWCSM & NTUVLEM & TNUV \\
TETCSM & TETLEM & TET \\
RRECTCSM & RRECTLEM & RRECT \\
VRECTCSM & VRECTLEM & VRECT \\
XKEFCSM & XKEPLEM & XPREV
\end{tabular}

RHO: Ratio of position deviation to total distance from the primary body, or ratio of spacecraft radius to radius of secondary body (moon or sun, earth or sun), scaled Bl and unitless.

RLS: See CONC section.
RN, RNI: See SERV section.
ROOTMU: See CONC section.
RPQV: Double precision position vector of secondary body with respect to the primary body, scaled B29 in units of meters; expressed in reference coordinates.

RPSV: Double precision position vector of the sun with respect to the primary body, scaled B38 in units of meters and expressed in reference coordinates.

RQVV: Double precision spacecraft position vector with respect to the secondary body, scaled B29 in units of meters; expressed in reference coordinates.

RRECT: Double precision total position vector at the last rectification, scaled B29 (earth) or B27 (moon) in units of meters. See CONC section.

RTX1, RTX2: Single precision values of index registers X1 and X2 respectively at the end of integration to identify the nature of the origin of the state vector.

TAT: Double precision state vector time-tag output from orbital integration, scaled B28 in units of centiseconds.

TAU: See CONC section.
TBASE2: Single precision cell normally used to retain time base information for restart group 2, for waitlist restarts. It is used in "INTWAKE" to retain the value of QPRET for restart purposes.

TDEC: Double precision time at the end of the desired integration interval, scaled B28 in units of centiseconds.

TDECL: Double precision storage for TDEC in individual job registers so that several jobs can maintain different values of TDEC simultaneously. (See description of QPRET).

TDELTAV: Double precision deviation-from-conic-position vector, scaled B22 (earth) or B18 (moon) in units of meters.

TET: Double precision time associated with the most recently computed state vector, scaled B28 in units of centiseconds.

TETCSM: See description of RCVCSM.
TIG: See BURN section.
TIMENOW: Current time, B28, centiseconds. See EXVB section.
TNUV: Double precision deviation-from-conic-velocity vector, scaled B3 (earth) or B-1 (moon) in units of meters per centisecond.

TRKMKCNT: See RNAV section.
TSSun: Double precision vector contents of the MPAC when return from "LSPOS", representing the unit position vector of the sun, scaled Bl and unitless. See COJR section. (It should be noted that TSsun is a unit vector scaled Bl but RPQV, into which it is stored, is scaled B29. However, the affected section should not be entered in LUMINARY).

UPSVFLAG: Single precision flag loaded with a state vector update (address of UPSVFLAG is just before that of RRECT) to indicate whether update is for LM state or CSM state and whether it is in moon-centered or earth-centered coordinates. See ORBI - 22.

URPV: Double precision position vector in moon-centered, moonfixed coordinates, scaled Bl and unitless.

UX: Double precision lunar X-axis expressed in reference coordinates for the oblateness calculations, scaled Bl and unitless.

UZ: Double precision polar vector for earth or moon expressed in reference coordinates for the oblateness calculations, scaled Bl and unitless.

VATT: Double precision velocity vector output from orbital integration, valid at time TAT, scaled B7 in units of meters per centisecond. (Called VATTI and scaled B7 (earth) or B5 (moon) for output to routines desiring segregated scaling.)

VCV: Double precision conic portion of the velocity vector at TET, computed from the osculating conic at rectification (TET - TC), scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

VECTAB \(_{i}\) : Temporary storage for total position vectors with respect to primary and one secondary body at the beginning, middle and end of each integration time-step for use in W-matrix propagation.

VN, VNI: See SERV section.
VRECT: Double precision total velocity vector at last rectification scaled B7 (earth) or B5 (moon) in units of meters per centisecond.
\([W]\) : See RNAV section.
XKEPNEW, XPREV: See CONC section.
YV: Double precision position deviation vector scaled B22 (earth) or Bl8 (moon) in units of meters. (State vector or W-matrix.)

ZV: Double precision velocity deviation vector scaled B3 (earth) or B-1 (moon) in units of meters per centisecond. (State vector or W-matrix.)

\section*{Program Service Routines}

> SLAP1 Inhibit interrupts
> Perform "STARTSUB"
> Switch \(\mathrm{DSPTAB}_{11}\) to \(100000000 \times 0 \times 00 \mathrm{O}_{2}\)
> ERCOUNT \(=0\)
> FAILREG \(_{1}=0\) for \(1=0,1,2\)
> REDOCTR \(=0\)
> DSRUPTSW \(=-5120\)
(INTR)
(TEST)

DOFSTART Switch channel 11 bit 14 to 1 (bit 14 is engine off)
THRUST \(=-0\)
DOFSTRT1 RCSFLAGS \(=00004 \mathrm{~g}\)
\(\mathrm{ABDELV}=0\)
NVSAVE and DSPFLG \({ }_{2}=0\)
CH5MASK, CH6MASK, and PVALVEST \(=0\)
ERESTORE \(=0\)
SMODE \(=+0\)
DNLSTCOD \(=0\)
AGSWORD \(=0\)
UPSVFLAG \(=0\)
Switch channels 5, 6, 12, 13, and 14 to \(00000_{8}\)
If DSPTAB \(_{1 l}\) bit 4 (no attitude) and bit 6 (gimbal lock warning) both = 1:

Switch channel 12 to 00050 g
Make all restart groups inactive
MODREG \(=-0\)
```

    IMODES3O = 374II18
    DB = K:MAXDB
    RATEINDX = 2
    DAPBOOLS = 21322%
    EBANK = K:EBANK6
    STIKSENS = K:STIKSTRT
    RATEDB = K:RATESTRT
    HIASCENT = K:FULIAPS
    DKTRAP = K:770010CT
    LMTRAP = K:770010CT
    DKKAOSN and LMKAOSN = 60
    LMOMEGAN = 0
    DKOMEGAN = 10
    DKDB = 0020008
    IMODESS33 = 16040}
    Switch FLAGWRD i to }000008\mathrm{ for i = 0, 1, 2,4,5,6,9
    FLAGWRD7 = 00100 
    FLAGWRD8 = 000 xx0 0x0 000 000 2 (leave bit 12 (CMOONFLG), bit
        11 (LMOONFLG), and bit 8 (SURFFLAG) alone)
    FLAGWRD3 = 00x 010 000 000 000 2 (leave bit 13 (REFSMFLG) alone)
    FLGWRD10 = 00x 000 000 000 000 2 (leave bit 13 (APSFLAG) alone)
    FLGWRDDII = 40000 8 (bit 15 is LRBYPASS)
    Proceed to "DUMMYJB2"
    STARTSUB DNTMMGOTO = "DNPHASEI"
    RADMODES = 00102 g + bit 6 of channel 33 (LR pos)
    (TELE)
    (RADR)
    STARTSB1 Set TIME3 to cause program interrupt #3 in 10 milliseconds
    ```
PGSR - 2
Set TIME4 to cause program interrupt \#4 in 30 milliseconds Set TIME5 to cause program interrupt \#2 in 40 milliseconds EBANK \(=\mathrm{K}:\) EBANK6
Switch RCSFLAGS bit 13 to 0
T6NEXTTM \({ }_{0}=37777_{8}\) (disable TIME6 clock)
Switch bit 15 of channel 13 to 0
NXT6AXIS \(=0\)
NEXTP \(=00000^{\text {g }}\)
Switch DAPBOOLS bit 3 (ACCSOKAY) to 0
T5ADR \(=\) "DAPIDLER"
STARTSB2 Switch channel 11 to 0xx \(00000000000 x_{2}\)
(leave engine on/off and ISS warning alone)
Switch FLACNRD3 bit 9 (READRFLG) to 0
If FLAGWRD3 bit 11 (NOR29FLG) \(\neq 0\) :
RADMODES \(=x 00 \times 00 \times x \times x \times x X_{2}\)
Skip next line
RADMODES \(=x 00 \times 0 \mathrm{x} \times \mathrm{xx} \times \times \mathrm{xx} \mathrm{X}_{2}\)
Switch channel 12 to \(0 x 0 \times x \times x 00 \times x \times 000_{2}\)
Switch FLAGWRD5 bit 4 (NORRMON) and bit 11 (R77FLAG) to 0 Switch channel 13 to \(\mathrm{xxx} 10000 \mathrm{x} \times \mathrm{x} 00_{2}\)
Switch channel 14 to \(000000000 \times 000_{2}\)
EBANK \(=\mathrm{K}:\) STARTEB
Set all 8 waitlist times to 81.93 seconds
Set all 9 waitlist task addresses to "SVCT3"
Make all 8 job register sets available
DSRUPTSW \(=-0\)
NEWJOB \(=-0\)

Make all 5 VAC areas available
```

DSPTAB }\mp@subsup{i}{i}{}=-040008\mathrm{ for i = 0-10 (negative for output) (DSKY)
DELAYLOC }\mp@subsup{i}{i}{}=0\mathrm{ for i = 0, 1, 2
R1SAVE = 0
INLINK = 00000%
DSPCNT = 0
CADRSTOR = +0
REQRET = +0
CLPASS = 0
DSPLOCK = 0
MONSAVE and MONSAVEl = 0
VERBREG and NOUNREG = 0
DSPLIST = +0
MARKSTAT = +0
EXTVBACT = 0
IMUCADR = +0
OPTCADR = +O
RADCADR = +0
ATTCADR = +0
LGYRO = +0
(MATX)
(DINT)
(DSKY)
(DSKY)
(DSKY)
(DATA)
(DATA)
(DINT)
(EXVB)
(IMUC)
(RADR)
FLAGWRD4 $=00000_{8}$ (kill display interface routine action) NOUT $=11$
SAMPLIM $=-1$
IMODES33 $=001110000 \times 00000_{2}$ (set PIPA good, downlink good, uplink good bits; leave DAP disable bit alone)

```
```

    SELFRET = "SELFCHK"
    DSPCOUNT =-19
Return
If IMODES 30 bit 6 = 1: (IMU caged)
Perform "ALARM" with TS = O1520}
Proceed to "V37BAD"
If MMNUMBER = 70, proceed to "P70"
If MMNUMBER = 71, proceed to "P71"
If MMNUMBER = O:
If FLAGWRD7 bit 6 (V37FLAG) = 0, proceed to "CANV 37"
(Otherwise, "SERVICER" is running; cause it to exit to
"CANV 37")
Switch FLAGWRD7 bit 5 (AVEGFLG) to 0
End job
If FLAGWRD2 bit I (NODOFLAG) = I:
Perform "ALARM" with TS = 015208
Proceed to "V37BAD"
If MMNUMBER \not= low 7 bits of K:PREMM1, for some i from 0 to 24
Switch bit 7 of channel }11\mathrm{ to 1 (operator error)
Proceed to "V37BAD"
MINDEX = i for which MMNUMBER = low 7 bits of K:PREMM1
If FLAGWRD7 bit 6 (V37FLAG) ₹ 0, proceed to "CANV 37"
Switch FLAGWRD7 bit 5 (AVEGFIAG) to 0
End job
V37UAD Perform "RELDSP"
Proceed to "PINBRNCH" (reinstitute any interrupted display)
CANV37 SUPERBNK = 0

```
```

    Perform "INTSTALL" (wait until integration is free)
    Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
    Switch FLAGWRD3 bit 15 (POOHFLAG) to 0
    Switch FLGWRD11 to 400008
    Sisitch FLAGWRD3 bits 9 (RO4FLAG) and 14 (GLOKFAIL) to 0
    S:sitch FLAGWRD6 bit 8 (MUNFLAG) to 0
    Switch DAPBOOIS bit 9 (XOVINHIB) to 0
    If MMNUMBER = 0, proceed to "POOH"
    If FLAGWRDO bit 7 (RNDVZFLG) and 9 (P25FLAG) both = 0:
        Switch FLAGWRDO bit 8 (IMUSE) to 0
    DNLSTCOD = K:DNLADMM1 MINDEX
    Inhibit interrupts
    Proceed to "SEUDOPOO"
    POOH Perform "RELDSP"
Inhibit interrupts
Switch RADMODES bits }10\mathrm{ (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel 12 to 0 (disable RR Error counter)
Switch FLAGWRD2 bit I (NODOFLAG) to O
Clear P20, P25 restart logic and cause "GOPROG2" to restart "STATINTI"
Switch FLAGWRDO bits 7 (RNDVZFLG), 8 (IMUSE) and 9 (P25FLAG) to 0
DNISTCOD = 0
SEUDOPOO AGSWWORD = DNLSTCOD
Perform "ENGINOF1"
Perform "ALLCOAST"

```
PGSR - 6
\(\mathrm{DSPFLG}_{2}=776578\)
Switch FLAGNRDI bit 5 (TRACKFLG) and 7 (UPDATFLG) to 0
If MMNUMBER \(=0\) :
Maintain P20, P25 restart logic and clear all other
MODREG \(=0\)
Proceed to "GOPROG2"
If MODREG or MMNUMBER \(=22\) :
PESET22
Switch FLAGNRDO bit 7 (RNDVZFLG), bit 8 (IMUSE) and bit 9 (P25FLAG) to 0
Switch RADMODES bit 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch channel 12 bit 2 to 0
Clear P20, P25 restart logic
Cause "GOPROG2" to start "V37XEQ"
Proceed to "GOPROG2"
If MMNUMBER \(\neq 20\) or 25 :
If FLAGNRDO bit 7 (RNDVZFLG) or bit 9 (P25FLAG) = 1 :
Proceed to 5th step of "RESET22"
Proceed to "RESET22"
If MODREG \(=20\) or 25 :
Proceed to 4th step of "RESET22"
If MMNUMBER \(=20\) and FLAGWRDO bit 7 (RNDVZFLG) \(=1\) and bit 9
(P25FLAG) \(=0\), or if MMNUMBER \(=25\) and FLAGWRDO bit 9 (P25FLAG)
\(=1\) and bit \(7(\) RNDVZFLG \()=0\) :
Switch FLAGNRDI bit 5 (TRACKFLG) and 7 (UPDATFLG) to 1
Maintain P20, P25 restart logic and clear all other
MODREG \(=\) MMNUMBER
Proceed to "GOPROG2"
Proceed to 4th step of "RESET22"
```

PGSR - 7

```

V37XEQ
Inhibit interrupts
MMTEMP \(=\mathrm{K}:\) PREMM \(_{\text {MINDEX }}\)
ii \(=\) bits 15-11 of MMTEMP (priority)
BASETEMP \(=\mathrm{K}: \mathrm{FCADRMM1}_{\text {MINDEX }}\)
Establish job specified in BASETEMP (EBANK information in (prii) kits 8-10 of MMTEMP)
MODREG \(=\) MMNUMBER
Establish "DSPMMJOB"
Perform "RELDSP"
Release interrupt inhibit
End job
VBRQEXEC (Entered form "VERBFAN" on verb 30; DSPTEM1 tp must be loaded with three single precision components as follows:
\begin{tabular}{ll}
DSPTEM1 0 & Opp ppp 000 000 00v \\
DSPTEM1 & 000 sss sss sss sss \\
DSPTEM1 2 & fff ffO \(00 \mathrm{x} \times \mathrm{xO}\) eee
\end{tabular}
where "p" represents one of the bits of the five-bit priori.ty to be assigned to the job; "v" is a single binary bit indicating whether the job is to be assigned working storage (1) or not (0) : "s" is one of the 12 bits of the "S-register" portion of the address; "f" is one of the bits of the five-bit fixed-memorybank code; "x" is one of the bits in the three-bit fixed-bankextension code; "e" is one of the bits in the three-bit erasable memory-bank code; and "O" is a binary zero.)

Perform "RELDSP"
Establish job whose starting address is contained in 2GADR form in DSPTEM1 \(1_{1}\) and DSPTEM1 \(_{2}\), with priority and storage allocation according to the information in DSPTEM10. ("FINDVAC" or "NOVAC")

End job
VBRQWAIT (Entered from "VERBFAN" on verb 31; DSPTEM1 tp must be preloaded with three single precision components as follows:
```

        DSPTEMD (time in centiseconds scaled Bl4
        DSPTEM1 000 sss sss sss sss
        DSPTEML I fff ffO OOx xxO eee
        where "s, f, x" and "e" have the meanings described above.)
    Perform "RELDSP"
    Call the task whose starting address is contained in 2CADR form
    in DSPTEMI 1 and DSPTEMI , in DSPTEM1 }\mp@subsup{|}{0}{}\mathrm{ centiseconds. ("WAITLIST")
    End job
    GOPROG
REDOCTR = REDOCTR + l (hardware restart)
RSBBQ = address of step performed before restart occurred
If bit 4 of DSPTAB
Switch bits 4 and 6 of channel l2 to l
(coarse align discrete, ICDU Error Counter enable)
Perform "LIGHTSET"
If bits 15-11 of ERESTORE f 0:
Perform "STARTSUB"
Proceed to "DOFSTRTl"
If ERESTORE f 0:
If ERESTORE f SKEEP7:
Perform "STARTSUB"
Proceed to "DOFSTRTl"
EBANK = bits ll-9 of SKEEP4
i = SKEEP7
E i
i = SKEEP7 + l
E i = SKEEP6
ERESTORE = 0
Perform "STARTSUB"
Switch FLGWRDio bit 14 (INTFLAG) to 0
Switch DSPTAB $_{11}$ to $100000 \mathrm{x00} \times 0 \mathrm{x} 00 \mathrm{O}_{2}$
(bit 15 is flag for output; leave bits 9,6,4 alone)

```

Switch IMODES30 to 011111 xOO Oxx xOx \(x_{2}\)
(leave IMU, CDU, and both PIPA fail monitor bitis alone)
DNLSTCOD \(=\) AGSWORD
Switch bit 4 of channel 14 to 1 (thrust drive discrete)
If FLAGWRD5 bit 7 (ENGONFLG) \(=1\) :
Switch bit 13 of channel 11 to 1 (engine on discrete)
Skip next line
Switch bit 14 of channel 11 to 1 (engine off discrete)
Proceed to "GOPROG3"
LIGHTSET If bit 5 channel \(16=1\) and channel \(15=22_{8}\) :
Perform "STARTSUB"
Proceed to "DOFSTART"
Return
ENEMA Inhibit interrupts
Perform "STARTSBI"
Skip next line
GOPROG2 Perform "STARTSB2"
GOPROG2A Perform "LIGHTSET"
Switch FLGWRD10 bit 7 (REINTFLG) and bit 14 (INTFLAG) to 0
GOPROG3 If restart information is stored improperly:
Perform "ALARM" with \(T S=011078\)
Proceed to "DOFSTRT1"
Establish "DSPMMJOB"
Release interrupt inhibit
(allows possibility of interrupt)
Inhibit interrupts
```

    Switch FLAGWRDI bit 14 (DIDFLAG) to 0
    Switch FLAGWRDI bit l2 (RODFLAG) to 0
    Switch FLAGWRDO bit II (P2IFLAG) to 0
    If all restart groups are inactive:
    If bit 15 of MODREG = 1, proceed to "ENDRSTRT"
    Proceed to "GOTOPOOH" ("GOFLASH" will put "DSPMMJOB" to
                            sleep, leaving program number blank)
    Restart all jobs and tasks indicated by active restart groups
    ENDRSTRT Proceed to "DUMMYJB2"
    GOTOPOOH Switch DAPBOOIS bit 9 (XOVINHIB) and bit 6 (ULLAGER) to 0
    Inhibit interrupts
    Switch FLAGWRD4 bit l (XDSPFLAG) to 0
    Release interrupt inhibit
    Proceed to "GOFLASH" with TS = K:V37N99 (noun not processed)
    (If terminate, repeat this step; if proceed, repeat this
        step; if other response, repeat this step.)
    ALARM Inhibit interrupts
    ALMCADR = "calling address + I" (S-register portion)
    ALARM2 ALMCADR = BBANK + SUPERBNK (or'ed into bits 7-5)
    If FAILREG
    FAILREGGO TS (TS contains alarm code)
    Proceed to "PROGLARM"
    If FAILREG
        FAILREGG = TS
        Proceed to "PROGLARM"
    PROGLARM FAILREG}2=T
Switch bit 9 of DSPTAB 1I to l and flag for output
Release interrupt inhibit
Return

```
 PGSR - 11

BAILOUT Inhibit interrupts
ALMCADR \(_{0}=\) "calling address \(+1 " \quad\) (S-register portion)
Perform "ALARM2"
WHIMPER Resume (after this Resume, return is to next line)
Proceed to "ENEMA"
POODOO Inhibit interrupts
ALMCADR \(_{0}=\) "calling address + \(1 "\) (S-register portion)
Perform "ALARM2" (TS contains the alarm code)
Switch FLAGWRD3 bit 5 (STATEFIG) to 0
Switch FLGWRDIO bit 7 (REINTFLG) to 0
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
If FLAGWRD7 bit 6 (V37FLAG) = 1; proceed to "SERVIDIE"
Make all restart groups inactive
Proceed to "WHIMPER"
CURTAINS Inhibit interrupts
Perform "ALARM2" with \(T S=002178\)
Return to address in ALMCADR
BAILOUTl Inhibit interrupts
ALMCADR \(_{d p}=T S I_{d p}\)
Perform "ALARM2" starting at second line
Inhibit interrupts
Proceed to "WHIMPER"
POODOO1 InKibit interrupts
\(\operatorname{ALMCADR}_{d p}=T S l_{d p}\)
\begin{tabular}{|c|c|}
\hline & Perform "ALARM2" starting at second line Proceed to 4 th line of "POODOO" \\
\hline ABORT & Proceed to "WHIMPER" \\
\hline \multirow[t]{14}{*}{P06} & Switch FLAGWRD2 bit 1 (NODOFLAG) to 1 \\
\hline & Inhibit interrupts \\
\hline & TIME2SAV = TIMENOW \\
\hline & \[
\mathrm{TSt}_{\mathrm{dp}}=\begin{aligned}
& \text { channel } 3 \text {, channel } 4 \text { (sampled with special pre- } \\
& \text { caution to assure that the two halves are consistent) }
\end{aligned}
\] \\
\hline & Release interrupt inhibit \\
\hline & \begin{tabular}{l}
If TIMENOW was incremented during the last \(1 / 3200\) of a second (channel \(4=\operatorname{xxx} .5\) centiseconds): \\
(TIMENOW incompatible with \\
Proceed to second step of "P06" channel 4)
\end{tabular} \\
\hline & TSt = TSt rounded to the nearest centisecond \\
\hline & SCALSAVE \(=\) TSt \\
\hline & Inhibit interrupts \\
\hline & Perform "RNDREFDR" \\
\hline & Switch FLAGWRDO bit 8 (IMUSE) and bit 7 (RNDVZFLG) to 0 \\
\hline & Switch bit 11 of channel 13 to 1 (enable standby) \\
\hline & Set restart tables to initiate "POSTAND" when a restart is triggered by the recovery from standby \\
\hline & Proceed to "GOPERF1" with TS \(=00062_{8}\) (If terminate, repeat this step; if proceed, repeat this step; if other response, repeat this step.) \\
\hline \multirow[t]{4}{*}{POSTAND} & Switch bit 11 of channel 13 to 0 (disable standby) \\
\hline & Inhibit interrupts \\
\hline & TIMENOW \(=0\) \\
\hline & \[
\mathrm{TSt}_{\mathrm{dp}}=\begin{gathered}
\text { channel } 3 \text {, channel } 4 \text { (sampled with special pre- } \\
\text { caution to assure that the two halves are consistent) }
\end{gathered}
\] \\
\hline
\end{tabular}

Release interrupt inhibit
If TIMENOW was incremented during the last \(1 / 3200\) of a second (channel \(4=\) xxx. 5 centiseconds):

Proceed to second step of "POSTAND"
TSt = TSt rounded to the nearest centisecond
\(T S=\) TSt - SCALSAVE (rescaled from B23 to B28)
Force sign agresment in TS
If \(T S \leq-0, T S=2^{23}+T S\)
\(T S t=T I M E 2 S A V+T S\)
Force sign agreement in TSt
TIMENOW \(=\) TIMENOW + TSt
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
Proceed to "GOTOPOOH"
V37RET If FLAGWRDO bit 7 (RNDVZFLG) \(=1:\)
Cause "GOPROG2" to restart "P2OLEMC1" in 15 seconds
Proceed to "CANV37"
If FLAAGWRDO bit 9 (P25FLAG) \(=1\) :
Cause "GOPROG2" to restart "P25LEML"
Proceed to "CANV37"
ALARMI Inhibit interrupts
ALMCADR \(_{d p}=T S l_{d p}\)
Proceed to second step of "ALARM2"
VARALARM. Inhibit interrupts
\(\mathrm{ALMCADR}_{0}=\) "calling address + 1"
Perform "ALARM2"
Proceed to ALMCADR \(R_{0}\)

CCSHOLE Inhibit interrupts
\[
\operatorname{ALMCADR}_{0}=\text { "calling address + I" (S-register portion) }
\]

Proceed to second line of "POODOO" with \(T S=21103_{8}\)

AGSWORD: See EXVB section.
ALMCADR: Double precision storage tor return address (address in most significant half, bank information in least significant half) of the routine that generated the latest alarm.

BASETEMP: Single precision storage for octal address of program to be started by verb 37.

BBANK: A computer hardware cell containing in bits 15-11 the fixed memory bank (FBANK) currently being used and in bits 3-1 the erasable. memory bank number.
\(\operatorname{CDU}_{s}, \operatorname{CDU}_{t}\) : See \(R A D R\) section.
DELAYLOC \(_{i}(i=0,1,2):\) See MATX section.
DNLSTCOD: See TELE section.
\(\mathrm{DSPFLG}_{2}\) : See DINT section.
\(\mathrm{DSPTAB}_{11}\) : See INTR section.
DSPTEMI: See DATA section.
\(\mathrm{E}_{\mathrm{i}}\) : Single precision memory cell whose address is in i.
EBANK: See MATX section.
ERESTORE: See TEST section.
FAILREG (\(i=0,1,2\)): Three single precision registers used for storage of atarm code information. FAILREG 0 are zeroed via an "error reset", FAILREG is unaltered. All three registers are zeroed by a Verb 36 (fresh start). FAILREG contains the first alarm code generated after the "Error Reset"; FAILREG \({ }_{1}\) contains the second; and FAIIREG 2 always contains the most recent.

K:770010CT: Single precision constant stored as \(77001_{8}\), scaled B-3 in units of revolutions per second. Equation value: +0.00389. (Equation value: 1.4 degrees per second.)

K:DNLADMM1, \(\left(i=0-2 \psi_{t}\right)\) : Table of 25 single precision indexes which determine the downlist sent during each major mode. See table below.

K:EBANK6: Single precision constant stored as \(03000_{8}\), scaled B6 and unitless. Equation value: 6 .

K:FCADRMM1, \((1=0-24)\) : Table of 25 single precision addresses of the 25 major mode programs. See table below.

K:FULLAPS: Single precision constant stored as \(5050 \times 2^{-16}\), scaled Bl6 in units of kilograms. Equation value: 5050.

K: PREMM \(i(i=0-24)\) : Table of 25 major mode numbers with associated EBANK \({ }^{1}\) settings and priorities.

K:MAXDB: Single precision constant stored as 03434g; used to initialize the attitude deadband. Corresponds to approximately 5 degrees.

K:RATESTRT: Single precision constant stored as 77445 g , scaled B-3 in units of revolutions/second. Used to initialize location -RATEDB (referred to as RATEDB in DAPA section) in "DOFSTRT1".

K: STARTEB: Single precision constant stored as \(01400_{8}\), scaled B6 and unitless. Equation value: 3.

K:STIKSTRT: Single precision constant stored as \(32321_{\text {g }}\), scaled B-15 in revolutions per second/RHC counts. Used to initialize location STIKSENS in "DOFSTRT1".

MINDEX: Single precision register used to select the appropriate table entries for a V37 selected program change (loaded based upon equality of MMNUMBER and bits 7-1 of K: PREMM \({ }_{i}\) with the value of i.)

MODREG: See DATA section.
MMNUMBER: Single precision storage for the desired value of the major mode register, scaled B14 and unitless.

MMTEMP: Single precision storage for the number of the program being started by verb 37 (bits lo-1) and for the priority with which the program is to be started (bits 15-11).

NEWJOB: See MATX section.
NVSAVE: See NVWORD in the DINT section.
1
RADMODES: See RADR section.
REDOCTR: Single precision counter set to zero in a fresh start and incremented whenever a hardware restart occurs; scaled B14 and unitless.

RSBBQ: Storage for the value of the address where a hardware restart occurred. The most significant part contains the BBANK and SUPERBNK information; the least significant part contains the Q-register information.

SCALSAVE: Double precision value of the standby clock (channels 3 and 4)
at the time program 06 enables standby, scaled B23 in inits of centiseconds.

SKEEP5, SKEEP6, SKEEP7: See TEST section.
SUPEFPBNK: See MATX section.
TIME3, TIME4, TIME5: See "Major Variables" section.
TIMEZSAV: Double precision value of TIMENOW when program 06 enables standby, scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{i} & \multicolumn{3}{|c|}{K:PREMM1} & \multirow[t]{2}{*}{\[
\frac{\mathrm{K}: \text { FCADRMMI }}{\text { (octal address) }}
\]} & \multirow[t]{2}{*}{K: DNLADMM1} \\
\hline & pr & AAN & & & \\
\hline 0 & 13 & 7 & 76 & P76 & 2 (RENDEZVU) \\
\hline 1 & 13 & 7 & 75 & P75 & 2 (RENDEZVU) \\
\hline 2 & 13 & 7 & 74 & P74 & 2 (RENDEZVU) \\
\hline 3 & 13 & 7 & 73 & P73 & 2 (RENDEZVU) \\
\hline 4 & 13 & 7 & 72 & P72 & 2 (RENDEZVU) \\
\hline 5 & 13 & 7 & 68 & LANDJUNK & 4 (DESASCNT) \\
\hline 6 & 13 & 7 & 63 & P63LM & 4 (DESASCNT) \\
\hline 7 & 1.3 & 5 & 57 & P57 & 5 (LUNRSALN) \\
\hline 8 & 13 & 5 & 52 & PROG52 & 0 (COSTALIN) \\
\hline 9 & 13 & 5 & 51 & P51 & 0 (COSTALIN) \\
\hline 1:) & 13 & 7 & 47 & P47LM & 3 (ORBMANUV) \\
\hline 11 & 13 & 7 & 42 & P42LM & 3 (ORBMANUV) \\
\hline 12 & 13 & 7 & 41 & P4ILM & 3 (ORBMANUV) \\
\hline 13 & 13 & 7 & 40 & P4OLM & 3 (ORBMANUV) \\
\hline 14 & 13 & 7 & 35 & P35 & 2 (RENDEZVU) \\
\hline 15 & 13 & 7 & 34 & P34 & 2 (RENDEZVU) \\
\hline 16 & 13 & 7 & 33 & P33 & 2 (RENDEZVU) \\
\hline 17 & 13 & 7 & 32 & P32 & 2 (RENDEZVU) \\
\hline 18 & 13 & 7 & 30 & P30 & 2 (RENDEZVU) \\
\hline 19 & 13 & 7 & 25 & Prog 25 & 2 (RENDEZVU) \\
\hline 20 & 13 & 7 & 22 & PROG22 & 5 (LUNRSALN) \\
\hline 21 & 13 & 7 & 21 & PROG21 & 2 (RENDEZVU) \\
\hline 22 & 13 & 7 & 20 & PROG20 & 2 (RENDEZVU) \\
\hline 23 & 13 & 7 & 12 & P12LM & 4 (DESASCNT) \\
\hline 24 & 13 & 4 & 06 & P06 & 0 (COSTALIN) \\
\hline
\end{tabular}

\section*{Radar Control Routines}
```

RRAUTCHK If bit 2 of channel 33 = bit 2 (AUTOMODE) of RADMODES:
Proceed to "RRCDUCHK" ( ON/OFF status of RR unchanged)
Set RADMODES bit 2 (AUTOMODE) = bit 2 of channel }3
Switch bits 15 (CDESFLAG), 14 (REMODFLG), 13 (RCDUOFLG),
11 (REPOSMON) and 1 (TURNONFL) of RADMODES to 0
If RADMODES bit 2 (AUTOMODE) = 1: (. RR just turned off )
Switch bit 2 of channel 12 to O (disable RRCDU Error Counters)
Proceed to "RRCDUCHK"
S:Nitch RADMODES bits 1 (TURNONFL) and 13 (RCDUOFLG) to 1
Call "RRTURNON" in 0.01 second
Proceed to "NORRGMON"
RRCDUCHK If bit 7 of channel 30 = bit 7 (RCDUFAIL) of RADMODES:
Proceed to "RRGIMON" (RR CDU fail discrete unchanged)
If RADMODES bit 2 (AUTOMODE) = 1, proceed to "NORRGMON"
(RR not in auto mode: might be reading IR data)
Set RADMODES bit. 7 (RCDUFAIL) = bit 7 of channel }3
If RADMODES bits 13(RCDUOFLG), 7 (RCDUFLAG) and 2 (AUTOMODE)
= 0, and FLAGWRDO bit 7 (RNDVZFLG) = 1:
Perform "ALARM" with TS = 00515g
Perform "SETTRKF"
RRGIMON If FLAGWRD5 bit 4 (NORRMON) = 1, proceed to "NORRGMON"
If FLLAGWRD7 bit 5 (AVEGFLAG) = 1:
If FLAGWRD6 bit 8 (MUNFLAG) = 1, proceed to "NORRGMON"
If RADMODES bit 14 (REMODFLG), 13 (RCDUOFLG), 11 (REPOSMON) or
2 (AUTOMODE) = 1, proceed to "NORRGMON"

```

Perform "RRLIMCHK" with \(\mathrm{TS}_{0}=\mathrm{CDU}_{\mathrm{t}}\) and \(\mathrm{TS}_{1}=\mathrm{CDU}_{\mathrm{S}}\)
If TSchk \(=0: \quad\) (RR positioned out of limits)
Switch RADMODES bit 11 (REPOSMON) to 1
Switch bits 14 and 2 of channel 12 to 0 (Disable RR tracker and RRCDU Error Counter)

Call "DORREPOS" in 0.02 second
NORRGMON If RADMODES bit 2 (AUTOMODE) \(=1\) :
Switch bit 1 of channel 12 to 1 (Zero RR CDUs)
Return (to caller of "RRAUTCHK" in the "T\&RUPT" routine)
RRTURNON Perform "RRZEROSB"
Delay 1 second
Switch RADMODES bit 1 (TURNONFL) to 0 (Turn-on complete)
End task
RRZEROSB Switch bit 1 of channel 12 to 1 (Drive RR CDUs to zero)
Delay 0.02 second
\(C D U_{t}=0\)
\(C D U_{S}=0\)
Switch bit 1 of channel 12 to 0 (Release RR CDUs)
Delay 10 seconds (Allow time for CDUs to match gimbal angles)
Switch RADMODES bit 13 (R DUOFLG) to 0
If \(\left|C D U_{t}\right| \leqslant K: p 25\), switch RADMODES bit 12 (ANTENFLG) to 0
If \(\left|\operatorname{CDU}_{\mathrm{s}}\right|>\mathrm{K}: \mathrm{p} 25\), switch RADMODES bit 12 (ANTENFLG) to 1
Perform "SETTRKF"
Return
SETTRKF If bit 1 of IMODES \(33=1\), return (lamp test in progress) \(T S=0^{00200} 8 \quad(\) bit \(8=1)\)
```

    If RADMODES bit 13 (RCDUOFLG) 7 (RCDUFAIL) or 2 (AUTOMODE) = 1:
    If RADMODES bit 4 (RRDATAFL) = 0, TS = 000008 (bit 8 = 0)
    If bit }8\mathrm{ of DSPTAB }\mp@subsup{\mp@code{N1}}{}{\prime}\not=\mathrm{ bit }8\mathrm{ of TS:
    Set bit 8 of DSPTAB }11=\mathrm{ bit }8\mathrm{ of TS (tracker fail light)
    Switch bit }15\mathrm{ of DSPTAB }11\mathrm{ to 1 (flag for output)
    Return
    DORREPOS Perform "SETRRECR"
Delay 0.02 second
RDES = 0
If RADMODES bit 12 (ANTENFLG) = 1, RDES = -\frac{1}{2} (-180
Perform "RRTONLY"
RDES = 0
If RADMODES bit 12 (ANTENFLG)= 1, RDES = - K:1s\frac{1}{4}}(-9\mp@subsup{0}{}{\circ}
Perform "RRSONLY"
Switch RADMODES bit 11 (REPOSMON) to O (repositioning complete)
If RADMODES bit 10 (DESIGFLG) = 1, proceed to "BEGDES"
(someone waiting to designate)
Switch bit 2 of channel 12 to O (disable RR Error Counter)
End task
SETRRECR If bit 2 of channel 12 = 0: (RR Error Counters disabled)
Switch bit 2 of channel 12 to 1
LASTTCMD = 0
LASTSCMD = 0
Return
RRTONLY RRRET = return address

```
```

    RRINDEX = 0
    Proceed to "RR1AX2"
    RRSONLY RRRET = return address
RRINDEX = 1
RR1AX2 If RADMODES bits 14 (REMODFLG) and 11 (REPOSMON) both = 1:
(Remode requested while repositioning in progress)
Switch RADMODES bit }11\mathrm{ (REPOSMON) to 0
If RADMODES bit 10 (DESIGFLG) = 1, proceed to "BEGDES"
(Someone waiting to designate)
Switch bit 2 of channel }12\mathrm{ to 0 (disable RRCDU Error Counter)
End task
If RRINDEX = 0, TS = RDES - CDU
If RRINDEX = 1, TS = RDES - CDUS
If }|TS|\leqslantK:0.00555 or RADMODES bit 2 (AUTOMODE) = 1, return
via RRRET
TANG
TRUNNGMD RRINDEX = K:RRSPGGAIN TS
Perform "RROUT"
Delay 0.5 second
Proceed to "RR1AX2"
RROUT }\quad\textrm{TS}=\mp@subsup{\textrm{TRUNNCMD}}{1}{
If |TS| > K:rrlimit, TS = K:rrlimit signTS
CDUSCMD = TS - LASTSCMD
LASTSCMD = TS
TS = TRUNNCMD
If |TS| \rangle K:rrlimit, TS = K:rrlimit signTS
CDUTCMD = TS - LASTTCMD
LASTTCMD = TS

```
RADR - 4
```

Switch bits 12 and 11 of channel 14 to 1
(Send contents of CDUTCMD and CDUSCMD to RR CDU's)
Return
RRDESSM DESRET = return address
Switch FLAGWRDO bit 6 (RRNBSW) to 0
Perform "CDUTRIG"
Perform "SMTONB"
TSlos = [SMNBMAT] RRTARGET
Perform "RRANGLES"
Inhibit Interrupts
Perform "RRLIMCHK" with TS O}=\mp@subsup{MODEPRES}{0}{}\mathrm{ and TS
If TSchk = 0: (not within limits in present mode)
If FLAGNRD8 bit 8 (SURFFLAG) = 1:
RADCADR = +o
RADLIMCK = 0
Proceed to "DESRETRN"
Perform "RMODINV"
Perform "RRLIMCHK" with TS
If TSchk = 0: (not within limits of either mode)
Perform "RMODINV"
RADLIMCK = 1
RADCADR = +0
Proceed to "DESRETRN"
Perform "RMODINV"
Switch RADMODES bit 14 (REMODFLG) to 1 (request remode)
RADR - 5

```
```

RADLIMCK = 2
Proceed to "STARTDES"
RRDESNB DESRET = return address
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
DESCOUNT = K:MAXTRYS
Inhibit Interrupts
Perform "RRLIMNB" with TS
If TSchk = 0: (not within limits of present mode)
Perform "RMODINV"
Perform "RRLIMNB"
If TSchk = 0: (not within limits in either mode)
Perform "RMODINV"
Perform "ALARM" with TS = 005028
Inhibit Interrupts
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel }12\mathrm{ to O (disable RRCDU Error
Counters)
End job
Perform "RMODINV"
Switch RADMODES bit 14 (REMODFLG) to 1
Release interrupt inhibit
TANGNB
Perform. "RRNB" (get LOS vector in NB coordinates)

```
RADR - 6
```

$\underline{\operatorname{RRTARGET}}=\underline{T} \mathrm{~S}$
Switch FLAGWRD bit 6 (RRNBSW) to 1
Inhibit interrupts
STARTDES Switch RADMODES bit 10 (DESIGFLG) to 1
If RADMODES bit 11 (REPOSMON) = 0 : (see "DORREPOS")
Perform "SETRRECR"
Call "BEGDES" in 0.02 second
DESRETRN If RADCADR $\neq 0$, end job
Release interrupt inhibit
Return via DESRET
RRLIMCHK TSchk = 1 (Entered with angles in two's complement form)
If RADMODES bit 12 (ANTENFLG) $=0$ : (Mode I)
If $\left|T S_{0}\right|>K: 0.30555, \quad$ TSchk $=0$
If $\left|T S_{1}+K: 5.5 \mathrm{DEGS}\right|>\mathrm{K}: 0.35833, \mathrm{TSchk}=0$
Return
MODE2CHK If $\mid T S_{1}+K: 82 D E G S />K: 0.31667$, TSchk $=0$
If $\left|T S_{0}\right| \leq K: 0.69444, \quad T S c h k=0$
Return
RRANCLES TSta $=\arcsin \left(-\right.$ TSlos $\left._{y}\right)$
TStb $=\frac{1}{2}-\arcsin \left(-\right.$ TSlos $\left._{y}\right)$
TSlos $_{y}=0$
$\underline{T S}=$ unitissios
If $\underset{\text { (trunnion angle nearly } 90 \text { degrees) }}{\mid \text { TSlos }} \mid<2^{-20}$ (unit vector poorly defined)
Proceed to "Lundesch"

```

RADR - 7
```

    SINTH = TS 
    COSTH = TS z
    Perform "ARCTRIG" (get THETA from SINTH and COSTH)
    If RADMODES bit 12 (ANTENFLG) = 0: (Mode I)
    MODEALT
    MODEALT 
    MODEPRES }\mp@subsup{O}{0}{}= TSta converted to two's complement form
    MODEPRES }1= THETA similarly converted
    If RADMODES bit 12 (ANTENFLG) = 1:
    MODEALT
    MODEALT }\mp@subsup{\mp@code{l}}{= THETA similarly converted}{
    MODEPRES 
    MODEPRES 
    Return
RRNB TStr = TANGNB
TSsh = TANGNB1 converted to one's complement form
Skip next two lines
RRNBMPAC TStr = TS
TSsh = TS 2 converted to one's complement form
TS y = - sinTStr
TS z}=\operatorname{cosTSsh cosTStr
TS
Return
RMODINV If RADMODES bit l2 (ANTENFLG) = 1:
Switch RADMODES bit 12 (ANTENFLG) to O (change to Mode I)
Return

```
 RADR - 8

Return
BEGDES

\section*{REMODE}

STDESIG If RADMODES bit 11 (REPOSMON) \(=1\) :
Switch RADMODES bit 10 (DESIGFLG) to 0 Proceed to "RDBADEND"
```

    If RADMODES bit 15 (CDESFLAG) = 1, proceed to "MOREDES"
    If RADMODES bit 10 (DESIGFLG) = 0, proceed to "ENDRADAR"
    If DESCOUNT > 0:
    DESCOUNT = DESCOUNT -1
    Proceed to "MOREDES"
    Switch bits 14 and 2 of channel 12 to 0
    (disable RR tracker and RR CDU Error Counters)
    SWitch RADMODES bit 10 (DESIGFLG) to 0
    Proceed to "RDBADEND"
    MOREDES Establish "DODES"
(pr26)
Delay 0.5 second (waitlist)
Proceed to "STDESIG"

```

```

    TANG
    TSlos = RRTARGET
    If FLAGWRDO bit 6 (RRNBSW) = 0:
    Perform "CDUTRIG"
    Perform "SMTONB"
    TSlos = [SMNBMAT] unit(MLOSV RRTARGET + K:MCTOMS LOSVEL)
    TStr = TANG O converted to one's complement form
    TSsh = TANG converted to one's complement form
    TANG }=\mp@subsup{\mp@code{cosTSsh TSlos}}{\mathbf{x}}{}-\mp@subsup{\operatorname{sinTSsh TSlos}}{z}{
    ```
 RADR - 10
\(\operatorname{TRUNNCMD}_{0}=-K:\) RDESGAIN \(\left(\begin{array}{l}\text { sinTStr } \\ \text { cosTSTStr } \\ \text { sinTStr } \\ \text { sinTSsh }\end{array}\right) \cdot\) TSlos
If RADMODES bit 12 (ANTENFLG) \(=1\), TANG \(_{1}=-\) TANG \(_{1}\)
(A relay in the KK reverses polarity of the shaft commands in mode II; compensate by changing polarity of command.)

TRUNNCMD \(_{1}=K:\) RDESGAIN TANG \(_{1}\)
\(\underline{T S}=\left(\begin{array}{l}\text { sinTSsh cosTStr } \\ -\operatorname{sinTStr} \\ \operatorname{cosTSsh} \operatorname{cosTStr}\end{array}\right)\)
If FLAGWRDO bit 6 (RRNBSW) \(=0\) :
Perform "NBTOSM"
\(\underline{T S}=[\) NBSMMAT \(] \underline{T S}\)
TSchk \(=0\)
If TS•RRTARGET < K:COS1d2DG, TSchk \(=1\)
If RADMODES bit 15 (CDESFLAG) \(=1\), proceed to "DORROUT"
If TSchk \(=0\) and FLAGWRDO bit 5 (LOKONSW) \(=0\), proceed to "RRDESDUN"
If TSchk \(=0\) and FLAGWRDO bit 5 (LOKONSW) \(=1\) :
Switch bit 14 of channel 12 to 1 (enable \(R R\) tracker)
If bit 4 of channel \(33=1\), proceed to "DORROUT" (designate until data good discrete is present)

RRDESDUN \(T S=\) RADMODES (with bit 10 forced to 0)
Inhibit interrupts
RADMODES \(=T S\)
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
Switch bit 2 of channel 12 to 0 (Disable RR Error Counter)
Release interrupt inhibit
End job

DORROUT If FLAGWRD2 bits 12 (LOSCMFLG) or 14 (SRCHOPTN) \(=1\) :
\[
\begin{aligned}
& \text { TS }=\text { MLOSV RRTARGET }+\frac{1}{2} \text { K:MCTOMS LOSVEL } \\
& \text { RRTARGT }=\text { unitTS } \\
& \text { MLOSV }=|\underline{T}|
\end{aligned}
\]

Inhibit Interrupts
If RADMODES bit 11 (REPOSMON) = 0, perform "RROUT"
If FLAGWRD2 bit 12 (LOSCMFLG) \(=0\), proceed to "ENDOFJOB"
If LOSCOUNT \(=0\) :

Remove "STDESIG" from waitlist if it is there
Release interrupt inhibit
If NEWJOB \(>0\), perform "CHANG1"
If \(N E W J O B=+0\), proceed to "R21LEM2"
LOSCOUNT \(=\) LOSCOUNT -1
Proceed to "ENDOFJOB"
RRZERO If RADMODES bit 1 (TURNONFL) or bit 11 (REPOSMON) \(=1\) :
Call "RGOODEND" in 0.01 second
Return
Inhibit interrupts
Switch RADMODES bit 13 (RCDUOFLG) to 1
Call "RRZZ" in 0.01 second
If RADMODES bit 2 (AUTOMODE) \(=1\), perform "ALARM" with \(T S=00510_{8}\)
Release interrupt inhibit
Return
RRZ2 Perform "RRZEROSB"
Proceed to "ENDRADAR"

RSAMPDT = K:1SECp1
RTSTLOC \(=0\)
RFAILCNT \(=0\)
Inhibit interrupts
Set RADMODES bits 9 (ALTSCALE), 6 (LRPOSFLG), and 3 (RRRSFLAG) = bits 9, 6, and 3 of channel 33

Release interrupt inhibit
If FLAGWRD3 bit 9 (R04FLAG) \(=0\) : (R77)
RSAMPDT \(=\mathrm{K}: 250 \mathrm{MSp} 1\)
RTSTBASE \(=2\)
RTSTMAX \(=6\)
Call "RADSAMP" in 0.06 second
Proceed to "PINBRNCH"
\(\mathrm{OPTIONX}_{1}=1\)
OPTIONX \(_{0}=4\)
Perform "GOXDSPFR" with TS \(=\) K:VO4N12 (OPTIONX \({ }_{0}\), OPTIONX \({ }_{1}\))
(If terminate, proceed to "RO4END"; if proceed, skip next two steps; other response, repeat this step)

Perform "BLANKET" with \(T S=00004 \mathrm{~g}\) (blank R3)
End job
RTSTDEX \(=\) OPTIONX \(_{1}\)
R04X If RTSTDEX \(\leq 1\) : (Bits 3 and 2 are both 0 ; RR)
RTSTBASE \(=0\)
If bit 2 of channel \(33=1\) : (RR not in AUTO mode)
\[
\text { DSPTEM1 }=0^{00201}
\]

If bit 2 of channel \(33=1\) : (continued)
Proceed to "GOMARK4" with TS \(=\) K:V50N25 (DSPTEM1)
(If terminate, proceed to "RO4END"; if proceed, repeat at second previous step (to assure that \(R R\) has been switched to AUTO); other response, repeat at previous step.)

Switch bit 14 of channel 12 to 1 (enable \(R R\) tracker)
RTSTMAX \(=2\)
If RTSTDEX > 1: (Bit 3 or 2 is 1; LR)
RTSTBASE \(=2\)
RTSTMAX \(=6\)
Call "RADSAMP" in RTSTMAX centiseconds
Release interrupt inhibit
If RTSTDEX \(\leq 1: \quad(R R)\)
Proceed to "GOXDSPF" with TS \(=\mathrm{K}: V 16 N 72\) (CDU \({ }_{t}\) and CDU \({ }_{s}\))
(If terminate, proceed to "ROLEND"; if proceed, continue at next step; other response, repeat this step.)

Proceed to "GOXDSPF" with TS = K:V16N78 (DNRRANGE, DNRRDOT, (If terminate, proceed to "RO4END";if proceed, TTOTIG) continue at next step; other response, repeat at previous step.)

If RTSTDEX > 1:
(LR)
Proceed to "GOXDSPF" with TS \(=\) K:V16N66 (RSTACK 6 , channel 33)
(If terminate, proceed to "ROLEND"; if proceed, continue at next step; other response, repeat this step.)

Proceed to "GOXDSPF" with TS \(=\) K:V16N67 (RSTACK
(If terminate, proceed to "RO4END"; if proceed, continue at next step; other response, repeat at previous step.)

RSAMPDT \(=+0\) (to stop "RADSAMP")
Delay 2 seconds
\[
\text { RADR - } 14
\]
```

    RSAMPDT = K:1SECp1
    RTSTLOC = 0
    If RTSTDEX }\leq1,TS=
    If RTSTDEX > 1, TS = 1
    RTSTDEX = TS
    Proceed to "RO4X"
    ROLEND RSAMPDT = +0
Delay 1.28 seconds
Inhibit interrupts
Switch bit }14\mathrm{ of channel 12 to 0 (disable RR tracker)
Switch FLAGNRD3 bit 9 (RO4FLAG) to 0
Proceed to "ENDEXT"
RADSAMP If RSAMPDT = +0, end task
Call "RADSAMP" in (|RSAMPDT| - 1) centiseconds
Establish "DORSAMP"
(pr25)
RTSTDEX = RTSTBASE + RTSTLOC / 2
End task

```
 RADR - 15
```

DORSAMP If RTSTDEX = 0, perform "RRRANGE" with TSn = 1
If RTSTDEX = 1, perform "RRRDOT" with TSn = 1
If RTSTDEX = 2, perform "LRVELX" with TSn = 1
If RTSTDEX = 3, perform "LRVELY" with TSn = 1
If RTSTDEX = 4, perform "LRVELZ" with TSn = 1
If RTSTDEX = 5, perform "LRALT" with TSn = 1
Perform "RADSTALL"
If RADGOOD = 0, RFAILCNT = RFAILCNT + 1
Inhibit interrupts
If FLAGWRD5 bit 11 (R77FLAG) = 0:
RSTACK
If RADMODES bit 6 (LRPOSFLG) f bit 6 of channel 33:
Perform "ALARM" with TS = 00522g
RFAILCNT = RFAILCNT + 1
If RTSTLOC \# RTSTMAX:
RTSTLOC = RTSTLOC + 2
End job
RTSTLOC = 0
End job
RRRANGE TSset = 00011g
Perform "INITREAD" with TSn = 1
Return

```
RADR - 16
```

RRRDOT TSset = 00012g (bits 2 and 4=1)
Perform "INITREAD" with TSn = 1
Return
LRVELX TSset = 00014g (bits 3 and 4=1)
Perform "INITREAD"
Return
LRVELY TSset = 00015g (bits 1, 3 and 4=1)
Perform "INITREAD"
Return
LRVELZ TSset = 000168 (bits 2, 3 and 4=1)
Perform "INITREAD"
Return
LRALT TSset = 000178 (bits 1, 2, 3 and 4=1)
Perform "INITREAD" with TSn = 1
Return
INITREAD Inhibit interrupts
TIMEHOLD = TSn K:40ms
NSAMP = TSn - 1
SAMPLIM = 2 TSn
OLDATAGD = bits 4, 5 and 8 of channel }3
(RR data good, LR pos data good, LR vel data good discretes)
TS = TSset
Perform "RADSTART"

```
RADR - 17
```

    TIMEHOLD = TIMEHOLD + TIMENOW
    SAMPLSUM = 0
    Release interrupt inhibit
    Return
    RADSTALL Inhibit interrupts
If RADCADR > 0 or if RADCADR < -1:
TS1 dp = return address plus 1; FBANK calling address of
Proceed to "BAILOUT1" with TS = 31210}
If RADCADR = -1: (operation already complete and good)
RADCADR = +0
Release interrupt inhibit
RADGOOD = 1
Return
If RADCADR = -0: (operation already complete and bad)
RADCADR = +0
Release interrupt inhibit
RADGOOD = O
Return
RADCADR = return address (to caller of "RADSTALL")
Put present job to sleep
When awakened, return via LOC
ENDRADAR If RADMOODES bit 7 (RCDUFAIL) = 0, proceed to "RDBADEND"
RGOODEND If RADCADR = +0:
RADCADR = -1
End task

```
\[
\begin{aligned}
& \text { If RADCADR }=-0: \\
& \text { RADCADR }=+0 \\
& \text { End task } \\
& \text { LOC }=\text { RADCADR } \\
& \text { RADGOOD }=1 \\
& \text { Wake job put to sleep in "RADSTALL" } \\
& \text { RADCADR }=+0 \\
& \text { End task } \\
& \text { RDBADEND } \\
& \text { If RADCADR }= \pm 0: \\
& \text { RADCADR }=-0 \\
& \text { End task } \\
& \text { LOC }=\text { RADCADR } \\
& \text { RADGOOD }=0 \\
& \text { Wake job put to sleep in "RADSTALL" } \\
& \text { RADCADR }=+0 \\
& \text { End task } \\
& \text { (entered on radar interrupt about 85-95 ms after "INITREAD") } \\
& \text { TTOTIG = TTOGO } \\
& \text { DNINDEX }=\text { bits 3-1 of channel } 13 \text { (radar selection bits) } \\
& \text { If DNINDEX } \neq 0: \text { (If radar select bits zero, do not store data } \\
& \text { for downlist (erasable problems)) } \\
& \text { (radar data) }
\end{aligned}
\]
```

    If SAMPLIM < 0:
    Perform "ALARM" with TS = 00520}
    Rasume
    If SAMPLIM = 0:
    If FLGWRD11 bit }15\mathrm{ (LRBYPASS) = 0, proceed to "BADRAD"
    If FLAGWRD3 bit 9 (RO4FLAG) = 0, perform "ALARM"
        with TS = 005218
    Proceed to "BADRAD"
    S:MMPLIM = SAMPLIM - 1
    If bit 3 of channel 13=0, proceed to "RENDRAD"
    Perform "R77CHECK"
    If bits 1 and 2 channel 13 are both 1, proceed to "LRHEIGHT"
    (LR range/altitude measurement)
    TS }\mp@subsup{d}{p}{}= RNRAD +K:LVELBIAS
    i=8
    Perform "DGCHECK" (returns only if data is good)
    If NSAMP > 0:
    NSAMP = NSAMP - 1
    Proceed to "RESAMPLE"
    Proceed to "GOODRAD"
LRHEIGHT i = 5
If bit 9 of RADMODES (ALTSCALE) \# bit 9 of channel 33:
Proceed to "SCALCHNG" with j = 9
TS

```

RENDRAD If RADMODES bit 7 (RCDUFAIL) \(=0\) or if RADMODES bit 11 (REPOSMON) \(=1\), proceed to "BADRAD"
\(i=4\)
If bit 1 of channel \(13=0\) : (\(R R\) range rate measurement)
\(T S_{\mathrm{dp}}=\) RNRAD \(-\mathrm{K}:\) RDOTBIAS
Perform "DGCHECK"
Proceed to "GOODRAD"
If bit 3 of RADMODES (RRRSFLAG) \(\neq\) bit 3 of channel 33:
Proceed to "SCALCHNG" with \(j=3\)
\(T S_{d p}=R N R A D\)
If bit 3 of channel \(33=1\) : (\(R R\) range high scale)
\(T S_{d p}=8 T S_{d p}\)
Perform "DGCHECK".
Proceed to "GOODRAD"
DGCHECK If bit \(i\) of channel \(33=0\) and bit \(i\) of OLDATAGD \(=0\) :
(bit 8 is LR velocity data good, bit 5 is LR altitude data good, bit 4 is RR data good, if zero)

SAMPLSUM \(=\) SAMPLSUM \(+T S_{d p}\)
Return (with good sample)
Set bit i of OLDATAGD = bit i of channel 33

RESAMPLE If SAMPLIM \(>0\) :
\(T S=00010_{8}\)
Perform "RADSTART"
Resume
Switch bit 1 of RADMODES to 1
(bit 8 is LRVELFLG, bit 5 LRALTFLG, bit 4 RRDATAFL)
SAMPLSUM \(=T S_{d p} \quad\) (return with bad sample rather than none
Perform "RADLITES"
If FLGWRD11 bit 15 (LRBYPASS) \(=0\), proceed to "BADRAD"
If FLAGNRD3 bit 9 (R04FLAG) \(=0\), perform "ALARM" with \(T S=00521_{8}\)
Proceed to "BADRAD"
SCALCHNG Invert RADMODES bit \(j\)
(bit 9 is ALTSCALE, bit 3 is RRRSFLAG)
OLDATAGD \(=\) bits 4,5 and 8 of channel 33 (data good bits)
Switch FLAGNRD5 bit 10 (RNGSCFLG) to 1
BADRAD \(\quad\) SAMPLIM \(=-1\)
Cause "End task" instruction in "RDBADEND" to perform the same function as a "Resume" instruction

Proceed to "RDBADEND"
GOODRAD \(\operatorname{SAMPLIM}=-1\)
Switch bit \(i\) of RADMODES to 0
(bit 8 is LRVELFLG, bit 5 is LRALTFLG, bit 4 is RRDATAFL)
Perform "RADLITES"
Cause "End task" instruction in" RGOODEND" to perform the same function as a "Resume" instruction

Proceed to "RGOODEND"
```

IRPOS2 Inhibit Interrupts
Switch RADMODES bit 6 (LRPOSFLG) to 1
If bit 7 of channel 33 = 0: (already in position two)
Call "RGOODEND" in 0.01 second
Release interrupt inhibit
Return
Switch bit }13\mathrm{ of channel i2 to 1 (command LR to position 2)
Call "LRPOSCAN" in 6 seconds
Release interrupt inhibit
Return
LRPOSCAN SAMPLIM = 16
Delay 1 second
If bit 7 of channel 33 = 0: (position 2 achieved)
Delay 2 seconds
Switch bit }13\mathrm{ of channel }12\mathrm{ to 0
Proceed to "RGOODEND"
If SAMPLIM > O:
SAMPLIM = SAMPLIM - 1
Proceed to second step of "LRPOSCAN"
Switch bit }13\mathrm{ of channel 12 to O (terminate positioning commands)
Proceed to "RDBADEND"
RRLIMNB TSchk = 1
If RADMODES bit 12 (ANTENFLG) = 1, proceed to "MODE2CHK"

```
 RADR - 23
```

    If }|\textrm{TS}|>K:0.30555,TSchk=
    If TS 
    If TS 
    Return
    LUNDESCH If FLAGWRD8 bit 8 (SURFFLAG) = 1:
RADLIMCK = 0
RADCADR = + 0
Proceed to "DESRETRN"
If FIAGNRDO bit }7\mathrm{ (RNDVZFLG) = 0, end job
Perform "RMODINV"
RADLTMCK = 1
RADCADR = + 0
Proceed to "DESTRETRN"
R77CHECK If FLAGWRD5 bit 11 (R77FLAG) = 0, return
Set bits 5 (LRALTFLG) and 8 (LRVELFLG) of RADMODES =
bits }5\mathrm{ and }8\mathrm{ of channel }3
Cause "End task" instruction in "RGOODEND" to perform the
same function as a "Resume" instruction
Proceed to "RGOODEND"
RADSTART TS }\mp@subsup{\}{3}{= LOSCALAR
TS}1=\mathrm{ low }5\mathrm{ bits of TS}
RADDEL = low }5\mathrm{ bits of ( }00040g-T\mp@subsup{S}{1}{}
If RADDEL \leq 00002g, proceed to "RADSTART" (If a T5 interrupt
Set bits TS of channel }13\mathrm{ to 1
RADTIME = - TS 3
Return

```
(If a T5 interrupt scheduled to oceur in \(1 / 16\) th of a centi. second, then these operations repeat mili the interrupt has occurred)

C13STALL If bit 4 of channel \(13=0\), return
\(T S_{4}=\) IOSCALAR + RADTIME
(LOSCALAR may have overflowed
If \(T S \geq K: 90 M S C A L R+R A D D E L\), return once since RADTIME was last loaded, but this occurrance has been compensated for in

Proceed to second step of "C13STALL"
RADLITES If i<5, proceed to second step of "SETTRKF"
If i > 5: (LR velocity data good)
\(\mathrm{k}=+1\)
\(T S=00004_{8}\)
\(j=3\)
\(i=8\)
If \(i=5\) : (LR altitude data good)
\(\mathrm{k}=0\)
\(T S=00020_{8}\)
\(j=5\)
\(i=5\)
If bit i of RADMODES = 1, proceed to "ONLITES"
If bit \((1+k)\) of FLGWRD11 \(=1\), proceed to second step of "SETTRKF"
\(T S=00000_{8}\)
LITIT If bit \(j\) of DSPTAB \(_{11} \neq\) bit \(j\) of TS: (bit 5 is LR altitude
Set bit \(j\) of DSPTAB \(_{11}=\) bit \(j\) of \(T S\)
Switch bit 15 of DSPTAB \(_{11}\) to 1
Return
ONLITES Switch bit (\(1+\mathrm{k}\)) of FLGWRD11 to 0 Proceed to "LITIT"
\(C D U_{t}, C D U_{s}: \quad\) LGC input counters incremented directly from the Coupling Data Unit to maintain LGC knowledge of the \(R R\) trunnion and shaft angles, respectively. Single precision angles stored in two!s complement form and scaled B-1 in units of revolutions.

CDUSCMD, CDUTCMD: LGC output counters connected to the RR shaft and trunnion channels of the CDU. The contents of each of these counters is a rate command scaled B14 in units of RR pulses (one's complement form) and is sent to its respective CDU Error Counter by setting the appropriate enabling discrete in channel 14. See definition of K: RRSPGAIN.

COSTH: See COOR section.
DESCOUNT: Single precision counter defining the maximum amount of time allowed for an attempt to designate, scaled B14 and unitless.

DESRET: A single precision octal return address storage cell.
DNINDEX: A single precision index for selection of appropriate downlink buffer cell for radar data. \(\operatorname{DNINDEX}=1,2,4,5,6\) or 7 for RR range, RR range-rate, LR X-velocity, LR Y-velocity, LR Z-velocity and LR altitude data, respectively; scaled B14 and unitless.

DNRADATA \(_{i}\) : Special storage for downlink of radar data. \(i=1,2,4,5,6\), and 7 to index six single precision cells (consecutive except between \(i=2\) and 4) alternately labelled DNRRANGE, DNRRDOT, DNLRVELX, DNLRVELY, DNLRVELZ AND DNLRALT, respectively.
\(\mathrm{DSPTAB}_{11}\) : See INTR section.
DSPTEM1: Temporary storage cell used mainly for display interface purposes. IMODES33: See INTR section.

K:0.00555: Single precision constant stored as -.00555, program notation "-. 00555 ", scaled B-1 in units of revolutions. Equation value: +0.002775 . (Equivalent to +1.0 degree.)
Note: Because a constant is stored in one's complement form, its. equation value changes if it is compared with the absolute value of a negative two's complement number. In such a comparison, a single precision constant assumes an equation value of "A \(+2^{b-14} H^{\prime \prime}\) where \(b\) is the scale factor of the constant and \(A\) is the stated equation value of the constant. In the case of the constant "K:p25" for instance, A is 0.25 and b is -1 .

K:0.30555, K:5.5DEGS, K:0.35833: Three single precision constants foe checking whether the radar position angles are within the bounds of RR Mode I. Stored as \(-0.30555,0.03056\), and -0.35833 , scaled \(\mathrm{B}-1\) in units of revolutions. Equation values: +0.152775, 0.01528 and +0.179165, respectively. See note above. (Equivalent to +55 degrees, 5.5 degrees, and +64.5 degrees.)

K:0.31667, K:82DEGS, K:0.69444: Three single precision constants for checking whether the radar position angles are within the bounds of RR Mode II. Stored as \(-0.31667,0.45556\) and -.69444 , scaled B-1 in units of revolutions. Equation values: +0.158335, 0.22778, and +0.34772 . See note above. (Equivalent to +57 degrees, 82 degrees and +125 degrees.)
The limits of Mode I are: \(-55^{\circ} \leq\) trunnion \(\leq 55^{\circ}\) and \(-70^{\circ} \leq\) shaft \(\leq 59^{\circ}\). The limits of Mode II are: \(125^{\circ}<\) trunnion \(<-125^{\circ}\) and \(-139^{\circ}<\) shaft \(\leq-25^{\circ}\). The latter corresponds to limits on the LOS angle of \(41^{\circ}\) and \(155^{\circ}\).

K:1s \(\frac{1}{4}\) : Single precision constant, program notation "HALF" stored as 0.5 , scaled B-1 in units of revolutions. Equation value when used as a two's complement, negative number: \(0.25-2^{-15}\). (Equivalent to abcut 90 degrees.)
K: 1SECp1: Single precision constant stored as \(101 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 101.

K:20.5DEGS: Single precision constant stored as 0.11389 , scaled B-1 in units of revolutions. Equation value: 0.05695. (Equivalent to 20.5 degrees.)

K:250MSp1: Single precision constant stored as \(26 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 26.

K:40ms: Single precision constant, program notation "BIT3", stored as 00004 , scaled B14 in units of centiseconds. Equation value: 4. (Equivalent to half the nominal value of one radar sampling cycle.)
K:90MSCALR: Single precision constant stored as \(9 \times 2^{-9}\), scaled B9 in units of centiseconds. Equation value 9. (Equivalent to 90 milliseconds.)
K:COS1d2DG: Double precision constant stored as \(0.999961923 \times 2^{-2}\), scaled B2 and unitless. Equation value: 0.99996192.

K:LVELBIAS: Single precision constant stored as \(-12288 \times 2^{-14}\), scaled B14 in units like those of RNRAD. Equation value: -12288. (Program comment states, "Landing radar bias for \(153.6 \mathrm{kc} . "\))

K:m45DEGSR: Single precision constant stored as \(70000_{8}\), scaled B-1 in units of revolutions. Equation value when used as a two's complement number: -0.125. (Equivalent to -45 degrees.)

K:m50DEGSR: Single precision constant stored as -0.27778 , scaled B-1 in units of revolutions. Equation value when used as a two's complement number: -0.13892. (Equivalent to -50.00976 degrees.)

K:m80DEGSR: Single precision constant stored as -0.44444 , scaled B-1 in units of revolutions. Equation value when used as a two's complement number: -0.2.2225. (Equivalent to -80.00244 degrees.)
K:mDTSCALR: Single precision constant stored as \(-.59375 \times 2^{-3}\), scaled B9 in units of centiseconds. Equation value -.59375. (Equivalent to -5.9375 milliseconds)

K:MAXTRYS: Single precision constant stored as \(60 \times 2^{-14}\), scaled B14 and unitless. Equation value: 60. (Equivalent to 30 seconds of time for RR designate.)

K:MCTOMS: Double precision constant stored as \(100 \times 2^{-13}\), scaled B13 in units of centiseconds. Equation value: 100.

K:p25: Single precision constant, program notation "-. 5", stored as -0.5 , scaled B-1 in units of revolutions. Equation value: +0.25 . (Equivalent to +90 degrees.)

K:RDESGAIN: Single precision constant stored as 0.53624 , used to convert from units of radians to units of revolutions as well as to apply a gain to the designated output. Scaled B-1 in units of revolutions per radian. Equation value: \(1.68465 / 2 \pi\). (Program comment states, "Tries to Inull 0.5 error in 0.5 second." RDESGAIN/RPSPGAIN \(\approx 1.4\).)
K:RDOTBIAS: Double precision constant stored as \(17000 \times 2^{-28}\), scaled B28 in units of radar counts (same as RNRAD). Equation value: 17000.

K:rrlimit: Single precision constant, program notation "-RRLIMIT", stored as \(-384 \times 2^{-14}\), scaled B14 in units of RR drive pulses. Equation value: 384. (See K:RRSPCAIN for explanation.)

K: RRSPGAIN: Single precision constant stored as 0.59062 , scaled B15 in units of RR drive pulses per revolution of error. Equation value: 19353. (Equivalent to \(0.7 \times 2 \mathrm{sec}^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}\) pulses per degree per second. The first two terms "null 0.7 of the error in \(\frac{1}{2}\) second," and the fourth is derived from the fact that a saturated error counter causes a drive rate of 10 degrees per second.)

LASTSCMD, LASTTCMD: Storage for the previous value of total RR shaft and trunnion position deviation; scaled B14 in units of RR drive pulses. Used to convert present position deviation into a desired rate command to be inserted into CDUSCMD or CDUTCMD.

LOC: See MATX section.
LOSCALAR: A 14 bit register corresponding to channel 4 of the computer. It is incremented 1 bit every \(1 / 3200\) of a second and is driven by a 102.4 kc signal from the computer oscillator. It overflows (and propagated to channel 3) every 5.12 seconds. This register is 0.005
second out of phase with the TIMENOW registers. It is equivalent to a single precision time cell scaled B9 in units of centiseconds.

LOSCOUNT: Single precision counter defining the interval between computation of a new line-of-sight vector, scaled B14 and unitless.

LOSVEL: See RNAV section.
MLOSV: See RNAV section.
MODEALT \(_{0}\), MODEALT \({ }_{1}\) : Value of the trunnion and shaft angles, respectively. which are necessary to point the RR along the desired line-of-sight in the alternate mode of the RR. Single precision angles in two's complement form, scaled B-1 in units of revolutions. Program notation "MODEB".

MODEPRES \(_{0}\), MODEPRES \(_{1}\) : Value of the trunnion and shaft angles, respectively, which are necessary to point the RR along the desired line-of-sight in the present mode of the RR. Single precision angles in two's complement form, scaled B-1 in units of revolutions. Program notation "MODEA".

NEWJOB: See MATX section.
NSAMP: A single precision counter, scaled B14. Controls the number of sampling cycles in the total sampling interval for LR velocity measurements.

OLDATAGD: A single precision cell containing the status of radar "data good" discretes at the beginning of a sample. (See RADMODES)

OPTIONX \({ }_{0}\), OPTIONX \({ }_{1}\) : See EXVB section.
RADCADR: Single precision octal storage for address to return to program that is sampling the radar and waiting for sample to be completed.

RADGOOD: Temporary variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether a radar operation was successfully completed or not.

RADDEL: Conputed in "RADSTART" it is a single precision time uncil the next T5 interrupt, scaled B9 in units of centiseconds. Derived from the low five bits of LOSCALAR.

RADLIMCK: Temporary variable indication which of three return options from "RRDESSM" is taken.

RADMODES: A flagword whose bits have the following significance when set (1) :

\section*{Bit Mnemonic Meaning}

15 CJESFLAG Continuous designate; used in conjunction with bit 10
14 REMODFLG RR remode required
13 RCDUOFLG RR seroing in progress
12. ANTENFLG RR in Mode II (in Mode I if zero)

11 R:POSMON RR repositioning in progress; RR was outside of prescrived limits
10 DESIGFLG RR designation in progress
9 AISTSCALE LR range high scale (low scale if bit is zero)
8 LRVELFLG LR velocity data bad (LR vel data good if bit is zero)
7 RCDUFAIL RR CDU operative (RR CDU failed if bit is zero)
6 LRPOSFLG LR commanded to and presumed to be in position \#2
5 LRALTFLG LR position data bad (LR pos data good if bit is zero)
4 RRDATAFL RR data bad (if zero, the RR data is "good", the RR tracker has acquired a target, hopefully the CSM and hopefully not a side lobe).
3 RllRSFLAG \(R R\) range high scale (low scale if bit is zero)
2 AUTOMODE RR not turned on or not in automatic mode of operation (if zero, the \(R R\) is on and it is in the automatic mode)

1 TURNONFL RR turn-on in progress
RADTIME: Single precision storage for the complement of the value of LOSCALAR at the time bit 4 of channel 13 was set, scaled B9 in units of centiseconds.

RDES: Desired RR position angle (shaft or trunnion); a single precision variable in two's complement form, scaled B-1 in units of revolutions.

RFAILCNT: Single precision counter scaled B14 and used to keep track of the number of unsuccessful attempts to read tine radar data.

RNRAD: Single precision LGC counter advanced directly by whichever radar circuit is enabled for sampling, scaled B14 in units of counts.
Sample Type
RRRRDOT RRRANGE
low scale high scale
LRVELX
LRVELY
LRVELZ
LRALT
lowscale
high scale

Value of 1 count -0.19135344 meters/second -0.6278 fps
2.859024 meters
22.872192 meters
-0.1962912 meters/second
0.3694176 meters/second
0.2642006 meters/second
0.3288792 meters
1.64440 meters
9.38 feet 75.04 feet \(-0.6440 \mathrm{fps}\) 1.212 fps 0.8668 fps
1.0790 feet
5.3950 feet

RRINDEX: Single precision index to indicate whether the content of RDES is a desired shaft angle (1) or a desired trunnion angle (0), s:aled B14.

RRRET: Single precision octal return address storage.
RRTARGET: Desired line-of-sight vector, a double precision unit vector scaled B1 in stable member or navigation base coordinates (see FLAGWRDO bit 6).

RSAMPDT: A cell used for storage of the low-speed sampling interval, in centiseconds scaled B14.

RSTACK \(_{i}\) : A series of 4 double precision cells loaded with radar sample data for display in nouns 66,67 and \(\quad(i=0,2,4,6)\).

RTSTBASE: Single precision quantity scaled B14 used to set RTSTDEX for LR or \(R R\) sampling in an automatic sampling mode.

RTSTDEX: An option loaded by the astronout or set by the program to designate the specific radar data to be sampled single precision, scaled B14.

RTSTLOC: A single precision index used to position sampled data in the dowmlink communication cells RSTACK RTSTLOC \(^{*}\)
RTSTMAX: A single precision limit on the number of RSTACK cells to be loaded, scaled B14.
S.AMPLIM: A limit on the number of sampling cycles that may be executed in a given sampling interval to limit the number of bad samples that may be attempted before the sampling is abandoned, scaled B14.

SAMPLSUM: Double precision total of radar data accumulated in \(n\) sampling intervals (\(n\) always \(\hat{t}\) for \(R R\) and LRALT), scaled \(B 28\) in units of radar input counts.
\begin{tabular}{lcl}
Sample Type & Value for 1 s:mple \\
RRRDOT & -0.19135344 & meters/second \\
RRRANGE & 2.859024 & meters \\
LRVELX & -0.1962912 & meters/second \\
LRVELY & 0.3694176 & meters/second \\
LRVELZ & 0.2642006 & meters/second \\
LRALT & 0.3288792 & meters
\end{tabular}
[SMNBMAT]: See COOR section.

SINTH: See COOR section.
TANG \({ }_{0}, T A N G_{1}\) : Single precision storage for desired values of or desired changes in the \(R R\) trunnion and shaft angles, respectively. Scaled B-1 in two's complement form in the "RRDESNB" and "R21LEM" routines. Scaled B2 in units of radians (one's complement form) in the "DODES" routine.

TANGNB \({ }_{0}, T^{\prime N G N B}\), Temporary two's complement storage (astronout desired or radar marked) radar position angles (trunnion and shaft, respectively), scaled B-1 in units of revolutions.

THETA: See COOR section.

TIMEHOLD: Double precision time at the middle of the total sampling interval (assuming no bad samples), scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
\(\operatorname{TRUNNCMD~}_{0,1}\) : Single precision storage for the desired values of the \(R R\) trunnion and shaft angle drive rates, respectively. Scaled B14 in units of RR drive pulses. An alternate mnemonic for TRUNNCMD \({ }_{1}\) is SHAFTCMD.

TTOGO: See BURN section.
TTOTIG: Double precision time to TIG, loaded in the radar read routine "RADAREAD" at the time of the radar reading, scaled B28 in units of centiseconds.
```

PROG20
If FLAGWRD8 bit 8 (SURFFLAG) $=0$ :
(pr26)
(PROG22) Switch FLAGNRD1 bit 8 (VEHUPFLG) to 0
Proceed to "PROG2OA"
ORBCHCO Switch FLAGWRD1 bit 8 (VEHUPFLG) to 1
OPTION2 $=1$ (CSM orbit option)
Proceed to "GOPERF'4" with OPTION1 $=00012$
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
at next step; other response, repeat this step.)
If OPTION2 = 1, proceed to "PROG2OA"
Proceed to "COFLASH" with TS = K:VO6N33
(If terminate, proceed to "GOTOPOOH" ; if proceed, continue
with next step; other response, repeat this step.)
Perform "INTSTALL"
$T S_{\text {LNCHTM }}=T I G$
TDEC1 $=$ TIG
Switch FLAGWRD3 bits 4 (INTYPFLG), 3 (VINTFLAG), 2 (D60R9FLG)
and 1 (DIMOFLAG) to 0
Perform "INTEGRV"
$\underline{R S U B L}=\underline{R A T T}$
TDEC1 $=$ TAT
Perform "INTSTALL"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
Switch FLAGNRD3 bits 4 (INTYPFLG) and 1 (DIMOFLAG) to 0

```
 RNAV - 1

If FLAGWRD5 bit 1 (RENDWFLG) \(=1\) :
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D60R9FL.G) to 1
```

Perform "INTEGRV"

```
\(\underline{V S U B C}=\underline{\text { VATTI }}\)
\(\underline{\text { RSUBC }}=\underline{\text { RATT }}\)
\(\underline{U C S M}=u n i t\left(\underline{R} S U B L L^{*} u n i t\left(\underline{R} S U B C{ }^{*} \underline{V} S U B C\right)\right)\)
CSTH \(=\) unit (ㅈSUBC) \(\cdot \underline{\text { UCSM }}\)
\(\mathrm{SNTH}=\sqrt{1-\mathrm{CSTH}^{2}}\)
\(\underline{\text { RVEC }}=\underline{\text { RSUBC }}\)
\(\underline{\text { VVEC }}=-\underline{V} S U B C\)
Switch FLAGWRD7 bit 9 (RVSW) to 0
Perform "TIMETHET"
NEWVEL \(=-\underline{T S}_{V}\)
NEWPOS \(=\) TS \(_{r}\)
\(T S_{\text {TRANSTM }}=T\)
NCSMVEL \(=\mid\) NEWVEL \(\mid\) unit(unit(NEWPOS*RSUBL)*NEWPOS)
Perform "INTSTALL"
\(T E T=T S_{\text {LNCHTM }}-T S_{\text {TRANSTM }}\)
\(\underline{\text { RRECT }}=\underline{\text { NEWPOS }}\)
RCV \(=\) NEWPOS
\(\underline{V R E C T}=\) NCSMVEL
\(\underline{V C V}=\underline{N C S M V E L}\)
TJELTAV \(=0\)

INUV \(=0\)
\(T C=0\)
\(X P R E V=0\)
PBODY \(=2\)
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
Perform "SVDWN1"
Set FLAGWRD8 bit 12 (GMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
Perform "INTWAKE1"
PROG2CA Perform "RO2BOTH" (IMU status check routine)
Switch FLAGWRD1 bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
Switch FLAGWRDO bit 7 (RNDVZFLG) to 1
Switch FLAGWRD2 bits 14 (SRCHOPTN) and 13 (ACMODFLG) to 0
Switch FLAGWRD3 bit 9 (RO4FLAG) to 0
Switch FLAGWRD5 bit 4 (NORRMON) to 0
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
Switch RADMODES bits 10 and 15 (DESIGFLG) and (CDESFLAG) \(=0\)
Switch bit 2 channel \(12=0\)
P20LEM1 TRKMKCNT \(=0\)
TDEC1 \(=\) TTMENOW
Perform "LPS20.1" (get RR target vector)
If MLOSV \(\geq \mathrm{K}:\) FHNM:
Perform "PRIOLARM" with TS \(=005268\)
(If terminate, proceed to "TRMTRACK"; if proceed repeat this step; other response, proceed to "P2OLEM1".)

End job
P20LEMA If FLAGWRD8 bit 8 (SURFFLAG) \(=0\), perform "R61LEM"

P20LEMB Change priority to \(26_{8}\)
If FLAGWRD1 bit 5 (TRACKFLG) \(=0\), proceed to "P2OLEMWT"
P2OLEMB7 If bit 2 of channel \(33=0\), proceed to "P2OLEMB3" (RR auto mode) If MODREG \(\neq 20\) and if MODREG \(\neq 22\) :

Perform "PRIOLARM" with TS \(=00514\) g
(If terminate, proceed to "TRMTRACK"; if proceed, proceed to "P2OLEMB"; other response, proceed to "P20LEMB".)

End job
Proceed to "GOPERF1" with \(T S=00201_{8}\)
(If terminate, proceed to "TRMTRACK"; if proceed, proceed to "P20LEMB"; other response, continue at next step.)

If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
Switch bit 7 of channel 11 to 1 (operator error lamp)
Proceed to "P20LEMB"
Perform "R23LEM" (manual acquisition monitor)
P20LEMB1 Switch FLAGNRD2 bit 13 (ACMODFLG) to 1
Proceed to "P20LEMB"
P2OLEMB3 If RADMODES bit 13 (RCDUOFLG) \(=1\) : (RR just turned on and
Delay 2.5 seconds
Proceed to "P20LEMB3"
If FLAGWRD2 bit 14 (SRCHOPTN) or 13 (ACMODFLG) \(=1\) :
Switch FLAGWRD2 bits 14 (SRCHOPTN) and 13 (ACMODFLG) to 0
Proceed to "P2OLEMWT"
\[
\text { RNAV - } 4
\]
P20LEMC3 TDEC1 \(=\) TIMENOW
Perform "UPPSV"
P2OLEMC If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end jobIf FLAGWRD1 bit 5 (TRACKFLG) \(=1\), proceed to "P2OLEMF"
Call "P20LEMD1" in 15 seconds
End job
P20LEMD1 If FLAGWRD1 bit 5 (TRACKFLG) \(=0\) : (stall until TRACKFLG is set again, then Call "P2OLEMD1" in 15 seconds continue at automatic acquisition)
End task
Establish "P20LEMC3" (pr26)
End task
P2OLEMF Perform "R21LEM"
P2OLEMWT Call "P2OLEMC1" in 2.5 seconds
End job
P20LEMC1 If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end taskIf FLAGWRD1 bit 5 (TRACKFLG) \(=0\) :Call "P2OLEMC1" in 15 seconds
End task
Establish "R22LEM42" (pr26)
End task
RNAV - 5
```

PROG21 OPTION2 = 1
Proceed to "GOPERF4" with OPTION1 = 2
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
at next step; other response, repeat this step.)
DSPTEM1 dp = 0
Proceed to "GOFLASH" with TS = K:VO6N34 (get time in DSPTEM1)
(.If terminate, proceed to "GOTOPOOH"; if proceed,
continue at the next step; other response, repeat this step.)
TS = DSPTEM1 dp
If TS = O,TS = TIMENOW
Perform "INTSTALL"
If FLAGWRDO bit 11 (P21FLAG) = 1:
Proceed to "P21CONT"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
If OPTION2\geq 2: (CSM option)
Switch FLAGWRD3 bit 3(VINTFLAG) to 1
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 4 (INTYPFLG) to 0
Perform "INTEGRV"
P21VSAVE P21TIME = TAT
P21BASER = RATT (scaled B29 or B27)
P21BASEV = VATT (scaled B7 or B5)
P21VEL = |VATT | (insured scaling of B7 for N91 display)
P21GAM = arcsin (unit RATT - VATT / P21VEL) (RATT-B29, VATT-B7)
P210RIG = PBODY (PBODY in index register 2)
If OPTION2 \leqslant 1:
If FLAGWRD8 bit 8 (SURFFLAG) = 1:
Skip next line
Switch FLAGWRDO bit 11 (P21FLAG) to 1

```
RNAV - 6
```

    Switch FLAGWRDD3 bit 12 (LUNAFLAG) to 0
    If P210RIG }=
        Switch FLAGWRD3 bit 12 (LUNAFLAG) to 1
    ALPHA = RATT
    TS t}= TA
    Switch FLAGWRD1 bit 13 (ERADFLAG) to 0
    Perform "LAT-LONG"
    P21ALT = ALT K:K.01 (ALT/100 for N91 display)
    Proceed to "GOFLASH" with TS = K:VO6N43 (LAT, LONG, ALT)
    (If terminate, proceed to "GOTOPOOH"; if proceed, proceed
        to "GOTOPOOH"; other response, continue at next step.)
    DSPTEM1 dp = P21TIME + K:600SEC
    Proceed to the third step of "PROG21"
    P21CONT RCV = P21BASER
VCV = P
TET = P21TTME
Switch FLAGWRD3 bit 1 (DIMOFLAG) to O
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If PBODY \not= O:
Switch FLAGWRDO. bit 12 ( MOONFLAG) to 1
Perform "INTEGRVS"
Proceed to "P21VSAVE"
PROG25 Perform "RO2BOTH" (pr26)
Switch FLAGWRD1 bit 5 (TRACKFLG) to 1
RNAV - 7

```
```

    Switch FLAGWRDO bit 9 (P25FLAG) to }
    Switch FLLAGWRDO bit 7 (RNDVZFLG) to 0
    P25LEM1 If FLAGWRDO bit 9 (P25FLAG) = 0, end job
    If FLAGWRD1 bit 5 (TRACKFLG) = 0:
        Delay 60 seconds
        Establish "P25LEM1"
        (pr14)
        End job
    R65CNTR = 7
    Perform "R65LEM"
    Proceed to "P25LEM1"
    LPS20.1 LS21X = return address
If FLAGWRD2 bit 12 (LOSCMFLG) = 1:
If FLAGWRD8 bit 8 (SURFFLAG) = 1, proceed to "CSMINT"
Perform "LEMCONIC"
LMPOS = RATT
LMVEL = VATT
TDEC1 = TAT
Perform "CSMCONIC"
TS = [REFSMMAT] (VATT - LMMVEL)
Remove "STDESIG" from waitlist if it is there
LOSVEL = TS
TS = RATT - LMMOS
If FLAGWRDO bit 7 (RNDVZFLG) = 1:
If OVFIND }\not=0\mathrm{ 0, OVFIND = 0
TS}\mp@subsup{\}{1}{}=u\operatorname{unit}(TS\times\mp@subsup{2}{}{9}
RNAV - }

```
```

        If OVFIND }\not=0: (OVFIND reset to 0
    Perform "PRIOLARM" with TS = 00526
        (If terminate, proceed to "TRMTRACK"; if
        proceed, repeat this step; other response,
        proceed to "P20LEM1".)
    End job
If FLAGWRDO bit 7 (RNDVZFLG) $=0$ :
TS = unit TS
If OVFIND }\not=0: (OVFIND reset to 0
Perform "PRIOLARM" with TS = 00526
(If terminate, proceed to "TRMTRACK"; if
proceed, repeat this step; other response,
proceed to "P20LEM1".)
End job
RRTARGET $=[$ REFSMMAT $]$ unit $\operatorname{TS}$
MLOSV $=|\underline{T S}|$
Switch FLAGWRDO bit 6 (RRNBSW) to 0
Proceed to LS21X
UPPSV LS21X = return address
Perform "INTSTALL"
Perform "SETIFLGS"
If FLAGWRD5 bit 1 (RENDWFLG) = 1:
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 1
If FLAGWRD8 bit 8 (SURFFLAG) $=0$ :
Switch FLLAGWRD3 bit 2 (D60R9FLG) to 1
If FLAGWRD1 bit 8 (VEHUPFLG) $=0$ :
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
Perform "INTEGRV"
Perform "INTSTALL"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 1

$$
\text { RNAV - } 9
$$

```
```

    (If FLAGWRD1 bit 8 (VEHUPFLG) = 0:)
                                    TDEC1 = TETLEM
                    Proceed to "UPPSV4"
    ```
Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
Perform "INTEGRV"
Perform "INTSTALL"
\(\operatorname{TDEC} 1=\operatorname{TETCSM}\)
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
TrPDSV4 Perform "SETIFLGS"
Perform "INTEGRV"
If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :
Proceed to "P20LEMC"
LMPOS \(=\) RCVLEM (rescaled by \(2^{-2}\))
IMVEL \(=\) VCVLEM \(\left(\right.\) rescaled by \(\left.2^{-2}\right)\)
Return via LS21X
R61LEM GENRET = return address
Switch FLAGWRD1 bit 10 (R61FLAG) to 1
Proceed to "R61C+LO2"
R65LEM GENRET = return address
Switch FLAGWRD1 bit 10 (R61FLAG) to 0
R61C+L01 If bit 4 of channel \(33=1\), proceed to "R61C+LO2"
Switch FLAGWRD3 bit 9 (ROLFLAG) to 1
Perform "RRRDOT"
Perform "RADSTALL"
Perform "RRRANGE"
```

    Perform "RADSTALL"
    Switch FLAGWRD3 bit 9(RO4FLAG) to 0
    R61C+LO2 If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Proceed to "P2OLEMWT"
SGAXIS = K
TDEC1 = TIMENOW + K:3SECONDS
Perform "LPS20.1" (get FR target vector)
POINTVSM = RRTARGET
Inhibit interrupts
IScdu = GDUD (GDUD =(CDUXD, CDUYD, CDUZD))
Release interrupt inhibit
Perform "VECPNT1"
THETAD = TS (THETAD = (TS PHI, TS THETA, TS PSI
If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Proceed to "P2OLEMWT"
If bit 10 of channel 30 or bit 14 of channel 31=1:
Perform "BaLLANGS"
Proceed to "R61C+L06"
ISref = RRTARGET

```
RNAV - 11
```

    Perform "CDUTRIG"
    Perform "SMTONB"
    TS}\mp@subsup{r}{ref}{}=[\mathrm{ SMNBMAT] IS ref
    If TS refz - K:COSl5DEG<0:
    Inhibit interrupts
    Perform "ZATTEROR"
    Perform "SETMINDB"
    Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
    Switch FLAGWRD4 bit 12 (PDSPFLAG) to 1
    Perform "R6OLEM"
    Inhibit interrupts
    Periorm "RESTORDB"
    Switch FLAGWRD4 bit 12 (PDSPFLAG) to 0
    Proceed to "R61C+L06"
    Inhibit interrupts
    CDUD
CDUD }\mp@subsup{y}{y}{}=T\mp@subsup{S}{THETA}{
CDUD
Release interrupt inhibit
R61C+L06 If FLAGWRD1 bit 10 (R61FLLAG) = 1 or R65CNTR = 0, return
via GENRET
R65CNTR = R65CNTR - 1

```
```

    Delay 6 seconds
    Establish "R61C+LO1"
        (pr 26)
    Proceed to "ENDOFJOB"
    R21IEM Switch bit 14 channel }12\mathrm{ to 0
If FLAGWRD8 bit 8 (SURFFIAG) = 0:
TANG
TANG
If FLAGWRD8 bit 8 (SURFFLAG) = 1:
If RADMODES bit 12 (ANTENFLG) = 1:
Proceed to "R21LEM10"
TANGO}=\frac{1}{2}\quad(18\mp@subsup{0}{}{\circ}
TANG
Switch FLAGWRDO bit 5 (LOKONSW) to 0
Perform "RRDESNB"
Perform "RADSTALL"
If RADGOOD = 0:
Perform "PRIOLARM" with TS = 00503,
(If terminate, proceed to "TRMTRACK"; if proceed,
proceed to "R24LEM"; other response, proceed
to "P2OLEMC3".)
End job
R21LEM10 Switch FLAGWRD2 bit 12 (IOSCMFLG) to 1
DESCOUNT = K:MAXTRIES
R21IEM2 LOSCOUNT = 3
R21IEM1 TDEC1 = TIMENOW + K:HALFSEC
Perform "LPS20.1" (get RR target vector)

```
 RNAV - 13
```

    Switch FLAGWRDO bit 5 (IOKONSW) to 1
    Switch FLAGWRD5 bit 4 (NORRMON) to 0
    Perform "RRDESSM"
    If RADLIMCK = 0: (not within mode 2 limits on lunar surface)
    Proceed to "R21IEM4"
    If RADLIMCK = 1: (not within limits in either mode)
Proceed to !"P20LEMA"
(Otherwise, RADLIMCK = 2)
Perform "RADSTALL"
If RADGOOD = 0 : (lock-on not achieved)
Perform "PRIOLARM" with TS = 00503。
(If terminate, proceed to "TRMTRACK"; if proceed,
proceed to "R24JEM"; other response, proceed
to "P20IEMC3".)
End job
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
If FLAGWRD8 bit 8 (SURFFLAG) = 1, proceed to "P2OLEMWT"
Proceed to "R21DISP!
R21LEM4 REPOSCNT = K:MAXTRIES
Switch FLAGWRDO bit 10 (FSPASFLG) to 1
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
REPOSTM = TIMENOW + K:TENSEC
TDEC1 = TTMENOW + K:TENSEC

```
```

Perform "LPS2O.1"
Perform "RRDESSM"
If RADLTMCK = 0:
If REPOSCNT = 0: (looked 600 seconds ahead did not find)
Perform "PRIOLARM" with TS = 530%
(All responses go to "TRMTRACK")
End job
REPOSCNT = REPOSCNT - 1
REPOSTM = REPOSTM+K:TENSEC
TDEC1 = REPOSTM (old designate time plus 10 seconds)
Proceed to "60TIMES"
If RADLIMCK = 1:
End of job
If RADLIMCK = 2:
Remove "BEGDES" from waitlist
If FLAGWRDO bit 10 (FSPASFLG) = 0:
Proceed to "R21LEM8"
Switch FLAGWRDO bit 10 (FSPASFLG) to 0
REPOSTM = REPOSTM+K:TENSEC
TDEC1 = REPOSTM (old designate time plus 10 seconds)
Proceed to "60TIMES"

```
```

R21LEM8 TDEC1 = REPOSTM
Perform "UPPSV"
Switch RADMODES bit 15 (CDESFLAG) to 1
Switch FTAAGWRDO bit 5 (LOKONSW) to O
Switch FLAGWRD5 bit 4 (NORRMON) to 1
Perform "RRDESNB"
Call "R21LEM9" in (REPOSTM~TIMENOW seconds)
End of job
R21LEM9 Remove "STDESIG" from waitlist
Switch RADMODES bit 10 and 15 (DESIGFLG) and (CDESFLLAG) = 0
Switch bit 2 of channel 12 = 0
Establish "R21LEM1O"
(pr26)
End task
R21DISP Perform "GOPERF2R" with TS = K:V06N72. (CDU
(If terminate, proceed to "TRMTRACK"; if proceed, proceed
to "P2OLEMNT"; other response, repeat this step.)
Perform "BLANKET" with 'TS = 00100g
End of job
R22LEM42 If FLAGWRD8 bit 8 (SURFFLAG) = 0:
R65CNTR = 2
Perform "R65LEM"
Proceed to "R22LEM"
Proceed to "R22LEM" in 2 seconds

```

If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end job
If FLAGWRD1 bit 5 (TRACKFLG) \(=0\), proceed to "R22WAIT"
If bit 14 of channel \(12=0: \quad\) (\(R R\) tracker disabled)
Proceed to "P20LEMA"
If bit 2 of channel \(33=1\) : (\(R\) R AUTO mode switch not set)
Proceed to second step of "P2OLEMB7"
If RADMODES bit 13 (RCDUOFLG) \(=1\)
Proceed to "R22LEM42"
Perform "LRS22.1"
If TSerror \(=1\), proceed to "P2OLEMC"
If TSerror \(=2: \quad\) (actual LOS differs from computed LOS)
Perform "PRIOLARM" with TS \(=005258\)
(If terminate, proceed to "TRMTRACK"; if proceed, skip next step; other response, repeat this step.)

End job
Proceed to "PRIODSP" with TS = K:VO6NO5 (display deviation)
(If terminate, proceed to "TRMTRACK"; if proceed, continue at next step; other response, proceed to "P20LEMC".)

If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :
If FLAGWRD1 bit 5 (TRACKFLG) = 0, proceed to "R22WAIT"
If arccosRRBORSIT \({ }_{z} \doteq \mathrm{~K}: 30 \mathrm{DEG}:\)
Perform "R61LEM"
Proceed to "R22WAIT"
```

    If FLAGWRD1 bit 6 (NOUPFLAG) = 1:
    Proceed to "R22IEM42"
    If FLAGWRD1 bit 7 (UPDATFLG) = 0:
    Proceed to "R22IEM42"
    Perform "LSR22.3"
    TRKMKCNT = TRKMKCNT + 1
    If FLAGWRD8 bit 8 (SURFFLAG) = 0:
    R65CNTR = 5
    Perform "R65IEM"
    Proceed to "R22LEM"
    Proceed to "R22IEM" in 2 seconds
R22LEM96 N49FLAG = 0
Establish "N49DSP" (pr27)
If N49FLAG = 0, repeat this step (delay until N49FLAG f 0)
If N49FLAG \& O:
If N49FLAG = - 2, proceed to "R22LEM"
Proceed to "ASTOK"
Return via LGRET
R22WAIT Call "P2OLEMC1" in 15 seconds
Proceed to second step of "P2OIEMWT"

```
RNAV - 18

R22RSTRT Perform "RRRDOT" (If a restart occurs while reading radar come here)
Perform "RADSTALL"
If RADGOOD \(=0\), proceed to "P2OLEMC" (could not read radar)

Proceed to "R22LEM"
N49DSP Proceed to "PRTODSP" with TS= K:VO6N49
(If terininate, set N49FLAG to - 2 and end job; if proceed, set N49FLAG \(=-1\) and end job; other response, set N49FLAG to + value and end job.)

R23LEM Switch FLAGWRD5 bit \(/ 4\) (NORRMON) to 1
Perform "SETMINDB" with interrupts inhibited
Switich bit 14 of channel 12 to 1 (\(R R\) track enable)
Proceed to "GOPERF1" with TS \(=00205\) (request manual acquisition)
(If terminate, proceed to "R23LEM2"; if proceed, continue at next step; other response, proceed to "R23LEM3".)

Inhibit interrupts
Perform "RRLIMCHK" with \(T S_{0}=C D U_{t}\) and \(T S_{1}=C D U_{s}\)
If TSchk \(=0\) : (Manual acquisition not within limits)
Perform "PRIOLARM" with TS \(=00501\)
(If terminate, proceed to "R23LEM2"; if proceed, repeat this step; other response, proceed to "R23LEM3".)

End job
Perform "RESTORDB"
Release interrupt inhibit
Switch FLAGWRD5 bit 4 (NORRMON) to 0
Proceed too "P20LEMB1"
```

R23LEMR Switch FLAGWRD5 bit 4 (NORRMON) to 0
Proceed to "TRMTRACK"
R23LEM3 Perform "R61LEM"
Proceed to third step of "R23LEM"
R24LEM Switch FLAGWRD2 bit 14 (SRCHOPTN) to 1
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
DATAGOOD = O
OMEGDISP = O
Perform "PRIODSPR" with TS = K:V16N80 (monitor DATAGOOD, OMEGDISP)
(If terminate, proceed to "TRMTRACK"; if proceed, proceed
to "R24END"; other response, "R24LEM3".)
Proceed to "LRS24.1"
R24END Remove "CALLDGGH" from waitlist (kill it)
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel }12\mathrm{ to O (disable RR CDI error counters)
Proceed to "P20LEM1"
R24LEM3 Remove "CALLDGGH" from waitlist (kill it)
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel 12 to O (disable RRCDU Error Counters)
Delay 0.5 second
If FLAGWRD8 bit 8 (SURFFLAG) = 0:
Perform "R61LEM"
RADCADR = +0

```
 RNAV - 20
```

    Proceed to fifth step of "R24LEM"
    LRS22.1 Switch FLAGWRD5 bit 10 (RNGSCFLG) to 0
Inhibit interrupts
Set RADMODES bit 3 (RRRSFLAG) = bit 3 of channel 33 (RR range
scale)
Release interrupt inhibit
READRDOT Perform "RRRDOT" (read RR range-rate)
Perform "RADSTALL"
If RADGOOD = 0:
TSerror = 1
Return
Inhibit interrupts
TS 5866
RDOTMSAV = SAMPLSUM
TS 3}=\textrm{CDITY
TS
TS}2= CDUX
TS
TANG
TANG
Release interrupt inhibit
Perform "RRRANGE" (read RR range)
Perform "RADSTALL"

```
 RNAV - 21
```

If RADGOOD = 0:
If FLAGWRD5 bit 10 (RNGSGFLG) = 1:
Proceed to "READRDOT"
TSerror = 1
Return
Inhibit interrupts
RANGRDOT = DNRRANGE
MKTIME = TS 5\&6
ARG = TS 3
AMG = TS
TANGNB
TANGNB
AOG = TS
RDOTM = K:RDOTCONV TSrdot (scaled to (meters/centisecond)/27;
RRTRUN = TANG
RRSHAFT = TANG
RM = K:RANGCONV SAMPLSUM
Perform "RRNB" (determine actual LOS from radar position angles)
RRBORSIT = TS
TDEC1 = TS
Perform "LPS20.1" (get estimate of LOS based on present state
vector information)

```
RNAV - 22
```

    Perform "CD*TR*GS" with ANG = (AOG, AIG, AMG)
    Perform "SMTONB"
    IS = [smmmaT] RRTARGET
    DSPTEM1 = arcsin (TS • RRBORSIT) (angular error between
    If DSPTMM1 K:THREEDEG:
    TSerror = 2
    Return
    TSerror = 0
    Return
    LSR22.3 If FLAGWRD8 bit 8 (SURFFLAG) = 1:
Proceed to "LSR22.4"
Switch FLAGWRD5 bit 9 (DMENFLG) to 1
If FLAGWRD1 bit 8 (VEHUPFLG) = 1:
Perform "INTSTALL"
Switch FLAGWRD3 bit 3(VINTFLAG) to 0
Perform "SETIFLGS"
TDEC1 = MKTIME
Perform "INTEGRV"
(LM)
Perform "INTSTALL"
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
If FLAGWRD5 bit 1 (RENDWFLG) = 1:
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D6OR9FLG) to 1
Switch FLAGWRD3 bits 3 (VINTFLAG)and 5 (STATEFLG) to 1
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
TDEC1 = MKTTME

```
 RNAV - 23
```

    (If FLAGWRD1 bit8 (VEHUPFLG) = 1:)
    Perform "INTEGRV"
    If FLAGWRD5 bit 1 (RENDWFLG) = 0:
        Perform "WLINT"
        Proceed to "RANGEBQ"
        Perform "INTSTALL"
    Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
    Perform "SETIFLGS"
    TDEC1 = MKTIME
    Perform "INTEGRV"
    Perform "INTSTALL"
    Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
    If FLAGWRD5 bit 1 (RENDWFIGG) = 1:
    Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D60R9FLG) to }
    Switch FLAGWRD3 bits 3 (VINTFLAG) and 4 (INTYPFLG) to 0
    Switch FLAGWRD3 bit 5 (STATEFLG) to 1
    TDEC1 = MKTIME
    Perform "INTEGRV"
    If FLAGWRD5 bit 1 (RENDWFLG) = 0:
    Perform "WLINIT"
    Proceed to "RANGEBQ"
    LSR22.4 Perform "INTSTALL"
Switch FLAGWRD3 bit 5 ( STATEFLG) to 1 (Only two flag
settings necessary
because of SURFFLAG = 1)

```
RNAV - 24
```

Switch FLAGWRD3 bit3 (VINTFLAG) to 0
TDEC1 = MKTIME
Perform "INTEGRV"
Switch FLAGWRD5 bit 9 (DMENFLG) to 0
Perform "INTSTALL"
If TRKMKCNT = 0:
Perform "WLINIT"
Switch FLAGWRD3 bit 3 (VINTFLAG) to }
Perform "SETIFLGS" (Standard flag setting for integration)
TDEC1 = MKTIME
Perform "INTEGRV"
Proceed to "RANGEBQ"
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 3 (VINTFLAG) to }
Switch FLAGWRD3 bits 2 (D60R9FLG) and 4 (INTYPFLG) to 0
TDEC1 = MKTIME
Perform "INTEGRV"
Proceed to "RANGEBQ"

```
RNAV - 25

RANGEBQ If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :
\[
\mathrm{R} 65 \mathrm{CNTR}=0
\]

Perform "R65LEM"
WHCHREAD \(=1\) (RANGE code in N49)
TSSlc \(=\) DELTACSM + RCVCSM - DELTALEM - RCVLEM (scaling controlled by LMOONFLG)
\(\underline{U L C}=\) unitTSrlc (quasi-floating point)
BVECTOR \({ }_{0}=\) ULC
If FLLAGWRD1 bit 8 (VEHUPFLG) \(=0\), BVECTOR \(_{0}=-\underline{\text { ULC }}\)
BVECTOR \(_{1}=0\)
BVECTOR \(_{2}=0\)
DELTAQ \(=\) RM \(-\mid\) TSrlc \(\mid\)
VARIANCE \(=\) RANGEVAR \(\mid\) TSrlc \(\left.\right|^{2}\)
If VARIANCE \(\leq\) RVARMIN, VARIANCE \(=\) RVARMIN
Perform "LGCUPDTE"
WHCHREAD \(=2 \quad\) (R-RATE code in N49)
TSrlc \(=\) DELTACSM + RCVCSM \(-\underline{\text { DELTALEM }}-\underline{R} C V L E M\)
\(\underline{U L C}=\) unitTSrlc (quasi-floating point)
BVECTOR \(_{1}=\) TSrlc
If FLAGWRD1 bit 8 (VEHUPFLG) \(=0\), BVECTOR \(_{1}=-\) TSSlc \(^{\text {S }}\)

TSrdot = ULC • TSvlc
VARIANCE \(=\) RATEVAR TSrdot \({ }^{2}\)
If VARIANCE < VVARMIN, VARIANCE \(=\) VVARMIN
DELTAQ \(=\mid\) TSrlc \(\mid\) (RDOTM - TSrdot \()\)
BVECTOR \(_{0}=(\underline{U L C} * \underline{T S v l c}) * \underline{U L C}\)
```

If FLAGWRD1 bit 8 (VEHUPFLG) = 0, BVECTOR O = - BVECTOR
BVECTOR
VARIANCE = VARIANCE | ISrlc |
Perform "LGCUPDTE"
If FLAGWRD8 bit 8 (SURFFLAG) = 1, return (to caller of "LSR22.3")
ANG=(AOG,AIG,AMG)
Perform "CD*TR*GS"
Perform "NBTOSM"
XNB}\mp@subsup{\mp@code{ref }}{=[REFSMMAT] T}{T}[\mathrm{ NBSMMAT] K:UNITX
YNB }\mp@subsup{\mp@code{ref }}{=[REFSMMAT] TT [NBSMMAT] K:UNITY}{
ZNB}\mp@subsup{\mp@code{ref }}{=[REFSMMAT] [' [NBSMMAT] K: UNITZ}{
TSrlc = DELTACSM + RCVCSM - DELTALEM - RCVLEM
ULC = unitTSrlc
SINTHETA = - ULC - YNB ref

```

```

WHCHREAD = 3 (shaft code in N49)
SINTH = ULC • XNB _ref
COSTH = ULC • ZNNBref
Perform "ARCTAN"
DELTAQ = RXZ (K:2PId8 RRSHAFT - K:2PId8 THETA - X789 x
BVECTOR
If FLAGWRD1 bit 8 (VEHUPFLG) = O, BVECTOR
BVECTOR
BVECTOR_

```
```

    VARIANCE = RXZ 2
    Perform "LGCUPDTE"
    TSrlc = DELTACSM + \underline{RCVCSM - \underline{DELTALEM - RCVLEM}}\mathbf{N}=[
    ULC = unitTSrlc
    SINTHETA = - ULC • YNB ref
    RXZ =|\underline{Srlq}|\sqrt{}{1-\mp@subsup{SINTHETA}{}{2}}
    WHCHREAD = 4 (trunnion code in N49)
BVECTORO
If FLAGWRD1 bit 8 (VEHUPFLG) = 0, BVECTORO = - - BVECTOR
BVECTOR
BVECTOR }=(0, RXZ, 0
VARIANCE = RXZ 2
DELTAQ = RXZ (K:2PId8 RRTRUN - K:2PId8 arcsinSINTHETA - X789 y)
Perform "LGCUPDTE"
Return (to caller of "LSR22.3")
LRS24.1 NSRCHPNT = 0
Switch bit 14 of channel 12 to 1 (enable RR tracker)
If FLAGWRD2 bit 14 (SRCHOPTN) = 0, end job
Inhibit interrupts
Call "CALLDGCH" in 6 seconds
Release interrupt inhibit
If RADMODES bit 14 (REMODFLG) = 1, end job
TDEC1 = TIMENOW + K:1.5SECS
Perform "LEMCONIC"
RLMSRCH = _RATT

```
```

TSv = VATT
TDEC1 = TAT
Perform "CSMCONIC"
LOSDESRD = unit(RATT - RLMSRCH)
VXRCM = unit(unitVATT..* RATT)

```

```

If NSRCHPNT = 0:
RRTARGET = [REFSMMAT] LOSDESRD
If NSRCHPNT = 1:
UXVECT = unit(VXRCM * LOSDESRD)
UYVECT = unit(LOSDESRD * UXVECT)
RRTARGET = [REFSMMAT] unit(K:OFFSTFAC UYVECT + LOSDESRD)
If NSRCHPNT > 1:
UXVECTPR = UXXVECT
UYVECTPR = UGYVECT
UXVECT = unit(K:SIN60DEG UYYECTPR + K:COS60DEG UXVECTPR)
UYYEECT = unit(K:COS60DEG UYYECTPR - K:SIN60DEG UXVECTPR)
RRTARGET = [REFSMMAT] unit(K:OFFSTFAC UYVECT + LOSDESRD)
Inhibit interrupts
If RR designate routines are being used, terminate other user
when he reaches "STDESIG"
Switch RADMODES bit 15 (CDESFLAG) to 1
Perform "RRDESSM"

```
RNAV - 29
```

    If RADLIMCHK }=2\mathrm{ 2: (not within limits)
    Perform "ALARM" with TS = 005278
    Inhibit interrupts
    Remove any calls to "CALLDGCH" from waitlist
    Proceed to "ENDOFJOB"
    OMEGCALC TANGNB
TANGNB
Perform "RRNB" (get LOS vector in nav. base coordinates)
OMEGDISP = arccos TS z
Proceed to "ENDOFJOB"
CALLDGCH If FLAGWRDO bit 7 (RNDVZFLG) = 0, end task
Establish "DATGDCHK" (pr25)
End task
DATGDCHK If bit 4 of channel 33=0: (RR data good)
DATAGOOD = K:ALL1S
Inhibit interrupts
If RR designate routines are running, terminate them
when they reach "STDESIG"
Proceed to "ENDOFJOB"
If NSRCHPNT = 6, proceed to "LRS24.1"
NSRCHPNT = NSRCHPNT + 1
Proceed to second step of "LRS24.1"

```
If RADMODES bit 10 (DESIGFLG) \(=1\), proceed to "R29.LOS"
Inhibit interrupts (note:"R29" will not work because ofthe anomaly described under
Switch RADMODES bit 10 (DESIGFLG) to 1 "R29DPAS2" on page RNAV - 35)
Switch bit 14 of channel 12 to 0 (disable tracker)
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
Switch FLAGWRDO bit 1 (OLDESFLG) to 0
Perform "SETRRECR"
If RADMODES bit 12 (ANTENFLG)= 1:
Call "PREPOS29" in 0.01 second
Switch RADMODES bit 11 (REPOSMON) to 1
Proceed to "NOR29NOW"
Establish "R29REMOJ" (pr21)
Switch RADMODES bit 10 (DESIGFLG) to 0
Switch RADMODES bit 14 (REMODFLG) to 1
Proceed to "NOR29NOW"
R29.LOS TS \({ }_{t}=\) TIMENOW - PIPTIME\(\underline{T} S=\underline{R C S M}-\underline{R}+T S_{t}(\underline{V C S M}-\underline{V})\)
If FLAGWRD2 bit 12 (LOSCMFLG) = 1, proceed to "NOR29NOW"
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 1
LOSSM = TS
LOSVDTd4 \(=\mathrm{K}: .5\) SECB17 (\(\underline{\mathrm{V} C S M}-\underline{\mathrm{V}}\))
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
If FLAGWRDO bit 1 (OLDESFLG) = 1, proceed to "NOR29NOW"
Inhibit interrupts
Switch FLAGWRDO bit 1 (OLDESFLG) to 1RNAV - \(3 i\)
```

    TS = 100
    If PIPCTR > 0, TS = 4
    Call "BEGDES29" in TS centiseconds
    Release interrupt inhibit
    Proceed to "NOR29NOW"
    R29REMOJ Call "REMODE" in 0.01 second
Perform "RADSTALL"
End job
PREPOS29 RDES = -\frac{1}{2}
Perform "RRTONLY"
Switch RADMODES bit 11 (REPOSMON) to 0
End task
R29READ Establish "R29RDJOB" (pr26)
Delay 2 seconds
If FLAGWRD3 bit 9 (READRFLG) = 1, proceed to "R29READ"
End task
R29RDJOB If FLAGWRD3 bit 11 (NOR29FLG) = 1, proceed to "ENDRRD29"
If RADMODES bit 2 (AUTOMODE) = 1, proceed to "ENDRRD29"
Perform "RRRDOT"
Perform "RADSTALL"
If RADGOOD = 0, proceed to "ENDRRD29"
TS
Inhibit interrupts
TS CDUTI}=CDU (t
TS CDUS }=\mp@subsup{CDUS}{S}{

```
```

    TS CDUy }=\mp@subsup{CNDU}{y}{
    TS CDUz}=\mp@subsup{CDUZ}{z}{
    TS CDUx }=\mp@subsup{CDUX}{x}{
    R29RANGE Perform "RRRANGE"
Perform "RADSTALL"
If RADGOOD = 0:
If FLLAGNRD5 bit 10 (RNGSCFLG) = 0, proceed to "ENDRRD29"
Switch FLAGNRD5 bit 10 (RNGSCFLG) to 0
Proceed to "R29RANGE"
Inhibit interrupts
RM
RM
MKTIME = TS
TANGNB

```

```

    AIG = TS CDUy
    AMG = TS CDUz
    AOG = TS CDUx
    TRKMKCNT = 1
    Release interrupt inhibit
    End job
    ENDRRD29 TRKMKCNT = 0
Switch FLAGWRD3 bit 9 (READRFLG) to 0

```
 RNAV - 33

End job
```

BECDES29 Establish "R29DODES"
(pr21)
Delay 0.5 second
If RADMODES bit 10 (DESIGFLG) = 0, end task
If FLAGNRD2 bit 12 (LOSCMFLG) = 1:
Delay 0.01 second
Proceed to third line of "BEGDES29"
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 1
Proceed to "BEGDES29"
R29DODES TANG = 1
If TANG > 0, TSsm = LOSSM
If TANG = 0:
LOSSM = LOSSM + LOSVDTd4
TSsm = LOSSM + LOSVDTd4
TS
If TANG > 0:
Inhibit interrupts
TS CDUT }=\mp@subsup{CDU}{t}{
TS CDUS }=\mp@subsup{\textrm{CDU}}{\textrm{s}}{
ANG = (CDU
Perform "QUICTRIG"
Perform "SMTONB"

```
RNAV - 34
\[
\begin{aligned}
& \text { ULOSNB }=\text { [SMNBMAT] TS } \text { LOSSM } \\
& \text { If TANG }=0 \text {, proceed to "R29DPAS2" } \\
& \text { Inhibit intermupts } \\
& \text { TANG }=0 \\
& \mathrm{TS}_{\text {cost }}=\cos _{\mathrm{sp}} \mathrm{TS}_{\text {CDUT }} \\
& T_{\text {sint }}=\sin _{\text {sp }} T S_{\text {CDUT }} \\
& \mathrm{TS}_{\text {sins }}=\sin _{\mathrm{sp}} \mathrm{TS}_{\text {CDUS }} \\
& \mathrm{TS}_{\text {coss }}=\cos _{\mathrm{sp}} \mathrm{TS}_{\text {CDUS }} \\
& T S m=T S_{\text {coss }} T S_{\text {cost }} \text { ULOSNB }_{z}-T S_{\text {sint }} \text { ULOSNB }_{y}+T_{\text {cost }} T_{\text {sins }} \text { ULOSNB }_{x} \\
& T S m=2 \mathrm{TSm} \text { (cosine of angle between actual LOS and radar LOS) } \\
& \text { If } T S=+1: \quad(T S=+1 \text { for positive overflow of } T S m) \\
& \text { Switch bit } 14 \text { of channel } 12 \text { to } 1 \text { (self track enable) } \\
& \text { Release interrupt inhibit } \\
& \text { Proceed to second step of "R29DODES" } \\
& \text { R29DPAS2 } \\
& \text { TANG }_{0}=T S_{\text {coss }} \text { ULOSNB }_{x}-T S_{\text {sins }} \operatorname{ULOSNB}_{z} \\
& T S_{m}=T S_{\text {sint }} T S_{\text {sins }} \operatorname{ULOSNB}_{x}+T S_{\text {cost }} \operatorname{ULOSNB}_{y}+T S_{\text {coss }} T S_{\text {sint }} U L O S N B_{z} \\
& \text { SHAFTCMD }=K: \text { R29GAIN TRUNNCMD }{ }_{0} \text { (note: This is an anomaly which } \\
& \text { makes "R29" inoperable. } \\
& \text { TRINNNCMD }{ }_{0}=K: R 29 G A I N ~ T S m \quad \text { The instruction should be } \\
& \text { "SHAFTCMD }=\mathrm{K}: \text { R29GAIN TANGO") } \\
& \text { If bit } 4 \text { of channel } 33=1 \text { : (RR tracker not locked on) } \\
& \text { Perform "RROUT" } \\
& \text { Switch FLAGWRD2 bit } 12 \text { (LOSCMFLG) to } 0 \\
& \text { End job } \\
& \text { Switch RADMODES bit } 10 \text { (RRDESFLG) to } 0 \\
& \text { Switch bit } 2 \text { of channel } 12 \text { to O (disable RRCDU Error Counters) } \\
& \text { Switch FLAGWRD3 bit } 9 \text { (READRFLG) to } 1 \\
& T S=100
\end{aligned}
\]

If PIPCTR > \(0, \mathrm{TS}=4\)
Call "R29READ" in TS centiseconds
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
End job
WLINIT \(p=W R E N D P O S\)
\(\mathrm{v}=\mathrm{WRENDVEL}\)
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
\(\mathrm{p}=\mathrm{WSURFPOS}\)
\(\mathrm{v}=\mathrm{WSURFVEL}\)
\(\mathrm{s}=\mathrm{WSHAFT}\)
\(\mathrm{t}=\mathrm{WTRUN}\)
\([W]=\left[\begin{array}{lllllllll}\mathrm{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & v & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & v & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & v & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\)
Switch FLAGWRD5 bit 1 (RENDWFLG) to 1
TRKMKCNT \(=0\)
Return
LGCUPDTE LGRET = return address
Perform "INCORP1"
R22DISPR \(=\mid\) DELTAX \(_{0} \mid\)
R22DISPV \(=\left|\underline{D E L T A X}_{1}\right|\)
If R22DISPR > RMAX or if R22DISPV > VMAX:
Proceed to "R22LEM96" (get astronaut OK)

ASTOK Perform "INCORP2"
Return via LGRET
INCORP1 EGRESS = return address

If FLAGWRD 5 bit 9 (DMENFLG) \(=0, \mathrm{ZI}_{2}=0\)
\(T S=\) VARIANCE \(+\underline{Z} I_{0} \cdot \underline{Z} I_{0}+\underline{Z} I_{1} \cdot \underline{Z} I_{1}+\underline{Z} I_{2} \cdot \underline{Z} I_{2}\)
GAMMA \(=1 /(\sqrt{\text { VARIANCE TS }}+\mathrm{TS})\)
Proceed to "NEWZCOMP"
\[
\begin{aligned}
& \underline{O M E C A}_{1}=\underline{Z I}_{0}\left[\begin{array}{l}
W_{41} W_{51} W_{61} \\
W_{4} W_{51} \\
W_{42} W_{52} W_{62} \\
43 W_{53}
\end{array}\right]+\underline{Z I}_{1}\left[\begin{array}{l}
W_{1} W_{53} W_{6} \\
W_{4} W_{5} W_{64} \\
W_{46} W_{56} W_{66}
\end{array}\right]+\underline{Z I}_{2}\left[\begin{array}{l}
W_{47} W_{57} W_{67} \\
W_{4} W_{5} W_{5} W_{68} \\
W_{49} W_{59} W_{69}
\end{array}\right]
\end{aligned}
\]

If FLAGWRD5 bit 9 (DMENFLG) \(=0\), \(\mathrm{OMEGA}_{2}=0\)
\(\underline{D E L T A X}_{\mathrm{O}}=\underline{O M E G A}_{0}\) DELTAQ / TS
DELTAX \(_{1}=\underline{O M E G A}_{1}\) DELTAQ / TS
DELTAX \(_{2}=\underline{O M E G A}_{2}\) DELTAQ / TS
Return via EGRESS

NEWZCOMP Set \(T S_{1}\) to the largest \(\left|\underline{Z} I_{i}\right| \quad(i=0,1,2)\)
\(\mathrm{TS}_{2}=\) (number of leading zeros in \(T S_{1}\)) - 2
Shift each \(\mathrm{ZI}_{i}\) left by \(\mathrm{TS}_{2}\) places (\(i=0,1,2\))
Proceed to "INCOR2-3" (effect of \(\mathrm{TS}_{2}\) taken into account in subsequent scaling shifts)
INCORP2 EGRESS = return address

> Perform "INTSTALL" (wait until orbital integration is free)
> OMEGAM \(_{0}=\) GAMMA OMEGA \(_{0}\)
> OMEGAM \(_{1}=\) GAMMA OMEGA 1
> OMEGAM \(_{2}=\) GAMMA OMEGA \(_{2}\)
> Switch FLGWRD10 bit 7 (REINTFLG) to 1
> (Assure that this job retains control of the integration routines even in case of a restart)
> \(\left[\begin{array}{lll}W_{11} & W_{21} & W_{31} \\ W_{12} & W_{22} & W_{32} \\ W_{13} & W_{23} & W_{33}\end{array}\right]=\left[\begin{array}{lll}W_{11} & W_{21} & W_{31} \\ W_{12} & W_{22} & W_{32} \\ W_{13} & W_{23} & W_{33}\end{array}\right]-\left[\begin{array}{cc}Z I_{0} \\ 2 I_{0} \\ 2 I_{0} \\ 2\end{array}\right]\) (OMEGAM \(0_{x}\), OMEGAM, OMAEGAM
> \(\left[\begin{array}{lll}W_{41} & W_{51} & W_{61} \\ W_{42} & W_{52} & W_{62} \\ W_{43} & W_{53} & W_{63}\end{array}\right]=\left[\begin{array}{lll}W_{41} & W_{51} & W_{61} \\ W_{42} & W_{52} & W_{62} \\ W_{43} & W_{53} & W_{63}\end{array}\right]-\left[\begin{array}{ll}Z_{0} \\ Z_{0} \\ Z I I_{0} \\ Z I_{0} \\ Z_{z}\end{array}\right] \quad\left(\right.\) OMEGAM \(_{1}, 0\) OMEGAM \(_{1}\), OMEGAM \(_{1}\))

If FLAGWRD5 bit 9 (DMENFLG) \(=0\), skip next step
\(\left[\begin{array}{lll}W_{71} & W_{81} & W_{91} \\ W_{72} & W_{82} & W_{92} \\ W_{73} & W_{83} & W_{93}\end{array}\right]=\left[\begin{array}{lll}W_{71} & W_{81} & W_{91} \\ W_{72} & W_{82} & W_{92} \\ W_{73} & W_{83} & W_{93}\end{array}\right]-\left[\begin{array}{l}Z I_{0} \\ Z I_{0} \\ Z I_{0} \\ Z_{z}\end{array}\right] \quad\left(\right.\) OMEGAM \(_{2}\), OMEGAM \(_{2}\), OMEGAM \(_{2}\))
\(\left[\begin{array}{lll}W_{14} & W_{24} & W_{34} \\ W_{15} & W_{25} & W_{35} \\ W_{16} & W_{26} & W_{36}\end{array}\right]=\left[\begin{array}{lll}W_{14} & W_{24} & W_{34} \\ W_{15} & W_{25} & W_{35} \\ W_{16} & W_{26} & W_{36}\end{array}\right]-\left[\begin{array}{c}Z_{1} \\ Z_{1} \\ Z_{1} \\ Z I_{1} \\ z_{z}\end{array}\right] \quad\) (OMEGAM \(0_{x}\), OMEGAM \(_{O_{y}}\), OMEGAM \(_{O_{z}}\))
\[
\left[\begin{array}{lll}
W_{44} & W_{54} & W_{64} \\
W_{45} & W_{55} & W_{65} \\
W_{46} & W_{56} & W_{66}
\end{array}\right]=\left[\begin{array}{ccc}
W_{44} & W_{54} & W_{64} \\
W_{45} & W_{55} & W_{65} \\
W_{46} & W_{56} & W_{66}
\end{array}\right]-\left[\begin{array}{c}
z_{1} \\
\mathrm{ZI}_{1} \\
\mathrm{ZI}_{1} \\
\mathrm{y}_{\mathrm{z}}
\end{array}\right]\left(\text { OMEGAM }_{1}, 0 \text { OMEGAM }_{1}, \text { OMEGAM }_{1}\right)
\]

If FLAGWRD5 bit 9 (DMENFLG) \(=0\), proceed to "FAZC"
\[
\begin{aligned}
& {\left[\begin{array}{lll}
W_{74} & W_{84} & W_{94} \\
W_{75} & W_{85} & W_{95} \\
W_{76} & W_{86} & W_{96}
\end{array}\right]=\left[\begin{array}{lll}
W_{74} & W_{84} & W_{94} \\
W_{75} & W_{85} & W_{95} \\
W_{76} & W_{86} & W_{96}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{ZI}_{1} \\
\mathrm{ZI}_{1} \\
\mathrm{ZI} \\
\mathrm{ZI}_{1} \\
\mathrm{Z}_{\mathrm{z}}
\end{array}\right]\left(\text { OMEGAM }_{2_{\mathrm{x}}}, \text { OMEGAM }_{2}, \text { OMEGAM }_{2}\right)} \\
& {\left[\begin{array}{lll}
W_{17} & W_{27} & W_{37} \\
W_{18} & W_{28} & W_{38} \\
W_{19} & W_{29} & W_{39}
\end{array}\right]=\left[\begin{array}{lll}
W_{17} & W_{27} & W_{37} \\
W_{18} & W_{28} & W_{38} \\
W_{19} & W_{29} & W_{39}
\end{array}\right]-\left[\begin{array}{l}
\mathrm{ZI}_{2} \\
\mathrm{ZI}_{2} \\
\mathrm{ZI}_{2} \\
z_{z}
\end{array}\right]\left(\text { OMEGAM }_{O_{x}}, 0 \text { OMEAMM }_{O_{y}}, \text { OMEGAM }_{O_{z}}\right)} \\
& {\left[\begin{array}{lll}
W_{47} & W_{57} & W_{67} \\
W_{48} & W_{58} & W_{68} \\
W_{49} & W_{59} & W_{69}
\end{array}\right]=\left[\begin{array}{ccc}
W_{47} & W_{57} & W_{67} \\
W_{48} & W_{58} & W_{68} \\
W_{49} & W_{59} & W_{69}
\end{array}\right]-\left[\begin{array}{c}
Z_{2} \\
Z_{2} \\
\mathrm{ZI}_{2} \\
2 I_{2} \\
z_{z}
\end{array}\right]\left(\text { OMEGAM }_{1_{2}}, \text { OMEGAM } 1_{1}, \text { OMEGAM }_{7}\right. \text {) }}
\end{aligned}
\]

FAZC \(\quad\) TX789 \(=\underline{X} 789+\) DELTAX \(_{2}\)
If FLAGWRD1 bit 8 (VEHUPFLG) \(=1\), perform "MOVEPCSM"
If FLAGWRD1 bit 8 (VEHUPFLG) \(=0\), perform "MOVEPLEM"
\(\underline{T} S=\underline{T D E L T A V}+\) DELTAX \(_{0}\)
(scaling controlled by LMOONFLG, bit 11 of FLAGWRD8)
If overflow:
\[
\begin{aligned}
& \underline{\mathrm{RCV}}=\underline{\operatorname{DELTAX}}_{0}+\underline{\mathrm{RCV}} \\
& \underline{\mathrm{~V} C V}=\underline{\operatorname{DELTAX}}_{1}+\underline{\mathrm{V} C V}
\end{aligned}
\]
```

    (If overflow:)
    Perform "RECTIFY"
    Proceed to "FAZAB3"
    TDELTAV = TS
    TS = \underline{NNUV + \EELTAX }
    If overflow:
        VCV = \underline{ELTAXX }}
        Perform "RECTIFY"
        Proceed to "FAZAB3"
        TNUV = TS
    FAZAB3 If FLAGWRD1 bit 8 (VEHUPFLG) = 1:
Perform "MOVEACSM"
Perform "SVDWN1"
If FLAGWRD1 bit 8 (VEHUPFLG) = 0:
Perform "MOVEALEM"
Perform "SVDWN2"
If FLAGWRD5 bit 9(DMENFLG) = 1:
X789 = TX789
Perform "INTWAKE"
Return via EGRESS
V67CALL If OVFIND = 1, Switch OVFIND to 0
Switch FLAGWRD7 bit 8(V67FLAG) to 0
Perform "INTSTALL"
RNAV - 40

```

WWBIAS \(=\sqrt{\sum\left(W_{71}{ }^{2}+W_{8 i}{ }^{2}+W_{9 i}{ }^{2}\right) \text { for } i=1-9}\),
WWPOS \(=\sqrt{\sum\left(W_{1 i}{ }^{2}+W_{2 i}{ }^{2}+W_{3 i}{ }^{2}\right) \text { for } i=1-9}\)
WWVEL \(=\sqrt{\sum\left(W_{4 i}{ }^{2}+W_{5 i}{ }^{2}+W_{6 i}{ }^{2}\right) \text { for } i=1-9}\)
(rescaled for display)
(if one overflows, all limited to posmax)
If OVFIND \(\neq 0\) :
OVFIND \(=0\)
WWPOS = K:DPPOSMAX
WWVEL = K:DPPOSMAX
WWBIAS = K:DPPOSMAX
If WWPOS > K:FT99999:
WWPOS \(=\mathrm{K}:\) FT99999
Perform "INTWAKE"
\(\mathrm{TS}_{\text {WPOS }}=\) WWPOS
\(T_{\text {WVEL }}=\) WWVEL
\(\mathrm{TS}_{\text {WBIAS }}=\) WWBIAS
Proceed to "GOXDSPF" with TS = K:VO6N99 (WWPOS, WWVEL, WWBIAS)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to next step; other response, repeat this step.)

If \(T S_{\text {WVEL }}-\) WWVEL \(+\mathrm{TS}_{\text {WPOS }}-\) WWPOS \(+\mathrm{TS}_{\text {WBIAS }}-\) WWBIAS \(\neq 0\) (crew input)
Switch FLAGWRD7 bit 8 (V67FLAG) to 1
If FLAGWRD7 bit 8 (VG7FLAG) \(=0\), proceed to "ENDEXT"
\(T S_{0}=\) WWPOS (double precision - rescaled for internal use)
TS \({ }_{1}=\) WWVEL (double precision)
\(\mathrm{TS}_{2}=\) WWBIAS (double precision - rescaled for internal use)
```

If FLAGWRD8 bit 8 (SURFFLAG) = 1:
WSURFPOS = TS O - single precision
WSURFVEL = TS 1 single precision
WTRUN = TS 2 single precision
WSHAFT = TS 2 single precision
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
Proceed to "ENDEXT"
WRENDPOS = TS O single precision
WRENDVEL = TS 1 single precision
WTRUN = TS 2 single precision
WSHAFT = TS 2 single precision
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
Proceed to "ENDEXT"

```
```

DSPRRLOS Establish "RRLOSDSP"
(pr05)
Change priority to 04g
Perform "GOXDSPFR" with TS = K:V16N56 (RR-AZ,RR-ELEV)
(Any response, switch bit 5 of EXTVBACT to 0
and end job.)
Perform "BLANKET" with TS = 00004g (Blank R3)
End job
RRLOSDSP}\mp@subsup{TGS}{1}{}=\mp@subsup{CDUG}{t}{
TS
Perform "RRNBMPAC"
TS
TS a}=T
COSTH = TS 権 • K
SINTH = K
Perform "ARCTRIG"
If THETA < 0, THETA = 1 + THETA
RR-ELEV = THETA
SINTH = TS a - K
COSTH = TS (a
Perform "ARCIRIG"
If THETA < 0, THETA = 1 + THETA
RR-AZ = THETA
Delay 1 second
If bit 5 of EXTVBACT = 1, proceed to "RRLOSDSP"
Proceed to "ENDEXT"

```
 RNAV - 43

ALPHAV: See ORBI section.
ANG: See COOR section.
AOG, AIG, AMG: Single precision storage for ICDU angles, scaled B-1 in units of revolutions and stored in two's complement form.
\(\underline{B V E C T O R}_{0}\) : Double precision vector defining the resolution of a navigation measurement into corrections to the position components of the state vector and the W-matrix; scaled B1 and unitless or scaled B2 in units of meters per centisecond. Scaling is changed depending on whether BVECTOR \(_{0}\) or BVECTOR \(_{1}\) has the largest unscaled magnitude. That term is then normalized and BVECTOR \({ }_{0}\), BVECTOR, DELTAQ and VARIANCE are rescaled by the same amount.

BVECTOR \(_{1}\) : Double precision vector defining the resolution of a navigation measurement into corrections to the velocity components of the state vector and the W-matrix; scaled B21 in units of meters. Scaling change is described in BVECTOR \({ }_{0}\).

BVECTOR \(_{2}\) : Double precision vector defining the resolution of a navigation measurement into corrections to the Rendezvous Radar position biases (shaft and trunnion) and the \(R R\) components of the W-matrix; scaled B25 in units of meters.
\(\operatorname{CDU}_{t}\), CDU \(_{s}\) : See RADR section.
CDU: See COOR section.
CDUD: See DAPA section.
COSTH: See COOR section.
CSTH: See CONC section.
DATAGOOD: Single precision display register used in Routine 24 to indicate to the astronaut that the RR has acquired a target.
\[
\text { RNAV - } 44
\]

DELTACSM, DELTALEM: See RCVCSM in ORBI section.
DELTAQ: Double precision difference between measured and predicted values of a navigation measurement; range measurement scaled B29 (earth) or B27 (moon) in units of meters; range-rate measurement scaled B30 (earth) or B28 (moon) in units of meters squared per centisecond; RR position angle measurement scaled B29 (earth) or B27 (moon) in units of meters. Scaling change described in BVECTOR \(_{0}\).

DELTAX \(_{0}\) : Double precision position correction vector scaled B29 (earth) or B27 (moon) in units of meters.

DELTAX \({ }_{1}\) : Double precision velocity correction vector, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

DELTAX \(_{2}\) : Double precision Rendezvous Radar position bias correction vector (shaft and trunnion with third component zero) scaled B5 (earth) or B3 (moon) in units of radians.

DESCOUNT: See RADR section.
DNRADATA \(_{i}\) : See RADR section.
DSPTEM1: Temporary storage cell used mainly for display interface purposes.
EGRESS: Single precision octal return address storage cell.
GAMMA: Double precision weighting factor in update of W-matrix, scaled B4O in units of meters \({ }^{-2}\) or B48 in units of centiseconds squared per meter \({ }^{4}\).
GENRET: Single precision octal return address storage cell.
K:.5SECB17: Double precision constant stored as \(50 \times 2^{-17}\) scaled
in units of centiseconds. Equation value 50.
\(\mathrm{K}: 1.5\) SECS: Double precision constant stored as \(150 \times 2^{-28}\) in units of centiseconds.

K:1dSQRT3: Double precision constant stored as 0.5773502, scaled BO and unitless. Equation value: 0.5773502.
\[
\text { RNAV - } 45
\]

K:2PId8: Double precision constant stored as \(3.141592653 \times 2^{-2}\) scaled B3 and unitless. Equation value: 6.283185306.
K: 30DEG: Double precision constant stored as 0.083333333 , scaled BO in units of revolutions. Equation value: 0.083333333. (Equivalent to 30 degrees.)
K: 30DGRES: Double precision constant stored as 0.083333333 , scaled BO in units of revolutions. Equation value: 0.083333333 . (Equivalent to 30 degrees.)
K: 3SECONDS: Double precision constant stored as \(300 \times 2^{-28}\) scaled B28 in units of centiseconds. Equation value: 300. (Equivalent to 3.0 seconds.)
K:600SEC: Double precision constant stored as \(60000 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 60000. (Equivalent to 10 minutes.)
K:ALL1S: Single precision constant stored as \(11111 \times 2^{-14}\), scaled B14 and unitless. Equation value: 11111.
K:COS15DEG: Double precision constant stored as \(0.96593 \times 2^{-1}\), scaled B1 and unitless. Equation value: cosine of 15 degree.
K:COS60DEG: Double precision constant stored as 0.5, scaled BO and unitless. Equation value: 0.5.
K:DPPOSMAX: Double precision constant stored as 377778377778 •
\(\mathrm{K}: \mathrm{FHNM}\) : Double precision constant stored as \(740800 \times 2^{-20}\), scaled B20 in units of meters. Equation value: 740800. (Equivalent to 400 nautical miles.)
K:FT99999: Double precision constant stored as \(30479 \times 2^{-19}\), scaled B19 in units of meters.
K:HALFSEC: Double precision constant stored as \(50 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 50.
\(\mathrm{K}:\) IMUVAR: Double precision constant stored as \(10^{-6} \times 2^{12}\), scaled \(\mathrm{B}-12\) in units of radians squared. Equation value: \(10^{-6}\).
K:K.01: Double precision constant stored as .01, scaled BO. Used to convert output from "LAT-LONG" from units of meters to meters/100.
K:MAXTRIES: Single precision constant stored as \(60 \times 2^{-14}\), scaled B14 and unitless. Equation value: 60.

K:OFFSTFAC: Double precision constant stored as 0.05678 , scaled \(B O\) and unitless. Equation value: 0.05678.
K:ONEDEG: Double precision constant stored as 0.00277777, scaled BO in units of revolutions. Equation value 0.00277777. (Equivalent to one degree.)
K:ONESEK: See ATTM section.
K: RANGCONV : Double precision constant stored as \(2.859024 \times 2^{-3}\), scaled B3 in units of meters per count. Equation value: 2.859024. (Equivalent to 9.38 feet per count or 2.859 meters per count.)
K: RDOTCONV: Double precision constant stored as \(-0.0019135344 \times 27\), scaled B-7 in units of meters per centisecond per count. Equation value: - 0.0019135344 . (Equivalent to -0.6278 fps or -0.19135 meters per second per count.)
K: RR29GAIN: Single precision constant stored as -0.53624 , used to convert from units of radians to units of revolutions as well as to apply a gain to the designated output. Scaled B-1 in units of revolutions per radian. Equation value: 1.68465/2T.
K:SIN60DEG: Double precision constant stored as 0.86603 , scaled BO and unitless. Equation value: 0.86603.
K:SQRT2: Double precision constant stored as 0.005523436 , scaled B8 and unitless. Equation value: 1.414.
K:TENDEG: Double precision constant stored as 0.02777777 , scaled BO in units of revolutions. Equation value: 0.02777777. (Equivalent to 10 degrees.)
K:TENSEC: Double precision constant stored as \(1000 \times 10^{-28}\) scaled B28 in units of centiseconds. Equation value: 1000. (Equivalent to 10 seconds.)
K:THREEDEG: Double precision constant stored as 0.008333333 , scaled BO in units of revolutions. Equation value: 0.008333333. (Equivalent to 3.0 degrees.)
K: UNITX, K:UNITY, K:UNITZ: Double precision constant unit vectors, scaled B1 and unitless. Equation value: (1, 0, 0), (0, 1, 0), and (\(0,0,1\)), respectively.
\[
\text { RNAV - } 47
\]

LGRET: Single precision octal return address storage cell.
LMPOS: Double precision temporary storage vector of the LM position, scaled B29 in units of meters.

LMVEL: Double precision temporary storage vector of the LM velocity. scaled B7 in units of meters per centisecond.

LOSCOUNT: See RADR section.
LOSDESRD: Double precision desired line-of-sight vector from the LM to the CSM, a unit vector scaled B1 and unitless.

LOSSM: Double precision LOS vector, scaled B24 in units of meters. LOSVDTd4: Double precision LOS vector derived from \(\frac{1}{2}\) second of LOS velocity, scaled B24 in units of meters.

LOSVEL: Double precision velocity vector of CSM with respect to LM, scaled B7 in units of meters per centisecond.

LS21X: Single precision octal return address storage cell.
MKTIME: Double precision time at which a mark incorporation is begun and IMU and RR position angles are read from the CDU, scaled B28 in units of centiseconds.

MLOSV: Double precision magnitude of the LOS vector, scaled B29 in units of meters if FLAGWRDO bit \(7=0\), scaled B2O otherwise. (See RNAV - 8)

MODREG: See DATA section.
MUDEX: See CONC section.
N49FLAG: Single precison flag to control the delay in "R22LEM96".
[NBSMMAT]: See COOR section.
NCSMVEL: Double precision velocity vector for the velocity after a plane change in routine "ORBCHGO", scaled B7 (earth) or B5 (moon) in units of meters per centisecond.
\[
\text { RNAV - } 48
\]

NEWPOS: Double precision position vector for the state prior to a plane change maneuver, scaled B29 (earth) or B27 (moon) in units of meters.

NEWVEL: Double precision velocity vector for the state prior to a plane change maneuver, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

NSRCHPNT: Single precision counter to direct the search pattern in routine 24 to one of its six options, scaled B14 and unitless.

NUVCSM, NUVLEM: See RCVCSM in ORBI section.
OMEGA \(_{0}\) : Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the position components of the state vector and W-matrix; scaled B39 in units of meters or B43 in units of meters cubed per centisecond, for no "NEWZCOMP".

OMEGA \(_{1}\) : Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the velocity components of the state vector and W-matrix; scaled B2O in units of meters squared per centisecond or B24 in units of meters cubed per centisecond squared, for no "NEWZCOMP".

OMEGA \(_{2}\) : Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the Rendezvous Radar position biases and the RR components of the W-matrix; scaled B25 in units of meters, for no "NEWZCOMP".

OMEGAM \(_{0}\), OMEGAM \(_{1}\), OMEGAM \({ }_{2}\) : Double precision product of GAMMA with OMEGA \({ }_{0}\), \(\mathrm{OMEGA}_{1}\), and \(\underline{O M E G A}_{2}\), with variable scaling and units.

OMEGDISP: Double precision angle between line-of-sight vector and LM +Z axis, scaled \(B O\) in units of revolutions.

OPTION1, OPTION2: See DATA section.
OPTIONX \(_{0}\), OPTIONX \(_{1}\) : See EXVB section.

OVFIND: Single precision cell which is set to some non-zero value if an overflow occurs.

P21ALT: Value of ALT K:K. 01 computed in "P21SAVE" for (optional) display in K 1 of N 91 , scale factor B 29 , units (meters/100): see K:K. 01 .

P21BASER: Nalue of P21 "base" vector for position, scale factor B29 (earth) or B27 (moon), units meters (earth/moon). Loaded after completion of intergration to specified input time, and used to initialize the integration if bit 11 (P21FLAG) of FLAGWRDO \(=1\), thus permitting computation time to be saved if it is desired to iterate about a point which is a number of orbital integration time steps removed from the "permanent" CSM/LM state vector.

P21BASEV: Value of P21 "base" vector for velocity, scale factor B7 (earth) or B5 (moon), units meters/centisecond. See P21BASER.

P21GAM: Value of flight path angle computed in "P21VSAVE" for (optional) display in R3 of N91, scale factor BO, units revolutions.

P210RIG: Single precision cell used to determine scaling pertaining to either earth or moon centered vectors; value of 0 (earth), 2 (moon) scaled B14.

P21TIME: Cell used to retain time information, scale factor B28, units centiseconds. Used in P21 to contain the time tag of P21BASER and P21BASEV, and to permit the incrementing of the time for which the N34 display is generated.

P21VEL: Double precision storage for the magnitude of the predicted velocity of the vehicle (crew option CSM or LM) at the time specified in Noun 34, scaled B7 in units of meters/centisecond.

PBODY: See ORBI section.

PHI: Double precision angle between the LOS and the \(Z\) nav. base axis, scaled BO in units of revolutions.

PIPCTR: See SERV section.
POINTVSM: See SERV section.
R: See SERV section.
R22DISPR, R22DISPV: Double precision registers for display of navigation update to position and velocity, scaled B29 and B7 in units of meters and meters per centisecond respectively. (Listing memonics R22DISP and R22DISP+3).

R65CNTR: Single precision number of passes at six second intervals to be accomplished of routine 65, scaled B14 and unitless.

RADGOOD, RADMODES: See RADR section.
RANGEVAR: Double precision, pad loaded variance expected in measured range, scaled B-12 and unitless. Previously a fixed memory constant with an equation value of 0.0033333 squared.

RANGRDOT: Double precision word used to store DNRADATA \(_{1,2}\) for downlink use.
RATEVAR: Double precision, pad loaded variance expected in measured range rate, scaled \(B-12\) and unitless. Previously a fixed memory constant with an equation value of 0.0043333 squared.

RATT: See ORBI section.
RCSM: See SERV section.
RCV: See CONC section.

RCVCSM, RCVLEM: See ORBI section.
RDOTM: Double precision measured range rate, scaled B7 in units of meters per centisecond.
[REFSMMAT] : See COOR section.
REPOSCNT: Single precision cell used as a counter for limiting the number of calls to integration in R21, scaled B14.

REPOSTM: Double precision storage used to save the time of the state vectors used in the previous RR target vector calculation, scaled B28 in units of centiseconds.
RLMSRCH: Double precision LM position vector scaled B29 in units of meters.
RM: Double precision magnitude of measured range, scaled B29 in units of meters. Also used in routine 29 as two single precision storage cells (\(\mathrm{RM} \mathrm{M}_{\mathrm{O}}\) and \(\mathrm{RM}_{1}\)) for downlink. They are identical to DNRADATA \(_{1}\) and DNRADATA \({ }_{2}\), respectively.
RMAX: Maximum value of position update allowed without astronaut approval, scaled B19 in units of meters. (Single precision)
RR-AZ: Double precision angle measured from the \(X-Z\) nav base plane to the RR LOS vector, scaled BO in units of revolutions.
RRBORSIT: Double precision measured line-of-sight vector, a unit vector scaled B1, unitless and expressed in nav, base coordinates.

RRECT: See CONC section.
RR-ELEV: Double precision angle measured from the \(Z\) nav. base axis to the projection of the \(R R\) LOS vector in the \(X-Z\) nav. base plane, scaled BO in units of revolutions.

RRLIMCHK: See RADR section.
RRSHAFT: Double precision measured value of Rendezvous Radar shaft angle, scaled BO in units of revolutions.

RRT ARGET: See RADR section.
RRTRUN: Double precision measured value of Rendezvous Radar trunnion angle, scaled BO in units of revolutions.
RSUBC: Double precision CSM position storage vector used in the "ORBCHGO" routine, scaled B29 (earth) or B27 (moon) in units of meters. RSUBL: Double precision LEM position storage vector used in the "ORBCHGO" routine, scaled B29 (earth) or B27 (moon) in units of meters.
\[
\text { RNAV - } 52
\]

RVARMIN: Single precision, pad loaded minimum expected value of VARIANCE in a range measurement, scaled B12 in units of meters squared. Changed by the program to a trip? l e precision value scaled B4O in units of meters squared. Previously a fixed memory constant with an equation value of 8.1 squared meters squared or 27 squared feet squared.

RVEC: See CONC section.
RXZ: Double precision component of the line-of-sight vector in the IM X-Z plane, scaled B29 (earth) or B27 (moon) in units of meters.

SAMPLSUM: See RADR section.
SCAXIS: See ATTM section.
SHAFTCMD: An alternate mnemonic for \(T R U N N C M D_{1}\), see RADR section.
SHAFTVAR: Single precision variance associated with the measured value of the Rendezvous Radar shaft angle, scaled B-12 in units of radians squared.

SINTH: See COOR section.
SINTHETA: Double precision sine of the RR trunnion angle, scaled B1 and unitless.
[SMNBMAT]: See COOR section.
SNTH: See CONC section.
SRCHTIME: Double precision timebase for RR search routine, scaled B28 in units of centiseconds.

T: See CONC section.
\(\mathrm{TANG}_{0,1}\) : See RADR section.
TANGNB \(_{0,1}\) : See RADR section.
TAT: See ORBI section.
TC: See RCVCSM description in ORBI section.
TDEC1: See ORBI section.
TDELTAV, TNUV: See ORBI section.

TETLEM: See RCVCSM in ORBI section.
THETA: See COOR section.
THETAD: See ATTM section.
TIG: See BURN section.
TIMEHOLD: See RADR section.
TIMENOW: See EXVB section.
TRKMKCNT: Single precision count of number of navigation updates made during P20 or P22, scaled B14 and unitless. Cell also used in R29 to incicate data storage for downlink; 1 - data stored, 0 - data not stored.

TRUNNCMD \(_{0}\) : See RADR section.
TRUNVAR: Single precision variance associated with the measured value of the \(R R\) trunnion angle, scaled \(B-12\) in units of radians squared.

TX789: Temporary storage for updated X789 vector.
UCSM: Double precision unit vector of the estimated CSM position at the orbit change maneuver point, scaled \(\mathrm{B}_{1}^{-1}\) and unitless.

ULC: Computed line-of-sight vector, a unit vector scaled B1.
ULOSNB: Double precision unit vector of the RR LOS in nav. based coordinates, scaled B1 and unitless.

V: See SERV section.
VARIANCE: Triple precision variance associated with a navigation measurement, scaled B40 in units of meters squared or B42 in units of meters \({ }^{4}\) per centisecond squared. Scaling changed as described in BVECTOR in this section.

VATT: See ORBI section.
VCSM: See SERV section.
VCV: See CONC section.
VCVCSM, VCVLEM: See RCVCSM description in ORBI section.

VMAX: Maximum value of velocity update allowed without astronaut approval, scaled B7 in units of meters per centisecond, single precision.

VRECT: See CONC section.
VSUBC: Double precision CSM velocity storage vector used in the "ORBCHGO" routine scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

VVARMIN: Single precision, pad loaded minimum expected value of range rate measurement variance, scaled B-12 in units of meters squared per centisecond squared. Changed by the program to a double precision value scaled B4 in the same units. Previously a fixed memory constant with an equation value of 0.0013 squared meters squared per centisecond squared or 0.44 squared feet squared per second squared.

VXRCM: Double precision unit vector defining the CSM orbital plane for the \(R R\) search routine, scaled \(B 1\) and unitless.
[W]: Double precision "error transition matrix," a 9x9 matrix (whose last three rows and columns are not always maintained) defined such that the covariance matrix E equals \(W W^{T}\). The individual elements of the matrix are denoted by two subscripts, the first indicating the row, the second indicating the column. The first three rows are scaled B19 in units of meters; the middle three rows are scaled BO in units of meters per centisecond; the last three rows are scaled B-5 in units of radians. Because of LGC limitations on vector manipulations, the elements of the W-matrix are stored in the following order:
\begin{tabular}{cccccc}
Address & \begin{tabular}{c}
Standard \\
Notation
\end{tabular} & Address & \begin{tabular}{c}
Standard \\
Notation
\end{tabular} & Address & \begin{tabular}{c}
Standard \\
Notation
\end{tabular} \\
\(W+0\) & \(W_{11}\) & \(W+54\) & \(W_{41}\) & \(W+108\) & \(W_{71}\) \\
\(W+2\) & \(W_{21}\) & \(W+56\) & \(W_{51}\) & \(W+110\) & \(W_{81}\) \\
\(W+4\) & \(W_{31}\) & \(W+58\) & \(W_{61}\) & \(W+112\) & \(W_{91}\) \\
\(W+6\) & \(W_{12}\) & \(W+60\) & \(W_{42}\) & \(W+114\) & \(W_{72}\) \\
\(W+8\) & \(W_{22}\) & \(W+62\) & \(W_{52}^{42}\) & \(W+116\) & \(W_{82}\) \\
\(W+10\) & \(W_{32}\) & \(W+64\) & \(W_{62}\) & \(W+118\) & \(W_{92}\) \\
\(W+12\) & \(W_{13}\) & \(W+66\) & \(W_{43}\) & \(W+120\) & \(W_{73}\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(W+46\) & \(W_{38}\) & \(W+100\) & \(W_{68}\) & \(W+154\) & \(W_{98}\) \\
\(W+48\) & \(W_{19}\) & \(W+102\) & \(W_{49}\) & \(W+156\) & \(W_{79}\) \\
\(W+50\) & \(W_{29}\) & \(W+104\) & \(W_{59}^{4}\) & \(W+158\) & \(W_{89}\) \\
\(W+52\) & \(W_{39}^{29}\) & \(W+106\) & \(W_{69}\) & \(W+160\) & \(W_{99}^{89}\)
\end{tabular}

In other words:
\[
[W]=W+\left[\begin{array}{lllllllll}
0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 \\
2 & 8 & 14 & 20 & 26 & 32 & 38 & 44 & 50 \\
4 & 10 & 16 & 22 & 28 & 34 & 40 & 46 & 52 \\
54 & 60 & 66 & 72 & 78 & 84 & 90 & 96 & 102 \\
56 & 62 & 68 & 74 & 80 & 86 & 92 & 98 & 104 \\
58 & 64 & 70 & 76 & 82 & 88 & 94 & 100 & 106 \\
108 & 114 & 120 & 126 & 132 & 138 & 144 & 150 & 156 \\
110 & 116 & 122 & 128 & 134 & 140 & 146 & 152 & 158 \\
112 & 118 & 124 & 130 & 136 & 142 & 148 & 154 & 160
\end{array}\right]
\]

WHCHREAD: Single precision code to indicate which navigation measurement is being incorporated into a state vector scaled Bl4 (l-range, 2 -range rate, 3-shaft, and 4-trunnion).

WRENDPOS, WRENDVEL, WSURFPOS, WSURFVEL, WSHAFT, WTRUN: Single precision initial estimates for the uncorrelated variance in spacecraft position, spacecraft velocity in flight and on the surface, and Rendezvous Radar position estimates, scaled \(\mathrm{Bl} 4, \mathrm{BO}, \mathrm{Bl} 4, \mathrm{BO}, \mathrm{B}-5, \mathrm{~B}-5\) in units of meters, meters per centisecond, meters, meters per centisecond, radians and radilans respectively.

WWPOS, WWVEL, WWBIAS: Double precision square roots of the sums of the squares of the X-position, X-velocity, and shaft elements of the Wmatrix, scaled B19, B0, and B5, respectively, in units of meters, meters per centisecond, and radians.

X789: Double precision vector containing the best estimate of bias necessary to offset RR position error, scaled B5 (earth) or B3 (moon) in units of radians.

XNB \(_{r e f}\), YNB \(_{r e f}, Z_{N B} B_{r e f}:\) Double precision unit vectors in the directions of the LM \(+X,+Y\) and \(+Z\) navigation base axes respectively, scaled Bl and unitless; expressed in reference coordinates.

XPREV: See CONC section.
ZIO, ZII, ZI \(2:\) Double precision intermediate vector quantities in the navigation measurement updates of the state vector and the W-matrix, scaled B2O in units of meters or B24 in units of meters squared per centisecond, before "NEWZCOMP" shifts.

```

PREREAD Establish "LASTBIAS"
(pr21)
Perform "PIPASR" skipping first step (PIPTIME1 unchanged)
Switch FLAGWRD7 bits 6 (V37FLAG) and 5 (AVEGFLAG) to }
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 0
Establish "NORMLIZE"
(pr22)
Delay 2 seconds
READACCS TIME5 = TIME5 - 1 sign(TIME5 - 16377)
Perform "PIPASR"
Establish "SERVICER"
(pr20)
Switch bit 9 of channel 11 to 1 (test connector output)
If FLAGWRD7 bit 5 (AVEGFLLAG) = 0:
AVEGEXIT = "AVGEND"
End task
If FLAGWRD6 bit 8 (MUNFLAG) = 1:
PIPCTR = 7
Call "R10,R11" in 0.2 second
Call "READACCS" in 2 seconds
End task
PIPASR PIPTIME1 = TIMENOW
DELV
DELV y = 0
DELV利采
TEM = - PPIPA
DELV = PPIPA (single precision into more significant
PIPA = 0 (-0)
PGUIDE = PIPTIME1 - PIPTIME

```
```

    GDUTEMP = CDU
    PIPATMP = DELV
    Return
    NORMLIZE If FLAGWRD6 bit 8 (MUNFLAG) = 1:
    R}=[\mathrm{ REFSMMAT] RN1
    Perform "MUNGRAV" with TSr = R
    V = [REFSMMAT] VN1
    UHYP = unit(VCSM * RCSM)
    If FLAGNRD6 bit 8 (MUNFLAG) = 0:
Perform "CALCGRAV" with TSSr = RNN
Inhibit interrupts
Perform "COPYCYC" skipping first two steps (MASS unchanged)
Release interrupt inhibit
End job
SERVICER 1dPIPADT = K:PRI031
Perform "1/PIPA"
ABDELV = |\ELV
ABDVCONV = K:KPIP ABDELV
MASS1 = MASS
If FLAGWRD8 bit 8 (SURFFLAG) = 0:
TSv = K:DPSVEX
If FLGWRD10 bit 13 (APSFLAG) = 1, TSv = K:APSVEX
MASS1 = MASS1 + MASS ABDVCONV / TSv
DVTOTAL = DVTOTAL + K:KPIP1 |DELV |
Perform "QUICTRIG" with ANG = CDUTEMP
XNBPIP = (GOSIGA COSMGA, SINMGA, - SINIGA COSMGA)

```
```

ZNBPIP}\mp@subsup{z}{z}{}= COSIGA COSOGA - SINIGA SINOGA SINMGA
ZNBPIP
ZNBPIP
YNBPIP = ZNBPIP * XNBPIP

```

AVERAGEG If FLAGWRD6 bit 8 (MUNFLAG) \(=1\), perform "RVBOTH" If FLAGWRD6 bit 8 (MUNFLAG) \(=0\), perform "CALCRVG" Perform "COPYCYC"

PIPATMP \(=0\)
Switch FLAGWRD2 bit 11 (STEERSW) to 0 If FLAGWRD7 bit 7 (IDLEFLAG) \(=0\) :

If FLAGWRD6 bit 2 (AUXFLAG) \(=1\) :
Proceed to "DVMON"
Switch FLAGWRD6 bit 2 (AUXFLAG) to 1
Switch DAPBOOLS bit 14 (USEQRJTS) to 1
Proceed to "SERVOUT"
Switch FLAGWRD6 bit 2 (AUXFLAG) to 0
Switch DAPBOOLS bit 14 (USEQRJTS) to 1
Proceed to "SERVOUT"
DVMON If ABDELV \(\leq\) DVTHRUSH:
If \(\operatorname{DVCNTR}=0\) :
If "COMFAIL" is already active:
\begin{tabular}{l}
(determined from \\
restart tables)
\end{tabular}
Proceed to "SERVOUT"
```

    (If ABDELV \leq DVTHRUSH:)
    DVCNTR = DVCNTR - 1
    Inhibit interrupts
    Perform "STOPRATE"
    Switch DAPBOOLS bit 14 (USEQRJTS) to 1
    Proceed to "SERVOUT"
    Switch FLAGWRD2 bit 11 (STEERSW) to 1
    DVCNTR = 1
    If FLGWRD10 bit 13 (APSFLAG) = 0:
        If bit 9 of channel 32=1:
        Switch DAPBOOLS bit 14 (USEQRJTS) to 0
        Proceed to "SERVOUT"
    Switch DAPBOOLS bit 14 (USEQRJTS) to 1
    SERVOUT Release interrupt inhibit
Perform "1/ACCS"
Proceed to AVEGEXIT
COPYCYC Inhibit interrupts
MASS = MASS1
GDT = GDT1
PIPTIME = PIPTIME1
VN = VN1
RN = RN1
Return
SERVEXIT End job

```
```

AVGEND 1dPIPADT = less significant half of PIPTIME
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
Perform "PIPFREE"
Switch bit 9 of channel 11 to 0 (test connector output)
Switch FLAGWRD3 bit 11 (NOR29FLG) to 1
Switch FLAGWRD7 bit 11 (SWANDISP) to 0
Switch FLAGWRD6 bit 8 (MUNFLAG) to 0
Perform "AVETOMID"
Switch FLAGWRD7 bit 6 (V37FLAG) to 0
Proceed to "V37RET"
SERVIDLE AVEGEXIT = "SERVEXIT"
Switch FLAGNRD7 bit 7(IDLEFLAG) to 1
Switch FLGNRD11 to 400008 (bypass all LR updates)
If FLAGWRD6 bit 8 (MUNFLAG) = 1:
Maintain Group 2 in restart logic
Maintain Group 5 in restart logic
Establish "GOTOPOOH" in Group 4 of restart logic
Clear all other restart logic
Proceed to "WHIMPER"
CALCRVG DELVREF = K:KPIP1 DELV [REFSMMAT]

```

```

    Perform "CALGGRAV" with TSr = RN1
    ```

```

    Return
    ```

CALCGRAV RMAGSQ \(=|\underline{T S r}|^{2}\)
\(\underline{\text { UNITR }}=\) unitTSr
If RTX2 \(=0: \quad\) (earth orbit)
TSsel \(=\underline{K}:\) UNITZ \(\cdot \underline{U N I T R}\)
\[
T S=\left(1-5 \mathrm{TSsel}^{2}\right) / 20
\]

TSrdr \(=K:\) RESQ \(/\) RMAGSQ
UNITGOBL \(=\) TSrdr K:20J TS UNITR + TSrdr K:2J TSsel K

If RTX2 \(=2: \quad\) (Iunar orbit)
\[
\underline{G} D T 1=K: \operatorname{mMUDT}_{R T X 2} \text { UNITR } / \text { RMAGSQ }
\]

Return
\(\underline{\text { RVBOTH }} \quad \underline{R} 1 S=\underline{R C S M}+\operatorname{PGUIDE} \quad\left(\underline{V C S M}+\frac{1}{2} \underline{G C S M}\right)\)
Perform "MUNGRAV" with TSr = R1S
\(\underline{V} 1 S=\underline{V C S M}+\frac{1}{2}(\underline{G C S M}+\underline{G D T} 1)\)
\(\underline{\operatorname{GCSM}}=\underline{\text { GDT1 }}\)
\(\underline{R C S M}=\underline{R} 1 S\)
\(\underline{\mathrm{V}} \mathrm{CSM}=\underline{\mathrm{V}} 1 \mathrm{~S}\)
\(\underline{T S d v}=K: K P I P 2 \underline{D E L V}\)
\(\underline{\mathrm{R}} 1 \mathrm{~S}=\underline{\mathrm{R}}+\operatorname{PGUIDE}\left(\underline{\mathrm{V}}+\frac{1}{2} \underline{T} S d v+\frac{1}{2} \underline{G D T}\right)\)
Perform "MUNGRAV" with TSr = R1S
\(\underline{\mathrm{V}} 1 \mathrm{~S}=\underline{\mathrm{V}}+\underline{T} S d v+\frac{1}{2}(\underline{G D T}+\underline{G D T 1})\)
\(\mathrm{ABVEL}=|\underline{\mathrm{V}} 1 \mathrm{~S}|\)
HDOTDISP \(=\underline{\text { UNITR }} \cdot \underline{\text { V1S }}\)
DELVS \(=\underline{R} 1 S * \underline{W M}\)
HCALC \(=|\underline{R} 1 \mathrm{~S}|-\) LANDMAG
Froceed to "MUNRETRN"
```

    MUNGRAV UNITR = unitTSr
        RMAGSQ = |TSr |}\mp@subsup{|}{}{2
        GDT1 = K:mMUDT 2 UNITR / RMAGSQ
        Return
    MUNRETRN If FLGWRD11 bit 15 (LRBYPASS) = 1, proceed to "COPYCYC1"
    If FLGWRD11 bit 9 (XORFLG) = 0:
    If HCALC <K:30kft:
            Switch DAPBOOLS bit 9 (XOVINHIB) to 1
                    Switch FLGWRD11 bit 9 (XORFLG) to 1
    If FLGWRD11 bit 10 (NOLRREAD) = 1, proceed to "CONTSERV"
    If FLGWRD11 bit 3 (NO511FLG) = 1, proceed to "UPDATCHK"
    If FLGWRD11 bit 11 (PSTHIGAT) = 1:
    If bit 7 of channel 33=0: (IR in position #2)
        Proceed to "UPDATCHK"
    Perform "ALARM" with TS = 005118
    Proceed to "CONTSERV"
    If TTF S - RPCRTIME or XNBPIP 
    If bit 6 of channel 33=0: (LR in position #1)
        Proceed to "UPDATCHK"
    Perform "ALARM" with TS = 005118
        Proceed to "CONTSERV"
    Establish "HIGATJOB" (pr32)
    Switch FLGWRD11 bits 11 (PSTHIGAT) and 10 (NOLRREAD) to 1
    Proceed to the second step of "CONTSERV"
    HIGATJOB Perform "LRPOS2"
    Perform "RADSTALL"
    SERV - 7
    ```
```

    If RADGOOD = 0: (bad return from "RADSTALL")
    POSALARM
Perform "PRIOLARM" with TS = 005238
(If terminate, end job; if proceed, proceed to "P1CHK";
if other response, proceed to "P2CHK".)
End job
POSGOOD Change job priority to 23
Perform "SETPOS 2"
Switch FLGWRD11 bit 6 (LPOS2FLG) to }
Switch FLGWRD11 bit 10 (NOLRREAD) to 0
End job
P1CHK Switch FLGWRD11 bit 3(N0511FLG) to 1
If bit 6 of channel 33 = 0: (LR in position \#1)
Switch FLGWRD11 bit 10 (NOLRREAD) to 0
End job
Proceed to "POSGOOD"
P2CHK If bit 7 of channel 33=0: (LR in position \#2)
Proceed to "POSGOOD"
Proceed to "POSALARM"
UPDATCHK If FLGWRD11 bit 10 (NOLRREAD) = 1, proceed to "CONTSERV"
If FLGWRD11 bit 4 (RNGEDATA) = 0, proceed to "VMEASCHK"
TSh = HBEAMNB [XNBPIP]
TS = RADSKAL TSh - (V1S + DELVS)
If RADMODES bit 9 (ALTSCBIT) = 0, TS = SKALSKAL TS
DELTAH = K:HSCAL (TS + HMEAS) TSh - UNITR - HCALC
If FLGWRD11 bit 11 (PSTHIGAT) = 0, proceed to "NOREASON"
TS = |DELTAH | - DELQFIX - HCALC / 8
LRLCTR = LRLCTR + 1

```
```

    If TS\geq 0: (DELTAH too large)
    If LRRCTR }=0\mathrm{ and LRLCTR - LRRCTR < 4:
        Switch FLGWRD11 bit 1 (HFLSHFLG) to 1
        LRRCTR = LRLCTR
        Proceed to "VMEASCHK"
    Sisitch FLGWRD11 bit 1 (HFLSHFLG) to 0
    NOREASON If FLGWRD11 bit 8 (LRINH) = 0, proceed to "VMEASCHK"
If HCALC \geq LRHMAX, proceed to "VMEASCHK"
TS = DELTAH LRWH (LRHMAK - HCALC) / LrHMAX
TSr = R1S + TS UNITR
Perform "MUNGRAV"
R1S = TSr
VMEASCHK If FLGWRD11 bit 7 (VELDATA) = 0, proceed to "VALTCHK"
ANG = LRCDU
Perform "QUICTRIG"
If VSELECT = 0, TSuv = VZBEAMNB
If VSELECT = 1, ISuv = VYBEAMNB
If VSELECT = 2, ISuv = VXBEAMNB
Perform "NBTOSM"
j = 2 VSELECT
VBEAM = [NBSMMAT] TSuv
TSgv = GDT (LRVTIME - PIPTIME) / K: 2SECb28
TS = TSSg + + + K: KPIP1 PIPTEM + DELVS
VEST = TS - VBEAM
DELTAV = K:VSCAL j VMEAS - VEST
TS = |DELTAV | - (|TS | / 8 + K:7.5fps)

LRMCTR $=$ LRMCTR +1
If $\mathrm{TS} \geq 0: \quad$ (DELTAV too large)
If LRSCTR $\neq 0$ and LRMCTR - LRSCTR $<4$ :
Switch FLGWRD11 bit 2 (VFLSHFLG) to 1
LRSCTR $=$ LRMCTR
If VSELECT $=0$, switch FLGWRD11 bit 12 (VXINH) to 1
Proceed to "VALTCHK"
Switch FLGWRD11 bit 2 (VFLSHFLG) to 0
If FLGWRD11 bit 12 (VXINH) = 1:
Switch FLGWRD11 bit 12 (VXINH) to 0
If VSELEGT $=2$, proceed to "VALTGHK"
If FLGWRD11 bit 8 (LRINH) $=0$, proceed to "VALTCHK"
If ABVEL $\leq$ LRVF:
$T S=L^{2} W V F_{V S E L E C T}$
Proceed to "WSTOR"
If LRVMAX $\leq$ ABVEL:
$T S=0$
Proceed to "WSTOR"
$T S=L_{\text {LRWV }}^{\text {VSELECT }}$ (LRVMAX - ABVEL $) /$ LRVMAX
WSTOR If MODREG $>$ 64:
$\mathrm{TS}=\mathrm{LRWVFF}$
$T S_{d p}=(T S, 0)$
$\underline{T S v}=\underline{\mathrm{V}} 1 \mathrm{~S}+\mathrm{TS} \mathrm{dp}^{\text {DELTAV VBEAM }}$
$\underline{V} 1 S=\underline{T} S$
Proceed to "VALTCHK"

VALTCHK If FLGWRD11 bit 5 (READVEL) $=0$ :
If ABVEL $\geq \mathrm{K}: 6 \mathrm{KPT}$ dSEC, proceed to "CONTSERV" Switch FLGWRD11 bit 5 (READVEL) to 1

Establish "LRVJOB"
CONTSERV Inhibit interrupts
Switch FLGWRD11 bits 4 (RNGEDATA) and 7 (VELDATA) to 0

COPYCYC1 If FLAGWRD3 bit 9 (READRFLG) $=1$ or FLAGWRD3 bit 11 (NOR29FLG) $=1$ or RADMODES bit 13 (RCDUOBIT) $=1$ or RADMODES bit 2 (AUTOMBIT) $=1$ :

Switch RADMODES bit 10 (DESIGBIT) to 0
Proceed to "NOR29NOW"
If RADMODES bit 14 (REMODBIT) and bit 11 (REPOSBIT) $=0$ :
Proceed to "R29"
NOR29NOW Release interrupt inhibit
HCAIC $=|\underline{R 1 S}|-$ LANDMAG
HCALC1 $=$ HCALC
ALTBITS $=\mathrm{K}:$ ALTCONV. HCALC
$\underline{U} H Z P=$ unit( $\underline{U N I T R}$ * UGYYP)
$\underline{R N} 1=\underline{R} 1 \mathrm{~S}$ [REFSMMAT] $\left(=[\text { REFSMMAT }]^{T}\right.$ R1S $)$
$\underline{\text { VN1 }}=\underline{\text { V }} 1 \mathrm{~S}$ [REFSMMAT]
$\mathrm{TS}=\mathrm{K}:$ ARCONV1 $|\underline{\mathrm{UN} I T R} * \underline{\mathrm{~V}} 1 \mathrm{~S}|^{2} /|\underline{\mathrm{R}} 1 \mathrm{~S}|$
Inhibit interrupts
$\underline{R U N I T}_{\mathrm{sp}}=\underline{U N I T R}^{\text {UN }}$
DALTRATE $_{\mathrm{sp}}=\mathrm{TS}$
$\underline{\mathrm{R}}=\underline{\mathrm{R}} 1 \mathrm{~S}$
$\underline{V}=\underline{V} 1 S$
Return (to caller of "RVBOTH")

```
Perform "LRALT"
 Perform "RADSTALL"
 If RADGOOD = 0:
 If FLAGWRD5 bit 10 (RNGSCFLG) = 1:
 Switch FLAGWRD5 bit 10 (RNGSCFLG) to 0
 End job
 STILBADH = 2
 End job
 If STILBADH> 0:
 STILBADH = STILBADH - 1
 End job
Inhibit interrupts
HMEAS = SAMPLSUM
MKTIME = PIPTIME1
AIG = CDUTEMP
AMG = CDUTEMP
AOG = CDUTEMP
Switch FLGWRD11 bit 4 (RNGEDATA) to 1
Release interrupt inhibit
End job
LRVJOB Call "RDGIMS" in 0.17 second
TSn = 5
If VSELECT = 0, perform "LRVELX"
```

```
 If VSELECT = 1, perform "LRVELZ"
 If VSELECT = 2, perform "LRVELY"
 Perform "RADSTALL"
 If RADGOOD = 0:
 STILBADV = 2
 Proceed to "ENDLRV"
 If STILBADV > 0:
 STILBADV = STILBADV - 1
 Proceed to "ENDLLV"
 Inhibit interrupts
 VMEAS = SAMPLSUM
 LRVTIMDL = LRVTIME
 LRCDUDL = LRCDU
 Switch FLGWRD11 bit 7 (VELDATA) to 1
ENDLRV If VSELECT = 0, VSELECT = 3
 VSELECT = VSELECT - 1
 End job
RDGIMS LRVTIME = TIMENOW
LRCDU = CDU
PIPTEM = PIPA
End task
```

R10,R11 If FLAGWRD7 bit 5 (AVEGFLAG) $=0$, end task

```
If PIPCTR = 0: (PIPTIME + 1.95 seconds)
 If FLGWRD11 bit 15 (LRBYPASS) = 0
 and bit 10 (NOLRREAD) = 0:
Establish "LRHJOB"
 (pr32)
 Skip next two (2) steps
PIPCTR1 = PIPCTR - 1
Call "R10,R11" in 0.25 second
If FLGWRD11 bit 1 (HFLSHFLG) = 1:
 Invert bit 5 of DSPTAB}1
 Switch bit 15 of DSPTAB }11\mathrm{ to 1 (flag for output)
 If FLGWRD11 bit 2 (VFLSHFLG) = 1:
 Invert bit 3 of DSPTAB
 Switch bit 15 of DSPTAB11 to 1 (flag for output)
If FLAGWRD9 bit 9 (LETABORT) = 0:
 Proceed to "LANDISP"
If MODREG = 71, proceed to "LANDISP"
If bit 4 of channel 30=0: (abort stage)
 Proceed to "P71A"
If MODREG = 70, proceed to "LANDISP"
If bit 1 of channel 30=0: (abort)
 Proceed to "P70A"
Proceed to "LANDISP"
```

LANDISP PIPCTR = PIPCTR1
If FLAGWRD7 bit 11 (SWANDISP) = 0, proceed to "DISPRSET"
LADQSAVE $=$ "ALTROUT1"
If IMODES 33 bit $7=1$, LADQSAVE $=$ "ALTOUT1"
If bit 6 of channel $30=1$, proceed to "DISPRSET"
(inertial data display discrete is reset)
If FLAGWRD1 bit 14 (DIDFLAG) $=1$, proceed to "SPEEDRUN"
Switch FLAGWRD1 bit 14 (DIDFLAG) to $1^{\text {. }}$
Switch IMODES 33 bit 7 to 0 (display rate first)
If FLAGWRDO bit 2 (R1OFLAG) $=1$, end task
Switch bit 8 of channel 12 to 1 (set inertial data display moding discrete)
TRAKLATV $=0$
TRAKFWDV $=0$
LATVMETR $=0$
FORVMETR $=0$
Call "INTLZE" in 0.08 second
End task
INTLZE Switch bit 2 of channel 12 to 1 (enable RRCDU error counter)
Switch IMODES 33 bit 8 to 1
End task
SPEEDRUN $D T_{s p}=$ TIMENOW - PIPTIME
$\underline{V V E C T}=\frac{1}{2} \operatorname{GDT} \mathrm{DT} / \mathrm{K}: 1 \mathrm{SEC}$
$\underline{V V E C T}_{s p}=\underline{V V E C T}+\underline{V}+K: K P I P 1 b 5(\underline{P I P A}+\underline{P I P A T M P})$
Delay 0.04 second
If FLAGWRDO bit 2 (R10FLAG) $=1$, proceed to LADQSAVE
$\underline{T S}=\underline{V V E C T}^{+ \text {DELVS }_{m S}}$

```
VHY = TSS • UHYP
VHZ = TS • UHZP
LATVEL = K:VELCONV (M32 VHY + M22 VHZ)
FORVEL = K:VELCONV (M32 VHZ - M22 VHY)
If |FORVEL}|< K:MAXVBITS
 If TRAKFWDV FORVEL \geq0:
 TS = FORVEL - FORVMETR
 If TRAKFWDV = 0 and FORVEL FORVMETR <0:
 If }|TS|>K:MAXVBITS, TS = K:MAXVBITS signTS
 If TRAKFWDV FORVEL < 0:
 TS = - FORVMETR
 TRAKFWDV = 0
If |FORVEL| \ K:MAXVBITS:
 If TRAKFWDV FORVEL \geq0:
 TS = K:MAXVBITS signFORVEL - FORVMEITR
 i = 1 signFORVEL
 If TRAKFWDV FORVEL < 0:
 TS = K:MAXVBITS signFORVEL
 i = 0
 TRAKFWDV = i
CDUSCMD = TS
FORVMETR = FORVMETR + TS
If |LATVEL|<K:MAXVBITS:
 If TRAKLATV LATVEL \geq0:
 TS = LATVEL - LATVMETR
```

```
(If |LATVEL|< K:MAXVBITS:)
 (If TRAKLATV LATVEL\geq0:)
 If TRAKLATV = O and LATVEL LATVMETR < O:
 If }|TS|>K:MAXVBITS, TS = K:MAXVBITS signTS
 If TRAKLATV LATVEL < 0:
 TS = - LATVMETR
 TRAKLATV = 0
If }|\mathrm{ LATVEL | \ K:MAXVBITS:
 If TRAKLATV LATVEL \geq0:
 TS = K:MAXVBITS signLATVEL - LATVMETR
 i = 1 signLATVEL
 If TRAKLATV LATVEL < O:
 TS = K:MAXVBITS signLATVEL
 i = 0
 TRAKLATV = i
CDUTCMD = TS
LATVMETR = LATVMETR + TS
Switch bits 11 and 12 of channel 14 to 1
Proceed to LADQSAVE
ALTROU'1 Switch IMODES33 bit 7 to 1
Switch bit 2 of channel 14 to 1 (select altitude rate display)
ALTRATE = DT DALTRATE + K:ARCONV RUNIT - VVECT
ALTM = - ALTRATE
If ALTM \leq 0, ALTM = ALTRATE with bit 15 switched to 1
Switch bit 3 of channel 14 to 1 (altitude meter activity bit)
```

    End task
    ALTOUT1
Switch IMODES33 bit 7 to 0
Switch bit 2 of channel 14 to 0 (select altitude display)
TS = K:ARTOA
If ALTBITS \geq0:
ALTSAVE = ALTBITS
ALTBITS = - 1
TS = K:ARTOA2 DT
ALTSAVE = ALTSAVE + TS ALTRATE
If ALTSAVE <0, ALTSAVE = 0
If ALTSAVE > K:altlim:
ALTSAVE = 2 }\mp@subsup{2}{}{15}(\mathrm{ fractional part of ALTSAVE / 2 }\mp@subsup{}{}{15}
ALTM = ALTSAVE
Switch bit 3 of channel 14 to 1 (altitude meter activity bit)
End task
DISPRSET If FLAGWRDO bit 2(R10FLAG) = 0:
If IMODES33 bit 8 = 1:
Switch bit 2 of channel 12 to 0
Switch bit }8\mathrm{ of channel }12\mathrm{ to 0
Switch bits }7\mathrm{ and }8\mathrm{ of IMODES33 to 0
Switch FLAGWRD1 bit 14(DIDFLAG) to 0
End task

```
\begin{tabular}{|c|c|}
\hline SETPOS1 & STILBADH \(=2\) \\
\hline & STILBADV \(=2\) \\
\hline & LRLCTR \(=0\) \\
\hline & LRMCTR \(=0\) \\
\hline & LRRCTR \(=0\) \\
\hline & LRSCTR \(=0\) \\
\hline & VSEIECT \(=0\) \\
\hline & \(\underline{A N G}=\left(\right.\) LraLPha \(_{1}\), LRBETA \(\left._{1}, 0\right)\) \\
\hline & Perform "SETPOS" \\
\hline & Return \\
\hline SETPOS2 & \\
\hline & Perform "SETPOS" \\
\hline & Return \\
\hline SETPOS & Perform "CD*TR*GS" \\
\hline & Perform "SMTONB" \\
\hline & VYBEAMNB \(=\) [SMNBMAT] \(\underline{K}\) : UNITY \\
\hline & VXBEAMNB \(=\) [SMNBMAT] K \({ }_{\text {S }}\) UNITX \\
\hline & \(\underline{\text { VZBEAMNB }}=\) VXBEAMNB \(*\) VYBEAMNB \\
\hline & HBEAMNB \(=\) [SMNBMAT] K S HBEAMANT \\
\hline & Return \\
\hline
\end{tabular}

1dPIPADT: See IMUC section.
ABDELV: Single precision magnitude of sensed change in velocity (DELV), scaled B14 in units of centimeters per second.
ABDVCONV: Double precision magnitude of DELV converted to units of meters per centisecond and scaled B5.
ABVEL: Double precision magnitude of velocity for display, scaled B7 in unit.s of meters per centisecond.

AIG, AMG, AOG: Single precision storege for \(\operatorname{CDUTEMP}_{y}, \operatorname{CDUTEMP}_{z}\) and CDUTEMP \(_{\mathrm{x}}\) respectively for downlink purposes.

ALTBITS: Double precision altitude computed for display on the tape-drive altitude meter, scaled B28 in units of Analog-altitudedisplay bits. Set to -1 to indicate that it has not been updated since the last time it was sampled to drive the display.

ALTM: Single precision cell used to provile altitude and altitude rate information to the tape-drive altitude and altitude rate meters, scaled B14 in units of Analog-altitude-display bits or Analog-altitude-rate-display bits. One Analog-altitude-display bii is equivalent to 0.714755 ineters (2.345 feet), and one Analog-altitude-rate-display bit is equivalent to 0.1524 meters per second (0.5 feet per second). Datai is provided to the meters in serial binary form at a 3200 pps rate when bit 3 of channel 14 is set, and bit 2 of channel 14 is set or ieset by the prograni to distinguish between altitude-rate (1) and altitude (O) information.
ALTRATE: Single precision altitude rate calculated for display on the tape-drive altitude rate meter, scaled B14 in units of Analog-altitude-rate-display bits.
ALTSAVE: Double precision storage for previous meaningful value of ALTBITS, scaled B28 in units of Analog-altitude-display bits.
ANG: See COOR section.
AVEGFXIT: Dcuble precision variable address (program notation also AVGEXIT) to branch to the guidance routines specified by whichever program is controlling a burn.

CDU: See IMUC section.
CDUSCMD, CDUTCMD: Single precision cells loaded with values to be transmitted to the Error Counters in the two Rendezvous Radar channels of the Coupling Data Unit (RRCDU), for use in controlling the shaft and trunnion angles of the \(R R\) or for positioning the forward and lateral velocity meters. Information is gated out of " the cells if bits 11 and 12 respectively of channel 14 are set, and the RRCDU Error Counters recognize the information if bit 2 of channel 14 is set. (Error Counters reset to zero whenever bit 2 of channel 14 is reset.) A saturated Error Counter (384 pulses)
corresponds to an \(R R\) drive rate of 10 degrees per second; each bit represents 0.1698 meters per second (0.5571 feet per second) when used to dirive the velocity meters.
CDUTEMP: Single precision vector storage for the reading of the ICDU at the time of a PIPA read, scaled B-1 in units of revolutions and stored in twos complement form.
COSIGA, COSMGA, COSOGA: See COOR section.
DALTRATE: Single precision expected rate of change of ALTRATE, scaled BO in units of Analog-altitude-rate-display bits per centisecond.
DAPBOOLS: See flagword definitions.
DELQFIX: Double precision Landing Radar Data reasonableness test parameter, scaled B24 in units of meters; part of the erasable load.

DELTAH: Double precision difference between the calculated altitude and that measured by the Landing Radar, scaled B24 in units of meters.
DELTAV: Double precision difference between the calculated velocity component and that measured by the Landing Radar, scaled B6 in units of meters per centisecond.
DELV: Double precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second (one PIPA pulise represents one centimeter per second on the LM) and expressed in Platform coordinates.
DELVREF: Double precision sensed-change-in-velocity vector converted to a scaling of B7 in units of meters per centisecond and expressed in the Reference coordinate system.
DELVS: Double precision vector difference between velocity relative to the rotating moon and inertial velocity, scaled B5 in units of meters per centisecond and expressed in the Platform coordinate system.
DSPTAB \({ }_{11}\) : See INTR section.
DT: Single precision time interval from beginning of navigation interval to the time of the generation of the display on the tape-drive metcrs, scaled B14 in units of centiseconds.
DVCNTR: Single precision counter set to determine the length of the tirust monitor, scaled B14 in units of navigation cycles.

DVTHRUSH: Single precision delta-v threshold, scaled B14 in units of centimeters per second; set according to the engine in use.
DVTOTAL: Dauble precision sum of velocity gained, scaled B7 in units of meters per centisecond.

FORVEL: Single precision forward velocity component (Body coordinates) of the LM relative to the rotating moon, scaled B14 in forward velocity display units.

FORVMETR: Single precision storage for the total value of velocity displayed on the Forward velocity meter, scaled B14 in forward velocity display units (see definition of CDUSCMD)

GCSM: Double precision gravity vector at the CSM, scaled B8 in units of meters per centisecond and expressed in the Platform coordinate system.
GDT, GDT1: Double precision gravity vector at the LM, scaled B8 in units of meters per centisecond and expressed in the Platform coordinate system.

HBEAMNB: Double precision unit vector in the direction of the Landing Radar measurement of altitude, scaled B1 and expressed in the Body coordinate system.

HCALC, HCAIC1: Double precision calculated altitude above the landing site radius, scaled B24 in units of meters. HCALC1 is for display purposes.
HDOTDISP: Double precision calculated value of altitude rate, scaled B7 in units of meters per centisecond.
HMFAS: Double precision Landing Radar neasurement of altitude, scaled B28 in units of Landing Radar altitude bits.

IMODES33: See INTR section.
K:1SEC: Single precision constant stored as \(100 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 100.

K:2J: Double precision constant stored as \(3.24692010 \mathrm{E}-3\), scaled BO and unitless. Equation value: \(3 \times 0.0010823067\).
K:20J: Double precision constant stored as \(3.24692010 \mathrm{E}-2\), scaled BO and unitless. Equation value: Ten times K:2J.
K: 2SECb28: Double precision constant stored as \(200 \times 2^{-28}\), program notation \(2 S E C(28)\), scaled B28 in units of centiseconds. Equation value: 200.
K: 30kft: Double precision constant stored as \(1.6768072 \mathrm{E} 7 \times 2^{-24}\), program notation "1-30KFT", scaled B24 in units of meters. Represents \(2^{24}\) - 9144 meters (K:posmaxdp plus one least increment minus 9144 meters). Used to check current altitude against 9144 meters. Equation value: 9144 (Equivalent to 30,000 feet).

K:6KFTdSEC: Single precision constant stored as \(18.288 \times 2^{-7}\), scaled B7 in units of meters per centisecond. Equation valus: 18.288. (Equivalent to 6000 feet per second.)
K:7.5fps: Double precision constant stored as \(0.02286 \times 2^{-6}\), scaled B6 in units of meters per centisecond. Equation value: 0.02286.

K:ALTCONV: Double precision constant stored as \(1.399078846 \times 2^{-4}\), scaled B4 in units of Analog-altitude-display bits per meter. Equation value: 1.399078846. (Equivalent to 0.714756 meters, or 2.345 feet, per bit.)

K:altlim: Single precision constant value of bit 16 in a quantity scaled B14 in units of Analog-altitude-display bits. Equation value: 32768.
K:APSVEX: Single precision constant stored as -3030 . \(\mathrm{E}-2 \times 2^{-5}\), scaled B5 in units of meters per centisecond. Equation value: \(\mathbf{- 3 0 . 3 0}\).

K:ARCONV: Single prccision constant stored as 24.402g, scaled B10 in units of Analog-altitude-rate-display bits / meter per centisecond.. Equation value: 656.125. (Equivalent to 0.1524 meters per second, or 0.5 feet per second, per bit.)
K:ARCONVI: Double precision constant stored as \(656.167979 \times 2^{-10}\), scaled B1O in units of Analog-altitude-rate-display bits / meter per centisecond. Equation value: 656.167979. (Equivalent to \(0.152^{\prime}\) meters per second, or 0.5 feet per second, per bit.)
K:ARTOA: Single precision constant stored as \(0.1066098 \times 2^{-1}\), scaled B1 in units of seconds times Altitude bits / Altitude rate bits. Equation value: 0.1066098. (Equivalent to 0.5 seconds x \(0.5 / 2.345\).)
K:ARTOA2: Single precision constant stored as \(0.0021322 \times 2^{8}\), scalod B-8in units of Altitude bits per centisecond / Altitude rate bits per second. Equation value: 0.0021322. (Equivalent to \(0.01 \times 0.5 / 2.345\).
K:DPSVEX: Single precision constant stored as \(-29.558888^{\circ 8} \times 2^{-5}\), scaled scaled B5 in units of meters per centisecond. Equation value: - 29.5588868

K:HBEAMANT: Double precision vector constant stored as (-0.4687018041 , 0, -0.1741224271), scaled B1 and unitless. Equation value: (\(-0.9374036082,0,-0.3482448542\)). (Altitude beam direction expressed in the LR coordinate system.)
K:HSCAL: Double precision constant stored as -0.3288792 , scaled BO in units of meters per bit. Equation value: - 0.3288792 . (Equivalent to 1.0790 feet per bit.)

K:KPIP: Single precision constant stored as 0.0512 , scaled B-9 in units of meters per centisecond / centimeters per second. Equation value: 0.0001.

K:KPIP1: Double precision constant stored as 0.0128 , scaled B-7 in units of meters per centisecond / centimeters per second. Equation value: 0.0001.

K:KPIP1b5: Double precision constant stored as 0.0512 , scaled B-9 in units of meters per centisecond / centimeters per second. Equation value: 0.0001 .

K:KPIP2: Double precision constant stored as 0.0064 , scaled B-6 in units of meters per centisecond / centimeters per second. Equation value: 0.0001.
K:MAXVBITS: Single precision constant stored as 00547g, scaled B14 in forward/lateral velocity display units. Equation value: 359. (Equivalent, to 61.0 meters per second or 200.0 feet per second.)
\(\mathrm{K}: \mathrm{mMUDT} \mathrm{O}_{\mathrm{O}}\) : Double precision constant stored as \(-7.9720645 \mathrm{E12} \times 2^{-44}\), scaled B44 in units of meters cubed per centisecond. Equation value: -7.9720645 E12. (Equivalent to -200 cs x \(0.3936032 \mathrm{E11} \mathrm{~m}^{3} / \mathrm{cs}^{2}\).)
\(\mathrm{K}: \mathrm{mMUD} 2_{2}\) : Double precision constant stored as \(-9.8055560 \mathrm{E10} \times 2^{-4 / 4}\), scaled 344 in units of meters cubed per centisccond. (Also called -MUDTMUN with a scale factor of B38.) Equation value: -9.8055560 E10. (Equivalent to -200 cs x 0.4902778 E9 meters cubed per centisecond squared.)

K:PRI031: Single precision constant stored as \(31000_{8}\), scaled B8 in units of centiseconds. Equation value: 200.
\(\mathrm{K}: \mathrm{RESQ}:\) Double precision constant stored as \(40.6809913 \mathrm{E} 12 \times 2^{-58}\), scaled B58 in units of meters squared. Equation value: 6,378,165 squared.
K:UNITX, K:UNITY, K:UNITZ: Three double precision vector constants stored as \((0.5,0,0),(0,0.5,0)\) and \((0,0,0.5)\), scaled B1 and unitless. Equation values: \((1,0,0),(0,1,0)\) and (\(0,0,1\)).
\(\mathrm{K}:\) VELCONV: Single precision constant stored as 22316 , scaled B1O in forward/lateral velocity display units / meter per centisecond. Equation value: 588.875. (Equivalent to 0.1698 meters per second, or 0.5571 feet per second, per bit.)
K:VSCAL \({ }_{0}\) : Double precision constant stored as 0.5410829105 , program notation VZSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: \(0.002642006 / 5\). (Equivalent to 0.8668 fps per bit; the " 5 " averages the sum of five samples.)

K:VSCAL \({ }_{2}\) : Double precision constant stored as 0.7565672446 , program notation VYSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: \(0.003694176 / 5\). (Equivalent to 1.212 fps per bit; the "5" averages the sum of five samples.)

K:VSCAL \({ }_{4}\) : Double precision constant stored as -0.4020043770 , program notation VXSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: -0.001962912 / 5. (Equivalent to - 0.644 fps per bit; the " 5 " averages the sum of five samples.)

LADQSAVE: Single precision octal return address storage.
LANDMAG: see DESC section.

LATVEL: Single precision lateral velocity component (Body coordinates; positive to the right when looking forward) of the LM relative to the rotating moon, scaled B14 in forward/lateral velocity units.

LATVMETR: Single precision storage for the total value of velocity displayed on the lateral velocity meter, scaled B14 in forward/ lateral velocity display units.
LRALPHA \(_{1}\), LRALPHA \({ }_{2}\) : Single precision angle from the \(Z\) spacecraft axis to the \(Z I R\) coordinate axis measured in a right hand rotation around the -X spacecraft axis, for \(L R\) positions 1 and 2 respectively, scaled B-1 in units of revolutions and stored in twos complement form.
LRBETA \(_{1}\), LRBETA \(_{2}:\) Single precision angle from the +X spacecraft axis to the \(+\mathrm{X} L R^{2}\) coordinate axis measured in a right hand rotation around the \(-Z L R\) coordinate axis, for \(L R\) positions 1 and 2 respectively, scaled B-1 in units of revolutions and stored in twos complement form.

LRCDU, LRCDUDL: Single precision vector storage for the value of the three ICDU angles at the estimated midpoint of an LR velocity reading, scaled B-1 in units of revolutions and stored in twos complement form. IRCDUDL is for downlink purposes.
LRHMAX: Single precision maximum limit for altitude calculations that are allowed to be updated by the Landing Radar measurement, scaled B14 in units of meters.
LRLCTR: Single precision count of the number of comparisons made between HMEAS and HCALC, scaled B14 and unitless.
LRMCTR: Single precision count of the number of comparisons made between measured velocity and calculated velocity, scaled B14 and unitless.
LRRCTR: Single precision counter used in conjunction with LRLCTR to determine if at least four good comparisons between HMEAS and HCALC have been made since the last unreasonable one, scaled B14 and unitless.
LRSCTR: Single precision counter used in conjunction with LRMCTR to determine if at least four good comparisons between measured velocity and calculated velocity have been made since the last unreasonable one, scaled B14 and unitless.

LRVF: Single precision erasable memory constant representing the velocity at which the velocity update coefficients are changed, scaled B7 in units of meters per centisecond.

LRVMAX: Single precision maximum limit for velocity calculations that are allowed to be updated by the \(L R\) measurement, scaled B7 in units of meters per centisecond.

LRVTIME, LRVTIMDL: Double precision time at the estimated midpoint of the LR velocity sample, scaled B28 in units of centiseconds. LRVTIMDL is for downlink purposes.
LRWH: Single precision weighting factor for the incorporation of LR altitude measurements into the LM state vector, scaled BO and unitless.

LRWV (i = 0,1,2): Single precision weighting factors for LR Z, Y and X a \(\frac{1}{x} i s\) velocity updates, scaled BO and unitless.

LRWVF. (i = 0,1,2): Single precisicn weighting factors for LR Z, Y and X axis velocity updates, scaled BO and unitless.

LRWVFF: Single precision weighting factor for LR velocity updates for P65, P66 and P67, scaled B0 and unitless.

M22, M32: See DAPA section.
MASS, MASS1: Double precision mass of the vehicle, scaled B16 in units of kilograms. Loaded by the astronaut (routine 03) and updated during average-g navigation.

MKTIME: Double precision time of PIPA readings which are associated with the Landing Radar altitude measurement for downlink purposes, scaled B28 in units of centiseconds.

MODREG: See DATA section.
[NBSMMAT]: See COOR section.

PGUIDE: Double precision length of the navigation-guidance period, scaled B28 in units of centiseconds.

PIPA: Single precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second and expressed in the Platform coordinate system. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the Inertial Measurement Unit.

PIPATMP: Single precision vector storage for the current PIPA reading for use by the analog display routines, reset to zero after the current reading is incorporated into the navigation state vector; scaled B14 in units of centimeters per second and expressed in the Platform coordinate system.

PIPCTR: Single precision counter scaled B14 and unitless; used to determine time elapsed from the beginning of the navigation cycle in "R10,R11" and routine 29.

PIPCTR1: Single precision temporary storage for PIPCTR.
PIPTEM: Single precision vector storage for the sensed change in velocity between the beginning of the navigation cycle and the mean time of the LR velocity sample, scaled B14 in units of centimeters per second and expressed in the Platform coordinate system.
PIPTTME: Double precision time of the most recent PIPA read cycle, scaled B28 in units of centiseconds; time at which the average-g state vector is valid.

PIPTTME1: Temporary storage for PIPTIME to avoid changing the downlink state vector until it is updated homogeneously.

R: see DESC section.
R1S: Temporary storage for \(R\) to avoid changing the state vector on the downlink until it is updated homogeneously, scaled B24 in units of meters and expressed in the Platform coordinate system.
RADGOOD, RADMODES: See RADR section.
RADSKAL: Double precision erasable memory quantity representing the LR scale information for high scale radar output, scaled B21 in units of low-scale altitude bits per meter per centisecond; part of erasable load.
RCSM: Double precision position vector of the CSM measured from the center of the earth or moon, program notations R-OTHER and R(CSM), scaled B29 or B24 (descent guidance) in units of meters and expressed in the Reference or the Platform (descent) coordinate system.
[REFSMMAT]: see COOR section.
RMAGSQ: Double precision square of the magnitude of the position vector, scaled B58 (CALCGRAV) or B48 (MUNGRAV) in units of meters squared.

RN: Double precision vector position of the LM measured from the center of the earth or moon, scaled B29 in units of meters and expressed in the Reference coordinate system.

RN1: Temporary storage for \(\mathrm{R}_{\mathrm{N}}\) to avoid changing the state vector on the downlink until it is updated homogeneously.

RPCRTQSW: Double precision required \(X\) component of the \(X\)-body axis in Platform coordinates at the time of LR reposition to position 2, scaled B1 and unitless; part of the erasable load.

RPCRTIME: Single precision value of TTF at which the LR may be repositioned to position 2, scaled B17 in units of centiseconds; part of the erasable load.
RTX1, RTX2: See TRGL section.
RUNIT: Single precision unit vector along the position vector of the LM with respect to the center of the moon, scaled B1, unitless, and expressed in the Platform coordinate system.
SAMPLSUM: See RADR section.
SINIGA, SINMGA, SINOGA: See COOR section.
SKALSKAL: Single precision erasable memory factor by which the correction to the LR data is reduced if the LR is on low range scale, scaled BO and unitless; part of the erasable load.
[SMNBMAT]: see COOR section.
STILBADH, STILBADV: Single precision counters, scaled B14 and unitless.
TEM: Single precision storage for -PIPA, scaled B14 in units of centimeters per second. TEM is used in the R.O.D. computations of the DESC section.

TIMENOW: see EXVB section.
TRAKFWDV: Single precision flag set to 1,0 or -1 to indicate whether the previously computed value of FORVEL exceeded K:MAXVBITS or not, scaled B14 and unitless.

TRAKLATV: Single precision flag set to 1,0 or -1 to indicate whether the previously computed value of LATVEL exceeded \(\mathrm{K}: \mathrm{MAXVBITS}\) or not, scaled B14 and unitless.

TTF: see DESC section.
UHYP: Double precision unit vector normal to the CSM orbital plane, scaled B1 and unitless.

UHZP: Double precision unit local vertical. vector in the forward direction, scaled B1 and unitless.

UNII'GOBL: See BURN section.
UNITR: Double precision unit vector along the vector from the center of the moon or the earth to the LM, program notation UNIT/R/, scaled B1, unitiess and expressed in the Platform or Reference coordinate system.

V: See DESC section.
V1S: Temporary storage for V to avoid changing state vector on the downlink until it is updated homogeneously, scaled B7 in units of meters per centisecond and expressed in the Platform coordinate system.
VBEAM: Double precision unit vector along one of the three Landing Radar velocity measurement directions, scaled B1 and expressed in Platform coordinates at LRVTIME.
VCSM: Double precision inertial velocity vector of the CSM, program notations V-OTHER and V(CSM), scaled B7 in units of meters per centisecond and expressed in the Reference or the Platform (for Descent) coordinate system.
VEST: Double precision projection of calculated velocity onto the particular LR velocity component direction being processed, scaled B6 in units of meters per centisecond.
VHY, VHZ: Single precision lateral and forward components of velocity relative to the rotating moon expressed in the Platform coordinate system (lateral velocity positive to the right when looking forward); scaled B5 in units of meters per centisecond.
VNEAS: Double precision velocity measurement from the LR sampling, scaled B28 in units of Landing Radar velocity bits.

VN: Double precision inertial velocity vector of the LM, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.

VN1: Temporary storage for VN to avoid changing the state vector on the downlink until it is updated homogeneously.

VSEL,ECT: Single precision index used to distinguish among the \(Z(0)\), \(Y\) (1) and X (2) axes of the Landing Radar coordinate system, scaled B14 and unitless.

VVECT: Single precision velocity vector used in the calculation of forward, lateral and vertical velocity components of the analog display, scaled B5 in units of meters per centisecond and expressed in the Platform coordinate system.

VXBEAMNB, VYBEAMNB, VZBEAMNB: Double precision unit vectors along the \(X, Y\) and \(Z\) Landing Radar velocity measurement directions (orthogonal), scaled B1 and expressed in the Body coordinate system.

WM: see DESC section.
XNBPIP, YNBPIP, ZNBPIP: Double precision unit vectors along the X, Y and Z spacecraft axes, scaled B1 and expressed in the Platform coordinate system at PIPTIME.
[XNBPIP]: Double precision matrix with the first row equal to the components of XNBPIP, the second row equal to the components of YNBPIP, and the third row equal to the components of ZNBPIP, scaled B1 and unitless.

UPRUPT
SAMPTIME = TIMENOW
(for noun 65)
\(T S=\) INLINK

INLINK \(=00000_{8}\)
Switch bit 3 of channel 11 to 1 (uplink activity lamp)
TS should be of the form xxxxx kkkkk \(x^{2} x \times x x_{2}\) where five \(x^{\prime}\) s represent the five bit keycode and five \(k\) 's represent the complement of that keycode. If TS is not of this form:

Switch FLAGWRD7 bit 4 (UPLOCKFL) to 1
Resume
TScode \(=\) low 5 bits of TS
If TScode \(=22_{8}: \quad\) (error reset)
Switch FLAGWRD7 bit 4 (UPLOCKFL) to 0
If TScode \(\neq 22_{8}\) :
If FLAGWRD7 bit 4 (UPLOCKFL) \(=1\), resume
Establish "CHARIN"
Set \(\mathrm{MPAC}_{0}\) of "CHARIN" job = TScode
Resume
UPTMFAST If bit 11 of IMODES33 \(=0\) :
Perform "ALARM" with TS \(=01106_{8}\)
Return
DNTMFAST If bit 12 of IMODES33 \(=0\) :
Perform "ALARM" with TS \(=01105_{8}\)
Return
DODOWNTM If bit 7 of channel \(13=1: \quad\) (word order code)
Proceed to address specified in DNTMGOTO

Perform "Cl3STALL"
Set bit 7 of channel 13 to 1
```

| Proceed to address specified in DNTMGOTO
DNPHASE1 SJBLIST = -1
DNECADR = -1
DNTMGOTO = "DNPHASE2"
CTLIST = K:DNTABLE DNLSTCOD
Perform "WOZERO"
Channel 34 = -DNLSTCOD
Channel 35 = K:LOWIDCOD
Resume
DNPHASE2 If DNECADR and SUBLIST are both <0: (control list)
If CTLIST \leq 0:
Go to 4th line of "DNPHASEl"
ADR = E CTLIST
If ADR > 0, CTLIST = CTLIST + 1
If ADR < 0: (end of list)
CTLIST = -CTLIST
ADR = -ADR
DNECADR = ADR
If DNECADR = K:timeadr, perform "WOZERO"
DOWNTYPE = bits 14-12 of DINECADR
If DOWNTYPE < 6, proceed to "FETCH2WD"
If DOWNTYPE = 6, proceed to "DODNPTR"
Proceed to "DODNCHAN"
If DNECADR > 0, proceed to "FETCH2ND"
Proceed to "NEX[INSL"
DODNCHAN i = low }8\mathrm{ bits of DNECADR

```
```

    j = i + l
    DNECADR = -1
    Channel 34 = channel i
    Channel 35 = channel j
    Resume
    FETCH2WD EBANK = bits 11-9 of DNECADR
TS = low }8\mathrm{ bits of DNECADR
DOWNTYPE = DOWNTYPE - I
DNECADR = 2 11 DOWNTYPE + 2 2 EBANK +TS + 2
(putting DOWNTYPE into bits 14-12, EBANK into bits
11-9; making DNECADR negative after DOWNTYPE is
reduced below zero)
ADRI = TS + 140088
ADR2 = TS + 14018
Channel 34 = E ADRI
Channel 35 = E EADR2
Resume
DODNPTR SUBADR = E ENECADR
If SUBADR < O:
SUBLIST = DNECADR (address of subli.st)
i = 0

```

```

        Proceed to "SNAPLOOP"
    SUBLIST = DNECADR
    NEXTINSL SUBADR = E ESUBLIST
If SUBADR > 0, SUBLIST = SUBLIST + I

```
 TELE - 3

If SUBADR \(<0\), SUBLIST \(=-1\)
\(\operatorname{DNECADR}=|S U B A D R|\)
DOWNTYPE \(=\) bits \(14-12\) of DNECADR
If DOWNTYPE <6, proceed to "FETCH2WD"
If DOWNTYPE \(=6\), proceed to "DODNPTR"
Proceed to "DODNCHAN"
SNAPLOOP EBANK = bits 11-9 of SUBADR
\[
\begin{array}{ll}
\text { ADRI }=1401_{8}+\text { low } 8 \text { bits of SUBADR } & (1401 \text { and } 1402 \text { to } \\
\text { compensate for the } \\
\text { ADR2 }=1402_{8}+\text { low } 8 \text { bits of SUBADR } & \text { 5th step of "DODNPTR") } \\
\text { DVTMBUFF } &
\end{array}
\]
\[
j=i+l
\]
\[
\operatorname{DNTMBUFF}_{j}=E_{A D R 2}
\]
\[
i=i+2
\]
\[
\text { SUBLIST }=\text { SUBLIST }+1
\]
\[
\text { SUBADR }=E_{\text {SUBLIST }}
\]
\[
\text { If SUBADR }>0: \quad \text { (continue snapshot) }
\]
\[
\text { SUBADR }=\mid \text { SUBADR } \mid-1
\]
Proceed to "SNAPLOOP"
\[
\text { SUBLIST }=|S U B A D R|-1
\]
\[
\text { DNECADR }=-1
\]
\[
\text { SUBADR }=\text { SUBLIST }
\]
SUBLIST = -I
EBANK = bits 11-9 of SUBADR
\[
A D R I=140 I_{8}+I_{0 w} 8 \text { bits of SUBADR }
\]
\[
\operatorname{ADR} 2=1402_{8}+\text { low } 8 \text { bits of SUBADR }
\]
\[
\text { Channel } 34=\mathrm{E}_{\mathrm{ADRI}}
\]
```

    Channel 35 = E E ADR2
    Resume
    DNDIMPI DUMPLOC = 00000 8
DNTMGOTO = "DNDUMPI3"
Perform "WOZERO"
Channel 34 = K:ERASID
Channel 35 = K:IOWIDCOD
Resume
DNDUMPI3 DNTMGOTO = "DNDUMP1"
Channel 34 = DUMPLOC
Channel 35 = least significant half of TIMENOW
Resume
DNDUMP1 DNTMGOTO = "DNDUMP"
Proceed to "DNDUMP2"
DNDUMP DUMPLOC = DUMPLOC + 2
TS = low }8\mathrm{ bits of DUMPLOC
If TS >0, proceed to "DNDUMP2"
(Otherwise, TS = O and dump is changing banks)
If bit 13 of DUMPLOC = 0:
Proceed to second line of "DNDUMPI"
Proceed to "DNPHASEI"
DNDUMP2 EBANK = bits II-9 of DUMPLOC
TS = low 8 bits of DUMPLOC
ADR2 = 14018
ADRI = 14008 +TS
TELE - 5

```
```

    Channel 34 = E ADRI
    Channel 35 = E ADR2
    Resume
    SVDWN1 R-OTHER = RCV + TDELTAV
V-OTHER = VCV + TNUV
Return
SVDWN2 If FLAGWRD9 bit l (AVEMIDSW) = 0:
RNN = RCV + TDELTAV
VN = VCV + TNUV
PIPTIME = TET
Return
WOZERO Perform "Cl3STALL"
Switch bit 7 of channel }13\mathrm{ to 0 (word order code)
Return

```
TELE - 6

ADR: Single precision temporary storage for the address taken from the control list. If it is negative this indicates the end of a downlist.

ADRI, ADR2: Single precision addresses (without EBANK information) of the two consecutive registers to be transmitted on the downlink.

CTLIST: Single precision address of the next entry in the downlink control list. When the final downlist quantity is read, CTLIST is complemented to cause downlist to bs started again.

DNECADR: Single precision octal address of the first of two consecutive registers to be transmitted on the downlink (in bits 8-1). Bits 14-12 contain a code indicating the type of sample to be taken (see DOWNTYPE, DOWNCNT). Bit 15 is set (DNECADR made negative) to indicate that control is to be returned to the control list.

DNLSTCOD: Single precision index (range 0-5) indicating which of the downlists is to be telemetered, scaled B14 and unitless. Loaded by various programs to select the proper downlist. See K:DNTABLE.

DNTMBUFF: A series of single precision buffer cells used to store a simultaneous "snapshot" of a series of E-memory cells all sampled between two downlink interrupts, thereby making the data time homogeneous.

DNTMGOTO: Single precision octal address controlling the phase of operation of the downlink program.

DOWNTYPE: Variable describing bits 14-12 of DNECADR in the normal downlink mode. If DOWNTYPE = 7, the address in DNECADR is interpreted as that of a channel. If DOWNTYPE is less than 6, the address in DNECADR is interpreted as that of a series of \(N\) consecutive registers (\(N=2\) DOWNTYPE). If DOWNTYPE \(=6\), the address in DNECADR is interpreted as that of a sub-list and control is transferred to the sub-list decoder ("DODNPTR").

DUMPLOC: Single precision E-memory register which contains the cuunter
and ECADR for each dump-word being sent. Bits \(8-1\) provide the relative address within the EBANK; bits 11-9 define the EBANK (propagated from bit 8); bits 13-12. serve as a counter of the number of complete dumps which have occurred. When bit 13 becomes 1 then memory has been dumped twice and the dumping stops.
\(E_{A D R}\) : Single precision E-memory register whose address is in ADR.
EBANK: See MATX section.
IMODES33: See INTR section.
INLINK: Single precision serial input register for receipt of uplink data. When the required fifteen bits of data are received from the uplink decoder, program interrupt \#7 is generated.

K:DNTABLE \((i=0-5):\) Table of six octal starting addresses of the downlink lists.
\begin{tabular}{ll}
i & List address \\
0 & "LMCSTADL" \\
1 & "LMAGSIDL" \\
2 & "LMRENDDL" \\
3 & "LMORBMDL" \\
4 & "LMDSASDL" \\
5 & "LMLSALDL"
\end{tabular}

K:ERASID: Single precision octal constant stored as 01776 . Used as E-memory octal dump downlist I.D. word, loaded in downlink word la.

K:LOWIDCOD: Single precision octal constant stored as 77340 . Loaded into downlist word lb of each of the six downlink lists. \({ }^{8}\) Sometimes referred to as the "sync" bits.

K: timeadr: Single precision constant stored as 77753 g , program notation MINTIME2. Equation value: 000248 , address of TIMENOW.
\(M P A C_{0}\) : See DSKY section.
R-OTHER, V-OTHER: Double precision navigation state vectors of the CSM, scaled B29 and B7 respectively in units of meters and meters/centisecond. See RCSM, VCSM in SERV section.

RCV, VCV: See CONC section.
RN: See SERV section.
PIPTIME: See SERV section.
SAMPTIME: See DSKY section.

SUBADR: Single precision address code word like DNECADR but taken from a sub-list.

SUBLIST: Single precision address of the next entry in a downlink sub-list.

TDELTAV, TNUV: See ORBI section.
TET: Bee ORBI section.
TIMENOW: See EXVB section.
VN: See SERV section.

The LM Guidance Computer (IGC) downlink takes the form of 40-bit words transmitted as a basic rate of 50 words/second (part of a telemetry stream at 51.2 kbps). A "low bit rate" of one-fifth of this transmission rate also exists, although no computer words are included in low bit rate data. Each 40-bit word is divided into four parts:
a) The first bit is the word order code bit, set zero for the first word pair and the fifty-first word pair and one for the other 98 pairs in the standard telemetry cycle.
b) Bits \#2 - \#17 contain the first word of the word pair (bit 15 is in bit \#2, bit 14 in bit \#3, ... bit 1 in bit \#16, and an odd parity bit in bit \#17). The odd parity bit makes the total number of binary "ones" in bits \#2 - \#17 an odd number.
c) Bits \#18 - \#33 contain the second word of the word pair (bit 15 is in bit \#18, bit 14 in bit \#19, ... bit 1 in bit \#32, and an odd parity bit for bits \#18 - \#33 in bit \#33).
d) Bits \#34 - \#40 are the same as bits \#2 - \#8 (bits 15-9 of first word of the word pair), so that the total number of bits in the digital downlink from the computer is a multiple of 8 bits (i.e., \(5 \times 8=40\)).

The computer hardware monitors the period of the telemetry interrupts received from the telemetry system, and rejects the interrupt (takes no action) if the interrupts occur too rapidly. The mechanization requires a computer 100 pps pulse to occur between each accepted telemetry interrupt (which, under normal conditions, only occur once every 20 ms , or at a 50 pps rate). A channel bit (channel 33 bit 12) is set to a binary zero if an interrupt is rejected, and an alarm pattern (\(1105_{8}\)) is also produced.

The convention is established in the program that "bit 15 " is the sign bit (a binary one if quantity negative) and "bit l" is the least significant magnitude bit. Using "a" for the first word of a pair and "b" for the second word, the bit stream would appear as follows:
woc 15a 14a 13a 12a lla 10a 9a 8a 7a 6a 5a 4a 3a 2a la Parity a
15b 14b 13b l2b llb 10 b 9 b 8 b 7 b 6 b 5 b 4 b 3 b 2 b 1b Parity \({ }_{b}\)
15a 14a 13a 12a 11a 10a 9a
(WOC is the "word order code", discussed in item (a) above.)

Most telemetered words have negative numbers expressed in ones complement form, and in general the signs of the most significant and least significant portions will not agree, since the individual portions of a multiple precision quantity are considered generally as separate "words" in the computer arithmetic unit. Several words in the downlist are used as control quantities in the program and have explicit meanings assigned to their individual bits. These words have their sign bits set separately from the rest of the work, and hence are not subject to the same conversion process as other "negative" quantities.

Scaling, units, and definition references for each parameter are contained in the tables.

The downlink program has the capability to sample a selected set of erasable locations essentially at the same time with the contents of these locations stored in a set of unshared erasable to be downlinked when individual telemetry interrupts are received. By this means a time-homogeneous set of downlink information can be obtained provided the program loading the cells involved observes proper restrictions. These selected buffered areas are commonly called "snapshots". The LUMINARY downlists have the following snapshots:

Coast and Align List
AGS Initialization and Update List
Rendezvous and Prethrust List
Orbital Maneuvers List
Descent and Ascent List
Lunar Surface Align List

Words 2-8, 52-58
Words 52-58
Words 2-8, 9-13, 52-58
Words 2-8, 52-58
Words 2-13, 52-58
Words 2-8, 9-13, 52-58

There are six different 100-word lists which can be sent by the program during the flight (plus the special erasable memory dump). For convenience, these lists have been assigned serial numbers, \#0 through \#5 (listed in order of increasing identification words). During a given program, a certain list is transmitted as defined below:

List \#0 The Coast and Align List is transmitted during:
POO LGC Idling
P51 IMU Orientation Determination
P52 IMU Realignment
P06 LGC Power Down
List \#l The AGS Initialization and Update List is transmitted during:

\section*{P27 IGC Update}

R47 AGS Initialization
List \#2 The Rendezvous and Prethrust List is transmitted during:

\section*{P20 Rendezvous Navigation}

P21 Ground Track Determination
P25 Preferred Tracking Attitude
P30 External Delta V Maneuver Guidance
P32 Coelliptic Sequence Initiation (CSI)
P33 Constant Differential Altitude (CDH)
P34 Transfer Phase Initiation (TPI)
P35 Transfer Phase Midcourse (TPM)
P7? CSM CSI Targeting
P73 CSM CDH Targeting
P74 CSM TPI Targeting
P75 CSM TPM Targeting
P76 Target DELTA V
List \#3 The Orbital Maneuvers List is transmitted during:
P40 DPS Thrust
P41 RCS Thrust
P42 APS Thrust
P47 Thrust Monitor
List \#4 The Descent and Ascent List is transmitted during:
Pl2 Powered Ascent Guidance
P63 Braking Phase Guidance
P64 Approach Phase Guidance
P65 Automatic Landing Phase
P66 Rate of Descent (ROD) Landing Phase Guidance
P67 Manual Landing Phase Guidance
P68 Confirm Lunar Landing
P70 DPS Abort Guidance
P7l APS Abort Guidance
List \#5 The Lunar Surface Align List is transmitted during:
P22 RR Lunar Surface Navigation
P57 Lunar Surface Alignment
Several cells are identified as "Spare": by program assembly technique, the word on the downlink has the first half as 000008 and the second half as a quantity of negligible usefulness for post-flight processing (the contents of the computer accumulator register, cell 0000, when the telemetry interrupt was recognized).
Words marked with an asterisk in the list were transmitted as a result of a double precision pickup in the downlink program and have no known importance.
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 1 & LIST ID (777778) & SINC PATTERN (773408) & \\
\hline 2 & R-OTHERO (X comp.) & \(\mathrm{R}-0 T H E R_{1}\) (X comp.) & \\
\hline 3 & \({\mathrm{R}-O T H E R_{2}}^{(Y \mathrm{Y}}\) comp.) & R-OTHER \({ }_{3}\) (Y comp.) & 1717-1724 \\
\hline 4 & R-OTHER/4 (Z comp.) & R-OTHER (Z comp.) & \\
\hline 5 & V-OTHERO (X comp.) & \(\mathrm{V}-\) OTHER \(_{1}\) (X comp.) & \\
\hline 6 & V -OTHER2 (Y comp.) & V-OTHER 3 (Y comp.) & 1725-1732 \\
\hline 7 & V-OTHER \({ }_{4}\) (Z comp.) & V-OTHER \({ }_{5}\) (Z comp.) & \\
\hline 8 & TETCSM (T-OTHER) & TETCSM (T-OTHER) & 1570-1 \\
\hline 9 & AGSK (K-FACTOR) & AGSK (K-FACTOR) & 2020-1 \\
\hline 10 & TALIGN & TALIGN & 2774-5 \\
\hline 11 & DOWNTORK \(_{2}\) (POSTORKU) & DOWNTORK \(_{3}\) (\({ }^{\text {NEGTORKU) }}\) & 3115, 3116 \\
\hline 12 & DOWNTORK \(_{4}\) (POSTORKV) & DOWNTORK \(_{5}\) (NETSORIV) & 3117, 3120 \\
\hline 13 & \(\mathrm{DNRADATA}_{1}\) (DNRRANGE) & \(\mathrm{DNRADATA}_{2}\) (DNRRDOT) & 1330, 1331 \\
\hline 14 & TEVENT & TEVENT & 1341-2 \\
\hline 15 & \(\mathrm{REFSMMAT}_{0}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\) & \(\mathrm{REFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\) & \\
\hline 16 & \(\operatorname{REFSMMAT}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\) & REFSMMAT \(3\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\) & \\
\hline 17 & \(\operatorname{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\) & \(\mathrm{REFSSMMAT}_{5}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\) & 1733-1746 \\
\hline 18 & \(\mathrm{REFSMMAT}_{6}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)\) & \(\mathrm{REFSMMAT}_{7}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)\) & \\
\hline 19 & \(\operatorname{REFSMMAT}_{8}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\) & REFSMMAT \(_{7}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\) & \\
\hline 20 & \(\operatorname{REFSMMMAT}_{10}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\) & REFSMMAT \({ }^{\text {I }}\) (\(\mathrm{R}_{2} \mathrm{C}_{3}\)) & \\
\hline 21 & AOTCODE & * SINCDU & 0734, 0735 \\
\hline 22 & \(R \mathrm{RL}^{\mathrm{L}}\) (\(\mathrm{X}-\mathrm{comp}\)) & \(R L S_{1}(X-c o m p)\) & \\
\hline 23 & \(\mathrm{RLS}_{2}\) (Y-comp) & \(\mathrm{RLS}_{3}\) (Y-comp) & 2022-2027 \\
\hline 24 & \(\mathrm{RLS}_{4}\) (Z -comp) & \(\mathrm{RLS}_{5}\) (Z - conp) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 25 & DNRADATA \({ }_{4}\) (DNLRVELX) & DNRADATA \({ }_{5}\) (DNLRVELY) & 1333, 1334 \\
\hline 26 & DNRADATAS (DNLRVELZ) & DNRADATA7 (\({ }^{\text {(}}\) (LRALT) & 1335, 1336 \\
\hline 27 & VGPREV \({ }_{0}\) (VGTIG-X comp) & \(\mathrm{VGPREV}_{1}\) (VGTIG-X comp)) & \\
\hline 28 & VGPREV \(_{2}\) (VGTIG-Y comp) & \(\mathrm{VGPREV}_{3}(\) VGTIG-Y comp) \(\}\) & \(3700-3705\) \\
\hline 29 & \(\mathrm{VGPREV}_{4}\) (VGTIG-Z comp) & \(\mathrm{VGPREV}_{5}\) (VGTIG-Z comp)) & \\
\hline 30 & REDOCTR & THETAD (X -ANGLE) & 0320, 0321 \\
\hline 31 & \(\mathrm{THETAD}_{1}\) (Y-ANGLE) & THETAD 2 (Z-ANGLE) & 0322, 0323 \\
\hline 32 & RSBBQ & RSBBQ +1 & 1432, 1433 \\
\hline 33 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 34 & OMEGAR & ALPHAQ & 3023,3024 \\
\hline 35 & CDUXD & CDUYD & 3235, 3236 \\
\hline 35 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 37 & CDUX & CDUY & 0032, 0033 \\
\hline 38 & CDUZ & CDUT & 0034, 0035 \\
\hline 39 & FLAGWRDO & FLAGWRD1 & \\
\hline 40 & FLAGWRD2 & FLAGWRD3 & \\
\hline 41 & FLAGWRD4 & FLAGWRD5 & 0074-0107 \\
\hline 42 & FLAGWRD6 & FLAGWRD7 & 0074 - 0107 \\
\hline 43 & FLAGWRD8 & FLAGWRD9 & \\
\hline 44 & FLGWRD10 & FLGWRDII & \\
\hline 45 & \(\mathrm{DSPTAB}_{0}\) & \(\mathrm{DSPTAB}_{1}\) (& \\
\hline 46 & \(\mathrm{DSPTAB}_{2}\) & \(\mathrm{DSPTAB}_{3}\) & \\
\hline 47 & \(\mathrm{DSPTAB}_{4}\) & \(\mathrm{DSPTAB}_{5}>\) & 1022 - 1035 \\
\hline 48 & DSPTAB6 & \(\mathrm{DSPTAB}_{7}\) & 1022-1035 \\
\hline 49 & Disptab \(_{8}\) & DSPTAB9 & \\
\hline 50 & \(\mathrm{DSPT}^{\text {AB }} 10\) & \(\mathrm{DSPTAB}_{11} 1\) & \\
\hline
\end{tabular}

TELE-15

TIMENOW (TIME2)
\(R N_{0}\) (X comp.)
\(\mathrm{RN}_{2}\) (Y comp.)
\(\mathrm{RN}_{4}\) (Z comp.)
\(\mathrm{VN}_{\mathrm{O}}\) (X comp.)
\(\mathrm{VN}_{2}\) (Y comp.)
\(\mathrm{VN}_{4}\) (Z comp.)
PIPTIME
OMEGAPD
OMEG ARD
CADRFLSH \({ }_{0}\)
\(\mathrm{CADRFLSH}_{2}\)
FAILREG \(_{1}\)
RADMODES
OGC
IGC
MGC
BESTI (STAR ID 1)
STARSAV10 (X comp.) STARSAVI \(_{2}\) (Y comp.)

STARSAVI \(_{4}\) (\(Z\) comp.)
STARSAV20 (X comp.)
STARSAV2 \(_{2}\) (Y comp.)
STARSAV24 (Z comp.)
DNRADATA \(_{4}\) (DNLRVELX)
DNRADATAG (DNLRVELZ)

TIMENOW (TIME1)
\(\mathrm{RN}_{1}\) (X comp.)
\(\mathrm{RN}_{3}\) (Y comp.)
\(\mathrm{RN}_{5}\) (Z comp.)
\(\mathrm{VN}_{\mathrm{l}}\) (X comp.)
\(\mathrm{VN}_{3}\) (\(Y\) comp.)
\(\mathrm{VN}_{5}\) (Z comp.)
PIPTIME
OMEG AQD
*ECDUW
\(\mathrm{CADRFLSH}_{1}\)
FAILREG \(_{0}\)
FAIL REG \(_{2}\)
DAPBOOLS
OGC
IGC
MGC
BESTJ (STAR ID 2)
\(\left.\begin{array}{l}\text { STARSAVI }_{1} \text { (X comp.) } \\ \text { STARSAVI }_{3} \text { (Y comp.) } \\ \text { STARSAVl }_{5} \text { (Z comp.) }\end{array}\right\} \quad 2760-2765\)
STARSAV2 (X comp.)
STARSAV2 \(_{3}\) (Y comp.)
STARSAV25 (Z comp.)
DNRADATA \(_{5}\) (DNLRVELY)
DNRADATA7 (DNLRALT)

0024-5

1217-1224

1225-1232

1233-4
3243, 3244
3245, 3246
0372, 0373
0374, 0375
0376, 0377
0110, Olll
2737-2740
2741-2
2743-4
2755, 2756
\(2766-2773\)

1333, 1334
1335, 1336
\begin{tabular}{|c|c|c|c|}
\hline W)RD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRES \\
\hline 77 & CDUS & PIPA (X) & 0036,0037 \\
\hline 78 & PIPA (Y) & PIPA (Z) & 0040, 0041 \\
\hline 79 & LASTTCMD (LASTYCMD) & LASTSCMD (LASTXCMD) & 0112, 0113 \\
\hline 80 & LEMMASS & CSMMASS & 1326, 1327 \\
\hline 81 & IMODES 3. & IMODES 33 & 1277, 1300 \\
\hline 82 & TIG & TIG & 3441-2 \\
\hline 83 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 84 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 85 & CDUXD & CDUYD & 3235, 3236 \\
\hline 86 & CDUZD & *DELCDUX & 3237, 3240 \\
\hline 87 & CDUX & CDUY & 0032, 0033 \\
\hline 88 & CDJZ & CDUT & 0034, 0035 \\
\hline 89 & ALPHAQ & ALPHAR & 3024, 3025 \\
\hline 90 & DOWNTORKO (POSTORKP) & DOWNTORK \({ }_{\text {I }}\) (NEGTORKP) & 3113, 3114 \\
\hline 91 & CHANNELIl & CHANNELI2 & \\
\hline 92 & CHANNELI3 & CHANNELI 4 & \\
\hline 93 & CHANNEL30 & CHANNEL31 & \\
\hline 94 & CHANNEL32 & CHANNEL33 & \\
\hline 95 & DSPTAB 0 & \(\mathrm{DSPTAB}_{1}\) & \\
\hline 96 & \(\mathrm{DSPTAB}_{2}\) & \(\mathrm{DSPTAB}_{3}\) & \\
\hline 97 & \(\mathrm{DSPTAB}_{4}\) & \(\mathrm{DSPTAB}_{5}\) & 1022 - 1035 \\
\hline 98 & \(\mathrm{DSPTAB}_{6}\) & \(\mathrm{DSPTAB}_{7}\) & 1022-1035 \\
\hline 99 & \(\mathrm{DSPTAB}_{8}\) & \(\mathrm{DSPTAB}_{9}\) & \\
\hline 100 & \(\mathrm{DSPTAB}_{10}\) & \(\mathrm{DSPTAB}_{11}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WJRD \# & FIRST REGISTER & SECOND REGISTER E & ERASABLE ADDRESS \\
\hline 1 & LIST ID (77776 g) & SYNC PATTERN (\(77340_{8}\)) & \\
\hline 2 & AGSBUFF \({ }_{0}\) (LM X POS) & & 2200, 2201 \\
\hline 3 & \(\mathrm{AISSBUF}_{2}\) (LM Y POS) & * AGSBUFF 3 (not used by AGS) & 2202, 2203 \\
\hline 4 & \(\mathrm{AGSBUFF}_{4}\) (LM 2 POS) & \({ }^{*}\) AGSBUFF \(_{5}\) (not used by AGS) & 2204, 2205 \\
\hline 5 & \[
\begin{aligned}
& \text { AGSBUFF }_{12} \text { (Vector time } \\
& \text { MSB) }
\end{aligned}
\] & * AGSBUFF 13 (not used by AGS) &) 2214,2215 \\
\hline 6 & \(\mathrm{ASSBUFF}_{1}\) (LM X VEL) & * AGSBUFF 2 (not used by AGS) & 2201, 2202 \\
\hline 7 & AGSUBFF \(_{3}\) (LM Y VEL) & \({ }^{*}\) AGSBUFF \(_{4}\) (not used by AGS) & 2203, 2204 \\
\hline 8 & AGSBUFF \(_{5}\) (LM Z VEL) & \({ }^{*}\) AGSBUFF \(_{6}\) (not used by AGS) & 2205, 2206 \\
\hline 9 & \[
\begin{aligned}
& \text { AGSBUFF } 13 \text { (Vector time } \\
& \text { LSB) }
\end{aligned}
\] & \({ }^{*} \mathrm{VONE}_{2}\) (not used by AGS) & 2215, 2216 \\
\hline 110 & AGSBUFF \(_{6}\) (CSM X POS) & * AGSBUFF 7 (not used by AGS) & 2206, 2207 \\
\hline 11 & \(\mathrm{AGSBUFF}_{8}\) (CSM Y POS) & * AGSBUFF9 (\({ }_{9}\) (\({ }^{\text {at used }}\) by AGS) & 2210, 2211 \\
\hline 12 & AGSBUFF \(_{10}\) (CSM Z POS) & * \(\mathrm{AGSBSFF}_{11}\) (not used by AGS) &) 2212, 2213 \\
\hline 13 & \[
\begin{aligned}
& \text { AGSBUFF }_{12} \text { (Vector time } \\
& \text { MSB) }
\end{aligned}
\] & \({ }^{*} \mathrm{AGSBUFr}_{13}\) (not used by AGS) &) 2214,2215 \\
\hline 14 & AGSBUFFr 7 (CSM X VEL) & \({ }^{*}\) AGSBUFF \(_{8}\) (not used by AGS) & 2207, 2210 \\
\hline 15 & AGSBUFF9 (CSM Y VEL) & \({ }^{*} A^{\prime} S_{S B U F F}^{10}\) (not used by AGS) &) 2211, 2212 \\
\hline 16 & AGSBUFF \(_{11}\) (CSM Z VEL) & \({ }^{*}\) AGSBUFF \(_{12}\) (not used by AGS) &) \(2213,221.4\) \\
\hline 17 & AGSBUFF \(_{13}\) (Vector time LSB) & \({ }^{*} \mathrm{VONE}_{2}\) (not used by AGS) & 2215,2216 \\
\hline 18 & COMPNUMB & UPOLDMOD & 1167, 1170 \\
\hline 19 & U.VERB & UPCOUNT & 1171, 1172 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 20 & \(\mathrm{UPBUFF}_{0}\) & \(\mathrm{UPBTHF}_{1}\) & \\
\hline 21 & \(\mathrm{UPBUFF}_{2}\) & \(\mathrm{UPBUFF}_{3}\) & \\
\hline 22 & \(\mathrm{UPBUFF}_{4}\) & UPBUFF 5 & \\
\hline 23 & UPBUFF6 & UPBUFF7 & \\
\hline 24 & \(\mathrm{UPBUFF}_{8}\) & \(\mathrm{UPBUFF}_{9}\) & \\
\hline 25 & \(\mathrm{UPBUFF}_{10}\) & UPBUFF \({ }_{\text {II }}\) & \\
\hline 26 & UPBUFP \({ }^{\text {P }}\) & UPBUF \({ }^{13}\) & \\
\hline 27 & UPB \(\mathrm{JFF}_{14}\) & UPBUFF \({ }_{15}\) & \\
\hline 28 & \(\mathrm{UPBUFF}_{16}\) & UPBUFF17 & \\
\hline 27 & \(\mathrm{UPBUFF}_{18}\) & UPBUFF19 & \\
\hline 30 & REDOCTR & THETAD \({ }_{0}\) (X-angle) & 0320, 0321 \\
\hline 31 & THETAD \({ }_{\text {I }}\) (Y-angle) & THETAD 2 (Z-angle) & 0322, 0323 \\
\hline 32 & RSBBQ & RSBBQ +1 & 1432, 1433 \\
\hline 33 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 34 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 35 & CDUXD & CDUYD & 3235, 3236 \\
\hline 36 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 37 & CDUX & CDUY & 0032, 0033 \\
\hline 38 & CDUZ & CDUT & 0034, 0035 \\
\hline 39 & FLAGWRDO & FLAGWRDI & \\
\hline 40 & FLAGWRD2 & FLAGWRD3 & \\
\hline 41 & FLAGWRD4 & FLAGWRD5 & 0074-0107 \\
\hline 42 & FLAGWRD6 & FLAGWRD7 & \\
\hline 43 & FLAGWRT8 & FLAGWRD9 & \\
\hline 44 & FLGWRDI0 & FLGWRDII & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABIE ADDRESS \\
\hline 45 & \(\mathrm{DSPTAB}_{0}\) & \(\mathrm{DSPTAB}_{1}\) & \\
\hline 46 & \(\mathrm{DSPTAB}_{2}\) & \(\mathrm{DSPTAB}_{3}\) & \\
\hline 47 & \(\mathrm{DSPTAB}_{4}\) & \(\mathrm{DSPTAB}_{5}\) & 10-2 - 7055 \\
\hline 48 & \(\mathrm{DSPT}^{\text {AB }} 6\) & DSPTAB7 & \\
\hline 49 & \(\mathrm{DSFTAB}_{8}\) & DSPTAB9 & \\
\hline 50 & \(\mathrm{DSPTAB}_{10}\) & DSPTAB \({ }^{1}\) & \\
\hline 51 & TIMENOW (TIME2) & TIMENOW (TITET) & 0024-5 \\
\hline 52 & \(\mathrm{RN}_{\mathrm{O}}\) (X comp.) & \(\mathrm{RN}_{1}\) (X comp.) & \\
\hline 53 & \(\mathrm{RN}_{2}\) (Y comp.) & \(\mathrm{Riv}_{3}\) (Y comp.) & 1217-1224 \\
\hline 54 & \(\mathrm{RN}_{4}\) (Z comp.) & \(\mathrm{RN}_{5}\) (Z comp.) & \\
\hline 55 & \(\mathrm{VN}_{\mathrm{O}}\) (X comp.) & \(\mathrm{VN}_{1}\) (X comp.) & \\
\hline 56 & \(\mathrm{VN}_{2}\) (Y comp.) & \(\mathrm{VN}_{3}\) (Y comp.) & 1225-1232 \\
\hline 57 & \(\mathrm{VN}_{4}\) (Z comp.) & \(\mathrm{VN}_{5}\) (Z comp.) & \\
\hline 58 & PIPTIME & PIPTIME & 1233-4 \\
\hline 59 & OMEGAPD & OTEGAQD & 3243, 3244 \\
\hline 60 & OMEGARD & *ECDUW & \(324.5,324.6\) \\
\hline 61 & CADRFLSH & \(\mathrm{CADRR}^{\text {LSH }}{ }_{\text {I }}\) & 0372, 0373 \\
\hline 62 & \(\mathrm{CADRFLSH}_{2}\) & \(\mathrm{FAILREG}_{0}\) & 0374, 0375 \\
\hline 63 & PAILFEG \(_{1}\) & FAILPEG 2 & 0376, 0377 \\
\hline 64 & RADIMODES & DAPBOOLS & 0110, Olll \\
\hline 65 & DOWNTORK \(_{2}\) (POSTORKU) & DOWNTORK \(_{3}\) (NEGTORKIU) & 3115,3116 \\
\hline 66 & DOWNTORK \(_{4}\) (POSTORKV) & DOWNTORK \(_{5}\) (NEGITORKV) \(^{\text {a }}\) & 3117, 3120 \\
\hline 67 & SPARE & SPARE & \\
\hline 68 & SPARE & SPARE & \\
\hline 69 & AGSK (K-FACTOR) & AGSK (\(\mathrm{K}-\mathrm{FACTOR}\)) & 2020-1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 70 & UPBUFF \({ }_{0}\) & \(\mathrm{UPBUFF}_{1}\) & \\
\hline 71 & UPBUFF 2 & \(\mathrm{UPBUFF}_{3}\) & \\
\hline 72 & \(\mathrm{UPBUFF}_{4}\) & UPBUFF 5 & \\
\hline 7/3 & UPBUFF6 & \(\mathrm{UPBUFF}_{7}\) & \\
\hline 74 & UPBUFF \({ }_{8}\) & UPBUFF \(_{9}\) & 1173-1216 \\
\hline 75 & UPBUFF 10 & UPBUFF11 & \\
\hline 76 & UPBUFF12 & UPBUFF13 & \\
\hline 77 & UPBUFF14 & UPBUFF 15 & \\
\hline 78 & UPBUFF16 & UPBUFF \(_{17}\) & \\
\hline 79 & UPBUFF \(_{18}\) & UPBUFF 19 & \\
\hline 80 & LEMMASS & CSMMASS & 1326, 1327 \\
\hline 81 & IMODES30 & IMODES 33 & 1277, 1300 \\
\hline 82 & SPARE & SPARE & \\
\hline 83 & OUETAP & OVEGAQ & 3021, 3022 \\
\hline 84 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 85 & CDUXD & 3DUYD & 3235, 3236 \\
\hline 86 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 87 & CDUX & CDUY & 0032, 0033 \\
\hline 88 & CDUZ & CDUT & 0034, 0035 \\
\hline 89 & ALPHAQ & ALPHAR & 3024, 3025 \\
\hline 90 & DOWNTORKO (POSTORKP) & DOWNTORK \({ }_{1}\) (NEGTORKP) & 3113, 3114 \\
\hline 91 & CHANNELII & CHANNELI2 & \\
\hline 92 & CHANNELI3 & CHANNELI 4 & \\
\hline 93 & CHANNIL30 & CHANNEL 31 & \\
\hline 94 & CHANNEL 32 & CHANNEL 33 & \\
\hline
\end{tabular}
\(\left.\begin{array}{lll}95 & \text { DSPTAB }_{0} & \text { DSPTAB }_{1} \\ 96 & \text { DSPTAB }_{2} & \text { DSPTAB }_{3} \\ 97 & \text { DSPTAB }_{4} & \text { DSPTAB }_{5} \\ 98 & \text { DSPTAB }_{6} & \text { DSPTAB7 }_{7} \\ 99 & \text { DSPTAB }_{4} & \text { DSPTAB }_{9} \\ 100 & \text { DSPTAB }_{10} & \text { DSPTAB }_{11}\end{array}\right\}\)
```

1022-1035

```
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABIE ADDRESS \\
\hline 1 & LIST ID (777758) & SYNC PATTERN (773408) & \\
\hline 2 & R-OTHERO (X comp.) & R-OTHERI (X comp.) & \\
\hline 3 & R-OTHER2 (\(Y\) comp.) & R-OTHER3 (Y comp.) & \(1717-1724\) \\
\hline 4 & R-OTHER/4 (2 comp.) & R-OTHER5 (\(\sim\) comp.) & \\
\hline 5 & V-OTHERO (X comp.) & \(\mathrm{V}-\mathrm{OTHER}_{1}\) (X comp.) & \\
\hline 6 & V-OTHER2 (Y comp.) & V-OTHER3 (Y comp.) & 1725-1732 \\
\hline 7 & V-OTHER/4 (z comp.) & V-OTHER5 (\(\mathrm{Z}_{\text {comp. }}\)) & \\
\hline 8 & TETCSM & TETCSM & 1570-1 \\
\hline 9 & RANGRDOT & RANG RDOT +1 & 3760, 3761 \\
\hline 10 & AIG & AMG & 3457, 3460 \\
\hline 11 & AOG & TRKMKCNT & 3461, 3462 \\
\hline 12 & TANGNBO (RR tmannion) & TANGNB \(_{1}\) (RR shaft) & 3752, 3753 \\
\hline 13 & MKT IME & MKTIME & 3754-5 \\
\hline 14 & DELLT4 (TF Lambert) & DELLT4 (\(\mathrm{T}_{\mathrm{F}}\) Lambert) & 3451-2 \\
\hline 15 & RTARTJ (X comp.) & \(\mathrm{RTARG}_{1}\) (X comp.) & \\
\hline 16 & \(\mathrm{RTARG}_{2}(\mathrm{Y}\) comp.) & \(\mathrm{RTARG}_{3}\) (Y comp.) & \(3443-3450\) \\
\hline 17 & \(\mathrm{RTARG}_{4}\) (2 comp.) & \(\mathrm{RTARG}_{5}\) (2 comp.) & \\
\hline 18 & DELVLVC \({ }_{0}\) (DELVSLV-X) & DELVLVC \(_{1}(\) DELVSLV-X) & \\
\hline 19 & DELVLVC \(_{2}\) (DELVSLV-Y) & & \(3433-3440\) \\
\hline 20 & DELVLVC \(_{4}\) (DELVSLV-Z) & DELVLVC \(_{5}\) (DELVSLV-Z) & \\
\hline 21 & TCSI (CSI time) & TCSI (CSI time) & 3633-4 \\
\hline 2.2 & DELVEETIO (X comp.) & DELVEETI \({ }^{\text {(}} \mathrm{X}\) comp.) & \\
\hline 23 & DELVEET1 \(_{2}\) (Y comp.) & DELVEETl \(_{3}\) (Y comp.) & \(2266-2273\) \\
\hline 24 & DELVEET14 (Z comp.) & DELVEETI5 (Z comp.) & \\
\hline
\end{tabular}

SPARE
TPASS4 (TPF time)
X789X (RR shaft bias)
X789y (RR trunnion bias)
LASTTCMD (LASTYCMD)
REDOCTR
\(\mathrm{THETAD}_{1}\) (Y -angle)
RSBBQ
OMECAP
OMEGAR
CDUXD
CDUZD
CDUX
CDUZ
FLAGWRDO
FLAGWRD2
FLAGWRD4
FLAGWRD6
FLAGWRD8
FLGWRD10
DSPTAB 0
DSPTAB2
\(\mathrm{DSPTAB}_{4}\)
DSPTAB6
DSPTAB8
DSPT AB10

SPARE
\begin{tabular}{ll}
TPASS4 (TPF time) & \(3630-1\) \\
X789 (RR shaft bias) & \(1700-1\) \\
X789Y (RR trunnion bias) & \(1702-3\) \\
LASTSCMD (LASTXCMD) & \(0112-0113\) \\
THETAD \(_{0}\) (X-angle) & 0320,0321 \\
THETAD \(_{2}\) (Z-angle) & 0322,0323 \\
RSBBQ +1 & 3432,1433 \\
OMEGAQ & 3021,3022 \\
ALPHAQ & 3023,3024 \\
CDUYD & 3235,3236 \\
\#DELCDUX & 3237,3240 \\
CDUY & 0032,0033 \\
CDUT & 0034,0035
\end{tabular}

FLAGWRDI
FLAGWRD3
FLAGWRD5
FLAGWRD7
FLAGWRD9
FLSWRDII
\(\mathrm{DSPTAB}_{1}\)
\(\mathrm{DSPTAB}_{3}\)
DSPTAB \(_{5}\)
DSPTAB7
DSPTAB9
DSPTAB1I

1022-1035
\begin{tabular}{|c|c|c|c|}
\hline 51 & TIMENOW (TIME2) & TIMENOW (TIMEI) & 0024-5 \\
\hline 52 & \(R N_{0}\) (X comp.) & \(\mathrm{RN}_{1}\) (X comp.) & \\
\hline 53 & \(\mathrm{RN}_{2}\) (Y comp.) & \(\mathrm{RiN}_{3}\) (Y comp.) & 1217-1224 \\
\hline 54 & \(\mathrm{RN}_{4}\) (Z comp.) & \(\mathrm{RN}_{5}\) (Z comp.) & \\
\hline 55 & \(\mathrm{VN}_{\mathrm{O}}\) (X comp.) & \(\mathrm{VN}_{1}\) (X comp.) & \\
\hline 56 & \(\mathrm{VN}_{2}\) (Y comp.) & \(\mathrm{VN}_{3}\) (Y comp.) & 1225-1232 \\
\hline 57 & \(\mathrm{VN}_{4}\) (Z comp.) & \(\mathrm{VN}_{5}\) (Z comp.) & \\
\hline 58 & PIPTIME & PIPT IME & 1233-4 \\
\hline 59 & OMEGAPD & OMEGAQD & 3213, 3244 \\
\hline 60 & OMEGARD & * \({ }^{\text {E ECDUW }}\) & 3245,3246 \\
\hline 61 & CADRFLSHO & \(\mathrm{CADRFLSH}_{1}\) & 0372, 0373 \\
\hline 62 & \(\mathrm{CADRFLSH}_{2}\) & FAILREG \({ }_{0}\) & 0374, 0375 \\
\hline 63 & FAILREG \(_{1}\) & FAILREG2 & 0376, 0377 \\
\hline 64 & RADMODES & DAPBOOLS & 0110, 0111 \\
\hline 65 & DJWNTORK \(_{2}\) (POSTORKU) & DOWNTORK3 (NEGTORKU) & 3115, 3116 \\
\hline 66 & DOWNTORK \(_{4}\) (POSTORKV) & DOWNTORK 5 (NEGTORKV) & 3117, 3120 \\
\hline 67 & SPARE & SPARE & \\
\hline 68 & TCDH & TCDH & 1776-7 \\
\hline 69 & DELVEET2 \(\mathrm{O}^{\text {(}} \mathrm{X}\) comp.) & DELVEET2 \({ }_{1}\) (X comp.) & \\
\hline 70 & DELVEET2 2 (Y comp.) & DeLVEET2 \(_{3}\) (Y comp.) & 2274-2301 \\
\hline 71 & DELVEET2,4 (z comp.) & DELVEET2 5 (Z comp.) & \\
\hline 72 & TTPI & TTPI & 3635-6 \\
\hline 73 & DELVEET30 & DELVEET31 & \\
\hline 74 & DELVEET32 & DELVEET3 3 & 2365-2372 \\
\hline 75 & DELVEET3 \({ }_{4}\) & DELVEET35 & \\
\hline 76 & ELEV & ELEV & 2256-7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 77 & CDUS \\
\hline 78 & PIPA (Y) \\
\hline 79 & LASTTCMD (LASTYCMD) \\
\hline 80 & LEMMASS \\
\hline 81 & IMODES 30 \\
\hline 82 & TIG \\
\hline 83 & OMEGAP \\
\hline 84 & OMEGAR \\
\hline 85 & CDUXD \\
\hline 86 & CDUZD \\
\hline 87 & CDUX \\
\hline 88 & CDUZ \\
\hline 89 & ALPHAQ \\
\hline 90 & DOWNTORK \({ }^{\text {(POSTORKP) }}\) \\
\hline - 91 & CHANNELII \\
\hline 92 & CHANNELI3 \\
\hline 93 & CHANNEL30 \\
\hline 94 & CHANNEL32 \\
\hline 95 & SPARE \\
\hline 96 & CENTANG \\
\hline 97 & NN \\
\hline 98 & DIFFALT \\
\hline 99 & DELVTPF \\
\hline 100 & SPARE \\
\hline
\end{tabular}

PIPA (X) 0036, 0037
PIPA (Z) 0040, 0041
LASTSCMD (LASTXCMD) 0112, 0113
CSMMASS 1326, 1327
IMODES33 1277, 1303
TIG 3441-2
OMEGAQ 3021, 3022
ALPHAQ 3023, 3024.
CDUYD 3235, 3236
*DILCDUX 3237, 3240
CDUY 0032, 0033
CDUT
ALPHAR
DOWNTORK \(_{1}\) (NEGTORKP) 3113, 3114
CHANNELL2
CHANNELL4
CHANNEL31
CHANNEL 33
SPARE
CENTANG 3520-1
NN
DIFFALT
\(3577-3600\)
DELVTPF
2347 - 2350
SPARE
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABIE ADDRESS \\
\hline 1 & LIST ID (777748) & SYNC PATTERN (773408) & \\
\hline 2 & R-OTHERO (X comp.) & & \\
\hline 3 & R-OTHER2 (Y comp.) & \(\mathrm{R}_{\text {-OTHER }}^{3}\) (Y comp.) & 1717-1724 \\
\hline 4 & \(\mathrm{R}^{\text {-OTHER }} 4\) (Z comp.) & R-OTHER \({ }_{5}\) (Z comp.) & \\
\hline 5 & V-OTHERO (X comp.) & \(\mathrm{V}-\mathrm{OTHER}_{1}\) (X comp.) & \\
\hline 6 & V-OTHER2 (Y comp.) & V-OTHER3 (Y comp.) & 1725-1732 \\
\hline 7 & V-OTHER/4 (Z comp.) & V-OTHER5 (Z comp.) & \\
\hline 8 & TETCSM & TETCSM & 1570-1 \\
\hline 9 & DELLT 4 & DELLT4 & 3451-2 \\
\hline 10 & \(\operatorname{RTARA}_{O}\) (X comp.) & RTARG \(_{1}\) (X comp.) & \\
\hline 11 & RTARG \(_{2}\) (Y comp.) & \(\operatorname{RTARE}_{3}\) (\(Y\) comp.) & 3443-3450 \\
\hline 12 & \(\mathrm{RTARG}_{4}\) (Z comp.) & \(\mathrm{RTARG}_{5}\) (Z comp.) & \\
\hline 13 & ELEV & ELEV & 2256-7 \\
\hline 14 & TEVENT & TEVENT & 1341-2 \\
\hline 15 & \(\operatorname{REFSMMAT}_{0}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\) & \(\mathrm{REFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\) & \\
\hline 16 & \(\operatorname{REFSMMAT}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\) & \(\mathrm{REFSMMAT}_{3}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\) & \\
\hline 17 & \(\mathrm{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\) & \(\operatorname{REFSMMAT}_{5}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\) & 1733-1746 \\
\hline 18 & \(\mathrm{RIFSMMAT}_{6}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)\) & REFSMMAT7 (\(\mathrm{R}_{2} \mathrm{Cl}_{1}\)) & \\
\hline 19 & REFSMMAT \(_{8}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\) & \(\mathrm{REFSMMAT}_{9}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\) & \\
\hline 20 & REFSMMAT \({ }_{10}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\) & REFSMMAT \({ }_{11}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\) & \\
\hline 21 & TCSI & TCSI & 3633-4 \\
\hline 22 & DELVEET1 \({ }_{\text {O }}\) (X comp.) & DELVEETl \(_{1}\) (X comp.) & \\
\hline 23 & DELVEET1 \(_{2}\) (Y comp.) & DELVEETl \(_{3}\) (Y comp.) & 2266-2273 \\
\hline 24 & DELVEETl \(_{4}\) (Z comp.) & \[
\begin{aligned}
& \text { DELVEETI }_{5} \text { (Z comp.) } \\
& -27
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND RFGISTER & ERASABLE ADDRESS \\
\hline 25 & VGPREV \(_{0}\) (VGTIG-X comp.) & \(\mathrm{VGPREV}_{1}\) (VGTIG-X comp.) & \\
\hline 26 & VGPREV 2 (VGTIG-Y comp.) & VGPREV 3 (VGTIG-Y comp.) & \(3700-3705\) \\
\hline 27 & VGPREV 4 (VGTIG-Z comp.) & \(\mathrm{VGPREV}_{5}\) (VGTIG-Z comp.) & \\
\hline 28 & DNRADATA6 (DNLRVELZ) & DNRADATA\% (DNLRALT) & 1335, 1336 \\
\hline 29 & & TPASS4 (TPF time) & 3630-1 \\
\hline 30 & REDOCTR & THETAD (X -angle) & 0320, 0321 \\
\hline 31 & \(\mathrm{THETAD}_{1}\) (Y-angle) & THETAD 2 (Z-angle) & 0322, 0323 \\
\hline 32 & RSBBQ & RSBBQ +1 & 1432, 1433 \\
\hline 33 & OMEGAP & OMEG AQ & 3021, 302.2 \\
\hline 34 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 35 & CDUXD & CDUYD & 3235, 3236 \\
\hline 36 & CDUZD & * Delcdux & 3237, 3240 \\
\hline 37 & CDUX & CDUY & 0032, 0033 \\
\hline 38 & CDUZ & CDUT & 0034, 0035 \\
\hline 39 & FLAGWRDO & FLAG'NRD1 & \\
\hline 40 & FLAGWRD2 & FLAGWRD3 & \\
\hline 41 & FLAGWRD4 & FLAGWRD5 & \\
\hline 42 & FLAGWRD6 & FLAGWRD7 7 & - 014 - 0107 \\
\hline 43 & FLAGWRD8 & FLAGWRD9 & \\
\hline 44 & FLGWRD10 & FLGWRD11 & \\
\hline 45 & DSPTAB 0 & \(\mathrm{DSPTAB}_{1}\) & \\
\hline 46 & \(\mathrm{DSPTAB}_{2}\) & \(\mathrm{DSPTAB}_{3}\) & \\
\hline 47 & \(\mathrm{DSPTAB}_{4}\) & \(\mathrm{DSPTAB}_{5}\) & 1022-1035 \\
\hline 48 & \(\mathrm{DSPTAB}_{6}\) & \(\mathrm{DSPTAB}_{7}\) & \\
\hline 49 & \(\mathrm{DSPTAB}_{8}\) & \(\mathrm{DSPTAB}_{9}\) & \\
\hline 50 & \(\mathrm{DSPTAB}_{10}\) & \(\mathrm{DSPTAB}_{11}\) & \\
\hline
\end{tabular}

TELE-28

WORD \#

51

54

FIRST REGISTER
TIMENÓN (TIMEZ)
\(\mathrm{RN}_{\mathrm{O}}\) (X comp.)
\(\mathrm{RN}_{2}\) (Y comp.)
\(\mathrm{RN}_{4}\) (Z comp.)
\(\mathrm{VN}_{\mathrm{O}}\) (X comp.)
\(\mathrm{VN}_{2}\) (Y comp.)
\(\mathrm{VN}_{4}\) (Z comp.)
PIPTIME
OVEGAPD
OMEGARD
CADRFLSH 0
\(\mathrm{CADRFLSH}_{2}\)
FAILREG \(_{1}\)
RADMODES
DOWNTORK \(_{2}\) (POSTORKU)
DOWNTORK \(_{4}\) (POSTORKV)
SPARE
TCDH
DELVEET20 (X comp.)
DELVEET22 (Y comp.)
DELVEET24 (Z comp.)
TTPI
DELVEET 30 (X comp.)
DELVEET32 (Y comp.)
DELVEET34 (Z comp.)
DNRADATA \(_{1}\) (DNRRANGE)

SECOND REGISTER
ERASABLE ADDRESS

TIMENOW (TIME1)
\(\left.\begin{array}{l}\mathrm{RN}_{1} \text { (X comp.) } \\ \mathrm{RN}_{3} \text { (Y comp.) } \\ \mathrm{RN}_{5} \text { (} \mathrm{Z} \text { comp.) } \\ \mathrm{VN}_{1} \text { (X comp.) } \\ \mathrm{VN}_{3} \text { (Y comp.) } \\ \mathrm{VN}_{5} \text { (Z comp.) }\end{array}\right\}\)

PIPTIME
OMEGAQD
*EEDUW
\(\mathrm{CADRFLSH}_{1}\)
FAILREG \(_{0}\)
FAILREG \(_{2}\)
DAPBJOLS
DOWNTORK \(_{3}\) (NEGTORKU)
DOWNTORK \(_{5}\) (NEGTORKV)
SPARE
TCDH
\(\left.\begin{array}{l}\text { DELVEET21 (X comp.) } \\ \text { DELVEET23 (Y comp.) } \\ \text { DELVEET25 (} \mathrm{Z} \text { comp.) }\end{array}\right\}\)
TTPI
\(\left.\begin{array}{ll}\text { DELVEET }_{3} & \text { (X comp.) } \\ \text { DELVEET }_{3} & \text { (Y comp.) } \\ \text { DELVEET }_{5} & \text { (Z comp.) }\end{array}\right\}\)
DNRADATA \(_{2}\) (DNRRDOT)
0024-5

1217-1224

1225-1232

1233-4
3243-3244
3245, 324,6
0372, 0373
0374, 0375
0376, 0377
0110, 0111
3115, 3116
3117, 3120

1776-7

2274-2301

3635-6

2365-2372

TELE-29
\begin{tabular}{|c|c|c|c|}
\hline WORD\# & FIRST RESISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 77 & DNRADATA \(_{4}\) (DNLRVELX) & DNRADATA \(_{5}\) (DNLRVELY) & 1333, 1334 \\
\hline 78 & DNRADATA6 (DNLRVELZ) & DNRADATA7 (DNLRALT) & 1335, 1336 \\
\hline 79 & DIFFALT & DIFFALT & 3577-3600 \\
\hline 80 & LEMMASS & CSMMASS & 1326, 1327 \\
\hline 81. & IMODES30 & IMODES 33 & 1277-1300 \\
\hline 82 & TIG & TIG & 3441-2 \\
\hline 83 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 34 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 85 & CDUXD & CDUYD & 3235, 3236 \\
\hline 86 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 87 & CDUX & CDUY & 0032, 0033 \\
\hline 88 & CDUZ & CDUT & 0034, 0035 \\
\hline 89 & ALPHAQ & ALPHAR & 3024, 3025 \\
\hline 90 & DOWNTORKO (POSTORKP) & DOWNTORK \(_{1}\) (NEGTORKP) & 3113, 3114 \\
\hline 91 & CHANNELII & CHANNELI2 & \\
\hline 92 & CHANNELI3 & CHANNELI 4 & \\
\hline 93 & CHANNEL30 & CHANNEL3 3 & \\
\hline 94 & CHANNEL32 & CHANNEL33 & \\
\hline 95 & PIPTIMEI & PIPTIMEI & 3560-1 \\
\hline 96 & \(\mathrm{DELV}_{0}\) (X comp.) & \(\mathrm{DELV}_{1}\) (X comp.) & \\
\hline 97 & \(\mathrm{DELV}_{2}\) (Y comp.) & \(\mathrm{DELV}_{3}\) (Y comp.) & 0324-0331 \\
\hline 98 & DELV 4 (2 comp.) & \(\mathrm{DELV}_{5}\) (Z comp.) & \\
\hline 99 & SPARE & SPARE & \\
\hline 100 & TGO & TGO & 3516-7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD \# & FIRST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 1 & LIST ID (777738) & SYNC PATTERN (77340g) & \\
\hline 2 & \(\mathrm{LRCDUDL}_{0}\) (LRXCDUDL) & \(\mathrm{LRCDUDL}_{1}\) (LRYCDUDL) & 2334, 2335 \\
\hline 3 & \(\mathrm{LRCDUDL}_{2}\) (LRZCDUDL) & LRVTIME (MSB) & 2330, 2337 \\
\hline 4 & VSELECT & *VMEAS (MSB) & 3651, 3652 \\
\hline 5 & LRVIIMD & LRV'TIMDL & 2337-2340 \\
\hline 6 & VMEAS (LR Velocity) & VMEAS (LR Velocity) & 3652-3 \\
\hline 7 & MKT TME & MKITME & 3754-5 \\
\hline 8 & HMEAS (LR Range) & HMEAS (LR Range) & 3654-5 \\
\hline 9 & \(\mathrm{RM}_{0}\) (RR R Range) & \(\mathrm{RM}_{1}\) (RR Range rate) & 3756, 3757 \\
\hline 10 & AIG (Y-angle) & AMG (2 -angle) & 3457, 3460 \\
\hline 11 & AOG (X-angle) & TRKMKCNT & 3461, 3462 \\
\hline 12 & TANGNB \({ }_{0}\) (\(R R\) Trunnion) & \(\mathrm{TANGNB}_{1}\) (RR Shaft) & 3752, 3753 \\
\hline 13 & MKT IME & MKTIME & 3754-5 \\
\hline 14 & TEVENT & TEVENT & 1341-2 \\
\hline 15 & UNFC \({ }_{0}\) (X comp.) & \(\mathrm{UNFC}_{1}\) (X comp.) & \\
\hline 16 & \(\mathrm{UNFC}_{2}\) (Y comp.) & \(\mathrm{UNFC}_{3}\) (Y comp.) & 3253-3260 \\
\hline 17 & UNFC \({ }_{/ 4}\) (Z comp.) & UNFC \({ }_{5}\) (Z comp.) & \\
\hline 18 & \(\mathrm{VGVECT}_{0}\) (X comp.) & \(\mathrm{VGVECT}_{1}\) (X comp.) & \\
\hline 19 & \(\mathrm{VGVECT}_{2}\) (Y comp.) & \(\mathrm{VGVECT}_{3}\) (Y comp.) & 3545-3652 \\
\hline 20 & \(\mathrm{VGVECT}_{4}\) (Z comp.) & \(\mathrm{VGVECT}_{5}\) (Z comp.) & \\
\hline 21 & TTF & TTF & 3642-3 \\
\hline 22 & DELTAH & DELTAH & 3664-5 \\
\hline
\end{tabular}

TELE-31
\begin{tabular}{|c|c|c|c|}
\hline 23 & \(\mathrm{RLS}_{0}\) (X comp.) & \(\mathrm{RLS}_{1}\) (X comp.)) & \\
\hline 24 & RLS \(S_{2}\) (Y comp.) & \(\mathrm{RLS}_{3}\) (Y comp.) & \(2022-2027\) \\
\hline 25 & RLS \(_{4}\) (Z comp.) & \(\mathrm{RLS}_{5}\) (Z comp.)) & \\
\hline 25 & ZDOTD & 2DOTD & 2276-7 \\
\hline 27 & X789 \({ }_{\text {x }}\) (RR Shaft bias) & X 789 x (RR Shaft bias) & 1700-1 \\
\hline 28 & X \(7899_{y}\) (RR Trunnion bias) & X789y (RR Trunnion bias) & 1702-3 \\
\hline 29 & LASTTCMD (LASTYCMD) & LASTSCMD (LASTXCMD) & 0112, 0113 \\
\hline 30 & REDOCTR & THETAD \({ }_{0}\) (X-angle) & 0320, 0321 \\
\hline 31 & THETAD \({ }_{1}\) (Y-angle) & THETAD 2 (Z-angle) & 0322, 0323 \\
\hline 32 & RSBBQ & RSBBQ +1 & 1432, 1433 \\
\hline 33 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 34 & OMEGAR & ALPHAQ & 3023, 3024 \\
\hline 35 & CDUXD & CDUYD & 3235, 3236 \\
\hline 36 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 37 & CDUX & CDUY & 0032, 0033 \\
\hline 38 & CDUZ & CDUT & 003\%, 0035 \\
\hline 39 & FLAGWRDO & FLAGWRDI & \\
\hline 40 & FLAGWRD2 & FLAGWRD3 & \\
\hline 41 & FLAGWRD4 & FLAGWRD5 & \\
\hline 42 & FLAGWRD6 & FLAGWRD7 & -0074-0107 \\
\hline 43 & FLAGWRD8 & FLAGWR'99. & \\
\hline 44 & FLGWRDIO & FLGWRDII & \\
\hline 45 & DSPT AB & \(\mathrm{DSPTAB}_{1}\) & \\
\hline 46 & DSPTAB2 & DSPTAB3 & 1022-1035 \\
\hline 47 & DSPTAB & \(\mathrm{DSPTAB}_{5}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline WOPD il & FIRST REGISTER \\
\hline 48 & DSPTAB6 \\
\hline 49 & DSPTAB8 \\
\hline 50 & DSPTAB10 \\
\hline 51 & TIMENOW (TIME2) \\
\hline 52 & \(\mathrm{RN}_{\mathrm{O}}\) (X comp.) \\
\hline 53 & \(\mathrm{RN}_{2}\) (Y comp.) \\
\hline 54 & \(\mathrm{RN}_{4}\) (Z comp.) \\
\hline 55 & \(\mathrm{VN}_{\mathrm{O}}\) (X comp.) \\
\hline 56 & \(\mathrm{VN}_{2}\) (Y comp.) \\
\hline 57 & \(\mathrm{VN}_{4}\) (Z comp.) \\
\hline 58 & PIPTIME \\
\hline 59 & OMEGAPD \\
\hline 60 & OMEGARD \\
\hline 67 & CADRFLSHO \\
\hline 62 & \(\mathrm{CADRFLSH}_{2}\) \\
\hline 63 & FAILREG \(_{1}\) \\
\hline 64 & RADMODES \\
\hline 65 & DOWNTORK \(_{2}\) (POSTORKU) \\
\hline 66 & DOWNTORK \(_{4}\) (POSTORKV) \\
\hline 67 & RGUO (X comp.) \\
\hline 68 & \(\mathrm{RGG}_{\mathrm{G}} \mathrm{U}_{2}\) (Y comp.) \\
\hline 69 & \(\mathrm{RGU}_{4}\) (Z comp.) \\
\hline 70 & VGUO (X comp.) \\
\hline 71 & VGU \(\mathrm{V}^{\text {(}} \mathrm{Y}\) comp.) \\
\hline 72 & \(\mathrm{VGU}_{4}\) (Z comp.) \\
\hline
\end{tabular}
\(\left.\begin{array}{l}\text { DSPTAB }_{7} \\ \text { DSPTAB }_{9} \\ \text { DSPTAB }_{11}\end{array}\right\}\)
```

1022 - 1035

```
0024-5

TIMENOW (TIME1) \(\mathrm{RN}_{1}\) (X comp.) \(\mathrm{RN}_{3}\) (Y comp.)
FAIL.REG 0374,0375
FAILREG \(_{2}\)

\[
0376,0377
\]

DAPBOOLS
0110, 0111
DOWNTORK \(_{3}\) (NEGTORKU)
3115, 3116
DOWNTORK \(_{5}\) (NEGTORKV)
3117, 3120
\(\mathrm{RGU}_{1}\) (X comp.)
\(\mathrm{RGIJ}_{3}\) (Y comp.)
\(\mathrm{RGU}_{5}\) (Z comp.)
\(V_{G} U_{1}\) (X comp.)
\(\mathrm{VGU}_{3}\) (Y comp.)
\(\mathrm{VGU}_{5}\) (Z comp.)
\(2626-2633\)
\(3526-3633\)
\begin{tabular}{|c|c|c|c|}
\hline WORD \# \# & FIPST REGISTER & SECOND REGISTER & ERASABLE ADDRESS \\
\hline 73 & LAND \({ }_{0}\) (X comp.) & \(L_{\text {LAND }}\) (X comp.) & \\
\hline 74 & \(\mathrm{LAND}_{2}\) (Y comp.) & \(\mathrm{LAND}_{3}\) (Y comp.) & 3634-3641 \\
\hline 75 & LAND/4 (Z comp.) & \(\mathrm{LAND}_{5}\) (Z comp.) & \\
\hline 76 & AT & AT & 2262-3 \\
\hline 77 & TLAND & TLAND & 2400-1 \\
\hline 78 & FC & * RDOTV & 3515, 3616 \\
\hline 79 & LASTTCMD (LASTYCMD) & LASTSCMD (LASTXCMD) & 0112, 0113 \\
\hline 80 & LEMMASS & CSMMASS & 1326, 1327 \\
\hline 81 & IMODES 30 & IMODES33 & 1277, 1300 \\
\hline 82 & TIG & T IG & 3441-2 \\
\hline 83 & OMEGAP & OMEGAQ & 3021, 3022 \\
\hline 84 & OMESAR & ALPHAQ & 3023, 3024 \\
\hline 85 & CDUXD & CDUYD & 3235, 3236 \\
\hline 85 & CDUZD & * DELCDUX & 3237, 3240 \\
\hline 87 & CDUX & CDUY & 0032, 0033 \\
\hline 83 & CDUZ & CDUT & 0034, 0035 \\
\hline 89 & ALPHAQ & ALPHAR & 3024, 3025 \\
\hline 93 & DOWNTORK \({ }^{\text {(POSTORKP }}\)) & DOWNTORK \({ }_{1}\) (NEGTORKP) & 3113,3114 \\
\hline 91 & CHANNELII & CHANNELI2 & \\
\hline 92 & CHANNELI3 & CHANNELI4 & \\
\hline 93 & CHANNEL30 & CHANNEL 31 & \\
\hline 94 & CHANNEL 32 & CHANNEL 33 & \\
\hline 95 & P IPT IME1 & PIPTIME1 & 3560-1 \\
\hline 96 & D [LV \(\mathrm{O}_{0}\) (X comp.) & \(\mathrm{DELV}_{1}\) (X comp.) & \\
\hline 97 & \(\mathrm{DiLV}_{2}\) (Y comp.) & \(\mathrm{DELV}_{3}(\mathrm{Y}\) comp.) & 0324-0331 \\
\hline 98 & DELV 4 (2 comp.) & \(\mathrm{DELV}_{5}\) (Z comp.) & \\
\hline
\end{tabular}

TELE-34
\begin{tabular}{cllc}
WORD \# & \multicolumn{2}{l}{ FIRST REGISTER } & \\
\hline 99 & PSEUDO55 SECOND REGISTER & ERASABLE ADDRESS \\
100 & TTOGO & FC & 3614,3615 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline WORD \# & FIRST REGISTER \\
\hline 1 & LIST ID (777728) \\
\hline 2 & R-OTHER \(\mathrm{R}_{0}\) (X comp.) \\
\hline 3 & R-OTHER2 (Y comp.) \\
\hline 4 & \(\mathrm{R}^{\text {-OTHER }} 4\) (Z comp.) \\
\hline 5 & V-OTHER万 (X comp.) \\
\hline 6 & V-OTHER 2 (Y comp.) \\
\hline 7 & V-OTHER \({ }_{+}\)(Z comp.) \\
\hline 8 & TETCSM \\
\hline 9 & RANGRDOT \\
\hline 10 & AIG \\
\hline 11. & AOG \\
\hline 12 & TANGNB \({ }_{0}\) (RR trunnion) \\
\hline 13 & MKT IME \\
\hline 14 & TALIGN \\
\hline 15 & REFSM M AT \({ }_{0}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\) \\
\hline 16 & REESMVAT \(2\left(R_{1} \mathrm{C}_{2}\right)\) \\
\hline 17 & \(\mathrm{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\) \\
\hline 18 & REFSMMAT \(_{6}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)\) \\
\hline 1.9 & \(\mathrm{REFSMMAT}_{8}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\) \\
\hline 20 & REFSMMMAT \(_{10}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\) \\
\hline 21 & \(\mathrm{YNBSAV}_{O}\) (X comp.) \\
\hline 22 & \(\mathrm{YNBSAV}_{2}\) (Y comp.) \\
\hline 23 & \(\mathrm{YNBSAV}_{4}\) (Z comp.) \\
\hline
\end{tabular}

SECOND REGISTER
SYNC PATTERN (77340g)
\(\mathrm{R}_{\mathrm{OTHER}}^{1}\) (X comp.)
R-OTHER 3 (Y comp.) \(\} \quad 1717\) - 1724
R-OTHER 5 (Z comp.)
V-OTHER (X comp.)
V-OTHER (Y comp.)
V-OTHER \({ }_{5}\) (Z comp.))
TETCSM 1570-1
RANGRDOT \(+1 \quad 3760,3761\)
AMG
TRKMKCNT
\(\mathrm{TANGNB}_{1}\) (RR shaft)
MKTIME
TALIGN
\(\operatorname{REFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\)
\(\operatorname{REFSMMAT}_{3}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)\)
\(\operatorname{REFSMMAT}_{5}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)\)
REFSMMAT \(_{7}\left(R_{2} \mathrm{C}_{1}\right)\)
REFSMMAT \(_{9}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\)
REFSMMAT \({ }_{\text {II }}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\)
YNB. \(^{\prime} \mathrm{AV}_{1}\) (X comp.)
YNBSAV \(_{3}\) (\(Y\) comp.)
YNBSAV \(_{5}\) (Z comp.)

ERASABLE ADDRESS

1725-1732

3457,3460
3461, 3462
3752, 3753
3754-5
2774-5

1733-1746
\(2235-2243\)
ZNBSAV \(_{0}\) (X comp.)
ZNBSAV \(_{2}\) (Y comp.)
ZNBSAV \(_{4}\) (Z comp.)
\(\mathrm{ZNBSAV}_{1}\) (X comp.)
\(\left.\begin{array}{l}\mathrm{ZNBSAV}_{3} \text { (Y comp.) } \\ \mathrm{ZNBSAV}_{5} \text { (} \mathrm{Z} \text { comp.) }\end{array}\right\}\)
\(2244-2251\)

X789 \({ }_{x}\) (RR shaft bias)
X789 (RR shaft bias)
1700-1
X789y (RR trunnion bias)
X789y (RR trunnion bias)
1702-3
LASTTCMD (LASTYCMD) LASTSCMD (LASTXCMD)
THETAD (X-angle)
0320, 0321
REDOCTR
THETAD \(_{1}\) (Y-angle)
RSBBQ
RSBBQ +1
1432, 1433
OMEGAP
OMEGAQ 3021, 3022

OMEGAR
ALPHAQ 3023, 3024

CDUXD
CDUXD 3235, 3235
*DELCDUX 3237, 3240
CDUY 0032, 0033

CDUT
0034, 0035
FLAGWRDI
FLAGWRD3
FLAGWRD5
FLAGWRD7
FLAGWRD9
FLGWRDII
\(\mathrm{DSPTAB}_{1}\)
\(\mathrm{DSPTAB}_{2}\)
\(\mathrm{DSPTAB}_{3}\)
\(\mathrm{DSPTAB}_{4}\)
DSPTAB6
\(\mathrm{DSPTAB}_{8}\)
DSPTAB10
\(\mathrm{DSPTAB}_{5}\)
DSPTAB7
\(\mathrm{DSPT}^{\mathrm{AB}} 9\)
DSPTAB11
W)RD \#

51 52
\[
\begin{equation*}
54 \tag{53}
\end{equation*}
\]
\[
54
\]

TIMENOW (TIME2)
\(\mathrm{RN}_{\mathrm{O}}\) (X comp.)
Rive \(_{2}\) (Y comp.)
\(\mathrm{RN}_{4}\) (Z comp.)
\(\mathrm{VN}_{\mathrm{O}}\) (X comp.)
\(\mathrm{VN}_{2}\) (Y comp.)
\(\mathrm{VN}_{4}\) (Z ecmp.)
PIPT IME
OMEGAPD
OMEGARJ
CADRF'LSHO
\(\mathrm{CADRFLSH}_{2}\)
FALLREM
RADMODES
OGC
IGC
Mac
BESTI (STAR IDI)
STARSAVIO (X comp.)
STARSAV1 \(_{2}\) (\(Y\) comp.)
STARSAV1 \(_{4}\) (2 comp.)
STARSAV2O (X comp.)
STAFSAV22 (\(Y\) comp.)
STARSAV2 \({ }_{4}\) (Z comp.)
\(\mathrm{GSAV}_{\mathrm{O}}\) (X comp.)
GSAV \(_{2}\) (\(Y\) comp.)
\(\mathrm{GSAV}_{4}\) (Z comp.)

TIMENOW (TIME1)
\(\mathrm{RN}_{1}\) (X comp.)
\(\mathrm{RN}_{3}\) (Y comp.)
\(\mathrm{RN}_{5}\) (Z comp.)
\(\mathrm{VN}_{1}\) (X comp.)
\(\mathrm{VN}_{3}(\mathrm{Y}\) comı.)
\(\mathrm{VN}_{5}\) (Z comp.)
PIPTIME
OMEG AQD
*ECDUW
CADRFLSH1
FAILREG \(_{0}\)
FAILREG \(_{2}\)
DAPBOOLS
OGC
IGC
MaC
BESTJ (STAR ID2)
STARSAV1 \(_{1}\) (X comp.)
STARSAVI \(_{3}\) (\(Y\) comp.)
STARSAVI \(_{5}\) (Z comp.)
STARSAV2 \(_{1}\) (X comp.)
STARSAV2 \(_{3}\) (\(Y\) comp.) \(\quad 2766-2773\)
STARSAV25 (Z comp.)
GSAV \(_{1}\) (X comp.)
\(\mathrm{GSAV}_{3}\) (Y comp.)
GSAV \(_{5}\) (Z comp.)
1217-1224
1225-1232

1233-4
3243,3244
3245, 3246
0372, 0373
0374, 0375
0376, 0377
Oll0, Oll1
\(2737-2740\)
2741-2
2743-4
2755, 2756
\(2760-2765\)
\(2230-2235\)
```

0024-5

```
```

0024-5

```
1233-4
3243, 3244
3245, 3246
0372, 0373
0374, 0375
0376, 0377
\(2737-2740\)
2741-2
2743-4
2755, 2756
2766-2773
\(2230-2235\)

WORD \#
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

FIRST REGISTER AGSK (K-FACTOR)

LASTTCMD (LASTYCMD)
LEMMASS
IMODES30
TIG
OMEIAP
OMEGAR
CDUXD
CDUZD
CDUX
CDUZ
ALPHAQ
DOWNTORK 0 (POSTORKP)
CHANNELII
CHANNELI3
CHANNEL30
CHANNEL32
PIPTTME1
DELV \(_{0}\) (X comp.)
\(\mathrm{DELV}_{2}\) (Y comp.)
\(\mathrm{DELV}_{4}\) (Z comp.)
SPARE
SPARE

SECOND REGISTER
AGSK (K-FACTOR)
LASTSCMD (LASTXCMD)
CSMMASS
IMODES 33
TIG
OMEGAQ
ALPHAQ
CDUYD
*DELCDUX
CDUY
CDUT
ALPHAR
DOWNTORK \(_{1}\) (NEGTORKP)
CHANNELL2
CHANNELL 4
CHANNELS31
CHANNEL33
PIPTIME1 3560~1
\(\left.\begin{array}{l}\operatorname{DELV}_{1} \text { (X comp.) } \\ \operatorname{DELV}_{3} \text { (Y comp.) } \\ \operatorname{DELV}_{5} \text { (} Z \text { comp.) }\end{array}\right\} \quad 0324-0331\)
SPARE
SPARE

ERASABLE_ADDRESS
2020-1
0112, 0113
1326, 1327
1277, 1300
3441-2
3021, 3022
3023, 3024
3235, 3236
3237, 3240
0332, 0033
0034, 0035
3024, 3025
3113, 3114

The following table gives the downlink parameters, basic scale factors, units, and sections referenced for definitions. The pages following this table contain a list of definitions compiled from the listed references.

\begin{tabular}{|c|c|c|c|}
\hline Mnemonic & Scale Factor & Units & Definition Reference \\
\hline CDUZ (SP) & B-1 (2's comp) & revolutions & IMU COOR DAPA \\
\hline CDUXD (SP) & B-I (2's comp) & revolutions & BURN DAPA ATTM \\
\hline CDUYD (SP) & B-1 (2's comp) & revolutions & BURN DAPA ATTM \\
\hline CDUZD (SP) & B-1 (2's comp) & revolutions & BURN DAPA ATTM \\
\hline \multicolumn{4}{|l|}{CHANNELS (see CHANNEL tables)} \\
\hline CEntang (DP) & B0 & revolutions & TRGL \\
\hline COMPNUMB (SP) & octal & counts & EXVB \\
\hline CSMMASS (SP) & B16 & kilograms & DAPB \\
\hline \multicolumn{4}{|l|}{DAPBOOLS (see FLAGWORD tables)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{DSPTAB}_{0-11}\) (see DSKY Section)} \\
\hline DELCDUX (SP) & B-1 (21 s comp) & revolutions & DAPA \\
\hline DELIT4 (DP) & B28 & centiseconds & TRGL \\
\hline DELTAH (DP) & B24 & meters & SERV \\
\hline DELV (3DP) & B14 & centimeters/second & BURN SERV IMUC \\
\hline DELVEETI (3DP) & B7 & meters/centisecond & TRGX \\
\hline DELVEET2 (3DP) & B7 & meters/centisecond & TRGX \\
\hline DELVEET3 (3DP) & B7 & meters/centisecond & TRGL \\
\hline DELVSLV (3DP) & B7 & meters/centisecond & TRGX \\
\hline DELVTPF (DP) & B7 & meters/centisecond & TRGL \\
\hline DIFFALT (DP) & B29 & meters & TRGX \\
\hline DNRADATA \(_{1}\) (SP) & B14 & counts & RADR \\
\hline DNRADATA \(_{2}\) (SP) & B14 & counts & RADR \\
\hline \(\mathrm{DNRADATA}_{4}\) (SP) & B14 & counts & RADR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mnemonic & Scale Factor & Units & Definition Referenc: \\
\hline DNRADATA \(_{5}\) (SP) & B14 & count, s & RADR \\
\hline DNRADATA6 (SP) & B14 & counts & RADR \\
\hline DNRADATA7 (SP) & B14 & counts & RADR \\
\hline DOWNTORK \(_{0-5}\) (6SP) & B5 & jet-seconds & DAPB \\
\hline ELEV (DP) & BO & revolutions & TRGL TRGX \\
\hline FAILREG \(_{0-2}\) (3SP) & OCTAL & alarm code & PGSR \\
\hline FC (SP) & B14 & throttle pulses & DESC \\
\hline \multicolumn{4}{|l|}{FLAGWRD \(_{\text {O-11 }}\) (see FLAGWORD tables)} \\
\hline GSAV (3DP) & B1 & unit vector & ALIN \\
\hline HMEAS (DP) & B28 & counts & SERV \\
\hline \multicolumn{4}{|l|}{TMODES 30, 33 (see IMUC and INTR Sections)} \\
\hline LAND (3DP) & B24 & meters & DESC \\
\hline LASTXCMD (SP) & B14 & pulses & RADR \\
\hline LASTYCMD (SP) & B14 & pulses & RADR \\
\hline LEMMASS (SP) & B16 & kilograms & DAPB \\
\hline LRVTIMDL (DP) & B28 & centiseconds & SERV \\
\hline LRCDJDL (3SP) & B-1 (2's comp) & revolutions & SERV \\
\hline MKTIME (DP) & B28 & centiseconds & SERV \\
\hline NN (DP) & B14 & counts & TRGX \\
\hline OGC, IGC, MGC (3DP) & BO & revolutions & ALIN COOR EXVB \\
\hline OMEGAP (SP) & B-3 & revolutions/sec & DAPA \\
\hline OMEGAQ (SP) & B-3 & revolutions/sec & DAPA \\
\hline OMEGAR (SP) & B-3 & revolutions/sec & DAPA \\
\hline
\end{tabular}

\begin{tabular}{llll}
Mnemonis & Scale Factor & Units & Definition \\
TGDH (DP) & B28 & Referince
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mnemonic & Scale Factor & Units & Definition Reference \\
\hline VMEAS (DP) & B28 & counts & SERV \\
\hline VN (3DP) & B7 & meters/centisecond & SERV \\
\hline VSELECT (SP) & B14 & \(L R\) velocity code & SERV \\
\hline \({ }^{1789} 0-1\) (DP) & \[
\begin{aligned}
& \text { B5 (EARTH) } \\
& \text { B3 (MOON) }
\end{aligned}
\] & radians & RNAV \\
\hline \(\mathrm{X}^{789}{ }_{2-3}\) (DP) & \begin{tabular}{l}
B5 (EARTH) \\
B3 (MOON)
\end{tabular} & radians & RNAV \\
\hline YNBSAV (3DP) & B7 & unit vector & ALIN \\
\hline ZDOTD (DP) & B7 & meters/centisecond & ASCT \\
\hline ZNBSAV (3DP) & B1 & unit vector & ALIN \\
\hline
\end{tabular}

AGSBUFF \(_{0,2,4:}\) Single precision \(X, Y\), and \(Z\) components of the LM position vector, scaled B25 (earth) and B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF \(_{1,3,5}\) : Single precision \(X, Y\), and \(Z\) components of the LM velocity vector, scaled B13 (moon) or B15 (earth) in units of feet/second and in stable member coordinates.

AGSBUFF \(_{6,8,10}\) : Single precision \(X, Y\), and \(Z\) components of the CSM position vector, scaled B25 (earth) or B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF \(_{7,9,11}:\) Single precision \(X, Y\), and \(Z\) components of the CSM velocity vector, scaled B15 (earth) or B13 (moon) in units of feet/second and in stable member coordinates.
\(\operatorname{AGSBUFF}_{12,13}:\) Double precision difference between the timetag of the state
vectors in AGSBUFF \({ }_{0-11}\) and the time stored in AGSK, scaled B18 in units of seconds.

AGSK: Double precision time of AGS initialization, scaled B28 in units of centiseconds.

ALPHAQ, ALPHAR: Single precision storage for the most significant halves of \(A O S Q\) and \(A O S R\) for down telemetry, scaled \(13-2\) in units of revolutions per second squared.

AOG, AIG, AMG: Single precision storage for ICDU angles, scaled B-l in units of revolutions and stored in two's complement form.

AOTCODE: A single precision scalar containing the star selection code in bits 6-1 (an octal number from 1 to 45 for stars, 0 for a planet, and \(46 \mathrm{~g}-50 \mathrm{~g}\) for sun, earth, and moon), and the AOT detent code in bits 9-7 (1,2,3,4,5 or 6 for AOT detents; 0 for COAS calibration; 7 for COAS position to be specified.)

AOSQ, AOSR: Double precision disturbing acceleration due to thrust vector/ c.g. offset or other external torques, scaled B-2 in units of revolutions per second squared.

AT: Double precision LM thrust acceleration magnitude, scaled B-9 in units of meters per centisecond squared.

BESTI: Single precision value, scaled B14, of the index parameter for star \#1 of the "best" star pair as determined by "R56." It is the star farthest from the AOT center detent position and will be zero if no star pairs are found that are satisfactory. In "R59" it is the value of the index parameter of the first celestial body used for marking (if two bodies are to be
used). It is equal to six times the decimal equivalent of the "star selection code."

BESTJ: See BESTI. In "R56" it is the index parameter for star \#2 which is the closest star to the AOT center detent position. In "R59" it is the index parameter of the second celestial body used for marking (if two are to be used) or the index parameter of the single body being used (Technique 3 alignment).
\(\mathrm{CADRFLSH}_{i}(i=0,1,2):\) Three single precision cells for storage of return address information required by priority, mark and normal display requests. In the program itself, CADRFLSH is used for storage of the address of the step after that at which the display interface routine is called; in this writeup, CADRFLSH refers to the address of the step that called a display interface routine.
\(C D U_{t}, \operatorname{CDU}_{S}\) : LGC input counters incremented directly from the Coupling Data Unit to maintain LGC knowledge of the \(R R\) trunnion and shaft angles, respectively. Single precision angles stored in two's complement form and scaled B-1 in units of revolutions.
\(\operatorname{CDU}\left(\operatorname{CDU}_{\mathrm{X}}, C D U_{y}, \operatorname{CDU}_{\mathrm{z}}\right)\) : Single precision vector containing the measured values of the IMU gimbal angles (outer, inner, and middle gimbal in \(X\), Y, and Z components, respectively), scaled B-l in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.

CDUD: Single precision vector interface with steering and attitude maneuver
routines containing the desired values for the IMU gimbal angles (outer, inner, and middle gimbal angles in \(X, Y\), and \(Z\) components, respectively), scaled B-l in units of revolutions and stored in two's complement form.

CENTANG: Double precision central angle between the passive vehicle's position at TIf and at intercept, scaled BO in mits of revolutions.

COMPNUMB: Single precision number of components (each single precision octal) in a program 27 update, scaled Bl4 and unitless.

CSMMASS: Single precision astronaut input of the mass of the CSM, scaled Bl6 in units of kilograms.

DELCDU: Interface with steering and attitude maneuver routines, minus desired change in gimbal angles per 100 millisecond period, scaled B-l in units of revolutions, stored in two's complement form.

DELLT4: Double precisior maneuver transfer time, scaled B28 in units of centiseconds.

DELTAH: Double precision difference between the calculated altitude and that measured by the Landing Radar, scaled B24 in units of meters.

DELV: Double precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second (one PIPA pulse represents one centimeter per second on the LM) and expressed in Platform coordinates.

DELVEETI: Double precision vector corresponding to the velocity-to-begained vector for the CSI burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle and perpendicular to the active vehicle position vector at TCSI. DELVEET2: Double precision vector corresponding to the velocity-to-be-gained TELE-48
vector for the CDH burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle.

DELVEET3: Double precision velocity to be gained vector, scaled B7 in units of meters per centisecond. Calculated by the "INITVEL" routine.

DELVSLV: Double precision velocity vector expressed in local vertical coordinates, scaled B7 in units of meters per centisecond. In the local vertical coordinate system, X is along the horizontal component of velocity, \(Z\) points toward the center of attraction, and \(Y\) completes a right-handed, orthogonal system.

DELVTPF: Double precision magnitude of the velocity to be gained in the final rendezvous maneuvers of the terminal phase, scaled B7 in units of meters per centisecond.

DIFFALT: Double precision difference of passive and active vehicle altitudes at the time of CDH , scaled B 29 in units of meters; negative if the passive vehicle is below the active vehicle at \(C D H\), and displayed to the astronaut during P32-72 and P33-73.

DNRADATA \(_{i}\) : Special storage for downlink of radar data. \(i=1,2,4,5,6\), and 7 to index six single precision cells (consecutive except between i \(=2\) and 4) alternately labeled DNRRANGE, DNRRDOT, DNLRVELX, DNLRVELY, DNRVELZ, and DNLRALT, respectively. Single precision LGC counter advanced directly by whichever radar circuit is enabled for sampling, scaled B14 in units of counts. Sample Type Value of l count * DNRRDOT -0.19135344 meters/second -0.6278 fps

DNRRANGE
\begin{tabular}{llr}
Low scale & 2.859024 meters & 9.38 feet \\
High scale & 22.872192 meters & 75.04 feet \\
\% DNLRVELX & -0.1962912 meters/second & -0.6440 fps \\
\% DNLRVELY & 0.3694176 meters/second & 1.212 fps \\
\% DNLRVELZ & 0.2642006 meters/second & 0.8668 fps \\
\#NLRALT & &
\end{tabular}
\begin{tabular}{lll}
Low scale & 0.3288792 meters & 1.0790 feet \\
High scale & 1.64440 meters & 5.3950 feet
\end{tabular}
* DNRRDOT has a bias to be subtracted from the raw counts.

K:RDOTBIAS: Double precision constant stored as \(17000 \times 2^{-28}\), scaled B28 in units of radar counts (same as RNRAD). Equation value: 17000.

DNLRVEL \(_{s}\) have a bias to be added to the raw counts:
K:IVELBIAS: Single precision constant stored as \(-12288 \times 2^{-14}\), scaled B14 in units like those of RNRAD. Equation value: -12288. (Program comment states, "Landing radar bias for 153.6 kc. ")

DOWNTORK \(_{i}(i=0-5)\) : Single precision table of quantities for downlink which give cumlative jet on times for the various axes; the correspondence is (\(0,+\mathrm{P} ; \mathrm{I},-\mathrm{P} ; 2,+\mathrm{U} ; 3,-\mathrm{U} ; 4,+\mathrm{V} ; 5,-\mathrm{V}\)); Scaled B5 in units of seconds.

ELEV: Double precision elevation angle of the line-of-sight to the passive vehicle; measured from the vector which is perpendicular to the active vehicle position vector, perpendicular to RACT * RPASS, and whose dot product with the active vehicle velocity vector is positive. An angle
between 0 and 1 (0 and 360 degrees) scaled BO in units of revolutions. ELEV is greater than \(\frac{1}{2}\) (180 degrees) if the passive vehicle is below the active vehicle's local horizontal. ELEV is an astronaut input in P32-72 and an optional input in P34-74.

FAILREG \(_{\mathbf{i}}(i=0,1,2)\) : Three single precision registers used for storage of the alarm code information, FAILREGO, 1 are zeroed via an "ERROR RESET" FAILREG \(A_{2}\) is unaltered. All three registered are zeroed by a Verb 36. FAILREN \({ }_{0}\) contains the first alarm after the "ERROR RESET"; FAILREG contains the second; and FAIIREG \({ }_{2}\) always contains the most recent.

FC: Single precision storage for the magnitude of desired thrust, scaled B14 in units of DPS throttle pulses.

K:SCALEFAC: Double precision constant stored as \(797.959872 \times 2^{-16}\), scaled B16 in units of DPS throttle pulses/kilogram meter per centisecond squared. Equation value: 797.959872. (Equivalent to 12.532 newtons or 2.8173 pounds force per pulse.)

GSAV: Double precision storage for unit gravity vector determined in previous pass through "P57," scaled Bl and expressed in navigation base coordinates. HMEAS: Double precision Landing Radar measurement of altitude, scaled B28 in units of Landing Radar altitude bits.

K: HSCAL: Double precision constant stored as -0.3288792 , scaled BO in units of meters per bit. Equation value: -0.3288792. (Equivalent to 1.0790 feet per bit.)

LAND, LANDTEMP: Double precision position vector of the landing site, ssaled B24 in units of məters, measured from the center of the moon and expressed in the Platform coordinate system.

LASTSCMD, LASTTCMD: Storage for the previous value of total RR shaft and trunnion position deviation; scaled B14 in units of RR drive pulses. Used to convert present position deviation into a desired rate command to be inserted into CDUSCMD or CDUTCMD.

K:RRSPGAIN: Single precision constant stored as 0.59062 , scaled B15 in units of \(R R\) drive pulses por revolution of error. Equation value: 19353. (Equivalent to \(0.7 \times 2 \mathrm{sec}^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}\) pulses per degree per second. The first two terms "null 0.7 of the error in \(\frac{1}{2}\) second," and the fourth is derived from the fact, that a saturated error counter causes a drive rate of 10 degrees pur second.)

LEMMASS: Single precision astronaut input of the mass of the LM, scaled B16 in units of kilograms.

LRVTIMDL: Double precision time at the estimated midpoint of the LR velocity sample, scaled B28 in units of centiseconds.

LRCDUDL: Single precision vector storage for the value of the three ICDU angles at the estimated midpoint of an LR velocity reading, scaled B-l in units of revolutions and stored in two's complement form.

MKTIME: Double precision time of PIPA readings which are associated with the Landing Radar altitude measurement for downlink purposes, scaled B28 in units of centiseconds.

NN: Double precision number designating the apsidal crossing after CSI at which the CDH burn will be executed, scaled Bl4 and unitless. (NN = l indicates that the CDH burn will be executed at the first apsidal crossing after CSI.) NN is used in P34 and P35 as a flag to specify precision or
conic integration. In "S3435.25," it is used to set VTARGTAG.
OGC, IGC, MGC: Double precision commanded gimbal angles scaled BO in units of revolutions or (equivalently) scaled B2l in units of gyro torque pulses of \(2^{-21}\) revolutions each.

OMEGAP, OMEGAQ, OMEGAR, OMEGAU, OMEGAV: Single precision estimated vehicle rate, calculated using commanded accelerations and times, scaled B-3 in units of revolutions per second. Limited to \(\pm 0.12499\) (\(\pm 44.997\) degrees/second) by overflow checks.

OMEGAPD, OMEGAQD, OMEGARD: Single precision rate biases generated in the attitude maneuver and steering routines, scaled B-3 in units of revolutions per second.

PIPA: Single precision sensed-change-in-velosity vector, scaled Bl4 in units of centimeters per second and expressed in the Platform coordinate system. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the Inertial Measurement Unit.

PIPTIME: Double precision time of the most recent PIPA read cycle, scaled B28 in units of centiseconds; time at which the average-g state vector is valid.

PIPTIME1: Temporary storage for PIPTIME to avoid changing the downlink state vector until it is updated homogeneously.

PSEUDO55: Single precision storage for telemetry of the throttle command sent to the descent engine, scaled B14 in units of throttle pulses. R-OTHER: Double precision navigation position vector of the CSM, scaled B29
in units of meters. See RCSM in SERV section.
REDOCTR: Single precision counter set to zero in a fresh start and incremented whenever a hardware restart occurs; scaled B14 and unitless.
[REFSMMAT]: Double precision, \(3 \times 3\) transformation matrix, scaled Bl and unitless. Defined such that Asm \(=\) [REFSMMAT] Arf where \(A\) is a vector expressed in stable member and reference coordinates, respectively.

HGT: Double precision position vector of the LM, scaled B24 in units of meters, measured from the landing site on the moon's surface and expressed in the Descent Guidance coordinate system.

RIS: Double precision vector position of the landing site relative to the center of the moon, scaled B27 in units of meters and expressed in the Selenographic (moon-fixed) coordinate system; part of the erasable load.

FM: Double precision magnitude of measured range, scaled B29 in units of məters. Also used in routine 29 as two single precision storage cells (\(\mathrm{RM}_{0}\) and \(\mathrm{Ri}_{1}\)) for downlink. They are identical to DNRADATA \({ }_{1}\), and DNRADATA \({ }_{2}\), respectively.

RN: Double precision vector position of the LM measured from the center of the earth or moon, scaled B29 in units of meters and expressed in the Reference coordinate system.

RSBBQ: Storage for the value of the address where a hardware restart occurred. The most significant part contains the BBANK and SUPERBNK information; the least significant part contains the Q-register information.

RTARG: Target position vector input to "INTTVEI." Scaled B29 in units of meters. Upon exit, "INITVEL" loads RTARG with the biased target position
```

vector, if such a biased vector is calculated.

```

STARSAV1, STARSAV2: Double precision vectors scaled Bl and unitless. Used to store the two "measurement" vectors for comparison with two "reference" vectors to determine IMU alignment. Expressed in stable member coordinates.

T-OTHER: Double precision state vector time for CSM scaled B28 in units of centiseconds.

TALIGN: Double precision time for determination of IMU alignment, scaled B28 in units of centiseconds.

TANGNB \(_{0}\), TANGNB \({ }_{1}\) : Temporary two's complement storage (astronaut desired or radar marked) radar position angles (trunnion and shaft, respectively), scaled B-l in unit of revolutions.

TCDH: Double precision time of ignition of the CSI burn, scaled B28 in units of centiseconds; an astronaut input in P33-P73.

TCSI: Double precision time of ignition of the CSI burn, scaled B28 in units of centiseconds. It may be either an astronaut input or computed by the program.

TEVENT: Double precision time-of-event for downlink information, scaled B28 in units of centiseconds.

TGO: Double precision predicted length of burn, scaled B28 in units of centiseconds.

THETAD: Single precision vector containing the gimbal angles that define the desired orientation to which the attitude maneuver routines are to maneuver; scaled B-l in units of revolutions and stored in two's conplement
form. Also called CPHI in program.
TIG: Double precision predicted time of ignition input to the burn routines, or predicted cutoff time, scaled B28 in units of centiseconds.

TIMENOW: Double precision computer clock, incremented every centisecond (one hundredth of a second) by the LGC oscillator; scaled B28 in units of centiseconds.

TLAND: Double precision nominal time of lunar landing, scaled B28 in units of centiseconds; part of the erasable load.

TPASS4: Double precision scheduled time of target intercept, scaled B28 in units of centiseconds.

TRKMKCNT: Single precision count of number of navigation updates made during P20 or P22, scaled B14 and unitless. Cell alsว used in R29 to indicate data storage for downlink; l - data stored, 0 - data not stored. TTF/8, TTF: Double precision negative time from the end of the present descent guidance phase, scaled Bl7 in units of centiseconds.

TrOGO: Double precision time until engine ignition (or cutoff), scaled B28 in units of centiseconds.

TTPI: Double precision time of terminal phase initiation, scaled B28 in units of centiseconds; an astronaut input in P32-P72 and P34-P74. UNFC/2, UNFC: Double precision desired thrust acceleration vector, with variable scaling in units of meters per centisecond squared and expressed in the Platform coordinate system. During the pre-ignition phase computations for the powered descent maneuver (P63), UNFC represents the Delta-V vector for the pre-full throttle thrust, scaled B7 in units of
meters per centisecond.
UPBUFF \(_{0-19}\) : Single precision buffer cells for P27 updates.
UPCOUNT: Single precision number of components received in a P27 update, scaled B14 and unitless.

UPOLDMOD: Single precision storage for the value of MODREG at the initialization of a P27 update.

UPVERB, UPVERBSV: Single precision indication of the verb that initiated a P27 update, scaled B14 and unitless.

V-OTHER: Double precisions navigation velocity vector of the CSM scaled B7 in units of meters/centisecond.

VGPREV: Double precision previous value of VG, program notation also VGTIG, scaled B7 in units of meters per centisecond and expressed in the reference coordinate system.

VGU: Double precision velocity vector of the LM relative to the rotating moon, scaled BlO in units of meters per centisecond and expressed in the Descent Guidance coordinate system.

VGVECT: Double precision velocity-to-be-gained vector in Platform coordinates, scaled B7 in units of meters per centisecond.

VMEAS: Double precision velocity measurement (sum of 5 samples) from the LR sampling, scaled B28 in units of Landing Radar velocity bits. \(\mathrm{K}: \mathrm{VSCAL}_{0}\) : Double precision constant stored as 0.5410829105 , program notation VZSCAL, scaled B-IO in units of meters per centisecond per bit. Equation value: \(0.002642006 / 5\). (Equivalent to 0.8668 fps per bit; the "5" averages the sum of five samples.)

K:VSCAL \({ }_{2}\) : Double precision constant stored as 0.7565672446 , program notation VYSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: 0.003694176/5. (Equivalent 1.01 .212 fps per bit; the " 5 " averages the sum of five samples.)
\(\mathrm{K}: \mathrm{VSCAL}_{4}\) : Double precision constant stored as -0.4020043770 , program notation VXSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: \(-0.001962912 / 5\). (Equivalent to -0.644 fps per bit; the "5" averages the sum of five samples.)

VN: Double precision inertial velocity vector of the IM, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.

VSELECT: Single precision index used to distinguish among the \(\mathrm{Z}(0)\), Y (1) and X (2) axes of the Landing Radar coordinate system, scaled Bl4 and unitless.

X789: Double precision vector containing the best estimate of bias necessary to offset RR position error, scaled B5 (earth) or B3 (moon) in units of radians.

YNBSAV, ZNBSAV: Double precision unit vectors in the directions of the Y and Z navigation base axes, scaled Bl and expressed in moon-fixed coordinates.

2DOTD: Double precision desired downrange velocity scaled \(\mathrm{B}^{7}\) in units of meters/centisecond.
VBTSTLTS Inhibit interrupts
If MODREG \(\neq 0\), proceed to "ALM/END"
Switch bit 1 of IMODES 33 to 1 (indicate lamp test in progress)
Switch bits 7, 6, 5, 4, 3 and 1 of channel 11 to 1
(Illuminate operator error lamp; initiate verb-noun flash; illuminatekey release, temperature caution, uplink activity, and ISS warninglamps)
Switch DSPTAB 11 to \(100000110111100{ }_{2}\) (Signal "T4RUPT" to light the program alarm, tracker fail, gimbal lock warning, no attitude, and IR fail lamps)
Perform "Cl3STALL"
Switch bit 10 of channel 13 to 1 (Light restart, standby and computer warning lamps)
Switch DSPTAB \({ }_{i}\) to -05675 gor \(i=10\) thru 0 (display all 8's)
Switch DSPTAB \({ }_{i}\) to -07675 gor \(i=1,4\) and \(6 \quad\) (display + signs)
NOUT \(=11\)
Release interrupt inhibit
Call "TSTLTS2" in 5 seconds
End job
TSTLTS2 Establish "TSTLTS3"
End task
TSTLTS3 Inhibit interrupts
Switch bits 7, 4, 3 and 1 of channel 11 to 0
(Leave verb-noun and key release flashing)
Perform "Cl3STALL"
Switch bit 10 of channel 13 to 0
\(T S=\) bit 4 of channel 12
(leave no attitude lamp

Switch bit 1 of IMODES 33 to 0
Switch bits 13, 12 and 11 of IMODES33 to 1(Reset PIPA fail, Downlink fail and Uplink fail bits)
Switch bits 13, 12 and 10 of IMODES30 to 1(Reset IMU fail, ICDU fail and PIPA fail bits)
Switch bit 15 of IMODES30 to 0 (Reset IMU temperature bit)
Switch RADMODES bit 7 (RCDUFBIT) tn 1
Switch RADMODES bits 8 (LRVETBIT), 5 (LRATTFI, \(C_{i}\)) and 4 (RRDATABT) to 0
Release interrupt inhibit
Est.ablish "DSPMMJOB" (pr30)
MONSAVE1 \(40000_{8}\)
Switch bit 6 of channcl 11 to 0 (verb-noun flash off)
Perform "RELDSP"
If CADRSTOR / +O, proceed to "PINBRNCH"
End job
SHOWSUM2 Perform "PRIOCHNG" with \(A=07000_{8}\) (change priority to 078)
SKEEP6 = 1
SMODE +o
SELFRET \(=\) "SELFCHK"
Proceed to "STSHOSUM"
SKEEP2 . TSbank
\(\mathrm{MPAC}_{2}=\) "SKEEP1"
Proceed to "GOXDSPF" with TS = K:VO5NO1 (SKEEP1, SKEEP2, SKEEP3)
(If terminate; continue at next step; if proceed, proceedto "NXTBNK"; if other response, repeat at previous step.)
SKEEP1 "SELFCHK"
Proceed to "ENDEXT"
SDISPLAY SKEEP3 \(=\) SKEEP2

Perform "CHECKNJ"
If SMODE \(=+0\) :
Proceed to second step of "SELFCHK" (idle loop)
If \(\operatorname{SMODE}=-0\) :
SCOUNT \(=\) SCOUNT +1
Proceed to address specified in SKEFP1
If \(|S M O D E|>10_{8}\) :
SMODE \(=+0\)
Proceed to "SELFCHK"
SCOUNT \(=\) SCOUNT +1
If \(\mid\) SMODE \(\mid=1,2,3,6,7\) or \(10_{8}\) :
Proceed to address specified in SKEEP1
If \(\mid\) SMODE \(\mid=4\), proceed to "ERASCHK"
If \(|S M O D E|=5\), proceed to "ROPECHK"
CHECKNJ SELFRET = return address
Proceed to "ADVAN"
(Returns to caller of "CHECKNJ" via SELFRET if or when no jobs require processing.)

ERASCHK SKEFP2 == 1
EBANK \(=0\)
SKEEP7 \(=01461_{8} \quad\) (address of first non-special cell in bank 0)

SKEEP3 \(=017778\) (last address in bank 0)
ERASLOOP Inhibit interrupts
\(\mathrm{SKEEP}_{4}=\mathrm{EBANK}\)
SKEEP5 \(=\mathrm{E}_{\text {SKEEP7 }}\)
\(\mathrm{i}=\mathrm{SKEEP} 7+1\)
SKFEPG \(=\mathrm{E}_{\mathrm{i}}\)
ERESTORE = SKFEP7
\(\mathrm{E}_{\text {SKEEP7 }}\) SKEEP7
\(\mathrm{E}_{\mathrm{i}}=\mathrm{SKEEP} 7+1\)
\(\mathrm{TS}=\mathrm{E}_{\text {SKEEP7 }}-\mathrm{E}_{\mathrm{i}}\)
If TS \(\neq-1\), perform "PRERRORS"
If ERESTORE \(\neq+0\) : (did not perform "PRERRORS")
\(\mathrm{E}_{\text {SKEEP7 }}-\mathrm{E}_{\text {SKEEP7 }}\)
\(\mathrm{E}_{\mathrm{i}}=-\mathrm{E}_{\mathrm{i}}\)
\(T S=E_{i}-E_{\text {SKEEP7 }}\)
If TS \(\neq-1\), perform "PRERRORS"
If ERESTORE \(\neq+0\) :
\[
\begin{aligned}
& E_{\text {SKEEP7 }}=\text { SKEEP5 } \\
& E_{i}=\text { SKEEP6 } \\
& \text { ERESTORE }=\text { to }
\end{aligned}
\]

Release interrupt inhibit
Perform "CHECKNJ"
EBANK \(=\) SKEEP4 \(\quad\) (in case it was changed by another job)
SKEEP7 = SKEEP7 +1
If SKEEP7 \(\neq\) SKEEP3, proceed to "ERASLOOP"
\[
\text { TEST - } 4
\]
```

    If SKEEP2 > 0:
    SKEEP2 = SKEFP2 - 1
    SKFEP7 000618 (first non-special cell in unswitched
                                    erasable)
    SKEEP3 013738
    Proceed to "ERASLOOP"
    (Otherwise SKEEP2 = 0)
    SKEFP2 = 1
    EBANK = EBANK + 1
    If EBANK 2:
    SKEEP7 - - 014008
    SKEEP3 = 017738
    Proceed to "ERASLOOP"
    If EBANK < 10
    SKEEP7 - 014008
    SKEEP3 = 017778
    Proceed to "ERASLOOP"
    EBANK = 3
    SKEEP2 = 508
    CNTRLOOP TS = - contents of cell specified by (SKEEP2 + 108
If SKEEP2 > 0:
SKEEP2 SKEFP2 - 1
Proceed to "CNTRLOOP"
CYR = 252528 (should cycle right and become 12525g)
CYL = 25252 g (should cycle left and become 52524.8)
SR = 25252% (should shift right and become 125258)
TEST - 5

```

EDOP \(=25252_{8} \quad\) (should shift right 7 and become \(00125_{8}\))
\(T S=25252_{8}+C Y R+C Y L+S R+E D O P+52400_{8}\)
If TS \(\neq-1\), perform "PRERRORS"
\(T S=C Y R+C Y L+S R+E D O P+1\)
If \(\mathrm{TS} \not \not \neq-1\), perform "PRERRORS"
\(\mathrm{SCOUNT}_{1}=\mathrm{SCOUNT}_{1}+1\)
SKEEP1 := "ROPECHK"
Proceed to second step of "SELFCHK"
PRERRORS If ERESTORE \(\neq+0\) :
\(\mathrm{E}_{\text {SKEEP7 }}=\) SKEEP5
\(\mathrm{E}_{\mathrm{i}}=\) SKEFP6
ERESTORE \(=+0\)
Inhibit interrupts
SFAIL \(=\) return address
ALMCADR \(_{d p}\) SFAIL + bank information
ERCOUNT \(=\) ERCOUNT +1
\(T S=011028\)
Perform "ALARM" skipping first two steps
If SMODE \(\geq+0:\)
SMODE \(=+0\)
Proceed to "SELFCHK"
If SMODE < O, proceed to "SELFCHK"
Return via SFAIL
```

ROPECHK SKEEP6 =- -0
STSHOSUM SKEEP4 =0
SKEEP7 = 1
SKEEP1 O
SKEEP3 .. 000000
SKEEP5 = 1
COMADRS L = SKEEP4
FCADR =- bits 15-11 of SKEEP4 + SKEEP3
Perform "SUPDACAL"
SKEEP2 = A (contents.of fixed memory cell specified by
FCADR and L)
SKEEP1 = SKEEP1 + SKEEP2 with end around carry of }\pm\mathrm{ overflow
TS 020008
Proceed to "ADRSCHK"
FXADRS SKEEP2 = contents of cell specified in SKEEP3 (fixed-fixed
banks 2,3)
SKEEP1 = SKEEP1 + SKEEP2 with end around carry of \pm overflow
TS = SKEEP3 - SKEEP2
ADRSCHK TSadr = bits 10-1 of SKEEP3
If TSadr = 017778, proceed to "SOPTION" (end of bank)
If SKEEP5 < O, proceed to "SOPTION" (2 consecutive TC SELF
instructions have been encountered, indicating that the
rest of the bank is unused)
If TS = - 0: (contents of cell equals its address)
If SKEEP5 = 0, SKFEP5 = -1 (2nd consecutive TC SELF)
If SKEEP5 > 0, SKEEP5 = SKEEP5 - 1 (1st TC SELF)
If TS }\not=-0, SKEEP5 = 1

```
\begin{tabular}{|c|c|}
\hline & \((\mathrm{SKEEP6}=1\) or -0\()\) \\
\hline & If SKEEP6 \(>0\) and NEWJOB \(>0\) : \\
\hline & Proceed to "CHANG1" \\
\hline & When jobs of higher priority are finished (if any), "CHANG1" will return here \\
\hline & Proceed to "ADRS +1 " \\
\hline & If SKEEP6 \(=-0\), perform "CHECKNJ" \\
\hline ADRS:1 & SKEEP3 -- SKEEP3 + 1 (increment address) \\
\hline & If SKEEP7 \(\geq\)-0, proceed to "COMADRS" \\
\hline & Proceed to "FXADRS" \\
\hline SOPTION & TSbank - integral part of SKEEP4 (rescaled from \(\mathrm{B}_{4}\) to B14) \\
\hline & TS \(\therefore 8^{3}\) (fractional part of SKEEP4) (rescaled from \(\mathrm{B}_{4}\) to \(\mathrm{B} 14_{4}\)) \\
\hline & If TS \(\neq 0\) : (equals \(30_{8}\) or \(40_{8}\)) \\
\hline & TSbank - TS | TSbank - 308 \\
\hline & If SKEEP6 \(\neq 0\), proceed to "SDISPLAY" \\
\hline & SKEEP1 \(=\mid\) SKEEP1 1 \\
\hline & If SKEEP1 \(\ddagger\) TSbank, perform "PRERRORS" \\
\hline NXTBNK & If \(\mathrm{SKEFPP}_{4}=33.04_{8}\) : \\
\hline & If SKEEP6 \(\neq 0\), proceed to "STSHOSUM" \\
\hline & Proceed to "SELFCHK" \\
\hline & \(\mathrm{SKEEP}_{4}=\mathrm{SKEEP}_{4}+1\) \\
\hline & \\
\hline & \[
\begin{aligned}
\text { If SKEEP4 } \geq 40_{8}, \text { SKEEP4 }_{4}=30.04_{8} & \begin{array}{l}
\left(100_{2} \text { in bits } 7-5\right. \\
\text { for. "SUPDACAL" }
\end{array}
\end{aligned}
\] \\
\hline & (Only difference between address in banks \(3_{8}^{-33} 8\) and \(40_{8}^{-43} 8\) is the SUPERBNK setting.) \\
\hline
\end{tabular}
```

If SKEEP7 > 0:
SKEEP7 SKEFP7 - 1 (+O if 0)
SKEEP1 : 0
SKEEP3 0000008
SKEEP5 1
Proceed to "COMADRS"
If SKEEP7 = +0:
SKEEP7 -1
SKEEP3 = 040008
SKEEP1 O
SKEEP5 = 1
Proceed to "FXADRS"
If SKEEP7 = -1:
(bank 3)
SKEEP7 = -O
SKEEP3 = 06000%
SKEFP1 = 0
SKEEP5 = 1
Proceed to "FXADRS"
SKEEP7 = 64
SKEEP1 == 0
SKEEP3 = 00000 8
SKEEP5 = 1
Proceed to "COMADRS"

```
```

Establish "DSPMMJOB" pr(30)
Perform "IMUZERO"
Perform "IMUSTALL"
If ISSGOOD = 0, proceed to "SOMERR2"
NDXCTR = 0
TORQNDX = 0
OVFLOWCK = 0
Set matrix [XNB]=0
DSPTEML +1 dp = LATITUDE rescaled B-2 revs
DSPTEML = AZIMUTH twos complement, B-1 in revs
Proceed to "GOFLASH" with TS = K:VO6N41
(If terminate, proceed to "ENDTESTl"; If proceed, continue
below; if other response, repeat this step)
AZIMUTH = DSPTEMI ones complement, BO revs
LATITUDE = DSPTEMI +1 rescaled to BO revs
WANGI = -cos(LATITUDE)
WANGO = sin(LATITUDE)
[XNB] =[ llll
Perform "CALCGA"
Perform "IMUCOARS"
If FLAGWRD3 bit 14 (GLOKFAIL) = l:
NDXCTR = NDXCTR + I
Switch FLAGWRD3 bit 14 (GLOKFAIL) to 0

```
```

    Perform "IMUSTALL"
    If ISSGOOD = 0, proceed to"SOMERR2"
    If NDXCTR > 0:
        Proceed to "PIPACHK"
    Perform "IMUFINE"
    Perform "IMUSTALL"
    If ISSGOOD = 0, proceed to "SOMERR2"
    Call "GOESTIMS" in PERFDLAY dp centi-seconds
    A = "ESTIMS"
    Proceed to "JOBSLEEP"
    GOESTIMS Awaken job with starting address "ESTIMS"
End task
ESTIMS Inhibit interrupts
Call "ALLOOP" in lSECXT Centi-seconds
PIPA = 0
Release interrupt inhibit
Zero 77 erasable memory cells starting at location "ALXIS -1"
GCOMPSW = 0
ALXIS = 144
CMPX1 = -1
ALK = K:soupy0
ALK}2= K:soupy
DELV = O
GCOMP = O

```
```

    If TORQNDX \leq 0:
    ERVECTOR = K:omegms (sinLATITUDE, -cosLATITUDE, 0)
    TStmark = TIMENOW
    ERCOMP = O
    Proceed to "SLEEPIE"
    SLEEPIE If TORQNDX > 0, perform "EARTHR*"
End job
TORQUE DSPTEM2 = 0
DSPTEM2 +1 = DRIFTI
TS = POSITON - 1
SOUTHDR
Perform "SHOW"
Proceed to "PIPACHK"
PIPACHK If NDXCTR = 0, perform "EARTHR*"
DATAPL +4 = 17
LENGTHOT = 58
RESULTCT = 1
PIPA PIPINDEX = 0
DATAPL sp
Perform "CHECKG"
Call "PIPATASK" in . O2 seconds
End job
PIPATASK LENGTHOT = LENGTHOT - 1
If LENGTHOT > O:
Call "PIPATASK" in 5.12 seconds
Establish "PIPJOBB" pr(20)
End task
TEST - 12

```

PIPJOBB If NDXCTR \(=0\), perform "EARTHR*"
If LENGTHOT > 0 , end job.
RESULTCT = 5
Perform "CHECKG"
If DATAPL \(+1<0\) :

DATAPL \(+4=-\) DATAPL +4
DATAPL \({ }^{+}{ }_{\mathrm{d}}^{\mathrm{d} \rho}=\) DATAPL \(+4^{\mathrm{dp}}-\) DATAPL \(_{\mathrm{dp}}\)
\(T S=\) DATAPL \(+6_{d p}-\) DATAPL \(+2_{d p}\)
If \(T S<0:\)
TS \(=T S+2^{28} \quad\) (the \(2^{28}\) corresponds to \(2^{23}\) centiseconds)
DSPTEM2 \({ }_{d p}=K: d c 585\) DATAPL \(+4 / T S\) (with forced sign agreement)
If NDXCTR > 0 :
THETAD \(=0\)
Perform "IMUCOARS"
Perform "IMUSTALL"
If ISSGOOD \(=0\), proceed to "SOMERR2"
Perform "SHOW"
LENGTHOT \(=3990\)
\(T S=\) POSITON - 2
DRIFTT \(_{\text {SP }}=-\) SOUTHDR \(_{\text {TS }}\)
If PIPINDEX >0:
\[
\begin{aligned}
& \operatorname{ERCOMP}_{\mathrm{x}}=\mathrm{ERCOMP}_{\mathrm{x}}+\mathrm{K}: \mathrm{bt5} \\
& \mathrm{ERCOMP}_{\mathrm{y}}=\mathrm{ERCOMP}_{\mathrm{y}}-\mathrm{K}: \mathrm{bt5}
\end{aligned}
\]

If PIPINDEX = 0:
\[
\begin{aligned}
& \operatorname{ERCOMP}_{y}=\operatorname{ERCOMP}_{y}-K: b t 5 \\
& \operatorname{ERCOMP}_{z}=\operatorname{ERCOMP}_{z}+K: b t 5
\end{aligned}
\]
```

    Perform "EARTHR*"
    ERVECTOR 
    TORQNDX = (1- 2-28)
    LOSVEC = CDU 
    Proceed to "ESTIMS"
    VALMIS DSPTEM2 +1 = DRIFTO
DSPTEM2 = 0
Perform "SHOW"
ENDTEST1 Switch FLAGWRDO bit 8 (IMUSE) to 0
MODREG = -0
Establish "DSPMM.JOB"
Proceed to "ENDEXT"
CHECKG QPLACE = return address
Inhibit interrupts
ZERONDX $=-$ PIPA $_{\text {PIPINDEX }}$
If PIPA $_{\text {PIPINDEX }}+2 E R O N D X=0$ :
Release interrupt inhibit
Check for new job and perform it if required; if a new job is performed, proceed to 2nd line of "CHECKG"
If a new job is not performed:
Inhibit interrupts
Proceed to 4 th line of "CHECKG"
DATAPL $_{\text {RESULTCT }}=$ PIPA $_{\text {PIPINDEX }}$
DATAPL ${ }_{\text {RESULTCT }}+1=$ (Channel 3, Channel 4)
Release interrupt inhibit
Proceed to address specified by QPLACE

```
SHOW DSPTEM2 +2 = POSITON
 Proceed to "GOFLASH" with TS = K:VO6N98
 (if terminate, proceed to "ENDTESTl"; if proceed,
 proceed below; if other response, proceed to "SHOW")
 Return
EARTHR:}\mathrm{ TSt = TIMENOW
 TSt1 = TSt - TStmark
 If TSt1 < 0:
 TSt1 = TSt1 + 2 28 centi-seconds
 ERCOMP = ERCOMP + [XSM] TSt1 ERVECTOR
 TStmark = TSt
 TS = "ERCOMP"
 Perform "IMUPULSE"
 Perform "IMUSTALL"
 If ISSGOOD = 0, proceed to "SOMERR2"
 Return
ALLOOP If OVFLOWCK > 0, end task
 TS = ALTIM
 If TS = +O:
 ALTIMS = +0
 ALTIM = -0
If TS = -0:
 ALTIM = +O
If TS < 0: (should not be positive)
 ALTIM = -(|ALTIM | - 1)
If GEOCOMPS - 1 = 0 or LENGTHOT > 0:
 Call "ALLOOP" in lSECXT centi-seconds
TEST - 15
```

```
DELV = PIPA (most significant half only)
PIPA = 促
Establish "ALFLT"
End task
ALFLT If GEOCOMPS > 0, perform "1/PIPA"
TS = [XSM] T
DPIPAY = - TS
DPIPAZ = TS z
If GEOCOMPS > 0, proceed to "PERFERAS"
If ALTIMS \geq 0:
 TS = 144 - ALXIS
 ALTIM = ALFDK
 ALTIMS = ALFDK
 ALDK = ALFDK.TS + 2
 ALDK_2 = ALFDK
 ALDK
 ALDK}6=\mp@subsup{A}{6}{}=\mp@subsup{ALFDK}{TS + 8}{*
```



```
 ALXIS = ALXIS - 12
INTY = INTY - K:pipasc DPIPAY
```



```
INTZ = INTZ - K:pipasc DPIPAZ
DELM
ALK = ALDK ALK
ALK
TEST - 16
```

$$
\begin{aligned}
& \text { INTY }=\text { INTY }+ \text { ALK DELM } y \\
& \mathrm{ALK}_{4}=\mathrm{ALK}_{4}+\mathrm{ALDK}_{4} \\
& \mathrm{ANGX}=\mathrm{ANGX}+4 \mathrm{ALK}_{4} \mathrm{DELM}_{\mathrm{y}} \\
& \text { VLAUN }_{y}=\text { VLAUN }_{y}+\mathrm{K}: \text { askO DELM }_{\mathrm{y}} \\
& \mathrm{ANGZ}=\mathrm{ANGZ}+\mathrm{ALK}_{2} \mathrm{DELM}_{\mathrm{y}} \\
& \mathrm{ALK}_{6}=\mathrm{ALK}_{6}+\mathrm{ALDK}_{6} \\
& \text { DRIFTO }=\text { DRIFTO }+4 \text { ALK }_{6} \text { DELM }_{y} \\
& \operatorname{ACCWD}_{\mathrm{y}}=\mathrm{ACCWD}_{\mathrm{y}}+\mathrm{K}: \operatorname{ask2}^{2} \mathrm{DELM}_{\mathrm{y}} \\
& \text { INTZ }=\text { INTZ }+ \text { ALK }^{\text {DELM }}{ }_{z} \\
& \mathrm{ALK}_{8}=\mathrm{ALK}_{8}+\mathrm{ALDK}_{8} \\
& \text { DRIFTI }=\text { DRIFTI }+4 \text { ALK }_{8} \text { DELM }_{z} \\
& \operatorname{VLAUN}_{z}=\operatorname{VLAUN}_{z}+\mathrm{K}: a s k O \operatorname{DELM}_{z} \\
& \text { ANGY }=\text { ANGY }+ \text { ALK }_{2} \text { DELM }_{z} \\
& \operatorname{ACCWD}_{z}=\operatorname{ACCWD}_{z}+\mathrm{K}: \operatorname{ask2} \operatorname{DELM}_{z} \\
& \text { TS } \left.=\text { [TRANSM1] (POSNV }{ }_{y}, \text { VLAUN }_{y}, \text { ACCWD }_{y}\right) \\
& \left(\operatorname{POSNV}_{\mathrm{y}}, \operatorname{VLAUN}_{\mathrm{y}}, \operatorname{ACCWD}_{\mathrm{y}}\right)=\mathrm{TS} \\
& \underline{T} S=\left[\operatorname{TRANSM1}^{1}\right]\left(\text { POSNV }_{z}, \operatorname{VLAUN}_{z}, \text { ACCWD }_{z}\right) \\
& \text { (POSNV }_{z}, \operatorname{VLAUN}_{z}, \operatorname{ACCWD}_{z} \text { ) }=T S \\
& \text { SNANGi }=\sin (K: \text { georgj ANGi }) \quad(i=x, y, z) \\
& \text { CSANGi }=\cos (\mathrm{K}: \text { georgj ANGi }) \\
& (i=x, y, z)
\end{aligned}
$$

PERFERAS Proceed to erasable memory cell 3400 (E7, 1400)

This is the point where the program apparently returns from erasable memory.

$$
\begin{aligned}
& \text { If LENGTHOT > } 0: \\
& \text { LENGTHOT = LENGTHOT }-1 \\
& \text { Proceed to "SLEEPIE" } \\
& \text { If TORQNDX >0, } \text { LOSVEC }_{1}=\text { CDU }_{x}
\end{aligned}
$$

```
 OGC =[XSM] (-K:georgj)(ANGX, ANGY, ANGZ)
 TS = "OGC"
 Perform "IMUPULSE"
 Perform "IMUSTALL"
 If ISSGOOD = 0, proceed to "SOMERR2"
 If TORQNDX > 0, proceed to "VALMIS"
 ERVECTOR = K:omegms (sinLATITUDE, -cosLATITUDE, 0)
 TStmark = TIMENOW
 ERCOMP = O
 Proceed to "TORQUE"
 SOMEERRR OVFLOWCK = 1
 Perform "ALARM" with TS = 016008
 Proceed to "ENDTEST1"
SOMERR2 Perform "ALARM" with TS = 016018
 Switch FLAGWRDO bit 8 (IMUSE) to 0
 End job
```

1SECXT: Single precision quantity, scale factor B14, units centi-seconds, giving required period of computations for "ALIOOP".
A: See MATX section.
ACCWD ${ }_{y}$, ACCWD : Double precision value of horizontal acceleration of laynch vehícle (due to sway) in north-south and east-west directions respectively, scale factor B9, units $\mathrm{cm} / \mathrm{sec}^{2}$.
ALDK, ALDK ${ }_{2}$ : Set of double precision buffer cells used to contain the values of the time constants for the erection angles (PIPA outputs and east axis leveling angle), scale factor $B O$, as read from the ALFDK table set.

ALDK $_{4},^{A_{6}}$ ALDK $_{6}$ ALDK $_{8}:$ Set of double precision buffer cells used to contain the values of the slopes of the gains for azimuth angle, vertical drift, and north-south drift respectively; scale factor BO, read from ALFDK table set.
$A_{j} \mathrm{ALDK}_{j}$ : Table of erasable memory quantities used in "ALFLT" to update values of parameters to be used for filtering in gyro drift computations. The table consists of five double precision constants, one single precision constant (the setting for ALTIM), and a reset value of ALTIMS (which could be e.g. -1 for all tables). Values must be initialized by an erasable memory load (with the first value at "ALFFDK", with settings for ALTIM, ALTMMS, ALDK, ALDK ${ }_{2}, A L D K ~_{4}, A L D K_{6}$, and $A_{8}{ }_{8}$ stored in that order (first two single precision, remainder ${ }^{6}$ double precision). Scale factor of first two assumed B14, and the remainder assumed BO , in this writeup.
$\mathrm{ALK}, \mathrm{ALK}_{2}, \mathrm{ALK}_{4}, \mathrm{ALK}_{6}, \mathrm{ALK}_{8}$ : Values of gains updated each cycle in gyro drift determination computations. ALK and $\mathrm{ALK}_{2}$ are initialized to non-zero values in "ESTIMS" and multiplied by time constants for PIPA outputs and erection angles respectively, with scale factors due to initialization of BO (ALK) and B2. The others (ALK ${ }_{4}, \mathrm{ALK}_{6}$, and $\mathrm{ALK}_{8}$ ) are initialized to 0 values in "ESTIMS", and are incremented each cycle to achieve varying gains for azimuth angle, vertical drift, and north-south drift respectively: all are considered to have scale factor BO (see ALFDK).

ALMCADR: See FGSR section.
ALTIM: Single precisior value of time remaining prior to change in filter constants for drift measurements, scale factor B14, units seconds. To cause a set of gains to be used for $T$ seconds, ALT IM is set to-( $T$ - 2).
ALTIMS: Single precision flag cell set to 0 when a gain change should be made (see ALTIM), and then reset (e.g. to -1 ) when the gain change has been done, scal e factor B14.
ALXIS: Single precision cell, scale factor B14, used to control selection of values from ALFDK ${ }_{i}$ erasable memory table (set to 144 in "ESTIMS").

ANGX, ANGY, ANGZ: Values of determined angle changes about vertical, south, and east axes respectively, scale factor $B 0$, units revolutions: they are azimuth alignment angle, south axis leveling angle, and east axis leveling angle respectively.

AZIMUTH: Double precision erasable memory constant, scale factor BO, units revolutions. It gives the azimuth of the vehicle Z-axis east of north.

CMPX1: Single precision cell, scale factor B14, useत to set proper contents of index register X1 to permit use of an index loop (X1 is set successively to $\pm 1$ ) to perform calculations in "ALFLT".

CADRSTOR: See DINT section.
$\operatorname{CSANG}_{i}(i=X, Y, Z):$ Values of cosine of ANGX, ANGY, and ANGZ, scale factor B1, stored in push-down list locations 16D, 18D, and 20D r-spectively.

CYR, CYL, SR, EDOP: Cycle right, cycle left, shift right and shift right 7 registers.

DATAYL: Set of cells used to retain "prelaunch data", loaded in "CHECKG" with sampled accelerometer value and corresponding value of time information in (channel 3, channel 4) scaling (B23 cs).
$\operatorname{DELM}_{y}$, $\operatorname{DELM}_{z}$ : Value of measurement quantity in south and easterly directions used in drift test, scale factor $B-2$, units radians.

DELV: See SERV section.
DPIFAY, DPIPAZ: Value of accelerometer output modified for use in gyro parameter calculations. The y axis of this system is south and and the $z$ axis is east (from [XSM] ). Scale factor is B14, units accelerometer counts.

DRIFTI: Value of gyro drift measurement output displayed in "TORQUE", scale factor (assumed) BO, units radians, giving the south gyro drift.

DRIFTO: Value of gyro drift measurement output displayed in "VALMIS", scale factor (assumed) BO, units radians, giving the vertical gyro drift.

DRIFTT: Input drift to gyro drift determination routine (to separate east gyro drift from azimuth error), scale factor BO, units radians. It has only its most significant half loaded by calling routines, with the least significant half set to 0 .
1)SPTAB $_{i}(i=0-10)$ : See DSKY section.

DSPTAB ${ }_{11}$ : See INTR section.
DSPTEM1, etc: See DATA section.
$\mathrm{E}_{\mathrm{ADR}}$ : Contents of single precision erasable memory register whose
EBANK: See MATX section.
ERCOMP: Value of gyro compensation to be sent to gyros, scale factor B21, units pulses (or scale factor BO, units revolutions, since one pulse is $2^{-21}$ revolution).

ERCOUNT: Single precision count of errors encountered in the erasable memory self-check, initialized at zero by a fresh start.

ERESTORE: Single precision storage for the address of the first of two erasable memory cells currently being tested by the "ERASCHK" routine. Set to to when the "ERASCHK" is complete or not functioning.

ERVECTOR: Earth rotation vector initialized in "ESTIMS", scale factor B1, units gyro pulses / centi-second.

FCADR: See MATX section.
GCOMP: Value of required gyro compensation command, computed with a scale factor B14, but used in "IMUPULSE" with a scale factor B21 (or, alternatively, with a scale factor BO revolutions rather than B21 gyro pulses, since there are $2^{21}$ gyro pulses / revolution).

GCOMPSW: Single precision control cell used to bypass the performance of " $1 /$ PIPA" and "NBDONLY" if it is negative.

GEOCOMPS: Single precision control cell which when positive will cause the calculations performed in "ALFLT" to be skipped and control transferred to the erasable memory programs. Normally set to 0 .

IMODES30: See IMUC section.
IMODES33: See INTR section.
INTY, INTZ: Value of filtered accelerometer output (corrected for vehicle sway etc.) used in gyro drift test, scale factor B-2, units radians. Could also be considered to be "south" and "east" velocity increments expressed in units of g's (see K:pipasc).

K:askO: Constant, program notation "ALSK", scale factor B12, stored as 05427 12577 8 , equation value 709.833965. Value corresponds to $0.72402338 \times 980.402 \times 2^{-12}$ where first term is wind-induced sway accelerometer gain, second converts DELM to units of $\mathrm{cm} / \mathrm{sec}$ (ie. units of VLAUN), and third term is scale factor.

K:ask2: Constant, program notation "ALSK +2", scale factor B12, stored as 7756744202 , equation value -34.2167470 . Value corresponds to $0.03490074 \times(-1) \times 980.402 \times 2^{-12}$, where first term is wind-induced accelerometer gain, second is an equation factor, third converts to units of $\mathrm{cm} / \mathrm{sec}^{2}$, and fourth term is scale factor.

K:bt5: Constant, program notation "BIT5", scale factor BO, units revolutions, stored as $00020_{8}$, equation value 0.00098 . Value is $2^{-10}$ revolution corresponding to about $360 / 1024^{\circ}=0.35^{\circ}$, serving to offset platform to account for accelerometer dead zones. Could also be considered to have value of $2^{17}$ gyro torquing puises; there are $2^{21}$ pulses/rev.

K:dc585: Constant, program notation "DEC585", scale fàctor B9, stored as $06200_{8}$, equation value 100.0. The 100 corresponds to $1.0 \times 100$, where first term is accelerometer nominal scale factor ( $\mathrm{cm} / \mathrm{sec}$ per count) and second converts denominator in "PIPJOBB" from units of centi-seconds to seconds. Result has scale facticr B14, units $\mathrm{cm} / \mathrm{sec}^{2}$ (measured gravity, with integral part in R1 of N98 and fractional part in R2).

K:georgj: Constant, program notation "GEORGEJ", scale factor B-2, stored as 24276140668 , equation value 0.159154942 . Value corresponds to $(1 / 2 \pi) \times 2^{2}$, to convert between radians and revolutions (the interpretive language trig functions require angle measurements in revs).

K:omegms: Constant, program notation "OMEG/MS", scale factor BO, units gyro pulses/centi-second, stored as 0762326552 , equation value 0.243390478 . Value corresponds approximately to ${ }^{\prime}(1 / 86164.0932) \times 10^{-2} \times$ $2^{21}$, where first term is earth rotation period in seconds (used to derive constant), second converts to centi-seconds, and third is number of gyro torquing pulses in one revolution.

K:pipasc: Constant, program notation "PIPASC", scale factor B-7, stored as 0413302265 , equation value 0.001019989 . Value corresponds to $1.0 \times(1 / 980.482) \times 2^{7}$ where first term is nominal accelerometer scale factor ( $\mathrm{cm} / \mathrm{sec}$ per count), second is normalization factor (acceleration due to gravity), and third is scale factor. For convenience in description, a fourth factor of " $1 /$ second" has been assumed reflected in this constant, giving for units of result (in INTY etc.) radians.

K:soupy0: Constant, program notation "SOUPLY", scale factor BO, stored as 3573000035 , equation value 0.935058704 . Used in "ESTIMS" to initialize ALK.

K:soupy2: Constant, program notation "SOUPLY +2", scale factor B2, stored as $1031717550_{8}$, equation value 1.05065691 . Used in "ESTIMS" to initialize $\mathrm{ALK}_{2}$.

K:VǴ́N98: See list of major variables.
K:vesc: Constant, program notation "VELSC", scale factor B-9, stored as 5722366451 , equation value -0.001019989 . Value corresponds to $(-1) \times(1 / 980.402) \times 2^{9}$, where first term is an equation factor, second converts for acceleration due to gravity, and third is scale factor.

L: See MATX section.
LAT ITUDE: Erasable memory (double precision) constant, with scale factor BO, units revolutions. It gives the local vertical astronomical latitude of the pad.

LENGTHOT: Single precision cell, scale factor B14, used to contain time duration information. It is loaded in "PIPACHK" and "PIPJOBB" and deacremented in "PIPATASK" and "PERFERAS".

LOSVEC, LOSVEC ${ }_{1}$ : Single precision cells, scale factor B-1, units revolutions, used to contain the val ue of CDU in "PIPJOBB" and when the program returns from erasable memory, for use in DSKY monitoring of performance (by an address-to-be-specified noun).

MODREG: See DATA section.
MONSAVE1: See DATA section.
$M P A C_{2}$ : See DINT section.
NDXCTR: Single precision cell, scale factor B14, initialized to 0 in "REDO" and incremented to 1 for a "gimbal lock" return from "CALCGA" (angle of 60 degrees or more).

NEWJOB: See MATX section.
NOUT: See INTR section.
OGC: See COOR section.
OVFLOWCK: Single precision flag which will terminate the IMU performance test if set. It is initialized to zero in "REDO" and set in "SOMEERRR" to indicate overflow has occurred somewhere in the erasable memory program calculations.

$$
\text { TEST - } 23
$$

FERFDLAY: Communication cell with routine calling "GOESTIMS", apparently not loaded by program control. Scale factor B28, units centi-seconds. (the "LONGCALL" entrance to the waitlist system is used).

PIPA: See IMUC section.
PIPINDEX: Single precision cell, scale factor B14, used to select accelerometer axis under test ( 0,1 , and 2 for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ respectively). Must be loaded manually.

POSITON: Single precision cell, scale factor B14, used for indexing and display purposes (used in previous programs to select desired stable member orientation from fixed memory information). Must be loaded manually (inputs in "SHOW" do not change it.).

POSNV ${ }_{y}$, POSNV ${ }_{z}$ : Values of horizontal displacement of launch vehicle in south and east directions respectively, assumed scale factor B9, units cm (assumed since scaling of [TRANSM1] elements not known, but treated as B1)

QPLĀCE: Single precision cell used to retain return address information.
RADMODES: See RADR section.
RESULTCT: Single precision cell, scale factor B14, used to select the proper storage locations in "CHECKG"; it is set to 1 ai the start of the accelerometer sampling interval and to 5 at its end, to cause storage in appropriate DATAPL locations.

SCOINT, SCOUNT ${ }_{1}$ : Single precision counters incremented to count cycles through the self-check and erasable memory test routines, respectively.

SELFRET: Single precision storage for the address of the current position in the self-check routine, for return after other jobs are completed.

SFAIL: Single precision address in the self-check routine where an error was detected.

SKEEP1: Single precision storage for the branching address in the self-test routine, or for an octal bank sum (the sum of the contents of all the cells in a bank of fixed memory), accumulated with end around carry of a + or - overflow ( +1 for + overflow; -1 for - overflow). (Example of end around carry of overflow: $25701_{8}+32405_{8}=20307_{8}$ )

SKEEP2: Single precision cell used in the bank sum display as temporary storage for the bank number. Used in the erasable-memory self-check to indicate whether the bank being checked is a normal bank or the unswitched bank. Used in the fixed-memory self-check as temporary storage for the value in the cell being checked.

SKEEP3: Single precision cell used as temporary storage for the "bugger word" during a bank sum display. (The bugger word is the last word in a fixed memory bank which adjusts the sum to make it equivalent to the bank number.) Used in the erasable-memory self-check as storage for the last address in the bank to be checked. Used in the fixed-memory self-check as storage for the address of the next fixed-memory cell whose contents are to be added to the bank sum.

SKeEP4: Single precision storage for the value of the EBANK in the erasable-memory self-test routines, scaled B6 and expressed as an octal number. Single precision storage for the value of the FBANK number in the fixed-memory self-test routines, scaled B4 and expressed as an octal number with the SUPERBNK setting in bits 7-5, the 64ths octal digit.

SKEEP5: Single precision storage for the contents of the first of two consecutive E-memory cells being checked; or single precision index indication (by being set to +0 and then to -1 ) that two consecutive fixed-memory cells contain their own addresses (TC SELF), thus signifying that the remainder of a bank contains no information.

SKEEP6: Single precision storage for the contents of the second of two consecutive E-memory cells being checked; or a single precision flag set to -0 to indicate a standard fixed-memory check or 1 to indicate a verb 91 bank sum display.

SKEEP7: Single precision address of the first of two consecutive E-memory cells being checked; or a single precision index counted down to signal banks 2 and 3 so that they may be addressed directly instead of through the FBANK setting.

SMODE: Single precision index set equal to to to stop the LGC self-test; set to $-0, \pm 1, \pm 2, \pm 3, \pm 6, \pm 7$, or $\pm 10_{8}$ to cause the self-test routine to alternate between "ERASCHK" and "ROPECHK"; set to $\pm 4$ to cause the self-test routine to perform only "ERASCHK"; and set $\pm 5$ to cause the self-test routine to perform only "ROPECHK". If an error is encountered, the self-test routine will return to idle unless SMODE is negative.

SNANG: (i $=X, Y, Z$ ), value of sine of ANGX, ANGY, and ANGZ, scale factor B-2, stored in push-down list locations $10 \mathrm{D}, 12 \mathrm{D}$, and 14 D respectively.

SOUTADR : Indexed cell used in "TORQUE" to retain the value of DRIFTI
for ${ }_{\text {i }}$ subsequent initialization of DRIFTT in "PIPJOBB", for proper for subsequent initialization of DRIFTT $_{\text {sp }}$ in "PIPJOBB", for proper initialization (e.g. to 1) and subsequent incrementing (e.g. to 2) of POSITON.

TORQNDX: Quantity set to 0 if no torquing is performed and to 1 (scale factor BO) if torquing is to be performed via "EARTHR*" at the start of "SLEEPIE".

$$
\text { TEST - } 25
$$

[TRANSMT]: Transformation matrix used as a sway transition matrix, contained in erasable memory (must be initialized to values as part of an erasable memory load before running test). Assumed scaling in this writeup for all elements is B1 (after being used to perform multiplication, a left shift of 1 is done).

TStmark: Value of time when previous earth-rate compensation was made, scale factor B28, units centi-seconds.

VLAUN $_{y}$, VLAUN : Value of horizontal velocity of launch vehicle (due to ${ }^{\text {y }}$ sway) in north-south and east-west directions respectively, scale factor B9, units $\mathrm{cm} / \mathrm{sec}$.

WANGI: Value of (-cos LATITUDE) loaded in "REDO", scale factor BO.
WANGO: Value of ( $s$ in LATITUDE) loaded in "REDO", scale factor BO.
[XNB] : See COOR section.
[XSM] : See COOR section.
ZERONDX: Single precision cell, used as an input parameter to an erasable memory zeroing routine, (not shown in this writeup). It is loaded in "CHECKG" with accelerometer information whenever clecks for accelerometer output are made after an interruption.

TRGL

```
P34 Switch FLAGWRD2 bit 5 (AVFIAG) to 1
 Skip next step
P71. Switch FLAGWRD2 bit 5 (AVFLAG) to 0
 Switch FLAGWRDI bits 5 (TRACKFLG) and 7 (UPDATFLG) to I
 Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, repeat this
 step.)
 CENTANG = K:I30DEG
 NN = 0 (most significant half only)
 Perform "DISPLAYE"
 Switch FLAGWRD2 bit 7 (ETPIFIAG) to 0
 TIG = TTPI
 If ELEV }\not=0\mathrm{ , switch FIAGWRD2 bit 7 (ETPIFLAG) to I
 Perform "SELECTMU"
 Perform "VN1645"
P34/P74C Switch FLAGWRD7 bit 15 (ITSWICH) to I
 If FLAGWRD2 bit 7 (ETIIFLAG) = 0:
 Switch FLAGWRD7 bit 15 (ITSWICH) to 0
 NOMTPI = O
INTLOOP TDECI = TTPI + NOMTPI
 Perform "PRECSET" (get RACT3, VACr3, RPASS3, VPASS3)
 Perform "S33/34.I" (get ELEV or TPI time)
 If TSnosol }\not=0: (no solution
```

        TRGL - I
    ```
 Perform "ALARM" with TS = 006118
 Proceed to "GOFLASH" with TS = K:VO5NO9
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 proceed to the second step of "P74"; other
 response, proceed to previous step.)
 If FLAGWRD7 bit l5 (ITSWICH) = 1:
 Switch FLAGWRD7 bit 15 (ITSWICH) to 0
 Proceed to "INTLOOP"
If FLAGWRD2 bit 7 (ETPIFLAG) = 0, perform "DISPLAYE"
If FLAGWRD2 bit 7 (ETPIFLAG) = 1:
 Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, repeat
 this step.)
CSTH = cosCENTANG
SNTH = sinCENTANG
RVEC = RPASS3 (both shifted left two if necessary to
VVEC = VPASS3 or B27 and B5)
Switch FLAGWRD'7 bit 9 (RVSW) to l
Perform "TIMETHET"
INTIME = TTPI
TPASS4 = TTPI \dot{r}T
Perform "S34/35.2" (get DELVEET3 and DELVLVC)
DELVTPI = {DELVEET3|
DELVTPF = |VPASS4 - VTPRIME |
RVEC = RACT3 (both shifted left two if necessary to
VVEC = VIPRIME
Perform "PERIAPO"
```

TRGL - 2

POSTTPI = TShp
$T I G=T T P I$
Proceed to "GOFLASH" with TS = K:VO6N58 (POSTTPI, DELVTPI, DELVTPF)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

Perform "S34/35.5" (get DELVSIN and clear XDELVFLG)
Perform "VN1645" (astronaut recycle or finalize options)
Proceed to "P34/P74C"
DISPLAYE NORMEX = return address
Proceed to "GOFLASH" with TS $=\mathrm{K}:$ VO6N55 (NN, ELEV, and CENTANG)
(If terminate, proceed to "GOTOPOOH"; if proceed, return via NORMEX; other response, repeat this step.)

S34/35.5 SUBEXIT = return address
If FLAGWRD2 bit 6 (FINALFLG) $=0$ :
Switch FLAGWRDI bit 7 (UPDATFLG) to 1
Perform "S34/35.4"
Proceed to "GOFLASH" with TS = K:VO6N59 (DVLOS) (If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

Return via SUBEXIT
Switch FLAGWRD6 bit 3 (NTARGFLG) to 0
GDTd2 = DELVLVC
Proceed to "GOFLASH" with TS = K:VO6N81
(DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

```
 TSsum = 0
 i = 5
NTARGCHK
 TS = GDTd2 i - DEIVVLVC i (check for astronaut overwrite
 TSsum = TSsum +TS
 If i>0:
 i = i - 1
 Proceed to "NTARGCHK"
 If TSsum }\not=0\mathrm{ :
 Switch FLAGWRD6 bit 3 (NTARGFLG) to 1
 Perform "S34/35.3"
 DELVSIN = DELVEET3
 Perform "S34/35.4"
 Proceed to "GOFLASH" with TS = K:VO6N59 (DVLOS)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, repeat this
 step.)
 Return via SUBEXIT
P35 Switch FLAGWRD2 bit 5 (AVFLAG) to 1
 TK = ATIGINC
 Skip next two steps
P75 Switch FLAGWRD2 bit 5 (AVFLAG) to 0
 TK = PTIGINC
 Switch FLAGWRDI bits 5 (TRACKFLG) and 7 (UPDATFLG) to I
 Perform "SELECTMU"
 Perform "VN1645"
 P35/P75B TSTRT = TIMENOW
```

        TRGL - 4
    ```
 TIG = TSTRT + TK
 INTIME = TIG
 TDECI = TIG
 Perform "PRECSET"
 ULOS = unit(\underline{RPASS3 - - RACT3)}
 UNRM = unit(RACT3 * VACT3)
 Perform "S34/35.2" (Lambert solution)
 Perform "S34/35.5" (get DELVSIN)
 Perform "VN1645" (astronaut recycle or finalize)
 Proceed to "P35/P75B"
S33/34.1 NORMEX = return address
 TITER = -K:posmaxsp
 SECMAX = K:MAX250
 RAPREC = RACT3
 VAPREC = VACT3
 RPPREC = RPASS3
 VPPREC = VPASS3
ELCALC ULOS = unit(\underline{RPASS3 - RACT3)}
UNRM = unit(\underline{RACT3 * VACT3)}
UP = unit(ULOS - (ULLOS • unitRACT3) unitRACT3)
TSelev = arccos(\underline{UP}\cdot\underline{ULOS sign(\underline{UNRM * RACT3 - UP))}}\mathbf{|}\mathrm{ (US}
(TSelev is positive, between O and 180 degrees - O and \frac{1}{2} rev)
If ULOS • RACT3 < O:
 TSelev = K:posmaxdp - TSelev
```

TRGL - 5

```
If FLASWRD7 bit l5 (ITSWICH) = 0:
 T'IPI = TTPI + NOMTPI
 If FLAGWRD2 bit 7 (ETPIFLAG) = 0
 ELEV = TSelev
 TSnosol = 0
 Return via NORMEX
DELELO = DELEL
DELEL = TSelev - ELEV
If |DELEL| < K:ELEPS:
 TSnosol = 0
 Return via NORMEX
If TITER = I:
 TSnosol = l
 Return via NORMEX
TITER = TITER - I
TSrdif = |\underline{RPASS3 }|-|\underline{RACT3}|
TS = (\frac{1}{2}-ELEV) signTSrdif
If TS < 0: (desired ELEV impossible)
 TSnosol = TS (\not= 0)
 Return via NORMEX
TScsd = - cos(\frac{1}{2}-ELEV) |\underline{RACT 3 | / |\underline{RPASS3|}}\mathbf{|}=|
TS = I - |TScsd
If TS < O:
 TSnosol = TS
 Return via NORMEX
```

        TRGL - 6
    ```
TS16 = |RPASS3 unit(\underline{UNRM * unitRACT 3) - VACT3}
TS = unitRPASS3 * VPASS3
TS16 = TS16 - |RACT3| unit(IS * unitRPASS3) - VPASS3
TSs = unitRRCT3 * unitRPASS3 - UNRM
TSc = arccos(unitRACT3 - unitRPASS3) signTSs
TSca = (\frac{1}{2}-\operatorname{arccosTScsd}) signTSrdif + ELEV - -
TSt = K:TWOPI TSca |\underline{RACT 3||RPASS3| / TSI6}
If }|TSt|\geq\mathrm{ SECMAX, TSt = SECMAX signTSt
If TITER< 0: (first pass)
 TITER = 14
 DELTEEO = TSt
 DELTEE = TSt
 Proceed to "ADT.MME"
If DELEL DELELO < O: (solution is surrounded)
 SECMAX = SECMAX / 3
 DALTEEO = - |TSt | signDELTEEO / 2
 DELTEE = DELTEEO
 Proceed to "ADTIME"
If |DELELO | < |DELEL |:
 DELTEEO = -DELTEEO / 2
 DALTEE = 3 DELTEEO
 Proceed to "ADTIME"
DELTEEO = |TSt| signDELTEEO
DELTEE = DELTEEO
```

```
ADTIME NOMTPI = NOMTPI + DELTEE
 Perform "INTINT" with TSv = VAPREC, TSr = PAPREC, TSO = O,
 TSt = NOMTPI, and TSintyp = NOMTPT.
RACT3 = RATT
VACT3 = VATT
Perform "INTINT" with TSV = VPPREC, T\TJ = RPPPME, TSO =0,
 TSt = NOMTPI, and TSintyp = NOMPTI
RPASS3 = RATT
VPASS3 = VATT
Proceed to "ET,CAT,G"
S34/35.2 SUBEXIT = return address
TSv = \underline{VPASS3, T- Sr = RPASS3, TSO = INTIME, and ISt = TPASS4}
If most significant half of NN = 0:
 TSintyp = K:TWOPI
 Perform "INTINT"
If most significant half of NN }\not=0\mathrm{ :
 TSintyp = 0
 Perform "INTINT"
RTAI产 = RATT
VPASS4 = VATT
ACTCENT = arccos(unitRACT3 * un_tRTARG) sign(unitRACT3**
 unitRTARG - UNRM)
If ACTCENT < 0, ACTCENT = K:posmaxdp + ACTCENT
DELLT4 = TPASS4 - INTIME
VTARGTAG = NN
CNANGL = K:EPSFOUR
RINIT = RACT3
VINIT = VACT3
Perform "INITVEL"
```

DELVLVC $=\left[\begin{array}{ll}\text {-unitRACT3 } & \text { * } \operatorname{IJNRM} \\ \text {-UNRM } & \text { - } \\ \text {-unitRACT3 } & \end{array}\right]$ DELVEET3
Return via SUBEXIT
S34/35.3 NORMEX $=$ return address
DELVEET3 $=$ DEL.VLVCC $\left[\begin{array}{ll}\text {-unitRACT3 } 3 & * \text { UNRM } \\ \text {-UNRM } & \text {-UnitRACT3 } \\ \text {-un } & \end{array}\right]$
Perform "INTINT" with TSv = DELVEET3 + VACT3, TSr = RACT3, TSo $=$ TIG, TSt $=$ TPASS4, and $\overline{T S i n t y p}=\overline{\mathrm{K}}:$ posmax $\overline{\mathrm{T}} \mathrm{p}$
$\underline{\text { RTARG }}=$ RATT
$\underline{\text { DVLOS }}=\left[\begin{array}{llll}\underline{\text { ULLOS }} & & & \\ - \text { unit (IJLOS } & * & \underline{\text { UNRM }}) & * \text { UILOS } \\ -\operatorname{unit}(\underline{U} L O S & * & \underline{U} N R M)\end{array}\right] \quad$ DELVEET3
Return via NORMEX
S34/35.4 NORMEX = return address

Return via NORMEX
INITVEL Switch FLAGWRDI bit 2 (GUESSW) to 1
HAVEGUES NORMEX = return address
$\underline{\text { RTARGI }}=\underline{\text { RTARG }}$
If MUDEX $\neq 0$, rescale RINIT, VINIT, and RTARGI
RTMAG $=\mid$ RTARGI $\mid$
ITCTR $=-1$
COZY4 $=$ C COSCNANGL
RIVEC = RINIT
R2VEC = RTARGI
TDESIRED $=$ DELLT4
$\underline{\mathrm{U}} \mathrm{N}=$ unit(unitRINIT * VINIT)
COZY4 $=($ unitRTARGI $\cdot u n i t R I N I T)+\mathrm{COZY}_{4}$

INITVEL2 If COZY4 < 0:
Switch FLAGWRD7 bit 10 (NORMSW) tc 1
$\underline{\mathrm{R}} 2 \mathrm{VEC}=|\underline{\mathrm{R}} 2 \mathrm{VEC}|$ unit (́R2VEC $-(\underline{\mathrm{R}} 2 \mathrm{VEC} \cdot \underline{\mathrm{UN}}) \underline{\mathrm{UN}})$
If ITCTR < O, RTARGI = R2VEC
$\mathrm{XI}=-\mathrm{MUDEX}-2 \quad(-2$ for earth sphere, -10 ior lunar sphere)
TS $=$ unitRIVEC * unit﹎ㅡ2VEC
$\mathrm{TSz}=\mathrm{Z}$ component of TS
If $\mathrm{TSz}>0, \mathrm{XI}=\mathrm{XI}+10$
If $\mathrm{TSz} \leq 0, \mathrm{Xl}=\mathrm{Xl}+2$
If $\mathrm{Xl}=0, \underline{T} \mathrm{~S}=-\underline{T} \mathrm{~S}$
TS = (TS * unitRIVEC) • unit R2VEC
If $T S \geq 0$, GEOMSGN $=K: M J o \quad$ (only most significant half of
I.f $\mathrm{TS}<0$, GEOMSGN $=-\mathrm{K}: M U 0 \quad \mathrm{~K}: M U 0$ is used finr setting GEOMSGN)

ITERCTR = 20
Perform "LAMBERT"
Switch FLAGWRDI bit 2 (GUESSW) to 0

VIPRIME = VVEC
If VTARGTAG $=0$, proceed to "INITVEL,7"
Perform "INTSTALL"
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If MUDEX $\neq 0$, switch FLAGWRDO bit 12 (MOONFLAG) io 1
RIVEC = RINIT
$\underline{\mathrm{R} C V}=\underline{\mathrm{R} I N I T}$
$\underline{V C V}=\underline{V I P R I M E}$
TET = INTIME
TDECI = INTIME + DELLT4
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0

```
 Perform "INTEGRVS"
 VTARGET = VATT
 ITCTR = ITCTR + I
 If ITCTR }=\mathrm{ VTARGTAG:
 R2VEC = R2VEC + RTARGI - RATT (bias target vector)
 Proceed to "INITVEL2"
 RTARG1 = R2VEC
INITVEL7 DELVEET3 = VIPRIME - VINIT
VTPRIME = VTARGET
If MUDEX }\not=0\mathrm{ O, rescale VTPRIME, VIPRIME, DELVEET3, and RTARGI
MUE = K:MUTABLE MUDEX
MUdA = (MUE) (RdA) / RI
Rescale MUE
MUASTEER = MUE
RTARG = RTARGI
Switch FLAGWRD2 bit 8 (XDELVFLG) to 0
Return vi.a NORMEX
```

ACTCENT: Double precision central angle between active and passive vehicles, scaled BO in units of revolutions.

ATIGINC: Double precision time between mid:ourse burn targeting by the active vehicle and TIG, scaled B28 in units of centiseconds. Part of the erasable load.

CENTANG: Double precision central angle between Ln passive vehicle's position at TIG and at intercept, scaled BO in $\mathrm{m} . \mathrm{ts}$ of revolutions.

CNANGL: Double precision central angle of a cone dound -RINIT, scaled BO in units of revolutions. Target vectors within this cone are projected into the orbital plane of the active vehicle because of the sensitivity of the transfer plane orientation to a change in RTARG when RTARG is close to -RINIT.

COZY4: Value used by "INITVEL" to determine if the original target position vector falls within the cone specified by CNANGL. Scaled B2 and unitless.

CSTH: See CONC section.
DELEL, DELELO: Double precision present and previcus increments to ELEV during the TPI-time/elevation-angle iteration, scaled BO in units of revolutions.

DELLT4: Double precision maneuver transfer time, scaled B28 in units of centiseconds.

DELTEE, DELTEEO: Double precision increment to NOMTPI during the TPI-time/elevation-angle iteration, scaled B28 in units of centiseconds.

DELVEET3: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond. Calculated by the "INITVEI," routine.

DELVLVC: See TRGX section.
DELVSIN: See TRGX section.
DELVTPF: Double precision magnitude of the velocity to be gained in the final rendezvous maneuvers of the terminal phase, scaled B7 in units of meters per centisecond.

DELVTPI: Double precision magnitude of velocity to be gained, as calculated by P34. Scaled B7 in units of meters per centisecond.

DVLOS: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in "line-of-sight" coordinates. (See "S34/35.3" for definition of "line-of-sight" coordinates.)

ELEV: Double precision elevation angle of the line-of-sight to the passive vehicle; measured from the vector which is perpendicular to the active vehicle position vector, perpendicular to RACT * RPASS, and whose dot product with the active vehicle velocity vector is positive. An angle between 0 and 1 ( 0 and 360 degrees) scaled BO in units of revolutions. ELEV is greater than $\frac{1}{2}$ ( 180 degrees) if the passive vehicle is below the active vehicle's local horizontal. EIEV is an astronaut input in P32-72 and an optional input in P34-74.

GDTd2: A temporary storage location for DELVLVC. If DELVLVC is overwritten by the astronaut, the previous value of DELVLVC will still be in GDTd2, thus making possible a program comparison of the two values, and detection of the astronaut overwrite.

GEOMSGN: Single precision flag to assure that a unit normal vector computed in "GEOM" will have the same relation to the orbital plane of the active vehicle as $\underline{U N}$ will have when computed in "INITVEL".

INTIME: Double precision time-tag associated with RINIT and VINIT, scaled B28 in units of centiseconds.

ITCTR: Single precision counter measuring the number of iterations through the loop which biased a Lambert target vector to achieve a more accurate estimate of velocity required, based on precision integration of the biased conic solution.

ITERCTR: See CONC section.
K:130DEG: Double precision constant stored as 0.3611111111 , scaled BO in units of revolutions. Equation value: 0.3611111111.
K:ELEPS: Double precision constant stored as $0.27777777 \times 10^{-3}$, scaled BO in units of revolutions. Equation value: 0.00027777777. (Equivalent to 0.1 degrees.)

K:EPSFOUR: Double precision constant stored as 0.0416666666 , scaled BO in units of revolutions. Equation value: 0.0416666666. (Equivalent to 15 degrees.)

K:MAX250: Double precision constant stored as $25000 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 25000.

K:MUO: See ORBI section.
K:MUTABLE: See CONC section.

K:TWOPI: Double precision constant stored as $6.283185307 \times 2^{-4}$, scaled B4 and unitless. Equation value: 6.283185307.

MUASTEER: Equal to MUE, but rescaled to B42 (earth) or B36 (moon).
MUdA: Ratio of gravitational constant (MUE) to semi-major axis. Scaled B14 (earth) or B10 (moon).

MUDEX: See CONC section.
MUE: See TRGX section.
NN: See TRGX section.
NOMTPI: Double precision iterative addition to TTPI, scaled B28 in units of centiseconds.

NORMEX: Single precision octal return address storą.
POSTTPI: Double precision perigee altitude, calculated in P34-74, scaled B29 in units of meters.

PTIGINC: Double precision time between midcourse burn tareeting by the passive vehicle and TIG, scaled B28 in units of centiseconds. Part of the erasable load.

RI: See CONC section.
RIVEC, R2VEC: See CONC section.
RACT3, VACT3: Double precision position and velocity vectors of the active vehicle prior to a particular burn, scaled B29 and B7 respectively in units of meters and meters per centisecond. Both vectors are also used as temporary storage for intermediate active vehicle position and velocity vectors.

RAPREC, VAPREC, RPPREC, VPPREC: Double precision vector storage for R $\bar{R} A C T 3, ~ V A \overline{C T} 3$ and $\bar{R} P A S S 3$, VPASS 3 as they were at entry to "S33734.1".

RATT, VATT: See ORBI section.
RCV, VCV: See CONC section.
RdA: See CONC section.
RINIT, VINIT: Double precision active vehicle position and velocity vectors, scaled B29 and B7 respectively in units of meters and meters per centisecond. Rescaled at the beginning of "INITVEL" two B27 and B5 respectively if the CSM is within the moon's sphere of influence.

RPPA:S3, VDABSs : Druble prccision position and velocity vectors of the passive vehicle prior to a particular burn, scaled B29 and $13^{\prime}$ in units of meter: and meters per centiscoond respectively. Both vector: are also u:cd as temporary storage for intermediate parsive vehicle position and velocity vectors.

RTPARG: Target position vector input to "INITVEL". Scaled B29 in mits of meters. Uprn exit, "INITVEL" loads RTAkG with the biascd target posilion voctor, if such a biased voctor is calculated.

RTARGI: Value of RTARG used within "INITVEL", ncalcd B29 (earth) or Ba' (moon), in units of meters.

RTMAG: Magnitude of RTARAl. :scaled B2.9 (earth) or 1327 (moon), in units of meters.

RVic, VVBC: See CONC section.
(HMCMAX: Double precision maximum limit on changer to NOMTPI, scaled Be8 in units of 'entiseconds.

SNTII: See CONC rection.

T: See CONC section.
TDFCl: Sce ORBI section.
TDL: $\operatorname{sinED}$ : See CONC sertion.
TET: See ORBI section.
TIG: See BJRN section.
TIMENOW: See EXVB section.
TITER: Single prccision iteration counter.
TK: Double precision time between the initiation of P35-75 and the ignition of a midcourse correction burn, scaled $\mathrm{B}_{2} 8$ in units of centisecont:.

TPASS4: Double precision scheduled time of target intercept, scaled B28 in units of centiseconds.

TSTRT: Double procision time of initiation of P35-75, scaled B28 in units of centiseconds.

TTPI: Double precision time of terminal phase initiation, scaled B28 in units of centiseconds: an astronaut input in P32-72 and P34-74.

ULOS: Double precision unit vector along the Iine-of-sight vector, scaled Bl and unitless.

UN: Double precision unit vector perpendicular to the active vehicle orbital plane, scaled Bl and unitless.

UNRM: Double precision unit vector perpendicular to the active vehicle orbital plane, scaled Bl and unitless.

UP: A unit vector perpendicular to RACT3 and perpendicular to RACT3 \# ULOS, whose dot product with UILOS is positive, scaled $\overline{\mathrm{B}}$ and unitless.

VIPRIME: Double precision velocity vector computed by the Lambert routine at the time INTIME. Scaled B7 in units of meters per centisecond.

VPASS4: Double precision velocity vector of the passive vehicle at the time of target intercept. Scaled $B^{\prime} 7$ in units of meters per centisecond.

Vrarcet: See CONC section.
VTARGTAG: Single precision cell, scaled Bl4, which specifies the number of iterations through the LAMBERT/TNTEGRVS routines. i? VTARGTAG $=0$, "LAMBERT" is performed to obtain initial and final velocity vectors, and "INTEGRVS" is not entered. If VTARGTAG >0, "INTEGRVS" output is used to bias the target position vector in order to obtain a more accurate "LAMBERT" solution.

VIPRIME: Double precision velocity vector, equal to VTARGET, which is calculated in the "INITVEL" routine. Scaled B7 in units of meters per centisecond.

Xl: Index register 1.
Proceed to "COFIASH" with TS = K:V06N33 (TIG)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; other response, repeat this step.)
Proceed to "GOFLASH" with TS $=\mathrm{K}: V 06 \mathrm{~N} 81$ (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; other response, repeat this step.)
Switch FLAGWRDI bit 7 (UPDATFLG) to 0
Perform "S30.1"
Switch FIAGINRDI bit 7 (UPDATFIG) to 1
Switch FLAGWRD2 bit 8 (XDELVFLG) to 1
Proceed to "GOFLASH" with TS $=\mathrm{K}: \mathrm{VO} \mathrm{T}^{2} 2$ (HAPO, HPER, DELVSAB)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; other response, repeat this step.)
Switch FIAGWRD2 bit 6 (FINATFIG) to 1
Perform "VN1645"
Go back one step
Switch FLAGWRD2 bit 5 (AVFLAG) to 1
Skip next step
P72 Switch FLAGWRD2 bit 5 (AVFLAG) to 0
CENTANG $=0$
Switch FLAGWRD1 bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
$\mathrm{NN}=0 \quad$ (least significant half only)
$\operatorname{TCSI}=0$
VNO6ll Proceed to "GOFLASH" with TS $=$ K:VO6N11 (TCSI)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; other response, repeat
this step.)
If - (TCSI) $<0$ :
Proceed to "VN0655"

```
 TDEC1 = T'ETLEM
 Perform "PRECSET"
 RVEC = RACT3
 VVEC = VACT3
 Switch FLAGWRD7 bit 9 (RVSW) to l
 RDESIRED = K:posmaxdp
 Perform "TIMERAD" (compute time to apoget)
 TCSI = T + TDEC2
 Proceed to "VNO6ll"
 VNO655 Proceed to "GOFLASH" with TS = K:VO6N55 (NN, ELEV, CENTANG)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, repeat this
 step.)
 Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, repeat this
 step.)
 TIG = TCSI
 Perform "SELECTMU" (switches FINALFIG to 0)
 Perform "VN1645" (switches UPDATFLG to 0)
 P32/P72B Perform "ADVANCE" (advances LM and CSM vectors to TIG,
 sets XDELVFLG)
 Perform "INTINT" with TSvv = VPASSI, \underline{TSr = RPASSI, TSo = TCSI,}
 TSt = TTPI, and TSintyp = K:TWOPI
 RPASS3 = RATT
 VPASS3 = VATT
 Perform "CSI/A"
 P32/P72C If FLAGWRD2 bit 6 (FINALFLG)=0:
 Switch FLAGWRDl bit }7\mathrm{ (UPDATFLG) to l
Proceed to "P32/P72E"
```

T1TOT2 T1TOT2 - K:60MLN
Proceed to "P32/P72E"
P32/P72F If T2TOT3 $\geq \mathrm{K}: 60 \mathrm{MIN}:$
T2TOT3 $=$ T2TOT3 $-\mathrm{K}: 60 \mathrm{MTN}$
Proceed to "P32/P72F"
Proceed to "GOFLASH" with TS = K:VO6N 75 (DIFFALT, T1TOT2, T2TOT3)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other ramporis", rapratt this step.)
$[$ LVCMAT $]=\left[\begin{array}{l}- \text { unitRACT1 } \because \underline{U P I} \\ - \text { ilpl } \\ - \text { unitrACT1 }\end{array}\right]$
DELVLVC $=[$ LVCMAT $]$ DELVEET1
Proceed to "GOFLASH" with TS = K:VO6N81 (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, ropat, this step.)
DELVSIN $=[\text { LVCMAT }]^{T}$ DELVLVC
DELVSAB $=|\underline{\text { DELVSIN }}|$
DELVEET1 = DELVSIN
$\left[\right.$ LVCMAT] $=\left[\begin{array}{l}- \text { unitRACT2 } * \text { IIPI } \\ - \text { UPI } \\ - \text { unitRACT2 }\end{array}\right]$
(RACTI set equal to RACT2)

DELVLVC [LVCMAT] DELVEET2
Proceed to "GOFLASH" with TS = K:V06N82 (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, ropeat this step.)

TTPIO $=$ TTPI
Perform "VN1645" (astronaut recycle or finalize)
Proceed to "P32/P72B"

```
P33 Switch FLAGWRD2 bit 5 (AVFLAG) to 1
 Skip next step
P73 Switch FLAGWRD2 bit 5 (AVF'LAG) to 0
 Switch FLAGWRD1 bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
 Proceed to "GOFLASH" with TS = K:VO6N13 (TCDH)
 (If terminate, proceed to "GOTOPOOH"; if proceed, continue
 at next step; other response, ropeat this step.)
 TTPI =. TTPIO
 TIG .. TCDH
 Perform "SELECTMU" (switches FINALFLG to 0)
 Perform "VN1645" (switches UPDATFLG to 0)
P33/P73B Perform "ADVANCE" (LM and CSM vectors to TIG, set XDELVFLG)
 Perform "CDHMVR"
 Perform "INTINT" with TSv - VACT3, TSr = RACT2, TSO == TCDH,
 TSt -- TTPI, and TSintyp =- 0
RACT3 - RATT
VACT3 = VATT
Perform "INTINT" with TSv - VPASS2, TSr = RPASS2, TSo = TCDH,
 TSt TTPI,and TSintyp - 0
RPASS3 - RATT
VPASS3 VATT
Switch FLAGWRD7 bit 15 (ITSWIC.i) to l
NOMTPI . O
Perform "S33/34.1" (get transfer time to TPI)
If TSnosol / O: (no solution)
 Perform "ALARM" with TS = 006ll
```

```
 (If no solution)
 Proceed to "GOFLASH" with TS = K:VO5NO9
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at next step; other response, proceed to
 second step of "P73".)
 NOMTPI = 0
If FLAGWRD2 bit 6 (FINALFLG) = 0:
 Switch FLAGWRDI bit }7\mathrm{ (UPDATFLG) to 1
 T'TPI = TTPI + NOMTPI
 T1TOT2 = TTPI - TCDH
P33/P73E If TITOT2 > K:60MIN:
 TITOT2 = T1TOT2 - K:6OMLN
 Proceed to "P33/P73E"
 T2TOT3 = TTPI - TTPIO
P33/P73F If |T2TOT3| \geq K:60MIN:
 T2TOT3 = T2TOT3 - K:6OMIN signT2TOT3
 Proceed to "P33/P73F"
 Proceed to "GOFLASH" with TS = K:VO6N75 (DIFFALT, T1TOT2, T2TOT3)
 (If terminate, proceed to "GOTOPOOH"; if proceed, continue
 at next step; other response, repeat this step.)
 [LVCMAT」=[[-unitRACTI * UPI
 DELVLVC = [LVCMAT」\ELVEET2
 Proceed to "GOFLASH" with TS = K:VO6N81 (DELVLVC)
 (If terminate, proceed to "GOTOPOOH"; if proceed, continue
 at next step; other response, repeat this step.)
DELVSIN = [LVCMAT]}\mp@subsup{}{}{T}\mathrm{ DELVLVC
DELVSAB = \DELVSIN|
@ELVEET2 = DELVSIN
```

TRGX - 5

```
 Perform "VN1645" (astronaut recycle or finalize)
 Proceed to "P33/P73B"
SELECTMU MUDEX = 0
 If FLAGWRD8 bit l2 (CMOONFLG) = 1, MUDEX = 8
 i = MUDEX + 6
 RIldMU = K:MUTABT,E
 MJE = K:MUTABLEMMUDEX
 If FLAGWRD8 bit l2 (CMOONFLG) = l, rescale MUE (sr6)
 Switch FLAGWRJ2 oit 6 (FINALFLG) to 0
 Return
VN1645 SUBEXIT = return address
pMGA = K:DPmp0l
 If FLAGWRD2 bit 6 (FINALFIG) = 1:
 pMA = 2 K:DPm_OI
 If FLAGWRD3 bit 13 (REFSMFLG) = l and MODREG < 64:
 Perform "GET+MGA" with TS = DELVSIN
 Perform "COMPTGO"
 Delay l second (via "DELAYJOB")
 Proceed to "GOFLASH" with TS = K:V16N45 (TRKMKCNT, TTOGO, pMGA)
 (If terminate, contine at next step; if proceed, proceed to
 "N45PRJC"; other response, proceed to "CLUPDATE".)
 DISPDEX = Z (to stop computation of TTOGO)
 Proceed to "NOTOPOOH"
 N45PROC If FLAGWRD2 bit 6 (FINALFIG) = 1:
 DISPDEX = Z
 Proceed to "GOTOPOOH"
 TPGX - 6
```

```
 Switch FLAGWRD2 bit 6 (FINALFLG) to l
CLUPDATE DISPDEX = Z
 Switch FLAGWRDI bit 7(UPDATFLG) to 0
 Return via SUBEXIT
S30.1 QTEMP = return address
 TDECI = TIG
 Perform "LEMPREC"
 RTIG = RATT
 VTIG = VATT
```



```
 DELVSIN = DELVLVC [LVCMAT]
 DELVSAB = |DELVSIN
 TSr = RTIG
 TSV = VTIG + DELVSIN
 Perform "PERIAPOI"
 HPER = TShp (pericenter altitude)
 If HPER \geq K:MAXNM:
 HPER = K:MAXNM
 HAPO = TSha (apocenter altitude)
 If HAPO \geq K:MAXNM:
 HAPO = K:MAXNM
 Return via QTEMP
ADVANCE SUBEXIT = return address
 TDECI = TIG
```

    TRAX - 7
    ```
 Perform "PRECSET"
 Switch FLAGWRD2 bit 8 (XDELVFLG) to l
 VPASS2 = VPASS3
 VPASSI = VPASS3
 RPASS2 = RPASS3
 RPASS1 = RPASS3
 UP1 = unit (unitRPASSl * VPASSI)
 RTIG = RACT3
```



```
 RACTI = RACT'2
 VTIG = VACT3
VACT2 = |VACT3| unit(\underline{VACT3 - (VACT3 - UPI) UPI)}
VACT1 = VACT2
Return via SUBEXIT
PRECSET NORMEX = return address
TDEO2 = TDEC1
Perform "LEMPREC"
If FLAGWRD2 bit 5 (AVFLAG) = l:
 RACP3 = RATT
 VACT3 = VATT
If FLAGWRD2 bit 5 (AVFLAG) = 0:
 RPASS3 = RATT
 VPASS3 = VATT
TDEC1 = TDEC2
Perform "CSMPRES"
```

TROX - 8

```
 If FLAGWRD2 bit 5 (AVFLAG) = 1:
 RPASS3 = _RATT
 VPASS3 = VATT
 If FLAGWRD2 bit 5 (AVFLAG) = 0:
 \underline{RACT3 = RATT}
 VACT3 = V_TTT
Return via NOPMEX
INTINT RTRN = return address
Perform "INTSTALL"
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
If TSintyp }\not=0\mathrm{ , Switch FLAGWRD3 bit 4 to l (conic integration)
TDECI = TSt
Switch FLAGWRDO bit 12 (MOONFLAG) to I
If FLAGWRD8 bit 12 (CMOONFLG) = 0, Switch FLAANWRDO bit 12 to 0
TET = TSO
RCV = TSr
VCV = TSv
Perform "INTEaRVS"
Return via RTRN
CDHMVR SUBEXIT = return address
UNVES = unitRACT2
CSTH = unitRPASS2 - UNVEC
TS = - RACT2 * RPASS2 - UPI
SNTH}=\sqrt{}{1-\mp@subsup{\textrm{CSTH}}{}{2}}\mathrm{ signTS
VVEC = VPASS2
```

TRAX - 9

ㅈVEC $=$ RPASS2
Switch FLAGNRD7 bit 9 (RVSW) to 0
Perform "TIMETHET"
DIFFALT $=|\underline{\text { T } S r}|-|\underline{\text { RACT2 }}|$
SMALLA $=$ Rl / RIA
$T S a=(\underline{T} S v \cdot \underline{(N N E C})\left[\frac{\text { SMALLA }}{\text { SMALLA - DIFFALT }} 3 / 2\right]$
$T S b=\sqrt{\frac{2 M U E}{|\underline{R A C T} 2|}-\frac{M U E}{\text { SMALLA }-D \overline{I F F A L T}}-T S a{ }^{2}}$
$\underline{V}$ ACT $3=\mathrm{TSa} \underline{\text { UNVEC }}+\mathrm{TSb} \operatorname{anit}(\underline{\mathrm{UPP}}$ * UNVEC)
DELVEET2 = VACT3 - VACT2
Return via SUBEXIT
CSI/A Switch FLAGWRD6 bits 12 (S32.1F3B) and 14 (S32.1F2) to 1 Switch FLAGWRD6 bits 13 (S32.1F3A) and 15 (S32.1Fl) to 0

LOOPCT $=0$
CSIALRM $=0$
$\underline{\mathrm{CSI} / \mathrm{B}} \quad \mathrm{TS}=|\underline{\mathrm{RACT}}|(1+|\underline{\mathrm{RACT}}||/|\underline{\mathrm{RP}} \mathrm{ASS} 3|)$
$T S=\sqrt{2 \text { MUE /TS }}$
DELVCSI $=T S-$ unit (UPI * unitRACTl) $\operatorname{l}$ VACTl
DELDV $=$ K:INITST
CSI/BI LOOPCT $=$ LOOPOT +1
If LOOPCT $\geq$ K:LOOPMX, proceed to "SCNDSOL" with TSsp $=6$
CSI/B2 If $\mid$ DELVCSI $\mid \geq K: D V M A X I:$
If FLAGWRD6 bit 15 (S32.1FI) $=1$ or if FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) both equal 1, proceed to "SCNDSOL" with TSsp $=7$

Switch FLAGWRD6 bit 15 (S32.1F1) to 1

```
DELVEETl = DELVCSI unit(UPl * unitRACTl)
```

$\underline{V} A C T 4=$ VACTI + DELVEET. (ignoring overflow if any)
$\underline{V V E C}=\underline{V A C T} 4$
$\underline{\mathrm{RV}} \mathrm{EC}=\underline{\mathrm{RACTI}}$
Switch FLAGWRD7 bit 9 (RVSW) to 1
SNTH = K:SN359+
CSTH $=\mathrm{K}:$ CS359 +
Perform "TIMETHET"
HAFPAI $=T / 2$
Perform "PERTAPO"
POSTCSI = TShp
If CENTANG $\neq 0$, proceed to "CIRCL"
If ECC < K: ONETHTH, proceed to "CIRCL"
If (|RACTI • VACT4| / RI) < K:NICKELDP, proceed to "CIRCL"
TScs = P-1
$T S=\sqrt{P R I}$ RTIdMU / RI
If FLAGWRD8 bit 12 (CMOONFLG) $=1$, rascale $T S$ (sl3)
RDOTV $=$ RACTI $\cdot \underline{V A C T 4}$
TSsn $=|R D O T V| T S$
$T$ Sden $=\sqrt{T \text { Scs }^{2}+T S s n^{2}}$
SNTH $=$ TSsn $/$ TSden
CSTH $=$ TScs $/$ TSden
$\underline{V V E C}=-\underline{V A C T} 4$ signRDOTV
$\underline{\mathrm{RV}} \mathrm{EC}=\underline{\mathrm{RACT}} \mathrm{I}$

```
 Switch FLAGWRD7 bit 9 (RVSW) to l
 Perform "TIMETHET"
 If RDJTV < O; TCDH = NN HAFPAI - HAFPAI + T + TCSI
 If RDOTV \geq0, TCDH = TCSI + NN HAFPAI - T
 Skip next step
CIROL TCDH = TCSI + NN HAFPAI
 If TTPI < TCDH, proceed to "SCNDSOL" with TS sp = 5
 Perform "INTINT" with TSv = VACT4, TSSr = RACTl, TSo = TCSI,
 TSt = TCDH, and TSintyp = K:TWOPI
RACT2 = RATT
VACT2 = VATT
Perform "INTINT" with TSv = VPASSI, TSSr = RPASSI, TSo = TCSI,
 TSt = TCDH, and TSintyp = K:TWOPI
RPASS2 = RATT
VPASS2 = VATT
Perform "CDHMVR"
TSr = RACT2
TSv = VACT3
Perform "PERIAPO1"
POSTCDH = TShp
Perform "INTINT" with \underline{TSv = VACT3, \underline{TSr = RACT2, TSo = TCDH,}}\mathbf{T}\mathrm{ ,}
 TSt = TTPI, and TSintyp = K:TWOPI
RACP3 = RATT
VACT3 = VATT
```



```
TSrsin = TSu - RACT3
TS = RPASS3 - RPASS3 - RACT3 冒ACT3 + TSrsin}\mp@subsup{}{}{2
```

```
If TS<0:
 If LOOPCT = I:
 CSIALRM = I
 Proceed to "ALMXIT"
(If TS < 0)
 DELDV = DELDV / 2
 DELVCSI = DVPREV - DELDV
 Proceed to "CSI/Bl"
TSk2 = -TSrsin - \sqrt{}{TS}
TSkI = -TSrsin + \sqrt{}{TS}
TS = TSk2
If |TSk2| \geq |TSkl|,TS = TSkl
URPESTIM = unit(\underline{RACT3 + TS TSu)}
TS = (unitRPASS3 * URPESTIM) • (unitVPASS3 * unitRPASS3)
GAMP32 = arccos(URPESTIM - unitRPASS3) signTS
If FLAGWRD6 bit 14 (S32.IF2) = 1, proceed to "FRSTPAS"
TSslope = (GAMP32 - GAMPREV)}/(\mathrm{ DELVCSI - DVPREV)
DVPREV = DELVCSI
If FLAGWRD6 bits 12 (S32.IF3B) and 13 (S32.1F3A) are both 1:
 TS = GAMPREV (GAMP32 - GAMPREV)
 If TS \geq0, proceed to "FIFTYFPS"
 DELDV = K:INITST sign DELDV
 Switch FLAGWRD6 bit l3 (S32.1F3A) to I
 Switch FLAGWRD6 bit 12 (S32.1F3B) to 0
 Proceed to "FRSTPAS"
```

```
 If FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) are both
 0, proceed to "FIFTYFPS"
 DELDV = GAMP32 / TSslope
 GAMPREV = GAMP32
 If }|DELDV|<K:EPSILNI, proceed to "CSI/SOL"
 If |DELDV | \ K:DELMAXI, DELDV = K:DELMAXI signDELDV
 DELVCSI = DELVCSI - DELDV
 Proceed to "CSI/Bl"
FRSTPAS GAMPREV = GAMP32
 DUPREVV = DELVCSI
 DELVCSI = DELVCSI - DELDV
 Switch FLAGWRD6 bit 14 (S32.IF2) to 0
 Proceed to "CSI/Bl"
FIFTYFPS DELDV = K:FIFPSDP signTSslope signGAMPREV
 DNLVCSI = DELVCSI - DELDV
 GAMPREV = GAMP32
 Switch FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) to l
 Proceed to "CSI/B2"
SONDSOL If FLAGWRD6 bit 12 (S32.1F3B) = 0 or bit 13 (S32.1F3A) = 1:
 Proceed to "ALMXIT"
 CSIALRM = TS Sp
 Switch FLAज̂WRD6 bits 12 (S32.IF3B), 13 (S32.1F3A), and 15 (S32.1F1)
 to 0
 Switch FLAGWRDG bit 14(S32.IF2) to l
 LOOPCT = 0
 Proceed to "CSI/B"
```

    TRGX - 14
    ALMXIT $T S=036008+$ CSIALRM - 1 (i.e., 006058 if CSIALRM $=6$ )

## Perform "VARALARM"

Proceed to "ưOFLASH" with TS = K:V05NO7
(If terminate, proceed to "GOTOPOOH"; if proceed, repeat this step; other response, continue at next step.)

Proceed to third step of "P72"
CSI/SOL $i=$ MUDEX
If POSTCSI < K: PMIN ${ }_{i}$, proceed to "SCNDSOL" with TSsp $=2$
If POSTCDH < K: PMIN ${ }_{\mathrm{i}}$, proceed to "SCNDSOL" with TSsp $=3$
TITOT2 $=$ TCDH - TCSI
If TITOT2 < K:TMIN, proceed to "SCNDSOL" with TSsp $=4$
T2TOT3 $=$ TTPI - TCDH
If T2TOT3 < K:TMIN, proceed to "SCNDSOL" with TSsp $=5$
Proceed to "P32/P72C"

Switch FLAGWRD5 bit 2 (MGLVFLAG) to 1
Return
GEP+MGA IGAX $=\left(\operatorname{REFSMMAT}_{21}\right.$, RJFSMMAT $_{22}$, REFSMMAT 23$)$
pMGA $=\arcsin (u n i t T S \cdot I G A X)$
If $\mathrm{pMGA}<0, \mathrm{pMGA}=1+\mathrm{pMGA}$
Switch FLAGWRD5 bit 2 (MGLVFLAG) to 0
Return

CENTANG: See TRGL section.
CSIALRM: Single precision decimal number that is converted to octal and added to 005778 to be displayed to indicate any failure in the CSI targeting iteration.
CSTH: See CONC section.
DELDV: Double precision increment to DELVCSI in one CSI iteration, scaled B7 in units of meters per centisecond.
DELVCSI: Double precision magnitude of velocity to be gained during the CSI burn, scaled B7. in units of meters per centisecond.
DELVEET1: Double precision vector corresponding to the velocity-to-begained vector for the CSI burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle and perpendicular to the act,ive vehicle position vector at TCSI.

DELVEET2: Double precision vector corresponding to the velocity-to-begained vector for the CDH burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle.
DELVLVC: Double precision velocity vector expressed in local vertical coordinates, scaled B 7 in units of meters per centisecond. In the local vertical coordinate system, X is along the horizontal component of velocity, $Z$ points toward the center of attraction, and $Y$ completes a right-handed, orthogonal system.
DELVSAB: Double precision magnitude of velocity to be gained for input to the thrusting programs, scaled B 7 in units of meters per centisecond.
DELVSIN: Double precision velocity vector for input to the thrusting programs, scaled B7 in units of meters per centisecond and expressed in reference coordinates.

DIFFALT: Double precision difference of passive and active vehicle altitudes at the time of CDH, scaled B29 in units of meters; negative if the passive vehicle is below the active vehicle at CDH, and displayed to the astronaut during P32-72 and P33-73.
DISPDEX: See BURN section.
DVPREV: Previous value of DELVCSI.
ECC: Double precision eccentricity, scaled B3 and unitless.
ELEV: See TRGL section.
GAMP32, GAMPREV: Double precision error angle (and previous value of that angle) between projected rendezvous point and desired rendezvous point, scaled BO in units of revolutions.

HAFPA1: Double precision time corresponding to half of a period in the post-CSI, pre-CDH orbit, scaled B28 in unit: of centiseconds.
HAPO, HPER: Double precision heights above the earth or moon at apugee and at perigee respectively, scaled B29 in units of meters.

IGAX: Double precisian unit vector along the inner gimbal axis, scaled B1 and expressed in reference coordinates.
K:60MIN: Double precision constant stored as $360000 \times 2^{-20}$, scaled B28 in units of centiseconds. Equation value: 300000.
K:CS359+: Double precision constant, stored as 0.499999992, scaled B1 and unitless. Equat.ion value: 0.999990984.
K:DELMAX1: Double precision constant stored as $0.6096000 \times 2^{-7}$, scaled B7 in units of meters per centisecond. Equation value: 0.6096 . (Equivalent, to 200 feet per second.)
K:DPmpO1: Double precision constant stored as 77777, 61337g, scaled BO in unit,s of revolutions. Equation value: $-0.455078125 \times 2^{-14}$. (Equivalent to - 0.01 degrees.)
K:DVMAX1: Double precision constant stored as $3.0480 \times 2^{-7}$, scaled $B$ ? in units of meters per centisecond. Equation value: 3.0480 . (Equivalent to 1000 fps .)
K:DVMAX2: Double precision constant st.ored as $3.014472 \times 2^{-7}$, scaled B7 in units of meters per centisecond. Equation value: 3.014472. (Equivalent to 989 fps.$)$
K:EPSILN1: Double precision constant stored as $0.0003048 \times 2^{-7}$, scaled B7 in units of meters per centisecond. Equation value: 0.0003048. (Equivalent to 0.1 fps.$)$
K:FIFPSDP: Double precision constant stored as $-0.152400 \times 2^{-7}$, scaled B7 in units of meters per centisecond. Equation value: -0.1524. (Equivalent to - 50 fps.$)$
K:INITST: Double precision constant stored as $0.03048 \times 2^{-7}$, scaled B7 in units of meters per centisecond. Equation value: 0.03048 . (Equivalent to 10 fps.$)$
K:LOOPMX: Double precision constant stored as $16 \times 2^{-28}$, scaled B28 and unitless. Equation value: 16.
K:MAXNM: See EXVB section.
K: MUTABLE MUDEX: See CONC section.
K:NICKELDP: Double precision constant stored as $0.021336 \times 2^{-7}$, scaled $B 7$ in units of meters per centisecond. Equation value: 0.021336 . (Equivalent to 7.0 fps )

K:ONETHTH: Double precision constant stored as $0.0001 \times 2^{-3}$, scaled B3 and unitless. Equation value: 0.0001.

K:PMIN ${ }_{0}$ : Double precision constant stored as $157420 \times 2^{-29}$, scaled B29 in units of meters; program notation PMINE. Equation value: 157420.
$\mathrm{K}: \mathrm{PMIN}_{8}$ : Double precision constant stored as $10668 \times 2^{-29}$, scaled B29 ${ }^{\circ}$ in units of meters; program notation PMINM. Equation value: 10668.
K:SN359+: Double precision constant stored as -0.000086601 , scaled Bl and unitless. Equation value: -0.000173202.
K:TMIN: Double precision constant stored as $60000 \times 2^{-28}$, scaled B28 in units of centiseconds. Equation value: 60000 .
K:TWOPI: Double precision constant stored as $6.283185307 \times 2^{-4}$, scaled B4 and unitless. Equation value: 6.283185307.
LOOPCT: Double precision iteration counter, scaled B28 and unitless. [LVCMAT]: Double precision, $3 \times 3$ transformation matrix defined such that $\underline{A l v}=[$ LVCMAT] Aref, where $\underline{A}$ is a vector expressed in local vertical and reference coordinates respectively.
MODREG: See DATA section.
MUDEX: See CONC section.
MUE: Double precision gravitational constant, scaled B36 in units of meters cubed per centisecond squared.
NN: Double precision number designating the apsidal crossing after CSI at which the CDH burn will be executed, scaled B14 and unitless. ( $\mathrm{NN}=1$ indicates that the CDH burn will be executed at the first apsidal crossing after CSI.) NN is used in P34 and P35 as a flag to specify precision or conic integration. In "S34/35.2", it is used to set VTARGTAG.
NOMTPI: See TRGL section.
NORMEX: Single precision octal return address storage.
P: See CONC section.
pMGA: Double precision middle gimbal associated with a desired thrust direction, scaled BO in units of revolutions.

POSTCDH: Double precision height above the earth or the moon at the perigee of the orbit of the active vehicle after the CDH burn, scaled B29 in units of meters.

POSTCSI: Double precision height above the earth or the moon at the perigee of the orbit of the active vehicle after the CSI burn, scaled B29 in units of meters.

QTEMP: Single precision octal return address storage.

RI: See CONC section.
RACTI, VACTI: Double precision position and velocity vectors of the active vehicle at TCSI, prior to the CSI burn, scaled B29 and B7 in units of meters and meters per centisecond respectively; rotated into the orbital plane of the passive vehicle.

RACT2, VACT2: Double precision position and velocity vectors of the active vehicle at TCDH, prior to the CDH burn, scaled B29 and B7 in units of meters and meters per centisecond respectively; rotated into the orbital plane of the passive vehicle.

RACT3, VACT3: See TRGL section.
RATT, VATT: See ORBI section.
RCV, VCV: See CONC section.
RdA: See CONC section.
RDESIRED: See CONC section.
RDOTV: Double precision dot product (RACTl • VACT4) scaled B36 in units of meters squared per centisecond.
[REFSMMAT] : See COOR section.
RINIT, VINIT: See TRGL section.
RPASSI, VPASSI: Double precision position and velocity vectors of the passive vehicle at TCSI, scaled B29 and B7 in units of meters and meters per centisecond respectively.

RPASS2, VPASS2: Double precision position and velocity vectors of the passive vehicle at TCDH, scaled B29 and B7 in units of meters and meters per centisecond respectively.

RPASS3, VPASS3: See TRGL section.
RTldMU: Double precision storage for the inverse of the square root of MUE, scaled B-17 (eartH) or B-14 (moon) in units of centiseconds/meters to the three-halves power.

RTIG, VTIG: Double precision position and velocity vectors for input to the thrusting programs, scaled B29 and B7 in units of meters and meters per centisecond.

RTRN: Single precision octal return address storage.
RVEC, VVEC: See CONC section.

SMALLA: Double precision semi-major axis, in units of meters.
SNTH: See CONC section.
SUBEXIT: Single precision octal return address storage.
T: See CONC section.
TJ'MT2: Double precision transfer time between CSI and CDH, scaled B28 in units of centiseconds; displayed to the astronaut in P32-P72. Transfer time between CDH and TPI when displayed ton the astronaut in P33-P73.

T2TOT3: Double precision transfer time between CDH and TPI (P32-P72) or time difference between TTPI in P33 and TTPI used in P32 (displayed in P33-P73); scaled B28 in units of centiseconds.

TCDH: Double precision time of ignition of the CDH burn, scaled B28 in units of centiseconds; an astronaut input in P33-P73.

TCSI: Double precision time of ignition of the CSI burn, scaled B28 in units of centiseconds. It may be either an astronaut input or computed by the program.

TDECI: See ORBI section.
TDEC2: Temporary storage for TDECl to assure that both active and passive states are advanced to the same time.

TET: See ORBI section.
TETLEM: "Permanent" time value for the LM state vector, scaled B28 in units of centiseconds.

TIG: See BURN section.
TRKMKCNT: See RNAV section.
TTOGO: See BURN section.
TTPI: See TRGL section.
TTPIO: Double precision storage for TPI time used in P32 for information in P33, scaled B28 in units of centiseconds.

UPI: Double precision unit vector perpendicular to the orbital plane of the passive vehicle, scaled Bl and unitless.

UNVEC: Double precision unit vector along RACT2, scaled Bl and unitless.
URPESTIM: A unit vector in the direction of the passive vehicle position vector that would satisfy the required TPI conditions, derived from the estimate of DELVCSI.

VACT4: Double precision velocity vector of the active vehicle at TCSI after the addition of the velocity gained in the CSI burn, scaled B7 in units of meters per centisecond.

Z: Z register, or program counter. Contains address of the next step.

Programs

Number (GSOP)	Title in this document	Page	Number (GSOP)	Title in this document	Page
00	POOH	PGSR-6	00	GOTOPOOH	PGSR-11
06	P06	PGSR-13	02	R02B0TH	IMUC-19
12	P12LM	ASCT-1	03	DAPDATA1	DAPB-19
20	PROG20	RNAV-1	04	R04	EXVB-7
21	PROG21	RNAV-6	05	SBANDANT	EXVB-27
22	PROG22	RNAV-1	09	R10,R11	SERV-14
25	PROG25	RNAV-8	10	LANDISP	SERV-15
27	V7xUPDAT	EXVB-8	11	R10,R11	SERV-14
30	P30	TRGX-1	12	MUNRETRN	SERV-7
32	P32	TRGX-1	13	LUNLAND	DESC-4
33	P33	TRGX-4	14	HIGATJOB	SERV-7
34	P34	TRGL-1	20	RADAREAD	RADR-19
35	P35	TRGL-4	21	R21LEM	RNAV-13
40	P40LM	BURN-1	22	R22LEM	RNAV-17
41	P41LM	BURN-2	23	R23LEM	RNAV-19
42	P42LM	BURN-1	24	R24LEM	RNAV-20
47	P47LM	BURN-13	25	RRAUTCHK	RADR-1
51	P51	ALIN-1	26	R21LEM4	RNAV-14
52	PROG52	ALIN-14	29	R29	RNAV-31
57	P57	ALIN-25	30	V82CALL	EXVB-17
63	P63LM	DESC-1	31	V83CALL	EXVB-24
64	STARTP64	DESC-4	33	ALINTIME	EXVB-6
65	P65START	DESC-10	36	R36	EXVB-26
66	STARTP66	DESC-11	40	DVMON	SERV-3
67	STARTP67	DESC-11	41	MIDTOAV1	ORBI-19
68	LANDJUNK	DESC-18	47	AGSINIT	EXVB-12
70	P70 or P70A	ASCT-3	50	CAL53A	ALIN-18
71	P71 or P71A	ASCT-3	51	R51	ALIN-19
72	P72	TRGX-1	52	R52	ALIN-21
73	P73	TRGX-4	53	AOTMARK	ALIN-3
74	P74	TRGL-1	54	CHKSDATA	A.LIN-13
75	P75	TRGL-4	55	R55	ALIN-22
76	P76	ORBI-23	56	TRMTRACK	EXVB-6
			57	MARKRUPT	ALIN-6
			58	PLANET	ALIN-12
			59	R59	ALIN-30
			60	R60LEM	ATTM-1
			61	R61 LEM	RNAV-10
			62	R62DISP	ATTM-11
			63	V89CALI	ATTM-11
			65	R65LEM	RNAV-10
			76	TESTXACT	EXVB-2
			77	R77	ESVB-9

## Noun List

The following is an interpretation of the list of nouns that are used or defined in the LUMINARY program (See DATA section). Other nouns are either illegal or meaningless when used with the LUMINARY program. The list includes the tag assigned to the components of each noun (in this document); the number of components in each noun; the magnitude and units used in a decimal display of each noun; the section in which each component of each noun is defined; and an indication if the noun is a "no-load" or "decimal only" noun. Routines making use of a noun are listed in parentheses under the above information.

Special Considerations:

1. The $X, Y$ and $Z$ components of a vector quantity are displayed in $R 1-R 3$ respectively with the same scaling and units for each component.
2. Single component nouns appear in R 1 only.
Noun Tag Comp. Defe Decimal Display Comment
00 spare

01 -.- 3 . XXXXX without regard Address supplied (OHWELL1, OHWELL2, SDISPLAY)

02	(UPVERIFY)		-	XXXXX. without regard to scaling or units	Address supplied
03	(none)	3	---	XXX.XX degrees	Address supplied
04	DSPTEM1   (GVDETER)		DATA	XXX.XX degrees	
05	DSPTEM1   (R22LEM,		$\begin{aligned} & \text { DATA } \\ & \text { A) } \end{aligned}$	XXX. XX degrees	
06	OPTION1   OPTION2   OPTION3   (DSPOPTN,	$3$   GOPE	$\begin{aligned} & \text { DATA } \\ & \text { DATA } \\ & \text { DATA } \\ & \text { GOPE } \end{aligned}$	Octal only Octal only Octal only R )	

$$
W-5
$$





## Comment

Decimal only- three components must be supplied

Decimal only - three components must be supplied
(=TALIGN) Decimal only three components must be supplied

Decimal only - three components must be supplied

Noun	Tag	Comp.	Def.	Decimal Display	Comment
40	TTOGO   DELVSAB   DVTOTAL   (POSTBURN	$3$ I, CLOK	BURN   TRGX   BURN   B, V9	XX XX min-sec   XXXX.X fps   XXXX.X fps CYC	```No load - decimal only```
41	$\begin{aligned} & \text { DSPTEM10 } \\ & \text { DSPTEM1 } \\ & \text { (REDO) } \end{aligned}$		$\begin{aligned} & \text { DATA } \\ & \text { DATA } \end{aligned}$	XXX.XX degrees XX.XXX degrees	
42	HAPO   HPER   DELVSAB   (P30)	$3$	TRGX   TRGX TRGX	XXXX. X nautical miles XXXX.X nautical miles XXXX.X fps	Decimal only
43	Lat   LONG   ALT   (P2IVSAVE,	$3$   LAND	COOR   COOR   COOR   NK)	XXX. XX degrees   XXX. XX degrees   XXXX.X nautical miles	Decimal only
44	HAPOX   HPERX   TFF   (V82GOFLP	$3$   , V82GO	EXVB   EXVB   EXVB   )	XXXX.X nautical miles XXXX.X nautical miles XX XX min - sec	No load - decimal only
45	TRKMKCNT   TTOGO   pMGA   (VN1645)		RNAV BURN TRGX	XXXXX. unitless XX XX min-sec XXX.XX degrees	```No load - decimal only```
46	DAPDATR1   (DAPDATA1)		DAPB	Oetal only	
47	$\begin{aligned} & \text { LEMMASS } \\ & \text { CSMMASS } \\ & \text { (DAPDATA2) } \end{aligned}$	$2$	$\begin{aligned} & \text { DAPB } \\ & \text { DAPB } \end{aligned}$	XKXXX. pounds mass   XXXXX. pounds mass	Decimal only
48	PITTIME ROLLTIME (DAPDATAZ	$2$   , TRIM	DAPB   DAPB   ONE)	XXX. XX degrees XXX.XX degrees	Decimal only
49	R:2DISPR   R22DISPV   WHCHREAD   (N49DSP	$\begin{gathered} 3 \\ \text { (R22LEM } \end{gathered}$	RNAV   RNAV   RNAV   6))	XXXX.X nautical miles XXXX.X fps XXXXX.	Decimal only
50	spare				


Noun	Tag	Comp.	Def.	Decimal Display	Comment
51	PITCHANG YAWANG (SBANDEX)	2	$\begin{aligned} & \text { EXVB } \\ & \text { EXVB } \end{aligned}$	XXX.XX degrees XXX.XX degrees	Decimal only
52	ACTCENT   (none)	1	TRGL	XXX. XX degrees	
53	spare				
54	RANGE   RRATE   RTHETA   (DISPN5X)	3	EXVB   EXVB   EXVB	XXX.XX nautical miles XXXX.X fps XXX.XX degrees	Decimal only
55	NN   ELEV   CENTANG   (DISPLAYE,	$3$ P32,	$\begin{aligned} & \text { TRGX } \\ & \text { TRGL } \\ & \text { TRGL } \\ & \text { P72) } \end{aligned}$	XXXXX. unitless XXX.XX degrees XXX.XX degrees	Decimal only
56	$\begin{aligned} & \text { RR-AZ } \\ & \text { RR-ELEV } \\ & \text { (DSPRRLOS) } \end{aligned}$		RNAV   RNAV	XXX.XX degrees   XXX. XX degrees	
57	spare				
58	POSTTPI   DELVTPI   DELVTPF   (INTLOOP)		TRGL   TRGL   TRGL	XXXX.X nautical miles XXXX.X fps XXXX.X fps	Decimal only
59	$\frac{\text { DVLOS }}{\text { (S } 34 / 35.5 .}$	$3$   NTARG	$\begin{aligned} & \text { TRGL } \\ & \mathrm{CHK}) \end{aligned}$	XXXX. ${ }^{\text {P }} \mathrm{fps}$	Decimal only
60	VHORIZ   HDOTDISP   HCALC1   (VERTDISP)	3	$\begin{aligned} & \text { DESC } \\ & \text { SERV } \\ & \text { SERV } \end{aligned}$	XXXX.X fps XXXX.X fps XXXXX. feet	Decimal only
61	TTFDISP   TJOGO   OUTOFPLN   (CLOKJOB)	3	DESC   BURN   DESC	XX XX min-sec   XX XX min-sec   XXXX.X nautical miles	No load - Decimal only


	Noun	Teg	Comp.	Def.	Decimal Display	Comment
	62	ABVEL   TTOGO   DVTOTAL   (CLOKJOB,	$3$   V99REC	SERV   BURN   BIJRN   C)	```XXXX.X fps XX XX min-sec XXXX.X fps```	No load - decimal only
	63	ABVEL   HDOTDISP   HCALC 1   (CLOKJOB,	$3$ P63DIS	SERV   SERV   DESC   B, CU'	XXXX.X fps   XXXX.X fps   XXXXX. feet   FF, V99RECYC)	Decimal only
	64	HCALC   (P64DISPS)	3	DESC   SERV   SERV	XX XX   XXXX.X fps XXXXX. feet	No load - decimal only
	65	SAMPTIME	3	DSKY	00XXX. hours 000XX. minutes OXX. XX seconds	Decimal only - three components must be supplied
	66	$\begin{aligned} & \text { RSTACK } \\ & \text { Bits } 7-6 \\ & \text { of Channel } \\ & 33 \\ & (\mathrm{RO} 42) \end{aligned}$		RADR $\qquad$	XXXXX. feet   0000X. unitless	No load - decimal only
	67	$\begin{aligned} & \text { RSTACK } \\ & \text { RSTACK } \\ & \text { RSTACK } \\ & (\text { RO4Z })^{4} \end{aligned}$	3	RADR RADR RADR	XxXXX. fps   XXXXX. fps   XXXXX. fps	
	68	RANGEDSP   TTFDISP   DELTAH   (none)	3	DESC   DESC   SERV	XXXX.X nautical miles   $X X X X \quad \min$ - sec   XXXXX. feet	No load - decimal only
;	69	DIAND (none)		DESC	XXXXX. feet	Decimal only
	70	AOTCODE   AOTCODE   AOTCODE 1   (R52, R59)	$3$	ALIN ------	Octal only   Octal only   Octal only	Note that noun 70 is displayed with verb 01. The second and third components are meaningless.


Noun	Tag	Comp.	Def.	Decimal Display		Comment
71	$\begin{aligned} & \text { AOTCODE }_{0} \\ & \text { AOTCODE }_{1} \\ & \text { AOTCODE }_{1} \\ & \text { (GETDAT2, } \end{aligned}$	$3$   CHANGE	$\begin{aligned} & \text { ALIN } \\ & --- \\ & -- \end{aligned}$	Octal only   Octal only Octal only   S)		Like noun 70
72	$\begin{aligned} & \mathrm{CDU}_{\mathrm{t}} \\ & \mathrm{CDU} \\ & \left(\mathrm{ROS}_{4}, \mathrm{VB}\right. \end{aligned}$	$2$	RADR   RADR   BCOARK	XXX.XX degrees XXX.XX degrees R21DISP)	$(360 \mathrm{de}$	rees - $\operatorname{CD} U_{t}$ displayed)
73	$\begin{aligned} & \text { TANG }_{0} \\ & \text { TANG } \\ & \text { (VBCOARK) } \end{aligned}$	2	RADR RADR	XXX.XX degrees XXX. XX degrees	(displ lemen	of TANG ${ }^{\mathrm{O}}$ is the comp$f$ the value stored)
74	TTOGO   YAW   PITCH   (CLOKJOB,	$3$   V99REC	BURN   ASCT   ASCT   YC)	XX XX min-sec XXX. XX degrees XXX. XX degrees		No load - decimal only
75	DIFFALT   T1TOT2   T2TOT3   (P32/P72F	$3$ P33/P	TRGX   TRGX   TRGX   73F)	XXXX. X nautical   XX XX min-sec   XX XX min-sec	miles	No load - decimal only
76	$\begin{aligned} & \text { ZDOTD } \\ & \text { RDOTD } \\ & \text { XRANGE } \\ & \text { (P12LM) } \end{aligned}$	3	$\begin{aligned} & \text { ASCT } \\ & \text { ASCT } \\ & \text { ASCT } \end{aligned}$	XXXX.X ft/sec XXXX.X ft/sec XXXX. X nautical	miles	Decimal only
77	TTOGO YDOT (none)	2	$\begin{aligned} & \text { ASCT } \\ & \text { ASCT. } \end{aligned}$	XX XX min-sec XXXX.X fps		No load - decimal only
78	DNRRANGE   DNRRDOT   TTOTIG   (R04Z)	3	RADR RADR RADR	XXX.XX nautical   XXXXXX. fps   XX XX min-sec	miles	
79	CURSOR   SP IRAL   POSCODE   (DSPV6N79	$3$   $79 D I S$	$\begin{aligned} & \text { ALIN } \\ & \text { ALIN } \\ & \text { ALIN } \\ & \text { P) } \end{aligned}$	XXX.XX degrees XXX. XX degrees XXXXX. unitless		Decimal only
80	DATAGOOD OMEGDISP (R24LEM)	$2$	$\begin{aligned} & \text { RNAV } \\ & \text { RNAV } \end{aligned}$	XXXXX. unitless   XXX.XX degrees		
81	$\begin{aligned} & \text { DELVLVC } \\ & (\text { P } 30, S 34 \end{aligned}$	$\begin{aligned} & 3 \\ & 135.5 \end{aligned}$	$\begin{aligned} & \text { TRGX } \\ & \text { P32/P7 } \end{aligned}$	XXXX.X fps P33/P73F)		Decimal only

$$
\text { W }-12
$$

Noun	Tag	Comp.	Def.	Decimal Display	Comment
82	$\frac{\text { DELVLVC }}{(\text { P32/P72F })}$	$\text { f) }{ }^{3}$	TRGX	XXXX.X fps	Decimal only
83	$\frac{\text { DELVIMU }}{(\text { P47BODY })}$	3	BURN	XXXX. ${ }^{\text {f }}$ fps	Decimal only
84	$\frac{\text { DELVOV }}{(\text { P76) }}$	3	ORBI	XXXX.X fips	Decimal only
85	VGBODY   (TIGNOW,	$\stackrel{3}{\text { CUTOFF, }}$	$\begin{aligned} & \text { BURN } \\ & \text { P41LM, } \end{aligned}$	$\begin{aligned} & \text { XXXX.X fps } \\ & \text { TIG-30A) } \end{aligned}$	Decimal only
86	DFLVLVC   (none)	3	TRGX	XXXX.X fps	Decimal only
87	A. 3   EL   (GETDAT,	$2$   GETAZEL	$\begin{aligned} & \text { ALIN } \\ & \text { ALIN } \end{aligned}$	XXX.XX degrees XXX. XX degrees	
88	STARAD $_{\text {(PLANET) }}$	3	$A^{\text {L }}$ IN	. XXXXX unitless	Decimal only
89	LANDLAT   LANDLONG   LANDALT   (N89DISP)		$\begin{aligned} & \text { ALIN } \\ & \text { ALIN } \\ & \text { ALIN } \end{aligned}$	XX. XXX degrees XX, XXX degrees XXX.XX nautical miles	Decimal only
90	RANGE   RRATE   RTHETA   (R36)	3	$\begin{aligned} & \text { EXVB } \\ & \text { EXVB } \\ & \text { EXVB } \end{aligned}$	XXX.XX nautical miles XXXX.X fps XXX.XX degrees	Decimal only
31	$\begin{aligned} & \text { P21ALT } \\ & \text { P21VEL } \\ & \text { P21GAM } \end{aligned}$	$3$	$\begin{aligned} & \text { RNAV } \\ & \text { RNAV } \\ & \text { RNAV } \end{aligned}$	XXXXXB. nautical miles   XXXXX. ft/sec   XXX.XX degrees	
92	spare				
93	$\begin{aligned} & \text { OGC } \\ & \text { IGC } \\ & \text { MGC } \\ & \text { (IMUFINEK, } \end{aligned}$	$\begin{gathered} 3 \\ \mathrm{~K}, \mathrm{R} 55, \end{gathered}$	$\begin{gathered} \text { COOR } \\ \text { COOR } \\ \text { COOR } \\ \text { INITBY }) \end{gathered}$	XX.XXX degrees XX.XXX degrees XX. XXX degrees	
94	spare				
95	spare				
96	spare				


Noun	Tag	Comp.	Def.	Decimal Display	Comment
97	DSPTEM10	3	DATA	XXXXX. unitless	
	DSPTEM1		DATA	XXXXX. unitless	
	$\begin{aligned} & \text { DSPTEM1 } \\ & \text { (none) } 2 \end{aligned}$		DATA	XXXXXX. unitless	
98	DSPTEM20	3	Data	XXXXXX, unitless	
	DSPTEM2 ${ }_{1}$		DATA	. XXXXX unitless	
	$\begin{aligned} & \text { DSPTEM2 }{ }^{1} \\ & \text { (SHOW) } \end{aligned}$		DATA	xxxxx. unitless	
99	WWPOS	3	RNAV	XXXXX. feet	Decimal only
	WWVEL		RNAV	XXXX.X fps	
	WWBIAS		RNAV	XX. XXX radians	
	(V67CALL,	GOTOPO	H - in	GOTOPOOH, the nou	processed)

## Alarm Codes

All alarm codes are listed in octal. The names of the "Routines" where each code is generated refer to the titles as they appear in this document.

	Alarm		Roxtines	Significance
	00107	L	YMKRUPT	Five or more mark pairs already recorded
		L	SURF AGAN	
	00111	L	MARKOHEX	Mark missing
	03112	L	MARKRUPT	Mark or mark reject attempted with the respective routine inoperative
	00113	L	SJMEKEY	No inbits in channel 16
	00114	L	YMKRUPT	Wrong mark
1	00115	L	MARKRUPT	Mark reject when no marks taken to reject
	00206	L	IMUZERO	ICDU zero attempted while in coarse align becruse of gimbal lock warning
	00207	L	IMUMON	ISS turn-on request not present for 90 seconds
	00210	L	IMUCHK	IMU not operating when required
		L	RO2BOTH	
		L	IMUZERO	
	00211	L	COARS2	Coarse align error
	00212	L	PIPFREE	PIPA fail when primary PIPA fail monitor has been disabled (PIPA not in use)
		L	C33TEST	
	00213	L	TNONTEST	"Turn-on delay initiate" signal from LMU present without "IMU operate" signal
	00214	L	IMUMON	Program using IMU when it was turned off Bad return from stall routine (e.g., switching fail)
	00217	L	CURTAINS	
	00220	L	AGSINIT	IMU not aligned - no REFSMMAT
		L	RO2BOTH	
	00401	L	KaLCMAN3	Desired gimbal angles yield gimbal lock
		L	CALCGA	
		L	DCMOL	
	00402	L	NOATICNI	FINDCDUW not controlling attitude Desired star not available in any detent position "R56" did not find star pair for optical sighting W-matrix overflow
	00,404	D	R59ALM	
	00405	D	R51	
	00421	L	WMATEND	
	00501	P	R23LEM	Manusl RR acquisition not within limits
	00502	L	RRDESN3	Bad RR gimbsl angle input (verb 4l)
	00503	L	RRDESK2	RR designate failure
		P	R21LEM	
		P	R21LEMI	
	00510	L	RRZERO	RR zero requested (verb 40) with RR auto discrete absent
	00511	L	MUNRETRN	LR not in proper position
	00514	P	P20LEMB7	RR auto discrete removed while RR in use
	00515	L	RRCDUCHK	RR read interrupt initiated when not called for
	00520	L	RADAREAD	
		L	DORSAMP	

$$
W-15
$$

Alarm	Routines		Significance
00521	L	RADAREAD	No data good while reading radar
	L	RESAMPLE	
00522	L	RADARISAD,	DORSAMP LR position change during LR reading
00523	L	LRPOS2K	LR position 2 not achieved in 23 seconds
	P	HIGATJOB	
00525	P	R22LEM	Actual RR LOS differs from computed LOS by more than $3^{\circ}$
00526	P	P20LEMI	Range greater than 400 nautical miles
	P	CSMINT	
00527	L	LRS24.1	LOS not in mode limits
00530	?	60TIMES	LOS not in coverage (P22) less than 10 minutes from now
00600	D	SIREL	Imaginary roots on first iteration of CSI solution
00601	D	CSI/SOL	Projected perigee altitude after CSI less than minimum
03602	D	CSI/SOL	Projected perigee altitude after CDH less than minimum
03603	D	SSI/SOL	Time between CSI and CDH less than minimum
00504	D	CSI/SOL CIREL	Time between CDH and TPI less than minimum
00605	D	CSI/Bl	Too many iterations
00606	D	USI/B2	Projected DELVCSI exceeds maximum
00611	D	INTLOOP	No TPI ignition time solution for given elevation
	D	P33/P73B	angle
00701	D	DSPOPTN	Illegal option code was selected
00777	L	SETISSN	ISS warning caused by PIPA fail
01102	L	PRERRORS	AGC self test error
01105	L	DNTMFAST	Downlink too fast
01.106	L	UPTMFAST	Uplink too fast
01107	L	GOPRDG3	Phase table discrepancy; restart failure; causes restart
01301	L	ARCSUB	Arcsin or arccosine inpit too large
01406	L	TTF/8CL	Bad return from ROOTPSRS routine during descent guidance
01407	L	VGAIN**	VG increasing
014,10	L	EXVERT	Unintentional overflow in dascent (P63 or P64) guidance
01412	L	EXGSUB	Calculation of descent ignition time not converging
01520	L	V37	Verb 37 not permitted at this time
01600	L	SOMEERRR	Overflow in drift test
01601	L	SOMERR2	Bad IMU torque
01703	L	MIDTOAVI	Insufficient time remaining before scheduled
	L	CKMID2	ignition
01706	D	P4OALM	Incorrect program requested for vehicle configuration
02001	L	TRYUORV	Jet failures have disabled Y-Z translation
02002	L	+XORULGE	Jet failures have disabled X translation
J2003	L	SELECTP	Jet failures have disabled P rotation
02004	L	FAILOOP	Jet failures have disabled U-V rotation
03777	L	SETISSW	ISS warning caused by ICDU fail
04777	L	SETISSW	ISS warning caused by ICDU and PIPA fail
07777	L	SEIISSW	ISS warning caused by IMU fail



L Alarm lights "Program Caution" light and the code is stored in noun 07 (which is on telemetry)

D Alarm does all of "L" plus the alarm code is displayed as part of program logic

P Alarm does all of "D" functions except with a priority display.
If the first number is a 3 in the code, the alarm does all of "L" functions plus a "BAILOUT" or software restart.

If the first number is a 2 in the code, the alarm does all of "L" functions plus a "POODOO" which terminates all program activity.

Checkiist

Code Routine

13 P52D
P52D Key in Normal Coarse Align or Gyro Torque Coarse Align

Terminate: Proceed to "GOTOPOOH"
Proceed: Do Normal Coarse Align; "REGCOARS"
Enter or Resequence: Do Gyro Torque Coarse Align

14 P57P0ST Key in Fine Alignment Option
Terminate: Proceed to "GOTOPOOH"
Proceed: Align LM based on keyed in option ("ATTCHK")
Enter or Resequence: Determine LM's position from gravity vector if option 2 alignment

R51K Key in Fine Alignment Option
Terminate: Proceed to "GOTOPOOH"
Proceed: Check alignment by recycling through Routine 51
Enter or Resequence: Exit Routine 51
ASTNRET Key in Fine Alignment Option
Terminate: Proceed to "GOTOPOOH"
Proceed: Check alignment by performing Routine 51 and continuing
Enter or Resequence: Continue without check
Perform Celestial Body Acquisitinn; Key in Proceed
15 P51: $\begin{aligned} & \text { Perform } \\ & \text { Option }\end{aligned}$
Terminate: Proceed to "GOTOPOOH" Proceed: Continue to marking process
Enter or Resequence: Perform Coarse Align to zero IMU; Then redisplay code 15

Perform Celestial Body Acquisition; Key in Proceed
R51 $\begin{array}{r}\text { Perform } \\ \text { Option } \\ \\ \end{array}$
Terminate: Proceed to "GOTOPOOH"
Proceed: Perform Routine 56; then continue
Enter or Resequence: Perform Routine 51E (maneuver LM and mark)

62 P06
Meaning Enter or Resequence: Perform Routine 51 L (
Switch AGC Power down; Enter standby mode

Checklist
Code Routine Meaning
201 RO4X Switch RR to automatic tracking mode
Terminate: Exit Routine 04
Proceed: Continue with Routine 04 (after checking that $R R$ is switched to auto mode)
Enter or Resequence: Repeat checklist request
P20LEMB7 Switch RR to automatic tracking mode
Terminate: Exit Program 20
Proceed: Continue Program 20
Enter or Resequence: Perform "R23LEM" (manual acquisition monitor) if not on lunar surface; then continue Program 20

203 P40AUTO

205 R23LEM

500
ASTNRET Switch LR antenna to position 1

Terminate: Proceed to "GOTOPOOH"
Proceed: Initialize Landing Radar Control ("SETPOS1"), if LR not in position 1 and continue
Enter or Resequence: Initialize Landing Radar Control ("SETPOS1") and continue regardless of Landing Radar Position

This is a list of the option codes displayed in R1 in conjunction with a VO4NO6 (OPTION1) or VO4N12 (OPTIONX ${ }_{0}$ ) to request the astronaut to load into R2 the option he desires for program LUMINARY (OPTION2 or OPTIONX 1 respectively). In the case of option code 10 in R1, an OPTION3 is also defined as a flagword indicator which is set by the program and loaded into R3.

Option Code R1	Purpose	Input of R2	Routine	Option Code Types
00001	Specify IMU	1- Preferred Attitude	P52B	R1-OPTION1
	Orientation	2- Nominal Attitude   3- Attitude specified by present REFSMMAT   4- Landing Site Attitude	P570PT	R2-OPTION2
00002	Specify Vehicle	1- This Vehicle (LEM)   2- Other Vehicle (CSM)	PROG21	$\begin{aligned} & \text { R1-OPTION1 } \\ & \text { R2-OPTION2 } \end{aligned}$
			V82CALL	$\begin{aligned} & \text { R1-OPTIONX } \\ & \text { R2-OPTIONX } \end{aligned}$
00003	Specify   Tracking   Attitude	1- Foint Z-axis (preferred)   2- Point X-axis	V89CALL	$\begin{aligned} & \text { R1-OPTIONX } \\ & \text { R2-OPTIONX } \end{aligned}$
00004	Specify Radar	$\begin{aligned} & \text { 1- RR (Rendezvous Radar) } \\ & \text { 2- LR (Landing Radar) } \end{aligned}$	RO42	$\begin{aligned} & \text { R1-OPTIONX } \\ & \text { R2-OPTIONX } \end{aligned}$
00006	Specify RR Coarse Align Option	1- Lock-on   2- Continuous Designate	VBCOARK	$\begin{aligned} & \text { R1-OPTIONX } \\ & \text { R2-OPTIONX } \end{aligned}$



Priority	Job	Routine Where Priority Established ( or changed)
35	NBDONLY	SVCT3
33	MAKEPLAY	MAKEPLAY (change)
32	HIGATJOB	MINRETRN
	JAMTERM	NVDSP
	LRVJOB	VALTCHK
	LRHJOB	R10,R11
31	TTFINCR	TTF INCR (change)
30	TSTLTS 3	TSTLTS2
	MONDO	MONREQ
	CHARIN	KEYRUPT1
	UPJOB	UPSTORE
	PROCKEY	PROCEEDE
	DSPMMJOB	TSTLTS3 REDO UPUPDATE UPOUT4 V37XEQ GOPROG3 EndTEST1 P65START STARTP67 STARTP66 STARTP64
27	1/ACCSET	DAP IDLER
	1/ACCJOB	VOPENED RCSMONIT SETMINDB SETMAXDB PFLITEDB
	N49DSP	R22LEM96
	CLOKJOB	CLOKTASK
26	DODES	MOREDES
	PROG20	PROG20 (change)
	P20LEMB	P20LEMB (change)
	P20LEMC3	P20LEMD1
	R22LEM42	P20LEMC1
	PROG25	PROG25 (change)
	R61C+L01	R61C+L06
	R29RDJOB	R29READ
	NEWDELHI	UPDTCALL
	R21LEM10	R21LEM9
	RELINUS	RELINUS (change)
25	ENDEXT	TICKTEST
	DORSAMP	RADSAMP
	DATGDCHK	CALLDGCH
	COMFAIL	DVMON
23	POSGOOD	POSGOOD (change)
22	REDO	SYSTEST
	NORMLIZE	PREREAD
	GETRVN	GETRVN (change)
	RODCOMP	RODTASK

W-23


[^0]| Priority | Job | Routine Where Priority Established (or chan |
| :---: | :---: | :---: |
| 13 (cont.) |  |  |
|  | P47LM | V37XEQ |
|  | P42LM | V37XEQ |
|  | P41LM | V37XEQ |
|  | P40LM | V37XEQ |
|  | PROG25 | V37XEQ |
|  | PROG22 | V37XEQ |
|  | PROG21 | V37XEQ |
|  | PROG20 | V37XEQ |
|  | P12LM | V37XEQ |
|  | P06 | V37XEQ |
| 12 | POSTBURN | GOPOST ENGINOFF |
| 10 | TRIMDONE | PITCHOFF |
|  | R62DISP | CREWMANU |
|  | ATTACHIT | ATTACHED |
|  | V89CALL | V89PERF |
|  | RELINUS | CHKLINUS |
|  | S40.9 | UPDATEVG |
| 7 | DAPDATA1 | DAPDISP |
|  | ALINTIME | ALINTIME (change) |
|  | V82CALL | V82PERF |
|  | R36 | V90PERF |
|  | V82GOFF1 | V82GOFLP |
|  | V82GON1 | V82GON |
|  | SHOWSUM2 | SHOWSUM2 (change). |
| 5 | RRLOSDSP | DSPRRLLOS |
|  | V67CALL | V67 |
|  | DISPN5X | R31CALL |
|  | SBANDEX | SBANDEX (change) |
|  | STATINT1 | STATEINT |
|  | DYNMDISP | P41LM |
| 41 | DSPRRLOS | DSPRRLOS (change) |
|  | AGSINIT | V47TXACT |
|  | SBANDANT | VB64 |
|  | SBANDANT | SBANDANT (change) |
| 3 | V83CALL |  |
| 1 | GETRVN | GETRVN (change) |
| 0 | DUMMY JB2 | (not established - proceeded to by EJSCAN) |

This index includes, in addition to the list of all routines described and their locations in this document, a list of each place the routine is "referenced." This includes any reference to a routine by name, for example, by means of "Perform", "Proceed to", "Estaklish", checking of routine address, etc. It does not include, as a reference, routines that flow into (are followed directly by) another routine.

+ON	DSKY-10	2INTOUT DSPSIGN
+XORULGE	DAPA-19	RCS
-ON	DSKY-10	DSPSIGN
*ENTER	BURN-10	VY9RECYC
*PROCEED.	BURN-5	V99RECYC

1/ACCJOB DAPB-1 PFLITEDB RCSMONIT SETMAXDB SETMINDB VOPENED
$1 / \mathrm{ACCONT} \quad \mathrm{DAPB}-4 \quad 1 / \mathrm{ACCS}$
1/ACCRET DAPB-11 DOCKTEST
1/ACCS DAPB-1 1/ACCJOB SERVOUT
1/ACCSET DAPB-I DAPIDLER
1./GYRO IMUC-1 1/PIPA NBD2

1/PIPA IMUC-2 ADDGRAV ALFLT SERVICER
1/WLOOP CONC-11 I/WLOOP
IIDSPIN DSKY-13 -ON DSP2DEC SGNCOM +ON
1406ALM DESC-17 TTF/8CL
1406P00 DESC-17 TTF/8CL
1STAR ALIN-30 ASTAR P570PT3
1STO2S MATX-8 INCAZ

1 T02SUB	MATX-8	1ST02S 2V1ST02S V1ST02S
2BLANK	DSKY-13	5BLANK DSPMMJOB MMCHANG NOUN REQMM
2INTOUT	DATA-14	DECDSP3
2STARS	ALIN-30	P570PT2
2V1ST02S	MATX-8	
360-CDUO	DATA-14	DECDSP3
5BLANK	DSKY-12	2INTOUT BLANKSUB CLEAR REQDATZ
60TIMES	RNAV-15	60TIMES
79DISP	ALIN-32	INCAZ
8192AUG	IMUC-12	8192AUG STRTGYR2
A-PCHK	ORBI-16	CKMID2 TESTLOOP
ABCLOAD	DATA-19	VERBFAN
ABLOAD	DATA-19	VERBFAN
ABORT	PGSR-13	
ABORTALM	ASCT-7	P70 P71
ABRTIGN	BURN-5	IGNITION
ABRTJASK	ASCT-3	P71A
ACCOMP	ORBI-8	NBRANCH NEXTCOL
ACCTHERE	DAPB-7	BOTHAXES
ACDT + C12	DAPA-31	DONEYET2 PAXFILT
ADDGRAV	ALIN-35	GRABGRAV
ADRS+1	TEST-8	
ADRSCHK	TEST-7	COMADRS

```
 ADTIME TRGL-8 ELCALC
 ADVAN MATX-10 CHECKNJ
 ADVANCE TRGX-7 P32/P72B P33/P73B
 AFCCALC1 DESG-7 VERTGUID
 AFTERTJ DAPA-24 BACKHAND MINRTN TJLAW4
 AGSDISPK EXVB-12 AGSDISPK
 AGSINIT EXVB-12 V47TXACT
 AGSVCALC EXVB-12 AGSDISPK
 ALARM PGSR-11 INTLOOP P33/P73B CALCGA WMATEND MIDTOAV1
 CKMID2 UPTMFAST DNTMFAST PRIOLARM RRDESK2
 LRPOS2K AGSIMT V37 GOPROG3 RADAREAD LRS24.1
 RRCDUCHK RRDESNB RRZERO RESAMPLE SOMEKEY
 YMKRUPT MARKCHEX R51 DSPOPTN R59ALM SETISSW
 IMUZERO COARS2 IMUCHK MARKRUPT KALCMAN3
 PIPFREE IMUMON TNONTEST C33TEST RO2BOTH
 VGAIN* 1406ALM MUNRETRN P4OALM DCMCL NOATTGNT
 EXGSUB EXVERT TRYUORV SELECTP +XORULGE
 FAILOOP PRERRORS SOMEERRR SOMERR2 SURFAGAN DORSAMP
 ALARM1 PGSR-14 ARCSUB
 ALARM2 PGSR-11 BAILOUT BAILOUT1 CURTAINS POODOO PO0DO01
 VARALARM ALARM1
 ALFLT TEST-16 ALLOOP
 ALGORTHM DAPA-28 NEGUSUM
 ALINTIME EXVB-6 GOEXTVB
 ALLCOAST DAPA-32 SEUDOPOO COASTSET GOPOST GOCUTOFF
 ALLOOP TEST-15 ESTIMS ALLOOP
 ALM/END EXVB-2 GOEXTVB TESTACT VBZERO IMUFINEK IMUATTCK
 CREWIVANU VB64 R77 V89PERF GOSHOSUM
 SYSTEST RDRUSECK ATTACHED VBTSTLTS
 X - 3
```

ALMCYCLE	DATA-17	TESTNN ABLOAD ABCLOAD PUTCOM PUTNORM PUTDCSF2 BINROUND DPINSF+2 DEGINSF HMSIN MMCHANG
ALMXIT	TRGX-15	CIRCL SCNDSOL
ALOAD	DATA-14	VERBFAN
ALOADED	ORBI-4	INTEGRV
ALTDSPLY	DAPA-3	CHERBITS
ALTOUT1	SERV-18	LANDISP
ALTROUT1	SERV-17	LANDISP
AOTMARK	ALIN-3	P51C R51E R590UT
AOTSTALL	ALIN-3	P51C R51E R590UT
APSIDES	CONC-2	PERIAPO
ARCCOS	MATX-3	
ARCSIN	MATX-3	
ARCSUB	MATX-3	ARCCOS ARCSIN
ARCTAN	COOR-5	LAT-LONG RANGEBQ BALLANGS
ARCTRGSP	BURN-24	NB2CDUSP
ARCTRIG	COOR-6	CALCGA CALCGTA RRANGLES RRLOSDSP
ARTOUTSF	DATA-10	DECDSP3 LRPOSOUT
ASCENT	ASCT-7	ATMAG P12LM
ASCTERM	ASCT-11	CMPONENT
ASCTERM1	ASCT-11	ATMAG
AStar	ALIN-33	R59RET
ASTNRET	DESC-3	CLOKJOB
ASTOK	RNAV-37	R29LEM96
ATMAG	ASCT-7	UPTHROT ABRTIGN
		- 4


ATTACHED	EXVB-8	GOEXTVB
ATTACHIT	EXVB-28	ATTACHED
ATTCHK	ALIN-26	GVDETER P57POST SURFDISP
ATTCK2	IMUC-19	IMUATTCK
ATTSTEER	DAPA-23	CHEKSTIK RHCACTIV TSNEXTS
AVEIT	ALIN-10	JUSTOA
AVERAGEG	SERV-3	
AVESTAR	ALIN-10	AVEIT
AVETOMID	ORBI-18	AVGEND
AVGEND	SERV-5	READACCS
AXISGEN	ALIN-14	INITBY R51E P51C
AZEL	ALIN-21	R52
BACKHAND	DAPA-23	BACKHAND FAILOOP FEEDBACK DOROTAT TJLAW4
BACKP	DAPA-7	
BADRAD	RADR-22	RADAREAD RENDRAD RESAMPLE
BAILOUT	PGSR-12	PAXIS MAKEPLAY MAKEPRIO NV50DSP FLASHSUB
BAILOUT1	PGSR-12	FINDVAC2 NOVAC3 GOMANUR   IMUSTALL AO'TMARK AOTSTALL DELLOOP
BALILANGS	ATTM-2	R60LEM R61C+L02 REDOMANC V89RECL
BANKCALL	MATX-25	
BANKJUMP	MATX-25	
BEGDES	RADR-9	DORREPOS RR1AX2 STARTDES
BEGDES29	RADR-34	BEGDES29 R29.LOS
BIGIQ	DAPB-22	COMMEQS


BINROUND	DATA-24	PUTDCSF2
BLANKDSP	DATA-2	NVSUB
BLANKET	DINT-6	CHKLINUS RO4Z DSPRRLOS V67CALL DISPLAYE   VBCOARK SBANDEX V99RECYC   DAPDATA1 DAPDATA2 TRIMDONE
BLANKSUB	DSKY-11	PASTEVB NV50DSP
BLOAD	DATA-18	VERBFAN
BOTHAXES	DAPB-5	STMIN-
BOTHPAD	EXVB-18	V82G0FF1
BOTHSGN	DSKY-5	NEGSGN POSGN
BRNCHCTR	CONC-5	KEPLOOP
BURNBABY	BURN-3	P12RET P40IN P41LM ASTNRET
BYLMATT	ALIN-26	DSPOPTN
Cl3STALL	RADR-25	WOZERO TǴ.IOBCHK JTLST ZEROENBL STARTP64 ERROR DODOWNTM REDESMON CI3STALL TSTLTS 3 VBTSTLTS
C33TEST	IMUC-7	TNONTEST
CA+ECE	IMUC-9	GLOCKMON
CAGESUB	IMUC-8	TNONTEST
CAGESUB1	IMUC-8	IMUMON
CAGESUB2	IMUC-8	TNONTEST
CAL53A	ALIN-18	REGCOARS
CALCGA	COOR-6	REDO S52.2 INITBY GVDETER
CALCGRAV	SERV-6	NORMLIZE CALCRVG
CALCGTA	COOR-7	GYCOARS R55 INITBY
CALCN83	BURN-13	POSTBURN STARTP47


CALCN8 5	BURN-12	ULLGNOT
CALCPERR	DAPA-16	MOREIDLE PURGENCY
CALCRGVG	DESC-6	EXGSUB TTFINCR
CALCRVG	SERV-5	AVERAGEG
CALCSIMSC	COOR-1	INITBY P570PTO P570PT1 R56 REFMF S52.2
CALCTFF	EXVB-22	SR30.1
CALCTPER	EXVB-22	SR30.1
CALLDGCH	RNAV-30	LR24.1 R24END R24LEM3
CANV37	PGSR-6	V37 V37RET
CCSHOLE	PGSR-15	EJSCAN SPECTEST
CD*TR*GS	COOR-1	RANGEBQ READRDOT AVESTAR INITBY JUSTOA BALLANGS P570PT1 P570PT3 SETPOS
CDHMVR	TRGX-9	P33/P73B CIRCL
CDULOGIC	MATX-7	
CDUTODCM	ATIM-9	KALCMAN3 VECPOINT
CDUTRIG	COOR-1	COMPDISP DODES R61C+IO2 RRDESSM SBANDANT INITBY ADDGRAV P570PTO P570PT1 R56 R59 S52.2 S41. 1 REFMF P57POST RODCOMP
CGCALC	DESC-8	AFCCALC1
CHANG1	MATX-13	DORROUT ADRSCHK
CHANG2	MATX-14	
CHANGEVB	ALIN-9	REMARK
CHANJOB4	MATX-14	ADVAN CHANG1 EJSCAN
CHARALRM	DSKY-2	CHARIN PROCKEY
CHARIN	DSKY-1	KEYRUPT1 UPRUPT
CHECKG	TEST-14	PIPACHK PIPJOBB CHECKG

$$
x-7
$$

CHECKNJ	TEST-3	SELFCHK ERASLOOP ADRSCHK
CHEKBITS	DAPA-3	DAPIDLER PAXIS
CHEKSTIK	DAPA-21	TSNEXTS
CHKLINUS	ATTM-12	TOBALL REDOMANC
CHKSDATA	ALIN-13	P51C R51E SURFLINE
CHKVISFZ	DAPA-11	SUPERJOB
CIRCL	TRGX-12	CSI/B2
CKMID2	ORBI-21	ENDSTATE
CLEAR	DSKY-6	CHARIN
CLEANDSP	DINT-3	P4iBLANK V99RECYC
CLOAD	DATA-18	VERBFAN
CLOCPLAY	DINT-18	CLOKJOB V99RECYC
CLOKJOB	BURN-9	CLOKTASK
CLOKTASK	BURN-9	CLOKTASK COMPTGO STCLOK3
CLOSEOUT	DAPA-30	BACKHAND TJLAW4 FEEDBACK XTRANS FAILOOP
CLUPDATE	TRGX-7	VN1645
CMPONENT	ASCT-9	MAINENG
CNTRLOOP	TEST-5	CNTRLOOP
COARS	IMUC-15	IMUCOARS
COARS2	IMUC-15	COARS2
COARSE	ALIN-2	CAL53A INITBY LUNG P51 COARSE
COASTSET	BURN-8	ENGINOF2
COMADRS	TEST-7	ADRS+1 NXTBNK
COMFAIL	BURN-11	DVMON
COMFALL2	BURN-12	CLOKJOB

COMFAIL3 BURN-12 CLOKJOB
COMFAIL4 BURN-12 CLOKJOB
COMMEQS DAPB-22 1/ACCS
COMMINIT ASCT-6 GOABORT
COMMNOUT CONC-2 TIMERAD
COMPDISP EXVB-24 GETRVN
COMPTGO BURN-9 VN1645
CONST ASCT-9 MAINENG
CONTMANU ATTM-7 NEWANGL
CONTSERV SERV-11 UPDATCHK VALTCHK MUNRETRN
COPYCYC SERV-4 NORMLIZE AVERAGEG
COPYCYC1 SERV-11 MUNRETRN
CORFOUND MATX-12 NOVAC3
COSINE MATX-1
CREWMANU EXVB-6 GOEXTVB
CSI/A TRGX-10 P32/P72B
CSI/B TRGX-10 SCNDSOL
CSI/B1 TRGX-10 CIRCL FRSTPAS
CSI/B2 TRGX-10 FIFTYFPS
CSI/SOL TRGX-15 CIRCL
CSMCONIC ORBI-3 V89RECL LRS24.1 CSMINT
CSMINT RNAV-8 LPS20. 1
CSMPREC ORBI-2 P41SPOT PROG21 AGSVCALC V82GOFF1 DOCMBASE R36 P76 PRECSET

CSMVEC EXVB-10 GOEXTVB

$$
x-9
$$

CTRCHECK DAPB-18 POSTHRST

CURTAINS PGSR-12 P51C COARSE GYCOARS R51E INITBY R590UT R55
CUTOFF ASCT-12 ENGOFF1 GOCUTOFF

DAPATTER EXVB-7 GOEXTVB
DAPDATA1 DAPB-19 DAPDATA1 DAPDISP
DAPDATAZ DAPB-20 DAPDATA2
DAPDISP EXVB-6 GOEXTVB
DAPIDLER DAPA-3 STABTSB1
DAPT4S DAPA-32 PROCEEDE
DATGDCHK RNAV-30 CALLDGCH
DCMCL BURN-21 FINDCDUW
DCMTOCDU ATMM-9 FINDGIMB NEWANGL
DECDSP DATA-8 VERBFAN
DECDSP3 DATA-10
DECEND DSKY-3 NUM
DEGINSF DATA-24 PUTDCSF2
DEGOUTSF DATA-11 DECDSP3 360-CDUO
DELAYJOB MATX-18
DELCOMP ATTM-9 VECPOINT WCALC
DELLOOP MATX-18 DELLOOP
DELTIME CONG-12 COMANOUT KEPLOOP LARBLOOP
DERCLOOP DESC-17 DERCLOOP
DESCBITS DESC-17 SOMEKEY
DESRETRN RADR-7 LUNDESCH RRDESSM

DETENTCK	DAPA-13	TSNEXTP
DGCHECK	RADR-21	LRHEIGHT RADAREAD RENDRAD
DIFEQ+2	ORBI-12	NBRANCH
DISPCHNG	BURN-5	TIG-5 P4OSJUNK
DISPEXIT	DESC-9	VERTGUID EXVERT STEER? 1406ALM RODCOMP LUNLAND
DISPLAYE	TRGL-3	P34 P74 INTL00P
DISPN5X	EXVB-24	
DISPRSET	SERV-18	LANDISP
DLY2	MATX-20	DELLOOP WAITLIST VARDELAY
DNDUMP	TELE-6	DNDUMP1
DNDUMP1	TELE-5	DNDIMPI3 DNDUMP
DNDUMP2	TELE-6	DNDUMP1 DNDUMP
DNDUMPI	TELE-5	DNDIMP DNEDUMP
DNDUMPI3	TELE-5	DNDUMPI
DNEDUMP	EXVB-9	GOEXTVB
DNPHASE1	TELE-2	STARTSUB DNDUMP DNPHASE2
DNPHASE2	TELE-2	DNPHASE1
DNTMFAST	TELE-1	C33TEST
DOCKED	DAPB-2	1/ACCS
DOCKTEST	DAPB-4	SPSCONT
DOCMBASE	EXVB-24	V83CALL
DODES	RADR-10	MOREDES
DODNCHAN	TELE-3	NEXTINSL DNPHASE2
DODNPTR	TELE-4	NEXTINSL DNPHASE2
		X - 11


DODOWNTM	TELE-2	Called via program interrupt \#8
DOFSTART	PGSR-1	LIGHTSET
DOFSTRT1	PGSR-1	GOPROG3
DOIT	DESC-15	THROTTLE
DONEYET2	DAPA-32	TIMQGMBL
DOROTAT	DAPA-24	AFTERTJ
DORREPOS	RADR-3	RRGIMON
DORROUT	RADR-12	DODES
DORSAMP	RADR-16	RADSAMP
DOT6RUPT	DAPA-1	Called via program interrupt \#l
DOW. .	ORBI-14	INTGRATE NBRANCH
DPDAT1	DAPB-19	
DPINSF42	DATA-24	PUTDCSF2
DPOUT	DATA-11	DECDSP3
DSP2DEC	DSKY-11	DSPDPDEC
DSP68	EXVB-30	WAIT68 LRON
DSPA	DATA-7	DSPAB VERBFAN
DSPAB	DATA-8	VERBFAN DSPABC
DSPA	DATA-7	DSPAB VERBFAN
DSPAB	DATA-8	VERBFAN DSPABC
DSPABC	DATA-8	VERBFAN
DSPALARM	DATA-5	ENTER NVSUB TESTNN MIXNOUN DSPA DSPB DSPC DSPAB DSPABC DECDSP3 DSPDPDEC BLOAD ABLOAD ABCLOAD PUTDCSF2 VERBFAN CLOAD
DSPB	DATA-7	VERBFAN
DSPC	DATA-7	VERBFAN
DSPCOM2	DATA-8	DSPA DSPC DSPB
DSPDC2NR	DSKY-11	M/SOUT

$$
x-12
$$

DSPDCEND	DATA-14	DECDSP3 ARTOUTSF DEGOUTSF M/SOUT 2INTOUT
DSPDCPUT	DATA-9	DSPDCEND
DSPDCWD1	DSKY-9	DSPDCWD1 DSPDC2NR DSPDECVN DSP2DEC
DSPDECVN	DSKY-11	2INTOUT UPDATNN UPDATVB DSPMMJOB
DSPDECWD	DSKY-9	HMSOUT DSPDCEND
DSPDPDEC	DATA-15	VERBFAN
DSPFMEM	DATA-26	VERBFAN
DSPIN	DSKY-13	NUM WDAGAIN DSPDCWD1 5BLANK M/SOUT
DSPIN1	DSKY-13	11DSPIN DSPIN
DSPMMJOB	DATA-17	STARTP66 STARTP67 STARTP64 P65START REDO TSTLTS 3 ENDTEST1 UPUPDATE V37XEQ GOPROG3
DSPOCTWD	DSKY-9	TESTNN DSPCOM2 DSPFMEM
DSPOPTN	ALIN-26	DSPOPTN
DSPRRLLOS	RNAV-43	VERB85
DSPSCAN	INTR-4	TLRUPT QUIKDSP DSPSCAN
DSPSIGN	DSKY-10	DSPDECWD DSPDC2NR DSP2DEC
DSPV6N79	ALIN-11	YMKRUPT CHANGEVB DSPV6N79 SURFAGAN
DUMMYJB2	MATX-10	DOFSTRT1 ENDRSTRT EJSCAN
DVMON	SERV-3	AVERAGEG
DXCOMP	CONC-4	PERIODCH
DYNMDISP	BURN-12	P41LM DYNMDISP

$$
x-13
$$



$$
x-14
$$

ENDTEST1	TEST-14	REDO SHOW SOMEERRR
ENDTFF	EXVB-23	CALCTFF
ENDTNON	IMUC-10	TNONTEST ENDTNON
ENEMA	PGSR-10	WHIMPER ABRTJASK
ENGINOF1	BURN-8	SEUDOPOO
ENGINOF2	BURN-8	ENGOFF1
ENGINOF3	BURN-8	BURNBABY
ENGINOF4	BURN-8	COMFAIL2
ENGINOFF	BURN-7	ENGOFTSK
ENGOFF1	ASCT-11	MAINENG
ENGOFTSK	BURN-7	P42IGN STEERING
ENOUGHT	BURN-3	
ENTER	DSKY-6	CHARIN
ENTERUV	DAPA-22	RHCACTIV
ENTPASO	DATA-3	ENTER NVSUB ALMCYCLE
ERASCHK	TEST-3	SELFCHK
ERASLOOP	TEST-4	ERASLOOP
ERROR	DSKY-7	CHARIN
ESTIMS	TEST-11	PIPJOBB
EXBRAK	DESC-8	CGCALC
EXDSPRET	DINT-4	VBCOARK IMUFINEK IMUATTCK AGSVCALC
EXGSUB	DESC-2	CGCALC
EXNORM	DESC-9	CGCALC

```
EXTLOGIC DESC-8 AFCCALCI
EXVERT DESC-9
 FAILOOP DAPA-27 SELCTSUB FAILOOP
 FAZAB3 RNAV-40 FAZC
 FAZC RNAV-39 INCORP2
 FEEDBACK DAPA-26 DOROTAT
 FETCH2WD TELE-3 ONPHASE2 NEXTINSL
 FIFTYFPS TRGX-14 CIRCL
 FINDCDUW BURN-20 ASCTERM EXVERT VGAIN*
 FINDGIMB ATTM-4 VECPOINT
 FINDVAC MATX-ll
 FINDVAC2 MATX-1I SPVAC
 FIRSTTME BURN-18 RASTEER1
 FIXDELAY MATX-24
 FLLASHSUB DINT-13 NVDSP NV50DSP
 FLATOUT DESC-15 P63Z00M
 FRSTPAS TRGX-14 CIRCL
 FXADRS TEST-7 ADRS+1 NXTBNK
 GAMCOMP ORBI-10 ACCOMP
 GEOM CONC-9 LAMBERT PARAM
 GET.LVC TRGX-15 S40.1 S40.1B
```

    X - 16
    | GET+MGA | TRGX-15 | VN1645 |
| :---: | :---: | :---: |
| GETAZEL | ALIN-21 | R52 |
| GETCADR | MATX-24 | LONGCYCL |
| GETCOMP | DATA-21 | BLOAD CLOAD ABLOAD ABCLOAD PUTNORM PUTCOM |
| GETDAT | ALIN-4 | AOTMARK GETDAT PASTIT |
| GETI | DATA-22 | PUTCOM DEGINSF |
| GETINREL | DSKY-4 | 5BLANK NUM POSGN NEGSN CLEAR +ON -ON |
| GETLMATT | ALIN-26 | DSPOPTN |
| GETMKS | ALIN-6 | MARKCHEX SURFAGAN OPTAXIS |
| GETRANS | BURN-14 | UPDATEVG |
| GETRVN | EXVB-26 | V83CALL REV83 |
| GETX | CONC-10 | TIMERAD TIMETHET LAMBLOOP |
| GLOCKMON | IMUC-8 | PROCEEDE |
| GOABORT | ASCT-4 | ABRTJASK |
| GOBAQUE | ORBI-12 | GAMCOMP OBLATE ENDSTATE |
| GOCUTOFF | BURN-11 | *ENTER |
| GODSP | DINT-1 | ASCTERM1 |
| GODSPR | DINT-1 | REDOMANC GYCOARS |
| GODSPRET | DINT-1 | P51 P41LM |
| GODSPRS1 | DINT-5 | GODSPR. GOFLASHR GOPERF1R GOPERF2R GOPERF4R REGODSPR REFLASHR GOXDSPR GOXDSPFR GOMARK2R PRIODSPR |
| GOESTIMS | TEST-11 | REDO |
| GOEXTVB | EXVB-1 | VERBFAN |


GOFLASH	DINT-1	R62dISP V89CaLL V89RECL PLANET CHKSDATA DISPLAYE P52B R59 GVDETER R59ALM 79DISP INITBY DSPOPTN VNO61 P34 R55 R52 P52D REDO SHOW ORBCHGO PROG21 REP4OALM P12LM CUTOFF LANDJUNK GOTOPOOH P76 N89DISP GETAZEL P74 INTLOOP S34/35.5 P30 P32 P72 P32/P72F P33 P73 P33/P73B   P33/P73F VN1645 ALMXIT NTARGCHK VNO655
GOFLASH2	DINT-5	GODSP GODSPRET GOFLASH GOPERF1 GOPERF2 GOPERF4 REGODSP REFLASH CLEANDSP GOXDSP EXDSPRET GOXDSPF GOMARK2 GOMARK3 GOMARK4 KLEENEX PRIODSP
GOFLASHR	DINT-1	POSTBURN V99RECYC P47B0DY
GOLOADV	EXVB-6	GOEXTVB
GOMANUR	ATTM-1	
GOMARK2	DINT-4	
GOMARK2R	DINT-4	
GOMARK3	DINT-4	AGSVCALC
GOMARK3R	DINT-4	TRIMDONE WAIT68
GOMARK4	DINT-5	PASTIT R04X
GOODMANU	ATTM-8	NOGO
GOODRAD	RADR-22	LRHEIGHT RADAREAD RENDRAD
GOPERF1	DINT-1	P51 P52d R51 R51K P57P0ST P20LEMB7 R23LEM P4OAUTO ASTNRET PO6
GOPERF1R	DINT-2	
GOPERF2	DINT-2	
GOPERF2R	DINT-2	TOBALL R21DSP
GOPERF4	DINT-2	ORBCHGO PROG21
GOPERF4R	DINT-2	P52B P570PT

$$
x-18
$$

GOPOST	BURN-11	*ENTER
GOPROG	PGSR-9	Called via program interrupt \#ll VERB69
GOPROG2	PGSR-10	TRMTRACK SEUDOPOO V37RET
GOPBOG2A	PGSR-10	
GOPROG3	PGSR-10	GOPROG
GOSHOSUM	EXVB-10	GOEXTVB
GOTOPOOH	PGSR-11	TERMASC P12LM TERM4O STOPGLOK P4OAUTO P21VSAVE P47BODY SERVIDLE ASINRET P64DISPS LANDJUNK N89DISP ENDP76 P34 P74 INTLOOP DISPLAYE S34/35.5 GETAZEL DSPLY81 P30 P570PT KILLAOT   P32/P72F P33 P73 P33/P73B P33/P73F VN1645 VN0611 N45PROC ALMXIT NTARGCHK GOPROG3 POSTAND HIGATJOB ORBCHGO PROG21 GVDETER DSPOPTN INITBY REPLOALM P57POST 79DISP R59ALM R59 R55 R52 R51K R51 REGCOARS P52D P52B CHKSDATA DSPV6N79 VNO655 R61 TEST R02B0TH P51 P51C IMUCHK GETDAT PASTIT
GOXDSP	DINT-3	
GOXDSPF	DINT-4	SDISPLAY VBCOARK IMUFINEK IMUATTCK AGSDISPK OHWELL1 OHWELL2 UPVERIFY V82CALL V82GOFLP V82GON DISPN5X R36 ALINTIME RO4X DSPV6N79 GETDAT
GOXDSPFR	DINT-4	DAPDATA1 DAPDATA2 VBCOARK SBANDEX DSPRRLOS V67CALL R04Z DSP68
GOXDSPR	DINT-3	
GRABGRAV	ALIN-35	GREED
GREED	ALIN-35	ADDGRAV
GTS	DAPA-28	QRAXIS TRYGTS
GTSQRT	DAPA-34	RSTOFGTS
GUILDRET	DESC-4	IGNALOOP LUNLAND
GVDETER	ALIN-33	BYLMATT GVDETER
GYCOARS	ALIN-17	P52D
GYROEXIT	IMUC-13	STRTGYR2 8192AUG

$$
X-19
$$

HAVEGUES TRGL-9 S40.9

HIENERGY	CONC-8	LAMBLOOP
HIGATJOB	SERV-8	MUNRETRN
HMSIN	DATA-25	PUTDCSF2
HMSOUT	DATA-11	DECDSP3

IDLERET3 DINT-15 RECALTST
IFAILOK IMUC-17 IMUFINE
IGNALOOP DESC-2 EXGSUB
IGNITION BURN-5 *PROCEED TIG-0
IMUATTCK EXVB-5 GOEXTVB
IMUBAD IMUC-18 ENDTNON STRTGYRO 8192AUG COARS COARS2 IMUZERO2 ENDIMU IMUFINED
$\mid$ IMUCHK ALIN-36 P51 P57
IMUCOARS IMUC-14 REDO PIPJOBB VBCOARK COARSE
IMUFINE IMUC-17 REDO IMUFINEK COARSE
IMUFINED IMUC-17 STRTGYR2 IMUFINE
IMUFINEK EXVB-4 GOEXTVB
IMUGOOD IMUC-18
IMUMON IMUC-4 PROCEEDE
IMUPULSE IMUC-10 EARTHR* PERFERAJ IMUFINEK 1/GYRO STRTGYR2 GYCOARS R55 INITBY

IMUSTALL IMUC-17 REDO PIPJOBB EARTH* PERFERAS VBCOARK IMUFINEK AGSVCALC VBZERO 1/GYRO COARSE R55 INITBY GYCOARS

IMUZERO	IMUC-13	REDO AGSVCALC VBZERO
IMUZER02	IMUC-14	IMUZERO
INCAZ	ALIN-31	INCAZ
INCOR2-3	RNAV-37	NEWZCOMP
INCORP1	RNAV-37	LGCUPDTE
INCORP2	RNAV-38	ASTOK
INFINITY	CONC-12	WLOOP 1/WLOOP POLYCOEF
INITBY	ALIN-28	SURFLINE
INITCDUW	BURN-20	GOABORT P41SPOT
INITREAD	RADR-17	LRALT LRVELX LRVELY LRVELZ RRRDOT RRRANGE
INITV	CONC-8	LAMBLOOP SUFFCHEK
INITVEL	TRGL-9	S40.1B S3435.25
INITVEL2	TRGL-10	INITVEL2
INITVEL 7	TRGL-11	INITVEL2
INJTARG	ASCT-5	GOABORT
INTEGRV	ORBI-3	STATINT1 CSMPREC LEMPREC CSMCONIC LEMCONIC DIFEQ+2•AVETOMID MIDTOAV2 LSR22. 3 LSR22. 4 ORBCHGO UPPSV PROG21 UPPSV4
INTEGRVS	ORBI-4	EXGSUB P76 INITVEL2 INTINT P21CONT OTHINT REV83
INTEXIT	ORBI-5	TESTLOOP
INTGRATE	ORBI-8	TIMESTEP LUNSPH
INTINT	TRGX-9	ADTIME S34/35.2 S34/35.3 P32/P72B P33/P73B CIRCL
INTLOOP	TRGL-1	INTLOOP
INTLZE	SERV-15	LANDISP
INTSTALL	ORBI-21	EXGSUB STATINT1 CSMPREC LEMPREC CSMCONIC LEMCONIC AVETOMID MIDTOAV2 P76 INITVEL2 INTINT UPJOB GETRYN OTHCONIC ATTACHIT CANV37 INCORP2 LSR22.3 LSR22.4 UPPSV V67CALL ORBCHGO INTSTALL TRMTRACK REV83 PROG21 UPFSV4


INTWAKE	ORBI-21	INTEXIT AVETOMID ATTACHIT FAZAB3
V67CALL		
INTWAKE1	ORBI-22	INTWAKEU P76 INTSTALL ORBCHGO
INTWAKEU	ORBI-22	UPEND70 UPEND71 UPEND72 UPERROUT
INVRSEQN	CONC-11	GETX WLOOP
ISSZERO	IMUC-7	IMUMON TNONTEST
ITERATOR	CONC-12	LAMBLOOP
ITURNON2	IMUC-10	IMUMON
JAMTERM	DINT-18	NVDSP
JETSOFF	DAPA-17	TSNEXTP DETENTCK PURGENCY PJETSLEC SELECTP
JOBSLEEP	MATX-15	REDO TCGETCAD
JOBWAKE	MATX-17	WAKER
JOBWAKE4	MATX-17	JOBWAKE4
JOBXCHS	DINT-9	MAKEMARK MAKEPRIO
JTLST	DAPA-2	PJETSLEC DOROTAT
JUSTOA	ALIN-12	SURFSTAR

$$
x-22
$$

KALCMAN3	ATTM-4	GOMANUR
KEPCONVG	CONC-5	KEPLOOP BRNCHCTR
KEPLERN	CONC-3	KEPPREP
KEPLOOP	CONC-4	BRNCHCTR
KEPPREP	ORBI-15	RVCON GOBAQUE NBRANCH
KEYRUPT1	DSKY-1	Called via program interrupt \#5
KILLAOT	ALIN-36	GETDAT PASTIT DSPV6N79
KLEENEX	DINT-5	
LALOTORV	COOR-4	N89DISP
LAMBERT	CONC-6	IN ITVEL2
LAMBLOOP	CONC-7	HIENERGY LAMBLOOP LOENERGY
LAMENTER	CONC-12	INITV
LANDISP	SERV-15	R10,R11
LANDJUNK	DESC- 18	
LASTBIAS	IMUC-3	PREREAD
LAT-LONG	COOR-3	PROG21 LANDJUNK N89DISP
LEMCONIC	ORBI-3	S52.3 V89RECL LPS20.1 LRS24.1 SBANDANT
LEMPREC	ORBI-2	LOCSAM P57D PROG21 AGSVCALC V82G0FF1 V83CALL REV83 R36. S30.1 PRECSET P12LM S40.1B P63LM
LEMVEC	EXVB-9	GOEXTVB
LGCUPDTE	RNAV-36	RANGEBQ
LIGHTSET	PGSR-10	GOPROG GOPROG2A

```
 LITIT RADR-25 ONLITES
LOADLV DINT-14 ALOAD BLOAD CLOAD ABLOAD ABCLOAD PUTNORMHMSIN GOLOADLV
LOCSAM ALIN-13 PLANET R51
LODNNTAB DATA-4 TESTNN ALOAD BLOAD CLOAD ABLOAD ABCLOADUPDATNN
LOENERGY CONC-8 LAMBLOOP
LOGSUB MATX-6
LONGCALL MATX-23
LONGCYCL MATX-23 LONGCALL LONGCYCL
| LPS20.1 RNAV-8 P20LEM1 R21LEM1 R6IC+LO2 READRDOT 60TIMES
LRALT RADR-17 DORSAMP LRHJOB
LRHEIGHT RADR-2O RADAREAD
LRHJOB SERV-12 R10,R11
LROFF EXVB-7 GOEXTVB
LRON EXVB-7 GOEXTVB
LRPOS2 RADR-23 LRPOS2K HIGATJOB
LRPOS2K EXVB-7 GOEXTVB
LRPOSCAN RADR-23 LRPOS2 LRPOSCAN
LRPOSOUT DATA-11 DECDSP3
LRS22.1 RNAV_21 R22LEM
LRS24.1 RNAV-28 DATGDCHK R24LEM
```

$$
x-24
$$

```
LRVELX RADR-17 DORSAMP LRVJOB
LRVELY RADR-17 DORSAMP LRVJOB
LRVELZ RADR-17 DORSAMP LRVJOB
LRVJOB SERV-12 VALTCHK
LSPOS COOR-7 LOCSAM SBANDANT TIMESTEP LUNSPH ACCOMP
LSORIENT ALIN-18 P52LS P57D
LSR22.3 RNAV-23 R22LEM
LSR22.4 RNAV-24 LSR22.3
LUNDESCH RADR-24 RRANGLES
LUNG ALIN-34 GVDETER
LUNLAND DESC-4 P63IGN
LUNSPH ORBI-7 TIMESTEP
 M/SOUT DATA-13 DECDSP3
 MAINENG ASCT-8
l
MAKECADR MATX-26
MAKEMARK DINT-7 MAKEPLAY
MAKEPLAY DINT-6 GOFLASH2 GODSPRS1 BLANKET
MAKEPRIO DINT-8 MAKEPLAY
MANUSTOP ATTM-8 NEWANGL
```

$x-25$

MARKCHEX	ALIN-9	PASTIT SURFAGAN
MARKPLAY	DINT-8	MAKEMARK JOBXCHS XCHSLEEP NV50DSP MARKWAKE PINBRNCH
MARKRET	DINT-16	TERMATE
MARKRUPT	ALIN-6	Called via program interrupt \#6
MARKWAKE	DINT-17	NORMRET
MFREF	COOR-8	SAMETYP P570PT3
MIDTOAV1	ORBI-19	P41SPOT
MIDTOAV2	ORBI-20	P47LM
MINIMP	EXVB-9	GOEXTVB
MINQR	DAPA-21	TSNEXTS
MINRTN	DAPA-21	FAILOOP FEEDBACK DOROTAT TJLAW4
MIXNOUN	DATA-5	TESTNN
MKRELEAS	ALIN-4	AVEIT
MMCHANG	DATA-26	ENTER VERBFAN
MODE2CHK	RADR-7	RRLIMNB
MONDO	DATA-16	MONREQ
MONITOR	DATA-15	VERBFAN
MONREQ	DATA-15	MONITOR MONREQ
MOONMX	COOR-3	P12LM P63LM LANDJUNK OBLATE USEPIOS Lat-LONG LaLOTORV MFREF REFMF P52LS P57POST
MOREDES	RADR-10	STDESIG
MOREIDLE	DAPA-3	DAPIDLER PAXIS CHEKBITS
MOVEACSM	ORBI-17	ENDSTATE A-PCHK INTWAKEU P76 ORBCHGO FAZAB3
MOVEALEM	ORBI-18	ENDSTATE A-PCHK AVETOMID INTWAKEU FAZAB3

```
MOVEPCSM ORBI-I6 INTEGRV FAZC
MOVEPLEM ORBI-17 INTEGRV FAZC ATTACHIT
MUNGRAV SERV-7 P12LM P41SPOT NORMLIZE RVBOTH NOREASON
 IGNALOOP
MUNRETRN SERV-7 RVBOTH
N45PROG TRGX-6 VNI645
N49DSP RNAV-19 R22LEM96
N89DISP ALIN-16 P52IS
NB2CDUSP BURN-23 DCMCL
NBD2 IMUC-2 LASTBIAS
NBDONLY IMUC-1 SVCT3
NBRANCH ORBI-12 ACCOMP DOW..
NBTOSM COOR-1 VMEASCHK COMPDISP DODES RANGEBQ AVESTAR JUSTOA
 P570PT1 P570PT3 INITBY GVDETER P57P0ST RODC0MP
NEEDLER DAPA-4 ALTDSPLY
NEEDLES DAPA-5
NEGPROD BURN-18 RASTEER1
NEGSGN DSKY-4 CHARIN
NEGUSUM DAPA-29 RSTOFGTS
NEWANGL ATTM-6 NEWDELHI
NEWDELHI ATTM-8 UPDTCALL
NEWSTATE CONC-12 COMMNOUT
NEWZCOMP RNAV-38 INCORP1
NEXTCOL ORBI-I4 DIFEQ+2
 X - 27
```

NEXTINSL	TELE-4	DNPHASE2
NOATTCNT	BURN-23	FINDCDUW DCMCL
NOGO	ATTM-8	KALCMAN3 NEWDELHI
NOMINIMP	EXVB-9	GOEXTVB
NOR29NOW	SERV-11	COPYCYC1 R29 R29.LOS
NOREASON	SERV-9	UPDATCHK
NORMBNCH	DINT-18	PINBRNCH
NORMLIZE	SERV-2	PREREAD
NORMRET	DINT-16	TERMATE ENDEXT
NORMWAKE	DINT-17	NORMRET
NORRGMON	RADR - 2	RRCDUCHK RRGIMON RRAUTCHK
NOTMUCH	DAPB-6	BOTHAXES
NOUN	DSKY-2	CHARIN
NOVAC	MATX-12	
NOVAC2	MATX-12	FINDVAC2
NOVAC3	MATX-12	NOVAC3
NTARGCHK	TRGL-4	NTARGCHK
NUM	DSKY-2	CHARIN
NV50DSP	DINT-11	NV50DSP
NVDSP	DINT-11	NV50DSP TERMATE NORMBNCH PLAYJUM1 MARKPLAY REDOPRIO
NVSUB	DATA-1	NV50DSP ENDRET PINBRNCH TESTXACT XACTO
NVSUBEND	DATA-2	NVSUB DSPALARM
NXTBNK	TEST-8	SDISPLAY

$$
x-28
$$

OANB	ALIN-5	AZEL INCAZ OPTAXIS
OBLATE	ORBI-10	ACCOMP
OCCULT	ALIN-24	PIC3
OHWELL1	EXVB-14	UPUPDATE OHWELL1
OHWELU2	EXVB-14	UPUPDATE OHWELL2 UPVERIFY
OKTOCOPY	DINT-9	JOBXCHS
OKTOPLAY	DINT-6	MAKEPLAY
OMEGCALC	RNAV-30	
ONLITES	RADR-25	RADLITES
OPTAXIS	ALIN-5	GETDAT
ORBCHGO	RNAV-1	
ORIGCHNG	ORBI-7	TIMESTEP LUNSPH
OTHCONIC	EXVB-25	REV83
OTHINT	EXVB-26	GETRVN
OUTSNUFF	EXVB-9	GOEXTVB

$$
\text { X - } 29
$$

```
P06 PGSR-13 P06
P12IGN BURN-5 IGNITION
P12INIT ASCT-6 P12LM GOABORT
P12LM ASCT-1
P12RET ASCT-2 CMPONENT
P2OLEM1 RNAV-3 R24END CSMINT P2OLEM1
P2OLEMA RNAV-3 R21LEM1 R22LEM
P20LEMB RNAV-4 P20LEMB1 P2OLEMB7
P2OLEMB1 RNAV-4 R23LEM
P2OLEMB3 RNAV-4 P2OIEMB7 P2OIEMB3
P2OLEMB7 RNAV-4 R22LEM
P2OIEMC RNAV-5 R22LEM R22RSTRT UPPSV4
P2OLEMC1 RNAV-5 SEUDOPOO V37RET P2OLEMWT R22WAIT P2OLEMC1
P20LEMC3 RNAV-5 P2OLEMD1 R21LEM1 R21LEM
P2OIEMD1 RNAV-5 P20LEMC P2OLEMD1
P2OLEMF RNAV-5 P2OLEMC
P2OLEMWT RNAV-5 P2OLEMB3 R21DISP R22WAIT P2OLEMB R61C+LO2 R2ILEMI
P21CONT RNAV-6 PROG21
P21VSAVE RNAV-6 P21CONT
P25IEMI RNAV-6 V 37RET P25LEMI
P30 TRGX-1
P32 TRGX-1
P32/P72B TRGX-2 P32/P72F
P32/P72C TRGX-2 CSI/SOL
P32/P72E TRGX-3 P32/P72E
P32/P72F TRGX-3 P32/P72F
```



```
X - 31
```

P47B0DY	BURN-13	STARTP47 P47B0DY
P47LM	BURN-13	
P51	ALIN-1	P51 P51C V37
P51B	ALIN-1	P51
P51C	ALIN-1	P51C
P52B	ALIN-15	
P52D	ALIN-16	P52B P52D P52LS
P52LS	ALIN-15	
P57	ALIN-25	
P57D	ALIN-25	P57 OPT
P570PT	ALIN-25	P570PT
P570PT0	ALIN-27	ATTCHK
P570PTI	ALIN-27	ATTCHK
P570PT2	ATIN-28	ATTCHK
P570PT3	ASIN-28	ATTCHK
P57P0ST	ALIN-36	SURFLINE INITBY SURFDISP
P63DISPS	DESC -9	ZOOM DISPEXIT
P63IGN	BURN-6	IGNITION
P63LM	DESC-1	
P63200M	BURN-7	Z00M
P64DISPS	DESC-9	DISPEXIT P64DISPS
P65START	DESC-10	GUILDRET
P66VERT	DESC-12	VERTGUID


P70	ASCT-3	V37
P70A	ASCT-3	R10,R11
P71	ASCT-3	V37
P71A	ASCT-3	P70A R10,R11
P72	TRGX-2	
P73	TRGX-4	
P74	TRGL-1	
P75	TRGL-4	
P76	ORBI-23	
PACKOPTN	ALIN-26	P570PT
PARAM	CONC-9	TIMERAD APSIDES TIMETHET
PASTEVB	DATA-16	MONDO DSPALARM
PASTIT	ALIN-6	CHANGEVB
PAXFLIT	DAPA-10	PAXIS
PAXIS	DAPA-6	
PERFERAS	TEST-17	ALFLT
PEGI	DAPA-15	RATERROR
PERTAPO	CONC-13	INTLOOP CSI/B2
PERIAPO1	CONC-13	S30.1 CIRCL
PERIODCH	CONC-3	PERIODCH
PFAILOK	IMUC -10	UNZ2
PFLITEDB	DAPB-18	P.L2RET P4OIGN ASTNRET


PICl	ALIN-22	PICl PIC3
PIC3	ALIN-22	PIC3
PICEND	ALIN-24	PICI
PINBRNCH	DINT-17	TSTLTS 3 ABORTALM VBRELDSP IDLERET3 ALM/END VBZERO RRDESEND TRMTRACK LRON LROFF LRPOS2K DAPATTER TOTATTER SNUF'FOUT CSMVEC DNEDUMP OUTSNUFF MINIMP NOMINIMP R77END WMATRXNG UPDATOFF ATTACHIT V37BAD RO4Z RATEDSP
PIPACHK	TEST-12	REDO TORQUE
PIPASR	SERV-1	PREREAD READACCS NBDONLY LUNG GRABGRAV
PIPATASK	TEST-12	PIPACHK PIPATASK
PIPFREE	IMUC-3	AVGEND
PIPJOBB	TEST-13	PIPATASK
PIPUSE	IMUC-3	LASTBIAS
PITCHOFF	DAPB-21	TRIMGIMB
PITFALL	DESC -16	Called via progrem interrupt \#lo
PJETSLEC	DAPA-16	TSNEXTP PEGI PURGENCY
PLANET	ALIN-12	P51C R51E AZEL R59RET ASTAR
PLAYJUMI	DINT-7	OKTOPLAY XCHSLEEP NV 5ODSP NORMRET NORMWAKE NORMBNCH
POLYCOEF	CONC-11	WLOOP
POODOO	PGSR-12	AOTMARK 1406 POO DSPALARM POODOOI CCSHOLE GOBAQUE COMMNOUT TIMETHET TIMERAD
P000001	PGSR-12	SQRT DLYZ LONGCALI
POOH	PGSR-6	CANV37
POSGN	DSKY-4	CHARIN
POSTAND	PGSR-13	POSTAND P06

```
POSTBURN BURN-8 ENGINOFF GOPOST POSTBURN
POSTHRST DAPB-17 SPSRCS SPSSTART
POSTJUMP MATX-25
PRECSET TRGX-8 INTLOOP P35/P75B ADVANGE VNO6II
PREPOS29 RNAV-32 R29
PREREAD SERV-1 STARTP47 ULLGNOT
PRERRORS .TEST 6 ERASLOOP CNTRLOOP SOPTION
PRIOCHNG MATX-15 RELINUS SHOWSUM2
PRIODSP DINT-5 R22LEM N49DSP
PRIODSPR DINT-5 PRIOLARM R24LEM
PRIOLARM DINT-18 HIGATJOB P2OLEMI R2ILEMI R22LEM R23LEM P2OLEMB7
 R2ILEM CSMTNT 6OTIMES
PROCEED DINT-15 RECALTST
PROCEEDE INTR-3 T&RUPT
PROCKEY INTR-3 PROCEEDE
PROG2O RNAV-1
PROG2OA RNAV-3 PROG2O ORBCHGO
PROG21 RNAV-6 PROG21 V37 P21VSAVE
PROG22 RNAV-1
PROG25 RNAV -8
PROG52 ALIN-14
PROGLARM PGSR-11 ALARM2
PURGENCY DAPA-16 TSNEXTP DETENTCK RATERROR
PUTCOM DATA-21 ALOAD BLOAD CLOAD ABLOAD ABCLOAD
PUTCOM2 DATA-25 PUTCOM PUTNORM BINROUND DPINSF+2 DEGINSF
```

PUTDCSF2 PUTNORM	DATA-23 DATA-22	PUTCOM PUTNORM PUTCOM
QERRCAIC	DAPA-18	MOREIDLE QRAXIS
QRAXIS	DAPA-18	SKIPPAXS PJETSIEC JETSOFF
QRTIME	DAPA-23	ENTERUV
QUADGUID	DESC-7	
QUICTRIG	BURN-23	FINDCDUW SERVICER VMEASCHK R29DODES
QUIKDSP	INTR-4	T/RRUPT
RO2BOTH	IMUC-19	V89CALL PROG52 P12LM P40LM P47LM P63LM P42STAGE PROG2OA PROG25
$\mathrm{RO}_{4}$	EXVB-7	GOEXTVB
RO4END	RADR-15	RO42 RO4X
RO4X	RADR-13	RO4X
R042	RADR-13	RO4 R77
R10,R11	SERV-14	R10,R11 READACCS
R21LEM	RNAV-13.	P2OLEMF
R21LEM1	RNAV-13	
R21LEM2	RNAV-13	DORROUT
R21LEM4	RNAV-14	R21IEM1
R21LEM8	RNAV-16	60TIMES
R21LEM9	RNAV-16	R21LEM8
R21LEM10	RNAV-13	R21LEM R21LEM9
R21DISP	RNAV-16	R21LEM1
R22LEM	RNAV-17	P20LEMC1 R22LEM96 R22RSTRT R22LEM R22LEM42
R22LEM42	RNAV-16	P20LEMC1 R22LEM
R22LEM96	RNAV-18	LGCUPDTE
R22RSTRT	RNAV-19	
R22WAIT	RNAV-18	R22LEM

$$
x-36
$$

R23LEM	RNAV -19	P20LEMB7 R23LEM3
R23LEM2	RN.IV -20	R23LEM
R23LEM3	RNAV -20	R23LEM
R24END	RNAV-20	R24LEM
R24LEM	RNAV -20	R24LEM3 R21LEM R23LEM1
R24LEM3	RNAV -20	R24IEM
R29	RNAV -31	COPYCYCI
R29. LOS	RNAV -31	R29
R29D0DES	RNAV -34	BEGDES29 R29DODES
R29DPAS2	RNAV -35	R29D0DES
R29RANGE	RNAV -33	R29RANGE
R29RDJ0B	RNAV--32	R29READ
R29READ	RNAV -32	R29DPAS2.R29READ
R29REMOJ	RNAV -32	R29
R31CALL	EXVB-23	V83PERF R31CALL
R36	Exvb-26	V90PERF
R51	ALIN-19	P52B REGCOARS R51 R51K ASTNRET
R5IE	ALIN-19	R51 R51E
R51K	ALIN-20	GYCOARS
R52	ALIN-21	R51E R52 AZEL
R55	ALIN-22	R51E
R56	ALIN-22	R51
R59	ALIN-30	79DISP R59ALM R59
R59ALM	ALIN-33	INCAZ
R590UT	ALIN-33	R59 R59ALM

$$
x-37
$$



READACCS	SERV-1	READACCS
READRDOT	RNAV -21	READRDOT
RECALTST	DINT-15	VBRESEQ LOADLV
RECTEST	ORBI-8	TIMESTEP LUNSPH
RECTIFY	ORBI-5	INTEGRVS RVCON RECTOUT ORIGCHNG RECTEST GOBAQUE FAZC
RECTOUT	ORBI-4	A-PCHK
REDESIG	DESC -5	TFFINCR
REDESMON	DESC -16	PITFALL REDESMON
REDO	TEST-10	SYSTEST
REDOMANC	ATTM-1	TOBALL
REDOPRIO	DINT -9	NV50DSP
REFLASH	DINT-3	CLOKJOB P64DISPS VERTDISP
REFLASHR	DINT-3	TIGNOW
REFMF	COOR-8	LANDJUNK GETLMATT SURFDISP
REGCOARS	ALIN -35	P52D
REGODSP	DINT-2	TIG-30A CLOKJOB P63DISPS P64DISPS
REGODSPR	DINT-3	
REJECT	ALIN-9	MARKRUPT
RELDSP	DINT--13	TSTLTS3 ABORTALM VBRELDSP VERBFAN VBRESEQ VBRQEXEC LOADLV RECALTST V37BAD POOH V37XEQ VBRQWAIT
RELDSP1	DINT-13	VBRELDSP MONITOR
RELINUS	ATTM-12	SEUDOPOO CHKLINUS
REMARK	ALIN-9	VACSTOR
REMODE	RADR-9	R29REMOJ




```
 S34/35.3 TRGL-9 NTARGCHK
 S34/35.4 TRGL-9 S34/35.5 NTARGCHK
 S34/35.5 TRGL-3 INTLOOP P35/P75B
 S40.1 BJJNN-15 P4OIN P4ILM
 S40.1B BURN-16 S40.1
 S40.2,3 BURN-16 P4OIN P4ILM
 S40.8 BURN-11 UPDATEVG
 S40.9 BURN-17 UPDATEVG
 S40.13 BJRN-18 PLOSJUNK
 S40.132 BJRN-19 S40.13 S40.13D
 S40.13D BURN-19 S40.13
 S41.1 BURN-12 P41LM DYNMDISP CALCN83 CALCN85
 S52.2 ALIN-18 P52D CAL53A
 S51.3 ALIN-18 P52B
 SAMETYP ALIN-27 P570PT1
 SBANDANT EXVB-27 SBANDEX VB64
 SBANDEX EXVB-28 SBANDANT
 SCALCHNG RADR-22 LRHEIGHT RENDRAD
 SCALLOOP DAPA-34 SCALLOOP
 SCNDSOL TRGX-14 CSI/BI CSI/B2 CIRCL CSI/SOL
 SDISPLAY TEST-2 SOPTION
 SELCTSUB DAPA-27 +XORULGE DOROTAT
 SELECTMU TRGX-6 P34 P74 P35 P75 P33 P73 VN0655
 SELECTP DAPA-17 TRYUORV PJETSLEC SELECTP
 x-42
```



$$
x-43
$$

SKIPPAXS	DAPA-11	
SLAPl	PGSR-1	VERBFAN
SLEEPIE	TEST-12	ESTIMS PERFERAS
SMTONB	COOR-2	SBANDANT S41.1 FINDCDUW SETPOS R59 ADDGRAV DODES RRDESSM R29DODES R61C+L02 READRDOT
SNAPLOOP	TELE-4	SNAPLOOP DODNPTR
SNUFFOUT	EXVB-8	GOEXTVB
SOMEERRR	TEST-18	
SOMEKEY	ALIN-7	MARKRUPT
SOMERR2	TEST-18	REDO PIPJOBB EARTHR* PERFERAS
SOPTION	TEST-8	ADRSCHK
SPARCSIN	MATX-9	
SPCOS	MATX-2	
SPECTEST	MATX-13	JOBWAKE/4
SPEEDRUN	SERV-15	LANDISP
SPSCONT	DAPB-3	1/ACCS
SPSIN	MATX-2	
SPSRCS	DAPB-17	PURGENGY TJLAW4
SPSSTART	DAPB-17	SPSRCS
SPVAC	MATX-11	
SQRT	MATX-5	
SR30.1	EXVB-20	BOTHPAD V82GON2
STARTDAP	DAPA-5	DAPIDLER
STARTDES	RADR-7	RRDESSM
STARTP47	BURN-13	P47LM
STARTP64	DESC-4	GUILDRET
STARTP66	DESC-11	LUNLAND

$$
x-44
$$

```
 STARTP67 DESC-11 LUNLAND
 STARTSBI PGSR-2 ENEMA
 STARTSB2 PGSR-3 GOPROG2
 STARTSUB PGSR-2 SLAAPI GOPROG LIGHTSET
 STATEINT ORBI-1 ENDINT
STATINTI ORBI-1 POOH STATEINT
STCLOK3 BURN-9 P&OSPOT COMFAIL EXGSUB
STDESIG RADR-9 BEGDES MOREDES DORROUT CSMINT
STEER? DESC-9 AFCCALC1 EXBRAK
STEERING BURN-7 ULLGNOT
STIKLOAD DAPB-19
STMIN- DAPB-& ACCTHERE
STOPCLOK BURN-10 CLOKJOB V99RECYC
STOPRATE DAPA-32 TRMTRACK ALLCOAST STEERING NOATTCNT DVMON
VRSTART EXVERT NOGO 1406ALM STEER? ATMAG
 STRTGYRO IMUC-11 IMUPULSE STRTGYR2 8192AUG
 STRTGYR2 IMUC-11 STRTGYR2
 STRTP66A DESC-11 RESTART?
STSHOSUM TEST-7 SHOWSUM2 NXTBNK
SUFFCHEK CONC-8 LAMBLOOP HIENERGY LOENERGY
SUPDACAL MATX-26 COMADRS
SUPERJOB DAPA-10 PAXFILT BACKP
SURFAGAN ALIN-1l DSPV6N79
SURFDISP ALIN-30
SURFEND ALIN-11 DSPV6N79
SURFLINE ALIN-28 SAMETYP R59RET
```

X - 45

```
 SURFSTAR ALIN-11 AVESTAR
 SURFSTOR ALIN-8 YMKRUPT
 SVCT3 IMUC-1 SVCT3 T3RUPT STARTSB2 DLY2 WTLST5
 SVDWN1 TELE-6 ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT
 ORBCHGO FAZAB3
 SVDWN2 TELE-6 ENDSTATE A-PCHK INTWAKEUI FAZAB3
 SWCALL MATX-25
 SWRETURN MATX-25
 SINCT4 INTR-5 QUIKDSP SYNCT4
 SYSTEST EXYB-10 GOEXTVB
 T3RUPT MATX-22 TASKOVER Called via program interrupt #3
 T4RUPT INTR-2 QUIKDSP SYNCT4 T4RUPT Called via program
 T5RUPT DAPA-1 Called via program interrupt #2
 TGJOBCHK DAPA-I DOT6RUPT
 TASKOVER MATX-22 WAKER LONGCYCL
 TGGETCAD MATX-19 DELLOOP
 TDISPSET DESC-10 TTFINCR TTF/8CL
 TERMASC ASCT-12 CUTOFF
 TERMATE DINT-15 RECALTST
 TERM4O BITRN-9 POSTBTTRN TIGNO,
I
 TESTLOOP ORBI-5 ALOADED GOBAQUE ENDSTATE WMATEND CKMID2
 TESTNN DATA-3 MONDO
 TESTXACT EXVB-2 VBCOARK IMUATTCK V47XACT DAPDISP CREWMANU
 ALINTIME R04 VB64 V67 V73UPDAT V82PERF V83PERF
 VERB85 V9OPERF GOSHOSUM SYSTEST IMUFINEK LRON
 V89PERF
 X - 46
```



```
 TRIMDONE DAPB-21 PITCHOFF
 TRTMGTMB DAPB-21 DAPDATA2
 TRMTRACK EXVB-6 R61TEST GOEXTVB R22LEM R23LEM2 P2OLEML 60TIMES
 P20LEMB7 CSMINT R21LEM R21LEM1 R24LEM R21DISP
 TRYGTS DAPA-27 QRAXIS
 TRYUORV DAPA-11 TRYUORV
 TSNEXTP DAPA-12 CHKVISFZ TRYUORV
 TSNEXTS DAPA-20 RCS +XORULGE
 TSTLTS2 TEST-1 VBTSTLTS
TSTLTS3 TEST-1 TSTLTS2
TTFINCR DESC-5 GIJILDRET STARTP65
TTF/8CL DESC-6 RGVGCALC
TWIDDLE MATX-19
UILGNOT BURN-4 TIG-30
ULLGTASK BURN-4 TIG-30 STOPCLOK GOPOST GOCUTOFF
UNZ2 IMUC-9 ISSZERO ENDTNON
UPDATCHK SERV-8 MUNRETRN
UPDATEVG BURN-14 STEERING CALCN85
UPDATOFF EXVB-11 GOEXTVB
UPDATNN DATA-17 MONDO NVSUB
UPDATVB DATA-17 CLEAR NVSUB PASTEVB ALMCYCLE ABLOAD ABCLOAD
UPDTCALL ATTM-8 CONTMANU
UPEND70 EXVB-16 UPJOB
UPEND71 EXVB-16 UPJOB
UPEND72 EXVB-17 UPJOB
UPEND73 EXVB-15 UPSTORE
```

UPERROUT	EXVB-17	UPEND71 UPEND72
UPJOB	EXVB-16	UPSTORE
UPOUT4	EXVB-17	OHWELLI OHWELL2 UPVERTFY UPEND73 UPEND70 UPEND71 UPERROUT
UPPSV	RNAV-9	P2OLEMC3 R21IEM8
UPPSV4	RNAV-10	UPPSV
UPRUPT	TELE-1	Called via program interrupt \#7
UPSTORE	EXVB-15	UPVERIFY
UPTHROT	ASCT- 6	GOABORT
UPUPDATE	EXVB-14	V73UPDAT
UPVERIFY	EXVB-15	OFWELL2 UPVERIFY
UPTMFAST	TELE-1	C33TEST
USEPIOS	ORBI-15	INTEGRV ATTACHIT
V1ST02S	MATX-8	
V37	PGSR-5	MMCHANG VERB96 SEUDOPOO
V37BAD	PGSR-6	V37
V37RET	PGSR-14	V 37
V37XEQ	PGSR-8	SEUDOPOO
V47TXACT	EXVB-6	GOEXTVB
V67	EXVB-8	GOEXTVB
V67CALL	RNAV 40	V67
V70UPDAT	EXVB-8	GOEXTVB
V7IUPDAT	EXVB-8	GOEXTVB
V72UPDAT	EXVB-8	GOEXCVB
V73UPDAT	EXVB-8	GOEXTVB
V82CALL	EXVB-17	V82PERF
		X-49


V82GOFF1	EXVB-18	V82G0FLP
V82GOFLP	EXVB-17	V82GOFLP
V82GON	EXVB-19	V82CALL
V82GON1	EXVB-19	V82GON V82GON2
V82GON2	EXVB-20	V82GON1
V82PERF	EXVB-10	GOEXTVB
V83CALL	EXVB-24	R31CALL
V33PERF	EXVB-10	GOEXTVB
V89CALL	ATTM-11	V89PERF
V89PERF	ExvB-10	GOEXTVB
V89RECL	ATTM-11	V89RECL
V90PERF	EXVB-10	GOEXTVB
V99RECYC	BURN-10	* ENTER
VACSTOR	ALIN-8	YMKRUPT
VALMIS	TEST-14	PERFERAS
VALTCHK	SERV-11	VMEASCHK WSTOR
VARALARM	PGSR-14	ALMXIT
VARDELAY	MATX-24	
VB64	EXVB-8	GOEXTVB
VBC OARK	EXVB-3	GOEXTVB
VBPROC	DINT-14	PROCKEY VERBFAN
VBRELDSP	DSKY-8	CHARIN
VBRESEQ	DINT-14	VERBFAN
VBRQEXEC	PGSR-8	VERBFAN
VBRQWAIT	PGSR-8	VERBFAN
		X - 50


VBTERM	DINT-14	VERBFAN JAMTERM
VBTSTLTS	TEST-1	VERBFAN
VBZERO	EXVB-3	GOEXTVB
VECPNT1	ATTM-3	R61C+L01
VECPOINT	ATTM-3	R61C+LO1 R60LEM REDOMANC V89RECL
VERB	DSKY-2	CHARIN
VERB69	EXVB-8	GOEXTVB
VERB\$5	EXVB-10	GOEXTVB
VERB96	EXVB-11	GOEXTVB
VERBFAN	DATA-5	ENTPASO TESTNN MIXNOUN
VERTDISP	DESC-10	DISPEXIT
1 VERTGUID	DESC-12	RGVGCALC LUNLAND VRTSTART
\| VGAIN*	BURN-14	FIRSTMME
VMEASCHK	SERV-9	UPDATCHK NOREASON
VN0611	TRGX-1	VN0611
VN0655	TRGX-2	VN0611
VN1645	TRGX-6	P34 P74 INTLO0P P35 P75 P35/P75B P31 JUNCTN1
1		DSPLY81 P39 P79 P30 VN0655 P32/P72F P33 P73 P33/P73F
VOPENED	DAPA-33	RCSMONIT
VRSTART	DESC-11	STRTP66A
WAITLIST	MATX-19	
WAKER	MATX-19	DELLOOP
\| Wantaps	BURN-4	TIG-30
WCALC	ATTM-6	KALCMAN 3
WDAGAIN	DSKY-9	WDAGAIN
WHIMPER	PGSR-12	SERVIDLE POODOO BAILOUT1 ABORT
WITCHONE	DINT-10	OKTOPLAY OKTOCOPY JOBXCHS


VBTERM	DINT-14	VERBFAN JAMTERM
VBTSTLTS	TEST-1	VERBFAN
VBZERO	EXVB-3	GOEXTVB
VECPNTI	ATTM-3	R61C+L02
VECPOINT	ATTM-3	R60LEM REDOMANC V89RECL
VERB	DSKY-2	CHARIN
VERB69	EXVB-8	GOEXTVB
VERB85	EXVB-10	GOEXTVB
VERB96	EXVB-11	GOEXTVB
VERBFAN	DATA-5	ENTPASO TESTNN MIXNOUN
VERTDISP	DESC-10	DISPEXIT
VERTGUID	DESC-12	RGVGCALC VRTSTART RESTART?
VGAIN**	BURN-14	FIRIT'ME
VMEASCHK	SERV-9	UPDATCHK NOREASON
VNO6II	TPGX-I	VN0611
VN0655	TRGX-2	VNO6ll
VN1645	TPGX-6	P34 P74 INTLOOP P35 P75 P35/P75B P30 VNO655 P32/P72F P33 P73 P33/P73F
VOPENED	DAPA-33	RCSMONIT
VRSTART	DESC-11	STRIP66A
WAIT68	EXVB-30	WAIT68
WAITLIST	MATX-19	
WAKER	MATX-19	DELLOOP
WANTAPS	BURN-4	TIG-30
WCALC	ATTM-6	KALCMAN3
WDAGAIN	DSKY-9	WDAGAIN
WHIMPER	PGSR-12	SERVIDLE POODOO BAILOUTI ABORT
WITCHONE	DINT-10	OKTOPLAY OKTOCOPY JOBXCHS

$$
x-52
$$

WLINIT	RNAV-36	LSR22.3 LSR22. 4
WLOOP	CONC-10	WLOOP
WMATEND	ORBI-15	DIFEQ 2
WMAT PXNG	EXVB-10	GOEXTVB
WOZERO	TELE-6	DNPHASEI DNPHASE2 DNDUMPI
WRITEP	DAPA-17	TÓJOBCHK PJETSLEC JETSOFF
WRITEU	DAPA-26	T6JOBCHK DOROTAT XTRANS FAILOOP
WRITEV	DAPA-26	TGJOBCHK DOROTAT XTRANS FAILOOD
WSTOR	SERV-10	VMEASCHK
WTLST 5	MATX-21	DLY2 WTLST5
XCHSLEEP	DINT-10	JOBXCHS
XMKRUPT	ALIN-7	MARKRJPT
XTRANS	DAPA-26	TSNEXTS AFTERTJ
YMKRUPT	ALIN-7	MARKRUPT
Z123COMP	DAPB-13	TJETLAW ZONE/4
ZATTEROR	DAPA-32	NEWDELHI R6IC+LO2 NOMINIMP CUTOFF P4ZLM TIGNOW LANDJUNK STARTDAP DETENTCK TSNEXTS ENTERUV PFLITEDB VERTDISP
ZDOTDCMP	ASCT-12	ASCENT
ZEROENBL	DAPA-13	DETENTCK RATERROR
ZONE1	DAPB-13	TJETLAW ZONE 4
ZONE2	DAPB-14	TJETLAW ZONE4
ZONE3	DAPB-14	TJETLAW ZONE4
ZONE4	DAPB-14	TJETLAW
ZONE5	DAPB-14	TJETLAW
ZOOM	BURN-7	PLOIGN TIG-0

$$
x-53
$$


[^0]:    W - 24

