UNCLASSIFIED

MSC INTERNAL NOTE No. 70-FS-2

PROGRAMMED GUIDANCE EQUATIONS
for
LUMINARY IC
MANNED LM EARTH ORBITAL
AND LUNAR PROGRAM

Prepared by
Flight Software Branch

FLIGHT SUPPORT DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

Page Change Record

This document is a complete re-issue of MSC Internal Note No. 69-FS-4, "Programmed Guidance Equations for LUMINARY 1B Manned LM Earth Orbital and Lunar Program," dated September 1969, updated to reflect the information in the LUMINARY 1C program to be flown on the Apollo H2 mission. The coding changes between LUMINARY 1B and 1C are indicated by a vertical line to the left of the affected area.

This document supercedes all previous issues and changed pages will be based on this issue in the future.

Abstract

The information presented in this document on the LUMINARY IC guidance program was produced with the intention that it be used together with a symbolic tabulation of the program. The information is divided into a series of separate sections, each of which describes a basic area of guidance computation and contains a list of definitions of variables and constants used in that area of the program. In order to assist the user in finding the computations in which he is interested, summaries of each section have been included, and all routine tags used in this document (generally identical to but a subset of those in the program listing) are indexed at the end of the document along with a list of references to each routine listed. A list of references to flagwords and channels has been included as well, as a supplement to the list of references to variables and constants supplied in the program listing itself.

The program from which this document was prepared is identified "LTMI31A Revision 3" and was released on January 23, 1970 for fabrication of the LM Guidance Computer memory ropes for the Apollo H2 mission.

Because of the purposes for which the information in this document was originally prepared, and the methods used in its production, this material should not be used as definitive information on the LUMINARY 1 C program but as an aid in the reading and understanding of the program listing. If definitive information is required, the G\&N contractor is the proper source for it.

Table of Contents

Introduction 1
Summaries of Individual Sections 3
Notation and Terminology 7
Major Variables 19
Erasable Memory Initialization 25
Channels, Flagwords and Other liscrete Information Registers 37
List of References to Flagwords and Channels 75
Sections

Rendezvous Navigation RNAV - 1
Servicer SERV - 1
Up and Down Telemetry TELE - 1
Testing Routines TEST - 1
Targeting - Lambert TRGL - 1
Targeting - External Delta-V TRGX - 1
Tables
Program and Routine List (equivalence definition). W - 3
Noun List W-5
Alarm Codes W-15
Checklist Codes W - 19
Option Codes W - 21
Job Priorities W-23
Index of Routines X - 1

Introduction

Under the egis of the Program Development Group, Apollo Guidance Program Section, Flight Software Branch of MSC, in order to facilitate the reading of the detailed symbolic listing, a "Programmed Guidance Equations Document" has been prepared for the "LUMINARY" program. A major purpose of this document has been to provide more effective identification and analysis of various program performance features and to permit more effective review of published computer program oocumentation.

During reviews of previous programs written for the Apollo Guidance Computers, it was found desirable to assemble a set of workingpaper information on the equations actually programmed for these flights. This material has proven to be useful to the various groups associated with these flights, in that it can be used to bridge the gap between the extreme detail of the program listing and the occasional lack of detail available elsewhere on the guidance equations. Consequently, the material on the following pages has been assembled in a fashion similar to that used for previous programs and follows the same general format.

Certain aspects of the program are quite complex, and this programmed guidance equation material should not be considered as a substitute for actual study of the program symbolic listing itself. No complete set of equation information was available from the $C \& N$ contractor against which the programmed equations could be validated, and in the interest of timely publication, the review of the assembled document against the program assembly has not been as detailed as would be desired.

The program assembly listing which was used to prepare this programmed equation information bears the heading print:

GAP: ASSEMBLiT REVISION 003 OF AGC PROGRAM LUMI31A BY NASA $2021112-111$ and is dated January 23, 1970. The function of virtually all the program
steps of interest to the flight is described either on the following pages, or, for general computer system control, in TRW Working Paper 3420.5-27 (revision 2).

Recipients of this document are cautioned against misusing it as a definitive description of the "LTMINARY" guidance equations. Instead, it might be used to achieve a better understanding of the program assembly listing, since it is intended as an aid in review of the listing, not as a substitute for it. Definitive guidance equation information can be provided only by the C\&N contractor through the appropriate MSC channels.

A great deal of credit goes to TRW Systems MTCP Tasks A-90 and A-201 (Support of Apollo Guidance Program and Guidance Document Review) personnel, in particular Mr. William C. Koelsch, who conducted a similar review of the "SUNDANCE" program. This document has drawn heavily upon the results of that review and could not be published at this time without the earlier work done by TRW Systems.

Summary of Individual Sections

The contents of this description of the "LUMINARY" guidance and control equations are divided into twenty-five semi-independent sections, each of which is assigned a four letter code. Pages are numbered consecutively within each section and the sections themselves are arranged in alphabetical order by code. Familiarity with the information in "Notation and Terminology" is helpful in understanding the somewhat specialized type of notation used in describing the program, but each section includes a list of "Quantities in Computations" which is intended to describe all variables and constants in the section that are not described in the list of "Major Variables".

Alignment of the Inertial Subsystem (ALIN)

Programs used to align the ISS to any of several specified alignments and to compute the "reference to stable-member" transformation matrix, based on measurements of the positions of celestial bodies with respect to the spacecraft.

Ascent Guidance (ASCT)

Programs used to initiate, control, and terminate the LM ascent from the lunar surface (P12) and aborts from powered descent (P70 and P71).

Attitude Maneuver Routines (ATTM)

Computations performed to determine the axis about which spacecraft rotation should take place and the magnitude of the rotation to go from present vehicle attitude to final attitude, including logic controlling the maneuver rates and DAP interface.

Burn Control Routines (BURN)

Programs used to initiate, control, and terminate all three types of LM burns (RCS, APS, and DPS).

Conic Subroutines (CONC)

Subroutines used by navigation and targeting routines to compute various conic parameters.

Coordinate Transformations (COOR)

Subroutines defining the transformations between the several coordinate systems used by the LGC, including routines for determination of lunar and solar position and selenographic latitude and longitude.

Digital Autopilot Control Routines (DAPA)

P-axis and Q,R-axis RCS control for free or powered flight;
Q,R-axis Gimbal Trim System. (Includes jet fail monitor.)

Digital Autopilot Phase Plane Logic (DAPB)

Equations used to compute jet accelerations, jet firing times and disturbing accelerations; deadband selection and astronaut interface routines.

Data Input/Output Routines (DATA)

Logic used to control display and loading of various LGC registers under control of the DSKY or internal programs, including noun definitions.

Deseent Guidance (DESC)

Programs used to initiate, control, and terminate the LM powered descent maneuvers (P60's).

Display Interface Routines (DINT)

Routines governing program use of the DSKY and the priority of displays.

Routines defining the mechanics of interpreting inputs from the DSKY keyboard or uplink and for changing the status of numerical character lights on the display.

Extended Verbs (EXVB)

Definition of the functions of the extended verbs (40-99) including those controlling block updates of LGC E-memory, AGS initialization, calculation of TFF and rendezvous displays.

IMU Computations (IMUC)

Computations associated with the Inertial Measurement Unit, including those for controlling CDU pulse outputs, for checking and setting IMU modes and switching between them, for accelerometer and gyro compensation, and for gyro torquing.

Program Interrupts (INTR)

Short description of all eleven program interrupts; the routines associated with program interrupt No. 4.

Mathematical Functions, Executive, Waitlist (MATX)

Various built-in trigonometric, logarithm and root extraction functions used by the programs, and some of the logic associated with the operations, such as "Establish," or "Call."

Orbital Integration (ORBI)

The equations used for precision integration of the state vector, and logic to switch between powered flight and coasting flight navigation.

Program Service Routines (PGSR)

Routines used for initialization of the LGC, re-initialization in case of restart, and for change of program (major mode). Also includes alarm routines.

Radar Control Routines (RADR)

Routines controlling the positioning and reduction of data from the Landing Radar and the Rendezvous Radar.

Rendezvous Navigation (RNAV)

Programs using the rendezvous radar to update both state vectors maintained in the LGC and to update the "error transition matrix" based on tracking of the CSM.

Servicer (SERV)

Average-G navigation routines and other routines used for burn control and monitoring.

Up and Down Telemetry (TELE)

Uplink character processing and computations performed for periodic downlink transmission, including a brief summary of the information on the downlink.

Testing Routines (TEST)
Computer self-test routines and externally initiated tests.

Targeting - Lambert (TRGL)

Burn targeting using the Lambert computation of velocity-to-begained.

Targeting - External Delta-V (TRGX)
Burn targeting for constant attitude burns.

Because of some of the special design features of the Apollo Guidance Computer, a set of special notation and terminology has been found useful in describing the equations programmed for this computer. In most cases, this notation and terminology follows that which seems to be employed by the G\&N contractor, and also follows that which was used in documents previously prepared on Block 1 and Block 2 programs.

The following document may be found useful for supplemental information on the symbolic listing, and for a more detailed discussion of the computer hardware and general computer system control:
3420.5-27, "Apollo Guidance Program Symbolic Listing Information
for Block 2," Revision 2, dated 27 June 1968,
prepared under MTCP Task A-90.

Copies of that document, together with revision information as it is published, may be obtained from the Flight Software Branch of MSC.

Numbers

A. General

The guidance computer is designed with a memory word length of 15 bits (plus a sixteenth bit, not sensed by the program, used to achieve "odd parity", i.e., an odd number of binary ones in the total l6-bit word). It is also designed as a fractional machine, so that all numbers in the computer are less than one: "equation values" greater than 1.0 are accommodated by suitable scaling, as described below. Arithmetic is all one's complement except in special instances where two's complement is required for hardware interface information. There is no hardware floating point capability in the computer, although a facsimile to floating point computations is sometimes used (and identified as "quasifloating point") in the program, particularly when the quantities involved can have a large dynamic range.

The 15 -bit word is divided into a sign bit and 14 magnitude bits, with the bits numbered from the sign (\#15) to the least significant. magnitude bit (\#1) as shown:
Value: $\operatorname{sign} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9} 2^{-10} 2^{-11} 2^{-12} 2^{-13} 2^{-14}$
Number: $15,14,13,12,11,10,9,8,7,6,5,4,3,2,1$
Once the stored value of a number in the computer register (evaluated using the bit weights shown) has been determined, its equation value may be determined by multiplying the stored value by some power of two which is called the "scale factor":

The scale factor of a quantity is the power of two by which the number in the computer (considered as a fraction in the range between -1 and +1) must be multiplied to obtain its equation value. For convenience, the scale factor is shown as "Bxx", where "xx" is some positive or negative integer.
For example, if a word has a scale factor B14, this means that the individual bits have a weight 2^{14} (or 16384) times the values shown in the above table. A counter in the program with this scale factor, therefore, would have its least significant magnitude bit (or least increment) equal to $1\left(2^{-14} \times 2^{14}=1\right)$. See Appendix A of 3420.5-27 (Revision 2) for more details.

In many instances, the word length of 15 bits, permitting a number to be expressed to $l: \pm 16384$ (l part in ± 16384), is insufficient to give the required precision in the computations. In these instances, a double precision number (stored in two consecutive memory cells) is used. Scale factor information for double precision numbers has the same interpretation as for single precision numbers, and the less significant half of the word has weights that are 2^{-14} times the weights shown above. A quantity that is double precision with a scale factor of $B 28$, for example, would have a least significant bit of 1 and a maximum value of ($2^{28}-1$), or $268,435,455$. . In a few cases (usually involving time information), triple precision quantities are required, which follow similar rules.

In cases where it is not reasonably self-evident, the single, double, or triple precision nature of the quantity is specified (by subscripts sp, $d p$, and tp, respectively).

In addition to the scale factor information, it is necessary to know the units in which the quantities are expressed. Times are usually expressed in units of "centiseconds" (0.01 seconds). The navigation equations give a position output in units of meters and a velocity output in units of meters per centisecond. Angles are usually expressed in units of revolutions (of 360°). Where not reasonably obvious, units on the quantities are given.

UnIess otherwise specified, numbers with explicit values are quoted in decimal. A notation such as "1E-5" means 10^{-5}. Octal numbers are indicated by a subscript of 8 (such as 34 for octal 34); binary numbers have a subscript 2 (such as 11100 for 34_{8} expressed in binary). The quantity +0 is $00000_{8} ;-0$ is 77777_{8} (in some cases, the distinction is important, since a computer instruction can distinguish between them).

B. Constants

Fixed scalar constants are denoted by $\mathrm{K}: \mathrm{xxx}$, where xxx is a symbol of arbitrary type and length, selected generally for similarity with the program notation (capital letters) or for mnemonic usefulness (small letters). A subscript can be used to indicate one of several constants stored in a table.

Constants stored in erasable memory (so they can be changed without hardware implications) are not distinguished from variables. Some are set by the fresh start or restart routines; some are loaded as part of the erasable load.

In a few cases, vector or matrix constants are employed. They are so designated by an underline or brackets as are vector and matrix variables.

C. Variables

Variables are generally designated by several upper case capital letters, sometimes with subscripts (the symbol K : is reserved for constants). Lower case letters sometimes appear with the symbol for a variable, and have the following special meanings:

> d: A division indication appears as part of the symbol in the program (ldANET mpears in the listing as $1 / A N E T$). 1: A suitable number or capital letter is substituted as defined in the related equation information for "1" (VACiUSE = VAC3USE if $1=3$, etc.) $m: ~ A ~ m i n u s ~ s i g n ~ a p p e a r s ~ a s ~ p a r t ~ o f ~ t h e ~ s y m b o l ~ i n ~ t h e ~ p r o g r a m ~$ (mTPER appears in the listing as -TPER). $\mathrm{p}:$ A plus sign appears as part of the symbol in the program (pMGA appears in the listing as +MGA).

An underline of the first character of a symbol means a quantity with several components, frequently a vector but sometimes a quantity having vector-type properties, such as gyro compensation about different axes. Individual components of a vector are identified by a subacript using the same symbol as for the vector, but without the underline: TS ${ }_{x}$, for example, would be the X component of the vector $T S$.

Matrices are designated by enclosing their identification mnemonics in brackets: [REFSMMAT] for instance. Interpretive language operations in the guidance computer (see TRW Working Paper 3420.5-27 (Revision 2)) permit convenient manipulations of 3×3 matrices whose elements are stored double precision. Therefore, larger matrics are handled nine elements at a time. Both pre-multiplication and post-multiplication of a vector by matrix are incorporated (post-multiplication is equivalent to premultiplication by the transpose). Elements of a 3×3 matrix are stored "first row, then second row, then third."

The value of an address is designated by the symbol used in the program, enclosed in quotation marks: without the quotation marks, the contents of the cell with that address would be indicated. In order to improve presentation clarity, many of the program-step symbols are omitted from the equations, and others may not precisely correspond to the program divisions actually located by the symbol in question. It is sometimes necessary to refer to a computer address as actually packed into a 15-bit word: for this, the term "CADR" (see 3420.5-27 (Revision 2)) is employed (eresable and fixed memory CADR formats differ).

A number of subroutines are used within the program, each of which require information on the "main" program to which program control must be transferred at the end of the subroutine. For clarity in showing the computation flow performed, the retention of the necessary return address information is shown explicitly in a few places. The "return address" is the address to which control is to be transferred after completion of the subroutine; the "calling address" is the address from which transfer to the subroutine was made. In many cases, the return address is one greater than the calling address, but in some instances, such as transfers to the "ALARM" routine, the cell following the calling address contains information pertinent to the subroutine (such as the alarm pattern), and therefore the return address may be several address locations after the calling address. To save program steps, in some cases the complement of the address may actually be used by the program for storage purposes; but this fact, since it has no effect on the computation flow, is not indicated in the equations.

Subscripts are used for relative addressing or for infomational purposes. As relative addresses, they index one of several variables or constants stored in a table with only one explicit address. DSPTEM1 1_{1} indicates the cell after DSPTEM1, and DSPTEM1, indicates the cell after DSPTEM1. Sometimes the subscript contains the complete address and any arbitrary erasable memory is selected by the notation $E_{A D R}$ where the address of the cell desired is stored in ADR. When used for informational purposes, the subscript does not change the address of the cell but merely indicates its nature. The following subscripts are frequently used:

```
sp: Single precision
dp: Double precision
tp: Triple precision
ms, ls: More and less significant halves of a double
                    precision number
x, y, z: First, second and third components of a three-
                    dimensional vector
2 (with a number): Binary
8 (with a number): Octal
(Numbers without a subscript are quoted in decimal)
11, 12, 13, 14, 15, ....: Elements of the first row of a
                                    matrix
21, 22, 23, 24, 25, ....: Elements of the second row of
                                    a matrix
31, 32, 33, 34, 35, ....: Elements of the third row of
                                    a matrix
41, 42, 43, 44, 45,\ldots..: Elements of the fourth row of
                                a matrix
etc.
```


Program Control

Three types of program sub-units occur within the complete program:
a) A subroutine, which performs a certain function and then returns control to the program sub-unit which called it (subroutines, of course, may have other subroutines within them).
b) A task, which is a short sequence of computations performed based on a time criterion, or upon some external signal.
c) A job, which is a program entity (such as targeting computations, steering computations, processing of a keyboard charactez, etc.) of long duration which must be done in a definite sequence. (Accelerometer data, for example, must be corrected for biases before navigation computations are performed, and navigation before steering commands, so they all form part of the same job.)

Time-dependent tasks are implemented by a "waitlist" system (see section VIIA of $3420.5-27$), for which the programmer merely specifies the time delay (from "now") when he wants a computation done, and the starting address of that computation. The time delay has a least increment of 10 milliseconds. Unless interrupts are inhibited, a program interrupt (which can be caused by a signal from the telemetry system, the uplink, the "waitlist" hardware, separate ("T4RUPT") waitlist-type hardware, a keyboard input, etc.) causes suspension of a job and performance of the task. Tasks, however, are not subject to interruption by other tasks, but continue to completion. There is also a hardware monitoring function which can cause a "program/hardware restart" which, if necessary, could interrupt a task: in general, however, these should not be encountered.

Jobs are sequenced with the aid of a priority system (see section VIIB of 3024.5-27(Rev. 2)) and are performed only if no tasks must be performed. If no "productive" computations are required, then a "dummy job" is performed, which checks periodically for the availability of a job to be performed, and of course is subject to interruption for a task. A job can be "established" (put into a list to be selected when its priority is sufficiently high) by another job or by a task. A job can be "put to sleep" to wait for some external event (such as an uplink input), the occurrence of which will "awaken" the job. Jobs can optionally be assigned a set of "working storage" erasable memory cells, called a "VAC area" (see Section VID of 3420.5-27 (Revision 2)).

A program "step" is a step in the computation sequence shown on the page, and should not be confused with a line of the program assembly listing.

The following program-control terms are employed:
a. Awaken a job: Cause a job (if any) with the indicated starting address to be restored to its original priority after a period of being "asleep", during which the performance of the job was suspended by making its priority negative.
b. Call "XXX" in yy seconds: Cause a task with starting address of "XXX" to be performed in yy seconds from the present time (yy has a least increment of 10 milliseconds).
c. Delay yy seconds: Cause the present string of computations to be suspended for yy seconds, and then restart at next line. Delays to a Waitlist Task are implemented by a waitlist call to the following step, and then an end task; delays for a job are achieved by using the "DELAYJOB" routine.
d. End job: Terminate performance of the job, and transfer control to an executive routine to initiate performance of the job which has the highest priority of those remaining. The "dummy job" is the only one which is not ended in this fashion.
e. End task: Terminate performance of the waitlist-initiated task, and transfer control to a routine which checks for other waitlist tasks, causing resumption of previous computations if there are no such tasks.
f. Establish "XXXX": Enter the job with starting address "XXXX" in the priority list to be performed when appropriate (each job has a priority associated with it, not necessarily shown in the equations). A job can optionally be established with or without a working storage (VAC) area (not generally shown in the equations).
g. If: Carry out the indicated manipulations provided the indicated conditions are satisfied. The "indicated manipulations" are "indicated" by being indented, if the "If" statement is followed by a colon, or by being on the same line as an "If" statement followed by a comma. Should the conditions not be satisfied or after performing "indicated manipulations" that do not end with a "Proceed to...", continue on in sequence at the next non-indented line.
h. Perform "XXXX": Cause a subroutine with starting address "XXXX" to be entered. The specific memory cell to which the
subroutine returns control depends in some cases on the purpose of the routine, but generally is the step after the "Perform" instruction.
i. Proceed to "XXXX": Cause the program step with address "XXXX" to be the next one to be performed, and continue the performance of the program from that point.
j. Proceed to $X X X X:$ Cause the program step whose address is stored in cell XXXX to be the next one performed, and continue the performance of the program from that point.
k. Put to sleep: Cause the present job's computations to be suspended (by making its priority negative) until some event takes place causing the job to be "awakened." Differs from End job and Establishing a job in that the VAC area and Job Register Set are retained. When a job is put to sleep, a starting address identification is provided for use in awakening the job (and also to specify the starting point for the job when it is performed).

1. Resume: Resume computations which were interrupted to perform the task (used for tasks not initiated through waitlist means, cf. End task).
m. Return (or "Return via XXX" where the return address has been stored in XXX): Return to the subroutine's calling program (which in some cases could have been either a task or a job).
n. When no transfer instruction occurs at the end of a routine, computations continue down the page through subsequent routine or routines.

In addition to the above terms, a special notation is used with display interface routines:

Proceed to "GOFIASH"
(If terminate, ...; if proceed, ...; if other response,)

or

Perform "GOFLASHR"
(If terminate, ...; if proceed, ...; if other response,)
$X=Y$
End job
In the first case, control is transferred to the display interface routine and the program is terminated until the astronaut responds. In the second case, a display interface routine is established and the subsequent steps ($X=Y$) are executed before the astronaut responds to the display (usually). The four possible astronaut responses that are recognized are: "Terminate" via verb 34; "Proceed" via verb 33 or the proceed button; "Resequence" via verb 32; and "Enter" by pushing the enter button in response to a "please perform" type verb or after loading data via one of the load verbs. The last two types of response will initiate the "if other response" branch.

A capability also exists to "kill" a task that has been inserted in the "waitlist" but has not yet been executed. It is simply removed from the waitlist.

Operations

Several mathematical manipulations are available to the programmer and are indicated either by special characters or by lower case symbols. The trigonometric, logarithm and square root functions are described in the MATX section.

1) Standard Arithmetic Operations

+ : plus
- : minus
: (blank) multiply; scalar by scalar, vector by scalar, etc.
/ : divide; scalar by scalar; vector by scalar
$|A|: \quad$ Magnitude of scalar (absolute value)
|A|: Magnitude of vector (length)

2) Special scalar operations (see MATX section)
$\sqrt{\text { A }} \quad$: square root
arccosA : double precision arc cosine of A
arcsinA : double precision arc sine of A
$\arcsin _{s p} A$: single precision arc sine of A
cost : double precision cosine of A
$\cos _{s^{\prime}}{ }^{A} \quad: \quad$ single precision cosine of A
sin : double precision sine of A
$\sin _{\mathrm{sp}} \mathrm{A} \quad:$ single precision sine of A
$\ln A:$ natural logarithm of A
3) Vector operations

* (\underline{A}^{*} B) : vector cross product
- (\underline{A}^{-}B) : vector dot product
$\underline{A}^{2} \quad:$ square of length of \underline{A}
$[A] B$ or $B[A]^{T}$: premultiply the vector \underline{B} by the matrix
[A] (3x3; interpretive instruction MXV). The X component of the answer is equal to the dot product of the first row of [A] with \underline{B}, etc.
$\underline{B}[A]$ or $[A]^{T} \underline{B}$: post multiply the vector \underline{B} by the matrix [A] (3×3, interpretive instruction VXM). The X component of the answer is equal to the dot product of the first column of [A] with B, etc.

4) Bit operations

Switch bit a of B to 1 or 0 : Set or reset bit a of erasable memory register B.
Set bit a of $A=b i t b$ of B : Set or reset bit a of erasable memory register A according to whether bit b of B is set or reset.
Set bit a of $A=$ the complement of bit a of A.
$\Lambda(A \wedge B):$ Bit by bit logical product. If a given bit in both A and B is a binary 1 , then the result is a binary 1 ; otherwise, the result is a binary 0 .
$\sim(\tilde{B}): \quad$ Bit by bit complement of B.
5) cycle: Shift in a cyclic fashion, with bits "spilling out" of one end of the register appearing at the other end. For example, bit 14 cycled left 2 places, since the word length of the computer is 15 bits for data, becomes bit 1 , as does the same bit cycled right 13 places (or, in this case, shifted right 13 places).
6) 1imit: Cause the maximum value (usually K :posmax) to be stored if the quantity or its computed value exceeds that maximum. (Unless otherwise specified, the magnitude is limited, with sign information preserved; frequently done by means of a check for overflow.)
7) modulo: Form a quantity, for A modulo B, equivalent to the value of B times the remainder from (A / B). For example, 380° modulo one revolution is 20°.
8) overflow: Exceed the capacity of the computer register (i.e. the maximum value of the number allowed by its scaling). The interpretive language (section VI of 3420.5-27 (Revision 2)) has a special cell which is set if such an overflow is encountered, and which may be sensed to cause program branching. The divide instruction in the interpretive language, if the numerator exceeds the denominator (using the numbers in the computer register), sets the answer to the maximum capacity of the computer register with the proper sign.
9) quasi-floating point: Carry out a computation (usually involving a division) by, in general, normalizing both numerator and denominator before performing the division (with suitable provisions to avoid division overflow), and then shifting the result the appropriate number of places. Normalization involves shifting a number so that there are no leading magnitude zeroes, and counting the number of shifts required.
10) set $A=B$ and $B=A$: Exchange the contents of "A" and " B ".
11) signA: Complement the accumulator if A is negative; otherwise, leave the accumulator alone. Unless otherwise specified, if $A=0$ the accumulator is also left alone, i.e. 0 is a "positive" number.
12) shift: Shift in a non-cyclic fashion, with exclusion of the sign bit: bits "spilling out" of the least significant end of the register (for shifting right) are lost. Cf. "cycle". Vacated bits are set to sign bit.
13) sign agreement: Force the signs of the various parts of a multiple-precision word to be the same.
14) unit $(\underline{A}+\underline{B})$: Form or use a unit vector from the vector information specified. The scale factor of the unit vector when formed is B1. The magnitude of the vector is left in push-down list address 36D and its square in 34D. Operation "overflows" if magnitude of vector (before forming unit) is less than 2^{-21} as stored in computer register: if a cross product of 2 unit vectors involved, this would be a "true value" of 2^{-19}, or about 0.002 mr .
15) $\underline{A}=\left(a_{1}, a_{2}, a_{3}\right)$: Form a vector with x, y, and z components $=$ a_{1}, a_{2} and a_{3}.
16) $B=\left(b_{1}, b_{2}\right)$: Form a double precision number B with more significant half $=b_{1}$, less significant half $=b_{2}$.
17) The difference between two angles expressed in two's complement form can be performed by a special instruction to produce a result in one's complement form.

Major Variables
(and constants)

The following quantities are used at several points in the program; a general knowledge of their significance will be valuable in any effort to understand the program.

CADRFLSH. (i=0,1,2), CADRSTOR, DSPLIST: Single precision address storage registers in the display interface routines. Three internally generated displays can be handled by the display interface routines at any one time, one "priority" display, one "mark/extended verb" display and one "normal" display. The addresses of the routines requesting these displays are stored in $\mathrm{CADRFLSH}_{0}, \mathrm{CADRFLSH}_{1}$ and CADRFLSH ${ }_{2}$ respectively. If the active display finds that the astronaut Is using the DSKY (Display and Keyboard Assembly), it is put to sleep and its address stored in DSPLIST until the astronaut releases the DSKY. If the active display requires astronaut response, it is put to sleep and its address stored in CADRSTOR until the response is received.
$\operatorname{CDU}\left(\operatorname{CDU}_{x}, \operatorname{CDU}_{y}, \operatorname{CDU}_{z}\right)$: LGC input counters incremented directly from the Coupliny'data ${ }^{Z}$ Unit to maintain LGC knowledge of the position of the outer, inner and middle gimbal angles of the Inertial Measurement Unit. These counters are coupled directly to the "Read Counters" in the three ICDU channels of the CDU, and the two counters associated with each gimbal angle are incremented simultaneously. In order to synchronize the LGC counters with the Read Counters, the LGC counters mast be set to zero while the ICDU Read Counters are maintained at zero by setting bit 5 of channel 12. The gimbal angle data thus maintained is scaled $\mathrm{B}-1$ in units of revolutions (one least increment is equivalent to 2^{-15} revolution) and is in two's complement form.

The manipulation of two's complement numbers in the LGC maintains a periodic regularity by propagating an overflow bit into the sign bit. In the case of angles scaled $\mathrm{B}-1$ in units of revolutions, the overflow bit represents one-half of a revolution (180 degrees), and angular sums over one half of a revolution in magnitude are "automatically" adjusted to lie within the range $-\frac{-1}{2} \leq$ angle $<\frac{1}{2}$. For example: $0.35+0.42=-0.23\left(126.0^{\circ}+151.2^{0^{2}}=-82.8^{\circ}\right)$.
$\mathrm{CDU}_{\mathrm{s}}, \mathrm{CDU}_{t}$: LGC input counters incremented directly from the ${ }^{\text {S Coupling Data Unit to maintain LGC knowledge of the Rendezvous }}$ Radar shaft and trunnion angles. These counters are coupled to the Read Counters in the two RRCDU channels of the CDU and are exactly like the CDU-linked counters described above. The RRCDU Read Counters are zeroed by bit 1 of channel 12.

CDUD: Single precision vector containing the latest specification of desired IMU gimbal angles for the Digital Autopilot, scaled B-1 in units of revolutions and stored in two's complement form. See the description of LGC two's complement included with the definition of CDU.

Channels: Fifteen bit interface registers for input and output of discrete information. See TRW Working Paper 3420.5-27 (Revision 2) for more precise and complete information. Channels 5,6,11-16 and 30-33 are described in the section entitled "Channels, Flagwords and Other Discrete Information Registers."

1,2: Identical to L and Q registers; see MATX section.
3,4: Standby Clock; continues to count when the LGC is put into standby mode (see "PO6").

7: Bits 15-8 and 4-1 have no function; bits 7-5 are the fixedmemory address extension bits (SUPERBNK); see MATX section.

10: Channel used by "T4RUPT" to set the relays in the DSKY; bits 15-12 contain the relay address; bits 11-1 contain the desired setting. Called OUTO in the programs; see INTR section.

34,35: Two channels loaded with information to be telemetered by the downlink; see TELE section.

DELCDU: Single precision vector subtracted from CDUD every 100 milliseconds to control the rate during an automatic attitude maneuver, scaled B-1 in units of revolutions and stored in two's complement form. See the description of IGC two's complement included with the definition of CDU .

DELV: Double precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second and expressed in stable member (IMU) coordinates. (One pulse from the accelerometer is equivalent to one centimeter per second; DELV is loaded directly from the accelerometers.)

DISPDEX: Single precision index controlling the periodic and otherwise independent display (by "CLOKTASK") of burn parameters. See BURN section.

DNLSTCOD: Single precision index (range 0-5) indicating which of the downlists is to be telemetered, scaled B14 and unitless. Loaded by various programs to select the proper downlist. See K:DNTABLE in TELE section.

DSPTAB ($i=0-10$): Computer storage for the DSKY illumination relay settings, complemented when they are changed to signal to the "T4RUPT" routine that the relays are to be re-set as'soon as possible. A numerical record of what is displayed via DSPTAB $10,9,8$ XREG, YREG and ZREG do not necessarily reflect what is currently being displayed via DSPTAB 7_{7-0}. See DSKY and DATA sections.

DSPTAB $_{11}$: Single precision flagword whose bits designate relays to be set to illuminate lamps on the DSKY. Bit 9 lights the "program alarm" (PROG) lamp when set; bit 8 lights the "tracker fail" (TRACKER) lamp when set; bit 6 lights the "gimbal lock warning" (GIMBAL LOCK) lamp when set; bit 5 lights the "LR altitude fail" lamp when set; bit 4 lights the "no attitude" (ivo ATT) lamp when set (via "T4RTPT"); bit 3 lights the "LR velocity fail" lamp when set.
$E_{A D R}$: Notation used to denote any cell in erasable memory whose address is stored in the quantity used as the subscript (here denoted by $A D R$). If access is required to an E-memory cell in a switched bank other than that in which the program is operating, the EBANK register must be re-set first.

FLAGWRDO-11: Single precision registers whose bits are used individually for storage of on-off/yes-no type information. The flagwords are described in the section entitled "Channels, Flagwords and Other Discrete Information Registers" and references to the flagwords are listed in the section entitled "List of References to Flagwords and Channels."
i, $j, k, n, p, s, t, v:$ Letters used to denote various temporary storage cells in the programs, usually indexes scaled B14 and unitless.

K:dvtoacc: Constant implicit in the 2 second navigation cycle, scaled B-1 in units of seconds to the minus one power. Equation value: $\frac{1}{2}$. If the navigation cycle is changed to something other than 2 seconds, this constant will have to be changed to an explicit one wherever it appears.

K:posmaxsp, K:posmaxdp: Notation for the maximum positive value that can be stored in a single or double precision LGC register. The stored value of the constants is 37777_{8} and 37777837777 g respectively. The equation value of each is determined by the scale factor of the variable involved. If B is the scale factor, the equation values are:

$$
\begin{aligned}
& \mathrm{K}: \text { posmaxsp }=2^{B}\left(1-2^{-14}\right) \\
& \mathrm{K}: \text { posmaxdp }=2^{B}\left(1-2^{-28}\right)
\end{aligned}
$$

K:VxxNixx: Single precision constant verb-noun code. The two-digit decimal noun number is stored in bits 1-7 of the constant; the two-digit decimal verb number is stored in bits 8-14.

MPAC ${ }_{i}(i=0-7)$: Multiple precision accumalator and storage used by jobs coded in interpretive language (via the interpretive decoder) and sometimes by jobs coded in basic language. A set of eight single precision cells associated with each job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, MPAC ${ }_{0}-M P A C_{7}$ are saved as part of the "job core" reserved for that job, and they are re-set exactly as they were when the intermupted job is reestablished.

MUDEX, PBODY: Single precision indexes used to differentiate between constants and program branches that differ according to whether the center of attraction is the earth (0) or the moon (8 and 2 respectively). See CONC section and ORBI section respectively.

PRIOTIME: Single precision time when a priority display is activated, used to enforce the two second delay before the response to a priority display is accepted (to avoid the problem of a response to a just interrupted normal display being interpreted as the response to the priority display.) See DINT section.

RATT, VATT, TAT: State vector output from orbital integration with constant scaling (B29, B7, B28) or variable scaling (RATT1, VATT1, TAT) in units of meters, meters per centisecond, and centiseconds.

RCVCSM, RCVLEM: The permanent state vectors for the CSM and LM contain six double precision vectors and three double precision scalars. They are listed below along with the name of the equivalent variable used in the precision integration of each.

LM	CSM	Integration
RCVLEM	RCVCSM	RCV
VCVLEM	VCVCSM	VCV
TCLEM	TCCSM	TC
DELTALEM	DELTACSM	TDELTAV
NUVLEM	NUVCSM	TNUV
TETLEM	TETCSM	TET
RRECTLEM	RRECTCSM	RRECT
VRECTLEM	VRECTCSM	VRECT
XKEPLEM	XKEPCSM	XPREV

[REFSMMAT]: Double precision, 3×3 transformation matrix, scaled B1 and unitless. Defined such that Asm = [REFSMMAT] Arf where A is a vector expressed in stable member and reference coordinates respectively. (Other transformation matrices are not continuously maintained but only generated when needed.)

RN, VN, PIPTIME, R-OTHER, V-OTHER, TETCSM: Double precision vectors describing the navigation state of the LM and CSM respectively, scaled nominally (B29, B7, B28).

TDEC1: Double precision time input to orbital integration routines (GET) specifying the endpoint of the integration, scaled B28 in units of centiseconds. (Only input necessary if the permanent state vector is used as the origin.)

TEPHEM: Triple precision elapsed time from the beginning of the nearest Besselian year to the time when the LGC clock (TIMENOW) is zeroed, for use in the calculation of ephemerides; scaled B42 in units of centiseconds and included in the pre-launch erasable load.

THETAD: Single precision vector containing the final desired gimbal angles that define a desired orientation of the spacecraft with respect to the Inertial Measurement Unit (IMU) for large attitude maneuvers or IMU alignment; scaled B-1 in units of revolutions and stored in two's complement form. See the description of IGC two's complement included with the definition of CDU.

TIG: Double precision time of ignition (or predicted cutoff time, once the engine has been ignited) input to the burn programs from the targeting programs. The parameters required of the targeting programs by the burn programs (in addition to the LM state and mass estimate, which are assumed always available) are:

External Delta-V

TIG
RTIG
VTIG
DELVSIN
DELVSAB

Lambert Targetted (XDELVFLG $=0$)

TIG
RTARG
TPASS4
NORMSW (FL7, bit 10)

TIME3, TIME4, TIME5, TIME6: LGC clocks in addition to TIMENOW which are used to control intermupts of one kind or another. See INTR section.

TIMENOW: Double precision computer clock, incremented every centisecond (one hundredth of a second) by the LGC oscillator; scaled B28 in units of centiseconds.

TS (and various transmutations such as TS1, TSnoun TS ${ }_{12}$, TSvec): Real or dummy temporary storage cells used for convenience in describing the performance of the equations. When used as a communication cell between routines, TS generally represents what the program transfers via the accumulator.

VGPREV: Double precision previous value of velocity-to-be-gained vector, program notation also "VGTIG," scaled B7 in units of meters per centisecond.

UPSVFLAG: Single precision flag loaded with a state vector update (address of UPSVFLAG is just before that of RRECT) to indicate whether the update is for the LM or CSM state and whether it is in moon-centered or earth-centered reference coordinates. See ORBI section.

XSC, XSM, XSCD, etc.: Double precision unit vectors in the directions of the \bar{X} spacecraft axis, the X stable member axis, the desired X spacecraft axis, etc. Such unit vectors are always scaled B1 and unitless, but they may be expressed in various coordinate systems. An effort has been made to indicate the coordinate system in cases where it was not immediately obviaus by adding small letters ($\mathrm{sc}, \mathrm{sm}, \mathrm{rf}$) to the tag; the notations YSCsm, YSCsc, and YSC all represent the same cell - the indication of coordinate system is purely explanatory.

The quantities listed below constitute the "erasable memory load" which supplements the initialization performed by verb 36 (fresh start routine "SLAPl") in order to prepare the LGC erasable memory for the beginning of the mission. The list shows the absolute address of each quantity in the list (single, double or triple precision) in ECADR form (EBANK in bits ll-9; address $=14008$ + bits $8-1$); the tag assigned to that address by this document; the tag assigned to that address by the LUMINARY program if it differs from that used in this document; the scale factor and the units which the program assumes when handing each quantity; and the section of this document in which the quantity is defined.

Following this alphabetical list are the erasable memory quantities listed in order of increasing ECADR.

ECADR	Tag (alternate tag)	Scale	Units	Section
01516	2LATE466	B28	centiseconds	DESC
01517				
02566	ABTRDOT	B7	meters/centisecond	ASCT
02567	B-6	gyro pulses/cm per sec	IMUC	
01463	ADIAX	B-6	gyro pulses/cm per sec	IMUC
01464	ADIAY	B-6	gyro pulses/cm per sec	IMUC
01465	ADIAZ	B-6	gyro pulses/cm per sec	IMUC
01466	ADSRAX	B-6	gyro pulses/cm per sec	IMUC
01467	ADSRAY	B-6	gyro palses/cm per sec	IMUC

(Because one gyro pulse is equivalent to 2^{-21} revolutions, the above six quantities could also be assumed to be scaled $\mathrm{B}-26$ in units of revolutions.)

02020	AGSK	B28	centiseconds	EXVB
02021		B-4	$\mathrm{m} / \mathrm{cs}^{2}$	DESC
02512	AHZLIM_{2}	B-1	revolutions (2's comp)	ALIN
03404	$\mathrm{AOTAZ}_{1}(\mathrm{AOTAZ)}$	B-1	revolutions ($2^{\prime} \mathrm{s}$ comp)	ALIN
03405	$\mathrm{AOTAZ}_{2}(\mathrm{AOTAZ+1)}$	B-1	revolutions (2's comp)	ALIN
03406	$\mathrm{AOTAZ}_{3}(\mathrm{AOTAZ+2)}$	B-1	revolutions (2's comp)	ALIN
03407	$\mathrm{AOTAZ}_{4}(\mathrm{AOTAZ+3)}$			

ECADR	Tag (alternate tag)	Scale	Units	Section
03410	$\mathrm{AOTAZ}_{5}(\mathrm{AOTAZ}+4)$	B-1	revolutions (2's comp)	ALIN
03411	$\mathrm{AOTAZ}_{6}(\mathrm{AOTAZ}+5)$	B-1	revolutions (2's comp)	ALIN
03412	AOTEL_{1} (AOTEL)	B-1	revolutions (2 's comp)	ALIN
03413	$\mathrm{AOTEL}_{2}($ AOTEL+1)	B-1	revolutions (2's comp)	ALIN
03414	AOTEL3 $^{\text {(AOTEL }}+2$)	B-1	revolutions (2 's comp)	ALIN
03415	AOTEL_{4} ($\mathrm{AOTEL}^{\text {3 }}$)	B-1	revolutions (2 's comp)	ALIN
03416	AOTEL5 (AOTEL+4)	B-1	revolutions (2's comp)	ALIN
03417	AJTEL6 $_{6}(\mathrm{AOTEL}+5)$	B-1	revolutions (2 's comp)	ALIN
	(2's comp indicates that these quantities are stored in two's complement form, not the usual one's complement form)			
$\begin{aligned} & 03400 \\ & 03401 \end{aligned}$	ATIGINC	B28	centiseconds	TRGL
03373	AZBIAS	B-1	revolutions	DESC
$\begin{aligned} & 01711 \\ & 01712 \end{aligned}$	AZO	BO	revolutions	COOR
$\begin{aligned} & 02570 \\ & 02571 \end{aligned}$	COSTHETI	B2	unitless	ASCT
$\begin{aligned} & 02572 \\ & 02573 \end{aligned}$	COSTHET2	B2	unitless	ASCT
01327	CSMMASS	B16	kilograms	DAPB
$\begin{aligned} & 02520 \\ & 02521 \end{aligned}$	DELQFFIX	B24	meters	SERV
03425	DELTTFAP	B17	centiseconds	DESC
$\begin{aligned} & 02474 \\ & 02475 \end{aligned}$	DESIGNRX (RIGNX)	B24	meters	DESC
$\begin{aligned} & 02476 \\ & 02477 \end{aligned}$	DESIGNRZ (RIGNZ)	B24	meters	DISC
$\begin{aligned} & 02472 \\ & 02473 \end{aligned}$	DESIGNV (VIGN)	B10	meters/centisecond	DESC

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02504 \\ & 02505 \end{aligned}$	DESKIGNV (KIGNV/B4)	B18	centiseconds	DESC
$\begin{aligned} & 02500 \\ & 02501 \end{aligned}$	DESKIGNX (KIGNX/B4)	B4	unitless	DESC
$\begin{aligned} & 02502 \\ & 02503 \end{aligned}$	DESKIGNY (KIGNY/B8)	B-16	meters ${ }^{-1}$	DESC
03011	DKD 3	B15	revolutions ${ }^{-1}$	DAPB *
03005	DKKAOSN	B14	unitless	DAPA *
03004	DKOMEGAN	B14	unitless	DAPA *
03003	DKTRAP	B-3	revolutions/second	DAPA *
02634 thru 0264	DLAND	B24	meters	DESC
03113	DOWNTORK ${ }^{\text {(PUSTORKP) }}$	B5	seconds	DAPA
03114	$\mathrm{DOWNTORK}_{1}$ (NEGTORKP)	B5	seconds	DAPA
03115	DOWNTORK $_{2}$ (POSTORKU)	B5	seconds	DAPA
03116	DOWNTORK $_{3}$ (NEGTORKU)	B5	seconds	DAPA
03117	DOWNTORK ${ }_{4}$ (POSTORKV)	B5	seconds	DAPA
03120	DOWNTORK $_{5}$ (NEGTORKV)	B5	seconds	DAPA
01350	E32C31RM	B80	meters $6 /$ centisecond ${ }^{2}$	ORBI
01347	E3J22R2M	B58	meters $5 /$ centisecond 2	ORBI
01356	ELBIAS	B-1	revolutions	DESC
$\begin{aligned} & 02432 \\ & 02433 \end{aligned}$	GAINo (GAINBRAK)	BO	unitless	DESC
$\begin{aligned} & 02466 \\ & 02467 \end{aligned}$	GAIN_{28} (GAINAPPR)	BO	unitless	DESC
03000	HIASCENT	B16	kilograms	DAPB *
02507	HIGHCRIT	B14	DPS throttle pulses	DESC
02514	HLROFF	B24	meters	SERV
03012	IGNAOSQ	B-2	revolutions/second ${ }^{2}$	BURN
03013	IGNAOSR	B-2	revolutions/second ${ }^{2}$	BURN

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02550 \\ & 02551 \end{aligned}$	J1PARM	B24	meters	ASCT
$\begin{aligned} & 02554 \\ & 02555 \end{aligned}$	J2PARM	B24	meters	ASCT
$\begin{aligned} & 02552 \\ & 02553 \end{aligned}$	K1PARM	B24	meters/revolution	ASCT
$\begin{aligned} & 02556 \\ & 02557 \end{aligned}$	K2PARM	B24	meters/revolution	ASCT
* See note on page ASCT-14.				
$\begin{aligned} & 02542 \\ & 02543 \end{aligned}$	LAGdTAU (LAG/TAU)	BO	unitless	DESC
03426	LEADTIME	B17	centiseconds	DESC
01326	LEMMASS	B16.	kilograms	DAPB
$\begin{aligned} & 02012 \\ & \text { thru } \\ & 02017 \end{aligned}$	IM504 (504LM)	BO	radians	COOR
03010	LMKAOSN	B14	unitless	DAPA *
03007	LMOMEGAN	B14	unitless	DAPA *
03006	LMTRAP	B-3	revolutions/second	DAPA *
02506	LOWCRIT	B14	DPS throttle pulses	DESC
02522	$\mathrm{LRALPHA}_{1}$ (LRALPHA)	B-1	revolutions (2's comp)	SERV
02524	LRALPHA $_{2}$ (LRALPHA2)	B-1	revolutions (2's comp)	SERV
02523	LRBETA $^{\prime}$ (LRBETAI)	B-1	revolutions (2 's comp)	SERV
02525	LRBETA ${ }_{2}$ (LRBETA2)	B-1	revolutions (2's comp)	SERV
03420	LRHMAX	B14	meters	SERV

ECADR	Tag (alternate tag)	Scale	Units	Section
02527	LRVF	B7	meters/centisecond	SERV
02526	LRVMAX	B7	meters/centisecond	SERV
03421	LRWH	B0	unitless	SERV
02530	LRNV ${ }_{0}$ (LRWVZ)	B0	unitless	SERV
02531	LRWV_{1} (LRWVY)	B0	unitless	SERV
02532	L.RWV 2 (LRWVX)	B0	unitless	SERV
02533	LRWVF ${ }_{0}$ (LRWVFZ)	B0	unitless	SERV
02534	LRWVF_{1} (LRWVFY)	B0	unitless	SERV
02535	L.RWVF 2 (LRWVFX)	B0	unitless	SERV
02536	LRENVFF	BO	unitless	SERV
$\begin{aligned} & 01243 \\ & 01244 \end{aligned}$	MASS	B16	kilograms	S. RV DAPB
$\begin{aligned} & 02546 \\ & 02547 \end{aligned}$	MAXFORCE	B12	kg meters/centisecond ${ }^{2}$	DESC
$\begin{aligned} & 02544 \\ & 02545 \end{aligned}$	MINFORCE	B12	kg meters/centisecond ${ }^{2}$	DESC
01460	NBDX	B-5	gyro pulses/centisecond	IMUC
01461	NBDY	B-5	gyro pulses/centisecond	IMUC
01462	NBDZ	B-5	gyro pulses/centisecond	IMUC
(B-5 gyro pulses/cs equivalent to $\mathrm{B}-26$ revolutions/cs)				
01452	PIPABIAS $_{\mathbf{x}}$ (PBIASX)	B-3	PIPA counts/centisecond	IMUC
01454	PIPABIAS $_{y}$ (PBIASY)	B-3	PIPA counts/centisecond	IMUC
01456	$\mathrm{PIPABIAS}_{z}$ (PBIASZ)	B-3	PIPA counts/centisecond	IMUC
01453	PIPASCF $_{\mathrm{x}}$ (PIPASCFX)	B-9	unitless	IMUC
01455	PIPASCF $_{\mathrm{y}}$ (PIPASCFY)	B-9	unitless	IMUC

ECADR	Tag (alternate taid	Scale	Units	Section
01457	PIPASCF $_{z}$ (PIPASCFZ)	B-9	unitless	IMOC
03002	PITTIME	B14	centiseconds	DAPB
$\begin{aligned} & 03402 \\ & 03403 \end{aligned}$	PTIGINC	B28	centiseconds	TRGL
02511	QHZ	BO	unitless	DESC
$\begin{aligned} & 01351 \\ & 01352 . \end{aligned}$	RADSKAL	B21	LR low scale altitude bits/meter/cs	SERV
$\begin{aligned} & 02562 \\ & 02563 \end{aligned}$	RAMIN	B24	meters	ASCT
$\begin{aligned} & 01770 \\ & 01771 \end{aligned}$	RANGEVAR	B-12	unitless	RNAV
$\begin{aligned} & 01772 \\ & 01773 \end{aligned}$	RATEVAR	B-12	unitless	RINAV
02022 thru 02027	RLS	B27	meters	CONC
02004	RMAX	B19	meters	RNAV
02537	RODSCALE	B-7	meters/centisecond	DESC
03001	ROLLTTME	B14	centiseconds	DAPB
03427	RPCRTIME	B17	centiseconds	SERV
03430	RPCRTQSW	Bl	unitless	SERV
01774	RVARMIN	B12	meters ${ }^{2}$	RNAV
02010	SHAFTVAR	B-12	radians ${ }^{2}$	RNAV
01353	SKALSKAL	BO	unitless	SERV
02416 thru 02423	$\underline{T} A R G A D G_{O}(A D G, ~ A B R F G)$	B-4	meters/centisecond ${ }^{2}$	DESC
02452 thru 02457	TARGADG 28 ($\mathrm{A} A P F G$)	B-4	meters/centisecond ${ }^{2}$	DESC

ECADR	Tag (alternate tag)	Scale	Units	Secti
02402 thru 02407	$\mathrm{T}^{\text {ARGRDG }}{ }_{0}(\mathrm{RDG}, \mathrm{RBRFG})$	B24	meters	DESC
$\begin{aligned} & 02436 \\ & \text { thrua } \\ & 02443 \end{aligned}$	$\mathrm{TARGRDG}_{28}$ (RAPFG)	B24	meters	DESC
$\begin{aligned} & 02410 \\ & \text { thru } \\ & 02415 \end{aligned}$	TARGVDGO (VDG,VBRFG)	Blo	neters/centisecond	DESC
02444 thru 02451	TARGVDG28 (VAPFG)	Blo	meters/centisecond	DESC
02510	TAUHZ	B11	centiseconds	DESC
$\begin{aligned} & 02540 \\ & 02541 \end{aligned}$	TAUROD	B9	centiseconds	DESC
02434	TCGF ${ }^{(}$(TCGFBRAK)	B17	centiseconds	DESC
02470	TCGF 28 (TCGFAPPR)	B17	centiseconds	DESC
02435	TCGIO (TCGIBRAK)	B17	centiseconds	DESC
02471	TCGI28 (TCGIAPPR)	B17	centiseconds	DESC
03423	TEND ${ }_{0}$ (TENDBRAK)	B17	centiseconds	DESC
03424	TEND_{1} (TENDAPPR)	B17	centiseconds	DESC
$\begin{aligned} & 01706 \\ & 01707 \\ & 01710 \end{aligned}$	TEPHEM	B42	centiseconds	COJR
$\begin{aligned} & 01570 \\ & 01571 \end{aligned}$	TETCSM	B28	centiseconds	ORBI
$\begin{aligned} & 01642 \\ & 01643 \end{aligned}$	TETLEM	B28	centiseconds	ORBI
$\begin{aligned} & 02560 \\ & 02561 \end{aligned}$	THETCRIT	BO	revolutions	ASCT

ECADR	Tag (alternate tag)	Scale	Units	Section
$\begin{aligned} & 02400 \\ & 02401 \end{aligned}$	TLAND	B28	centiseconds	DESC
$\begin{aligned} & 03431 \\ & 03432 \end{aligned}$	TNEWA	B28	centiseconds	BURN
02513	TOOFEW	B14	unitiess	DESC
02011	TRUNVAR	B-12	radians ${ }^{2}$	RNAV
$\begin{aligned} & 02426 \\ & 02427 \end{aligned}$	$\operatorname{TTFADGZ}_{0} \underset{A D G 2 T T F+0)}{\left(A B R F G^{*}\right.} \text { and }$	B-4	meters/centisecond ${ }^{2}$	DESC
$\begin{aligned} & 021,62 \\ & 02463 \end{aligned}$	$\mathrm{THF}^{\prime 2} \mathrm{ADGZ}_{28} \begin{aligned} & \text { (AAPFG* and } \\ & \text { ADG2TTF }+28) \end{aligned}$	B-4	meters/centisecond ${ }^{2}$.	DESC
$\begin{aligned} & 02430 \\ & 02431 \end{aligned}$	$\mathrm{TTFJDGZ}_{0} \underset{\mathrm{JDG} 2 T \mathrm{TF}+0)}{(\mathrm{JBRF}}{ }^{*} \text { and }$	B-21	meters/centisecond ${ }^{3}$	DiASC
$\begin{aligned} & 02464 \\ & 02465 \end{aligned}$	$\text { TTFJDGZ }_{28} \quad \begin{aligned} & \left(J A P F G^{*}\right. \text { and } \\ & (J D G 2 T T F+28) \end{aligned}$	B-21	meters/centisecond ${ }^{3}$	DESC
$\begin{aligned} & 02424 \\ & 02425 \end{aligned}$		B13	meters/centisecond	DESC
$\begin{aligned} & 02460 \\ & 02461 \end{aligned}$	$\begin{gathered} \mathrm{TTFVDGZ}_{28} \mathrm{~V}^{\left(V A P F G^{*}\right.} \text { and } \\ \text { VDG2TTF+28 } \end{gathered}$	B13	meters/centisecond	DESC
$\begin{aligned} & 01713 \\ & 01714 \end{aligned}$	$\mathrm{UNITW}_{\mathrm{x}}$ (mAYO)	B0	unitless	COOR
$\begin{aligned} & 01715 \\ & 01716 \end{aligned}$	UNITW $^{\text {(}}$ (AXO)	B0	unitless	COOR
$\begin{aligned} & 03371 \\ & 03372 \end{aligned}$	VELBIAS	B6	meters/centisecond	SERV
02005	VMAX	B7	meters/centisecond	RNAV
01775	VVARMIN	B-12	meters ${ }^{2} /$ centisecond ${ }^{2}$	RNAV
02000	WRENDPOS	B14	meters	RNAV
02001	WRENDVEL	B0	meters/centisecond	RNAV
02002	WSHAFT	B-5	radians	RNAV
02006	WSURFPOS	B14	meters	RNAV

ECADR	Tag (alternate tag)	Scale	Units	Section
02007	WSURF'VEL	B0	meters/centisecond	RNAV
02003	WTRUN	B-5	radians	RNAV
01700 thru 01705	$\underline{X} 789 \quad(* \text { Scaling is }$	B5 for	radians rth and B3 for moon)	RNAV
$\begin{aligned} & 02564 \\ & 02565 \end{aligned}$	YLIM	B24	meters	ASCT
03422	ZOOMT IME	B14	centiseconds	BURN
* These quantities are also loaded by the fresh start routine entered * from verb 36.				
In addition to the quantities listed on the previous pages, the indicated bits of the following flagwords must be padloaded as they are not initialized by the fresh start ("SLAPI") routine.				
	FLAGWRD3		(REFSMFLG)	
	FLAGWRD8	bit	$\begin{aligned} & \text { (SURFFLAG) } \\ & \text { (LMOONFLG) } \\ & \text { (CMOONFLG) } \end{aligned}$	
	FLGWRD10	bit	(APSFLAG)	

The following pad loaded variables are listed by ascending ECADR. The tag name is that given by this document.

ECADR	Tag	ECADR	Tag
01243-4	MASS	01700-5	X 789
01326	LEMMASS	01706-10	TEPHEM
01327	CSMMASS	01711-2	AZO
01347	E3J22R2M	01713-4	UNITW $_{\text {x }}$
01350	E32C31RM	01715-6	UNITW $_{\text {y }}$
01351-2	RADSKAL	01770-1	RANGEVAR
01353	SKALSKAL	01772-3	Ratevar
01356	ELBIAS	0.1774	RVARMIN
01452	PIPABIAS $_{\mathbf{x}}$	01775	VVARMIN
01453	PIPASCF $_{\mathbf{x}}$	02000	WRENDPOS
01454	PIPABIAS ${ }^{\text {y }}$	02001	WRENDVEL
01455	PIPASCF $_{\text {y }}$	02002	WSHAF'T
01456	PIPABIAS $_{\text {z }}$	02003	WT RUN
01457	$\mathrm{PIPASCF}_{\mathbf{z}}$	02004	RMAX
01460	NBDX	02005	VMAX
01461	NBDY	02:006	WSURFPOS
01462	NBDZ	02007	WSURFVEL
01463	ADIAX	02010	SHAFTVAR
01464	ADIAY	02011	TRUNVAR
01465	ADIAZ	02012-7	LM504
01466	ADSRAX	02020-1	AGSK
01467	ADSRAY	02022-7	$\underline{\text { RLS }}$
01470	ADSRAZ	02400-1	TLAND
01570-1	TETCSM	02402-7	\underline{T} ARGRDG $_{0}$
01642-3	TETLEM		

ECADR	Tag	ECADR	Tag
02564-5	YLIM	03422	ZOOMT IME
02566-7	ABTRDOT	03423	TEND
02570-1	COSTHET1	03424	TEND_{1}
02572-3	COSTHET2	03425	DELTTFAP
02634-41	DLAND	03426	LEADTIME
03000	HIASCENT	03427	RPC RTIME
03001	ROLLTIME	03430	RPC RTIQSW
03002	PITTIME	03431-2	TNEWA
03003	DKTRAP		
03004	DKOMEGAN		
03005	DKKAOSN		
03006	LMTRAP		
03007	LMOMEGAN		
03010	LMKAOSN		
03011	DKDB		
03012	IGNAOSQ		
03013	IGNAOSR		
03113-20	DOWNTORK ${ }_{\text {O-5 }}$		
03371-2	VELBIAS		
03373	AZBIAS		
03400-1	ATIGINC		
03402-3	PTIGINC		
03404-11	AOTAZ $_{1-6}$		
03412-7	AOTEL $_{1-6}$		
03420	LRHMAX		
03421	LRWH		

Channels, Flagwords and Other Discrete Information Registers

Channels l-4, 7, 10, 34, and 35 are discussed in the list of Major Variables

Channel 5
Bits 15-9 have no significance; bits 8-1 are set to command RCS jet firings and reset to terminate the firing.

Bit	Code	Jet Number	System	Rotation Effect	Translation Effect
8	$1 D$	14	B	+U	+X
7	1 U	13	A	-U	-X
6	2 D	10	A	+V	+X
5	2 U	9	B	-V	-X
4					+X
3	$3 D$	6	A	-U	+U
2	3 D	2	A	-V	-X
1	4 U	1	B	+V	+X
				$-X$	

Channel 6

Bits 15-9 have no significance; bits 8-1 are set to command RCS jet firings and reset to terminate the firing.

Bit	Code	Jet Number	System	Rotation Effect	Translation Effect
8	$1 S$	16	B	-P	+Y
7	4 S	4	A	+P	-Y
6	$3 S$	8	A	-P	-Y
5	2 S	12	B	+P	+Y
					+P
4	2 F	11	A	-P	+Z
3	1 F	15	A	+P	-Z
2	4 F	3	B	-P	-Z
1	3 F	7	B	+P	$+Z$

Channel 11
Bits 15, 12, 11, and 8 are spare.

Bits 14 (engine off) and 13 (engine on) are assigned to the main engine on/off function. The normal engine-off command configuration is lO_{2}; the normal engine-on command configuration is Ol_{2} : The following information concerns the performance of the LM when either of the two other possible binary states (002 or 112) occurs (as in a hardware restart - "GOPROG").
"All Block 2 computers have the engine-on and engine off discretes in bits 13 and 14 respectively of channel ll. If the LEM Descent engine sees a 1,1 condition (both output transistors conducting) or a 0,0 condition (both output transistors non-conducting), it will ignore the signal and remain in the state it was previously in. This allows the computer to zero all the output bits during a restart and not shut the engine off. There is no time limit as to how long an improper state (1,1) or (0,0) can last with the descent engine.
"The LEM ascent engine will be turned on by an erroneous 1,1 condition which lasts longer than 1 millisecond. Therefore the LGC must be programed to set the bits to the proper state within 0.5 millisecond following recovery from a restart."

It is assumed that the ascent engine will remain off if staging occurs with the bits in the configuration OO_{2}.

A fresh start sets bit 14 to 1 and sets remaining bits to 0.
Meaning when set and reset (channel 11 is an output or command channel)

101 - Caution Reset signal: resets the flip-flop holding the Restart lamp in the energized state.
0 - Allow the Restart lamp to light
9 1-Test connector discrete used in bench tests 0 -

71 - Light the "Operator Error" lamp (automatic flash) 0 - Extinguish the "Operator Error" lamp

61 - Start flash of verb and noun registers on the DSKY 0 - Stop the verb-noun flash

5 I - Light the "Key Release" lamp (automatic flash) to request key release 0 - Extinguish the "Key Release" lamp

```
    4 l - Light the "Temperature Caution" lamp
    0 - Extinguish the "Temperature Caution" lamp
    3 - Light the "Uplink Activity" lamp
    O - Extinguish the "Uplink Activity" lamp
    2 1. - Light the "Computer Activity" lamp
    0 - Extinguish the "Computer Activity" lamp
l l - Light the "ISS Warning" lamp
    O - Extinguish the "ISS Warning" lamp
```

 Channel 12
 Bit and initial value (fresh start)
Meaning (channel 12 is an output or command channel)
150 Bit energizes a latching relay that signals that the ISS
turn-on delay is complete, removing the signal from bit 14
of channel 30 and switching the ISS into the normal operate
mode. Reset after remaining set for about ten and one fourth
seconds.
1401 - Enable RR lock-on and automatic tracking.
O - Disable Rendezvous Radar lock-on and automatic tracking.
130 Command provided via a DSKY relay to change landing radar
from position \#l to position \#2. (Returned to position \#l
by a spacecraft switch.)
120 Bit set to cause rotation of the DPS bell around the $+Z$ LM axis to produce a negative angular jerk around the $+Z$ axis ($-R$).

110 Bit set to cause rotation of the DPS bell around the -Z LM axis to produce a positive angular jerk around the $+Z$ axis $(+R)$.

100 Bit set to cause rotation of the DPS bell around the +Y LM axis to produce a negative angular jerk around the $+Y$ axis $(-Q)$.

90 Bit set to cause rotation of the DPS bell around the $-Y$ LM axis to produce a positive angular jerk around the $+Y$ axis ($+Q$).

80 Bit set to display inertial data.

70 spare
601 - Enable ICDU Error Counters - coarse align, or display on FDAI.
0 - Disable ICDU Error Counters (3).
501 - Zero the ICDU Read Counters; force the ICDU gimbal angle follower counters to zero. 0 - Allow the ICDU Read Counters to follow the IMU gimbal angles, incrementing the CDU counters in the LGC as they do.
4.0 1 - Enable coarse align of the IMU; connect the ICDU Read Counters with the ICDU Error Counters so that the latter may be decremented as the IMU is coarse aligned. 0 - Disable coarse align of the IMU.

30 Bit not set in LUMINARY program.
201 - Enable Rendezvous Radar CDU Error Counters. 0 - Disable RRCDU Error Counters (2).

101 - Zero the RRCDU Read Counters. (Like bit 5) 0 - Allow the RRCDU Read Counters to follow the RR position angles.

Channel 13

Bit and initial value (fresh start)
Meaning (channel 13 is an output or command channel)
150 Bit set to 1 to permit cell 000318 (TIME6) to be decremented by l each 0.000625 second. When cell has been reduced to -0 , the next decrement resets bit to 0 and causes program interrupt \#1.

140 Bit set to 1 to permit the RCS jet fail switches or the DPS gimbal fail switch to cause interrupt \#10; always 0 in LUMINARY.

130 Bit set to 1 to permit signals from the translational hand controller to cause interrupt \#10; always 0 in LUMINARY.

120 Bit set to 1 to permit signals from the rotational hand controller to cause interrupt \#10.

11 O Bit set to 1 to cause the PRO key on the DSKY to be interpreted as a "standby" key and put the LGC into standby mode.

Channel 13 (Continued)

100 Bit set to l to test the DSKY lights and relays not otherwise accessible to the software: energizes the Restart, Standby and Computer Warning lamps (the latter through a "warning filter").

901 - Initiate readout of analog-to-digital converters associated with the displacement of the rotational hand controller into cells RHCP, RHCQ, and RHCR (428-448).
0 - Stop readout of RHC analog-to-digital converters
801 - Enable input to RHCP, RHCQ, and RHCR from rotational hand controller analog-to-digital converter
0 - Disable input to RHCP, RHCQ, and RHCR
70 Bit used as the "word order code" bit (first bit in the 40-bit downlink sequence sent from the LGC containing digital data) for telemetry.

60 Bits used to block all inputs to INLINK; not set in LUMINARY.
50 Not used in LUMINARY.
40 Bit set to 1 to initiate transmission of radar information to the LGC. Bit is reset to 0 when program interrupt \#9 is generated after the end of the pulse train from the radar to cell 468 (RNRAD).

3-1 Bits set to determine the routing of radar information into RNRAD when bit 4 is set. Information into RNRAD is: RR range information if bits $3-1$ are $001_{2} ; \mathrm{RR}$ range rate if 010_{2}; IR X-velocity if 100_{2}; LR Y-velocity if lOl_{2}; LR Z-velocity if 1102; and LR altitude information if bits $3-1$ are 1112. Bits are initially 000.

Channel 14
Bit and initial value (fresh start)
Meaning (channel 14 is an output or command channel)
150 Bit set to 1 to cause output pulses (at a 3200 pps rate) to be generated from CDUXCMD, cell 000508. When cell is counted down to zero, the bit is reset, stopping the pulses. The ICDU Error Counter is loaded by these pulses if bit 6 of channel 12 is 1 .

Channel 14 (Continued)

140 Bit set to 1 to cause output pulses to be generated from CDUYCMD, cell 00051g. Like bit 15.

130 Bit set to 1 to cause output pulses to be generated from CDUZCMD, cell 000528. Like bit 15.

120 Bit set to 1 to cause output pulses (at a 3200 pps rate) to be generated from CDUTCMD, cell 000538. When cell is counted down to 0 , the bit is reset, stopping the pulses. The RRCDU Error Counter is loaded by these pulses if bit 2 of channel 12 is 1.

11 O Bit set to 1 to cause output pulses to be generated from CDUSCMD, cell 000548. Like bit 12.

100 Bit set to 1 to specify "gyro activity": it causes the pulse train whose magnitude is in cell 000478, GYROCMD, to be sent with polarity and destination specified by bits 9-7 of this channel, if bit 6 of this channel is l. Bit reset after the pulses are sent.

901 - Gyro torquing pulses from GYROCMD specify a negative torque. 0 - Gyro torquing pulses from GYROCMD specify a positive torque. (Other pulse-type outputs from the computer have the polarity indicated by the polarity of the information in the counter cell itself.)

8-7 Bits used to specify the axis for gyro compensation information from GYROCMD. Conventional output sequence is inner (Y), middle (Z), and outer (X). The settings of bits 8 and 7 are: 00_{2} for no output; 01_{2} for X-axis gyro; 10_{2} for Yaxis gyro; ll2 for Z-axis gyro. Bits are initially 000.

60 Bit set to 1 to enable the power supply that produces the torquing pulses used to torque the gyros. Generally remains set after the first gyro torquing operation.

50 Not used in LUMINARY.
40 Bit set to 1 to cause output pulses to be generated from cell 000558 (THRUST) for use in controlling the position of the descent engine throttle.

Channel 14 (Continued)

30 Bit set to 1 to initiate shifting of data from cell 000608 (ALTM) to spacecraft indicator for altitude or altitude rate information. (See bit 2 of this word.) Bit reset to 0 just after start of data shift.

20 Bit set to l to indicate that altitude rate information is being shifted from cell 000608 ; if bit is 0 altitude information is being shifted from cell 00060g.

10 Not used in LUMINARY.

Channel 15

Bits $15-6$ have no function.
Bits 5-1 contain the five-bit binary keycode generated by the depression of one of the keys on the DSKY (Display and Keyboard Assembly). The depression of any key causes program interrupt \#5 which reads the keycode immediately, while the key is depressed. The release of the key resets channel 15 and resets an interrupt trap (\#15) to re-enable the interrupt.

Channel 16

Bits $15-8,2$ and 1 have no function.
Bit 7 is set to l if an increase in the rate of descent is desired by the crew (i.e. a lower thrust). Generated by moving a rate-ofdescent switch in the -X direction (towards the engine).

Bit 6 is set to 1 if a decrease in the rate of descent is desired by the crew (i.e. a higher thrust). Generated by moving a rate-of-descent switch in the $+X$ direction.

Bits 5-3 are set by depression of the mark reject, Y mark, and X mark buttons. The depression of any of these buttons causes program interrupt \#6 which reads the information on channel 16 immediately while the button is depressed. The release of the button resets channel 16 and resets interrupt trap \#16A to re-enable interrupt \#6. Bits 5-3 are processed by the "MARKRUPT" routine.

A special capability is programmed into the restart routine to enable the astronaut to extricate the LGC from a multiple-restart loop. The restart program exits to the fresh start progrem if it senses that the mark reject button and the error reset key (channel 15 code 22g) are depressed simultaneously.

Channel 30

Bit Meaniag (channel 30 is an input or information channel)
$15 \quad 1$ - Stable Member temperature outside design limits.
0 - Stable Member temperature within design limits. (Connected directly to lamp controlled by bit 4 of channel 11)

14 I - IMU power-on switch off; or, IMU power-on switch on and IMU in normal operate mode ("turn-on delay complete" discrete sent from the LGC) (bit 15 of channel 12).

Bit Meaning (Channel 30 is an input or information channel)
140 - IMU power-on switch on and IMU caged, waiting for "turn-on delay complete" discrete from the LGC. (The discrete from the LGC sets a relay which switches the IMU to normal operate mode.)

131 - IMU good. 0 - IMU fail due to excessive servo errors or degradation of 3200 pps or 800 pps supply . (See IMUMON routine.)

12 I - ICDU good. 0 - ICDU fail (due to excessive errors or low voltage). (See IMUMON routine.)

1 - IMU not caged by crew switch setting. 0 - IMU caged by setting of crew switch. (See IMUMON routine.)

1 - SCS control of spacecraft. (Panel switch) 0 - PGNCS control of spacecraft.

1 - IMU power-on switch switched to off (panel 100). 0 - IMU power-on switch switched to on.
spare
1 - RRCDU good. 0 - RRCDU fail (due e.g. to excessive errors or low voltage). (See RRCDUCHK routine.)
$6 \quad 1$ - Display of inertial data from the computer is not desired by the crew. 0 - Display of inertial data from the computer is desired by the crew. When the appropriate information has been loaded by the program, bit 8 of channel 12 is set to 1 .

51 - LGC DPS throttle commands disabled. 0 - LGC DPS throttle commands enabled.

Bit sensed 0 is "ABORT STAGE" command.
31 - Engine not armed. 0 - Engine armed.

2 I - Ascent configuration. (not examined in Luminary) 0 - Ascent and descent configuration.

Channel 30 (Continued)

Bit Meaning (channel 30 is an input or information channel)
I Bit sensed 0 is "ABORT" command.

ChanneI 31

Bit Meaning (channel 31 is an input or information channel)
151 - RHC (Rotational hand controller) is in detent. 0 - RHC is displaced from detent.

141 - The PGNS Mode Control switch is not set to "Auto". 0 - The PGNS Mode control switch is set to "AUTO", indicating that the LGC has complete authority for control of the spacecraft.

131 - The PGNS Mode Control switch is not set to "Attitude Hold". 0 - The PGNS Mode Control switch is set to "Attitude Hold", indicating that IGC Digital Autopilot authority is limited to rate damping.

1 - -Z translation not commanded via the THC (Translational Hand Controller).
0 - -2 translation commanded via the THC.

11 I - +Z translation not commanded via the THC. $0-+Z$ translation commanded via the THC;

10 I - -Y translation not commanded via the THC. 0 - -Y translation commanded via the THC.
$1-+Y$ translation not commanded via the THG. 0 - $+Y$ translation commanded via the THC:

1 - -X translation not commanded via the THC. 0 - -X translation commanded via the THC.
l - +X translation not commanded via the THC. 0 - +X translation commanded via the THC.

Channel 31 (Continued)

Bits 6-1 carry discrete information about the displacement of the Rotational Hand Controller (RHC - also denoted by ACA). The bits are normally l and are set to 0 by the RHC to indicate the following directions of desired rotation:

Bit	6	5	4	3	2	1
Desired Rotation	$-R$	$+R$	$-P$	$+P$	$-Q$	$+Q$

Channel 32

Bits 15, 13, 12, and 11 of channel 32 are spares.
Bit 14 is activated by the "Proceed" key on the DSKY (formerly the "Standby" key and still functional as such when program 6 has enabled standby). It is normally set (l) and is reset to 0 only while the proceed key is depressed. It is examined every 120 milliseconds by the "T4RUPT" program and functions like a verb 33 except when program 6 has enabled standby. Proceed is rejected if V21, V22 or V23 on DSKY.

Bit 10. Bit state of 0 indicates that the descent engine gimbal failure monitor detects an apparent gimbal fail in the pitch or roll gimbal trim system. Not used by the LUMINARY program.

Bit 9 is sensed as 0 if action is taken by the crew to turn off the descent engine gimbal system. This prevents bits 12-9 of channel 12 from having any effect on the flight and causes the software to avoid using the gimbal.

Bits 8-l are normally set (1). They are reset by astronaut panel switches that disable RCS jets (indicate that they are not functional). Each switch disables two jets, one with thrust around the P axis and one with thrust around the Q or R axis. The bits disable the following jets (see "RCSMONIT" routine):

Bit	Jet Numbers	Action (rotation)	Quad	System	Code
8	10	$+V$	2	A	2 D
	11	$-P$	2	A	2 F
7	9	$-V$	2	B	2 U
	12	+P	2	B	2 S
6	13	-U	1	A	1 U
	15	+P	1	A	1 F

Channel 32 (Continued)
Bit Jet Numbers Action (rotation) Quad System Code

5	14	+U	1	B	1D
	16	-P	1	B	1S
4	6	-U	3	B	3 D
	7	+P	3	B	3 F
3	1	+V	4	B	4 U
	3	-P	4	B	4F'
2	5	+U	3	A	3U
	8	-P	3	A	3 S
1	2	$-\mathrm{V}$	4	A	$4 D$
	4	+P	4	A	45

Channel 33

Bit Meaning (channel 33 is an input or information channel)
151 - Computer oscillator operating; reset to 1 by channel load instruction.
0 - Computer oscillator failure; flip-flop that can be set: by a power transient momentarily interrupting the oscillator. Not sensed by the LUMINARY program.

14 Flip-flop sensed as 0 if a "computer warning" indication has been produced (e.g. multiple restarts, counter fail, voltage fail in standby, or alarm test by bit 10 of channel 13). Reset to l by channel load instruction. Not sensed by LUMINARY program.

13 Flip-flop input sensed as 0 if a PIPA fail indication generated by the PIPA (accelerometer) electronics. Reset to 1 by channel load instruction.

12 Flip-flop input sensed as 0 if a telemetry end pulse occurs too soon after the previous pulse (faster than 100 pps). Reset to l by channel load instruction.

11 Flip-flop input sensed as 0 if an input bit to cell 000458 (INLINK) is rejected due to an excessive bit rate (faster than $6400 \mathrm{pps})$. Reset to 1 by channel load instruction.

10 Not examined by the EUMINARY program.
9 l-Landing radar high scale.
0 - Landing radar low scale.

Channel 33 (Continued)

Bit Meaning (channel 33 is an input or information channel)
81 - At least one of the three $L R$ velocity trackers not locked on.
0 - Landing radar velocity data good.
$7 \quad 1$ - Landing radar not in position 2. 0 - Landing radar in position 2.
$6 \quad 1$ - Landing rader not in position 1. 0 - Landing radar in position 1.

5 I - LR range tracker or rear velocity-beam tracker (2) not locked on. 0 - Landing radar range (altitude) data good.
$4 \quad 1$ - RR range tracker and frequency tracker not both locked on. $0-R R$ range and range rate data good.

31 - Rendezvous radar range high scale. 0 - Rendezvous radar range low scale.

21 - RR power off or RR mode switch not in the "LGC" position. $0-R R$ on and under LGC control; can be positioned via cells 538-548.

1 spare

FLAGWRDO

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0
15 (0) NEED2FLG 1 - Error needles driven with LGC DAP computed body rates
0 - Error needles driven with attitude errors
14 (0) JSWITCH 1 - Integration of W-matrix
0 - Integration of atate vector
13 (0) MIDFLAG 1 - Integration with secondary body and solar perturbations (should remain zero in IUMINARY)
0 - Integration without solar perturbations
12 (0) MOONFLAG 1 - In the sphere of influence of the moon 0 - In the sphere of influence of the earth

11 (0) P21FLAG 1 - Use base vectors already calculated 0 - lst pass -- calculate base vectors

10 (0) FSPASFLG 1 - First pass through reposition routine 0 - Not first pass through reposition routine

9 (0) P25FLAG 1 - P25 in operation (preferred tracking attitude) 0 - P25 not in operation

8 (0) IMUSE I - IMU in use (being switched, torqued or aligned) 0 - IMJ not in use

7 (0) RNDVZFLG 1 - P20 or P22 has been enabled 0 - P20 or P22 has not been enabled

6 (0) RRNBSW 1 - RRTARGET in navigation base coordinates 0 - RRTARGET in stable member coordinates

5 (0) LOKONSW 1 - Radar lock-on desired 0 - Radar lock-on not desired

4 (0) NEEDLFLG 1 - Display total attitude error
0 - DAP following error displayed
3. (0) FREEFLAG A temporary flag used for utility purposes in many routines by P51 and P52; by lunar and solar ephemerides.

2 (0) RIOFLAG 1 - RIO outputs data to altitude and altitude rate meters only
0 - Output of 1 condition plus forward and lateral velocity on cross pointers

FLAGWRDO (Continued)

Bit and initial value (fresh start)

Mnemonic Meaning when I and 0

I (0) OLDESFLG 1 - R29 (powered flight RR designate routine) gyro command loop requested
0 - R29 (powered flight RR designate routine) gyro command loop not requested

FLAGKRDI

Bit and initial value (fresh start)

		Mnemonic	Meaning when 1 and 0
15	(0)	NJETSFLG	I - Two jet RCS burn 0 - Four jet RCS burn
14	(0)	DIDFLAG	I - Inertial data is available 0 - Perform data display initialization functions
13	(0)	ERADFIAG	1 - Compute earth radius for Fischer ellipsoid; use stored moon radius (never set in LUMINARY) 0 - Compute moon radius; use stored earth radius (pad radius) (in latitude-longitude routines)
12	(0)	RODFLAG	1- If in P66, normal operation continues. Restart clears flag 0 - If in P66, reinitialization is performed and flag is set
11	(0)	Spare	
10	(0)	R61FLAG	1-R61 (preferred tracking attitude routine) IEM to be operated 0 - R65 (fine preferred tracking attitude routine) LM to be operated
9	(0)	spare	
8	(0)	VEHUPFIG	1 - Update CSM state vector 0 - Update LM state vector
7	(0)	UPDATFLG	l - State vector updates from tracking allowed 0 - Updates from tracking not allowed
6	(0)	NOUPFLAG	l - Neither CSM nor LEM state vector may be updated 0 - Either CSM or IEM state vector may be updated
5	(0)	TRACKFIG	$\begin{aligned} & \text { l - Tracking allowed } \\ & 0 \text { - Tracking not allowed } \end{aligned}$
4	(0)	spare	
3	(0)	SLOPESW	1 - Iteration with bias method 0 - Iteration with Regula Falsi method
2	(0)	GUESSW	I - No starting value for iteration O - Starting value for iteration exists

FTLAGWRDI (Continued)Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
1 (0) Spare

FLAGWRD2

		Mnemonic	Meaning when 1 and 0
15	(0)	DRIFTFEG	l- T3RUPT calls gyro compensation $0-$ T3RUPT does no gyro compensation
14	(0)	SRCHOPTN	1 - Radar in automatic search option (R24) 0 - Radar not in automatic search option
13	(0)	ACMODFLG	l - Manual acquisition by rendezvous radar 0 - Auto acquisition by rendezvous radar
12	(0)	LOSCMFLG	$\begin{aligned} & 1 \text { - Line-of-sight is being computed (R21) } \\ & 0 \text { - Line-of-sight not being computed } \end{aligned}$
11	(0)	STEERSW	```l - Powered flight steering enabled (sufficient thrust) O - Powered flight steering off (insufficient thrust).```
10		spare	
9	(0)	IMPULSW	1 - Minimum impulse burn (cut-off time specified) 0 - Steering burn (no cut-off time yet available)
8	(0)	XDELVFLG	l - External delta-V VG computation 0 - Lambert (aimpoint) VG computation
7	(0)	ETPIFLAG	l - Elevation angle supplied for P34, P74 0 - TPI time supplied for P34, P74 to compute elevation angle
6	(0)	FINALFLG	1 - Last pass through rendezvous program computations 0 - Interim pass through rendezvous program computations
5	(0)	AVFLAG	$\begin{aligned} & 1 \text { - LEM is active vehicle } \\ & 0 \text { - CSM is active vehicle } \end{aligned}$
4	(0)	PFRATFLG	1 - Preferred attitude computed 0 - Preferred attitude not computed

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0

3 (0) CALCMAN3 1 - No final roll
0 - Final roll is necessary
2 (0) CALCMAN2 1 - Perform maneuver starting procedure 0 - Bypass starting procedure

1 (0) NODOFLAG 1 - V37 not permitted (do not allow a major mode change) 0 - V37 permitted (major mode change enabled)

FLAGWRD3

	Mnemonic	Meaning when 1 and 0
15 (0)	POOHPLAG	1 - POO integration 10 minute checks are running 0 - POO integration 10 minute checks disabled
14 (0)	GLOKFAIL	1. - Calculated middle gimbal angle exceeds 60° 0 - Checked and reset in IMU performance tests, also resgt in ROO.
13	REFSMFLG	1 - Reference to stable member matrix valid (protected from fresh start) 0 - Transformation matrix not valid
12 (0)	LUNAFLAG	1 - Lunar latitude-longitude conversion 0 - Earth latitude-longitude conversion
11 (1)	NOR29FLG	```l - R29 not allowed 0 - R29 allowed (rendezvous radar designate, powered flight)```
10 (0)	VFLAG	1 - No star pair found during R56. 0 - Star pair found during R56:
9 (0)	R04FLAG	1-Alarm 521 suppressed 0 - Alarm 521 allowed
9 (0)	READRFLG	1 - Reading rendezvous radar data pursuant to R29 0 - Not reading rendezvous radar data pursuant to R29
8 (0)	PRECIFLG	1 - Normal integration in POO 0 - Engages 4-time step (POO) logic in integration
7 (0)	CULTFLAG	1 - Star occulted 0 - Star not occulted
6 (0)	ORBWFLAG	l - W matrix valid for orbital navigation (never set in LUMLNARY) 0 - W matrix invalid for orbital navigation
5 (0)	STATEFLG	1-Result of integration stored in permanent state 0 - Result of integration not to be stored in permanent state
4 (0)	INTYPFLG	1 - Conic integration 0 - Encke integration (precision)

Mnemonic Meaning when 1 and 0
3 (0) VINTFLAG 1 - CSM state vector integration0 - LM state vectior integration
2 (0) D60R9FLG $\quad 1$ - W matrix considered 9-dimensional for integration0 - W matrix considered 6-dimensional for integration
1 (0) DIMOFLAG $\quad 1-W$ matrix is to be used0 - W matrix is not to be used

FLAGWRD4

		Memonic	Meaning when 1 and 0
15	(0)	MRKIDFLG	1 - Mârk display awaiting astronaut response 0 - Mark display not awaiting astronaut response
14	(0)	PRIODFLG	1 - Priority display awaiting astronaut responsé 0 - Priority display not awaiting astronaut response
13	(0)	NRMIDFLG	1 - Normal display awaiting astronaut response 0 - Normal display not awaiting astronaut response
12	(0)	PDSPFLAG	```l - Make normal display priority (set by P20 for R60 display) O - Do not make normal display priority```
11	(0)	MWAITFLG	l - Higher priority display operating when mark display initiated; it's asleep and waiting 0 - Mark display not asleep because it's waiting for higher priority display to be completed
10	(0)	NWAITFLG	l-Higher priority display operating when normal display initiated 0 - If normal display is asleep, it's not because another display was operating when it started
9	(0)	MRKNVFLG	1 - Mark display awaiting key release 0 - Mark display not awaiting key release
8	(0)	NRMNVFLG	1 - Normal display awaiting key release 0 - Normal display not awaiting key release
7	(0)	PRONVFLG	I - Priority display awaiting key release 0 - Priority display not awaiting key release
6	(0)	PINBRFLG	1 - Astronaut has interferred with existing display 0 - Astronaut has not interferred with display
5	(0)	MRUPTFLG	1 - Mark display interrupted by priority display 0 - Mark display not interrupted by priority display
4	(0)	NRUPTFLG	1 - Normal display interrupted 0 - Normal display not interrupted

FLAGWRD4 (Continued)
Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 03 (0) MKOVFLAG 1 - Mark display interrupting normal0 - Priority display interrupting mark or normal
2 (0) spare
1 (0) XDSPFLAG 1 - Mark (extended verb) display not to be interrupted
O - Mark display may be interrupted

FLAGWRD5

	Mnemonic	Meaning when 1 and 0
15 (0)	DSKYFTHG	1 - Displays sent to DSKY O - No displays to DSKY
14 (0)	spare	
13 (0)	SNUFFER	1 - U, V jets disabled during DPS burns (V65) 0 - U, V jets enabled during DPS burns (V75)
12 (0)	NOTHROTL	1 - Inhibit full throttle 0 - Permit full throttle
11 (0)	R77FLAG	1-R77 is operating, suppress all radar alarms and tracker fails $0-\mathrm{R} 77$ is not operating
10 (0)	RNGSCFLG	I - Scale change has occurred during $R R$ reading 0 - Scale was the same before the reading and after
9 (0)	DMENFLG	1 - Measurement incorporation using 9x9 W-matrix 0 - Measurement incorporation using 6×6 W-matrix
8 (0)	ZOOMFLAG	1 - P63 throttle-up has occurred 0 - P63 throttle-up has not occurred
7 (0)	ENGONFLG	I - Engine turned on (commanded on) 0 - Engine turned off (APS or DPS)
6 (0)	3AXISFLG	I - Maneuver specified by three axes 0 - Maneuver specified by one axis; R60 calls "VECPOINT"
5 (0)	AORBSFLG	1 - Jets 7,15,8, and16 used for P-axis control 0 - Jets 4,12,3, and 11 used for P-axis control
4 (0)	NORRMON	1 - Bypass RR gimbal monitor 0 - Perform RR gimbal monitor
3 (0)	SOLNSW	1 - Lambert does not converge; Time-radius routine cannot solve because of near-circular orbit 0 - Lambert or Time-radius problem soluble

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0

2 (0) MGLVFLAG 1 - Local vertical coordinates computed O - Middle gimbal angle computed

1 (0) RENDWFLG 1 - W-matrix valid for rendezvous navigation 0 - W-matrix not valid for rendezvous navigation

FLAGWRD6

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0

1 (0) ATTFLAG $\quad 1$ - LM attitude exists in moon-fixed coordinates 0 - No LM attitude available in moon-fixed coordinates

FLAGWRD7

		Mnemonic	Meaning when 1 and 0
	(0)	ITSWICH	I - Test Lambert answer against limits 0 - Accept next Lambert TPI search solution
	(0)	MANUFLAG	1 - Attitude maneuver during $R R$ search (not set in 0 - No attitude maneuver during $R R$ search Luminary)
	(0)	IGNFLAG	I - Ignition time has arrived 0 - Ignition time has not yet arrived
	(0)	ASTNFLAG	1 - Astronaut has okayed ignition 0 - Astronaut has not okayed ignition
	(0)	SWANDISP	1 - Landing analog displays enabled 0 - Landing analog displays suppressed
	(0)	NORMSW	1 - Unit normal input to Lambert 0 - Lambert computes its own unit normal
	(0)	RVSW	1 - Do not compute final state vector in TimeTheta 0 - Compute final state vector in Time-Theta
	(0)	V67FLAG	1 - Astronaut changing W-matrix initialization values 0 - Astronaut not changing values
	(1)	IDLEFLAG	1 - Disable Delta-V monitor 0 - Enable Delta-V monitor
	(0)	V37FLAG	1-Servicer running 0 - Servicer not running
	(0)	AVEGFLAG	1 - Average-G desired 0 - Average-G not desired
		UPLOCKFL	```l - K, K-bar, K fail O - No KK\overline{K}}\mathrm{ fail since last error reset```
	(0)	VERIFLAG	Inverted whenever P27 is ended with a verb 33
	(0)	V82EMFLG	1 - Moon vicinity 0 - Earth vicinity

FLAGWRD7 (Continued)
Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
1 (0) TFFSW
1 - Calculate time
1 - Calculate time O - Calculate TFF

FLAGWRD8

Bit and initial value (fresh start)

	Mnemonic	Meaning when 1 and 0
15 (0)	RPQFLAG	1 - Position vector of secondary body not calculated 0 - Position vector of secondary body calculated
14 (0)	spare	
13 (0)	NEWIFLG	1 - First pass through integration 0 - Succeeding iteration of integration
12	CMOONFLG	1 - Permanent CSM state in lunar sphere of influence 0 - Permanent CSM state in earth's sphere (protected from fresh start)
11	LMOONFLG	1 - Permanent LM state in lunar sphere of influence 0 - Permanent LM state in earth's sphere (protected from fresh start)
10 (0)	FLUNDISP	l - Current guidance displays inhibited O - Current guidance displays permitted
9 (0)	spare
8	SURFFLAG	```l - LM on lunar surface 0 - LM not on lunar surface (protected from fresh start)```
7 (0)	INFINFLG	1 - Closure through infinity required in conic solution 0 - Closure through infinity not required
6 (0)	ORDERSW	1 - Iterator uses second order minimum mode (not set in 0 - Iterator uses first order standard mode Luminary)
5 (0)	APSESW	1 - Orbit does not intersect RDESIRED (Time-Radius) 0 - Orbit does intersect REDESIRED
4 (0)	COGAFLAG	1 - No conic solution; close to rectilinear 0 - Orbit is not too close to rectilinear for solution

Bit and initial value (fresh start)
Mnemonic Meaning when 1 and 0
3 (0) spare
2 (0) INITALGN 1 - Initial pass through P570 - Second pass through P57
1 (0) 360SW 1 - Transfer angle near 360 degrees 0 - Transfer angle not near 360 degrees

FLAGWRD9

	Mnemonic	Meaning when 1 and 0
15 (0) spe		
14 (0) FLVR		1 - Vertical rise (ascent guidance)
		0 - Non-vertical rise
13 (0) P7071FLG		1 - P70 or P71 using ascent guidance 0 - P12 using ascent guidance
12 (0)	FIPC	I - No position control (ascent guidance) 0 - Position control
11 (0)	FIPI	```l - Pre-ignition phase (ascent guidance) 0 - Regular guidance```
10 (0)	FTRCS	$\begin{aligned} & 1 \text { - RCS injection mode (ascent guidance) } \\ & 0 \text { - Main engine mode } \end{aligned}$
9 (0)	IETABORT	I - Abort programs are enabled 0 - Abort programs are not enabled
8 (0)	FLAP	1 - APS continued abort after DPS staging (ascent guidance) 0 - APS abort is not a continuation
7 (0)	ABTTGFLG	1 - Abort targeting to use $\mathrm{J}_{2}, \mathrm{~K}_{2}$ 0 - Abort targeting to use $\mathrm{J}_{1}, \mathrm{~K}_{1}$
6 (0)	ROTPLAG	1- P70 and P71 will force vehicle rotation in the preferred direction 0 - P70 and P71 will not force vehicle rotation in the preferred direction
5 (0)	QUITFLAG	```l - Discontinue orbital integration 0 - Continue integration```
4 (0)	spare	
3 (0)	MIDIFLAG	1 - Integrate to TDEC 0 - Integrate to TIMENOW
2 (0)	MIDAVFLG	1 - Integration entered from one of the drifting flight to powered flight handover routines 0 - Integration not entered as above
1 (0)	AVEMIDSW	l - AVETOMID calling for W-matrix integration; do not write over RN, VN, PIPTIME 0 - AVETOMID without W-matrix integration; allow set up of RN, VN, PIPTIME

FLQWRD10

Bit and initial value (fresh start)
Mnemonic Meaning when I and 0
15 (0) spare
14 (0) INTFLAG 1 - Integration in progress
0 - Integration not in progress
13 APSFLAG 1 - Ascent stage 0 - Descent stage
(protected from fresh start)
12 (0) spare
11 (0) spare
10 (0) spare
9 (0) spare
8 (0) spare
7 (0) REINTFLG 1 - Integration routine to be restarted
0 - Integration routine not to be restarted
6 (0) spare
5 (0) spare
4 (0) spare
3 (0) spare
2 (0) spare
1 (0) spare

FLGWRD11

	Mnemonic	Meaning when 1 and 0
15 (1)	LRBYPASS	I - Bypass all landing radar updates O - Do not bypass
14 (0)	spare	
13 (0)	spare	
12 (0)	VXINH	l - If Z velocity data unreasonable, bypass X velocity update on next pass 0 - Update X-axis velocity
11 (0)	PSTHIGAT	1 - Past higate 0 - Prehigate
10 (0)	NOLRREAD	l-Landing radar reposition; bypass update 0 - Landing radar not repositioning
9 (0)	XORFLG	l - Below limit inhibit X-axis override 0 - Above limit do not inhibit
8 (0)	LRINH	1 - Landing radar updates permitted by astronaut 0 - Landing radar updates inhibited by astronaut
7 (0)	VELDATA	$\begin{aligned} & 1 \text { - Landing radar velocity measurement made } \\ & 0 \text { - Landing radar velocity measurement not made } \end{aligned}$
6 (0)	LPOS2FLG	1 - Position 2 transformation for LR data being used. 0 - Position 1 assumed.
5 (0)	READVEL	1 - Ok to read landing radar velocity data 0 - Do not read landing radar velocity data
4 (0)	RNGEDATA	1 - Landing radar altitude measurement made 0 - Landing radar altitude measurement not made
3 (0)	N0511FLG	1 - Do not test LR position in R12. 0 - OK to test LR position.
2 (0)	VFLSHFLG	```l - Landing radar velocity fail lamp should be flashing O - Landing radar velocity fail lamp should not be flashing```

FLGWRD11 (Continued)

Bit and initial value (fresh start)

Mnemonic Meaning when 1 and 0
1 (0) HFLSHFLG 1 - Landing radar altitude fail lamp should be flashing
0 - Landing radar altitude fail lamp should not be flashing

DAPBOJLS

		Mnemonic	Meaning when_1 and 0
15	(0)	PULSES	1 - Minimum impulse command mode 0 - Not minimum impulse
14	(1)	USEQRJTS	1 - Use of gimbal not allowed 0 - Gimbal may be used
13	(0)	CSMDOCKD	1 - CSM attached to LM 0 - CSM not attached
12	(0)	OURRCBIT	1-Still in rate command mode 0 - Not in rate command mode
11	(0)	ACC40R2X	1-4-jet P-axis translation 0 - 2-jet P-axis translation
10	(1)	AORBTRAN	1-X.translation B system 0 - X translation A system
9	(0)	XOVINHIB	1 - LPD phase; X-axis override disabled 0 - Not in Landing Point Designation Phase
8	(1)	DRIFTBIT	1 - Assume that offset acceleration is zero 0 - Offset acceleration likely
7	(1)	RHCSCALE	$\begin{aligned} & 1 \text { - Normal RHC scaling } \\ & 0 \text { - Fine RHC scaling } \end{aligned}$
6	(0)	ULLAGER	1 - Internal ullage request 0 - No program ullage request
5	(1)	DBSLECT2	
4 (0)		DBSELECT	
		$\begin{aligned} & \text { N46 Digit } \\ & \text { "D" Load } \\ & \hline \end{aligned}$	DAP Deadband BIT 5 BIT 4
		0	± 0.300
		1	$\pm 1.0^{\circ} \quad 0 \quad 1$
		2	$\pm 5.0^{\circ} 010$
		3	± 5.000
3	(0)	ACCSOKAY	1. - Computed accelerations probably correct 0 - Computed accelerations probably incorrect
2	(1)	AJTRATE2	Used together to determine index (RATEINDX) which is used to select attitude maneuver rate
	(0)	AUT RATEI	

DAPBOOLS Continued

Mnemonic Meaning when I and 0

$00_{2} 0.2$ degrees/second
0120.5 degrees/second
$10_{2} 2.0$ degrees/second
$11_{2}^{2} 10.0$ degrees/second

RADMODES

		Mnemonic	Meaning when 1 and 0
15	(0)	CDESFLAG	l - LGC sends continuous designate commands to RR 0 - LGC checks for lock-on when designating
14	(0)	REMODFLG	1 - Remode of $R R$ antenna is required 0 - No remode of $R R$ antenna
13	(0)	RCDUOFLG	1 - RR CDU's are being zeroed 0 - RR CDU's are not being zeroed
12	(0)	ANPENFLG	1 - RR antenna is in mode 2 $0-R R$ antenna is in mode 1
11	(0)	REPOSMON	1-RR antenna reposition taking place 0 - No RR antenna reposition taking place
10	(0)	DESIGFLG	1 - $R R$ antenna dəsignation taking place 0 - No RR antenna designation taking place
9	(0)	ALTSCALE	1 - LR altitude reading on high scale 0 - LR altitude reading on low scale
8	(0)	LRVELFLG	1 - LR velocity data fail 0 - LR velocity data good
7	(1)	RCDUFALL	1-RR CDU fail has not occurred O - RR CDU fail has occurred
6	*	LRPOSFLG	1-LR antenna command to position \#2 0 - LR antenna in position \#l * - State of B6 CH33
5	(0)	LRALTFLG	l - LR altitude data fail 0 - LR altitude data good
4	(0)	RRDATAFL	$\begin{aligned} & 1 \text { - RR data fail } \\ & 0 \text { - RR data good } \end{aligned}$
3	(0)	RRRSFLAG	1 - RR range data on high scale $0-R R$ range data on low scale
2	(1)	AUTOMODE	l - RR not in automatic mode $0-R R$ is in automatic mode
1	(0)	TURNONFL	1 - $R R$ turn-on sequence in progress 0 - No $R R$ turn-on sequence in progress

List of References to Flagwords and Channels

The following is a listing of some of the rautines in which the majority of the discrete bits of information are set, reset, and tested. Input channels can only be tested (though some flip-flops are automatically reset when tested, they will be set again immediately if the relevant hardware signal is still present). Output channels are usually just set and reset, but they can also be tested to assure that they are configured as required. Flagwords are set, roset, and tested by the programs. References refer to this document, not to the listing.

This list tries to include all references to each bit, but since flagwords and channels can be addressed in many different ways in the LCC program, there is no way to assure that all references are included here. (In some cases references are deliberately left out because the bit does not affect the material presented in this document.)

Channel 5
Bit Routines
8 I - WRITEU
0 - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

71 - WRITEU
0 - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

61 - WRITEV
0 - DOFSTRTI WRITEV MOREIDLE test - TRYGTS

5 I - WRITEV
O - DOFSTRTI WRITEV MOREIDLE test - TRYGTS

41 - WRITEU
0 - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

31 - WRITEU
O - DOFSTRTI WRITEU MOREIDLE test - TRYGTS

```
Bit Routines
    2 - WRITEV
    O - DOFSTRTI WRITEV MOREIDLE
    test - TRYGTS
1 1 - WRITEV
    O - DOFSTRTI WRITEV MOREIDLE
    test - TRYGTS
Channel 6
8 - WRITEP
    O - WRITEP MOREIDLE DOFSTRTI
    test
7 - WRITEP
    O - DOFSTRTI MOREIDLE WRITEP
    test
6 1 - WRITEP
    O _ DOFSTRTI MOREIDLE WRITEP
    test
5 - WRITEP
    O _ DOFSTRTI MOREIDLE WRITEP
    test
4 - WRITEP
    O _ DOFSTRTI MOREIDLE WRITEP
    test
    3 - WRITEP
    O - DOFSTRTI MOREIDLE WRITEP
    test
    2 - WRITEP
    O - DOFSTRT1 MOREIDLE WRITEP
    test
    1 1 - WRITEP
    O - DOFSTRTI MOREIDLE WRITEP
    test
    Channel 11
14 1 - DOFSTART IMUMON ENGINOF3 GOPROG
    O - IGNITION ABRTJASK
```

```
13 1 - IGNITION GOPROG ABRTJASK
    O - IMUMON ENGINOF3 DOFSTART
10 1 - ERROR
        O - STARTSB2 DOFSTART
    9 1 - READACCS
        0 - STARTSB2 AVGEND DOFSTART
    7 1 - V37 VBTSTLTS DSPALARM ALMCYCLE CHARALRM UPERROUT UPEND70
        P2OLEMB7 ALM/END V73UPDAT UPEND73 ABORTALM
        O - STARTSB2 ERROR TSTLTS3 DOFSTART
    6 I - FLASHSUB TESTNN VBTSTLTS REQDATZ REQMM
        O - NV50DSP STARTSB2 TSTLTS3 BLANKDSP ENTER GOLOADLV VBRESEQ DOFSTART
    5 1 - CHARIN NV5ODSP MONDO VBTSTLTS
        O - STARTSB2 WITCHONE RELDSP RELDSP1 DOFSTART
    4 1 - IMUMON VBTSTLTS
        0 - IMUMON STARTSB2 TSTLTS3 DOFSTART
    3 I - UPRUPT VBTSTLTS
        0 - STARTSB2 TSTLTS3 V73UPDAT UPOUT4 ERROR VBRELDSP DOFSTART
    2 1 - ADVAN
        O - STARTSB2 DUMMYJB2 DOFSTART
    1 1 - SETISSW VBTSTLTS
        O - SETISSW TSTLTS3 DOFSTART
        test - ENDIMU
```

 Channel 12
 151 - ENDTNON
0 - STARTSB2 UNZ2 CAGESUB DOFSTRTI
test - IMUMON
141 - R23LEM LRS24.1 RO4X DODES R29DODES
0 - R21LEM TRMTRACK RRGIMON STDESIG ROLEND R29 ENDRRD29 P63LM
DOFSTRTI
test - R22LEM
131 - LRPOS2
0 - STARTSB2 LRPOSCAN DOFSTRTI
test -

Bit Routines

```
12 1 - ACDT+C12 TRIMGIMB
    O - ACDT+C12 TRIMGIMB SUPERJOB MOREIDLE DOFSTRT1 NEGUSUM
    test - SPSCONT
```

11-9 same as bit 12, bit 10 reset to 0
by PITCHOFF
81 - LANDISP
O - STARTSB2 IMUMON DISPRSET DOFSTRT1
6 - 1 - NEEDLER COARS IMUATTCK GOPROG CA+ECE DOFSTRT1
O - NEEDLER IMUMON CAGESUB SETCOARS IMUZERO DOFSTRT1
test - NEEDLER
51 - IMUZERO ISSZERO CAGESUB
O - IMUMON UNZ2 IMUZERO2 IMUFINE DOFSTRT1
test - IMUATTCK
41 - SETCOARS CAGESUB GOPROG DOFSTRT1
O - IMUMON UNZ2 IMUZERO IMUFINE DOFSTRT1
test - TNONTEST GLOCKMON IFAILOK IMUATTCK SETCOARS 8192AUG
TSTLTS 3
2 1 - SETRRECR INTLZE
0 - STARTSB2 RRAUTCHK RRGIMON DORREPOS TRMTRACK STDESIG RESET22
IMUMON R24END R24LEM3 RRDESDUN RRDESEND POOH RR1AX2 RRDESNB
R29DPAS2 DOFSTRT1 PROG20A R2IIEM9 DISPRSET PI2LM
test - SETRRECR SPEEDRUN
11 - RRZEROSB NORRGMON
O - STARTSB2 RRZEROSB DOFSTRT1
Channel 13
151 - JTLST T6JOBCHK
0 - STARTSB1 DOFSTRT1
141 - none
0-DOFSTRT1
131 - none
0 - DOFSTRT1
121 - REDESMON STARTP64 STARTSB2
0 - DOFSTRT1
11 1 - P06
0 - POSTAND STARTSB2 DOFSTRT1
101 - VBTSTLTS
0 - ERROR TSTLTS3 STARTSB2 DOFSTRT1
9 1 - ZEROENBL
0-STARTSB2 DOFSTRTI
81 - ZEROENBL
0 - STARTSB2 DOFSTRT1
7 1-DODOWNTM
O - DOFSTRT1 WOZERO
test - DODOWNTM
6-5 not set in LUMINARY
41 - RADSTART
0 - INITREAD STARTSB2 DOFSTRTI
test - C13STALL
31 - RADSTART
O - INITREAD STARTSB2 DOFSTRTI
test - RADAREAD
21 - RADSTART
0 - INITREAD STARTSB2 DOFSTRT1
test - RADAREAD
11 - RADSTART
0 - INITREAD STARTSB2 DOFSTRTI
test - RADAREAD RENDRAD

Channel 14

15 I - COARS2 ATTCK2 NEEDLES 0 - DOFSTRT1 IMUMON STARTSB2
141 - COARS2 ATTCK2 . . NEEDLES
0 - DOFSTRT1 IMUMON STARTSB2
13 I - COARS2 ATTCK2 . NEEDLES
0 - DOFSTRT1 IMUMON STARTSB2
121 - RROUT SPEEDRUN
0 - DOFSTRT1 IMUMON STARTSB2
Bit Routines
11 - RROUT SPEEDRUNO - IMUMON STARTSB2 DOFSTRTI
10 - GYROEXIT
O - STRTGYRO IMUMON SETCOARS STARTSB2 DOFSTRTI
9 1 - STRTGYR2O - STRTGYRO IMUMON STARTSB2 DOFSTRTI
8-1 - STRTGYR2O - STRTGYRO IMUMON STARTSB2 DOFSTRT1
7 1 - STRTGYR2
0 - STRTGYRO IMUMON STARTSB2 DOFSTRT1
6 I - IMUPULSEO - IMUMON DOFSTRTI
4 I - GOPROG DOIT P4OZOOM THROTUP ENGINOF30 - STARTSB2 DOFSTRT1
31 - ALTROUT1 ALTOUT10 - STARTSB2 DOFSTRT1
2 1 - ALTROUT1
0 - ALTOUTI STARTSB2 DOFSTRT1
Channel 15
Tested in routines KEYRUPTI and LIGHTSET
Channel 16
7 DESCBITS SOMEKEY MARKRUPT
6 SOMEKEY MARKRUPT
5 LIGHTSET MARKRUPT
4 MARKRUPT
3 MARKRUPT

Channel 30

Bit Routines in which bit is tested

Bits 15-11 are tested only in IMUMON

10 PLOAUTO REDOMANC R61+LO2 FINDCDUW CHEKBITS
9 IMUMON
7 RRCDUCHK
6 LANDISP
5 PLOAUTO
4 R10,R11
13 P 66 HZ
1 R10,R11

Channel 31

Bit Routines in which bit is tested
15 DETENTCK CHEKSTIK
14 PLOAUTO REDOMANC NEWDELHI IMUATTCK FINDCDUW R61+LO2 CHEKBITS

13 TSNEXTP TSNEXTS IMUATTCK DETENTCK QRAXIS CHEKBITS LUNLAND REDESMON

12-9 CHKVISFZ
8 RCS
7 RCS
6 TSNEXTS PITFALL REDESMON
5 TSNEETS PITFALL REDESMON
4 TSNEETP
3 TSNEXTP
2 TSNEXTS PITFALL REDESMON
1 TSNEXTS PITFALL REDESMON

Channel 32

Bit Routines
14 PROCEEDE
9 DVMON
8-1 RCSMONIT
Channel 331514
13 C33TEST
12 C33TEST
11 C33TEST
9 LRHEIGHT ROLZ
8 INITREAD DGCHECK SCALCHNG R77CHECK
7 LRPOS2 LRPOSCAN P2CHK MUNRETRN LRPOSOUT
6 DORSAMP ASTNRET MUNRETRN RO4Z P1CHK IRPOSOUT
5 DGCHECK INITREAD SCALCHNG R77CHECK
4 DODES INITREAD DGCHECK SCALCHNG DATGDCHK R29DPAS2 R61C+L01
3 RENDRAD LRS22. 1 RO4Z
2 RRAUTCHK RO4X R22LEM P2OLEMB7

FLAGWRDO

Bit	Mnemonic	Routines
15	NEED2FLG	```1 - RATEDISP O - R6OLEM DAPATTER TOTATTER DOFSTRT1 test - ALTDSPLY```
14	JSWITCH	$\begin{aligned} & 1 \text { - ENDSTATE } \\ & 0 \text { - INTGRATE DOFSTRT1 } \\ & \text { test - NBRANCH DIFEQ+2 NEXTCOL INTGRATE } \end{aligned}$
13	MIDFLAG	$\begin{aligned} & 1 \text { - TESTLOOP } \\ & 0 \text { - TESTLOOP DOFSTRT1 } \\ & \text { test - TIMESTEP ACCOMP DOW.. } \end{aligned}$
12	MOONFLAG	1 - P21CONT INTEGRV ORIGCHNG INTWAKEU INITVEL2 INTINT REV83 P76 USEPIOS ATTACHIT EXGSUB OTHINT 0 - P21CONT INTEGRV ORIGCHNG INTWAKEU INITVEL2 INTINT REV83 P76 ATTACHIT DOFSTRT1 OTHINT test - INTEGRV INTEGRVS RECTOUT TIMESTEP ORIGCHNG ACCOMP OBLATE ENDSTATE KEPPREP A-PCHK INTWAKEU P76 DOW. . ATTACHIT ORBCHGO
11	P21FLAG	$\begin{aligned} & 1 \text { - P2JVSAVE } \\ & 0-\text { GOPROG3 DOFSTRT1 } \\ & \text { test - PROG21 } \end{aligned}$
10	FSPASFLG	$\begin{aligned} & 1 \text { - R21LEM4 } \\ & 0-60 T \text { TMES DOFSTRT1 } \\ & \text { test - 60TTMES } \end{aligned}$
9	P25FLAG	```1 - PROG25 O - TRMTRACK POOH RESET22 P63LM DOFSTRT1 test - TRMTRACK CANV37 RESET22 P25LEM1 V37RET```
8	IMUSE	1 - IMUCHK RO2BOTH 0 - TRMTRACK IMUMON CANV37 POOH P06 ENDTEST1 DOFSTRT1 RESET22 SOMERR2 test - AGSVCALC TNONTEST ENDTNON IMUMON
7	RNDVZFLG	```1 - PROG2OA O - TRMTRACK IMUMON PO0H P06 RESET22। P12LM DOFSTRT1 P63LM PROG25 test - CANV37 RESET22 RRCDUCHK P20LEMC P20LEMC1TRMTRACK R22LEM CALLDGCH LUNDESCH V37RET CSMINT RELINUS```
6	RRNBSW	$\begin{aligned} & 1 \text { - RRDESNB } \\ & 0 \text { - RRDESSM DOFSTRT1 CSMINT } \\ & \text { test - DODES } \end{aligned}$

FLAGWRDO (Continued)

Bit Mnemonic Routines
5 LOKONSW 1 - VBCOARK R21LEM10 - VBCOARK DOFSTRT1 R21LEM R21LEM8test - DODES4 NEEDLFLG 1 - TOTATTER R6OLEMO - DAPATTER DOFSTRT1test - ALTDSPLY3 FREEFLAG 1 - LSPOS CHKSDATA GVDETER0 - ISPOS CHKSDATA GVDETER DOFSTRT1test - P51C R51E SURFLINE GVDETER
2 R1OFLAG 1 - P12LM ABRTJASK 0 - DOESTRT1 test - DISPRSET SPEEDRUN LANDISP
1 OLDESFLG 1. - R29.LOS

 0-R29 DOFSTRT1

 test - R29.LOS
 | Bit | Mnemonic | Routines |
| :---: | :---: | :---: |
| 15 | NJETSFLG | $\begin{aligned} & 1 \text { - DPDAT1 } \\ & 0 \text { - DPDAT1 DOFSTRT1 } \\ & \text { test - P41LM } \end{aligned}$ |
| 14 | DIDFLAG | ```1 - LANDISP O - GOPROG3 DISPRSET DOFSTRT1 test - LANDISP``` |
| 13 | ERADFLAG | ```1 - never set 0 - DOFSTRT1 P52LS P57P0ST P2IVSAVE test - LAT-LONG LALOTORV``` |
| 12 | RODFLAG | $\begin{aligned} & 1 \text { - STRTP66A } \\ & 0-\text { GOPROG3 DOFSTRT1 P66 } \\ & \text { test - LUNLAND } \end{aligned}$ |
| 10 | R61FLAG | $\begin{aligned} & 1 \text { - R61LEM } \\ & 0-\text { R65LEM DOFSTRT1 } \\ & \text { test - R61C+L06 } \end{aligned}$ |
| 8 | VEHUPFLG | $\begin{aligned} & 1 \text { - ORBCHGO CSMVEC } \\ & 0 \text { - LEMVEC PROG2O DOFSTRT1 } \\ & \text { test - UPPSV LSR22. } 3 \text { RANGEBQ FAZC FAZAB3 } \end{aligned}$ |
| 7 | UPDATFLG | ```1 - RESET22 PROG2OA S34/35.5 P30 P32/P72C P33/P73B P75 P74 P72 P73 O - TRMTRACK SEUDOPOO P30 CLUPDATE DOFSTRT1 test - R22LEM``` |
| 6 | NOUPFLAG | $\begin{aligned} & 1 \text { - UPDATOFF } \\ & 0 \text { - CSMVEC DOFSTRT1 } \\ & \text { test - R2LLEM } \end{aligned}$ |
| 5 | TRACKFLG | 1- RESET22 PROG20A PROG25 P73 P74 P75 P76 |
| 3 | SLOPESW | $\begin{aligned} & 1 \text { - LAMBERT } \\ & 0 \text { - ITERATOR DOFSTRT1 } \\ & \text { test - ITERATOR LAMBLOOP } \end{aligned}$ |
| 2 | GUESSW | $\begin{aligned} & 1 \text { - INITVEL } \\ & 0 \text { - INITVEL2 DOFSTRT1 } \\ & \text { test - LAMBERT } \end{aligned}$ |

FLAGWRD2

Bit	Mnemonic	Routines
15	DRIFTFLG	1 - P51B CAL53A UNZ2 AVGEND GYCOARS INITBY 0 - RNDREFDR PREREAD GYCOARS DOFSTRTI test - SVCT3 NBDONLY UNZ2
14	SRCHOPTN	```1 - R24LEM O - P2OLEMB3 PROG20A DOFSTRT1 TRMTRACK test - P20LEMB3 LRS24.1 DORROUT```
13	ACMODFLG	```l - P20LEMB1 0 - P2OLEMB3 PROG20A DOFSTRT1 test - P20LEMB3```
12	LOSCMFLG	```1 - R21LEM10 BEGDES29 R29.LOS O - RRDESDUN R29.LOS R21LEM1 R29DPAS2 PROG20A R24LEM R29 DOFSTRT1 R2ILEM4 RRDESNB test - BEGDES29 R29.LOS DORROUT LPS20.1```
11	STEERSW	$\begin{aligned} & 1 \text { - DVMON } \\ & 0 \text { - AVERAGEG DOFSTRT1 VGAIN* } \\ & \text { test - VGAIN* STEER? } \end{aligned}$
9	IMPULSW	$\begin{aligned} & 1 \text { - S40. } 132 \text { VGATN* } \\ & 0 \text { - STEERING S40.13 P42IGN DOFSTRT1 } \\ & \text { test - PLRIGN STEERING } \end{aligned}$
8	XDELVFLG	$\begin{aligned} & 1 \text { - P30 ADVANCE } \\ & 0 \text { - INITVEL7 DOFSTRT1 } \\ & \text { test - S40.1 UPDATEVG S40.8 } \end{aligned}$
7	ETPIFLAG	$\begin{array}{lc} 1- & \text { P74 } \\ 0- & \text { P74 } \\ \text { DOFSTRT1 } \\ \text { test } & \text { P34/P74C INTLOOP ELCALC } \end{array}$
6	FINALFLG	```1 - N45PROC P30 0 - SELECTMU DOFSTRT1 test - S34/35.5 P32/P72C P33/P73B VN1645 N45PROC```

FLAGWRD2 (Continued)

```
Bit Mnemonic Routines
    5 AVFLAG 1 - P42STAGE!S40.9 P34 P35 P32 P33
    0 - P74 P75 P72 P73 . DOFSTRTI
    test - PRECSET, 泣
4 PFRATFLG I - S40.2,3
    O - R51E GYCOARS REGCOARS DOFSTRTI
    test - PROG52
    3 CALCMAN3 Not really functional: set in KALCMAN3; reset
    in DOFSTRTI
    2 CALCMAN2 I - WCALC
        O - NEWANGL DOFSTRTI
        test - NEWANGL
    I NODOFLAG I - AGSVCALC STATINTI P06 P76
        O - AGSVCAIC STATINTI POOH POSTAND DOFSTRTI POODOO P76
        test - V37
```


FLAGWRD3

B1t	Mnemonic	Routines
15	POOHFLAG	$\begin{aligned} & 1 \text { - STATINT1 } \\ & 0 \text { - CANV } 37 \text { DOFSTRT1 } \\ & \text { test - TESTLOOP } \end{aligned}$
14	GLOKFAIL	$\begin{aligned} & 1 \text { - CALCGA } \\ & 0 \text { - REDO CANV } 37 \text { DOFSTRT1 } \\ & \text { test - REDO } \end{aligned}$
13	REFSMFLG	1 - P51C GYCOARS REGCOARS SURFDISP 0 - RNDREFDR GYCOARS GVDETER test - AGSINIT RO2BOTH VN1645 PACKOPTN DSPOPTN R59
12	LINAFLAG	```1 - LANDJUNK P52LS P57POST P21VSAVE O - DOFSTRTI P21VSAVE test - LAT-LONG LALOTORV```
11	NOR29FLG	```1 - AVGMND DOFSTRTI O - CMPONENT test - COPYCYC1 STARTSB2 R29RDJOB RDRUSEGK```
10	VFLAG	$\begin{aligned} & 1 \text { - R56 PIC3 } \\ & 0-\text { PIC3 DOFSTRT1 } \\ & \text { test - PIC3 PICEND } \end{aligned}$
9	ROLFLAG	1-R04 R61C+L01 0 - ROLEND CANV 37 PROG20A DOFSTRTI R61C+L01 STTARTSB2 test - RO4Z RADAREAD RESAMPLE R77
	READRFLG	```l - R29DPAS2 0 - ENDR29D STARTSB2 DOFSTRT1 test - R29READ COPYCYCI```
8	PRECIFLG	1 - STATINTI CSMPREC INTEGRVS LEMPREC O-STATINTI INTEXIT DOFSTRT1 test - TESTLOOP
7	CULTFLAG	$\begin{aligned} & 1 \text { - oCCULT } \\ & 0 \text { - oCCULT DOFSTRT1 } \\ & \text { test - PIC3 } \end{aligned}$
6	ORBWFLAG	1 - never set O - WMATEND INTWAKEU DOFSTRTI test - AVETOMID
5	STATEFLG	```1 - SETIFLGS WMATEND LSR22.3 LSR22.4 O - ENDINT TESTLOOP DOFSTRTI POODOO INTEXIT test - A-PCHK```

FLAGWRD3 (Continued)

```
Bit Mnemonic Routines
4 INTYPFLG I - OTHCONIC CSMCONIC LEMCONIC INTINT EXGSUB REV83
O - MIDTOAV2 SETIFLGS CSMPREC LEMPREC MIDTOAV2
    P76 LSR22.3 LSR22.4 INITVEL2 INTINT ORBCHGO
    DOFSTRTI GETRVN PROG21
test - ALOADED
3 VINTFLAG I - STATINTI CSMPREC CSMCONIC AVETOMID UPPSV LSR22. }
LSR22.4 ORBCHGO PROG21
O - STATINTI LEMPREC IEMCONIC AVETOMID MIDTOAV2
    UPPSV LSR22.3 LSR22.4 DOFSTRTI ORBCHGO PROG21
    test - INTEGRV ENDSTATE A-PCHK
2 D6OR9FLG I - STATINTI AVETOMID UPPSV LSR22.3 ORBCHGO
    O ORBCHGO SETIFLGS LSR22.4 DOFSTRTI
    test - ENDSTATE
I DIMOFLAG I - STATINTI AVETOMID UPPSV LSR22.3 LSR22.4 ORBCHGO
    O - SETIFLGS CSMPREC LEMPREC CSMCONIC LEMCONIC INTEGRVS
    WMATEND MIDTOAV2 LSR22.3 ORBCHGO
        DOFSTRTI PROG21 P2ICONT
    test - ACCOMP ENDSTATE
```


FLAGWRD4

Bit	Mnemonic	Routines
15	MRKIDFLG	1 - FLASHSUB
		0 - JOBXCHS ENDRET STARTSB2 DOFSTRTI test - OKTOPLAY MAKEPRIO FLASHSUB TERMATE PINBRNCH
14	PRIODFLG	1 - FLASHSUB
		O - ENDRET STARTSB2 DOFSTRTI test - NORMBNCH MAKEMARK MAKEPRIO PINBRNCH ENDEXT OKTOPLAY TESTXACT TERMATE
13	NRMIDFLG	1 - FLASHSUB
		0 - JOBXCHS ENDRET STARTSB2 DOFSTRTI test - MAKEPLAY MAKEMARK MAKEPRIO PINBRNCH ENDEXT
12	PDSPFLAG	1 - R61C+L02 RELINUS
		0 - STARTSB2 R61C+LIO2 DOFSTRT1 test - OKTOPLAY MAKEMARK CHKLINUS TESTXACT R61TEST
11	MWAITFLG	1 - MAKEMARK
		O _ MARKWAKE STARTSB2 DOFSTRTI test - OKTOPLAY MAKEMARK NORMRET
10	NWAITFLG	1 - OKTOPLAY
		O - NORMWAKE STARTSB2 DOFSTRT1 test - MAKEYLAY NORMRET
9	MRKNVFLG	1 - NV50DSP
		0 - JOBXCHS NV 50DSP STARTSB2 DOFSTRT1 test - OKTOPLAY MAKEMARK MAKEPRIO WITCHONE
8	NRMNVFLG	1 - NV50DSP
		0 - JOBXCHS NV 50DSP STARTSB2 DOFSTRT1 test - MAKEPLAY MAKEMARK MAKEPRIO WITCHONE
7	PRONVFLG	1 - NV50DSP
		0 - NV50DSP STARTSB2 DOFSTRT1 test - OKTOPLAY MAKEMARK MAKEPRIO WITCHONE TESTXACT
6	PINBRFLG	1 - NORMBNCH
		0 - ENDRET STARTSB2 DOFSTRT1 test - FLASHSUB
5	MRUPTFLG	1 - JOBXCHS
		O - MARKWAKE STARTSB2 DOFSTRT1
		test - OKTOPLAY MAKEMARK NORMRET

Bit Mnemonic Routines
4 NRUPTFLG 1 - JOBXCHS
0 - NORMWAKE STARTSB2 DOFSTRT1 test - MAKEPLAY NORMRET
3 MKOVFLAG
O - MARKPLAY MARKRET STARTSB2 DOFSTRT1 test - JOBXCHS
1 ROSPFLAG 1 - AGSVCALC MARKPLAY O - ENDEXT STARTSB2 DOFSTRT1 GOTOPOOH test - OKTOPLAY

FLAGWRD5

Bit	Mnemonic	Routines
15	DSKYFLAG	$\begin{aligned} & 1 \text { - KEYRUPTI } \\ & 0 \text { - DOFSTRTI } \\ & \text { test - T4RUPT } \end{aligned}$
13	SNUFFER	$\begin{aligned} & 1 \text { - SNUFFOUT } \\ & 0 \text { - OUTSNUFF DOFSTRT1 } \\ & \text { test - AFTERTJ } \end{aligned}$
12	NOTHROTL	```1 - S40.13 S40.13D 0 - P40LM S40.13D P63LM DOFSTRT1 test - PLOIGN```
11	R77FLAG	$\begin{aligned} & \text { l - R77 } \\ & 0 \text { - R77END DOFSTRT1 STARTSB2 } \\ & \text { test - R77CHECK DORSAMP RDRUSECK } \end{aligned}$
10	RNGSCFLG	$\begin{aligned} & 1 \text { - SCALCHNG } \\ & 0 \text { - LRS22. } 1 \text { LRHJOB R29RANGE DOFSTRTI } \\ & \text { test - READRDOT LRHJOB R29RANGE } \end{aligned}$
9	DMENFLG	$\begin{aligned} & \text { I - LSR22.3 } \\ & 0 \text { - LSR22. } 4 \text { DOFSTRT1 } \\ & \text { test - INCORP1 INCORP2 FAZAB3 INCOR2-3 } \end{aligned}$
8	ZOOMFLAG	$\begin{aligned} & 1 \text { - P63200M } \\ & 0 \text { - TIG-5 DOFSTRT1 } \\ & \text { test - LUNLAND } \end{aligned}$
7	ENGONFLG	1 - IGNITION ABRTJASK 0 - ENGINOF3 IMUMON DOFSTRTI test - GOPROG DCMCL
6	3AXISFLG	```1 - R62DISP O - R52 ENDMANUI V89RECL P4OIN P4ILM CANV37 DOFSTRTI R61C+IO2 test - R6OLEM REDOMANC```
5	AORBSFLG	1 - PURGENCY PJETSLEC 0 - PURGENCY PJETSLEC DOFSTRT1 test - TSNEXTP PEGI PURGENCY

```
Bit Mnemonic Routines
NORRMON 1 - VBCOARK R23LEM R2ILEM8
    O - RRDESEND STARTSB2 PROG2OA R23LEM R23LEM2 DOFSTRTI R2ILEMI
    test - RRGIMON
3 SOLNSW 1 - TIMERAD SUFFCHEK LAMBERT
    O - TIMERAD DOFSTRTI LAMBERT
    test - none (telemetry)
2 MGLVFLAG 1 - GET.LVC
    O - GET+MGA DOFSTRTI
    test - none (telemetry)
l RENDWFLG I - WLINIT
    O - WMATRXNG WMATEND INTWAKEU V67CALL DOFSTRTI ATMAG
    test - STATINTl AVETOMID UPPSV ORBCHGO LSR22.3
```


FLAGWRD6

Bit	Mnemonic	Routines
15	S32.1F1	$\begin{aligned} & 1-\text { CSI/B2 } \\ & 0-\text { CSI/A SCNDSOL DOFSTRT1 } \\ & \text { test - CSI/B2 } \end{aligned}$
14	S32.1F2	1 - CSI/A SCNDSOL 0 - FRSTPAS DOFSTRT1 test - CIRCL
13	S32.1F3A	1 - CIRCL FIFTYFPS 0 - CSI/A SCNDSOL DOFSTRTI test - CSI/B2 CIRCL SCNDSOL
12	S32.1F3B	$\begin{aligned} & 1 \text { - CSI/A FTFTYFPS } \\ & 0 \text { - CIRCL SCNDSOL DOFSTRT1 } \\ & \text { test - CSI/B2 CIRCL SCNDSOL } \end{aligned}$
10	GMBDRVSW	$\begin{aligned} & 1 \text { - PITCHOFF } \\ & 0 \text { - TRIMGIMB DOFSTRTI } \\ & \text { test - PITCHOFF } \end{aligned}$
8	MUNFLAG	```1 - P63LM P12LM 0 - AVGEND DOFSTRT1 CANV37 test - NORMLIZE READACCS AVERAGEG RRGIMON P418POT SERVIDLE V83CALL GETRVN```
6	REDFLAG	```1 - P64DISPS 0 - P64DISPS STARTP64 P63LM DOFSTRTI STRTP66A test - P64DISPS REDESIG```
3	NTARGFLG	$\begin{aligned} & 1 \text { - NTARGCHK } \\ & 0-S 34 / 35.5 \text { DOFSTRTI } \\ & \text { test - Not shown in document } \end{aligned}$

FLAGWRD6 (Continued)

Bit	Mnemonic	Routines
2	AUXFLAG	1 - AVERAGEG
		0 - AVERAGEG DOFSTRTI
1	ATTFLAG	1 - REFMF
		0 - DOFSTRTI
		test - PACKOPTN DSPOPTN ATTCHK

FLAGWRD7

Bit	Mnemonic	Routines
15	ITSWICH	1-P34/P74C P33/P73B 0 - P34/P74C INTLOOP DOFSTRTI test - INTLOOP ELCALC
13	IGNFLAG	```1 - TIG-0 0 - TIG-5 PL2IGN DOFSTRT1 test - *PROCEED```
12	ASTNFLAG	```1 - *PROCEED O - TIG-5 P42IGN DOFSTRT1 test - TIG-0```
11	SWANDISP	$\begin{aligned} & 1 \text { - P63IGN ABRTIGN } \\ & 0 \text { - DOFSTRT1 AVGEND } \\ & \text { test - LANDISP } \end{aligned}$
10	NORMSW	```1 - INITVEL2 O - PARAM DOFSTRTI HAVEGUES test - S40.1B S40.9 GEOM UPDATEVG RASTEERI```
9	RVSW	$\begin{aligned} & 1 \text { - INTLOOP CSI/B2 "VNO611 } \\ & 0 \text { - CDHMVR DOFSTRT1 ORBCHGQ } \\ & \text { test - COMMNOUT } \end{aligned}$
8	V67FLAG	$\begin{aligned} & 1 \text { - V67CALL } \\ & 0 \text { - DOFSTRT1 V67CALL } \\ & \text { test - V67CALL } \end{aligned}$
7	IDIEFLAG	```1 - STEERING ENGINOF1 COMFAIL DOFSTRTI MAINENG SERVIDLE O - P42IGN GOABORT COMFAIL4 test - STEERING AVERAGEG MAINENG```
6	V37FLAG	$\begin{aligned} & 1 \text { - PREREAD } \\ & 0 \text { - DOFSTRTI AVGEND } \\ & \text { test - V37 POODOO RDRUSECK } \end{aligned}$
5	AVEGFLAG	```1 - PREREAD 0 - V37 DOFSTRTI test - V82CALL READACCS REV83 RRGIMON P70 P71 RlO,R11 V83CALL LRPOS2K```
4	UPLOCKFL	$\begin{aligned} & 1 \text { - UPRUPT } \\ & 0 \text { - UPRUPT DOFSTRTI } \\ & \text { test - UPRUPT } \end{aligned}$

FLAGWFD7 (Continued)

Bit	Mnemonic	Routines
3	VERIFLAG	1 - UPSTORE
		O - UPSTORE DOFSTRT1 test - none (for telemetry)
2	V82EMFLG	1 - V82GOFFl V82GON1
		0 - V82GOFFI V82GON1 DOFSTRTI test - SR30.1
1	TFFSW	1 - CALCTPER
		0 - CALCTFF DOFSTRTI
		test - CALCTFF

FLAGWRD8

Bit	Mnemonic	Routines
15	RPQFLAG	$\begin{aligned} & 1 \text { - INTEGRV INTEGRVS GOBAQUE } \\ & 0 \text { - ACCOMP DOFSTRT1 } \\ & \text { test - TIMESTEP LUNSPH } \end{aligned}$
13	NEWIFLG	1 - INTEGRV INTEGRVS 0 - TESTLOOP DOFSTRT1 test - TESTLOOP
12	CMOONFLG	1 - ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT ORBCHGO O - ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT ORBCHGO test - INTEGRV SELECTMU INTINT CSI/B2 P76
11	LMOONFLG	```I - ENDSTATE A-PCHK INTWAKEU O - ENDSTATE A-PCHK INTWAKEU test - V82GONI AVETOMID INTEGRV FAZC ATTACHIT REV83 OTHINT```
10	FLUNDISP	```I - COMFAIL O - GOABORT IGNITION GOCUTOFF COMFAIL4 DOFSTRTI test - DISPEXIT ASCTERMI```
8	SURFFLAG	1 - LANDJUNK 0.- ATMAG test - CHANGEVB YMKRUPT RRDESSM ATTACHIT NBDONLY WLINIT V67CALL P2OLEMA STATINTI LSR22. 3 R2ILEM RANGEBQ R22LEM R24LEM3 SERVICER LUNDESCH LPS20.1 P20LEMB7 PROG2O AVESTAR VACSTOR SURFAGAN MARKRUPT UPPSV R22LEM42 INTEGRV LASTBIAS REV83 P2IVSAVE UPPSV4 V83CALL R21LEMY ATTACHED
7	INFINFLG	```1 - INFINITY O - POLYCOEF DOFSTRTI test - COMMNOUT LAMBLOOP```
6	ORDERSW	$\begin{aligned} & 1 \text { - none } \\ & 0 \text { - DOFSTRTI } \\ & \text { test - ITERATOR } \end{aligned}$
5	APSESW	```1 - TIMERAD O - TIMERAD DOFSTRTI test - none (telemetry)```

Bit	Mnemonic	Routines
4	COGAFLAG	$\begin{aligned} & 1 \text { - TIMERAD TIMETHET } \\ & 0 \text { - COMMNOUT PARAM DOFSTRT1 } \\ & \text { test - none (telemetry) } \end{aligned}$
2	INITALGN	$\begin{aligned} & 1 \text { - BYLMATT } \\ & 0 \text { - DOFSTRTI ATTCHK } \\ & \text { test - SURFDISP INITBY SURFLINE } \end{aligned}$
1	360SW	$\begin{aligned} & \text { I - GETX WLOOP } \\ & 0 \text { - GETX DOFSTRTI } \\ & \text { test - POLYCOEF } \end{aligned}$

Bit	Mnemonic	Routines
14	FLVR	$\begin{aligned} & 1 \text { - Pl2LM INJTARG } \\ & 0 \text { - CMPONENT DOFSTRT1 } \\ & \text { test - CMPONENT } \end{aligned}$
13	P7071FLG	$\begin{aligned} & 1 \text { - GOABORT } \\ & 0 \text { - DOFSTRTI } \\ & \text { test - ASCENT CMPONENT } \end{aligned}$
12	FLPC	$\begin{aligned} & \text { l - MAINENG } \\ & 0 \text { - DOFSTRTI } \\ & \text { test - MAINENG } \end{aligned}$
11	FLPI	$\begin{aligned} & 1 \text { - Pl2LM } \\ & 0 \text { - Pl2RET DOFSTRTI } \\ & \text { test - CMPONENT } \end{aligned}$
10	FLRES	$\begin{aligned} & 1 \text { - CUTOFF } \\ & 0 \text { - GOABORT DOFSTRTI } \\ & \text { test - ASCTERMD ASCTERM ASCENT ATMAG } \end{aligned}$
9	LETABORT	```l - P63IGN O - LANDJUNK TERMASC GOABORT DOFSTRTI test - P70 P7l RlO,Rll```
8	FLAP	$\begin{aligned} & 1 \text { - UPTHROT } \\ & 0 \text { - DOFSTRT1 } \\ & \text { test - GOABORT Pl2INIT } \end{aligned}$
7	ABTTGFLG	$\begin{aligned} & \text { l - INJTARG } \\ & 0 \text { - CANV } 37 \text { DOFSTRT1 } \\ & \text { test - for telemetry only } \end{aligned}$
6	ROTFLAG	$\begin{aligned} & 1 \text { - INJTARG } \\ & 0 \text { - DOFSTRTI CMPONENT } \\ & \text { test - CMPONENT } \end{aligned}$
5	QUITFLAG	$\begin{aligned} & 1 \text { - VERB96 } \\ & 0 \text { - STATINTI DOFSTRT1 } \\ & \text { test - STATINTI TESTLOOP } \end{aligned}$
3	MIDIFLAG	```l - MIDTOAVI O - MIDTOAVI MIDTOAV2 CKMID2 DOFSTRTI test - CKMID2```
2	MIDAVFLG	$\begin{aligned} & 1 \text { - MIDTOAV2 } \\ & 0 \text { - MIDTOAV2 DOFSTRII } \\ & \text { test - ENDSTATE } \end{aligned}$
1	AVEMIDSW	$\begin{aligned} & \text { l - AVETOMID } \\ & 0 \text { - INTEXIT DOFSTRT1 } \\ & \text { test - SVDWN2 } \end{aligned}$

Bit	Mnemonic	Routines	
14	INTFLAG	```I - LNTSTALL O - INTWAKE1 GOPROG GOPROG2A DOFSTRT1 test - INTSTALL```	
13	APSFLAG	```I - LANDJUNK DPDATI ABRTJASK WANTAPS 0 - DPDATl test - P4OLM P42LM S40.13 RCS 1/ACCS DAPDATAl DAPDATA2 SERVICER P4OAUTO DVMON AFTERTJ```	S40.13D
7	REINTFLG	1 - ENDSTATE A-PCHK P76 UPJOB INCORP2 O - GOPROG2A INTWAKE1 DOFSTRT1 POODOO test - INTSTALL INTWAKE	

FLGWRD11

Bit	Mnemonic	Routines
15	LRBYPASS	```1 - SERVIDIE ABRTJASK CANV 37 DOFSTRT1 0 - P63IM test - MUNRETRN R10,R11 RDRUSECK RADAREAD RESAMPLE STARTSB1```
12	VXINH	```1 - VMEASCHK O - ABRTJASK DOFSTRT1 VMEASCHK CANV37 SERVIDLE test - VMEASCHK```
11	PSTHIGAT	1 - MUNRETRN 0 - ABRTJASK DOFSTRT1 CANV 37 SERVIDIE test - MUNRETRN UPDATCHK
10	NOLRREAD	1 - MUNRETRN 0 - ABRTJASK POSGOOD DOFSTRT1 CANV 37 SERVIDLE P1CHK test - UPDATCHK R10,R11 MUNRETRN
9	XORFLG	```1. - MUNRETRN O - ABRTJASK DOFSTRT1 CANV 37 SERVIDIE test - MUNRETRN```
8	LRINH	1 - SET57 O - NOREASON ABRTJASK LROFF DOFSTRT1 CANV37 SERVIDLE RESET57 test. - NOREASON VMEASCHK
7	VELDATA	```1 - LRVJOB 0 - ABRTJASK CONTSERV DOFSTRT1 CANV 37 SERVIDIE test - VMEASCHK```
6	LPOS2FLG:	```1 - POSGOOD O - ABRTJASK SERVIDLE DOFSTRT1 CANV 37 test - for telemetry only```
5	READVEL	```1 - VALTCHK O - ABERJASK DOFSTRT1 CANV37 SERVIDLE test - VALTCHK```
4	RNGEDATA	$\begin{aligned} & 1 \text { - LRHJOB } \\ & 0 \text { - CONTSERV ABRTJASK DOFSTRT1 CANV } 37 \text { SERVIDLE } \\ & \text { test - UPDATCHK } \end{aligned}$
3	NO511FLG	```1 - P1CHK O - ABRTJASK SERVIDLE DOFSTRT1 CANV 37 test - MUNRETRN```

```
Bit Mnemonic Routines
    2 VFLSHFLG I - VMEASCHK
    O - ABRTJASK VMEASCHK ONLITES DOFSTRTI CANV37 SERVIDLE
    test - RlO,Rll RADLITES
    I HFLSHFLG l - UPDATCHK
    O - ABRTJASK UPDATGHK ONLITES DOFSTRTl CANV37 SERVIDLE
    test - RlO,Rll RADLITES
```


RADMODES

Bit	Mnemonic	Routines
15	CDESFLAG	1 - VBCOARK LRS24.I R2ILEM8 O - VBCOARK TRMTRACK ITURNON2 STARTSUB POOH RRAUTCHK P12LM R24END R24LEM3 RRDESEND RRDESNB RESET22 PROG2UA R2ILEM9 test - RRDESEND STDESIG DODES
14	REMODFLG	I - RRDESSM RRDESNB R29 0 - ITURNON2 STARTSUB STARTSB2 RRAUTCHK REMODE test - RRGIMON RR1AX2. BEGDES ERS24.1 COPYCYC1
13	RCDUOFLG	1-RRAUTCHK RRZERO 0 - ITURNON2 STARTSUB STARTSB2 RRZEROSB RRAUTCHK test - RRGIMON SETTRKF P2OLEMB3 R22LEM COPYCYCI RRCDUCHK
12	ANTENFLG	```1 - RRZEROSB RMODINV O - ITURNON2 STARTSUB RRZEROSB RMODINV test - DORREPOS RRLIMCHK RRANGLES RMODINV REMODE DODES RRLIMNB R29 R2ILEM```
11	REPOSMON	```l - RRGIMON R29 O - ITURNON2 STARTSUB STARTSB2 RRAUTCHK DORREPOS RRIAX2 PREPOS29 test - RRGIMON RRIAX2 STARTDES STDESIG EORROUT RRZERO RENDRAD COPYCYCI```
10	DESIGFLG	1 - STARTDES R29 O - VBCOARK RRDESEND TRMTRACK ITURNON2 STARTSUB POOH STDESIG STARTSB2 RRDESDUN R24END R24LEM3 RRDESNB RESET22 R29DPAS2 COPYCYC1 R29 P12LM PROG2OA R21LEM9 test - DORREPOS RRIAX2 STDESIG R29 BEGDES29 REMODE
9	ALTSCALE	$\begin{aligned} & \text { 1 - SCALCHNG RO4Z } \\ & 0 \text { - ITURNON2 STARTSUB SCALCHNG RO4Z } \\ & \text { test - LRHEIGHT UPDATCHK } \end{aligned}$
8	LRVELFLG	1 - RESAMPLE R77CHECK O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3 R77CHECK test - RADLITES
7	RCDUFAIL	```7 - ERROR ITURNON2 STARTSUB RRCDUCHK TSTLTS3 O - RRCDUCHK test - RRCDUCHK SETTRKF ENDRADAR RENDRAD```
6	LRPOSFLG	$\begin{aligned} & \text { I - STARTSUB LRPOS2 RO4Z } \\ & 0 \text { - ITURNON2 STARTSUB RO4Z } \\ & \text { test - DORSAMP } \end{aligned}$

Bit	Mnemonic	Routines
5	LRALTFLG	1 - RESAMPLE R77CHECK O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3 R77CHECK test - RADLITES
4	RRDATAFL	```1 - RESAMPLE O - ERROR ITURNON2 STARTSUB GOODRAD TSTLTS3 test - SETTRKF```
3	RRRSFLAG	```1 - SCALCHNG LRS22.I RO4Z 0 - ITURNON2 STARTSUB SCALCHNG LRS22.1 RO4Z test - RENDRAD RRANGOUT```
2	AUTOMODE	```I - ITURNON2 STARTSUB RRAUTCHK O - RRAUTCHK test - RRAUTCHK RRCDUCHK RRGIMON SETTRRF RRIAX2 RRZERO COPYCYCI R29RDJOB NORRGMON```
1	TURNONFL	```1 - RRAUTCHK O - ITURNON2 STARTSUB STARTSB2 RRTURNON RRAUTCHK test - RRZERO```

DAPBOOLS

Bit	Mnemonic	Routines
15	PULSES	$\begin{aligned} & 1 \text { - MINIMP LANDJUNK } \\ & 0 \text { - NOMINIMP } \\ & \text { test - TSNEXTP TSNEXTS } \end{aligned}$
14	USEQRJTS	$\begin{aligned} & 1 \text { - ENGINOF3 AVERAGEG DVMON DOFSTRTI } \\ & 0 \text { - DVMON } \\ & \text { test - TJLAW4 TRYGTS SPSCONT } \end{aligned}$
13	CSMDOCKD	```l - DPDATI O - DPDATl DOFSTRTI test - PURGENCY TJLAW4 l/ACCS DAPDATA2 DAPDATAI DPDATI BACKP STIKLOAD FINDCDUW P4OLM MINRTN```
12	OURRCBIT	$\begin{aligned} & 1 \text { - DETENTCK } \\ & 0 \text { - DETENTCK DOFSTRTI } \\ & \text { test - DETENTCK CHEKSTIK QRAXIS } \end{aligned}$
11	ACC40R2X	```l - DPDATI.GOABORT Pl2LM O - DPDATl DOFSTRTI test - DPDATI DAPDATAI +XORULGE```
10	AORBTRAN	```1 - COMFAIL2 DPDAT1 DOFSTRTI O - COMFAIL2 DPDATI test - MINRTNDAPDATAI +XORULGE```
9	XJVINHIB	```1 - CMPONENT MUNRETRN O - DOFSTRTI P65START CMPONENT ABRTJASK CANV37 GOTOPOOH STRTP66A test - ISNEXTP FINDCDUW```
8	DRIFTBIT	$\begin{aligned} & 1 \text { - ALLCOAST COMFAIL2 DOFSTRT1 } \\ & 0-P 42 I G N \text { ABRTJASK } \\ & \text { test - 1/ACCONT SPSRCS RCS BACKP AFTERTJ } \end{aligned}$
7	RHCSCALE	```I - DPDATI DOFSTRTI 0 - DPDATI test - DAPDATAI STIKLOAD```
6	ULLAGER	```I - ULLGTASK COMFAIL2 O - P42IGN ENGINOFI GOPOST GOTOPOOH GOCUTOFF ABRTJASK DOFSTRTI STOPCLOK test - RCS```

Bit	Mnemonic	Routines
5	DBSL2FLG	$1-\quad$ DPDATf $0-\ldots$ test - RESTORDB DAPDATA1
4	DBSLECT2	```I - DPDATI DOFSTRT1 O - DPDAT1 test - RESTORDB DAPDATA1```
3	ACCSOKAY	$\begin{aligned} & 1-1 / \text { ACCRET } \\ & 0-\text { STARTSB1 DOFSTRTI } \\ & \text { test - DAPIDLER } \end{aligned}$
2	AUTRATE2	$\begin{aligned} & 1 \text { - DPDATI DOFSTRTI } \\ & 0 \text { - DPDAT1 } \\ & \text { test - DAPDATAI } \end{aligned}$
1	AUTRATEI	$\begin{aligned} & \text { I - DPDATl } \\ & 0 \text { - DPDATl. DOFSTRT1 } \\ & \text { test - DAPDATA1 } \end{aligned}$

IMODES 30

Bit Routines

15	```1 - IMUMON (IMU temp. out of limits) O - IMUMON GOPROG TSTLTS3 DOFSTRT1 test - IMUMON```
14	```1 - IMUMON GOPROG DOFSTRTl (ISS turn-on delay initiate) O - IMOMON test - IMUMON TNONTEST ENDTNON```
13	```1 - IMMMON IFAILOK GOPROG TSTLTS3 DOFSTRT1 (IMTJ good) O - IMUMON test - SETISSW```
12	```1 - IMUMON GOPROG TSTLTS3 DOFSTRT1 (ICDU good) O - IMUMON test - SETISSW```
11	```1 - IMUMON GOPROG DOFSTRTI (IMU not caged) O - IMUMON test - IMUMON```
10	```1 - ERROR C33TEST PFAILOK GOPROG TSTLTS3 DOFSTRT1 (PIPA good) 0 - C33TEST test - PIPFREE C33TEST SETISSW```
9	```1 - IMUMON DOFSTRTI (IMU not operating) O - IMUMON test - IMUCHK RO2BOTH IMUMON TNONTEST C33TEST IMUZERO```
8	```1 - TNONTEST (turn-on delay incomplete) O - TNONTEST GOPROG DOFSTRTI test - TNONTEST C33TEST SETGLOCK```
7	```1 - ITURNON2 (turn-on delay just started) O - TNONTEST GOPROG DOFSTRTI test TNONTEST C33TEST```
6	```1 - CAGESUB2 (IMU caged) O - UNZ2 GOPROG DOFSTRT1 test - PIPUSE PFAILOK IMUPULSE STRTGYRO 8192AUG IMUZERO IMUZERO2 IMUCOARS COARS COARS2 IMUFINE IFAILOK V37 IMUFINED```
5	1 - CAGESUB2 (Secondary PIPA fail monitor 0 - PFAILOK DOFSTRT1 disabled) test - C33TEST

LMODES30 (Continued)

Bit Routines

```
4 1 - CAGESUB2 IMUZERO SETCOARS DOFSTRTI (IMU fail monitor inhibit)
    0 - UNZ2 IMUZERO2 IFAILOK
    test - SETISSW
3 1 - CAGESUB2 IMUZERO
        O - UNZ2 IMUZERO2 DOFSTRTI
        test - SETISSW
2 1 - IMUMON
        O - ENDTNON GOPROG DOFSTRTI
        test - IMUMON ENDTNON
1 - PIPFREE CAGESUB2 DOFSTRTI (PIPA fail monitor disable)
        0 - PIPUSE
        test - C33TEST SETISSW
```

Bit Routines

```
14 I - PROCEEDE (proceed button)
    O - PROCEEDE STARTSB2 DOFSTRTI
    test - PROCEEDE
13 1 - ERROR C33TEST PFAILOK STARTSB2 TSTLTS3 DOFSTRTl (PIPA good).
    0 - C33TEST
    test - C33TEST
12 1 - ERROR C33TEST STARTSB2 TSTLTS3 DOFSTRT1 (dowmlink not too fast)
        0 - C33TEST
        test - DNTMFAST C33TEST
11 1 - ERROR C33TEST STARTSB2 TSTLTS3 DOFSTRT1 (uplink not too fast)
        0 - C33TEST?
        test - UPTMFAST C33TEST
    8 - INTLZE
        O - DISPRSET STARTSB2 DOFSTRTI
        test - DISPRSET
    7 - ALTROUTl
        O - ALTOUTl DISPRSET STARTSB2 LANDISP DOFSTRTI
        test - LANDISP
    6 1 - IMUMON CAGESUB2 IMUZERO SETCOARS DOFSTRT1 (DAP disable)
        O - UNZ2 IMUZERO2 IMUFINE
        test - CHEKBITS
    5 1 - IMUZERO
        O - IMUZERO2 STARTSB2 DOFSTRTl (zeroing in progress)
        test - none (telenetry)
1 1 - VBTSTLTS
    0 - TSTLTS3STARTSB2DOFSTRT1 (lamp test)
        test - IMUMON SETISSW SETGLOCK SETTRKF
```

Bit Routines
15, Not used
131 - DAPIDLER
0 - STARTSBI DOFSTRTI
test - DAPIDLER
121 - STARTDAP SKIPPAXS
O - PJETSLEC DOFSTRTI
test - SUPERJOB
$11 \quad 1$ - QRTIME
0 - STARTDAP DETENTCK TOPSEUDO DOFSTRTI test - DETENTCK RHCACTIV
10 1. - PEGI
0 - STARTDAP DETENTCK PEGI DOFSTRT1
test - DETENTCK RaTERROR
9 1-DETENTCKO - DETENTCK CHEKSTIK DOFSTRTItest - DETENTCK
87 Not used6
51 - NEGUSUM0 - STARTDAP ACDT+C12 DOFSTRTItest - PAXFILT
41 - ALTDSPLYO - ALTDSPLY DOFSTRTI
test - ALTDSPLY
31 - NEEDLER DOFSTRT1 CHEKBITS
0 - NEEDLERtest - NEEDLER
21 - NEEDLERO - NEEDLER DOFSTRT1test - NEEDLER
1 1 - TRYUORV
O - STARTDAP TRYUORV DOFSTRTI
test - TRYUORV
Bit Routines
9 - VBTSTLTS PROGLARM \quad (program check fail lamp)
0 - ERROR TSTLTS3 SLAPI
test - none
81 - SETTRKF VBTSTLTS (tracker fail lamp) 0 - ERROR GOPROG SETTRKF TSTLTS3 SLAPI test - SETTRKF
61 - SETGLOCK VBTSTLTS (gimbal lock warning lamp) 0-SETGLOCK TSTLTS3 test - SETGLOCK IMUZERO DOFSTRTI
51 - VBTSTLTS RIO,RII LITIT (LR altitude fail) O-R10,RII ERROR SLAP1 TSTLTS3 GOPROG LITIT test - LITIT
4 I - CAGESUBI SETCOARS VBTSTLTS TSTLTS3 (no:attitude lamp) 0 - ISSZERO ENDTNON IMUZERO IMUFINE TSTLTS3 test - IMUZERO GOPROG DOFSTRT1
31 - VBTSTLTS R10,R11 LITIT (LR velocity fail) 0 - RIO,RII ERROR SLAPI TSTLTS3 GOPROG LITIT test - LITIT

```
P51
    Perform "IMUCHK"
                                    (assure that IMU is on)
    Proceed to "GOPERF1" with TS = 00015
    (Request that celestial body acquisi&ion be performed)
        (If terminate, proceed to "GOTOPOOH"; if proceed, proceed
        to "P51B"; if other response, continue at next step.)
    THETAD = 0
    Perform "GODSPRET" with TS = K:VO6N22
    (Display THETAD and continue at next step when display is up)
    Perform "GODSPRET" with TS = K:V41NOO (Indicate coarse
    align in progress; continue at next step when display is up)
    Perform "COARSE"
    Proceed to second step of "P51"
P51B 1dPIPADT = less significant half of TIMENOW
    PIPA = -0
    GCOMP = 0
    Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
    STARIND = 0
P51C Perform "AOTMARK"
                            (return after marks are averaged)
Perform "AOTSTALL"
If AOTGOOD = 0, perform "CURTAINS"
If STARIND = 0:
    STARSAV1 = STARAD 6
    TSt = TSIGHT
    Perform "PLANET"
    PLANVEC = TS
    STARIND = 1
    Proceed to "P51C"
TSt = TSIGHT
```

ALIN - 1

Perform "PLANET"

$$
\mathrm{IS}_{12}=\mathrm{TS}
$$

$\mathrm{TS}_{6}=$ PLANVEC
$\underline{S T A R A D}_{0}=\underline{S T A R S A V 1 ~}^{\text {STA }}$
STARAD $_{6}=$ STARSAV $_{\sim}$
Perform "CIKSDATA"
If FLAGWRDO bit 3 (FREEFLAG) = 0: (error between actual separation Proceed to second step of "P51" and measured separation is not acceptable)
Perform "AXISGEN"
[REFSMMAT] $=[$ DCMAT $]$
Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
Proceed to "GOTOPOOH"
COARSE If IMUCADR $\neq 0$: (IMU in use)
Delay 1 second
Proceed to "COARSE"
Perform "IMUCOARS"
Perform "IMUSTAL工"
If ISSGOOD $=0$, perform "CURTAINS"
Perform "IMUFINE"
Perform "DMUSTALL"
If ISSGOOD = 0, perform "CURTAINS"
ReturnALIN - 2

Inhibit interrupts
If MARKSTAT $\neq 00000_{g}$: (mark system already busy)
Proceed to "POODOO" with TS $=20105_{8}$
If bits 2 and 3 of EXTVBACT are not both 0 :
$T S 1_{d p}=$ return address of routine calling "AOTMARK"
Proceed to "BAILOUT1" with $T S=31211_{8}$
Switch bit 2 of EXTVBACT to 1
Establish a special additional working storage area for the mark system; store its address in bits 1-9 of MARKSTAT. It will be denoted horeafter as MARKVAC.

If no storage area is available for MARKVAC:
TS1 ${ }_{d p}=$ return address of routine calling "AOTMARK"
Proceed to "BAILOUT1" with $T S=31207 \%$
Establish "GETDAT"
Release interrupt inhibit
Return
AOTSTALL Inhibit interrupts
If OPTGADR > 0 or if OPTCADR < -1 :
TS1 ${ }_{d p}=$ return address of routine calling "AOTSTALL"
Proceed to "BAILOUT1" with $T S=31210_{8}$
If OPTCADR $=-1: \quad$ (operation already complete and good)
OPTCADR $=+0$
AOTGOOD $=1$
Release interrupt inhibit
Return
If OPTCADR = -0: (operation already complete and bad)

```
    (If OPTCADR = -0:)
    OPTGADR = +0
    AOTGOOD = 0
    Release interrupt inhibit
    Return
    (Otherwise, OPTCADR = +0)
    OPTCADR x return address (to caller of "AOTSTALL")
    Put present job to sleep
    When awakened, return via LOC
MKRELEAS MARKSTAT = 00000% 
    Release special working storage area MARKVAC
    If OPTCADR = +0: (*AOTSTALL" not entered yet)
    OPTCADR = -1
    End task
LOG = OPTCADR
AOTGOOD = 1
Wake job put to sleep in "AOTSTALL"
OPTCADR = +0
End task
GETDAT Switch bit 12 of MARKSTAT to 1 (to inhibit processing of marks in "MARKRUPTM)
Proceed to "GOXDSPF" with TS = K:V01N71 (AOTCODE) (If terminate, proceed to "KILLAOT"; if proceed, continue at next step; if other response, proceed to "GETDAT")
(AOTCODE should be of the form \(000000 \mathrm{xxx} \times \mathrm{xcx} \mathrm{xXx}_{2}\) )
```

XYMARK $=$ bits 15-7 of AOTCODE shifted right 6 places to bit positions 9-1

If XYMARK ≤ 0, proceed to "GETDAT"
If XYMARK $=000078$: (detent code 7 for COAS)
Proceed to "GOXDSPF" with TS = K:VO6N87 (AZ, EL)
(If terminate, proceed to "KILIAOT"; if proceed, continue at next step; if other response, repeat this step)
$\mathrm{TSazm}=\mathrm{AZ}$
TSelev = EL
TSsrot $=0$
Proceed to "OPTaxis"
(Otherwise, XYMARK is between 1 and 6 inclusive)
TSelev $=$ AOTEL $\mathrm{X}_{\mathrm{XYMARK}}$
TSazm $=$ AOTA $Z_{X Y M A R K}$
TSsrot $=\mathrm{AOTAZ}_{2}-$ TSazm
OPTAXIS Perform "OANB"
$\underline{U} Y P=$ cosTSsrot $\underline{U}^{\prime} P^{\prime}$ - sinTSsrot $\underline{U} X{ }^{\prime}$
$\underline{U} X P=\operatorname{cosTS} s r o t \underline{U X P}^{1}+\operatorname{sinTS} s r o t \underline{U P}{ }^{\prime}$
$\underline{S T A R A D}_{6}=0$
Proceed to "GETMKS"
OANB \quad TSelev $=T S e l e v$ converted to one's complement form
TSazm = TSazm converted to one's complement form
$\underline{S C A X I S}=\left(\begin{array}{l}\text { sinTSelev } \\ \text { cosTSelev sinTSazm } \\ \text { cosTSelev cosTSazm }\end{array}\right)$
$\underline{U}^{U} Y^{\prime}=\operatorname{unit}\left(\underline{S C A X I S}{ }^{*} \underline{K}:\right.$ UNITX $) \quad(=(0, \operatorname{cosTSazm},-\operatorname{sinTSazm}))$
$\underline{U X P}^{\prime}=$ unit($\underline{U Y P}^{\prime} *$ STAXIS $\left.^{\prime}\right)$
Return
XMMARK $=0^{00000} 8$
MARKCNTR $=0$
Switch bits 15 thru 10 of MARKSTAT to 0
$\mathrm{TS}=\mathrm{K}: \mathrm{V} 54 \mathrm{~N} 71 \quad$ ("mark \mathbf{X} or $Y^{\prime \prime}$ verb; star code noun)

PASTIT Proceed to "GOMARK4"
(If terminate, proceed to "KILIAOT"; if proceed, proceed to "MARKCHEX"; if other response, proceed to "GETDAT".)

MARKRUPT (Entered on program interrupt initiated by the mark or mark reject buttons or by commanded change in descent rate.)
\underline{T} Scdu $=\underline{C D U}$
TSt $=$ TIMENOW
If bit 6 or 7 of channel $16=1$:
(Commanded change in rate of descent)
Proceed to "SOMEKEY"
If bit 12 of MARKSTAT $=1$, Resume
(Processing of marks inhibited)
If MARKSTAT $=0^{00000_{g}}$: (mark program not operating)
Perform "ALARM" with $T S=00112^{g}$
Resume
If bit 5 of channel $16=1$: (mark reject)
If FLAGWRD8 bit 8 (SURFFLAG) $=1$:
If MARKCNTR >0:
MARKCNTR $=$ MARKCNTR -1

Resume

$$
\text { Perform "ALARM" with } T S=00115 \mathrm{~g}
$$

Resume

$$
\text { ALIN - } 6
$$

(If bit 5 of chanmel 16×1 :)
If bits 10 and 11 of MARKSTAT both $=0$: (no marks to reject)
Perform "ALABM" with TS $=00115_{8}$
Resume
Proceed to "RRJECT"
If bit 4 of channel $16=1$, proceed to "YMKRUPT"
If bit 3 of channel $16=1$, proceed to "XMKRUPT"
SOMEKY If bit 6 or bit 7 of channel $16=1$, proceed to "DESCBITS" (Comanded change in descent rate)

Perform "ALARM" with TS $=00113_{8}$
Resume
ZMKRUPT $\quad i=0$
XYMARK $=01000_{8} \quad($ bit $10=1)$
Skip next two steps
YMKRUPT $i \times 1$
XIMARK $=02000_{8} \quad$ (bit $11=1$)
If FLAGNRD bit 8 (SURFFLAG) $=1$, proceed to "SURFSTOR"
If bit 14 of MARKSMAT $=1: \quad$ (mark pair just completed)
If MARKCNTR ≥ 4 :
Perform "ALARM" with TS $=001078$
If FLAGWRD8 bit 8 (SURFFLAG) $=1$;
Proceed to "DSPV6N79"
Resume
MARKCNTR $=$ MARKCNTR + 1
Switch bits 14,11 and 10 of MARKSTAT to 0
(End of indented steps)
If bit which is 1 in XYMARK is also 1 in MARKSTAT: (wrong mark)

Perform "ALARM" with TS $=001148$
Resume
Proceed to "VACSTOR"
SURFSTOR
$1=0$
Switch bits 10 and 11 of MARKSTAT to 1
(Show surface mark for "MARKCHEX")
VACSTOR Get address of MARKVAC from low 9 bits of MARKSTAT
TSIGHT $=$ TSt
$1=1+6$ MARKCNTR $\quad(x: 0,6,12,18,24)$
$\operatorname{MKDEX}=1 \quad$ (store in case of surface mark)
MARKVAC $_{i}=$ TScdu $_{y} \quad$ (inner gimbal angle)
$1=1+2$
($x: 2,8,14,20,26$)
(y: 3,9,15,21,27)
MARKVAC $_{i}=$ TScdu $_{z}$ (middle gimbal angle)
$\begin{array}{ll}1=1+2 & (x: 4,10,16,22,28) \\ & (y: 5,11,17,23,29)\end{array}$
MARKVAC $_{1}=$ TScdu $_{x}$ (outer gimbal angle)
If FLAGWRD8 bit 8 (SURFFLAG) $=1$:
Proceed to "REMARK" skipping first step
Switch bit 13 of MARKSTAT to 0 (enable selective mark raject)
MARKSTAT $=$ MARKSTAT + XYMARK
(switching bit 10 or 11 of MARKSTAT to 1)
If bits 10 and 11 of MARKSTAT both $=1$:
Switch bit 14 of MARKSTAT to 1 (indicate both marks taken)
Proceed to "REMARK"
REJECT
If bit 10 of XYMARK $=1$:Switch bit 10 of MARKSTAT to 0
If bit 11 of XYMARK $=1$:Switch bit 11 of MARKSTAT to 0
If bit 13 of MARXSIAT $=1$: (no mark since last reject)
Switch bits 10 and 11 of MARKSTAT to 01
Switch bit 14 of MARKSTAT to 0 (reject pair)
Switch bit 13 of MARKSTAT to 1 (see above)
RFMMRK MKDEX $=$ bits 11 and 10 of MARKSTAT shifted right 9 places to bit positions 2 and $1 \quad$ (MIDEX $=0,1,2$ or 3)
Establish "CHANGEVB" (pr15)
Resure
CHANGEVB If FLAGWRD8 bit 8 (SURFFLAG) $=1$, proceed to "DSPV6N79"$\mathrm{TS}=\mathrm{K}: \mathrm{V} 54 \mathrm{~N} 71 \quad$ (request X or Y mark)
If $M K D E X=1$, $T S=K: V 53 N 71$ (request Y mark)
If $\mathrm{MKDFX}=2, \mathrm{TS}=\mathrm{K}: \mathrm{V} 52 \mathrm{~N} 71$ (request X mark)
Proceed to "PASTIT"
MARKCHEX Switch bit 12 of MARKSTAT to 1 (inhibit processing in"MARKRUPT")
Store address of MARKVAC in low 9 bits of XYMARK
MKDEX $=0$
If bits 10 and 11 of MARKSTAT are not both 1:(last pair incomplete)
If MARKGMTR $=0$:

$$
\text { ALIN }-9
$$

```
(If MARKCNTR = 0:)
    Perform "ALARM" with TS = 001118
    Proceed to "GETMKS"
MARKCNTR = MARKCNTR - 1
AVESTAR \(\operatorname{MKDEX}=\operatorname{MKDEX}+1\)
\(1=6\) MARKCNTR
Get address of MARKVAC from XYMARK
If FLAGWRD8 bit 8 (SURFPLAG) \(=1\), proceed to "SURFSTAR"
\(\underline{A N G}^{\prime}=\left(\right.\) MARKVAG \(_{i+4}\), MARKVAC \(_{i}\), MARKVAC \(\left._{i+2}\right)\)
Perform "CD*TR*GS"
Perform "NBTOSM"
\(\underline{T}=[\) NBSMMAT \(] \underline{U X P}\)
\(i=1+1\)
\(\underline{A N G}^{\prime}=\left(\right.\) MARKVAC \(_{1+4}\), MARKVAC \(_{i}\), MARKVAC \(\left._{i+2}\right)\)
Perform "CD*TR*GS"
Perform \({ }^{\text {nNBTOSMM }}\)
\(\underline{T S}=([\) NBSMMAT \(] \underline{U Y P}) * \underline{T} S\)
TSstar \(=-\) unitw
AVEIT \(\quad n=\operatorname{MKDEX}\)
STARAD \(_{6}=\frac{n-1}{n}\) STARAD \(_{6}+\frac{1}{n}\) ISstar
STARSAV2 \(=\) STARAD \(_{6}\)
If MARKCNTR \(>0\) :
MARKGNTR \(=\) MARKCNTR -1
Proceed to "AVESTAR"
Call "MKRELEAS" in 0.05 seconds
```

 Proceed to "ENDEXT"
 DSPV6N79 Proceed to "GOXDSPF" with TS = VO6N79 (CURSOR,SPIRAL ,POSCODE)
(If terminate, proceed to "KILLAOT"; if proceed,
proceed to "SURFEND"; if other response, continue
at next step.)
If bit 6 of TSverb = 1, proceed to "SURFAGAN"
(V32E)
Proceed to "DSPV6N79"
SURFEND Switch bit 14 of MARKSTAT to 1 (show mark end)
SURFAGAN Save VAC area for surface marking
MARKVAC MIKDEX+1 = CURSOR
MARKVAC}\mp@subsup{M}{\mathrm{ MKDEX +3}}{}=\mathrm{ SPIRAL
If bit 14 of MARKSTAT = 1, proceed to "MARKCHEX"
If MARKCNTR \geq4:
Perform "ALARM" with TS = 001078
If FLAGNRD8 bit 8 (SURFFLAG) = 1, proceed to "DSPV6N79"
Resume
MARKCNTR = MARKCNTR + 1
Proceed to "GETMKS" skipping first two steps
SURFSTAR ANG = (MARKVAC
X-mark for use in "CD*TR*GS")
TSyrot = MARKVAC i+1 (CURSOR angle converted to one's comp. form)
TSsrot = MARKVAC
If TSyrot = 0:
If TSsrot = 0:
TS = unit(SCAXIS)
Proceed to "JUSTOA"
TS = unit(UYY cosTSyrot - UXP sinTSyrot)
TS}=unit(\underline{TS * SCAXIS)

```

TSsrot \(=\) MARKVAC \(_{i+3} \quad\) (SPIRAL angle converted to one's comp. form)
TSsep \(=1 / 12(\) TSsrot - TSyrot + K:ABOUT1 \()\)
TS \(=\) unit \((\operatorname{cosTS} s e p\) SCAXIS \(+\operatorname{sinTS}\) sep \(T S)\)
JUSTOA Perform "CD*TR*GS"
Perform "NBTOSM"
TSstar \(=[\) NBSMMAT \(]\) TS
Proceed to "AVEIT"

\section*{FLANET TSIGHT \(=\) TSt}
i = low 6 bits of AOTCODE
(0 to 40)

If \(\operatorname{STARIND}=0\), BESTI \(=6 \mathrm{i}\)
If \(\operatorname{STARIND}=1, \operatorname{BESTJ}=6 \mathrm{i}\)
If \(i=0: \quad\) (planet)
Proceed to "GOFLASH" with TS \(=\mathrm{K}:\) V06N88 (STARAD \({ }_{0}\) ) (If terminate, repeat this step; if proceed, continue at next step; if other response, . repeat this step.)
\(\underline{T} S=u_{n} t_{S T A R A D}^{0}\)
Return
If \(i<38: \quad\) (star)
\(\underline{T} S=\underline{K}:\) CATLOG \(_{i}\)
Return
Perform "LOCSAM"
If \(i=38, \underline{T S}=\underline{V S U N}\)
If \(i=39\), \(\underline{T} S=\underline{V E A R T H}\)
If \(i=40, T S=V M O O N\)
Return
```

LOCSAM QMIN = return address
TSIGHT = TSt
Perform "LSPOS"
TDEC1 = TSIGHT
Perform "LEMPREC"
If PBODY = 0: (earth centered)
VMOON = unit(K:RSUBEM VMMOON - RATT)
VEARTH = -unitRATT
CEARTH = cos(arcsin(K:RSUBE / |RATT |) + K:5DEGREES)
CMOON = K:CSS5
If PBODY = 2: (moon centered)
VSUN = unit(VSUN - K:ROE VMOON)
VEARTH = - unit(K:RSUBEM VMOON + RATT)
VMOON = - unitRATT
GMOON = cos(arcsin(K:RSUBM / |RATT |) + K:5DEGREES)
CEARTH = K:CSS5
CSUN = K:CSSUN
Return via QMIN
CHKSDATA Switch FLAGWRDO bit 3 (FREEFLAG) to 1
(R54)
TSang = arccos(\mp@subsup{STARAD}{0}{*}\mp@subsup{STARAD}{6}{})
Switch FLAGWRDO bit 3 (FREEFLAG) to 0
THETA = arccos(TS [6 TS 12) - TSang
DSPTEM1 dp = THETA
Switch FLAGWRDO bit 3 (FREEFLAG) to 1

```

Proceed to "GOFLASH" with TS \(=\mathrm{K}:\) VO6NO5 (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed, skip next step; if other response, continue at next step.)

Switch FLAGWRDO bit 3 (FREEFLAG) to 0
Return
AXISGEN
\(T S 1=T S_{6}\)
\(\underline{\underline{T}} \mathbf{S 2}=\operatorname{unit}\left(\underline{T S}_{6} *{ }^{*} S_{12}\right)\)
\(T S 3=T S 1 * T S 2\)
\(\left[\right.\) RFSTMAT] \(=\left[\begin{array}{lll}T S 1_{x} & T S 1_{y} & T S 1_{z} \\ T S 2_{x} & T S 2_{y} & T S 2_{z} \\ T S 3_{x} & T S 3_{y} & T S 3_{z}\end{array}\right]\)
\(\underline{T} S 1=\) STARAD \(_{0}\)
\(\underline{T} S 2=u n i t\left(\underline{S T A R A D}_{0} * \underline{\operatorname{STARAD}}_{6}\right)\)
\(T \mathrm{~S} 3=\mathrm{TS} 1 * T \mathrm{~T} 2\)

\([\) DCMAT \(]=[\text { SMSTMAT }]^{T}[\) RFSTMAT \(]\)
Unitize each of the three rows of [DCMAT] (assure that it is orthogonal)
STARAD \(_{0}=[\text { DCMAT] }]^{T} \underline{K}:\) UNITX
STARAD \(_{6}=[\text { DCMAT }]^{T} \underline{K}\) :UNITY
\(\operatorname{STARAD}_{12}=\left[\right.\) DCMAT \(^{\mathrm{T}} \mathrm{K}:\) UNITZ
Return
PROG52 Perform \({ }^{\text {rRO2BOTH }}\)
If FLAGWRD2 bit 4 (PFRATFLG) \(=1\) :
OPTION2 \(\approx 1\) and skip next step
OPTION2 \(=3 \quad\) (REFSMMAT option)
\[
\text { ALIN - } 14
\]

P52B

End job
If OPTION2 bit \(2=0\) and bit \(1=1\) : (OPTION2 \(=1,5,9, \ldots\) )
Proceed to "P52D" (Preferred)
If OPTION2 bits 2 and 1 both \(=1\) : (OPTION2 \(=3,7,11, \ldots\) )
Perform "R51" (REFSMMAT)
Proceed to "GOTOPOOH"
If OPTION2 bits 2 and \(1=0\) (OPTION2 \(=0,4,12, \ldots\). )
TS = TLAND and skip next step (Landing site)
(Otherwise, OPTION2 \(=2,6, \ldots\) ) (Nominal)
\(T S=-0\)
DSPTEM1 = TS
Proceed to "GOFLASH" with TS = K:VO6N34
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

If more significant half of DSPTEM1 \(\leq 0\) :
TALIGN = TIMENOW and skip next step
TALIGN = DSPTEM1
If OPTION2 bit \(2=1: \quad\) (OPTION2 \(=2,6,10, \ldots .\). )
TSt \(=\) TALIGN
Perform "S52.3"
Proceed to "P52D"
P52LS Switch FLAGWRD1 bit 13 (ERADFLAG) to 0 (OPTION2 \(=0,4,12, \ldots\) )
Switch FIAGWRD3 bit 12 ( LUNAFLAG)
\(\underline{T S}=\underline{R L S} \quad\) (landing site vector in MF coordinates)

ALIN - 15
```

 TSt = TALIGN
 TLAND = TALIGN
 Perform "MOONMX"
 ALPHAV =[MOONMAT] T (\underline{TS + LM504 * TS)}
 TSt = TALIGN
 Perform "N89DISP"
 XSMDrf = unitALPHAV
 Perform "ISORIENT" (compute landing site orientation)
 Proceed to "P52D"
N89DISP TStime = TSt
Perform "LAT-LONG" (calculate and display landing site)
LANDLONG = LONG / 2
LANDALT = ALT
LANDLAT = LAT
Proceed to "GOFLASH" with TS = K:VO6N89 (LANDLAT,LANDLONG,LANDALT)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, repeat
this step.)
LONG = 2 LANDLONG
ALT = LANDALT
LAT = LANDLAT
TSt = TStime
Perform "LALOTORV"
Return
P52D Perform "S52.2" (compute gimbal angles)
Proceed to "GOFLASH" with TS = K:VO6N22 (THETAD)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, proceed to "P52D".)

```
```

 Proceed to "GOPERF1" with TS = 00013% (perform checklist #13)
 (If terminate, proceed to "GOTOFOOH"; if proceed,
 proceed to "REGCOARS"; if other response, continue
 at next step.)
 XDC = unit([REFSMMAT] XSMDrf) (get desired SM wrt present SM)
 YDC = unit([[REFSMMAT] YSMDrf)
 ZDC = unit([REFSMMAT] ZSMDrf)
 Perform "GYCOARS"
 Proceed to "GOTOPOOH"
 GYCOARS QMAJ = return address
Perform "CALCGTA"
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 0
Switch FLAGWRD3 bit 13 (REFSMFIG) to 0
Perform "GODSPR" with TS = K:V16N20 (monitor gimbal angles)
Perform "IMUPULSE" with TS = address of OGC
Perform "IMUSTALL"
If ISSGOOD = 0, perform "CURTAINS" (bad return)
[REFSMMAT] = [XSMDMAT]
Switch FLAGWRD2 bit 4 (PFRATFIG) to 0
Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
1dPIPADT = TIMENOW
PIPA = -0
GCOMP = 0
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
Proceed to "R51K"

```
        ALIN - 17

S52.2 QMAJ \(=\) return eddress
```

 Perform "CDUTRIG"
 Perform "CALCSMSC"
 \chiNBryf = unit([[REFSMMAT] 'T {nNBsm)
 YNBrf = unit([REFSMMAT]}\mp@subsup{]}{}{T}\mathrm{ YNBsm)
 Z_NBrf = unit([REFSMMAT] 'T ZNBsm)
 XSMrf = XSMDrf
 YSMrf = YSMDrf
 ZSMrf = ZSMDrf
 Perform "CALCGA"
 Return via QMAJ
 S52.3 QMAJ = return address
TDEC1 = TSt
Perform "LEMCONIC"
XSMDrf = unitRATT
YSMDrf = unit(VATT * RATT)
ZSMDrf = unit(XSMDrf * YSMDrf)
Return via QMAJ
LSORIENT QMAJ = return address
ZSMDrf = unit[(RRECTCSM * VRECTCSM) * USMDrf]]
YSMDrf = unit(ZISMDrf * XSMDrf)
Return via QMAJ
CAL53A Perform "S52.2n

```

    ALIN - 18

\section*{If any of the three components of \(T S\) is \(\geq K\) :DEGREE 1} and < K:DEG359:
    If \(\operatorname{STARIND}=0\) :
    STARSAV1 \(=\) STARAD \(_{6}\)
    TSt \(=\) TSIGHT
    Perform "PLANET"
    \(\underline{\text { PLANVEC }}=\underline{T} S\)
    STARIND \(=1\)
    Proceed to second step of "R51E"
    STARSAV2 \(=\) STARAD \(_{6}\).
    TSt \(=\) TSIGHT
    Perform "PLaNET"
    \(\operatorname{STARAD}_{6}=\operatorname{unit}([\) REFSMMAT \(]\) TS \()\)
    \(\underline{S T A R A D}_{0}=\) unit ([REFSMMAT] PLANVEC )
    \(\underline{T}_{6}=\) STARSAV 1
    \(\mathrm{T}_{12}=\) STARSAV \(^{2}\)
    Perform "CHKSDATA"
        (R54)
    If FLAGWRDO bit 3 (FREEFLAG) \(=1\) :
    Perform "AXISGEN"
    Perform "R55"
    Switch FLAGWRD2 bit 4 (PFRATFLG) to 0
R51K Proceed to "GOPERF1" with TS = 00014 (checklist \#14)
        (If terminate, proceed to "GOTOPOOR"; if proceed,
        proceed to second step of "R51"; if other
        response, continue at next step.)
Return via QMAJ
    ALIN - 20
```

R52
AOTCODE $=00200_{8}+\mathrm{BESTI} / 6$ (setting detent code to 2)
If $\operatorname{STARIND}=1$, AOTCODE $=00200_{8}+\operatorname{BESTJ} / 6$
Proceed to "GOFLASH" with TS $=\mathrm{K}:$ V01N70 (AOTCODE)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, repeat
this step.)
Switch FLAGWRD5 bit 6 (3AXISFIG) to 0
TS1 $=$ bits 15-7 of AOTCODE shifted right to bit positions 9-1
If TS1 ≤ 0, proceed to "GETAZEL" (COAS calibration)
If TS1 = 7, proceed to "GETAZEL" (COAS sighting)
$i=$ TS1 (detent position between 1 and 6 inclusive)
TSazm $=$ AOTAZ $_{i}$
TSelev = K:r52el
Proceed to "AZEL"
GETAZEL Proceed to "GOFLASH" with TS $=\mathrm{K}:$ VO6N87 (AZ, EL)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, repeat
this step.)
TSazm = AZ
TSelev = EL
AZEL Perform "OANB" (get SCAXIS)
TSt = TIMENOW
Perform "PLANET"
POINTVSM $=$ unit([REFSMMAT] TS $)$
Perform "R60IEM" (attitude maneuver)
If bits $15-7$ of AOTCODE $=0$: (COAS calibration)
Proceed to "R52" skipping first two steps
Return

```
    ALIN - 21

QMIN = return address

\section*{Perform "CALCGTA"}

Proceed to "GOFLASH" with \(T S=\) K:VO6N93 (OGC, IGC, MGC) (If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, return via QMIN.)

TS = address of (OGC, IGC, MGC)
Perform "IMUPULSE"
Perform "IMUSTALL"
If ISSGOOD \(=0\), perform "CURTAINS" (bad return)
Return via QMIN
R56 \(\quad\) QMIN \(=\) return address
Perform \({ }^{\text {CCDUTRIG" }}\)
Perform "CaLCSMSC"
Switch FLAGWRD3 bit 10 (VFLAG) to 1
BESTI \(=0\)
BESTJ \(=0\)
\(\underline{\operatorname{SAX}}=\operatorname{unit}\left([\text { REFSMMAT }]^{\mathrm{T}}\left(\frac{1}{2} \underline{\operatorname{ZNBsm}}+\frac{1}{2} \underline{\text { ZNBsm }}\right)\right)\)
\(i=38\)
PIC1 \(\quad i=i-1\)
If \(i=0\), proceed to "PICEND"
If \(\underline{\underline{K}}:\) CATLOG \(_{i} \cdot \underline{\operatorname{SAX}}<K: C S S 33\), proceed to "PIC1"
\(j=i\)
PIC3 \(\quad j=j-1\)
If \(\mathrm{j}=0\), proceed to "PIC1"

If \(\underline{K}:\) CATLOG \(_{j}\) • \(\underline{\text { SAX }}<\mathrm{K}: C S S 33\), proceed to "PIC3"
If K :CATLOG \(_{i}\) " K :CATLOG \(_{j} \geq K: C S S 40\), proceed to "PIC3"
TSstar \(=\) K :CATLOG \(_{i}\)
Perform "OCCULT" (see if first star is occulted)
If FLAGWRD3 bit 7 (CULTFLAG) \(=1\), proceed to "PIC1"
TSstar \(=\) K :CATLOG \(_{j}\)
Perform "OCCULT" (see if second star is occulted)
If FLAGWRD3 bit 7 (CULTFLAG) \(=1\), proceed to "PIC3"
If FLAGWRD3 bit 10 (VFLAG) \(=1\) :
Switch FLAGNRD3 bit 10 (VFLAG) to 0
\(\mathrm{BESTI}=6 \mathrm{i}\)
\(\mathrm{BESTJ}=6 \mathrm{j}\)
Proceed to "PIC3"
\(\mathrm{BESTI}=\mathrm{BESTI} / 6\)
\(\operatorname{BESTJ}=\operatorname{BESTJ} / 6\)
\(T S a=\underline{K}:\) CATLOG \(_{\text {BESTI }}{ }^{\bullet} \underline{K}:\) CATLOG \(_{\text {BESTJ }}\)
\(\mathrm{BESTI}=6 \mathrm{BESTI}\)
\(\mathrm{BESTJ}=6 \mathrm{BESTJ}\)
Switch FLAGWRD3 bit 10 (VFLAG) to 1
\(\mathrm{TSb}=\underline{K}:\) CATLOG \(_{1} \cdot\) K \(_{1}\) CATLOG \(_{j}\)
Switch FLAGWRD3 bit 10 (VFLAG) to 0

If TSa > TSb: (new pair has better separation)
BESTI \(=6 \mathrm{i}\)
\(\mathrm{BESTJ}=6 \mathrm{j}\)
Proceed to "PIC3"
PICEND If FLAGNRD3 bit 10 (VFLAG) \(=1\) : (no pairs found)
HAVEPAIR \(=0\)
Return via QMIN
\(i=\operatorname{BESTI} / 6\)
\(j=\operatorname{BESTJ} / 6\)
If \(\underline{S A X} \cdot \underline{K}:\) CATLOG \(_{j}<\underline{S} A X \cdot \underline{K}:\) CATLOG \(_{i}\) :
BESTI \(=6 \mathrm{j} \quad\) (farther)
BESTJ \(=6 \mathrm{i} \quad\) (closer)
HAVEPAIR \(=1\)
Return via QMIN
OCCULT
\[
\begin{aligned}
& {[\text { TSmat }]=\left[\begin{array}{lll}
\text { VEARTH }_{x} & \text { VEARTH }_{y} & \text { VEARTH }_{z} \\
\text { VSUN }_{x} & \text { VSUN }_{y} & \text { VSUN }_{z} \\
\text { VMOON }_{x} & \text { VMOON }_{y} & \text { VMOON }_{z}
\end{array}\right]} \\
& \text { TS }=\left(\begin{array}{c}
\text { CEARTH } \\
\text { CSUN } \\
\text { CMOON }
\end{array}\right)-[\text { TSmat }] \text { TSstar }
\end{aligned}
\]

Switch FLAGNRD3 bit 7 (CULTFLAG) to 0
If \(T S_{X} \leq 0\), or if \(T S_{y}\) or \(T S_{z}<0\) :
Switch FLAGWRD3 bit 7 (CULTFLAG) to 1
Return
\[
\text { ALIN }-24
\]

Perform "IMUCHK" (assure that IMU is on)
OPTION2 \(=00003_{8} \quad\) (REFSMMAT orientation)
P570PT Perform "GOPERF4R" with OPTION1 \(=00001^{\text {g }}\) (If terminate, proceed to "GOTOPOOH"; if proceed, skip next step; if other response,repeat this step.)

End job
If OPTION2 bit \(2=0\) and bit \(1=1: \quad(\) OPTION2 \(=1,5,9, \ldots)\)
Proceed to "PACKOPTN" (Preferred orientation)
If OPTION2 bit \(2=1\) and bit \(1=0: \quad(\) OPTION2 \(=2,6 ; 10, \ldots)\)
Proceed to "P570PT" (recycle; invalid in P57)
If OPTION2 bits 2 and \(1=1: \quad\) (OPTION2 \(=3,7,11, \ldots\) )
[XSMD] \(=[\) REFSMMAT \(\rfloor\) (REFSMMAT orientation)
Proceed to "PACKOPTN"
(Otherwise, OPTION2 \(=0,4,8,12, \ldots .\). ) (Landing site orientation)
DSPTEM1 = TIG
Perform "GOFLASH" with TS \(=\mathrm{K}: V 06 \mathrm{~N} 34\) (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

If DSPTEM1 \(=0: \quad\) (key-in time \(=0\) )
TALIGN = TTMENOW
TDEC1 = TIMENOW
Proceed to "P57D"
If TIMENOW 2 DSPTEM1: (key-in time \(\leq\) present time)
TALIGN = DSPTEM1
TDEC1 = DSPTEM1
Proceed to "P57D"
TIG = DSPTEM1 (key-in time > present time)
TALIGN = DSPTEM1
TDEC1 = DSPTEM1

XSMDrf = unitRATT
Perform "LSORIENT" (compute desired IMU orientation)
PACKOPTN \(\begin{array}{ll}\text { OPTION2 }=00000_{8} & \text { (zero alignment option) } \\ \text { OPTION } 3=00000_{8} & \text { (zero flag bit configuration) }\end{array}\)
If FLAGWRD3 bit 13 (REFSMFLG) \(=1\), OPTION3 \(=00100_{8}\)
If FLAGWRD6 bit 1 (ATTFLAG) \(=1\), OPTION3 \(=\) OPTION3 + OOO1O \(_{8}\)
OPTION1 \(=0^{00010_{8}}\)
DSPOPTN Proceed to "GOFLASH" with TS = K:VO5NO6 (OPTION1,OPTION2,OPTION3) (If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)

If FLAGWRD3 bit 13 (REFSMFLG) = 1, proceed to "GETLMATT"
If FLAGWRD6 bit 1 (ATTFLAG) = 1, proceed to "BYIMATT"
If OPTION2 bit \(2=1: \quad(\) OPTION2 \(=2,3,6,7, \ldots)\)
Proceed to "BYLMATT" (don't have attitude)
Perform "ALARM" with \(\mathbb{T S}=0^{00701}{ }_{8}\) (option inconsistent, with flags)
Proceed to "GOFLASH" with TS \(=\mathrm{K}: \mathrm{V} 05 \mathrm{NO} 09\) (display alarm)
(If terminate,proceed to "GOTOPOOH"; if proceed, proceed to "DSPOPTN"; if other response, proceed to "DSPOPTN".)

GETLMATT Perform "REFMF"
BYLMATT Switch FLAGWRD8 bit 2 (INITALGN) to 1
If OPTION2 bit \(1=1: \quad\) (OPTION2 \(=1,3,5,7, \ldots\). )
Proceed to "GVDETER"
ATTCHK If FLAGWRD6 bit 1 (ATTFLAG) \(=1\), proceed to "P570PTO"
Switch FLAGwRD8 bit 2 (INITALAN) to 0
If OPTION2 bits 2 and 1 both \(=0\) : (OPTION2 \(=0,4,8, \ldots\).)
Proceed to "P570PTO"
\[
\text { ALIN - } 26
\]
```

 If OPYION2 bit 2 = 0 and bit 1 = 1:(OPTION2 = 1,5,9,\ldots)
 Proceed to "P570PT1"
 If OPPION2 bit 2 = 1 and bit 1 = 0:(OPTION2 = 2,6,10,\ldots..)
 Proceed to "P570PT2"
 If OPTION2 bits 2 and 1 both = 1: (OPTION2 = 3,7,11,\ldots..)
 Proceed to "P570PT3"
 P570PTO VEC1 = YNBSAV
VEC2 = ZNBSAV
Parform "CDUTRIG"
Perform "CALCSMSC"
TS = _NBsm
SAMETYP STARSAV1 = TS
STARSAV2 = ZNNsmm
Perform "MFREF" (VEC1,2 to reference coordinates)
Proceed to "SURFLINE"
P570PT1 VEC1 = unitRLS
VEC2 = ZNBSAV
Perform "CDUTRIG"
Perform "CALCSMSC"
Perform "CDUTRIG"
Perform "NBTOSM"
TS = [NBSMMAT] GSAV
Proceed to "SAMETYP"
ALIN - 27

```
```

P570PT2 Proceed to "2STARS"
P570PT3 VEC1 = unitRLS
VEC2 = unitRLS
Perform "CDUTRIG"
Perform "NBTOSM"
STARSAV1 = [NBSMMAT] GSAV
Perform "MFREF"
Proceed to "1STAR"
SURFLINE STARAD O = unit([XSMDMAT] VEC1)
TS
STARAD}6=unit([XSMDMAT] VEC2)
TS}12= STARSAV
If FLAGWRD8 bit 2 (INITALGN) = 1, proceed to "INITBY"
Perform "CHKSDATA" (R54)
If FLAGWRDO bit 3(FREEFLAG) = 0, proceed to "P57POST"
INITBY Perform "AXISGEN"
Perform "CALCGTA"
If FLAGWRD8 bit 2 (INITALGN) = 1, skip next step
Proceed to "GOFLASH" with TS = K:V06N93 (gyro angles)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, proceed
to "P57P0ST".)
TS Ogc = (OGC, IGC, MGC)
TS = TS Ogc /K:5DEGREES

```
    ALIN - 28
```

If overflow (any component of TS \=1):
XSMrf = [DCMAT] 'T.K:UNITX
YSMref = [DCMAT] 'T}K:\mathrm{ UNITY
ZSMrf = [DCMAT] T}K:UNITZ
Perform "CDUTRIG"
Perform "CALCSMSC"
Perform "CAICGA"
If FLAGWRD8 bit 2 (INITALGN) = 0, skip next step.
Proceed to "GOFLASH" with TS = K:VO6N22 (THETAD)
(If terminate,proceed to "GOTOPOOH"; i\overline{f}}\mathrm{ proceed,
continue at next step; if other response,
repeat this step.)
Perform "COARSE"
1dPIPADT = TIMENOW Is
PIPA = -0
GCOMP = O
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
ANG = THETAD
Perform "CD*TR*GS"
Perform "NBTOSM"
STARAD O = [NBSMMAT] K:UNITX
STARAD 6 = [NBSMMAT] K:UNITY
Perform "CDUTRIG"
Perform "CALCSMSC"
TS
TS 12 = YNBsm
Perform "AXISGEN"
Perform "GAIGGTA"
(End of indented steps)
ALIN - 29

```
\(T S=\) address of (OGC, IGC,MGC)

\section*{Perform "IMUPULSE"}

\section*{Perform "IMUSTALL"}

If ISSGOOD \(=0\), perform "CURTAINS"
SURFDISP Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
\[
[\text { REFSMMAT }]=[\text { XSMDMAT }]
\]

If \(O P T I O N 2=00000_{8}\), proceed to "P57POST"
If FLAGWRD8 bit 2 (INITALGN) \(=1\) :
Proceed to "ATTCHK" skipping first step
Perform "REFMF"
Proceed to "P57P0ST"
```

2STARS STARIND = 0 (first star)
Skip next step
1STAR STARIND = 1 (second star)
R59 If FLAGNRD3 bit 13 (REFSMFLG) = 0, proceed to "R590UT"
Proceed to "GOFLASH" with TS = K:V01N7O (detent and star code)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response,
proceed to "R59".)
i = low 6 bits of AOTCODE
If STARIND = 0, BESTI = 6 i
If STARIND = 1, BESTJ = 6 i

```
        ALIN - 30
```

If i = O, proceed to "R590UT" (planet, not star code)
If 38 \leqi, proceed to "R590UT" (sun, earth or moon)
TS =unit([REFSMMAT] K:CATLOG
Perform "GDUTTRIG"
Perform "SMTONB"
STAR = [SMNBMAT] IS (star vector in NB coor)
POSCODE = 1

```
```

INCAZ QMIN = AOTAZ POSCODE
TSazm = QMIN
TSelev = K:r52el (elevation = 45 degrees)
Perform "OANB"
TS1 = arccos(STAR P SCAXIS)
TS2 = TS1 - K:DEG30
If TS2 \geq 0: (star not in field of view; try next position)
POSCODE = POSCODE + 1
If POSCODE \geq7, proceed to "R59ALM"
Proceed to "INCAZ"
TS = TS1 - K:DEG. }
If TS< 0:
CURSOR = 0
SPIRAL = 0

```
ALIN - 31
```

(If TS < 0:)
Proceed to "79DISPn
TS1 = 12 TS1
TS2 = unit(SGAXIS * K
TS3 = unit(-TS2 * SCAXIS)
TS4 = unit(SGAXIS * STAR)
TS5 = arccos(TS4 T TS2)
TS = TS3 P TS4
If TS \geq0, skip next step
TS5 = K:ABOUT1 - TS5
TS5 = TS5 + QMIN (one's complement form, scaled revs)
TS6 = TS5 in two's complement form scaled B-1 in revs
CURSOR = TS6
TS = TS5 + TS1 (one's complement form, scaled revs)
TS = TS in two's complement form scaled B-1 in revs
SPIRAL = TS (two's complement form, scaled \frac{1}{2} revs)
79DISP Proceed to "GOFLASH" with TS = K:VO6N79 (CURSOR,SPIRAL,POSCODE)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, proceed
to "R59".)
TS = bits 3-1 of POSCODE shifted left to bits 9-7
TS1 = bits 6-1 of AOTCODE
AOTCODE = TS + TS1 (star code in bits 6-1; detent code

```
ALIN - 32
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{R590UT} & Perform "AOTMARK" \\
\hline & Perform "AOTSTALL" \\
\hline & If AOTGOOD \(=0\), perform "CURTAINS" \\
\hline & Proceed to "R59RET" \\
\hline \multirow[t]{2}{*}{R59ALM} & Perform "ALARM" with TS \(=00404\) g \\
\hline & Proceed to "GOFLASH" with TS = K:V05NO9 (display alarm) (If terminate, proceed to "GOTOPOOH"; if proceed, proceed to "R590UT"; if other response, proceed to "R59".) \\
\hline \multirow[t]{5}{*}{R59RET} & If STARIND \(=0\), proceed to "ASTAR" \\
\hline & TSt \(=\) TSIGHT (time of second mark) \\
\hline & Perform "PLANET" \\
\hline & \(\underline{\mathrm{VEC}} 2=\underline{T S}\) \\
\hline & Proceed to "SURFLINE" \\
\hline \multirow[t]{5}{*}{ASTAR} & \(\underline{\text { STARSAV1 }}=\) StARAD \(_{6}\) (first star marked) \\
\hline & TSt \(=\) TSIGHT (time of first mark) \\
\hline & Perform "PLANET" \\
\hline & \(\underline{\mathrm{VEC1}}=\underline{T S}\) \\
\hline & Proceed to "1STAR" (get second star sighting) \\
\hline \multirow[t]{5}{*}{GVDETER} & THETAD \({ }_{x}=\mathrm{K}: 42 \mathrm{DEG}\) \\
\hline & \[
\operatorname{THETAD}_{\mathrm{y}}=-\mathrm{K}: 42 \mathrm{DEG}
\] \\
\hline & \(\mathrm{THETAD}_{2}=\mathrm{K}: 35 \mathrm{DEG}\) \\
\hline & Switch FLAGWRD3 bit 13 (REFSMFLG) to 0 \\
\hline & Perform "LUNG" (align to THETAD and get gravity vector) \\
\hline
\end{tabular}
```

 Perform "NBTOSM"
 #NBsmm [NBSMMAT] K:UNITX
 XSMsm = 2 STAR STAR - K:UNITX
 YNBsm = [NBSMMAT] K:UNITY
 YSMsm = 2 STAR Y STAR - K:UNITY
 \underline{NBsm}=[NBSMMAT] K
 ZSMsm = 2 STAR z STAR - K}:\mathrm{ UNITZ
 Perform "CALCGA" (get new THETAD)
 STARAD 12 = \frac{1}{2} GOUT
 Perform "LUNG"
 STARSAV1 = unit(\frac{1}{2} GOUT + STARAD 12)
    ```

```

Switch FLAGWRDO bit 3(FREEFLAG) to 0
Proceed to "GOFLASH" with TS = K:V06NO4 (DSPTEM1)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response,
switch FLAGWRDO bit 3 (FREEFLAG) to 1 and
continue at next step.)
GSAV = STARSAV1
If FLAGWRDO bit 3 (FREEFLAG) = 1, proceed to "GVDETER"
Proceed to "ATTCHK"
LUNG QMIN = return address
GACC = 0
Perform "COARSE"
GCTR = -20
1dPIPADT = K:PRIO31

```
ALIN - 34
```

 GCOMPSW = O
 GCOMP = 0
 Perform "PIPASR" skipping first step (don't load PIPTIME1)
 GREED Call "GRABGRAV" in two seconds
End job
GRABGRAV Perform "PIPASR" skipping first step
Establish "ADDGRAV" (pr13)
End task
ADDGRAV Perform "1/PIPA"
GCTR = GCTR + 1
GACC = GACC + K:lungt DELV
If GCTR < O, proceed to "GREED"
STAR = unitGACC
Perform "CDUTRIG"
Perform "SMTONB"
GOUT = [SMNBMAT] STAR
Return via QMIN
REGCOARS Perform "CAL53A"
Switch FLAGWRD3 bit 13 (REFSMFLG) to 1
Switch FLAGWRD2 bit 4 (PFRATFIG) to 0
Perform "R51"
Proceed to "GOTOPOOH"

```
        ALIN - 35
\begin{tabular}{|c|c|}
\hline P57P0ST & Proceed to "GOPERF1" with TS \(=00014\) g (checklist \# 14) (If terminate, proceed to "GOTOPOOH"; if proceed, proceed to "ATTCHK" skipping first step; if other response, continue at next step.) \\
\hline & If OPTION2 \(\neq 00002\) g, proceed to "GOTOPOOH" (OPTION2 \(=00002_{g}\) so calculate landing site) \\
\hline & Perform "CDUTRIG" \\
\hline & Perform "NBTOSM" \\
\hline & TSgref \(=[\text { REFSMMAT }]^{T}\) NBSMMAT GSAV \\
\hline & Switch FLAGWRD3 bit 12 (LUNAFLAG) to 1 \\
\hline & \(\underline{\text { ALPHAV }}=|\underline{\text { RLS }}| \underline{\text { TSgref }}\) \\
\hline & Switch FLAGWRD1 bit 13 (ERADFLAG) to 0 \\
\hline & TSt \(=\) TIMENOW \\
\hline & Perform "N89DISP" \\
\hline & \(\underline{R N N}=\underline{A L P H A V}\) (scaled B29) \\
\hline & PIPTIME \(=\) TSt \\
\hline & Perform "MOONMX" \\
\hline & \(\underline{\text { RLS }}=[\) MOONMAT \(]\left(\underline{\mathrm{RN}}-\left([\mathrm{MOONMAT}]^{T} \underline{L M 504}\right) * \underline{R N}\right)\) \\
\hline & Proceed to "GOTOPOOH" \\
\hline KILIAOT & Switch EXTVBACT to zero (allow extended verbs) \\
\hline & Proceed to "GOTOPOOH" \\
\hline IMUCHK & If bit 9 of IMODES \(30=1\) : (IMU off) \\
\hline & Perform "ALARM" with TS \(=00210_{8}\) \\
\hline & Proceed to "GOTOPOOH" \\
\hline & Switch FLAGWRDO bit 8 (IMUSE) to 1 \\
\hline & Return \\
\hline
\end{tabular}
        ALIN - 36

1dPIPADT: See IMUC section.
ALPHAV: See COOR section.
ALT: See COOR section.
ANG: See COOR section.
AOTAZ \(_{i}\), AOTEL \({ }_{i}(i=1,2,3,4,5,6)\) : Twelve single precision scalars stored in units of revolutions, scaled B-1 in two's complement form. The AOT has six working positions, fixed by detents, defined by angles of rotation around the \(-X\) spacecraft axis, measured from the \(+Z\) spacecraft axis (AOTAZ) and by angles of elevation above the \(Y-Z\) plane (AOTEL). These quantities are stored in erasable memory because their exact values vary among spacecraft, but the nominal values are;
\begin{tabular}{llrl} 
& i & AOTAZ \(_{i}\) & AOTEL \(_{i}\) \\
1 & (left forward) & \(-60^{\circ}\) & \(45^{\circ}\) \\
2 (forward) & 0 & \(45^{\circ}\) \\
3 (right forward) & \(60^{\circ}\) & \(45^{\circ}\) \\
4 (right rear) & \(120^{\circ}\) & \(45^{\circ}\) \\
5 (rear) & \(180^{\circ}\) & \(45^{\circ}\) \\
6 (left rear) & \(-120^{\circ}\) & \(45^{\circ}\)
\end{tabular}

AOTCODE: A single precision scalar containing the star selection code in bits 6-1 (an octal number from 1 to 458 for stars, 0 for a planet, and \(46_{8}-50\) for sun, earth and moon), and the AOT detent code in bits 9-7 (1,2,3,4,5 or 6 for AOT detents; 0 for COAS calibration; 7 for COAS position to be specified.)

AOTGOOD: A flag indicating that the AOT marking procedure was successfully executed. (Implemented as a variable return address in the listing.)

AZ, EL: Single precision angles of azimuth and elevation of the COAS stored in units of revolutions, scaled B-1 in two's complement form.

BESTI: Single precision value, scaled B14, of the index parameter for star \#1 of the "best" star pair as determined by "R56". It is the star farthest from the AOT center detent position and will be zero if no star pairs are found that are satisfactory. In "R59" it is the value of the index parameter of the first celestial body used for marking (if two bodies are to be used). It is equal to six times the decimal equivalent of the "star selection code" (see AOTCODE definition and the Star Table).

BESTJ: See BESTI. In "R56" it is the index parameter for star \#2 which is the closest star to the AOT center detent position. In "R59" it is the index parameter of the second celestial body used for marking (if two are to be used) or the index parameter of the single body being used (Technique 3 alignment).

CDU: See COOR section.
CEARTH, CMOON, CSUN: Three double precision cosines defining the areas around the earth, moon and sun within which an object to be marked is considered to be occulted; scaled B2 and unitless.

CURSOR: Single precision angle through which the reticle must be rotated to place the cursor on a star for a given viewing position. Used only on the lunar surface, scaled \(B-1\) in units of revolutions.
[DCMAT]: Double precision direction cosine matrix, scaled B1-and unitless. When multiplied by \(\mathrm{K}:\) UNITX, \(\mathrm{K}:\) UNITY and \(\mathrm{K}:\) UNITZ it is equivalent to the program notation of \(X \overline{D C}, Y \bar{C}\) and \(\bar{Z} D C\) respectively.

DELV: See SERV section.
DSPTEM1: See DATA section.
EXTVBACT: See EXVB section.
GACC: Double precision sum of measured gravity vectors, scaled B13 in units of centimeters per second squared and expressed in stable member coordinates.

GCOMP, GCOMPSW: See IMUC section.
GCTR: Single precision counter scaled B14 and unitless. Set to -20 in "LUNG" and incremented by one each two seconds until it becomes zero, thus allowing 40 seconds of PIPA readings for determination of the gravity vector.

GOUT: Double precision unit gravity vector, scaled B1 and expressed in navigation base coordinates.

GSAV: Double precision storage for unit gravity vector determined in previous pass through "P57", scaled B1 and expressed in navigation base coordinates.

HAVEPAIR: Single precision flag to indicate whether "R51" was successful in finding a star pair adequately separated for marking.

IMODES30, IMUCADR, ISSGOOD:See IMUC section.
K:35DEG: Single precision constant stored as 06211 , scaled B-1 in units of revolutions. Equation value: 0.09793. (Equivalent to 35.255 degrees.)

K:42DEG: Single precision constant stored as 07357 , scaled B-1 in units of revolutions. Equation value 0.11667 (Equivalent to 42.001 degrees.)

K:5DEGREES: Double precision constant stored as 0.013888889 , scaled BO in units of revolutions. Equation value: 0.013888889. (Equivalent to 5 degrees.)
\[
\text { ALIN - } 38
\]

K:ABOUT1: Double precision constant, scaled BO in units of revolutions. Equation value: 0.9999999.

K:CATLOG: A list of thirty-seven unit vectors defining the position of stars to be used as references against which star sighting measurements can be compared, scaled B1 and unitless. See table below.

K:CSS33: Double precision constant stored as 0.16070, scaled B2 and unitless. Equation value: 0.64280. (Equivalent to the cosine of 50 degrees)

K:CSS40: Double precision constant stored as 0.16070 , scaled B2 and unitless. Equation value: 0.64280. (Equivalent to the cosine of 50 degrees)

K:CSS5: Double precision constant stored as 0.2490475 , scaled B2 and unitless. Equation value: 0.99619. (Equivalent to the cosine of 5 degrees)

K:CSSUN: Double precision constant stored as 0.125 , scaled B2 and unitless. Equation value: 0.5. (Equivalent to the cosine of 60 degrees)

K:DEG.5: Double precision constant stored as 0.00138888 , scaled BO in units of revolutions. Equation value: 0.00138888.

K:DEG30: Double precision constant stored as 0.083333333 , scaled BO in units of revolutions. Equation value: 0.083333333. (Equivalent to 30 degrees)

K:DEG359: Single precision constant stored as \(16338 \times 2^{-14}\), scaled BO in units of revolutions. Equation value: 0.99719. (Equivalent to 359 degrees)

K:DEGREE1: Single precision constant stored as \(46 \times 2^{-14}\), scaled BO in units of revolutions. Equation value: 0.0028. (Equivalent to 1 degree)

K: lungt: Implied constant, scaled B-1 in units of seconds \({ }^{-1}\). Equation value: \(\frac{1}{2}\).

K:PRIO31: See SERV section.
K:r52el: Single precision constant stored as 10000 , program notation "BIT13", scaled B-1 in units of revolutions. Equation value: 0.125. (Equivalent to 45 degrees)

K:ROE: Double precision constant stored as 0.00257125 , scaled BO and unitless. Equation value: 0.00257125. (Equivalent to the ratio of the mean Earth to Moon distance to the mean Earth to Sun distance)

K:RSUBE: Double precision constant stored as \(6378166 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 6378166. (Equivalent to 6378.166 km ; the equatorial radius of the Earth)

K:RSUBEM: Double precision constant stored as \(384402000 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 384402000. (Equivalent to \(384,402.0 \mathrm{~km}\); the mean distance between the Earth and Moon)

K:RSUBM: Double precision constant stored as \(1738090 \times 2^{-29}\), scaled B29 in units of meters. Equation value: 1738090. (Equivalent to 1738.09 km ; the mean radius of the moon)
K:TSIGHT1: Double precision constant stored as \(36000 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 36000. (Equivalent to 6 minutes)

K:UNITX, K:UNITY, K:UNITZ: See SERV section.
K:VxxNxx: See Major Variables section.
LANDLONG, LANDLAT, LANDALT: Double precision locations for display of LONG, LAT and ALT respectively in Noun 89.

LAT, LONG: See COOR section.
LM504: See COOR section.
LOC: Single precision octal storage for starting address of an awakened job.

MARKCNTR: Single precision counter to keep track of the number of valid marks made by the astronaut and to limit the number allowed, scaled B14 and unitless.

MARKSTAT: Single precision address storage and flagword. The address of the special working storage area assigned to the mark system is kept in bits 9-1 of MARKSTAT. Bit 15 is always 0 . The other bits have the following significance:
\[
\text { ALIN }-40
\]


MARKV AC: Single precision storage for two's complement values of gimbal angles from the CDU at the time of each of the \(X\) and \(Y\) marks taken, for use in constructing the line-of-sight vector at each mark and determining the average line-of-sight vector, scaled B-1 in units of revolutions.

MARKVAC MKDEX \(+1,3^{\text {: Single precision storage for CURSOR and SPIRAL }}\) angles respectively, indexed such that up to five sets of angles can be stored for use in determining the average line-of-sight vector. Storage locations actually used are those normally reserved for Y-mark CDU information. (Only X-mark information is used on the lunar surface.) Scaled B-1 in units of revolutions.

MKDEX: Single precision index scaled B14 and unitless, or B3 and unitless.
[MOONMAT]: See COOR section.
MPAC: See MATX section.
\(n\) : Single precision integer scaled Bl4.
[NBSMMAT]: See COOR section.
OGC, IGC, MGC: See COOR section.
OPTCADR: Single precision octal storage for address to return to program that has requested marking and is waiting for the marking to be completed.

ALIN - 47

OPTION1, OPTION2, OPTION3: See DATA section.
PBODY: See ORBI section.
PIPA: See IMUC section.
PIPTIME: See SERV section.
PIANVEC: Double precision unit vector in the direction of the first celestial body to be used for marking, scaled B1 and expressed in reference coordinates.

POINTVSM: See ATTM section.
POSCODE: Single precision counter to indicate the position of the AOT. Changed to the appropriate detent code in "79DISP"; scaled B14 and unitless.

QMAJ, QMIN: Single precision octal return address storage cells. QMIN is also used as temporary working storage.

RATT: See ORBI section.
[REFSMMAT]: See COOR section.
[RFSTMAT]: Double precision, \(3 \times 3\) matrix such that \(A_{\text {star }}=\left[\right.\) RFSTMAT] \(A_{r e f}\), where \(A\) is a vector expressed in "line-of-sight" and reference coordinates respectively; scaled B1 and unitless.

RIS: See DESC section.
RN: See SERV section.
RRECTCSM: See ORBI section.
SAX: Double precision unit vector in the direction of the line-of-sight of the AOT center position, scaled B1 and expressed in reference coordinates.

SCAXIS: See ATTM section.
[SMNBMAT]: See COOR section.
[SMSTMAT]: Double precision, \(3 \times 3\) matrix defined such that Ilne-ol-sight" and stable member coordinates respectively; scaled B1 and unitless.

SPIRAL: Single precision angle through which the reticle must be rotated to place the spiral on a given star. Used only on the lunar surface, scaled B-1 in units of revolutions.
\[
\text { ALIN }-42
\]

STAR: Line-of-sight vector to a star, expressed in navigation base coordinates. Also temporary storage for GACC in "ADDGRAV".

STARAD \(_{0}\), STARAD \(_{6}\) : Double precision unit vectors used primarily for storage of measured position vectors of the two celestial bodies being marked and expressed in stable member coordinates. Also used as working storage for other occasions.

STARAD \(_{12}\) : Double precision unit vector used for working storage. STARIND: Single precision index scaled B14 and unitless.

STARSAV1, STARSAV2: Double precision vectors scaled B1 and unitless. Used to store the two "measurement" vectors for comparison with two "reference" vectors to determine IMU alignment. Expressed in stable member coordinates.

TALIGN: Double precision time for determination of IMU alignment, scaled B28 in units of centiseconds.

TDEC1: See ORBI section.
THETA: See COOR section.
THETAD: See IMUC section.
TIG: See BURN section.
TIMENOW: See EXVB section.
TLAND: See DESC section.
TSIGHT: Double precision time of latest sighting, scaled B28 in units of centiseconds.

UPP, UYP: Double precision vectors expressed in navigation base coordinates, scaled B1 and unitless. Unit vectors perpendicular \(t_{0}\) the planes whose images in the AOT eyepiece coincide with the horizontal (X) and vertical (Y) crosshairs. The intersection of these planes determines the line-of-sight vector to the star being marked.

UXP', UYP': Double precision vectors expressed in navigation base coordinates, scaled B1 and unitless. Unit vectors perpendicular to the AOT line-of-sight and to the horizontal (X) and vertical (Y) crosshairs in the AOT eyepiece reticle. Each defines one of two planes whose intersection determines the line-of-sight vector to the image of a star in the AOT eyepiece. Because of the construction of the AOT (a rotating shaft above a fixed mirror), the field of view rotates about the line-of-sight vector as the AOT shaft rotates about the \(-\mathbb{X}\) spacecraft axis.

VATT: See ORBI section.
VEARTH, VMOON, VSUN: Double precision unit vectors in the direction of the earth, moon and sun with origin at the spacecraft, scaled B1 and expressed in reference coordinates. (Origin also at the earth or moon)

VEC1, VEC2: See COOR section.
VRECTCSM: See ORBI section.
XDC, YDC, ZDC: In "P52D" these are the desired stable member unit vectors in present stable member coordinates. They are also the \(x, y\) and \(z\) components of [DCMAT].

XNBrf, YNBrf, ZNBrf, XNBsm, YNBsm, ZNBsm: See COOR section.
ZSMrf, YSMrf, ZSMrf: See COOR section.
KSMDrf, YSMDrf, ZSMDrf: See COOR section.
[XSMDMAT] or [XSMD]: Double precision, \(3 \times 3\) matrix defined such that Asmd \(=\) [XSMDMAT] Aref, where \(A\) is a vector expressed in desired stable member coordinates and reference coordinates respectively; scaled B1 and unitless. The components are XSMDrf, YSMDrf and ZSMDrf.

XYMARK: Single precision octal storage for bit indicating whether mark being processed is an \(X\) or a \(Y\) mark, or working storage for other occasions.

YNBSAV, ZNBSAV: Double precision unit vectors in the directions of the \(Y\) and \(Z\) navigation base axes, scaled B1 and expressed in moon-fixed coordinates.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Display & Index & X Comrnnent & Y Component & Z Component & Identification \\
\hline 01 & 1 & 0.8748658918 & 0.0260879174 & 0.4836621670 & \(\alpha\) Andromedae \\
\hline 02 & 2 & 0.9342640400 & 0.1735073142 & －0．3115219339 & B Ceti \\
\hline 03 & 3 & 0.4775639450 & 0.1166004340 & 0.8708254803 & Y Cassiopeiae \\
\hline 04 & 4 & 0.4917678276 & 0.2204887125 & －0．8423473935 & 义 Eridani \\
\hline 05 & 5 & 0.0130968840 & 0.0078062795 & 0.9998837600 & \(\alpha\) Ursae Minoris \\
\hline 06 & 6 & 0.5450107404 & 0.5314955466 & －0．6484410356 & O Eridani \\
\hline 07 & 7 & 0.7032235469 & 0.7075846047 & 0.0692868685 & \(\alpha\) Ceti \\
\hline 10 & 8 & 0.4105636020 & 0.4988110001 & 0.7632988371 & \(\alpha\) Persei \\
\hline 11 & 9 & 0.3507315038 & 0.8926333307 & 0.2831839492 & \(\alpha\) Tauri \\
\hline 12 & 10 & 0.2011399589 & 0.9690337941 & －0．1432348512 & \(\beta\) Orionis \\
\hline 13 & 11 & 0.1371725575 & 0.6813721061 & 0.7189685267 & \(\alpha\) Aurigae \\
\hline 14 & 12 & －0．0614937230 & 0.6031563286 & －0．7952489957 & ¢ Carinae \\
\hline 25 & 13 & －0．1820751783 & 0.9404899869 & －0．2869271926 & \(\alpha\) Canis Majoris \\
\hline 16 & 14 & －0．4118589524 & 0.9065485360 & 0.0924226975 & \(\alpha\) Canis Minoris \\
\hline 17 & 15 & －0．3612508532 & 0.5747270840 & －0．7342932655 & \({ }^{*}\)＊Velorum \\
\hline 20 & 16 & －0．4657947941 & 0.4774785033 & 0.7450164351 & \(\checkmark\) Ursae Majoris \\
\hline 21 & 17 & －0．7742591356 & 0.6152504197 & －0．1482892839 & ＜Hydrae \\
\hline 22 & 18 & －0．8608205219 & 0.4636213989 & 0.2098647835 & \(\alpha\) Leonis \\
\hline 23 & 19 & －0．9656605484 & 0.0525933156 & 0.2544280809 & \(\beta\) Leonis \\
\hline 24 & 20 & －0．9525211695 & －0．0593434796 & －0．2986331746 & Y Corvi \\
\hline 25 & 21 & －0．4523440203 & －0．04937101．40 & －0．8904759346 & \(\propto\) Crucis \\
\hline 26 & 22 & －0．9170097662 & －0．3502146628 & －0．1908999176 & Q Virginis \\
\hline 27 & 23 & －0．5812035376 & －0．2909171294 & 0.7599800468 & \({ }^{5}\) Ursae Majoris \\
\hline 30 & 24 & －0．6898393233 & －0．4182330640 & －0．5909338474 & e centauri \\
\hline 31 & 25 & －0．7861763936 & －0．5217996305 & 0.3311371675 & c Bootis \\
\hline 32 & 26 & －0．5326876930 & －0．7160644554 & 0.4511047742 & \(\alpha\) Coronae Borealis \\
\hline 33 & 27 & －0．3516499609 & －0．8240752703 & －0．4441196390 & ＜Scorpi之 \\
\hline 34 & 28 & －0．1146237858 & －0．3399692557 & －0．9334250333 & ＊Trianguli Australis \\
\hline 35 & 29 & －0．1124304773 & －0．9694934200 & 0.2178116072 & 风Ophiuchi \\
\hline 36 & 30 & 0.1217293692 & －0．7702732847 & 0.6259880410 & x Lyrae \\
\hline 37 & 31 & 0.2069525789 & －0．8719885748 & －0．4436288486 & c＂Sagittarii \\
\hline 40 & 32 & 0.4537196908 & －0．8779508801 & 0.1527766153 & r Aquilae \\
\hline 41 & 33 & 0.5520184464 & －0．7933187400 & －0．2567508745 & \(\hat{\beta}\) Capricorni \\
\hline 42 & 34 & 0.3201817378 & －0．4436021946 & －0．8370786986 & \(\propto\) Pavonis \\
\hline 43 & 35 & 0.4541086270 & －0．5392368197 & 0.7092312789 & ＜Cygni \\
\hline 44 & 36 & 0.8139832631 & －0．5557243189 & 0.1691204557 & E Pegasi \\
\hline 45 & 37 & 0.8342971408 & －0．2392481515 & －0．4966976975 & \(\alpha\) Piscis Austrini \\
\hline
\end{tabular}

The＂Display＂column gives the star number that is displayed by the program（as an octal quantity）．The＂Index＂column is the decimal equivelent of the＂Display＂column and when multiplied by six is equal to BESTI（or BESTJ）．
\begin{tabular}{|c|c|c|c|c|c|}
\hline 01 & Alpheratz & \(\alpha\) And & 2.1 & 00649.9 & +28 5529 \\
\hline 02 & Diphda & \(\beta\) Cet & 2.2 & 04205.0 & -180904 \\
\hline 03 & Navi & \(\gamma\) Cas & Var. & 05453.0 & +60 3317 \\
\hline 04 & Achernar & \(\alpha\) Eri & 0.6 & 13635.9 & \(-572320\) \\
\hline 05 & Polaris & \(\alpha\) UMi & 2.1 & 20318.9 & +89 0734 \\
\hline 06 & Acamar & - Eri & 3.4 & 25707.4 & -402527 \\
\hline 07 & Menkar & \(\alpha\) Cet & 2.8 & 30042.5 & + 35823 \\
\hline 10 & Mirfak & \(\alpha\) Per & 1.9 & 32210.3 & +494521 \\
\hline 11 & Aldebaran & \(\alpha\) Tau & 1.1 & 43411.8 & +16 2701 \\
\hline 12 & Rigel & \(\beta\) Ori & 0.3 & 51305.7 & - 81406 \\
\hline 13 & Capella & \(\alpha\) Aur & 0.2 & 51428.2 & +45 5810 \\
\hline 14 & Canopus & \(\alpha\) Car & -0.9 & 62317.1 & -52 4044 \\
\hline 15 & Sirius & \(\propto \mathrm{CMa}\) & -1.6 & 64349.6 & -16 4025 \\
\hline 16 & Procyon & \(\alpha \mathrm{CMi}\) & 0.5 & 73743.9 & \(+51811\) \\
\hline 17 & Regor & \(\gamma^{2} \mathrm{Vel}\) & 1.9 & 80836.4 & -471451 \\
\hline 20 & Dnoces & ¢ UMa & 3.1 & 85709.7 & +4809 38 \\
\hline 21 & Alphard & \(\alpha\) Hya & 2.2 & 92606.8 & - 831.40 \\
\hline 22 & Regulus & * Leo & 1.3 & 100646.5 & +12 0652 \\
\hline 23 & Denebola & \(\beta\) Leo & 2.2 & 114731.8 & +144423 \\
\hline 24 & Gienah & \(\gamma \mathrm{Crv}\) & 2.8 & 121415.6 & -17 2232 \\
\hline 25 & Acrux & \(\alpha\) Cru & 1.0 & 122454.9 & -62 5559 \\
\hline 26 & Spica & \(\alpha\) Vir & 1.2 & 132336.6 & -11 0019 \\
\hline 27 & Alkaid & ) UMa & 1.9 & 134621.6 & +492745 \\
\hline 30 & Menkent & 6 Cen & 2.3 & 140454.6 &  \\
\hline 31 & Arcturus & \(\alpha\) Boo & 0.2 & 141417.5 & +19 2016 \\
\hline 32 & Alphecca & \(\alpha \mathrm{CrB}\) & 2.3 & 153325.0 & +26 4853 \\
\hline 33 & Antares & \(\alpha\) Sco & 1.2 & 162733.9 & -26 22 O1 \\
\hline 34 & Atria & \(\alpha\) TrA & 1.9 & 164528.3 & -68 5831 \\
\hline 35 & Rasalhague & \(\alpha\) Oph & 2.1 & 173332.4 & +12 3450 \\
\hline 36 & Vega & め Lyr & 0.1 & 183555.3 & +38 4517 \\
\hline 37 & Nunki & \(\sigma \mathrm{Sgr}\) & 2.1 & 185324.3 & -26 2008 \\
\hline 40 & Altair & « AqI & 0.9 & 194919.1 & + 84716 \\
\hline 41 & Dabih & \(\beta\) Cap & 3.2 & 201919.6 & -14 5238 \\
\hline 42 & Peacock & \(\alpha\) Pav & 2.1 & 202317.0 & -56 4958 \\
\hline 43 & Deneb & \(\alpha\) Cyg & 1.3 & 204024.4 & +45 1021 \\
\hline 44 & Enif & \(\epsilon \mathrm{Peg}\) & 2.5 & 214242.7 & +94412 \\
\hline 45 & Fomalhaut & \(\alpha \mathrm{Ps}^{\text {A }}\) & 1.3 & 225559.7 & -29 4654 \\
\hline
\end{tabular}
"Display" gives the star number that is displayed by the program (as an octal quantity). "Catlg" refers to the name on pp. 282-292 of "The American Ephemeris and Nautical Almanac for the Year 1970," where the magnitude and coordinate information were obtained.

Right ascension is given in hours, minutes, and seconds; Declination is given in degrees, minutes, and seconds. Both are for January 0.767, 1970, the beginning of the Besselian year.
```

P12IM Perform "RO2BOTH"
Switch RADMODES bit 10 (DESIGFLG) and bit 15 (CDESFIAG) to 0
Switch bit 2 of channel 12 to 0 (disable RRCDU error counters)
DVTHRUSH = K:THRESH2
DVCNTR = 4
TRKMKCNT = 0
Proceed to "GOFLASH" with TS = K:VO6N33 (TIG)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
with next step; if other response, repeat this step.)
Switch FLAGWRD6 bit 8 (MUNFLAG) to 1
Switch DAPBOOLS bit 11 (ACC4OR2X) to 1
Switch FLAGWRDO bit 2 (R1OFIAG) to 1
Switch FLAGWRDO bit 7 (RNDVZFLG) to 0
Switch FLAGWRD9 bit 11 (FLPI) to 1
Switch FLAGWRD9 bit 14 (FLVR) to 1
TSt = TIMENOW
Perform "MOONMX"
TS =[MOONMAT] T (K:UNITZ + LM504 * K=[\mathrm{ UNITZ)}
WM = K:MOONRATE [REFSMMAT] TS
LANDMAG = |RIS
Perform "P12INIT" (initialize APS parameters and ascent
TGO = K:TGOA
TDEC1 = TIG
Perform "IEMPREC"
V1S = [REFSMMAT] VATT
R}=[\textrm{REFSMMAT}] RAT

```

Perform "MUNGRAV" with \(\underline{\underline{T} S r}=\underline{R}\)
UNITR = unitㄴ
\(\mathrm{Y}=\mathrm{RCO}\) (UNITR • QAXIS)
XRANGE \(=-Y\)
ZDOTD \(=\mathrm{K}:\) VINJNOM
RDOTD \(=K: R D O T D N O M\)
Proceed to "GOFLASH" with TS = K:VO6N76 (ZDOTD, RDOTD, XRANGE)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue with next step; if other response, repeat this step.).

WHICH \(=\) "P12TABLE"
\(Y C O=X R A N G E+Y\)
\(\underline{V}=\mathrm{K}: 49 \mathrm{FPS} \underline{\mathrm{UNITR}}+\underline{\mathrm{V}} 1 \mathrm{~S}\)
RDOT \(=\underline{V} \cdot \underline{U N I T R}\)
ZAXIS \(=\) unit(UNITR * QAXIS)

Proceed to "ASCENT" (calculate initial guidance quantities)
P12RET \(\quad T S=(A T P)^{2}+(A T Y)^{2}\)
If \(T S=0\), skip next step
\(T S=\arcsin (A T Y / \sqrt{T S})\)
YAW \(=T S\)
PITCH \(=-\arccos (\underline{U N I T R} \cdot\) unitUNFC)
Perform "PFLITEDB" with interrupts inhibited
Switch FLAGWRD9 bit 11 (FLPI) to 0
Proceed to "BURNBABY"
(Standard pre-ignition sequence; initializes average-g navigation at TIG-30 seconds and calls "P12IGN" at time of ignition which sets AVEGEXIT to "ATMAG" establishing the two second guidance loop. See BURN section for details.)

If MODREG \(=\) MMNUMBER or FLAGNRD9 bit \(9(\) LETABORT \()=0\) or FLAGWRD7 bit 5 (AVEGFLAG) \(=0\) :

Proceed to "ABORTALM"
P70A \(\quad T S=0\)
Proceed to the second step of "P71A"
P71 If MODREG = MMNUMBER or FLAGWRD9 bit 9 (LETABORT) \(=0\) or FLAGWRD7 bit 5 (AVEGFLAG) \(=0\) :

Proceed to "ABORTALM"
P71A \(\quad T S=2\)
Inhibit interrupts
Cause the "Resume" instruction to resume operations at "ABRTJASK"
Resume
(The purpose of the above manipulation of the "Resume" instruction is to cause the instructions beginning at "ABRTJASK" to be performed immediately. "ABRTJASK" will appear as a task to all other jobs, i.e. "ABRTJASK" will be performed prior to the performance of any other job. Note also that "ABRTJASK" is performed under interrupt inhibit so that no tasks which are scheduled on program interrupts will be performed until after "ABRTJASK" is completed.)

\section*{ABRTJASK \(\mathrm{TSa}=70\)}

If \(T S \neq 0\) :
\[
\mathrm{TSa}=71
\]

Switch FLGWRD10 bit 13 (APSFLAG) to 1 (tell DAP we are
MODREG \(=\mathrm{TSa}\)
DISPDEX = TSa (positive to kill "CLOKTASK")
Switch DAPBOOLS bit 6 (ULLAGER) to 0
Switch DAPBOOLS bit 8 (DRIFTBIT) to 0
Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (allow X-axis override)
Switch DAPBOOLS bit 15 (PULSES) to 0
\(D B=K: 1 D E G D B\)

Switch FLAGWRD5 bit 7 (ENGONFLG) to 1
Switch bits 14 and 13 of channel 11 to \(\mathrm{O1}_{2}\) (ensure engine of)
Switch FLGWRD11 to \({40000_{8}}^{8}\) (bypass LR updates)
Switch FLAGWRDO bit 2 (R1OFLAG) to 1
TEVENT = TTMENOW
AVEGEXIT = "SERVEXIT"
Establish "GOABORT" in restart logic with priority 258
Cause "ENEMA" to maintain "SERVICER" and "R10,R11"
Clear all other restart logic
Proceed to "ENEMA".
GOABORT DVCNTR \(=4\)
WHICH \(=\) "ABRTABIE"
Switch FLAGWRD9 bit 10 (FLRCS) to 0
Switch FIAGWRD8 bit 10 (FLUNDISP) to 0
Switch FLAGWRD7 bit 7 (IDIEFLAG) to 0
Switch DAPBOOLS bit 11 (ACC4OR2X) to 1
Switch FLAGWRD9 bit 13 (P7071PLG) to 1
Perform "INITCDUW"
If MODREG \(=70\) :
```

TGO = TIMENOW - TIG
TBUP = MASS / K:MDOTDPS
DV1 = (MASS / K:DVD) / K:2SEC
DV2 = DV1
DV3 = DV1
AT = K:ATD / DV1
TTO = K:100PCTTO
VE = - K:DPSVEX

```

Proceed to "INJTARG"
Switch FLAGWRD9 bit 9 (IETABORT) to 0
DVTHRUSH = K:THRESH2
Perform "P12INIT"
If FLAGWRD9 bit 8 (FLAP) \(=1\) :
TGO1 \(=2\) TGO
TGO = TGO1
Proceed to the third step of "UPTHROT"
TGO = TMMENOW - TIG
INJTARG RDOTD \(=\) ABTRDOT
```

Y = RCO (UNITR • QAXIS)
TS = |Y| - YLIM
If TS \geq0, YCO = TS signY
XRANGE = YCO - Y
Switch FLAGWRD9 bit 14 (FLVR) to 1
TS = (unitRCSM * unitR) • WM
TS1 = signTS arccos(unitRCSM • unitR)
If TS1\geq THETCRIT:
Switch FLAGNRD9 bit 7 (ABTTGFLLG) to 1
JPARM = J2PARM
KPARM = K2PARM
RP = THETCRIT (2 24}\mathrm{ meters/revolution) (this step included only
because of coding
If TS1< THETCRIT:

```
(this step included only because of coding efficiency)

JPARM \(=\) J1PARM
KPARM \(=\mathrm{K} 1 \mathrm{PARM}\)
```

RP = J2PARM (this step included only because of coding
efficiency)

```
```

 RP = RCO
 Switch FLAGWRD9 bit 6 (ROTFLAG) to 1
 UPTHROT Perform "THROTUP"
Switch FLAGWRD9 bit 8 (FLAP) to 1
Perform "P4OAUTO"
Perform "THROTUP"
Change job priority to 17
(pr17)
AVEGEXIT = "ATMAG"
End job
THROTUP THRUST = K:MAXTHRUST
Switch bit 4 of channel 14 to 1
Return
P12INIT DV3 = K:DVA
DV2 = K:DVA
DV1 = K:DVA
AT = K:ATA
TBUP = K:TBUPA
TTO = - K:ATDECAY
VE = - K:APSVEX
If FLAGWRD9 bit 8 (FLAP) = 1, return
COMMINIT RCO = K:HINJECT + LANDMAG
TXO = 0
YCO = O
YDOTD = 0
QAXIS = unit([REFSMMAT] (VRECTCSM * RRECTCSM))
Return

```

Proceed to "PINBRNCH"
ATMAG (Entered via AVEGEXIT at the end of each "SERVICER" cycle)

RDOT \(=\) HDOTDISP
ZAXIS \(=\) UHZP
QAXIS \(=\) UHYP
(documentation convenience; RDOT and HDOTDISP are the same cells in the computer; as are ZAXIS and UHZP and QAXIS and UHYP)

If FLAGWRD9 bit \(10(\) FLRCS \()=1\) :
Proceed to "ASCENT"
If \(A B D V C O N V<K: M I N A B D V:\)
Perform "STOPRATE" with interrupts inhibited
Proceed to "ASCTERM1"
Switch FLAGWRD8 bit 8 (SURFFLAG) to 0
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
DVO \(=\) DV1
DV1 \(=\) DV2
DV2 = DV3
DV3 \(=\mathrm{K}:\) ONE / ABDVCONV
\(T S=(D V O+D V 1+D V 2+D V 3) V E K: 2 S E C 9 / 4\)
TBUP \(=(T S+\) TBUP \(-K: 6\) SEC 18\() / 2\)
\(A T=V E / T B U P\)
ASCENT \(\quad\) RMAG \(=|\underline{R}|\)
ZDOT = ZAXIS • \(\underline{V}\)
IAXIS = ZAXIS * UNITR
YDOT = LAXIS ••V
\(Y=R C O\) (UNITR • QAXIS)
\(\mathrm{GEFF}=(\underline{\operatorname{GDT} 1} / \mathrm{K}: 2 \operatorname{SEG} 18) \cdot \underline{\mathrm{UN} I T R}+\left(|\underline{\mathrm{UNITR}} * \underline{V}|^{2} / \mathrm{RMAG}\right)\)
```

 If PLAGWRD9 bit 13 (P7071FLG) = 1, perform "ZDOTDCMP*
 DZDOT = ZDOTD - ZDOT
 DYDOT = YDOTD - YDOT
 DRDOT = RDOTD - RDOT
 VGVECT = DRDOT UNITR + DYDOT IAXIS + DZDOT ZZAXIS
 VGVECT = VGVECT - 交 TGO GEFF UNITR
 VGBODY = [XNBPIP] VGVECT
 If FLAGWRD9 bit 10 (FLRCS) = 1:
 TGO = |VGVECT }|/\textrm{K}:ATRC
 PCONS = 0
 PRATE = 0
 Perform "RPCOMP2"
 End job
 MAINENG TS1 = | VGVECT }|/\textrm{VE
TGO = TBUP TS1 (1 - 0.5 TS1) - TTO
TTOGO = - TGO
If FLAGWRD7 bit 7 (IDLEFLAG) = 0:
If TGO< K:4SEC17:
TS = - (TIMENOW - PIPTIME + TTOGO)
If TS
ENGOFFDT = TS
Call "ENGOFF1" in ENGOFFDT centiseconds
Switch FLAGNRD7 bit 7 (IDLEFLAG) to 1
If TGO<K:T2A:
Proceed to "CMPONENT"
TS = (TBUP - TGO) / TBUP
TSa = - 増eg
ASCT - 8

```
```

 D12 = TBUP - (TGO/TSa)
 If FLAGWRD9 bit 12 (FLPC) = 1:
 PRATE = 0
 YRATE = 0
 Proceed to "CONST"
 If TGO<K:T3:
 Switch FLAGwRD9 bit 12 (FLPC) to 1
 PRATE = 0
 YRATE = 0
 Proceed to "CONST"
 D21 = TGO - D12
 TSe = \frac{1}{2}}\mathrm{ TGO - D21
 PRATE = (DRDOT D21 + TGO RDOT + RMAG - RCO) / (TSe TGO)
 YRATE = (DYDOT D21 + TGO YDOT + Y - YCO) / (TSe TGO)
 If PRATE \geq 0:
 PRATE = 0
 Proceed to "CONST"
 If PRATE / TBUP < K:PRLIMIT:
PRATE = K:PRLIMIT TBUP
CONST PCONS = (DRDOT / TSa) - PRATE D12
YCONS = (DYDOT / TSa) - YRATE D12
GMPONENT If FLAGWRD9 bit 13 (P7071FLG) = 1, perform "RPCOMP2*
ATR = {(K:100CS PRATE + PCONS)/ TBUP } - GEFF
ATY = (K:100CS YRATE + YCONS) / TBUP
AH= ATY LAXIS + ATR UNITR
AMMAG = | |H
$\operatorname{ATPSQ}=(\text { AT })^{2}-(\text { AHMAG })^{2}$
If ATPSQ<0:
$\underline{\mathrm{A}} \mathrm{H}=(\mathrm{AT} / \mathrm{AHMAG}) \underline{\mathrm{A}} \mathrm{H}$
$\mathrm{ATP}=0$
Skip next step
ATP $=\sqrt{\text { ATPSQ }} \operatorname{sign(DZDOT)}$
$\underline{\mathrm{UNF}} \mathrm{C}=\mathrm{ATP}$ ZAXIS $+\underline{\mathrm{AH}}$
If FLAGWRD9 bit 11 (FLPI) = 1 :
Proceed to "P12RET"
If FLAGWRD9 bit 14 (FLVR) = 1 :
If RMAG - LANDMAG < K:25KFT:
Switch DAPBOOLS bit 9 (XOVINHIB) to 1 $\underline{T} S=u n i t(A T Y$ LAXIS + ATP ZAXIS $)$

If RDOT < K: 40FPS:
$\underline{U N W C}=\underline{T} S$
$\underline{\mathrm{UNF}} \mathrm{C}=\underline{\mathrm{UNITR}}$
Proceed to "ASCTERM"
Switch FIAGWRD9 bit 6 (ROTFIAG) to 0
Switch FLAGWRD9 bit 14 (FLVR) to 0
If FLAGWRD9 bit 6 (ROTFLAG) $=0$:
TXO $=$ PIPTIME $+\mathrm{K}: 10$ SECS
UNWC $=-\underline{\text { UNITR }}$
If TXO \geq PIPTIME:
Proceed to "ASCTERM"
If FLAGWRD bit 6 (ROTFLAG) = 1:
TS $=($ unitunfr $\cdot \underline{\text { KNBPIP }})-$ COSTHET1
If $T S<0$:
TS $=(\underline{X N B P I P} \cdot \underline{\mathrm{UNITR}})-$ COSTHET2
If $\mathrm{TS}<0$:
$\underline{\mathrm{UNFG}}=\underline{\mathrm{UNITR}}$
Proceed to "ASCTERM"
Switch FIAGWRD9 bit 6 (ROTFLAG) to 0
Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (allow x-axis override)
If FLAGWRD9 bit 13 (P7071FLG) $=0$:
3witeh FLAGHRD3 bit 11 (NOR29FLG) to 0
ASCTERM If FLAGWRD9 bit 10 (FLRCS) $=1$:
End job
Perform "FINDCDUW"
ASCTERM1 If FLAGwRD9 bit 10 (FLRCS) $=1$:
End job
If FLAGWRD8 bit 10 (FLUNDISP) $=1$:
End job
Proceed to "GODSP" with $T S=K: V O 6 N 63$ (ABVEL, HDOTDISP, HCALC1)
ENGOFF1 Perform "ENGINOF2"
Establish "CuTOFF" (pr17)
End task

CUTOFF Switch FLAGWRD9 bit 10 (FLRCS) to 1

> Proceed to "GOFLASH" with TS $=$ K:V16N63 (ABVEL, HDOTDISP, HCALC1) (If terminate, proceed to "TERMASC"; if proceed, continue with next step; if other response, repeat this step.)

Inhibit interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Proceed to "GOFLASH" with TS $=\mathrm{K}: V 16 \mathrm{~N} 85$ (VGBODY)
(If terminate, proceed to "TERMASC"; if proceed, proceed to "TERMASC"; if other response, repeat this step.)

TERMASC Inhibit interrupts
Perform "RESTORDB"
Switch FLAGWRD9 bit 9 (LETABORT) to 0
Release interrupt inhibit
Proceed to "GOTOPOOH"
RPGOMP2 $\quad \mathrm{RP}=\mathrm{RMAG}+\mathrm{RDOT} T G O+\frac{\text { PCONS TGO }}{}{ }^{2}+\frac{\text { PRATE TGO }^{3}}{2 \text { TBUP }}$
Return
ZDOTDCMP $T S=(u n i t R C S M *$ unitR $) \cdot \underline{W} M$
TS1 $=$ signTS arccos(unitRCSM \cdot unitR)
$R A=J P A R M+K P A R M T S 1-R P$
If $\mathrm{RA}<\mathrm{RAMIN}, \mathrm{RA}=$ RAMIN
ZDOTD $=\sqrt{2 \mathrm{~K}: M U M m 37 \mathrm{RA} /(\mathrm{RA}+\mathrm{RP}) \mathrm{RP}}$
Return

ABDVCONV: Double precision magnitude of sensed change in velocity converted to units of meters per centisecond and scaled B5.

ABRTABIE: see WHICH of the BURN section.
ABTRDOT: Double precision erasable memory constant representing the radial rate required at insertion for aborts from powered descent, scaled B7 in units of meters per centisecond.

ABVEL: see SERV section.
AH: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

AHMAG: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

AT: Double precision LM thrust acceleration magnitude, scaled B-9 in units of meters per centisecond squared.

ATP: Double precision intermediate computation, scaled B-9 in units of meters per centisecond squared.

ATPSQ: Double precision intermediate computation, scaled B-18 in units of meters squared per centiseconds to the fourth power.

ATR: Double precision required radial acceleration, scaled B-9 in units of meters per centisecond squared.

ATY: Double precision required crossrange acceleration, scaled B-9 in units of meters per centisecond squared.

AVEGEXIT: see SERV section.
COSTHET1: Double precision erasable memory constant, scaled B2 and unitless.

COSTHET2: Double precision erasable memory constant, scaled B2 and unitless.

DAPBOOLS: see DAPA section.
DB: see DAPB section.
DISPDEX: see BURN section.
DRDOT, DYDOT, DZDOT: Double precision velocity-to-be-gained components in the radial, crossrange, and downrange directions respectively, scaled B7 in units of meters per centisecond.

DVCNTR: see SERV section.
DVTHRUSH: see SERV section.

DV0, DV1, DV2, DV3: Double precision quantities representing the reciprocal of successive PIPA readings, scaled B7 in units of centiseconds per meter; program notation 1/DVO, 1/DV1, 1/DV2, 1/DV3.
D12: Double precision intermediate computation, scaled B17 in units of centiseconds.

D21: Double precision intermediate computation, scaled B17 in units of centiseconds.

ENGOFFDT: Single precision delta time for engine cutoff, scaled B14 in units of centiseconds.

GDT1: see SERV section.
GEFF: Double precision effective gravity, scaled B-9 in units of meters per centiseconds squared.

HCALC1: See DESC section.
HDOTDISP: See SERV section.
JPARM: Double precision parameter used in the calculation of ZDOTD for aborts from the powered descent, scaled B24 in units of meters (see note following K2PARM). JPARM contains J1PARM or J2PARM.

J1PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is less than THETCRIT, scaled B24 in units of meters (see note following K2PARM); part of the erasable load.

J2PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is greater than or equal to THETCRIT, scaled B24 in units of meters (see note following K2PARM); part of the erasable load.

KPARM: Double precision parameter used in the calculation of ZDOTD for aborts from the powered descent, scaled B24 in units of meters per revolution (see note following K2PARM). KPARM contains K1PARM or K2PARM.

K1PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is less than THETCRIT, scaled B24 in units of meters per revolution (see note following K2PARM); part of the erasable load.

K2PARM: Double precision parameter used in the calculation of ZDOTD for aborts where the LM to CSM phase angle is greater than or equal to THETCRIT, scaled B24 in units of meters per revolution (see note below); part of the erasable load.

Note: JPARM and KPARM are considered in this document to be scaled B24; thus the erasable parameters J1PARM, J2PARM, K1PARM, K2PARM are expected to be multiplied by 2 and then scaled 324 (of course this is the same as scaling by B23) in order to introduce a factor of 2 into the equation which calculates RA.

K:APSVEX: Single precision constant stored as $-30.3 \mathrm{X}^{-5}$, scaled B5 in units of meters per centisecond. Equation value: - 30.3
K:ATA: Double precision constant stored as $3.2883 \mathrm{E}-4 \times \mathrm{X}^{9}$, scaled B-9 in units of meters per centisecond squared; program notation (AT)A. Equation value: $3.2883 \mathrm{E}-4$

K:ATD: Double precision constant stored as 0.02 , scaled B-2 in units of reciprocal centiseconds; program notation $K(A T)$. Equation value: 0.005
K:ATDECAY: Double precision constant stored as - 18. X 2^{-28}, scaled B28 in units of centiseconds. Equation value: - 18 .

K:ATRCS: Double precision constant stored as $0.785 \mathrm{E}-4 \times 2^{10}$, scaled $\mathrm{B}-10$ in units of meters per centisecond squared; program notation AT/RCS. Equation value: $0.785 \mathrm{E}-4$
K:DPSVEX: Single precision constant stored as $-29.5588868 \mathrm{X}^{-5}$, s.caled B5 in units of meters per centisecond. Equation value: - 29.5588868.

K:DVA: Double precision constant stored as 15.2×2^{-7}, scaled B7 in units of centiseconds per meter; program notation (1/DV)A. Equation value: 15.2
K:DVD: Double precision constant stored as 436.7×2^{-9}, scaled B9 in units of kilogram-meters per centisecond-second; program notation $K(1 / D V)$. Equation value: 436.7

K:HINJECT: Double precision constant stored as 18288 . X 2^{-24}, scaled B24 in units of meters. Equation value: 18288. (equivalent to 60,000 feet)

K:MAXTHRUST: Single precision constant stored as 10000 g, scaled B14 in units of DPS throttle pulses; progrem notation BI TM3. Equation value: 4096. (enough to oversaturate the throttle -- see THRUST)
K:MDOTDPS: Double precision constant stored as $0.148 \times \mathrm{X}^{-3}$, scaled B3 in units of kilograms per centisecond. Equation value: 0.148 (equivalent to 32.62 pounds mass per second.)
K:MINABDV: Double precision constant stored as 0.0356×2^{-5}, scaled B5 in units of meters per centisecond. Equation value: 0.0356
K:MOONRATE: Double precision constant stored as 0.2661699489 E-7 X 2^{19}, scaled B-19 in units of radians per centisecond. Equation value: $0.2661699489 \mathrm{E}-7$
K:MUM 37: Double precision constant stored as 4.902778 E \& X 2^{-37}, scaled B37 in units of meters cubed per centisecond squared; program notation MUM(-37). Equation value: 4.902778 E 8

K: ONE: Single precision constant stored as 000048 , scaled B12 and unitless; program notation BIT3H. Equation value: 1.0.

K:PRLIMIT: Double precision constant stored as - 0.0639, scaled B-21 in units of meters per centisecond cubed. Equation value: $-0.3048 \mathrm{E}-7$.
K:RDOTDNOM: Double precision constant stored as 0.059436 X 2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.059436. (Corresponds to 19.5 feet per second.)
K:TBUPA: Double precision constant stored as 91902. X 2^{-17}, scaled B17 in units of centiseconds; program notation (TBUP)A. Equation velue: 91902.
K:TGOA: Double precision constant stored as 3.7 E 4×2^{-17}, scaled B17 in units of centiseconds; program notation (TGO)A. Equation value: 3.7 E 4
K:THRESH2: Double precision constant stored as 308 . X 2^{-14}, scaled B14 in units of centimeters per second. Equation value: 308.
K:T2A: Double precision constant stored as 200. X 2^{-17}, scaled B17 in units of centiseconds. Equation value: 200.
K:T3: Double precision constant stored as 1000. X 2 ${ }^{-17}$, scaled B17 in units of centiseconds. Equation velue: 1000.

K:UNITZ: Double precision constant vector stored as ($0,0,0.5$), scaled B1 and unitless. Equation value: $(0,0,1)$
K:VINJNOM: Double precision constant stored as 16.7924×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 16.7924. (Equivalent to 5509.31758 feet per second.)
K:10SECS: Double precision constant stored as 1000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 1000.
K:100PGTTO: Double precision constant stored as 24×2^{-17}, scaled B17 in units of centiseconds. Equation value: 24.
K:100cS: Double precision constant stored as 200×2^{-18}, scaled B17 in units of centiseconds. Equation value: 100.

K: 1DEGDB: Single precision constant stored as 00554 g , scaled B-3 in units of revolutions. Equation value: 0.00277. (Equivalent to 1 degree.)
K:2SEC: Implicit program constant equal to two. (2) seconds.
K:2SEC18: Double precision constant stored as 200. X 2^{-18}, scaled B18 in units of centiseconds; program notation $2 \operatorname{SEC}(18)$. Equation value: 200.
K:2SEC9: Double precision constant stored as 200. X 2^{-9}, scaled B9 in units of centiseconds; program notation $2 \operatorname{SEC}(9)$. Equation value: 200.

K:25KFT: Doubla precision conetant atored as 7620. $\times 2^{-24}$, aceled B24 in units of maters. Equation value: 7620.
K:4SEC17: Double precision constant stored as 400. X 2^{-17}, scaled B17 in units of centiseconds; program notation $4 \operatorname{SEC}(17)$. Equation value: 400.

K:49FPS: Double precision constant representing the expected LM RDOT at the end of the vertical rise phase, stored as $0.149352 \mathrm{X}^{-6}$, scaled B6 in units of meters per centisecond. Equation value: 0.149352

K:40FPS: Double precision constant stored as 0.12192×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.12192

K:6SEC18: Double precision constant stored as 600. X 2^{-18}, scaled B18 in units of centiseconds; program notation $6 \operatorname{SEC}(18)$. Equation value: 600.

LANDMAG: Double precision magnitude of lunar landing (or launch) site radius, scaled B 24 in units of meters; program notation /LAND/.

LAXIS: Double precision crossrange unit vector, scaled B1, unitless, and expressed in the Platform Coordinate system.

LM504: Double precision libration vector of the moon, scaled BO in units of radians and expressed in moon-centered, moon-fixed coordinates.

MASS: see SERV section.
MMNJMBER: see PGSR section.
MODREG: see DATA section.
[MOONMAT]: Double precision, 3×3 orthogonal transformation matrix, scaled $B 1$ and unitless. Defined such that Asg = [MOONMAT] Aref, where A is a vector expressed in selenographic and reference coordinates respectively.

PCONS: Double precision pitch guidance coefficient, scaled B9 in urits of meters per centisecond.

PIPTIME: see SERV section.
PITCH: Double precision predicted FDAI pitch angle at the end of the pitch over maneuver, scaled $B O$ in units of revolutions.

PRATE: Double precision pitch rate guidance coefficient, scaled B-8 in units of meters per centisecond squared.

P12TABLE: see WHICH of the BURN section.
QAXIS: Double precision unit vector, scaled B1, unitless, and expressed in the Platform Coordinate system.

R: Double precision present navigated vector position of the LM, measured from the center of the moon, scaled B24 in units of meters and expressed in the Platform Coordinate system.

RA: Double precision distance from the center of the moon to the apogee of the desired insertion orbit, scaled B24 in units of meters.

RADMODES: see page 74.
RAMIN: Double precision parameter which is the minimum value allowed for RA, scaled B24 in units of meters; part of the erasable load.

RATT, VATT: see ORBI section.
RCO: Double precision desired insertion radius magnitude, scaled B24
in units of meters.
RCSM: see SERV section.
RDOT, YDOT, 2DOT: Double precision velocity components in the radial, crossrange, and downrange directions respectively, scaled B7 in units of meters per centisecond.

RDOTD, YDOTD, ZDOTD: Double precision desired velocity components in the radial, crossrange, and downrange direction respectively, scaled B7 in units of meters per centisecond.
[REFSMMAT]: see COOR section.
RLS: Double precision lunar landing (or launch) site vector, measured from the center of the moon, scaled B27 in units of meters and expressed in moon-fixed coordinates.

RMAG: Double precision magnitude of the LM position vector, scaled B24 in units of meters. Program notation ($/ \mathrm{R} / \mathrm{MAG}$).

RP: Double precision predicted insertion radius magnitude measured from the center of the moon, scaled B24 in units of meters.

RRECTCSM, VRECTCSM: see ORBI section.
TBUP: Double precision ratio of mass to mass flow rate, scaled B17 in units of centiseconds.

TDEC1: see ORBI section.
TEVENT: Double precision time-of-event for downlink information (as used in this section time-of-abort), scaled B28 in units of centiseconds.

TGO, TGO1: Double precision predicted length of burn, scaled B17 in units of centiseconds.

THETCRIT: Double precision LM to CSM phase angle at which abort targets are switched, scaled BO in units of revolutions; part of the erasable load.

TIG: Double precision time of engine ignition, scaled B28 in units of centiseconds.

THRUST: Cell used to provide DPS throttle commands when Bit 4 of channel 14 is set, scaled B14 in units of DPS throttle pulses. One pulse corresponds to about 2.8 pounds of thrust. The maximum command recognized by the throttle is 3428 pulses.

TIMENOW: Current time scaled B28 in units of centiseconds, incremented every centisecond.

TRKMKCNT: see RNAV section.
TTO: Double precision time delay from the issuance of the engine OFF signal to actual thrust decay, scaled B17 in units of centiseconds.

TTOGO: Double precision negative of time-to-go for display purposes, scaled B28 in units of centiseconds.

TXO: Double precision time at which X-axis override is permitted in ascent guidance, scaled B28 in units of centiseconds.

UHZP: see SERV section.
UNITR: Double precision unit vector in the radial direction, scaled B1, unitless, and expressed in the Platform coordinate system; program notation UNIT/R/.

UNFC: see BURN section.
UNWC: see BURN section.
V: Double precision present navigated velocity vector of the LM, scaled B^{r} in units of meters per centisecond and expressed in the Platform coordinate system.

VE: Double precision engine exhaust velocity, scaled B7 in units of meters per centisecond.

VGBODY: Double precision velocity-to-be-gained vector in body coordinates, scaled B7 in units of meters per centisecond.

VGVECT: Double precision velocity-to-be-gained vector in Platform coordinates, scaled B7 in units of meters per centisecond.

V1S: Double precision LM velocity vector at TIG, scaled B7 in units of meters per centisecond.

WHICH: see BURN section.

WM: Double precision lunar rotation rate vector, i.e. lunar rotation rate times the lunar rotation axis vector; scaled B-17 in units of radians per centisecond.
[XNBPIP]: Double precision matrix with the first row equal to the components of XNBPIP, the second row equal to the components of YNBPIP, and the third row equal to the components of ZNBPIP, where XNBPIP, YNBPIP, ZNBPIP are unit vectors along the X, Y, and Z spacecraft axes, scaled B1 and expressed in the Platform coordinate system at PIPTIME.

XRANGE: Double precision magnitude of the crossrange distance to be removed during the ascent maneuver, scaled B29 in units of meters.

Y: Double precision magnitude of the out-of-CSM-plane position, scaled B24 in units of meters.

YAW: Double precision predicted FDAE yaw angle at the end of the vertical rise phase, scaled BO in units of revolutions.

YCO: Double precision desired crossrange position at orbit insertion, scaled B24 in units of meters.

YCONS: Double precision yaw guidance coefficient, scaled B9 in units of meters per centisecond.

YDOT: see RDOT.
YDOTD: see RDOTD.

YLIM: Double precision erasable memory constant representing the maximum cross-range distance to be removed during an abort from the powered descent, scaled B24 in units of meters.

YRATE: Double precision yaw rate guidance coefficient, scaled B-8 in units of meters per centisecond squared.

ZAXIS: Double precision unit vector in the downrange direction, scaled B1 and unitless; program notation ZAXIS1.

ZDOT: see RDOT.
2DOTD: see RDOTD.

```
R60LFM TEMPR60 = return address
    If FLAGWRD5 bit 6 (3AXISFLG) = 0:
    Perform "VECPOINT"
    THETAD = TS
    Switch FLAGWRDO bit 4 (NEEDLFLG) to 1
    Switch FLAGWRDO bit 15 (NEED2FLG) to 0
    Perform "BALLANGS"
TOEALI, Perform "GOPERF2R" with TS = K:VO6N18 (display FDAI angles)
    (If terminate, proceed to "R61TEST"; if proceed, proceea
    to "REDOMANC"; if other response, proceed to "ENDMANTU1".)
    Perform "CHKLINUS" (make display priority if necessary)
    End job
RTDOMANC If FLAGWRD5 bit 6 (3AXISFLG) = 0:
    Perform "VECPOINT"
    THETAD = TS
Perform "BALLANGS"
If bit 10 of channel 30=1 (not PGNCS control), or if bit ik
    of channel 31 = 1 (not AUTO control mode):
    Proceed to "TOBALLA" (not AUTO)
Perform "GODSPR" with TS = K:VO6N18 (display FDAT angleq)
Perform "CHKLINUS" (make display priority if necessery)
Perform "GOMANUR"
Proceed to "ENDMANUV"
GOMANUR If ATTCADR f0: (single precision check)
    TS1 dp = calling address +1 in 2CADR format
    Proceed to "BAILOUT1" with TS = 31210g
ATTCADR = calling address +1, in 2CADR format
```

```
            ATTPRIO = bits 14-10 of PRIORITY
            Proceed to "KALCMAN3"
ENDMANUV Proceed to "TOBALLA"
ENDMANU1 Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
    Return via TEMPR60
R61TEST If MODREG = 0, proceed to "ENDMANU1"
    If FLAGNRD4 bit 12 (PDSPFLAG) = 1, proceed to "TRMTRACK"
    Proceed to "GOTOPOOH"
BALLANGS BALLEXIT = return address
Perform "CD*TR*GS" with ANG = THETAD
TS }=\operatorname{arcsin}(-SINOGA COSMGA
SINTH = SINMGA
COSTH = COSOGA COSMGA
Perform "ARCTAN"
TS
COSTH = COSOGA COSIGA - SINMGA SINOGA SINIGA
SINTH = SINIGA COSOGA + SINMGA SINOGA COSIGA
Perform "ARCTAN"
TS y = THETA
FDAI = TS converted to two's complement form
Return via BALIEXIT
```

ATMM - 2

Skip next two steps
VECPOINT VECQTEMP = return address
TScdu $=\underline{\text { CDU }}$
Perform "CDUTODCM"
$[$ MIS $]=$ [TSmat]
TSfinal $=$ unit (POINTVSM [MIS])
$\underline{C O F}=-$ unit (TSfinal * SCAXIS)
TSang $=\arccos (\underline{\text { SCAXIS }} \cdot \underline{\text { TSfinal }})$
If overflow or if \mid TSfinal $*$ SCAXIS $\mid<2^{-12}$:
If TSfinal - SCAXIS ≥ 0 :

$$
\underline{T} S=\underline{T S c d u} \quad(\text { specify zero maneuver })
$$

Return via VECQTEMP

$$
\underline{Y S M}_{\mathrm{Sc}}=\underline{K}: U N I T Y[\mathrm{MIS}]
$$

$$
\underline{T S}=\operatorname{unit}\left(\underline{Y}_{S M} M_{S C} * \underline{K}: U N I T X\right) * \underline{S C A X I S}
$$

$$
\underline{\text { COF }}=\text { unitIS }
$$

$$
\text { If overflow or if }|\underline{T S}|<2^{-12}:
$$

$$
\underline{\text { COF }}=\underline{K}: \text { UNITX }
$$

$$
\text { TSang }=\frac{1}{2}
$$

Perform "DELCOMP"
$[$ TSmat $]=[$ MIS $][$ DELMAT $]$
$\underline{Y S M}_{\text {SCd }}=\underline{K}:$ UNITY [TSmat]

If \mid SCAXIS $_{\mathrm{x}} \mid \geq \mathrm{K}:$ SINVEC1, proceed to "FINDGIMB"
(Otherwise, the vector being pointed is something other than the thrust vector and an effort will be made to avoid gimbal lock with a preliminary roll.)
$[\mathrm{MIS}]=[$ TSmat $]$

YSM $_{\text {SC }}=\underline{K}$:UNITY [MIS]
$\underline{T S}=\left(\underline{Y S M}_{s c} \operatorname{signYSM}_{s_{x}}\right) * \underline{S C A X I S}^{x}$
COF $=-$ S $_{\text {SAXIS }}$ signTS $_{x}$
If \mid SCAXIS $X_{x} \mid \geq K$:SINVEC2, TSang $=K$:VECANG1 (AOT)
If \mid SCAXIS $_{\mathrm{x}} \mid<\mathrm{K}:$ SINVEC2, TSang $=\mathrm{K}$:VECANG2 \quad (Radar, Y or Z)
Perform "DELCOMP"
[TSmat] $=$ [MIS] [DEIMAT]
FINDGIMB Perform "DCMTOCDU"
$T S=T S c d u d$ converted to two's complement form
Return via VECQTEMP

KALCMANB \quad BCDU $=\underline{\text { CDU }}$
If $\left|\operatorname{THETAD}_{z}\right| \geq K:$ LOCKANGL:
Perform "ALARM" with TS $=00401_{8}$
Proceed to "NOGO"
$\underline{T S c d u}=\underline{B C D U}$
Perform "CDUTODCM"
$[\mathrm{MIS}]=[$ TSmat $]$
TScdu $=$ THETAD
Perform "CDUTODCM"
$[\mathrm{MFS}]=[\mathrm{TSmat}]$
$[$ TMIS $]=[\mathrm{MIS}]^{T}$
$[\mathrm{MFI}]=[\mathrm{TMSS}][\mathrm{MFS}]$
$[\mathrm{TMFI}]=[\mathrm{MFI}]^{\mathrm{T}}$
$\mathrm{COFSKEW}_{\mathrm{z}}=\frac{1}{2}\left(\mathrm{TMFI}_{12}-\mathrm{MFI}_{12}\right)$

$$
\begin{aligned}
& \text { COFSKN }_{\mathrm{H}}=\frac{1}{2}\left(\mathrm{MFI}_{13}-\mathrm{TMFI}_{13}\right) \\
& \operatorname{cosSKin}_{x}=\frac{1}{2}\left(\text { TMII }_{23}-\text { MFI }_{23}\right) \\
& C A M=\frac{1}{2}\left(\mathrm{MFI}_{11}+\mathrm{MPI}_{22}+\mathrm{MFI}_{33}-1\right) \\
& \mathrm{AM}=\arccos C A M \\
& \text { If AR < K:MLNANG: (No need for rate limited mantwors) } \\
& \text { CDUD = THETAD } \\
& \text { Proceed to "NOGO" } \\
& \text { If } A M<K: M A X A N G: \\
& \text { COF = unitCOFSKEW (normal path) } \\
& \text { Switch FLAGWRD2 bit } 3 \text { (CALCMAN3) to } 1 \\
& \text { Proceed to "WCALC" } \\
& {[\text { MFISMM }]=\left[\begin{array}{lll}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]([\mathrm{MFI}]+[\mathrm{MFFI}])} \\
& T S=1-C A M \\
& \text { If }|T S| \geq 2, T S=K: p o s m a x d p \text { signTS } \\
& \mathrm{COF}_{z}=\sqrt{2\left(\text { MFISNA }_{33}-\text { CAM }\right) / T S} \\
& \text { COF }_{y}=\sqrt{2 \text { (MFISYM }} 22 \text {-CAM)/TS } \\
& \mathrm{COF}_{\mathrm{X}}=\sqrt{2 \text { (MFISYM }} 11 \text {-CAM)/TS } \\
& \text { COF }=\text { unitcor } \quad \text { (eliminates common factors) } \\
& \text { If } \operatorname{COF}_{x} \geq \operatorname{COF}_{y} \text { and } \operatorname{COF}_{x} \geq \operatorname{COF}_{z} \text { : (method 1) } \\
& \text { COF }_{x}=\text { COF }_{x} \text { signCOFSKEW }{ }_{x} \\
& \operatorname{COF}_{Y}=\operatorname{COF}_{y} \text { signCOFSKEW }_{X} \text { signMFISMM }{ }_{12} \\
& \operatorname{COF}_{z}=\text { COF }_{z} \text { signCOFSKEW } W_{x} \text { signMFISYM } 13 \\
& \text { Switch FLAGWRD2 bit } 3 \text { (CALCMAN3) to } 1 \\
& \text { Proceed to "WCALC" }
\end{aligned}
$$

If $\mathrm{COF}_{\mathrm{y}}>\mathrm{COF}_{\mathrm{x}}$ and $\mathrm{COF}_{\mathrm{y}} \geq \mathrm{COF}_{\mathrm{z}}$: (method 2)
$\operatorname{COF}_{\mathrm{x}}=\operatorname{COF}_{\mathrm{x}}$ signCOFSKBW y_{y} signMFISYM 12
$\mathrm{COF}_{\mathrm{y}}=\mathrm{COF}_{\mathrm{y}}$ signCOFSKEW ${ }_{y}$
$\mathrm{COF}_{\mathrm{z}}=\mathrm{COF}_{\mathrm{z}}$ signCOFSKEW y signMFISYM 23
Switch FLAGWRD2 bit 3 (CALCMANB) to 1
Proceed to "WCALC"
(Otherwise, $\mathrm{COF}_{\mathrm{z}}>\mathrm{COF}_{\mathrm{y}}$ and $\mathrm{COF}_{\mathrm{z}}>\mathrm{COF}_{\mathrm{x}}$)
$\operatorname{COF}_{\mathrm{x}}=$ COF $_{\mathrm{x}}$ signCOFSKEN z_{z} signMFISMM 13
(method 3)
$\mathrm{COF}_{\mathrm{y}}=\mathrm{COF}_{\mathrm{y}} \operatorname{signCOFSKEW}_{\mathrm{z}}$ signMFISYM $_{23}$
$\mathrm{COF}_{\mathrm{z}}=\mathrm{COF}_{\mathrm{z}}$ signCOFSKEW ${ }_{\mathrm{z}}$
Switch FLAGWRD2 bit 3 (CAICMANB) to 1
WCALC Perform "DELCOMP" with TSang = K:ARATE RATEINDX
BRATE $=K:$ ARATE $_{\text {RATEINDX }}$ COF
$T M=A M K: A N G L T E M E / K: A R A T E$ RATEINDX
Switch FLLAGWRD2 bit 2 (CALCMAN2) to 1
NEWANGL [MIS] $=[\mathrm{MTS}]$ [Deimat]
Perform "DCMTOCDU" with [TSmat] $=$ [MIS]
NCDU = TScdud converted from one's to two's complement form If FLLAGWRD2 bit 2 (CALCMAN2) $=1$:

Switch FLAGWRD2 bit 2 (CALCMAN2) to 0
TM $=$ TM + TTMENOW $-\mathrm{K}:$ ONESEK
Inhibit interrupts
OMEGARD $=$ BRATE $_{z}$
DELREROR $=\mid$ OMEGARD $\mid \mathrm{K}:$ BIASCALE OMEGARD / 1 JACCR
OMEGAQD $=$ BRATE $_{Y}$
(If FLAGWRD2 bit $2=1$:)
DELOEROR $=\mid$ OMEGAQD $\mid \mathrm{K}:$ BIASCALE OMEGAQD $/ 1 \mathrm{JACCQ}$
OMEGAPD $=$ BRATE $_{x}$
DELFEROR = |OMEGA PD $\mid \mathrm{K}:$ BLASCALE OMEGAPD / 1JACCP
NEXTIME $=$ TIMENOW + K:ONESEK (less significant halves only)

CDUD = $\underline{B C D U}$
$\underline{B C D U}=\mathrm{NCDU}$
Release interrupt inhibit
$T S=T M-T D M E N O W$
If $T S>0$, proceed to "CONTMANU"
If $T S=0$:
Call "MANUSTOP" in 1 second
End job
$T S=T S+K:$ ONESEK +1
If $T S \leqslant 0, T S=1$
Call "MANUSTOP" in TS centiseconds
End job
CONTMANU
TS = NEXTIME - TIMENOW (less significant halves only)
If $T S<0, T S=2^{14}+T S$
Call "UPDTCALL" in TS centiseconds
NEXTIME $=$ NEXTIME $+\mathrm{K}:$ ONESEK (less significant halves only)
End job

End task
NEWDELHI If bit 14 of channel $31=1$ (not AUTO control mode):
Perform "ZATTEROR"
Proceed to "NOGO"
Proceed to "NEWANGL"
NOGO Perform "STOPRATE"
Call "GOODMANU" in 0.02 seconds
End job
MANUSTOP DELCDU $=0$
OMEGARD $=0$
DELREROR $=0$
OMEGAQD $=0$
DELQEROR $=0$
CDUD $=$ THETAD
OMEGAPD $=0$
DELPEROR $=0$
GOODMANU $T S=$ ATTCADR
ATTCADR $=+0$
Establish a job starting at the address specified in TS with priority equal to that it had before entering "KALCMAN3" (saved in ATTPRIO in "GOMANUR") Essentially equivalent to "returning" to that job.

End task

CDUTODCM $\phi=T_{S c d u}^{x}$ converted to one's complement form (outer gimbal)
$\theta=$ TScdu $_{y}$ converted to one's complement form (inner gimbal) $\psi=T S c d u z$ converted to one's complement form (middle gimiolil)
$[\mathrm{TSmat}]=\left[\begin{array}{ccc}\cos \theta \cos \psi & -\sin \theta \sin \phi & \sin \theta \cos \phi \\ \sin \psi & \cos \psi \cos \phi \sin \psi & +\cos \phi \sin \phi \sin \psi \\ & & -\cos \psi \sin \phi \\ -\sin \theta \cos \psi & \begin{array}{c}\cos \theta \sin \phi \\ \sin \theta \cos \phi \sin \psi\end{array} & -\cos \theta \cos \phi \\ \sin \theta \sin \phi \sin \psi\end{array}\right]$
Return
DCMTOCDU $\psi=\operatorname{arcsinTSmat} 21$ (limited to within $\pm \frac{1}{4}$)
$\mathrm{TScos}=\cos \psi$
If $|T S c o s| \geq 1$, TScos $=\left(1-2^{-28}\right)$ signTScos
$\theta=\arcsin \left(-\right.$ TSmat $_{31} /$ TScos $)$
If TSmat ${ }_{11}<0, \theta=\frac{1}{2} \operatorname{sign} \theta-\theta$
$\phi=\arcsin \left(-\right.$ TSmat $\left._{23} / T S c o s\right)$
If TSmat ${ }_{22}<0, \phi=\frac{1}{2} \operatorname{sign} \phi-\phi$
$\underline{T} \operatorname{Scdud}=(\phi, \theta, \psi)$
Return
DELCOMP TSs $=$ sinTSang
TSc $=\cos$ TSang
TSd $=1-$ cosTSang
If \mid TSd $\mid \geq 2$ (overflow), TSd $=K$: posmaxdp signTSd
$\mathrm{TS}=\mathrm{COF}_{\mathrm{x}}^{2} \mathrm{TSd}+\mathrm{TSc}$
If $|T S| \geq 1$, TS $=K$: posmaxdp signTS
$\mathrm{DELMAT}_{11}=\mathrm{TS}$

```
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{y}}{ }^{2} \mathrm{TSd}+\mathrm{TSc}\)
If \(|T S| \geq 1, T S=K:\) posmaxdp sign'TS
DEIMAT \(22=T S\)
\(T S=\mathrm{COF}_{\mathrm{z}}^{2} \mathrm{TSd}+\mathrm{TSc}\)
If \(|T S| \geq 1, T S=K:\) posmaxdp signTS
DELMAT \(_{33}=T S\)
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{y}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{z}} \mathrm{TSs}\)
If \(|T S| \geq 1, T S=K\) :posmaxdp signTS
DELMAT \(_{21}=T S\)
\(\mathrm{TS}=\operatorname{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{y}} \mathrm{TSd}-\mathrm{COF}_{\mathrm{z}} \mathrm{TSs}\)
If \(|T S| \geq 1\), \(T S=K\) : posmaxdp signTS
DELMAT \(_{12}=T S\)
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{y}} \mathrm{TSs}\)
If \(|T S| \geq 1, T S=K\) : posmaxdp signTS
DELMAT \(_{13}=T S\)
\(T S=\operatorname{COF}_{\mathrm{x}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}-\mathrm{COF}_{\mathrm{y}} \mathrm{TSs}\)
If \(|T S| \geq 1, T S=K\) : posmaxdp signTS
\(\mathrm{DELMAT}_{31}=\mathrm{TS}\)
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{y}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}+\mathrm{COF}_{\mathrm{x}} \mathrm{TSs}\)
If \(|T S| \geq 1, T S=K\) : posmaxdp signTS
DELMAT \(32=T S\)
\(\mathrm{TS}=\mathrm{COF}_{\mathrm{y}} \mathrm{COF}_{\mathrm{z}} \mathrm{TSd}-\mathrm{COF}_{\mathrm{x}} \mathrm{TSs}\)
If \(|T S| \geq 1, T S=K\) : posmaxdp signTS
DELMAT \(_{23}=T S\)
Return
```

```
RG2DIsP Proceed to "GOFLA8H" with TS = K:VO6N22 (GHFTAD)
    (If terminate, proceed to WMNDIXTM; if proceed,
        continue at next step; if ther response, repest
        this step.)
    Suitoh FLAGWRD5 bit 6 (3AXISFLG) to 1
    Porform "R60LRM"
    Proceed to "ENDEXT*
V8gCALL Perform "R02BOTH"
    OPTIONX O = 3
    OPTIONX 
    Proceed to "GOFLASH" with TS = K:VO4N12 (OPTION& , OPTIONX ()
        (If terminate, proceed to "ENDEXT", if proceed,
        continue at next step; if other response, repeat
        this step.)
VB9RECL TSt = TIMENOW + K:DP1MIN
TDEC1 = T'St
Perform "CSMMCONIC*
TSr = RATT
TDPC1 = TSt
Perform "LEMCONIC"
IS = [REFSMMAT](ISr - RATT) (adjusted to prevent ovinfflow
POINTVSM x unitTS
If OPTIONX = 1, sCAXIS = K: GNITZ and skip next atop
SGAXIS = K:UNITX
Perform "VEGPOINT"
THETAD = TS
Perform "BALLANGS"
```

Proceed to "GOFLASH" with TS = K:V06N18 (FDAI)
(If terminate, proceed to "ENDEXT"; ifproceed, continue at next step; if otherresponse, proceed to "V89RECL".)
Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R6OLEM"
Proceed to "ENDEXI"
CHKLINUS If FLAGWRD4 bit 12 (PDSPFLAG) $=0$, return
TBASE2 $=$ return address of last display (prior to call of "CHKLINUS")
Set restart group 2 to phase 13(causes "RELINUS" to be established withpriority 10_{8} if restart.)
Perform "BLANKET" with TS $=0^{00100} 8$
Return
RELINUS. (Entered for restart group 2.13, due to "CHKLINUS")
Change job priority to 26 (pr26)
If FLAGNRD1 bit 5 (TRACKFLG) = 1:
Switch FLAGNRD4 bit 12 (PDSPFLAG) to 1
Return to address specified by TBASE2 (to displaygenerated prior to calling of "CHKLINUS")
If FLAGWRDO bit 7 (RNDVZFLG) = 1: (P20 running)
Set restart group 2 to phase 7 (this will cause"P2OLEMC1" to be started in 15 seconds if thereis a restart.)
End job
Set restart group 2 to phase 11 and TBASE2 $=-$ TIME1 (causes "P25LEM1" to be established with priority 148 if restart.)
End job

1JACCP, 1JACCQ, 1 JACCR: See DAPB section.
A: Sso MATX section.
M: Angle of rotation, a doubl precision angle between 0 and $\frac{1}{2}$ (0° sind 180°), scaled BO in units of revolutions.

SHG: See COOR section.
ATTG㖣: Double precision address storage set to to (single precision) when the attitude maneuver routine (KALCMAN3) is not in use.
sITPRIO: Priority of job celling "GOMANUR".
BALIEXIT: Single precision octal return address atorage.
BCDU: Single precision vector storage for the three "present" gimbat azigles throughout an att,itude maneuver. The X, Y and Z conponent, contain the outer, inner and middle gimbal angles respecti.7aly, scaled B-1 in units of revolutions and stored in two's conflamen. form.

BRATE: Double precision vector containing the desired maneuver rates about each of the three principal axes, scaled B-3 in units of revolutions per second.

CAM: Double precision cosine of the total maneuver angle, scaled B1 and unitless.

GDU: See COOR section.
EDUD: See DAPA section.
CDF: A double precision unit vector defining the axis of rotation of the calculated maneuver in terms of present spacecraft coordinates, scaled B1. Extracted from the transformation matrix [Mer] by one of two procedures depending on the magnitude of the rotation angle.

GOFSKEW: Double precision calculation of COF from the off-disgonal terms of [MFI]; equivalent to COF or used to supplement a calculation of ${ }^{C O F}$ from the diagonal terms of [MFI] by supplying sign information; scaled B1 and unitless.

COSOGA, COSIGA, COSMGA: See COOR section.
COSTH: See COOR aection.

DELCDU: See DAPA section.
[DFLMAT]: Double precision, 3×3 transformation matrix describing a rotation about COF through a particular angle. Used in "NEWANGU" to update [MIS] at one-second intervals; scaled BO and unitless.

DELPEROR, DELQEROR, DFLLREROR: See DAPA section.
FDAI: Single precision vector containing the values expected to appear on the FDAI at the completion of an attitude maneuver (astronaut roll, pitch and yaw in that order), scaled B-1 in units of revolutions.

K:ANGLTIME: Double precision constant stored as 0.0001907349 , scaled Bl9 in units of centiseconds per second. Equation value: 100. (Used with a right shift of 5 to convert from seconds scaled B4 to centiseconds scaled B28.)

K:ARATE ${ }_{i}$: Table of four double precision constants, scaled B-4 in units
of ${ }_{\text {revolutions per second. }}$

| i | Stored Value | Equation Value | Equivalent |
| :--- | :--- | :--- | :--- |
| 0 | 0.0088888888 | 0.0005555555 | 0.2 degrees/second |
| 1 | 0.0222222222 | 0.0013888888 | 0.5 degrees/second |
| 2 | 0.0888888888 | 0.0055555550 | 2.0 degrees/second |
| 3 | 0.4444444444 | 0.0277777778 | 10.0 degrees/second |

$\mathrm{K}:$ BIASCAIE: Single precision constant stored as 75777 , scaled B2 and unitless. Equation value: $\frac{1}{4}$.

K:DP1MIN: Double precision constant stored as 0.0000223517 (6000×2^{-28}), scaled B28 in units of centiseconds. Equation value: one minute.

K: DTdTAU: Single precision constant stored as 0.1, scaled BO in units of seconds per DAP cycle. Equation value: 0.1.

K:LOCKANGL: Single precision constant stored as 0.388889 , scaled B-1 in units of revolutions. Equation value: 0.194445 . (Equivalent to 70 degrees.)

K:MAXANG: Double precision constant stored as 0.472222222 , scaled BO in units of revolutions. Equation value: 0.472222222 . (Equivalent to 170 degrees.)

K:MINANG: Double precision constant stored as 0.00069375 , scaled BO in units of revolutions. Equation value: 0.00069375. (Equivalent to 0.25 degrees.)

K: ONESEK: Double precision constant stored as 100×2^{-28}, scaled B:S8 in units of centiseconds. Equation value: 100.

K:posmexdp: See list of Major Variables.
K:SINGIMLC: Double precision constant stored as 0.4285836003 , scaled BI and unitless. Equation value: 0.8571672 . (Corresponds to the sine of 59 degrees.)

K:SINVEC1: Double precision constant stored as 0.3796356537 , scaled B1 and unitless. Equation value: 0.7592713074 . (Corresponds to the sine of 49.4 degrees.)

K:SINVEC2: Double precision constant stored as 0.2462117800 , scaled E1 and unitless. Equation value: 0.49242356 . (Corresponds to the sine of 29.5 degrees.)

K:UNITX, K:UNITY, K:UNITZ: Dowble precision constant vectors scaled B and unitless. Equation value: ($1,0,0$) , ($0,1,0$) and ($0,0,1$).

K:VECANG1: Double precision constant stored as 0.1388888889 , scaled BO in units of revolutions. Equation value: 0.1388888889. (Equivalent to 50 degrees.)

K:VECANG2: Double precision constant stored as 0.09722222222 , scaled $B C$ in units of revolutions. Equation value: 0.09722222222 . (Equivalent to 35 degrees.)

K:VyxiNx: See list of Major Variables.
[4fI]: Double precision, 3×3 transformation matrix, scaled B2 and defired such that $A s c=[M F I]$ Ascd where A is a vector expressed in terms of "present spacecraft" and "desired spacecraft" coordinate systems, respectively.
[MFISYM]: A double precision, 3×3 matrix synthesized from [MFI] and its transpose to enable an accurate computation of COF from the diagonal terms; scaled B2.
[MFS]: A double precision, 3×3 transformation matrix, scaled B1 and defined such that Asm = [MFS] Ascd where \underline{A} is a vector expressed in terms of "stable member" and "desired spacecraft" coordinate systems, respectively.
[MIS]: A double precision, 3×3 transformation matrix scaled $B l$ and defined such that Asm = [MIS] Asc where \mathbb{A} is a vector expressed in terms of "stable member" and "present spacecraft" coordinate systems, respectively.

$$
\begin{aligned}
& {[M I S]=\left[\begin{array}{l}
\underline{X S M}_{S C} T \\
\underline{Y}_{S M} T \\
\underline{Z S M}_{S C} T
\end{array}\right]=\left[\underline{X S C}_{S m}, \underline{Y S C}_{S m}, \underline{Z S C}_{S m}\right]}
\end{aligned}
$$

MODREG: See DATA section.
NCDU: Single precision vector storage for the gimbal angles desired after the next one-second period, scaled B-1 in units of revolutions and stored in two's complement form.

NEXTIME: Single precision scheduled time of the next "UPDTCALL" cycle, scaled B14 in units of centiseconds.

OMEGAPD, OMBGAQD, OMEGARD: See DAPA section.
OPTIONX ${ }_{0}$, OPTIONX X_{1} : See EXVB selction.
POINTVSM: Double precision "desired direction" vector, a unit vector scaled B1 and expressed in terms of "stable member" coordinates.

PRIORITY: See MATX section.

RATEINDX: See DAPB section.
RATT: See ORBI section.
[REFSMMAT]: See COOR section.
SCAXIS: Double precision unit vector defining the spacecraft axis that is to be pointed in the "desired direction", scaled B1 and expressed in "present spacecraft" coordinates.
SINOGA, SINIGA, SINMGA: See COOR section.
SINTH: See COOR section.
TBASE2: Cell used for address storage purposes in "CHKLINUS" to permit restoration of program display after a restart. The cell is single precision and is normally used to contain waitlist restart information (as it is in "RELINUS".)

TDEC1: See ORBI section.
TEMPR60: Single precision octal return address storage.

THETA: Seo COOR section.
THETAD: Single precision vector containing the gimbal angles that define the desired orientation to which the attitude maneuver routines are to maneuver; scaled $\mathrm{B}-1$ in units of revolutions and stored in two's complement form. Also called CPHI, CTHETA, CPSI in program, $(x, y, z$ components respectively).

TIME1: The least signifigant half of TIMENOW. See EXVB section.
TIMRNOW: See EXVB section.
TM: Double precision time of maneuver end, calculated on the first pass through "NEWANGL" and scaled B28 in units of centiseconds.
[TMFI]: Double precision, 3×3 matrix equal to the transpose of [MFI]; scaled B2.
[TMIS]: Double precision, 3×3 matrix equal to the transpose of [MIS]; scaled B1.

VECQTEMP: Single precision octal return address storage.
$\underline{Y}^{S M}{ }_{s c}$, $Y_{S M}{ }_{\text {scd }}$: Double precision unit vector along the Y-axis of the "stable member" coordinate system expressed in terms of "present spacecraft" and "desired spacecraft" coordinate systems, respectively; scaled B1.

```
P4OLM WHICH = "F4OTABLE"
    If FLGWRD10 bit 13 (APSFLAG) = 1, proceed to "P40ALM"
    Perform "RO2BOTH"
    DVTHRUSH = K:THRESH1 + K:THRESH3
    If DAPBOOLS bit 13 (CSMDOCKD) = 1, DVTHRUSH = K:THRESH3
    DVCNTR = 4
    Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
    F = K:FDPS
    MDOT = K:MDOTDPS
    TDECAY = K:DTDECAY
    VEX = - 2 K:DPSVEX
    Proceed to "P40IN"
P42LM WHICH = "P42TABLE"
    If FLGWRD10 bit 13 (APSFLAG) = 0, proceed to "P40ALL"
P42STAGE Perform "RO2BOTH"
    DVTHRUSH = K:THRESH2
    DVCNTR=4
    Switch FLAGWRD2 bit 5 (AVFLAG) to 1 (LM active)
    F = K:FAPS
    MDOT = K:MDOTAPS
    TDECAY = K:ATDECAY
    VEX = - 2 K:APSVEX
P40IN Perform "S40.1" (get initial target vectors)
    Perform "S40.2,3". (get initial attitude)
Perform "PFLITEDB" with interrupts inhibited
Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R60LEM"
Proceed to "BURNBABY"
P41LM WHICH \(=\) "P41TABLE"
Perform "RO2BOTH"
If FLAGWRD1 bit 15 (NJETSFLG) \(=0, F=K: F R C S 4\)
If FLAGWRD1 bit 15 (NJETSFLG) \(=1, \mathrm{~F}=\mathrm{K}:\) FRCS2
Perform "S40.1" (get initial target vectors)
Perform "S40.2,3" (get initial attitude)
Inhibit interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
Perform "R60LEM" (return after attitude maneuver complete)
Perform "S41.1" with TSref = VGPREV\(\underline{\text { VGBODY }}=\underline{\text { TSbody }}\)
Perform "GODSPRET" with TS = K:V16N85 ..... (VGBODY)
DISPDEX \(=05000_{8}\) (positive to enable "DYNMDISP")
Establish "DYNMDISP" ..... (pr05)Proceed to the third step of "BURNBABY"
PLOALM Perform "ALARM" with TS \(=01706_{8}\)
REP4OALM Proceed to "GOFLASH" with TS = K:VO5NO9(If terminate, proceed to "GOTOPOOH"; if proceed, continue atnext step; if other response, repeat this step.)
Proceed according to fourteenth entry in WHICH table
( \(-\ldots-\) - REP4OALM, ----- , P42STAGE, -----

DVTOTAL \(=0\)
Perform "P4OAUTO" (assure proper mode switching)
GOBLTIME \(=\) TIG
Perform "ENGINOF3" with interrupts inhibited
Proceed according to the fifth entry in WHICH table (P40SPOT, P40SPOT, P41SPOT, P40SPOT, P41SPOT, ---)

PLOSPOT DISPDEX \(=-15\) ("CLOKTASK" controlled otherwise by P41, 263)
Perform "STCLOK3" (start computation of TTOGO)
M1SPOT TDEC1 \(=\) TIG - K:D29.9SEC ("CLOKTASK" already running if P63)
Perform "INITCDUW" (initialize steering)
If FLAGWRD6 bit 8 (MUNFLAG) \(=1\) :
Perform "CSMPREC".
\(\underline{\text { VCSM }}=[\) REFSMMAT \(]\) VATT
\(\underline{R C S M}=[\) REFSMMAT] RATT
Perform "MUNGRAV" with \(\operatorname{TSr}=\) RCSM
\(\underline{G C S M}=\underline{G D T 1}\)
TDEC1 \(=\) TAT
Perform "MIDTOAV1"
If TSerror \(=1: \quad\) (did not finish in time)
TIG \(=\) PIPTIME1 \(+\mathrm{K}:\) D29.9SEC
SAVET \(=\) TSt \(-K: 5 S E C D P\)
Call "TIG-35" in SAVET centiseconds
If MODREG \(=63\) :
\[
\begin{aligned}
& \text { DISPDEX }=-15 \quad \text { (enable display of TTOGO) } \\
& \text { ABVEL }=|\underline{\mathrm{VN} 1}|
\end{aligned}
\]

End job
ITG-35 Call "TIG-30" in 5 seconds

\begin{tabular}{|c|c|}
\hline DISPCHNG & DISPDEX \(=-11\) (initiate astronaut branching capability) \\
\hline & End task \\
\hline \multirow[t]{5}{*}{*PROCEED} & Switch FLAGWRD7 bit 12 (ASTNFLAG) to 1 \\
\hline & If FLAGWRD7 bit 13 (IGNFLAG) \(=1\) : \\
\hline & Call "IGNITION" in 0.01 seconds \\
\hline & DISPDEX \(=-15\) (display only) \\
\hline & End job \\
\hline \multirow[t]{4}{*}{TIG-0} & Switch FLAGWRD7 bit 13 (IGNFLAG) to 1 \\
\hline & If MODREG \(=63\), call "ZOOM" in ZOOMTIME centiseconds \\
\hline & If FIAGWRD7 bit 12 (ASTNFLAG) = 1, proceed to "IGNITION" \\
\hline & \begin{tabular}{l}
Proceed according to the 12 th entry in WHICH table \\
(End task, End task, TIGTASK, End task, End task, End task)
\end{tabular} \\
\hline \multirow[t]{3}{*}{TIGTASK} & Establish "TIGNOW" (mr16) \\
\hline & Switch DAPBOOLS bit 15 (PULSES) to 0 \\
\hline & Enid trask \\
\hline \multirow[t]{4}{*}{IGNITION} & Switch FLAGWRD5 bit 7 (ENGONFLG) to 1 \\
\hline & Switch bit 14 of channel 11 to 0 \\
\hline & Switch bit 13 of channel 11 to 1 (send ignition commend) \\
\hline & TEVENT = TIMENOW \\
\hline - & Switch DAPBOOLS bit 15 (PULSES) to 0 \\
\hline \multirow{3}{*}{,} & TIG \(=\) TGO + TIMENOW (now contains cutoff time) \\
\hline & Switch FLAGWRD8 bit 10 (FLUNDISP) to 0 \\
\hline & Proceed according to the 13 th entry in WHICH table (P12IGN, P40IGN, ---, P42IGN, P63IGN, ABRTIGN) \\
\hline P12IGN & \[
\begin{array}{cc}
\text { AOSQ }=\text { IGNAOSQ } \quad \begin{array}{c}
\text { (Initialize DAP bias } \\
\text { acceleration estimates })
\end{array}
\end{array}
\] \\
\hline & AOSR \(=\) IGNAOSR \\
\hline \multirow[t]{4}{*}{ABRTIGN} &  \\
\hline & AVEGEXIT \(=\) "ATMAG" \\
\hline & Switch FLAGWRD7 bit 11 (SWANDISP) to 1 \\
\hline & Proceed to "P42IGN" BURN - 5 \\
\hline
\end{tabular}

P63IGN AVEGEXIT \(=\) "LUNLAND"
DISPDEX \(=\mathrm{Z}\) (positive to kill "CLOKTASK")
Switch FLAGWRD9 bit 9 (LETABORT) to 1
Switch FLAGWRD7 bit 11 (SWANDISP) to 1
TIG \(=\) TIMENOW
WCHPHASE \(=0\)
WCHPHOLD \(=0\)
FLPASSO \(=2\)
Proceed to "P42IGN"

P4OIGN If FLAGWRD5 bit 12 (NOTHROTL) \(=0\) :
Call "ZOOM" in ZOOMTIME centiseconds
P42IGN Switch DAPBOOLS bit 8 (DRIFTBIT) to 0
If FLAGWRD2 bit 9 (IMPULSW) \(=1\) :
If \(\mathrm{TGO} \leq 0\), TGO \(=1\)
\(T G O=2^{14}\) (fractional part of TGO \(/ 2^{14}\) ) (more significant half zeroed)
Call "ENGOFTSK" in TGO centiseconds
Switch FLAGWRD7 bits 13 (IGNFLAG) and 12 (ASTNFLAG) to 0
Switch FLAGWRD2 bit 9 (IMPULSW) to 0
Delay 0.5 second
Switch DAPBOOLS bit 6 (ULLAGER) to 0
End task
Switch FLAGWRD7 bits 13 (IGNFLAG) and 12 (ASTNFLAG) to 0
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 0
Delay 0.5 second
witech DAPBOOLS bit 6(ULIAGSR) to 0
\begin{tabular}{|c|c|}
\hline & Find task \\
\hline 200 & If MODREG \(=63\) : (If P63 running) \\
\hline & Proceed to "P63200M" .. (otherwise it's P40) \\
\hline 23C0M & THRUST \(=\mathrm{K}:\) MAXTHRUST \\
\hline & Switch bit 4 of channel 14 to 1 \\
\hline & End task \\
\hline P62200M & Switch FLAGWRD5 bit 8 (Z00MFLAG) to 1 \\
\hline & Perform "FLATOUT" \\
\hline & End task \\
\hline SEERING & Perform "UPDATEVG" \\
\hline & If FLAGWRD2 bit 9 (IMPULSW) \(=0\), proceed to "SERVEXIT" \\
\hline & If FLAGWRD7 bit 7 (IDLEFLAG) = 1, proceed to "SERVEXIT" \\
\hline & Perform "STOPRATE" \\
\hline & Switch FLAGWRD2 bit 9 (IMPULSW) to 0 \\
\hline & Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1 \\
\hline & Inhibit interrupts \\
\hline & TSt = TIG - TIMENOW \\
\hline & If TSt \(\leq 0, \mathrm{TSt}=1\) \\
\hline & \[
\left.T G O=2^{14} \text { (fractional part of } T S t / 2^{14}\right) \quad \begin{gathered}
\text { (more significart } \\
\text { half zerceá) }
\end{gathered}
\] \\
\hline & Call "ENGOFTSK" in TGO centiseconds \\
\hline & Release interrupt inhibit \\
\hline & End job \\
\hline ETMGOFTSK & Perform "ENGINOFF" \\
\hline & End task \\
\hline ETHGINOFF & Establish "POSTBURN" (pr12) \\
\hline & BURN - 7 \\
\hline
\end{tabular}
ENGINOF2 Call "COASTSET" in 0.01 second
ENGINOF1 Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
Switch DAPBOOLS bit 6 (ULLAGER) to 0
ENGINOF4 TEVENT = TIMENOW
ENGINOF3 Switch FLAGWRD5 bit 7 (ENGONFLG) to 0
Switch bit 13 of channel 11 to 0
Switch bit 14 of channel 11 to 1
Switch DAPBOOLTS bit 14 (USEQRJTS) to 1
THRUST \(=-\mathrm{K}:\) MAXTHRUST (wipe out any throttle setting above that specified manually)
Switch bit 4 of channel 14 to 1
Return
COASTSET Perform "ALLCOAST"
End task
POSTBURN DISPDEX = Z. (positive to kill "CLOKTASK")
AVEGEXIT = "CALCN85"
Perform "GOFLASHR" with TS = K:V16N40 (TTOGO, DELVSAB, DVTOTAL)(If terminate, proceed to "TERM4O"; if proceed, proceed to"TIGNOW"; if other response, proceed to "POSTBURN".)
End job
TIGNOW Inhibit interrupts
Perform "ZATTEROR"
Perform "SETMINDB"
Release interrupt inhibit
Perform "REFLASHR" with TS = K:V16N85 ..... (VGBODY)(If terminate, proceed to "TERM40"; if proceed, proceed to"TERM4O"; if other response, repeat this step.)
End job

```

 If DISPDEX = - 23:
 Proceed to "REFLASH" with TS = K:V06N61 %:S% ;
 (If terminate, proceed to "STOPCLOK"; if proceed,
 continue at next step; if other response, repeat
 this step.)
 DISPDEX = 0
 Establish "ASTNRET"
 (pr13)
 End job
 If DISPDEX = - 15:
 Proceed to "REGODSP" with TS = zero entry in WHICH table
 (V06N74, V06N4O, ---, VO6N4O, VO6N62, VO6N63)
 If DISPDEX = - 11:
 V99RECYC
NVWORD1 = 773778 (to specify a verb 99 paste)
Proceed to "CLOGPIAY" with TS = zero entry in WHICH table
(V06N74, V06N4O, --_-, V06N4O, VO6N62, VO6N63)
(If terminate, nroneed to "STOPCLOK"; if proseed
proceed to "*PROCEED"; if other response, proceed to
"*ENTER".)
If DISPDEX = -2:
Perform "CLEANDSP"
End job
STOPCLOK Switch DAPBOOLS bit 6 (ULLAGER) to 0
Remove "ULLGTASK" from the waitlist if it is there
DISPDEX $=\mathrm{Z}$ (positive to kill "CLOKTASK")
Proceed to "GOTOPOOH"
*ENTER Inhibit interrupts
Proceed according to the 3rd entry in WHICH table (GOCUTOFF, GOPOST, ---, GOPOST, V99RECYC, GOCUTOFF)

```

Establish "POSTBURN"
Inhibit interrupts
Perform "ALLCOAST"
Switch DAPBOOLS bit 6 (ULLAGER) to 0
Remove "ULLGTASK" from the waitlist if it is there
DISPDEX \(=Z \quad\) (positive to kill "CLOKTASK")
Release interrupt inhibit
End job
GOCUTOFF Establish "CUTOFF"
(pr17)
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
Inhibit interrupts
Perform "ALLCOAST"
Switch DAPBOOLS bit 6 (ULLAGER) to 0
Remove "ULLGTASK" from the waitlist if it is there
DISPDEX \(=\mathrm{Z}\) (positive to kill "CLOKTASK")
Release interrupt inhibit
End job
COMFAIL Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
Switch FLAGWRD8 bit 10 (FLUNDISP) to 1
DVCNTR \(=4\)
If DISPDEX \(>0\) :
DISPDEX \(=0\)
Perform "STCLOK3"
DISPDEX \(=\) - 29 (initiate fail branch display)
End job

Remove "ZOOM" from the waitilist if it is there
Perform "ENGINOF4"
Switch DAPBOOLS bit 8 (DRIFTBIT) to 1
Invert DAPBOOLS bit 10 (AORBTRAN)
Switch DAPBOOLS bit 6 (ULLAGER) to 1
Call "TIG-5" in 0.01 second
End job
COMFAIL3 DISPDEX = Z (positive to kill "CLOKTASK")
Skip next step
COMFAIL4 DISPDEX \(=-15\)
Switch FLAGWRD7 bit 7 (IDLEFLAG) to 0
Switch FLAGWRD8 bit 10 (FLUNDISP) to 0
End job
DYNMDISP If DISPDEX \(\leq 0\), end job ("CLOKTASK" has started)
Perform "S41.1" with TSref = VGPREV
\(\underline{V G B O D Y}=\underline{T}\) Sbody
Delay 1 second
Proceed to "DYNMDISP"
CALCN85 Perform "UPDATEVG"
Perform "S41.1" with TSref = VGPREV
VGBODY \(=\) TSbody
Proceed to "SERVEXIT"
S41.1 Perform "CDUTRIG"
Perform "SMTONB"
ISbody \(=[\) SMNBMAT \(][\) REFSMMAT \(]\) TSref
Return
P40AUTO If FLGWRD10 bit 13 (APSFLAG) \(=1\) and bit 10 of channel \(30=0\)
```(PGNCS) and bit 14 of channel \(31=0\) (DAP in Auto mode) or ifFLGWRD10 bit 13 (APSFLAG) \(=0\) and bit 10 of channel \(30=0\) andbit 14 of channel \(31=0\) and bit 5 of channel \(30=0\) (Autothrottle mode also required if descent):
```

Return (switch configuration proper)
Proceed to "GOPERF1" with $T S=00203$ (request proper moding)

```(If terminate, proceed to "GOTO \(\mathrm{POOH"}\); if proceed, proceedto "P4OAUTO"; if other response, continue at next step.)
```

Return
Flr 2 LM Perform "RO2BOTH"
Perform "MIDTOAV2"
Call "STARTP47" in TSt centiseconds (TSt modulo $2^{14}$ )
End job
STARTP47 AVEGEXIT = "CALCN83"
Establish "P47BODY" ..... (pr20)
Proceed to "PREREAD"
147BODY DELVIMU $=0$
DELVCTL $=0$
Perform "GOFLASHR" with TS = K:V16N83 (DELVIMU)

```(If terminate, proceed to "GOTOPOOH"; if proceed, procsedto "GOTOPOOH"; if other response, proceed to "P47BODY".)
```

End job
CALCN83 DELVSIN $=$ DELVCTL + DELVREF
Perform "S41.1" with TSref = DELVSIN

```DELVIMU \(=\) TSbodyDELVCTL \(=\) DELVSIN
```

Proceed to "SERVEXIT"

UPDATEVG QTEMP1 = return address

## Perform "S40.8"

If FLAGWRD2 bit 8 (XDELVFLG) $=1$, return via QTEMP1
If FLAGWRD7 bit 10 (NORMSW) $=0$ :
$T S=$ PIPTIME - TIGSAVE - TNEWA
If $T S<0$, proceed to "GETRANS"
TStp = TIGSAVE + TNEWA
If "S40.9" is still active: (as indicated by restart tables)
Return via QTEMP1
Establish "S40.9" (pr10)
TIGSAVE $=$ TStp
RINIT = RN
$\underline{V I N I T}=\underline{V N}$
GETRANS DELLT4 $=$ TPASS4 - PIPTIME
Return via QTEMP1
S40.8 If FLAGWRD2 bit. 8 (XDELVFLG) $=0$, proceed to "RASTEER1"
TS1 = VGPREV - DELVREF
VGAIN* $\quad \underline{V}=T S 1$
$\underline{U N F C}=[$ REFSMMAT $] \underline{\mathrm{VG}}$
DELVSAB $=|\underline{V G}|$
$\underline{V G P R E V}=\underline{V G}$
If FLAGWRD2 bit 11 (STEERSW) = 0, return
$T S=u n i t(-\underline{D E L V R E F}) \cdot \underline{V G}$

If $T S \geq 0$ :

> Perform "ALARM" with $T S=014078$
> Perform "FINDCDUW"
> Return (to caller of " $540.8 "$ )
$\mathrm{TS} 1=1+(\mathrm{TS} / \mathrm{VEX})$
TGO $=($ K:mFOURDT TS TS1 $/ \mid$ DELVREF $\mid)+$ TDECAY
TIG $=$ TGO + PIPTIME
If TGO $\geq K: F O U R S E C S:$
Perform "FINDCDUW"
Return (to caller of "S40.8")
Switch FLAGWRD2 bit 9 (IMPULSW) to 1
Switch FLAGWRD2 bit 11 (STEERSW) to 0
Return (to caller of "S40.8")
S40.1 QTEMP $=$ return address
TIGSAVE $=$ TIG
If FLAGWRD2 bit 8 (XDELVFLG) $=0$, proceed to "S40.1B"
VINIT $=$ VTIG
$T S=|\underline{V T I G} * \underline{R T I G}|$
$\underline{U T}=$ unit( $\underline{V T I G ~ * ~ R T I G) ~}$
RINIT $=$ RTIG
TSang $=\left(T S K: T H E T A C O N /|\underline{R T I G}|^{2}\right)($ DELVSAB MASS $/ F)$
$\underline{T} S a=(\underline{D E L V S I N} \cdot \underline{U T}) \underline{U T}$
$\underline{T} S b=$ DELVSIN $-\underline{T} S a$
$\underline{V} G P R E V=\underline{T} S a+|\underline{T} S b|$ (sinTSang unit( $\underline{T} S b * \underline{U T})+$ cosTSang unitTSb)
$\underline{U T}=$ unitVGPREV

```
Perform "GET.LVC" with TS = VGPREV
Return via QTEMP
S40.1B TDEC1 = TIG
DELLT4 = TPASS4 - TIG
Perform "LEMPREC"
RTIG = RATT and _्RINIT = RATT
UNITR = unitRATT
VIIG = VATT
VINIT = VATT
VTARGTAG = 0
CNANGL = K:EPS1
If FLAGWRD7 bit 10 (NORMSW) = 1, CNANGL = K:EPS1 + K:EPS2
RTX1 = MUDEX
RTX2 = PBODY
Perform "INITVEL"
VGPREV = DELVEET3
UT = unitVGGPRV
DELVSAB = | vGPREv
Perform "GET.LVG" with TS = DELVEET3
Return via QTEMP
S40.2.3 POINTVSM = [REFSMMAT] UT
SCAXIS = K_UNITX
XSMDrf = UT
TSSa = unit(XSMDrf * RTIG)
```

BURN - 16

```
 TS }\mp@subsup{d}{dp}{}=|\underline{XSMDrf * RTIG
 If the most significant half of TS }\mp@subsup{\textrm{dp}}{}{=}=0\mathrm{ :
 TSa = unit(XSMDrf * VTIG)
 YSMDrf = TSa
 ZSMDrf = - YSMDrf * XSMDrf
 Switch FLAGWRD2 bit 4 (PFRATFLG) to 1
 Return
S40.9 Switch FLAGWRD2 bit 5 (AVFLAG) to 1
CNANGL = K:EPS1
If FLAGWRD7 bit 10 (NORMSW) = 1, CNANGL = K:EPS1 + K:EPS2
Perform "HAVEGUES" with VTARGTAG = 0
End job
RASTEER1 RMAG = |RN|
TSuc = unit(\underline{RTARG - R_RN})
TSc = |RTARG - RN| (quesi floating point)
TSr1c = TSc RMAG (quasi floating point)
TSss = RMAG + RTMAG + TSc)/2
TS1 = (MUASTEER - (TSss - TSc) MUdA / 2
```



```
TS1 = MUASTEER - TSss MUdA / 2
TSb = [2(TSss - RTMAG)TS1/TSr1c]}\mp@subsup{]}{}{\frac{1}{2}
TS1 = [(TSss -TSc)/TSss }\mp@subsup{]}{}{\frac{1}{2}
TS1 = K:2PI+3 arcsinTS1 - (TSc/TSss)}\mp@subsup{)}{}{\frac{1}{2}}(\textrm{TS}1
TS1 = TS1 signGEOMSGN
TS =[TSss }\mp@subsup{}{}{3}/(2 MUASTEER)] \frac{1}{2}(\textrm{K}:2\textrm{pi}+1 - TS1) - TPASS4 + PIPTIME
```

```
 TS = TSb signTS
 If FLAGWRD7 bit 10 (NORMSW) = 1:
 If TSuc - UNITR < OS proceed to "NEGPROD" "
 TS1 = unit(UNITR + TSuc)
 TS2 = unit((- IS1 * UN) signGEOMSGN) TS
 VIPRIME = TS1 TSa + TS2
 DELVEET3 = VIPRIME - VN1
 Proceed to "FIRSTTME"
 TS1 = unit(\underline{TSuc - UNITR) TS}
 VIPRIMP = unit(TSuc + UNITR) TSa + TS1.
 DELVEET3 = VIPRIME - VN1
 Proceed to "FIRSTTME"
NEGPROD IS1 = unit(TSuc - UNITR)
 TS2 = unit((TS1 * UN) signGEOMSGN) TSa
 VIPRIME = TS1 TS + TS2
 DELVEET3 = VIPRIME - VN1
FIRSTTME If RTX2 = 0: (earth centered orbit)
 TS = UNITGOBL (PIPTIME - GOBLTIME) K:EARTHMU / |RN|
 DELVEET3 = DELVEET3 + TS
 TS1 = DELVEET3 and skip next step
 TS1 = DELVEET3
 Proceed to "VGAIN*"
S40.13 Switch FLAGWRD2 bit 9 (IMPULSW) to 0
 TS = | VGPREV | - K:4SEC K:FRCS2 / MASS
 If FLGWRD10 bit 13 (APSFLAG) = 0, proceed to "S40.13D"
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 1
```

```
 TSa = TS - (K:K1VAL / MASS)
 If TSa< 0:
 TSt = (TS MASS + K:K2VAL) / K:K3VAL
 Proceed to "S40.132"
 TSb = F K:5SECS / (MASS - MDOT K:3.5SEC)
 TSc = TSa - TSb
 If TSc\sum D, proceed to "S40.13D" (TGO \geq6 seconds)
 TSt = K:1SEC2D + K:5SECS TSa / TSb
 Proceed to "S40.132"
 S40.13D TS = TS MASS
 If FLGWRD10 bit 13 (APSFLAG) = 1:
 TSt = TS / K:FAPS
 Proceed to second step of "S40.132"
 TSt = TS / K:S40.136
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
 If overflow (TSt\geq 2 }\mp@subsup{2}{}{14}\mathrm{):
 TGO = TS / K:S40.136*
 End job
 If TSt< K:6SEC: (TGO< 6 seconds)
 Proceed to "S40.132"
 If TSt< (K:6SEC + K:89SECS): (TGO< 95 seconds)
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 1
 Proceed to the second step of "S40.132"
 S40.132 Switch FLAGWRD2 bit 9 (IMPULSW) to 1
 TGO = (0, TSt ms)
 End job

UNFV \(=\underline{K}:\) UNITX
UNWC \(=\underline{K}:\) UNITX
Return
FINDCDUW TSnewthrust \(=\underline{\text { UNFC }}\)
QCDUWUSR \(=\) return address
NDXCDUW \(=\) bit 13 of DAPBOOLS (CSMDOCKD) (1 or 0)
FLPAUTNO = 1
FLAGOODW \(=\) bit 9 of DAPBOOLS (XOVINHIB)
Inhibit interrupts
\(\underline{A N G}=\underline{C D U}\)
If bit 10 of channel \(30=0\) and bit 14 of channel \(31=0\) : (PGNCS control; DAP in Auto mode)

FLPAUTNO \(=0\)
\(\underline{A N G}=\underline{C D U D}\)
Release interrupt inhibit
UNX \(=\) unitTSnewthrust (argument of unit operation
\(\underline{U N Z}=\) unitUNWC
adjusted to reduce the possibility of overflow)

Perform "QUICTRIG"
If overflow (in either unit operation above), proceed to "NOATTCNT"
\(\underline{T} S=u n i t \underline{D E L V}\)
If no overflow (\(\left.|\underline{D E L V}| \geq 2^{-7} \mathrm{~cm} / \mathrm{sec}\right)\) :
Perform "SMTONB"
\(\underline{T S d v}=[\) SMNBMAT] \(T \mathrm{~T}\)
\(T S=\left(T S d v_{y}-U N F V_{y}\right) K:\) GAINFLTR \(_{\text {NDXCDUW }}\)
If \(|T S|>K: D U N F V L M, T S=K: D U N F V L I M\) signTS
(If no overflow:)
\(\mathrm{UNFV}_{\mathrm{y}}=\mathrm{UNFV}_{\mathrm{y}}+\mathrm{TS}\)
If \(\mid\) UNFV \(_{\mathrm{y}} \mid>\mathrm{K}:\) UNFVLIM, \(^{2}\) UNFV \(_{\mathrm{y}}=\mathrm{K}\) :UNFVLIM signUNFVZ \({ }_{\mathrm{Y}}\)
\(\mathrm{TS}=\left(\mathrm{TSdv}_{\mathrm{z}}-\mathrm{UNFV}_{\mathrm{z}}\right) \mathrm{K}: \mathrm{GAINFLTR}_{\text {NDXCDUW }}\)
If \(|T S|>K: D U N F V L I M, T S=K: D U N F V L I M\), signTS
\(\mathrm{UNFV}_{\mathrm{z}}=\mathrm{UNFV}_{\mathrm{z}}+\mathrm{TS}\)
If \(\mid\) UNFV \(_{z} \mid>K:\) UNFVLIM, \(_{2}\) UNFV \(_{z}=K\) :UNFVLIM signUNFV \({ }_{z}\)
If FLAGOODW = 1:
If (UNZ \(\cdot \underline{U N X})^{2}<\mathrm{K}\) : DOTSWFMX:
Proceed to "DCMCL"
FLAGOODW \(=0\)
\(\underline{U N} \mathrm{NZ}=\underline{Z} N B P I P\)
If (UNZ \(\cdot \underline{U N X})^{2}<\mathrm{K}\) :DOTSWFMX:
Proceed to "DCMCL"
FLAGOODW \(=0\)
\(\underline{U N Z}=-\underline{X N B P I P}\)
DCMCL \(\quad \underline{U N Y}=\) unit (UNNZ * UNX)
\(\underline{U} N Z=\underline{U} N Y * \underline{U N X}\)
\(\left.\underline{U N X}=\operatorname{unit}^{(\underline{U} N X}+\operatorname{UNFV}_{z} \underline{U N}^{\mathbb{U}} \mathbf{N}-\operatorname{UNFV}_{\mathrm{y}} \underline{U N Y}\right)\)
\(\underline{\mathrm{U} N Y}=\underline{\mathrm{UNX}} * \underline{\mathrm{UN} Z}\)
\(\underline{\mathrm{UN}} \mathrm{Z}=-\underline{\mathrm{UN}} \mathbf{N} * \underline{\mathrm{UN} X}\)
Perform "NB2GDUSP"
TScdu \(_{\mathrm{x}}=\) TScdu \(_{\mathrm{x}}+\) OGABIAS
If \(\left|\begin{array}{l}\text { TScdu } \\ z\end{array}\right|>\) K:CDUZDLIM:
TScdu \(_{z}=\) K:CDUZDLIM signTScdu
\(z\)
Perform "ALARM" with TS \(=00401_{8}\)

Inhibit interrupts
THETAD \(=\) TScdu
\(\underline{m D E L G M B}=-(\underline{T S c d u}-\underline{\text { CDUD }})\)
If \(\mathrm{mDELGMB}_{\mathrm{y}}^{2}+\mathrm{K}: \mathrm{HI} 5>0\), FLAGOODW \(=0\)
If \(m D E L G M B B_{z}^{2}+K: H I 5>0\), FLAGOODW \(=0\)
If FLPAUTNO \(>0\) or if FLAGWRD5 bit 7 (ENGONFLG) \(=0\) :
Proceed to the second step of "NOATTCNT"
\(i=\) NDXCDUW
If \(\mid\) mDELGMB \(_{z} \mid>K:\) DAZMAX \(_{i}, \operatorname{mDELGMB}_{z}=K: \operatorname{DAZMAX}_{i} \operatorname{sign}\left(\operatorname{mDELGMB}_{z}\right)\)
\(T S=m D E L G M B{ }_{y}\) COSMGA
If \(|T S|>K:\) DAYd \(^{2} M A X_{i}, T S=K:\) DAYd2MAX \(_{i}\) signTS
\(\mathrm{TSa}=\mathrm{mDELGMB}{ }_{y}\)
\(\mathrm{mDELGMB}_{\mathrm{y}}=\mathrm{TS} / \mathrm{COSMGA}\)
TS \(=-\) SINMGA \(^{\text {TSa }}-\) mDELGMB \(_{\mathrm{x}}\)
If \(|T S|>K: D_{A X M A X}^{i}, T S=K: D A X M A X_{i}\) signTS
\(\mathrm{mDELGMB}_{\mathrm{x}}=-\mathrm{TS}\)
If FLAGOODW \(=0, \operatorname{mDELGMB}_{x}=0\)
\(\mathrm{mDELGMB}_{x}=\mathrm{mDELGMB}_{x}-\) SINMGA \(_{\mathrm{mDELGMB}}^{y}\)
OMEGAPD \(=\mathrm{K}:\) dvtoacc \(\left(-m\right.\) DELGMB \(_{x}-\) SINMGA mDELGMB \(\left.{ }_{y}\right)\)
OMEGAQD \(=\mathrm{K}:\) dvtoacc (- COSOGA COSMGA mDELGMB \(y_{y}-\) SINOGA mDELGMB \(\mathbf{z}^{2}\))
OMEGARD \(=\mathrm{K}\) :dvtoacc (SINOGA COSMGA mDELGMB \(y_{y}-\) COSOGA mDELGMB \({ }_{z}\))
DELCDU \(=\mathrm{K}:\) DTdDELT \(\underline{\underline{m} D E L G M B ~(c o n v e r t e d ~ t o ~ t w o ' s ~ c o m p . ~ f o r m) ~}\)
\(T S=|O M E G A R D|\) OMEGARD K:biascale / 1JACCR
If \(|T S|>K: D E L E R L I M, T S=K: D E L E R L I M\) signTS
DELREROR = TS
\[
\begin{aligned}
& T S=|O M E G A Q D| O M E G A Q D K: \text { biascale } / 1 J A C C Q \\
& \text { If }|T S|>K: D E L E R L I M, T S=K: D E L E R L I M \text { signTS } \\
& \text { DELQEROR }=T S \\
& \text { TS }=\mid \text { OMEGAPD } \mid \text { OMEGAPD K:biascale } / 1 J A C C P \\
& \text { If }|T S|>K: D E L E R L I M, T S=K: D E L E R L I M \text { signTS } \\
& \text { DELPEROR = TS } \\
& \text { Release interrupt inhibit } \\
& \text { Return via QCDUWUSR } \\
& \text { NOATTCNT Perform "ALARM" with TS }=00402_{8} \\
& \text { Perform "STOPRATE" with interrupts inhibited } \\
& \text { Return via QCDUWUSR } \\
& \text { QUICTRIG Inhibit interrupts } \\
& \text { SINMGA }=\sin _{\text {sp }}{ }^{\text {ANG }}{ }_{z} \\
& \text { COSMGA }=\cos _{\text {sp }}{ }^{\text {ANG }}{ }_{z} \\
& \text { SINIGA }=\sin _{s p} A^{A N G} \\
& \text { COSIGA }=\cos { }_{\text {sp }}{ }^{\text {ANG }}{ }_{y} \\
& \text { SINOGA }=\sin _{\text {sp }}{ }^{\text {ANG }} x \\
& \text { COSOGA }=\cos _{s p}{ }^{\text {ANG }}{ }_{x} \\
& \text { Release interrupt inhibit } \\
& \text { Return } \\
& \text { NB2CDUSP } T S=1-\text { UNX }_{\mathrm{Y}}{ }^{2} \\
& \text { If } \mathrm{TS}<0, \mathrm{TS}=0 \\
& \text { TScosmga }=\sqrt{T S} \\
& \text { If TScosmga } \geq 1 \text {, TScosmga }=\text { K:posmaxsp } \\
& \text { TScos }=\text { TScosmga }
\end{aligned}
\]
```

TSsin $=U N X X_{y}$
Perform "ARCTRGSP"
TScdu ${ }_{z}=$ TSang
$T S=$ TScosmga $-\left|U N X X_{x}\right|$
If $T S>0, T S=U N X_{x} /$ TScosmga
TScos = TS
$T S=T S c o s m g a-\left|U N X_{z}\right|$
If TS $>0, \mathrm{TS}=\mathrm{UNX}_{\mathrm{z}} / \mathrm{TScosmga}$
TSsin = - TS
Perform "ARCTRGSP"
TScduy $=$ TSang
TS $=$ TScosmga $-\mid$ UNY $_{y} \mid$
If $\mathrm{TS}>0, \mathrm{TS}=\mathrm{UNY} \mathrm{Y}_{\mathrm{y}} / \mathrm{TScosmga}$
TScos $=T S$
TS = TScosmga $-\mid$ UNZ $_{y} \mid$
If $\mathrm{TS}>0, \mathrm{TS}=\mathrm{UNZ}_{\mathrm{Y}} / \mathrm{TS}$ cosmga
TSsin = - TS
Perform "ARCTRGSP"
TScdu $_{x}=$ TSang
Return
If TScos $\geq 0$, TSang $=0$
If TScos < O, TSang = - K:posmaxsp
Return
TSsec $=$ TScos $/$ TSsin

```
ARCTRGSP If TSsin \(=0\) :
If \(\mid\) TSsec \(\mid \geq 1\) :
 If TScos \(\geq+0\), TSang \(=0\)
 If TScos \(\leq-0\) :
 TSsin \(=\) - TSsin
 TSang = - K: posmaxsp
 TSang \(=\arcsin _{\mathrm{sp}}(T S \sin)-\) TSang \(\begin{gathered}\text { (converted to two's } \\ \text { comp. form) }\end{gathered}\)
 Return
TSang \(=\frac{1}{2}+\arcsin _{\mathrm{sp}}(-\mathrm{TScos})\)
If TSsin < 0, TSang = - TSang
(converted to two's
 comp. form)
Return

1JACCP, 1JACCQ, 1JACCR: See DAPB section.
ABVEL: See SERV section. (Displayed by nouns 62 and 63 in "CLOKJOB".)
ANG: See COOR section.
ACSQ, AOSR: See DAPA section.
AVEGEXIT: See SERV section.

CDU: See IMUC section.
CDUD: See DAPA section.
CNANGL: See TRGL section.
COSIGA, COSMGA, COSOGA: See COOR section.
DAPBOOLS, DELCDU: See DAPA section.
DELLTH: See TRGL section.
DELEEROR, DELQEROR, DELREROR: See DAPA section.
DELV: See SERV section.
DELVCTL: Double precision vector sum of velocity gained since the initiation of the Delta-v monitor program, \(P 47\), scaled \(B 7\) in units of meters per centisecond and expressed in the Reference coordinate system.
DELVEET3: See TRGL section.
DELVTMU: Double precision vector equivalent to DELVCTL, but expressed in the Body coordinate system for display.
DELUREF: Double precision sensed-change-in-velocity vector, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.
DELVSAB: Double precision magnitude of velocity to be gained, program notation also VGDISP, scaled \(B 7\) in units of meters per centisecond; generated in the External Delta-V targeting routines and in the Burn routines.

DELVSIN: Double precision vector scaled B7 in units of meters per centisecond and expresced in the Reference coordinate system. Represents the velocity-to-be-gained vector generated by the External Delta-V targeting routines during \(\mathrm{P} 40, \mathrm{P} 41\) and P 42 . Represents the total accumulated change-in-velocity during P47.
\[
\text { BURN }-26
\]

DISPDEX: Single precision index controlling the function of "CLOKJOB" and "CLOKTASK", scaled B14 and unitless. "CLOKJOB" and "CLOKTASK" operate semi-independently of the guidance programs and the primary interface between them and guidance is DISPDEX.

DVCNTR, DVTHRUSH: See SERV section.
DVTOTAL: See SERV section. (Displayed by nouns 40 and 62 in "CLOKJOB".)
F: Double precision thrust expected during the burn, scaled B7 in units of kilogram meters per centisecond squared.

FLAGOODW: Single precision flag set or reset on every pass through "FINDCDUW" to indicate whether steering is or is not based on the desired window pointing vector; scaled \(B 6\) and unitless.

FLPASSO: See DESC section.
FLPAUTNO: . Single precision flag set to indicate that the burn is not under automatic control and reset to indicate that the DAP control quantities are to be calculated, scaled B6 and unitless.

GCSM, GDT1: See SERV section.
GEOMSGN: See TRGL section.
GOBLITME: Double precision storage for TIG, scaled B28 in units of centiseconds; used to bias the velocity-to-be-gained vector to offset the effect of gravity during an extended Lambert burn.

IGNAOSQ, IGNAOSR: Single precision initial DAP bias acceleration estimates, scaled B-2 in units of revolutions per second squared; a pad loaded quantity.
K: 1SEC2D: Double precision constant stored as \(100 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 100.

K:2pi+1: Double precision constant stored as \(3.141592653 \times 2^{-2}\), scaled B1 in units of radians. Equation value: \(\pi / 2\). Program notation: 2PI+3

K: 2PI +3 : Double precision constant stored as \(3.141592653 \times 2^{-2}\), scaled B3 in units of radians per revolution. Equation value: \(2 \pi\).
K:3.5SEC: Double precision constant stored as \(350 \times 2^{-13}\), scaled B13 in units of centiseconds. Equation value: 350.

K: 4SEC: Double precision constant stored as \(400 \times 2^{-17}\), scaled B17 in units of centiseconds. Equation value: 400.

K: 5SECDP: Double precision constant stored as \(500 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 500.
K:5SECS: Double precision constant stored as \(500 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 500.

F:6SEC: Double precision constant stored as \(600 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 600.
a: 8\%SECE: Double precision constant stored as \(8900 \times 2^{-14}\), scaled Bi4 in units of centiseconds. Equation value: 8900.

K:APSVEX: Single precision constant stored as \(-30.30 \times 2^{-5}\), scaled B5 in units of meters per centisecond. Equation value: - 30.30
K:ATDECAY: Double precision constant stored as \(-18 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: - 18 .

K:biascale: Single precision constant stored as 02000 , scaled B2 and unitless; program notation BIT11. Equation value: 0.25

K:CDUZDLIM: Single precision constant stored as 0.3888888888 , scaled B-1 in units of revolutions. Equation value: 0.1944444444 (Equivalent to 70 degrees.)
K:D29.9SEC: Double precision constant stored as 2990. X \(2^{-28}\), scaled B28 in units of centiseconds. Equation value: 2990.

K:DAXMAX : Single precision constant stored as 0.11111111111 , scaled B-1 in units of revolutions. Equation value: 0.05555555555 (Equivalent to 20 degrees.)

K:DAXMAX : Single precision constant stored as 0.0111111111 , scaled B-1 in units of revolutions. Equation value: 0.00555555555 (Equivalent to 2 degrees.)

K:DAYd2MAX : Single precision constant stored as 0.05555555555 , scaled BO in units of revolutions. Equation value: 0.05555555555 (Equivalent to 20 degrees.)

K:DAYd2MAX \(:\) Single precision constant stored as 0.0055555555 , scaled BO in units of revolutions. Equation value: 0.0055555555 (Equivalent to 2 degrees.)

K:DAZMAX \({ }_{0}\) : Single precision constant identical to \(K: D A X M A X_{0}\).
K:DAZMAX : Single \(^{\text {: }}\) precision constant identical to \(K:\) DAXMAX \(_{1}\).
K:DELERLIM: Single precision constant stored as 0.05555555555 , scaled B-1 in units of revolutions. Equation value: 0.02777777777 (Equivalent to 10 degrees.)

K:DOTSWFMX: Single precision constant stored as \(0.93302 \times 2^{-4}\), scaled B4 and unitless. Equation valus: 0.93302 (Equivalent to the square of the cosine of 15 degrees.)
K:DPSVEX: Single precision constant stored as \(-29.5588868 \times 2^{-5}\), scaled B5 in units of meters per centisecond. Equation value: - 29.5588868.

K:DTdDELT: Single precision constant stored as 0.05 , scaled BO in units of guidance cycles per DAP cycle. Equation value: 0.05

K:DTDECAY: Double precision constant stored as - 38. X \(2^{-28}\), scaled B28 in units of centiseconds. Equation value: - 38 .

K:DUNFVLIM: Single precision constant stored as \(0.007 \times 2^{-1}\), scaled B1 and unitless. Equation value: 0.007 .
K:dvtoacc: Constant implicit in the 2 -second navigation cycle, scaled \(B-1\) in units of seconds to the minus one power. Equation value: \(\frac{1}{2}\).
K:EARTHMU: Double precision constant stored as -3.986032 E10 \(\times 2^{-36}\), scaled B36 in units of meters cubed per centisecond squared. Equation value: -3.986032 E10.
K:EPS1: Double precision constant stored as 2.777777778 E-2, scaled BO in units of revolutions. Equation value: 2.777777778 E-2. (Equivalent to 10 degrees.)

K:EPS2: Double precision constant stored as 9.72222222 E-2, scaled BO in units of revolutions. Equation value: 9.722222222 E-2. (Equivalent to 35 degrees.)
K:FAPS: Double precision constant stored as \(1.5569 \times 2^{-7}\), scaled B7 in units of kilogram meters per centisecond squared. Equation value: 1.5569 (Equivalent to 3500 pounds force.)

K:FDPS: Double precision constant stored as \(4.3670 \times 2^{-7}\), scaled B7 in units of kilogram meters per centisecond squared. Equation value: 4.3670. (Equivalent to 9817.5 pounds force.)

K:FOURSECS: Double precision constant stored as \(400 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 400.
K:FRCS2: Double precision constant stored as \(0.08896 \times 2^{-7}\), scaled B7 in units of kilogram meters per centisecond squared. Equation value: 0.08896 . (Equivalent to 200 pounds force.)
K:FRCS4: Double precision constant stored as \(0.17792 \times 2^{-7}\), scaled B7 in units of kilogram meters per centisecond squared. Equation value: 0.17792 . (Equivalent to 400 pounds force.)
K:GAINFLTR : Single precision constant stored as 0.2, scaled BO and unitless. Equation value: 0.2

K:GAINFLTR : Single precision constant stored as 0.1 , scaled BO and unitless. Equation value: 0.1

K:HI5: Single precision constant stored as \(76000_{8}\), scaled B-2 in units of revolutions squared. Equation value: -0.015625 . (Equivalent to about minus the square of 45 degrees.)
K:KlVAL: Double precision constant stored as \(124.55 \times 2^{-23}\), scaled B23 in units of kilogram meters per centisecond. Equation value: 124.55.
K:K2VAL: Double precision constant stored as \(31.138 \times 2^{-24}\), scaled B24 in units of kilogram meters per centisecond. Equation value: 31.138.

K:K3VAL: Double precision constant stored as \(1.5569 \mathrm{X}^{-10}\), scaled Dio in units of kilogram meters per centisecond squared. Equation value: 1.5569

K:MAXTHRUST: Single precision constant stored as 10000 , scaled B14 11. units of DPS throttle pulses. Equation value: 4096. (See THRUSI').
X:MDOTAPS: Double precision constant stored as \(0.05135 \mathrm{X}^{-3}\), scaled B3 in units of kilograms per centisecond. Equation value: 0.05135 (Equivalent to 11.32 pounds mass per second.)
K:MDOTDPS: Double precision constant stored as \(0.148 \times 2^{-3}\), scaled B3 in units of kilograms per centisecond. Equation value: 0.148
K:mFOURDT: Double precision constant stored as - 800. X \(2^{-18}\), scaled B16 in units of centiseconds. Equation value: - 200.

K:posmaxsp: see Major Variables.
K:S40.136: Double precision constant stored as \(0.4671 \times 2^{-9}\), scaled B9 in units of kilogram-meters per centisecond squared. Equation value: 0.4671 (Equivalent to 1050, pounds force).
K:S40.136*: Double precision constant stored as \(0.4671 \times 2^{1}\), scaled B-1 in units of kilogram-meters per centisecond squared. Equation value: 0.4671

K:THETACON: Double precision constant stored as \(0.31830989 \mathrm{X}^{-8}\), scaled B6 in units of revolutions per radian. Equation value: 1/4.
K:THRESH1: Single precision constant stored as \(24 . \mathrm{X}^{-14}\), scaled B14 in units of centimeters per second. Equation value: 24.
K:THRESH2: Single precision constant stored as 308. \(\times 2^{-14}\), scaled B14 in units of centimeters per second. Equation value: 308.
K:THRESH3: Single precision constant stored as \(12 . \mathrm{X}^{-14}\), scaled B14 in units of centimeters per second. Equation value: 12.
K:TNFVLIM: Single precision constant stored as \(0.129 \mathrm{X}^{-1}\), scaled B1 and unitless. Equation value: 0.129

K:UNITX: Single precision constant vector stored as (\(0.5,0,0\)), scaled B1 and unitless. Equation value: (1,0,0)

MASS: see SERV section.
MDELGMB: Single precision vector containing the complement of the proposed additions to the desired gimbal angle command to be issued to the DAP, scaled B-1 in units of revolutions.

MDOT: Double precision nominal mass flow rate during thrust, scaled B3 in units of kilograms per centisecond.
\[
\text { BURN - } 30
\]

MODREG: see DATA section.
MUdA, MUASTEER: see TRGL section.
MUDEX: see CONC section.
NDXCDUW: Single precision index (0 or 1) to select the proper steering constants for LM alone or CSM-LM configuration, caled B14 and unitless.
NVWORD 1: Single precision eell used to specify either a V97 or V99 display.
\(\mathrm{NVWORD}_{2}\) : See DINT section.
OGABIAS: Single precision quantity representing the outer gimbal angle bias for window pointing commands to account for window bending due to cabin pressurization. Set to zero in "INITCDUW" and changed to AZBIAS in P64 ("EXNORM"). Scaled B-1 in units of revolutions.

OMEGAPD, OMEGAQD, OMEGARD: See DAPA section.

PBODY: See ORBI section.
PIPTIME, PIPTIME1: See SERV section.
pOINTVSM: See ATTM section.
QCDUNUSR: Single precision octal return address storage.
QTEMP, QTEMP1: Single precision octal return address storage.
RATT, VATT, TAT: See ORBI section.
RCSM, VCSM: See SERV section.
[REFSMMAT]: See COOR section.
RINIT, VINIT: See TRGL section.
RMAG: See ASCT section. Scaled B29 (earth) or B27 (moon) here.
RN, VN: See SERV section.
RTARG: See TRGL section.
RTIG, VTIG: see TRGX section.
RTMAG: see TRGL section.
RTX1, RTX2: see ORBI section.
SAVET: Double precision temporary storage cell for time information, scaled B28 in units of centiseconds.

SCAXIS: See ATTM section.
SINIGA, SINMGA, SINOGA: See COOR section.
[SMNBMAT]: See COOR section.
TDEC1: See ORBI section.
TDECAY: Double precision thrust decay time added to TGO, scaled B28 in units of centiseconds.
TEVENT: Double precision time-of-event for downlink information, scaled B28 in units of centiseconds.

TGO: Double precision predicted length of burn, scaled B28 in units of centiseconds.

THETAD: See IMUC section.
THRUST: See DESC section.
TIG: Double precision predicted time of ignition input to the burn routines, or predicted cutoff time, scaled B28 in units of centiseconds.
TICSAVE: Double precision storage for the effective time of the last performance of the Lambert routine; scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
TNEWA: Double precision pad loaded quantity giving the Lambert cycle period; scaled B28 in units of centiseconds.

TPASS4: See TRGL section.
TRKMKCNT: See RNAV section

TTOGO: Double precision time until engine ignition (or cutoff), scaled B28 in units of centiseconds.
UN: see TRGL section.
UNFC: Double precision desired thrust acceleration vector, with variable scaling in units of meters per centisecond squared and expressed in the Platform coordinate system.
UNFV: Double precision filtered value of the sensed thrust direction vector, scaled B1 and unitless, and expressed in what might best be called the "theoretical" body coordinate system. The X component is not used, but the \(Y\) and \(Z\) components are used to bias the desired thrust vector with respect to the spacecraft so that the desirad direction of thrust passes through the center of gravity of the spacecraft.

UNITGOBL: Double precision vector used to bias the velocity-to-begained vector to offset the effect of gravity during an extended Lambert burn, scaled B1 and expressed in the Reference coordinate system.
UNITR: See SERV section.
UNWC: Double precision vector along the desired pointing direction of the landing window, scaling and units variable, expressed in the Platform coordinate system.

UT: Double precision unit vector in the direction of velocity to be gained, used to determine initial attitude for burns, scaled B1 and expressed in the Reference coordinate system.

UNX, UNY, UNZ: Double precision unit vectors along the desired directions of the three body axes, scaled B1 and expressed in the Platform coordinate system.

VEX: Double precision engine exhaust velocity, scaled B7 in units of meters per centisecond.

VG: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in the reference coordinate system.

VGBODY: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in the Body coordinate system.

VGPREV: Double precision previous value of VG, program notation also VGTIG, scaled B7 in units of meters per centisecond and expressed in the reference coordinate system.

UIPRTME: See TRGL section.
VN1: See SERV section.
VTARGTAG: See TRGL section.
WCHPHOLD, WCHPHASE: See DESC section.
WHICH: Single precision octal address of one of the following tables:
Table entry number
Tables
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & P12TABLE & P. \(40 T\) ABLE & P41TABLE & P42TABLE & P63TABLE & ABRTABLE \\
\hline 0 & K:V06N74 & K:V06N40 & & K:V06N40 & K:V06N62 & K:V06N63 \\
\hline 1 & ULLGNOT & ULLGNOT & & WANTAPS & ULICNOT & ULLGNOT \\
\hline 2 & COMFAIL3 & COMFAIL/4 & & COMFAIL & COMFAIL3 & COMPAIL3 \\
\hline & GOCUTOFF & GOPOST & & GOPOST & V99RECYC & GOCUTOFF \\
\hline 4 & End task & End task & & End task & End task & End task \\
\hline & PLOSPOT & PLOSPOT & P41SPOT & P4OSPOT & P41SPOT & \\
\hline 6 & 0 & 2240 & -1 & 2640 & 2240 & \\
\hline 7 & SERVEXIT & STEERING & CALCN85 & STEERING & SERVEXIT & \\
\hline 11 & DISPCHNG & PLOSJUNK & End task & P4OSJUNK & DISPCHNG & DISPCHNG \\
\hline 12 & End task & End task & TIGTASK & End task & End task & End task \\
\hline 13 & P12IGN & PLOIGN & & P42IGN & P63IGN & ABRTIGN \\
\hline 14 & & REP \(40 A L M\) & & P42STAG & & \\
\hline
\end{tabular}

XNBPIP, YNBPIP, ZNBPIP: See SERV section.
XSMDrf, YSMDrf, ZSMDrf: See COOR section.

ZOOMTIME: Single precision time after ignition at which the DPS is to be commanded to full throttle, scaled B14 in units of centiseconds; part of the erasable load.

Z: Z register, or program counter. Cantains the address of the next step. The contents of \(Z\) are always a positive number.
-

TIMERAD RTNCONC = return address
Perform "PARAM" with TSr = RVEC and TSv = VVEC
If overflow (in "PARAM"):
SWitch FLAGWRD8 bit 4 (COGAFLAG) to 1
Proceed to "POODOO" with TS \(=20607_{8}\)
\(\underline{T} S e=(1-R d A) \underline{U R} 1-\sqrt{P(2-R d A)} C O G A \underline{U} 2\)
If overflow (or if \(\mid\) TSe \(\mid<2^{-18}\)):
Switch FLAGWRD5 bit 3 (SOLNSW) to 1
Proceed to "POODOO" with TS \(=20607_{8}\)
TSue = unitTSe
\(\operatorname{COSF}=[(\mathrm{R1} \mathrm{P} / \mathrm{RDESIRED})-1] /|\mathrm{TSe}|\)
If \(\left(1-\operatorname{cosF}^{2}\right)<0\) :
\(\operatorname{COSF}=1\) signCOSF
\(\mathrm{TSs}=0\)
Switch FLAGWRD8 bit 5 (APSESW) to 1
If \(\left(1-\operatorname{cosF}^{2}\right) \geq 0\) :
TSs \(=\sqrt{1-\operatorname{COSF}^{2}}\) signSGNRDOT
Switch FLAGWRD8 bit 5 (APSESW) to 0
TSu2 \(=\) TSs UN * TSue + COSF TSue
CSTH = TSu2 \(\underline{\text { UR1 }}\) (magnitude limited to less than 1)
SNTH \(=\underline{U R 1} *\) TSu2 \(\cdot \underline{U N}\)
\(T S p=P\)
Perform "GETX"
Switch FLAGWRD5 bit 3 (SOLNSW) to 0
Proceed to "COMMNOUT"
```

APSIDES RTNCONC $=$ return address
$T S r=\underline{R V E C}$
$\mathrm{TSv}=\underline{\mathrm{V} V E}$
Perform "PARAM"
(Ignore any overflow)
ECC $=\sqrt{1-\mathrm{PRdA}}$
TS $\mathrm{rp}=\mathrm{Rl} \mathrm{P} /(\mathrm{l}+\mathrm{ECC})$
TSra $=(2 \mathrm{Rl} / \mathrm{Rd} A)-\mathrm{TSrp}$
If TSra < 0 or if overflow, TSra $=$ K:posmaxdp
Return via RTNCONC
TIMETHET RTNCONC = return address
$\underline{T S r}=\underline{R V E C}$
$\underline{T} S v=\operatorname{VVEC}$
Perform "ParaM"
If overflow (anywhere above):
Switch FLAGWRDB bit 4 (cogaflag) to 1
Proceed to "POODOO" with TS $=20607_{8}$
$T S p=P$
Perform "GETX"
COMMNOUT If FLAGWRD8 bit 7 (INFINFIG) $=1$, proceed to "POODOO" with $T$ S $=20607_{8}$
Switch FLAGWRD8 bit 4 (COGAFLAG) to 0
Perform "DELTIME"
If ${ }^{\prime}$ FLAGWRD7 bit 9 (RVSW) $=0$, perform "NEWSTATE"
Return via RTNCONC
CONC - 2

```

IdMJ \(=\mathrm{K}:\) MJTABLE \(_{1}\)
ROOTMU \(=K\) :MUTABLE \({ }_{i+2}\)
IdROOTMU \(=K:\) MUTABLE \(^{1+4}\)
ITERCTR \(=20\)
URRECT \(=\) unitRRECT
\(R I=|\underline{R R E C T}|\)
KEPCI \(=\) RRECT • VRECT IdROOTMU
KEPC2 \(=\) VRECT • VRECT \(1 \mathrm{dMU} \mathrm{RI}-1\)
ALPHA \(=(1-K E P C 2) / R I\)
If ALPHA < 0 :
\(\mathrm{TS}=\mathrm{K}: \mathrm{m} 50 \mathrm{SC} / \mathrm{ALPHA}\)
\(T S=\sqrt{T S}\)
If overflow, TS = K:posmaxdp
If ALPHA \(\geq 0\) :
\(T S=K: 2 P I S C / \sqrt{A L P H A}\)
If overflow, TS = K:posmaxdp
\(X \operatorname{MAX}=T S\)
TSperiod \(=\) XMAX IdROOTMU / ALPHA
PERIODCH If \(0 \leq\) TSperiod \(<2^{28}\) and if \(\mid\) TAU \(\mid \geq\) TSperiod:
TAU \(=[\mid\) TAU \(\mid\)-TSperiod \(]\) signTAU
Proceed to "PERIODCH"

CONC - 3
\(\mathrm{X}=\mathrm{XKEPNEW}\)
If \(X\) signTAU \(\leq 0\) or if \(\mid X\) signTAU \(\mid \geq X M A X, X=(X M A X / 2)_{\text {signTAU }}\) If TAU \(<0\) :
\[
\begin{aligned}
& \text { XMIN }=-X M A X \\
& X M A X=0
\end{aligned}
\]

Proceed to "DXCOMP"
\(\mathrm{XMIN}=0\)
Proceed to "DXCOMP"
DXCOMP \(\quad\) EPSILONT \(=\mid\) TAU K:BEE22 \(\mid\)
DELX \(=X-X P R E V\)
KEPLOOP TSx2 \(=\mathrm{X}^{2}\)
\(X I=X^{2} A L P H A\)
Perform "DELTIME"
If overflow, (somewhere above):
```

If }\textrm{X}<0,\textrm{XMIN}=\textrm{X
If }X\geq0, XMAX = X
DELX = DELX / 2
If }|DELX|<<2 b-28 (b is the scale factor of DELX)
Return via KFPRTN
X = X - DELX

```
(If overflow)
\(\mathrm{T}=\mathrm{TC}\)
Proceed to "BRNCHCTR"
DELT \(=\) TAU \(-T\)
If |DELT \(\mid \leq\) EPSILONT, proceed to "KEPCONVG" TS = DELX DELT / (T - TC)

If \(\mathrm{TS}<0\) :
\(X_{\text {XMAX }}=X\)
DELX \(=T S\)
If TS \(\leq X M I N-X M A X\) or if (XMIN - XMAX - TS) overflows:
DELX \(=(\) MMIN -X\() \mathrm{K}:\) DP9d1O
If \(T S \geq 0\) :
\(X M I N=X\)
DELX \(=T S\)
If TS > XMAX - XMIN or if (XMAX - XMIN - TS) overflows:
DELX \(=(\) XMAX -X\() \mathrm{K}:\) DP9diO
If \(|\mathrm{DELX}|<2^{\mathrm{b}-28}\) (b is the scale factor of DELX):
Proceed to "KEPCONV"
\(\mathbb{X}=\mathbf{X}+\) DELX
\(T C=T\)
Proceod to "BRNCHCTR"
BRNCHCTR ITERCTR \(=\) ITERCTR - 1
If. ITERCTR \(=0\), proceed to "KEPCONVG"
Proceod to "KEPLOOP"
KEPCONVG. RCV \(=(\mathrm{RI}-\mathrm{XSQCX1})\) URRECT \(+\left(T-\mathrm{X}^{3} 1\right.\) IAROOTMU SX1) VRECT

\[
\text { CONC - } 5
\]
```

VCV = (1 - XSQCxi / |RCV | ) VRECT + ISv
TC = T
XPREV = X
Return via KEPRTN (to caller of "KEPPREP!)
LAMBERT . RTNCONC = return address
Switch FLAGNRD5 bit 3 (SOLNSW) to 0
1 = MUDEX + 2
IMMU = K:MUTABLE
ROOTMU = K:MUTABLE }\mp@subsup{}{1+2}{
IdROOTMU = K:MUTABLE
EPSILONL = TDESIRED K:BEE19
Switch FLAGWRDl bit 3 (SLOPESW) to 1
TSrl = RIVEC
TS2 = R2VEC
Perform " GEOM"
SNTH = TSain
TSlam = Rl / MAGVEC2
CSTH = TScos
1mCSTH = 1 - CSTH
If }|\mp@subsup{1}{\mathrm{ mCSTH }}{}|<\mp@subsup{2}{}{-27}\mathrm{ :
Switch FLAGWRD5 bit 3 (SOLNSW) to 1
Return via RTNCONC
TS = \sqrt{}{2.TSlam / 1mCSTH }}+\textrm{SNTH}/1\textrm{mCSTH
If overflow or if TS \geq K:COGUPLIM, TS = K:COGUPLIM
COGAMAX = TS
CSTHmRHO = CSTH - TSlam
CONC - }

```
```

TS = CSTHmRHO / SNTH
If overflow ( }|TS|\geq\mp@subsup{2}{}{5}\mathrm{ ) or if GEOMSGN < 0, TS = K:COGLOLIM
COGAMIN = TS
If FLAGWRD1 bit 2 (GUESSW) = 0, TWEEKIT = 2-14
If FLAGWRD1 b1t 2 (GUESSW) = 1:
TWEEKIT = 2-2
COGA = 立 (COGAMIN + COGAMAX)
DCOCA = COGA
LAMBLOOP TS = ImCSTH / (COGA SNTH - CSTHmRHO)
If TS S 0:
If DCOGA \geq O, proceed to "LOENERGY"
Proceed to "HIENERGY"
P=TS
RAA =2-P(1 + COGA }
If overflow (P or RdA), proceed to "HIENERGY"
TSp = P
Perform "GETX"
TPREV = T
If FLAGWRD8 bit 7 (INFINFLG) = l:
If DCOGA }\geq0\mathrm{ , proceed to "LOENERGY"
Proceed to "HIENERGY"
Perform "dELTTME"
If overflow:
T = TPREV
Proceed to "LOENERGY"

```
 TERRLAMB = TDESIRED - T
 If |TERRLAMB}|\leqEPSILONL, proceed to "INITV"
 ITERCTR = ITERCTR - I
 If ITERCTR = 0, proceed to "SUFFCHEK"
 If FLAGWRDl bit 3 (SLOPESW) = 0:
 If T - TPREV = 0, proceed to "SUFFGHEK"
 Perform "ITERATOR" with INDEP = COGA, DELINDEP = DCOGA, DEP = T,
 DEPREV = TPREV, DELDEP = TERRLAMB, MAX = COGAMAX and MIN = COGAMIN
 DCOGA = DELINDEP
 COGAMAX = MAX
 COGAMIN = MIN
 If }|\mathrm{ DCOGA }|<\mp@subsup{2}{}{-23}\mathrm{ , proceed to "SUFFCHEK"
 COGA = COGA + DCOGA
 Proceed to "LAMBLOOP"
LOENERGY COGAMAX = COGA
 Skip next step
HIENERGY COGAMIN = COGA
 DCOGA = DCOGA / 2
 If |DCOGA|< 2-23}\mathrm{ , proceed to "SUFFCHEK"
 COGA = COGA - DCOGA
 Proceed to "LAMBLOOP"
SUFFCHEK If |TERRLAMB| > K:BEE17 TDESIRED + 1:
 Switch FLAGWRD5 bit 3 (SOLNSW) to l
 Proceed to "INITV"
Proceed to "INITV"
INITV
TS = \sqrt{}{P/Rl}}\mathrm{ ROOTMU
#VEC = TS COGA URI + TS UN * URI
```

If VTARGTAG $=0:$
R2 = MAGVEC2

Perform "LAMENTER"
VTARGET $=$ TSv

$$
\begin{aligned}
& \text { Return via RTNCONC } \\
& \text { PARAM RTNPRM = return address } \\
& \text { Switch FLAGWRD7 bit } 10 \text { (NORMSW) to } 0 \\
& \text { Switch FLAGWRD8 bit } 4 \text { (COGAFLAG) to } 0 \\
& \text { GEOMSGN }=277778 \quad \text { (positive) } \\
& \text { TSrl }=T S r \\
& T S 2=T S v \\
& \text { Perform "GEOM" } \\
& \operatorname{COGA}=\mathrm{TScos} / \mathrm{TS} \sin \\
& i=\text { MUDEX }+2 \\
& \operatorname{ldMU}=\mathrm{K}: \text { MUTABLE }_{i} \\
& \text { ROOTMU }=\mathrm{K}: \text { MUTABLE }_{i+2} \\
& \text { IdROOTMU }=K: \text { MUTABLE }_{i}+4 \\
& T S=M A G V E C 2^{2} 1 \mathrm{dMU} \mathrm{RI} \\
& \operatorname{RdA}=2-T S \\
& P=T S T S \sin ^{2} \\
& \text { Return via RTNPRM } \\
& \text { GEOM } \quad \underline{U} 2=\text { unitTS2 } \\
& \text { MAGVEC2 }=\mid \text { TS2 } \mid \\
& \underline{U R I}=u n i t T S r l \\
& T S \cos =\underline{U R I} \cdot \underline{U} 2 \\
& R 1=|I S r l|
\end{aligned}
$$

```
 TS = URI * U2
 If FLAGWRD7 bit 10 (NORMSW) = 0:
 UNN = unitIS signGEOMSGN
 If overflow (unit vector poorly defined), U\mathbb{N}=\underline{UN}/2
TSsin = \IS | signGEOMSGN
Return
GETX
WLOOP TSW = TS
TS = RdA + TSW
If TS < 0, proceed to "INFINITY"
TS = \sqrt{}{TS}+TSW
If overflow (|TS| \geq 25})
 i}=
 If TS < O, Switch FLAGWRD8 bit l (360SW) to l
 Proceed to "INVRSEQN"
 CONC - 10
```

$$
\begin{aligned}
& \text { If } i<3: \\
& i=i+1 \\
& \text { Proceed to "WLOOP" } \\
& T S=1 / T S \\
& \text { If overfiow ( }|T S| \geqslant 2^{2} \text { ), proceed to "INFINITY" } \\
& \text { Proceed to "I OLYCOEF" } \\
& \text { INVRSEQN } \text { TSW2 }^{\prime}=\mid \text { SNTH } /(1+\text { CSTH }- \text { SNTH COGA }) \sqrt{\mathrm{P}} \mid \\
& T S w 3=1 \\
& \text { 1/WLOOP } T S=\operatorname{RdA} T S W 2^{2}+T S W 3^{2} \\
& \text { If } T S<0 \text {, proceed to "INFINITY" } \\
& T S w 3=\sqrt{T S}+T S w 3 \\
& \text { If } i<3: \\
& i=i+1 \\
& \text { Proceed to "l/WLOOP" } \\
& T S=T S W 2 / T S W 3 \\
& \text { POLYCOEF If } T S<0 \text {, proceed to "INFINITY" } \\
& x=\operatorname{RdA} T S^{2} \\
& T S=16 T S \text { (K:unia }+K \text { :unib } x+K \text { :unie } x^{2}+\ldots+K \text { unig } x^{6} \text { ) } \\
& \text { If FLAGWRD8 bit } 1 \text { (360SW) }=1 \text { : } \\
& \text { If RdA < 0, proceed to "INFINITY" } \\
& T S=(K: 2 P I S C / \sqrt{R d A})-T S \\
& X I=\operatorname{RdA} T S^{2} \\
& X=\sqrt{R I} T S \\
& T S x_{2}=X^{2} \\
& \text { KEPCI }=\sqrt{\mathrm{PRI}} \operatorname{COGA}
\end{aligned}
$$

```
 KEPC2 = 1 - RdA
 Switch FLAGwRD8 bit }7\mathrm{ (INFINFLG) to 0
 Return
INFINTTY (Clear overflow indicator if set)
 Switch FLAGWRD8 bit }7\mathrm{ (INFINFLG) to I
 Return
DELTIME. Sxi = K:SO + K:SI XI + K:S2 XI' + _. + + K:S9 XI'9
 Cxi = K:C0 + K:Cl XI + K:C2 XI' + _.. + K:C9 XI'9
 XSQCxi = TSx2 Cxi
 T = ldROOTMU (X (RI + TSx2 Sxi KEPC2) + KEPCl XSQCxi)
 Return
 NEWSTATE TSr = (RI - XSQCxi) URI + (T - X I IdROOTMU Sxi) VVEC
 R2 = |TSr |
LAMENTER IS = (ROOTMU (XI Sxi - 1) X / R2) URI
 TSv = TS + (1 - XSQCxi / R2) VVEC
 Return
ITERATOR If FLAGWRDL bit 3 (SLIOPTSW) =0:
 TS = DELDEP DELINDEP / (DEP - DEPREV)
 If FLAGWRD8 bit 6 (ORDERSW) = 1, TS = |TS| signDELDEP
 If FLAGWRDl bit 3 (SLOPRSW) = 1:
 Switch FLAGWRDl bit 3 to 0
 TS = (MAX TWEEKIT - MIN TWEEKIT) signDELDEP
 If TS < 0:
 If FLAGWRD8 bit 6 (ORDERSW) = 0, MAX = INDEP
 CONC - 12
```

```
 (If TS<<)
 If INDEP + TS SMIN or if overflow:
 TS = K:DP9d10 (MIN - INDEP)
 DELINDEP = TS
 Roturn
 If FLAGWRD8 bit 6 (ORDERSW) = 0, MIN = INDEP
 If INDEP + TS > MAX or if overflow:
 TS = K:DP9d10 (MAX - INDEP)
DELINDEP = TS
Return
PERIAP01
VYEC = ISV
 (rescaled for lunar orbit computations)
RVEC = TSr (rescaled for lunar orbit computations)
PERIAPO NORMEX = return address
TSo = K:RPAD
If Mudex }\not=0,TSo = |RLS |
XXXALT = TSo
Perform "APSIDES"
TSha = TSra - XXXALT
TShp = TSrp - XXXALTT
Return via NORMEX
```

ldMU: Double precision storage register for the gravitational constant for the moon or the earth, whichever is the central body; scaled B-34 (earth) or B-28 (moon) in units of centiseconds squared / meters cubed.
ldROOTMU: Double precision square root of ldMU, scaled B-17 (earth) or $\mathrm{B}-14$ (moon) in units of centiseconds / meters 3/2.

ImCSTH: Double precision storage for (1-CSTH), scaled B2 and unitless.
ALPHA: Double precision inverse of the semi-major axis for the universal form of Kepler's equation, scaled B-22 (earth) or B-20 (moon) in units of meters ${ }^{-1}$.

COGA: Double precision cotangent of flight path angle (measured from vertical), scaled B5 and unitless.

COMMAX, COGAMIN: Upper and lower bounds on COGA, scaled B5 and unitless.
CUSF: Double precision cosine of the true anomaly at the desired radius in the time-radius problem, scaled Bl and unitless.

CSTH: Double precision cosine of the true anomaly difference or of the engle between present and desired position vectors, scaled Bl and unitless.

CCTMRHO: Double precision intermediate quantity used in the calculation of $P$ and COGAMIN, scaled B7 and unitless.
©: One of the two special functions used in the universal formulation of the conic equation; double precision, scaled B4 and unitless.

DCOGA: Double precision change in COGA in Lambert iteration step, scaled B5 and unitless.

DETVEP: Double precision change in the dependent variable for the "ITERATOR" subroutine, variable scaling and units.

DALINDEP: Double precision change in the independent variable for the "ITERATOR" subroutine, variable scaling and units.

Duin: Double precision difference between the desired time interval and the computed approximation to it during the "KEPLERN" iteration, scaled B28 in units of centiseconds.

$$
\text { CONC - } 14
$$

DELX: Difference between successive values of the universal conig parameter X, scaled B17 (earth) or B16 (moon) in units of meters ${ }^{1 / 2}$.

DEP, IEPREV: Double precision storage for two successive values of the independent variable to be used in the "ITERATOR" subroutine; scaling and units variable.

ECC: Double precision eccentricity computed in the "APSIIES" routine, scaled B3 and unitless.

EPSILONL, EPSILONT: Double precision definitions of convergence in the Lambert and Kepler iteration loops respectively, scaled B28 in units of centiseconds.

GEOMSGN: Single precision sign for the sine of the true anomaly difference, scaled BO and unitless.
i: Single precision index, scaled B14, and unitless.
INDEP: Double precision independent variable for the "ITERATOR" subroutine; scaling and units variable.

ITERCTR: Single precision iteration counter, scaled Bl4 and unitless.

KEPCl: Double precision coefficient in the Kepler equation, scaled B17 (earth) or Bl6 (moon) in units of meters.

KEPC2: Double precision coefficient in the Kepler equation, scaled B6 and unitless.
KEPRTN: Single precision octal return address storage.
K:2PISC: Double precision constant, stored as $6.2831853 \times 2^{-6}$, scaled B6 and unitless. Equation value: 6.2831853.

K: BEE17: Double precision constant stored as $2^{-17}$, scaled $B O$ and unitless. Equation value: $2^{-17}$.

K:BEE19: Double precision constant stored as $2^{-19}$, scaled $B O$ and unitless. Equation value: $2^{-19}$.

K:BEE22: Double precision constant stored as $2^{-22}$, scaled $B O$ and unitless. Equation value: $2^{-22}$.

K:CO,...K:C9: Ten double precision constants defining the special function $C(x)$, all unitless.

Stored Value

$\mathrm{K}: \mathrm{CO}$	0.031250001	B 4
$\mathrm{~K}: \mathrm{Cl}$	-0.166660719	$\mathrm{~B}-2$
$\mathrm{~K}: \mathrm{CL}$	0.355555413	$\mathrm{~B}-8$
$\mathrm{~K}: \mathrm{C} 3$	-0.406347410	$\mathrm{~B}-14$
$\mathrm{~K}: \mathrm{C4}$	0.288962094	$\mathrm{~B}-20$
$\mathrm{~K}: \mathrm{C} 5$	-0.140117894	$\mathrm{~B}-26$
$\mathrm{~K}: \mathrm{C} 6$	0.049247387	$\mathrm{~B}-32$
$\mathrm{~K}: \mathrm{C7}$	-0.013081923	$\mathrm{~B}-38$
$\mathrm{~K}: \mathrm{C8}$	0.002806389	$\mathrm{~B}-44$
$\mathrm{~K}: \mathrm{C} 9$	-0.000529414	$\mathrm{~B}-50$

Theoretical
Value
0.5
$-0.041666667$

1. $38888889 \mathrm{E}-3$
-2.48015873 E-5
$2.75573192 \mathrm{E}-7$
$-2.08767570 \mathrm{E}-9$
$1.14707456 \mathrm{E}-11$ $-4.77947733 \mathrm{E}-14$
$1.56192070 \mathrm{E}-16$
-4.11031762 E-19

Equation Value
0.500000016
$-0.041666680$
$1.38888833 \mathrm{E}-3$
$-2.48014777 \mathrm{E}-5$
$2.75575727 \mathrm{E}-7$
-2.08791932 E-9
$1.14663008 \mathrm{E}-11$
$-4.75917586 \mathrm{E}-14$
1.59524745 E-16
-4.70214090 E-19

K:COGLOLIM: Double precision constant stored as -0.999511597 , scaled B5 and unitless. Equation value: - 31.9843711. (Cot $\left.1^{\circ} 48^{\prime}.\right)$

K:COGUPLIM: Double precision constant stored as 0.999511597 , scaled B5 and unitless. Equation value: 31.9843711.

K:BY9d10: Double precision constant, stored as 0.9 , scaled BO and unitless. Equation value: 0.9.

I: :r50SC: Double precision constant, stored as $-50.0 \times 2^{-12}$, scaled B12 and unitless. Equation value: -50.0 .
$K:$ MUTABLE $_{j}:$ A table of constants containing four gravitational constants for the earth and four for the moon.

i	K:MUTABLE	Scale Factor	Units	Equation Value	Significance
0	3.986032 E10 B-36	B36	meters ${ }^{3} / \mathrm{cs}^{2}$	3.986032 ElO	$\mu_{\mathrm{e}}$
2	0.25087606 E-10 B34	B-34	$\mathrm{cs}^{2} / \mathrm{m}^{3}$	0.25087606 E-10	$1 / \mu_{e}$
4	$1.99650495 \mathrm{E} 5 \mathrm{~B}-18$	B]. 8	$\mathrm{m}^{3 / 2} / \mathrm{cs}$	1.99650495 E5	$\sqrt{r_{e}}$
6	$0.50087529 \mathrm{E}-5 \mathrm{Bl7}$	B-17	cs/m ${ }^{3 / 2}$	$0.50087529 \mathrm{E}-5$	$\sqrt{1 / \mu_{e}}$
8	4.902778 E8 B-30	B30	$\mathrm{m}^{3} / \mathrm{cs}^{2}$	4.902778 E8	$\mu_{\text {m }}$
10	$0.203966 \mathrm{E}-8 \mathrm{~B} 28$	B-28	$\mathrm{cs}^{2} / \mathrm{m}^{3}$	$0.203966 \mathrm{E}-8$	$\underline{1 / \mu} \mu_{m}$
12	2.21422176 E4 B-1.5	B1 5	$\mathrm{m}^{3 / 2} \mathrm{cs}$	$2.21422176 \mathrm{E4}$	$\sqrt{\mu_{m}}$
14	$0.45162595 \mathrm{E}-4 \mathrm{Bl} 4$	B-14	$\mathrm{cs} / \mathrm{m}^{3 / 2}$	$0.45162595 \mathrm{E}-4$	$\sqrt{1 / \mu_{m}}$

K:RPAD: Double precision stored as $6373338 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 6,373,338. (Equivalent to 20,909,901.57 feet.)

K:SO, ...K:S9: Ten double precision constants defining the special function $S(x)$, all unitless.

	Stored Value	Scale Factor	Theoretical Value		Equation Value
K:SO	0.083333334	B1	0.166666667		$1.66666668 \mathrm{E-I}$
K:SI	-0.266666684	B-5	-8.33333333	E-3	-8.33333387 E-3
K:S2	0.406349155	B-11	1.98412698	E-4	$1.98412673 \mathrm{E-4}$
K:S3	-0.361198675	B-17	-2.75573192	E-6	-2.75572720 E-6
K:S4	0.210153242	B-23	2.50521084	E-8	$2.50522187 \mathrm{E}-8$
K:S5	-0.086221951	B-29	-1.60590438	E-10	-1.60600899 E-10
K:S6	0.026268812	B-35	7.64716373	E-13	$7.64523051 \mathrm{E}-13$
$\mathrm{K}: \mathrm{S} 7$	-0.006163316	B-41	-2.81145725	E-15	-2.80275162 E-15
K:S8	0.001177342	B-47	8.22063525	E-18	$8.36551806 \mathrm{E}-18$
K:S9	-0.000199055	B-53	957294	E-20	-2.20995444 E-20

K:unia,... K:unig: Seven double precision constants used in the definition of the independent variable for the universal formulation of Kepler's equation, scaled Bl and unitless

Stored Value

K:unia	0.5
K:unib	-0.166666770
K:unic	0.100000392
K:unid	-0.071401086
K:unie	0.055503292
K:unif	-0.047264098
K:unig	0.040694204

Equation Value
1.0
$-0.33333354$
0.200000784
$-0.142802172$
0.111006584
$-0.094528196$
0.081388408

MAGVEC2: Magnitude of the second vector input to the "GEOM" routine, double precision with variable scaling and units.

MAX, MIN: Double precision maximum and minimum bounds for the "ITERATOR" subroutine; variable scaling and units.

MUIEX: Single precision index indicating whether the gravitational constant for the earth ( 0 ) or the moon (8) should be used in the conic equations, scaled Bl4 and unitless. MDEX $=-\mathrm{Xl}-2$ where XI is index register one in the listing.

$$
\text { CONC - } 17
$$

MMg: Single precision octal return address storage.
f: Double precision ratio of semi-latus rectum and magnitude of present position, scaled B4 and unitless.

R1, R2: Double precision magnitudes of present and desired position vectors, respectively, scaled B29 (earth) or B27 (mon) in units of meters.

RIVEC, R2VEC: Double precision vector inputs to the "LAMBERT" routine; present and dosired position, respectively, scaled B29 (earth) or B27 (moon) in units of meters.

RCV: Double precision vector outptt of the "KEPLEFN" routine; conic position vector at the specified time, scaled B29 (earth) or B27.(moon) in units of meters.

RdA: Double precision ratio of present radius to semi-major axis, scaled B6 and unitless.

RIESIRED: Double precision input to the "TIMERAD" routine scaled B29 (earth) or B27 (moon) in units of meters.

RI.S: Double precision position vector at the lunar surface, scaled B27 in units of moters and expressed in selenographic coordinates.

FOOTMU: Double precision square root of the relevant gravitational constant, scaled Bl8 (earth) or Bl5 (moon) in units of meters 3/2/cs.

PRIECT: Double precision vector input to the "KEFLERN" routine; the cosition vector to be advanced through the specified time, scaled B29 (earth) or B27 (moon), in units of meters.

RTNCONC, RINPRM: Single precision, octal return address storage cells.
RVEC: Double precision vector input to the majority of the confc routines, a position scaled B29 (earth) or B27 (moon) in units of meters.

SKivNDOT: Single precision flag indicating the sign of the radtal velocity desired at the desired radius.

3n:TH: Double precision sine of true anamaly difference or of the angle between present and desired position vectors, scaled Bl and unitless.

Sil.: One of the two special fanctions ueed in the universal formation of the conic equation; dorble precirion, scaled BI and unitless.

$$
\text { CONC - } 18
$$

T: Double precision time (computed in "DELTIME") to go from present position to desired position, scaled B28 in units of centiseconds.

TAU: Desired transfer time input to the "KEPLERN" routine; double precision scaled B28 in units of centiseconds.

TC: Double precision time since latest rectification, scaled B28 in units of centiseconds.

TDESIRED: Double precision input to the "LAMBERT" routine; desired transfer time, scaled B28 in units of centiseconds.

TERRLAMB: Double precision difference between desired and computed transfer tima during the "LAMBERT" iterations, scaled B28 in units of centiseconds.

TPREV: Previous value of $T$, scaled B28 in units of centiseconds and double precision.

TWEEKIT: Single precision factor used in the initiation of the "ITERATOR" routine, set large or small depending on whether or not a good first approximation of COGA is available.

U2, URI: Double precision unit vectors in the directions of the two vectors input into the "GEOM" routine, scaled Bl and unitless.

UN: Unit normal vector, scaled Bl and unitless.
URRECT: Unit vector in the direction of RRECT, scaled Bl and unitless.
VCV: Double precision vector output of the "KEPLERN" routine; the velocity vector at the specified time, scaled B7 (earth) or B5 (moon) in units of meters/centisecond.

VRECT: Double precision vector input to the "KEPLERN" routine; the velocity vector to be advanced through the specified time, scaled B7 (earth) or B5 (moon) in units of meters/centisecond

VTARGET: Double precision velocity vector output of the "LAMBERT" routine; velocity at R2VEC, scaled B7 (earth) or B5 (moon) in units of meters/centisecond.

VTARGTAG: Single precision flag input to "LAMBERT" to indicate that VTARGET is to be computed (if VTARGTAG $=0$ ).

VVEC: Double precision vector input to the majority of the conic routines; velocity, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.
x: Double precision temporary storage cell used in "POLYCOEF", scaled BO and unitless.
?: Double precision universal conic parameter equal to the product of semi-major axis and eccentric anomaly difference (for the ellipse) or to the product of tha hyperbolic analogs of eccentric anomaly difference and semi-major axis (for the hyperbola), scaled B17 (earth) or B16 (moon) ir units of meters to the one-half power.

XI: Doublewprecision square of the eccentric anomaly difference for an ellipse, or the negative of the square of its hyperbolac analog for a hyperbola, scaled B6 in units of radians squared.

YKPNEW: Double precision value of $X$ at entry to "KEPLERN", scaled Bl7 (earth) or Bl6 (moon) in units of meters to the one-half power.

2剈X, XMIN: Double precision upper and lower bounds on $X$, scaled Bl7 (earth) or Bl6 (moon) in units of meters to the one-half power.

YPREV: Previous value of $X$; same units and scaling as $X$.
a SQCxi: Double precision product of $X^{2}$ and Bxi, scaled B33 (earth) or B31 (moon) in units of meters.

XXXALT: Value of base altitude for computing apogee and perigee information, scale factor B29 (earth) or B27 (moon), units meters.

CDUTRIG $\underline{A N G}=\underline{C D U}$
CD*TR*GS ANG = ANG converted to one's complement form SINOGA $=\sin A N G_{x}$
$\operatorname{COSOGA}=\cos ^{A N G}{ }_{x}$
SINIGA $=\operatorname{sinANG}$
$\operatorname{COSIGA}=\cos A N G_{y}$
SINMGA $=\operatorname{sinANG}_{Z}$
$\operatorname{COSMGA}=\operatorname{cosANG}_{z}$
Return
NBTOSM $[$ TS1 $]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { COSOGA } & - \text { SINOGA } \\ 0 & \text { SINOGA } & \text { COSOGA }\end{array}\right]$
[TS2] $=\left[\begin{array}{ccc}\text { COSMGA } & \text { - SINMGA } & 0 \\ \text { SINMGA } & \text { COSMGA } & 0 \\ 0 & 0 & 1\end{array}\right]$
$[T S 3]=\left[\begin{array}{ccc}\text { COSIGA } & 0 & \text { SINIGA } \\ 0 & 1 & 0 \\ - \text { SINIGA } & 0 & \text { COSIGA }\end{array}\right]$
$[$ NBSMMAT $]=[T S 3][T S 2][T S 1]$
Return
CALCSMSC XNBsm $=$ (COSIGA COSMGA , SINMGA , -SINIGA COSMGA)
$T S=$ SINOGA SINMGA
$\mathrm{ZNBsm}_{\mathbf{z}}=\operatorname{COSIGA} \operatorname{COSOGA}-$ SINIGA TS
ZNBEMy $=-$ SINOGA COSNGA
$\mathrm{ZNBam}_{x}=$ COSOGA SINIGA $+\operatorname{COSIGA}$ TS
YnBsm $=$ ZanBsm * XNBsm
Roturn
SMIONB $[$ TSI $]=\left[\begin{array}{ccc}\text { COSIGA } & 0 & - \text { SINIGA } \\ 0 & 1 & 0 \\ \text { SINIGA } & 0 & \text { COSIGA }\end{array}\right]$
$[T S 2]=\left[\begin{array}{ccc}\text { COSMGA } & \text { SINMGA } & 0 \\ - \text { SINMGA } & \text { COSMGA } & 0 \\ 0 & 0 & 1\end{array}\right]$
[TS3] $=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { COSOGA } & \text { SINOGA } \\ 0 & - \text { SINOGA } & \text { COSOGA }\end{array}\right]$
$[$ SMNBMAT $]=[T S 3][T S 2][T S 1]$
Return
EARTHMX AZ504 = AZO + K:WEARTH (TEPHEM + TSt)
If overflow $(|A Z 504| \geq 1)$, AZ504 = fractional part of AZ504
[EARTHMAT] $=\left[\begin{array}{ccc}\cos A Z 504 & \sin A Z 504 & 0 \\ -\operatorname{sinAZ504} & \cos A Z 504 & 0 \\ 0 & 0 & 1\end{array}\right]$
LE5O4 = ( - UNITW $_{y}$, UNITH $\left._{x}, 0\right)$
Return

$$
\begin{aligned}
& E I=K: B S U B O+K: B D O T(T E P H E M+T S t) \\
& M R=K: F S U B O+K: \text { FDOT (TEPHEM }+T S t \text { ) } \\
& \mathrm{MN}=\mathrm{K}: \text { NODIO }+\mathrm{K}: \text { NODDOT (TEPHEM + TSt) } \\
& \underline{T} S b=(-s i n M N, \cos M N \cos E I, \cos M N \text { sinEI) } \\
& \text { TSa }=(\cos M N, \sin M N \operatorname{cosEI}, \sin M N \operatorname{sinEI}) \\
& \underline{T S c}=(0,-s i n E I, c o s E I) \\
& {\left[M_{N M A T 1}\right]=\left[\begin{array}{ccc}
\mathrm{TSa}_{x} & \mathrm{TSa}_{y} & \mathrm{TSa}_{z} \\
\mathrm{TSb} & \mathrm{TSb}_{y} & \mathrm{TSb}_{z} \\
\mathrm{TSc}_{x} & \mathrm{TSc}_{y} & \mathrm{TSc}_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos M N & \sin M \mathrm{~N} & 0 \\
-\sin M N & \cos M N & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos E I & \sin E I \\
0 & -\sin E I & \cos E I
\end{array}\right]} \\
& \text { [MNMAT2] }=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{~K}: \operatorname{COSI} & -\mathrm{K}: \operatorname{SINI} \\
0 & \mathrm{~K}: \operatorname{SINI} & \mathrm{K}: \operatorname{COSI}
\end{array}\right] \\
& {[\text { MNMAT3 }]=\left[\begin{array}{lll}
-\cos M R & -\sin M R & 0 \\
\sin M R & -\cos M R & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\cos \left(\frac{1}{2}+M R\right) & \sin \left(\frac{1}{2}+M R\right) & 0 \\
-\sin \left(\frac{1}{2}+M R\right) & \cos \left(\frac{1}{2}+M R\right) & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \text { [MOONMAT] }=\text { [MNMAT3] [MNMAT2] [MNMAT1] }
\end{aligned}
$$

Return
LAT-LONG ALPHAM $=|\underline{A L P H A V}|$
If FLAGWRD3 bit 12 (IUNAFLAG) $=1$ :
Perform "MOONMX"
$I S=[$ MOONMAT $]$ (ALPHAV $-\left([\text { MOONMAT }]^{T}\right.$ LM504) * ALPHAV)
ALPHAV $=$ unitTS
GAMRP $=K: 1 B 1$
If FLAGWRD1 bit 13 (ERAIFLAG) $=1$, ERADM $=\mathrm{K}: 504 \mathrm{RM}$
If FLAGWRD1 bit 13 (ERADFLAG) $=0$, ERADM $=|\underline{R L S}|$

$$
\text { COOR - } 3
$$

If FLAGWRD3 bit 12 (IUNAFIACA) $=0$ :
Perform "earthnax
$T S=[$ EARTHMAT $]$ (ALPHAV -IT 504 * ALPHAV)
ALPHAV $=$ unitITS
GAMRP $=\mathrm{K}:$ B2dA2
If FLAGWRD1 bit $13^{\circ}$ (ERADFIAG) $=1$ :

$$
T S=1-\operatorname{ALPHAV}_{z}^{2}
$$

$$
\text { ERADM }=\sqrt{\mathrm{K}: B 2 X S C /(1-K: E E T S)}
$$

If FLAGWRD1 bit 13 (ERADFLAG) $=0$, ERADM $=K:$ ERAD
$\operatorname{COSTH}=$ GAMRP $\sqrt{A^{\prime} P_{H} A_{x}^{2}+\text { ALPHAV }_{G}^{2}}$
SINTH $=$ ALPHAV $_{z}$
Perform "ARCTAN"
LAT = THETA
COSTH $=$ ALPHAV $_{\mathbf{x}}$
SINTH $=$ ALPHAV $_{y}$
Perform "ARCTAN"
LONG $=$ THETA
ALT $=$ ALPHAM - ERADM
Return
LALOTORV If FLAGWRD3 bit 12 (IUNAFIAG) $=1$, GAMRP $=\mathrm{K}: 1 \mathrm{~B} 1$
If FLAGWRD3 bit 12 (IUNAFLAG) $=0$, GAMRP $=\mathrm{K}:$ B2dA2
$\mathrm{TS}_{\mathrm{z}}=$ GAMRP ginlat
$\mathrm{TS}_{\mathrm{y}}=$ siniong cosiat
$T S_{x}=\cos L O N G$ cosLat
ALPHAV = unitIS

```
If FLAGWRD3 bit 12 (LUNAFLAG) = 1:
 If FLAGWRDI bit 13 (ERADFLAG) = 1, ERADM = K:504RM
 If FLAGWRDI bit 13(ERADFLAG) = 0, ERADM = |RIS |
 Perform "MOONMX"
 TS = [MOONMAT] T (\underline{ALPHAV + LM504 * ALPHAV)}
If FLAGWRD3 bit 12 (LINAFLAG) = 0:
 If FLAGWRDI bit 13 (ERADFLAG) = 1:
 TS = 1 - ALPHAV
 ERADM = \sqrt{}{K:B2XSC /(1-K:EE TS)}
 If FLAGWRDI bit 13 (ERADFLAG) = 0, ERADM = K:ERAD
 Perform "EARTHMX"
 TS = [EARTHMAT] T (\underline{ALPHAV + ([EARTHMAT] LE504)* ALPHAV)}
ALPHAV = TS (ERADM + ALT)
Return
ARCTAN TS = SINTH2}+\mp@subsup{\operatorname{COSTH}}{}{2
If TS = 0:
 THETA = 0
 Return
TS = SINTH / \sqrt{}{TS}
If }|TS|\geq1
 THETA = \frac{1}{4}}\mathrm{ signSINTH
 Return
THETA = arcsinTS
If COSTH < 0, THETA = - THETA + <
Return
```

CALCGA (entered with XNBrf and XSMrf etc., XNBsm and XSMnb etc., etc.)

```
TS = unit(XXNB * YSM)
COSTH = TS • ZNN
SINTH = TS • YNB
Perform "ARCTRIG"
OGC = THETA
COSTH = TS * XNB • YSM
SINTH = YSM • XNB
Perform "ARCTRIG"
MGC = THETA
If }|MGC|\geqK:gloktest
 Perform "ALARM" with TS = 004018
 Switch FLAGWRD3 bit 14 (GLOKFAIL) to 1
COSTH = ZSM • TS
SINTH = XSM - TS
Perform "ARCTRIG"
IGC = THETA
TS = (OGC, IGG, MGC) converted to two's complement form
THETAD = TS
```

Return
ARCTRIG If $|S I N T H| \geq K: Q T S N 45$, WHETA $=\operatorname{arccosCOSTH}$ signSINTH
If $\mid$ SINTH $\mid<K:$ QTSN45:
THETA $=\operatorname{arcsinSINTH}$
If $\operatorname{COSTH}<0$, THETA $=\frac{1}{2}$ signS INTH - THETA
Return

```
TS \(=\) unit \(\left(-\right.\) DCMAT \(_{13}, 0\), DCMAT \(\left._{11}\right)\)
SINTH \(=T S_{x}\)
\(\operatorname{COSTH}=T S_{2}\)
Perform "ARCTRIG"
IGC = THETA
SINTH \(=\) DCMAT \(_{12}\)
\(\operatorname{COSTH}=\mathrm{TS}_{\mathbf{z}}\) DCMAT \(_{11}-\mathrm{TS}_{\mathbf{x}}\) DCMAT \(_{13}\)
Perform "ARCTRIG"
MGC = THETA
\(\operatorname{COSTH}=\) TS \(\cdot\left(\right.\) DCMAT \(_{31}\), DCMAT \(_{32}\), DCMAT \(\left._{33}\right)\)
\(S I N T H=I S \cdot\left(\right.\) DCMAT \(_{21}\), DCMAT \(_{22}\), DCMAT \(\left._{23}\right)\)
Perform "ARCTRIG"
OGC = THETA
Return
LSPOS \(\quad \mathrm{TSt}=(\mathrm{TSt}+\mathrm{TEPHEM}) / \mathrm{K}:\) CSTODAY
Switch FLAGWRDO bit 3 (FREEFLLAG) to 0
GTMP \(=\mathrm{K}: \operatorname{amod} \sin (\mathrm{K}: 1 \mathrm{~d} 27 \mathrm{TSt}+\mathrm{K}:\) aarg \()\)
Switch FLAGWRDO bit 3 (FREEFLAG) to 1
GTMP \(=\) GTMP \(+\mathrm{K}:\) brod \(\sin (\mathrm{K}: 1 \mathrm{~d} 32\) TSt \(+\mathrm{K}:\) barg \()\)
STMP \(_{0}=K:\) lomo \(+K\) :lomr TSt - GTMP
GTMP \(=\mathrm{K}:\) cmod \(\sin (\mathrm{K}: 1 \mathrm{~d} 365 \mathrm{TSt}+\mathrm{K}:\) carg \()\)
\(\operatorname{STMP}_{2}=K: 10 s 0+K:\) losr TSt - GTMP
\(\operatorname{STMP}_{4}=\mathrm{K}:\) Iono \(+\mathrm{K}:\) lonr TSt
```

$\underline{T} S=[K: K O M M A T]\left(\begin{array}{l}\operatorname{cosSTMP} P_{0} \\ \operatorname{sinSTMP} P_{0} \\ \sin \left(S T M P_{0}-\operatorname{STMP}_{4}\right)\end{array}\right)$
WNOON = UnitTS
$\mathrm{TS}=[\mathrm{K}: \mathrm{KONMAT}]\left(\begin{array}{c}\operatorname{cosSTMP}_{2} \\ \operatorname{sinSTMP} 2 \\ 0\end{array}\right)$
VSUN $=$ unitIS
TSsum $=$ unitTTS
Return

MFREF $\quad$ TS $_{1}=$ VEC1
TSt $=$ TMMENOW
Perform "MOONMX"
$\underline{\text { EEC1 }}=\left(\underline{I S}_{1} * \underline{\mathrm{LM} 504}+\underline{\mathrm{TS}}_{1}\right)[$ MOONMAT $]$
$\mathrm{TS}_{1}=\underline{\mathrm{VEC}} 2$
Porform "moonmin
$\underline{\text { VEC2 }}=\left(\mathrm{TS}_{1} * \mathrm{LMMO}_{2}+\underline{\underline{T} S_{1}}\right)$ [MOONMAT]
Return
REFMF Porform "CDUTRIG"
TSt $=$ TIMENOW
Perform "caicsescn
$\underline{S T}_{1}=\operatorname{umit}($ INBem $[$ Rapsmat $])$
Perform "MOONME"
$\underline{\underline{T S}}=\underline{\mathrm{LMSO}} 4$ [MOONMAT]
Invesav $=[$ MOONMAT $]\left(\right.$ IS $\left._{1}-I S * I S_{1}\right)$
IS ${ }_{1}=\operatorname{umit}($ Znalam [REFSMMAT])
COOR - 8

Perform "MOONMX"
TS $=$ LM504 [MOONMAT]
$\underline{Z N B S A V}=[$ MOONMAT $]\left(\underline{T S}_{1}-\underline{T S} * \underline{T S}_{1}\right)$
Switch FLAGWRD6 bit 1 (ATTFLAG) to 1
Return

ALPHAM: Magnitude of position vector input to "LAT-LONG" routine.
ALPHAV: Working storage for the position vector or unit position vector in reference, selenographic, or geographic coordinates.

ALT: Double precision altitude, scaled B29 in units of meters.
ANG: Single precision vector containing the outer, inner, and middle gimbal angles in its $X, Y$, and $Z$ components, respectively, stored in units of revolutions in two's complement form scaled B-1 or in one's complement form scaled BO.

AZ504: Double precision angle of rotation of the earth around its polar axis, scaled BO in units of revolutions. Program notation "504AZ".

AZO: Double precision position angle of the earth at the time when TEPHEM equals zero, scaled BO in units of revolutions; included in the erasable load.
 values of the $I M U^{z}$ gimbal angles (outer, inner and middle gimbal in $X, Y$ and $Z$ components respectively), scaled $B-1$ in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.

COSIGA, COSMGA, COSOGA: Double precision cosines of the inner, middle and outer gimbal angles respectively, scaled Bl and unitless. Program notation ${ }^{\operatorname{COSCDU}} 0, \operatorname{CosCDU}_{2}, \operatorname{COSCDU}_{4}$."

COSTH: Double precision cosine scaled B1 in "ARCTAN" and B2 in "ARCTRIG."
[DCMAT]: See ALN section.
[EARTHMAT]: Double precision, $3 \times 3$ orthogonal tranaformation matrix, scaled B1 and unitless. Agd = [EARTHMAT] Aref, where A is vector expressed in geodetic and reference coordinates respectively.

EI: Double precision angle of inclination of the equatorial plane measured from the ecliptic plane around the earth-to-sun vector at the vernal equinox, scaled $B O$ in units of revolutions. Used to transform from reference coordinates to a right-handed, orthogonal system whose X -axis is along the earth-to-sun vector at the vernal equinox and whose 2 -axis is perpendicular to the ecliptic.

ERADM: Double precision radius of earth or moon, scaled B29 in anits of meters.

$$
\text { COOR - } 10
$$

GAMRP: Double precision square of the ratio of polar radius to equatorial radius, scaled Bl and unitless.

GTMP: Working storage in "LSPOS" scaled BO in units of revolutions.
K:1Bl: Double precision constant stored as $2^{-1}$, scaled Bl and unitless. Equation value: 1. (Corresponds to the square of the ratio of: polar radius to equatorial radius for the moon.)

K:ld27: Double precision constant stored as $0.036291712 \times 2$, program notation VAL67+4, scaled B-l and unitless. Equation value: 0.036291712 . (Equivalent to $1 / 27.5545$ and used in the extension of the circular approximation to the moon's orbit to account for eccentricity and rotation of the line of apsides.)

K:ld32: Double precision constant stored as $0.03125 \times 2$, program notation VAL67+10, scaled B-1 and unitless. Equation value: 0.03125.
$\mathrm{K}: 1 \mathrm{~d} 365$ : Double precision constant stored as $0.002737925 \times 2$, program notation VAL67+16, scaled B-l and unitless. Equation value: 0.002737925. (Equivalent to 1./ 365.2401.)
$\mathrm{K}: 504 \mathrm{RM}$ : Double precision constant stored as $1738090 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 1738090.

K:aarg: Double precision constant stored as 0.530784445 , program notation VAL67+2, scaled BO in units of revolutions. Equation value: 0.530784445.

K:amod: Double precision constant stored as $0.01726666666 \times 2$, program notation VAL67, scaled B-1 in units of revolutions. Equation value: 0.017266666. (Corresponds to $2: \mathrm{e} / 2 \pi$ where $e$ is the mean eccentricity of the moon's orbit $=0.054245$.)
K:B2dA2: Double precision constant stored as $0.9933064884 \times 2^{-1}$ scaled Bl and unitless. Equation value: 0.9933064884. (corresponds to the square of the ratio of polar radius to equatorial radius for the earth.)

K:B2XSC: Double precision constant stored as 0.0179450689 , scaled B5l in units of meters squared. Equation value: 6356784 squared. (Corresponds to the square of the polar radius of the earth.)

K:barg: Double precision constant stored as 0.585365625 , program notation VAL67+8, scaled BO in units of revolutions. Equation value: 0.585365625.

A:BDOI: Double precision constant stored as -1.145529388 E-16 $\times 2^{28}$, scaled B-28 in units of revolutions per centisecond. Equation value: -1. $145529388 \mathrm{E}-16$. (Equivalent to $7.197573418 \mathrm{E}-14$ radians per second or $2,766,240$ years per revolution.)

K: bmod: Double precision constant stored as $0.003505277 \times 2$, program notation VAL67+6, scaled B-l in units of revolutions. Equation value 0.003505277 .

K:BSUBO: Double precision constant stored as 6.512013939 E-2, scaled BO in units of revolutions. Equation value 6.512013939 E -2. (Equivalent to $4.09161903 \mathrm{E}-1$.radians.)

K:carg: Double precision constant, stored as -0.01106341036 , program notation VAL67+14, scaled BO and unitless. Equation value: -0.01106341036.

K:cmod: Double precision constant stored as $0.005325277 \times 2$, program notation VAL67+12, scaled B-l in units of revolutions. Equation value: 0.005325277 . (Corresponds to $2 \mathrm{e} / 2 \pi$ where e is the mean eccentricity of the geocentric solar orbit $=0.01674$.)

K:COSI: Double precision constant stored as $0.999641732 \times 2^{-1}$, scaled B1 and unitless. Equation value 0.999641732.
K:CSTODAY: Double precision constant stored as $8640000 \times 2^{-33}$, scaled B33 in units of centiseconds. Equation value: 8640000 .

K:EE: Double precision constant stored as 6.6935116 E-3, scaled BO and unitless. Equation value: 6.6935ll6 E-3. (Corresponds to the square of the eccentricity of the Fischer ellipsoid.)

K:ERAD: Double precision constant stored as $6373338 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 6373338. (Corresponds to the pad radius on the earth.)

K:FDOT: Double precision constant stored as $4.253263473 \mathrm{E}-9 \times 2^{27}$, scaled B-27 in units of revolutions per centisecond. Equation value: 4.253263473 E-9. (Equivalent to $2.672404256 \mathrm{E}-6$ radians per second or 27.21 days per revolution.)

K:FSUBO: Double precision constant stored as 8.290901511 E-1, scaled BO in units of revolutions. Equation value: 8.2909015ll E-l. (Equivalent to 5.209327056 radians.)

K:gloktest: Double precision constant stored as 0.1666666667 , scaled BO in units of revolutions. Equation value: 0.1666666667 : (Equivalent to 60 degrees.) Program notation ".166...".

K:KONMAT : Double precision $3 \times 3$ matrix, scaled Bl and unitless. Used to transform from ecliptic to equatorial, earth-centered coordinates. Equation value:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d\end{array}\right]$
where $\mathrm{a}=0.91745, \mathrm{~b}=-0.03571(-0.39784 \times 0.08976), \mathrm{c}=0.39784$ and $d=0.082350$ ( $0.91745 \times 0.08976$ ). The quantities 0.39784 and 0.91745 are the sine and cosine respectively of 23.444 degrees; 0.08976 is the sine of 5.150 degrees. Note that the factor 0.08976 has no effect on the transformation of the sun's position vector and is actually a parameter of the lunar orbit.

K:lomo: Double precision constant stored as 0.815282336, program notation RATESP +6 , scaled BO in units of revolutions. Equation value: 0.815282336 . (Corresponds to the position of the moon in it's orbit at July l, 1969.)
$\mathrm{K}:$ lomr: Double precision constant stored as $0.03660098 \times 2^{4}$, program notation RATESP, scaled B-4 in units of revolutions per day. Equation value: 0.03660098. (Equivalent to 1 revolution per 27.32167 days. Corresponds to the sidereal period of the moon.)

K:lono: A double precision constant stored as 0.986209499 , program notation RATESP+10, scaled BO in units of revolutions. Equation value: 0.986209499. (Corresponds to the position of the mean ascending node of the lunar orbit on the ecliptic at July l, 1969.)

K:lonr: Double precision constant stored as $-0.00014719 \times 2^{4}$, program notation RATESP+4, scaled B-4 in units of revolutions per day. Equation value: -0.00014719.

K:loso: Double precision constant stored as 0.274674910, program notation RATESP +8 , scaled BO in units of revolutions. Equation value: 0.274674910 . (Corresponds to the position of the sun at July 1, 1969.)
K:losr: Double precision constant stored as $0.00273779 \times 2^{4}$, program notation RATESP+2, scaled B-4 in units of revolutions per day. Equation value: 0.00273779. (Equivalent to 1 revolution per 365.2581 days. Corresponds as closely to the sidereal year as to the anomalistic year.)

$$
\text { COOR - } 13
$$

n:NODDUI: Double precision constant stored as $-1.703706190 \mathrm{E}-11 \times 2^{28}$, scaled B-28 in units of revolutions per centisecond. Equation value: -1.703706190 E-11. (Equivalent to-1.070470170 E-8 radians per second or 18.600 years per revolution.)

K:NODIO: Double precision constant stored as 9.862094363 E-l, scaled BO in units of revolutions. Equation value: $9.862094363 \mathrm{E-l}$. (Equivalent to $6.196536640 \mathrm{radians)}$.

K: QTSN45: Double precision constant stored as 0.1768 , scaled B2 and unitless. Equation value: 0.7072. (Equivalent to the sine of $45^{\circ}$.)
K:SINI: Double precision constant stored as $2.676579050 \mathrm{E}-2 \times 2^{-1}$, scaled Bl and unitless. Equation value: 2.676579050 E-2.
K:WEARTH: Double precision constant stored as $1.160576171 \mathrm{E-7} \times 2^{23}$, scaled B-23 in units of revolutions per centisecond. Equation value: 1.160576171 E-7. (Equivalent to $7.292115147 \mathrm{E}-5$ radians per second.)

LAT: Double precision geodetic or selenographic latitude, scaled BO in units of revolutions.

IE504: Double precision vector to account for precession and nutation of the earth's polar axis (the deviation of the true pole from the mean pole), scaled BO, unitless and expressed in reference coordinates; used in an approximate transformation from reference to true equatorial coordinates.

LM504: Double precision vector to account for precession and nutation of the moon's polar axis (the deviation of the true pole from the mean pole), scaled BO in units of radians and expressed in selenographic coordinates; an approximation most accurate at the nominal midpoint of a mission. Program notation "504LM" (in erasable load).

LONG: Double precision geodetic or selenographic longitude, scaled $B O$ in units of revolutions.

MN: Double precision angle in the ecliptic plane, measured from the earth-to-sun vector at the vernal equinox to the moon-to-sun vector at the mean descending node on the ecliptic of the moon's orbit around the earth. Used to rotate the $\mathbb{X}$-axis in the ecliptic plane.
[MNMATI], [MNMAT2], [MNMAT3]: Three double precision, 3×3, orthogonal transformation matrices, scaled B1 and unitless. [MNMAT] incorporates a rotation around the $\mathbb{X}$ reference axis through the angle of inclination of the earth's polar axis followed by a rotation around the 2 axis (now perpendicular to the ecliptic) through the angle to the descending node on the ecliptic of the moon's orbit around the earth. [MNMAT2] rotates the system around the new $X$
axis through the angle of inclination af the moon's true polar axis. [MNMAT3] completes the transformation to selenographic coordinates by rotating around the moon's polar axis from the descending node to the present position relative to that node.
[MOONMAT]: Double precision, $3 \times 3$, orthogonal transformation matrix, scaled Bl and unitless. Ass = [MOONMAT] Aref where A is a vector expressed in selenographic and reference coordinates respectively.

MR: Double precision angle of rotation of the moon around its true polar axis, scaled BO in units of revolutions.
[NBSMMAT]: Double precision, $3 \times 3$, orthogonal transformation matrix, scaled B1 and unitless. Asm = [NBSMMAT] Anb where A is a vector expressed in stable member and navigation base (body) coordinates respectively.

OGC,IGC,MGC: Double precision commanded gimbal angles scaled BO in units of revolutions or (equivalently) scaled B21 in units of gyro torque pulses of $2^{-21}$ revolutions each.
[REFSMMAT]: Double precision, $3 \times 3$ transformation matrix, scaled B1 and unitless. Defined such that Asm = [REFSMMAT] Arf where A is a vector expressed in stable member and reference coordinates respectively.

RLS: See CONC section.
SINIGA, SINMGA, SINOGA: Double precision sines of the inner, middle and outer gimbal angles respectively, scaled Bl and unitless. Program notation SINCDU 0, SINCDU $_{2}$, SINCDU $_{4}{ }^{\circ}$

SINTH: Double.precision sine, scaled B1 in the "ARCTAN" routine and B 2 in the "ARCTRIG" routine.
[SMNBMAT]: Double precision, $3 \times 3$, orthogonal transformation matrix, scaled Bl and unitless. Anb = [SMNBMAT] Asm where A is a vector expressed in navigation bāse (body) and stable member coordinates respectively.

STMP $_{i}(i=0,2,4)$ : Three double precision working storage registers in "LSPOS" scaled BO in units of revolutions.

TEPHEM: Triple precision elapsed time between July 1.0 universal time and the time the LGC clock is zeroed, scaled B42 in units of centiseconds; included in the erasable load.

THETA: Double precision angle computed from $\operatorname{SINH}$ and $\operatorname{COSTH}$, scaled BO in units of revolutions.

THETAD: See ATTM section.

ISsun: Double precision vector contents of the MPAC when return from "LSPOS", representing the unit position vector of the sun, scaled B1 and unitless.

MITH: Double precision vector, scaled BO, which gives the polar axis in this reference coordinate system. The $x$ component (program notation ${ }^{11}-A Y O^{\prime \prime}$ ) gives the "true to mean pole rotation about the $-Y$ axis"; the $y$ component (program notation "AXOi) gives the "true to mean pole rotation about the +X axis"; included in the erasable load.

VEOT, VEC2: Working storages for the position vectors or unit position vectors in reference, selenographic, or geographic coordinates.

MMon, VSON: Dnuble precision unit position vectors of the moon and sun, ecaled Bl and unitlesa.

KMr, YNB, ZNB (XNBrf, YNBrf, ZNBrf; XNBsm, YNBsm, ZNBsm): Double precision u:it vectors along the $X, \bar{Y}$ and $Z$ navigation base axes (body axis) respectively, sceled Bl, unitless, and expressed in reference or stable namber coordinates.

LSM, YSM, ZSM (XSMrf, YSMrf, ZSMrf; XSMnb, YSMnb, ZSMnb): Double preciston unit vectors along the $X, Y$ and $Z$ stable member axes respectiveiy, scaled Bl, unitless, and expressed in reference or navigation baso enordinates.

IMESAV, ZNBSAV: Working storages for the YNB and ZNB unit vectors in moon $\because$ ixed coordinates.

T5RUPT (Entered on program interrupt \#2)
Proceed to address specified in T5ADR
DOT6RUPT (Entered on program interrupt \#1).
Perform "T6JOBCHK"
Resume
T6JOBCHK If TIME6 < 0 or TIME6 $=+0$, proceed to "CCSHOLE"
If TIME6 $>0$, return
$i=$ NXTGAXIS
TIME6 $=$ T NEXTTM $_{0}$
NXT6AXIS $=$ TGNEXTAX $_{1}$
T6NEXTTM $_{0}=$ T6NEXTTM $_{2}$
$\mathrm{T}_{\mathrm{NEXTAX}}^{1} 10 \mathrm{~T}^{2} \mathrm{NEXTAX}_{3}$
$\mathrm{T}^{2} \mathrm{NEXTTM}_{2}=\mathrm{K}:$ posmaxsp
$\mathrm{T}_{6 \mathrm{NEXTAX}}^{3} 10$
If TIME6 $\geq \mathrm{K}:$ T6IIm, TIME6 $=\mathrm{K}$ : posmaxsp
If TIME6 < K:T6Iim:
Perform "C13STALL" protecting the $L$ and $Q$ registers
Switch bit 15 of channel 13 to 1 (enable TIME6 counter)
If T6NEXTTM $M_{0} \geq \mathrm{K}: T 6 \lim , \mathrm{~T}_{2}$ NEXTTM $_{0}=\mathrm{K}$ :posmaxsp
If $i=0$, perform "WRITEP" with TS = NEXTP
If $i=4$, perform "WRITEU" with TS = NEXTU
If $i=13$, perform "WRITEV" with TS $=$ NEXTV
Return

```
TS = TIME6
If TGNEXTTM < TS: (new jet time shorter than smallest
 remaining jet-on time)
 TSt = TS - T6NEXTTM
 TSa = NXT6AXIS
 TIME6 = T6NEXTTM }
 NXT6AXIS = T6NEXTAX
 T6NEXTTM
 T6NEXTAX
 T6NEXTTM
 T6NEXTAX
 Perform "C13STALL"
 Switch bit 15 of channel 13 to 1 (Enable TIME6 counter)
 Return
TS = TS + TGNEXTTMM
If T6NEXTTM < < TS: (New jet time shorter than second remaining
 jet-on time in list)
 TSt = TS - T6NEXTTM }
 TSa = T6NEXTAX
 T6NEXTTM
 T6NEXTAXX }=\mp@subsup{T}{1}{}\mp@subsup{T}{6NEXTAX}{3
 T6NEXTTM }2= = TSt
 T6NEXTAX
 Return
T6NEXTTM
Return
```

DAPIDTER If RCSFLAGS bit $13=0$ :Switch RCSFLAGS bit 13 to 1Establish "1/ACCSET"(pr 27)
Perform "CHEKBITS"
If DAPBOOLS bit 3 (ACCSOKAY) $=1$ :Proceed to "STARTDAP"
MOREIDLE Perform "QERRCALC"
Perform "CALCPERR"
T5ADR = "DAPIDLER"
NEXTP, NEXTU and NEXTV $=00000_{8}$
Switch channels 5 and 6 to $00000_{8}$ ..... (all jets off)
Switch bits 12-9 of channel 12 to 0 ..... (gimbal drive bits)
Set TIME5 to cause program interrupt \#2 in 100 milliseconds
Resume
CHEKBITS If bits 13 and 14 of channel 31 both $=1$ :
Proceed to "MOREIDLE" (No longer in Held or Auto mode)
If IMODES33 bit $6=1$ : ..... (Internal DAP disable)
Switch RCSFLAGS bit 3 (DSTEPONE) to 1Proceed to third step of "MOREIDLE"
Perform "ALTDSPLY"
If channel 30 bit $10=1$, Proceed to "MOREIDLE"
Return
ALTDSPLY Invert RCSFIAGS bit 4 (DSPLYALT)
If RCSFLAGS bit 4 (DSPLYALT) = 1, proceed to "NEEDLER"
If FLAGWRDO bit 15 (NEED2FLG) $=1$ :
$\underline{A} K=-(O M E G A P, O M E G A Q, O M E G A R)$
Return

If FLAGNRDO bit 4 (NEEDLFLG) $=1$ :

TStheta $=$ THETAD $^{\text {y }}$ - $\mathrm{CDU}_{\mathrm{y}}$	(converted to one's comp form)
TSpsi $=$ THETAD ${ }_{z}-\mathrm{CDU}_{\mathrm{z}}$	(similarly converted)
$\mathrm{AK}_{\mathrm{y}}=$ M21 TStheta + M22 TSpsi	(limited within $\pm \frac{1}{2}$ )
$\mathrm{AK}_{\mathbf{z}}=$ M 31 TStheta + M 32 TSpsi	(limited within $\pm \frac{1}{2}$ )
TSphi $=$ THETAD $_{x}-\mathrm{CDU}_{x}$	nverted to one's comp form)
$\mathrm{AK}_{\mathbf{x}}=$ M11 TStheta + TSphi	(limited to within $\pm \frac{1}{2}$ )

If FLAGNRDO bit 4 (NEEDLFLG) $=0$, $\underline{A K}=-($ PERROR, QERROR, RERROR)
Return
NEEDLER If RCSFLAGS bit 3 (DSTEPONE) $=1$ :
Switch bit 6 of channel 12 to 0 (Reset ICDU Error Counter enable discrete)
$\underline{A K}=0 \quad(-0)$
EDRIVE $=0 \quad(-0)$
$C D U_{1} C M D=0$ for $i=x, y, z \quad(-0)$
Switch RCSFLAGS bit 3 (DSTEPONE) to 0
Switch RCSFLAGS bit 2 (DSTEPTWO) to 1
Return
If RCSFLAGS bit 2 (DSTEPTWO) $=1$ :
Switch bit 6 of channel 12 to 1
Switch RCSFLAGS bits 2 (DSTEPTWO) and 3 (DSTEPONE) to 0
Return
If bit 6 of channel $12=0$ (ICDU Error Counters have been disabled)
Switch RCSFLAGS bit 3 (DSTEPONE) to 1
Return

$$
\text { DAPA - } 4
$$

MEFDIES Perform the indented steps for $i=z$, then $y$, then $\mathbf{x}$ $\mathrm{TS}=-\mathrm{AK}_{i} \mathrm{~K}:$ ONETENTH If $|T S| \geq K: e c l i m, T S=K: e c l i m ~ s i g n T S$ $\mathrm{CDU}_{i} \mathrm{CMD}=\mathrm{CDU}_{i} \mathrm{CMD}+\mathrm{K}: \operatorname{trvtoc}\left(\mathrm{TS}-\mathrm{EDRIVE}_{i}\right)$ $\operatorname{EDRIVE}_{i}=\mathrm{TS}$

Switch bits 13, 14 and 15 of channel 14 to 1 (send CDU CMD's) $^{\text {( }}$ )
Return
STARTDAP Perform "ZATTEROR"
$T J_{0}, T J_{1}$, and $T J_{2}=0$
OMEGAP, OMEGAQ, and OMEGAR $=0$
TRAPEDP, TRAPEDQ, and TRAPEDR $=0$
$A O S Q$ and $A O S R=0$
AIPHAQ and ALPHAR $=0$
$\mathrm{NEGU}_{0}$ and $\mathrm{NEGU}_{2}=0$
AOSQTERM and AOSRTERM $=0$
QACCDOT and RACCDOT $=0$
ALLOWGTS $=0$
COTROLER $=0$
INGTS $=0$
QGIMTTMR and RGIMTIMR $=0$
OIDPMIN and OLDQRMIN $=0$
$\operatorname{PJETCTR}_{i}=0 \quad(i=1,2,3)$
Switch RCSFLAGS bits 1,5 (CALLGMBL), 10 (PBIT), 11 (QRBIT) to 0
OLDXFORP $=\mathrm{CDU}_{\mathrm{x}}$
OLDYFORP $=\mathrm{CDU}_{\mathrm{y}}$
OLDZFORQ $=\mathrm{CDU}$
Switch RCSFLAGS bit 12 to 1

SKIPUV $_{0}$ and $\operatorname{SKIPUV}_{1}=4$
TIME6 = K: posmaxsp
T6NEXTTM $_{0}$ and ${\text { T } 6 \text { NEXTTM }_{2}=\mathrm{K} \text { : posmaxsp }}$
$\mathrm{T}_{6} \mathrm{NEXTAX}_{1}$ and $\mathrm{T}_{\mathrm{NNEXTAX}}^{3} 10$
NXT6AXIS $=0$
NEXTP, NEXTU, and NEXTV $=00000_{8}$
DAPZRUPT $=-10$
NPTRAPS, NQTRAPS and NRTRAPS $=2$
$\mathrm{T} 5 \mathrm{ADR}=$ "PAXIS"
Set TIME5 to cause program interrupt \#2 in 100 milliseconds
Resume
PAXIS Set TIME5 to cause program interrupt \#2 in (100 - TIME5) milliseconds
If DAPZRUPT $>0$, proceed to "BAILOUT" with $T S=32000_{8}$ (previous DAP cycle still in progress)

Perform "CHEKBITS"
CDUiTMP $=$ CDUi $\quad(i=x, y, z)$
CDUD = $\underline{C D U D ~-~ \underline{D E L E L C D U ~}}$
TCP $=$ TCP - 1
$T C Q R=T C Q R-1$
Proceed to "PAXFILT"
RATELOOP $i=2$
$\mathrm{TSq}=2 \mathrm{i}$
If $\mathrm{TJ}_{\mathbf{i}}=0, \mathrm{TSt}=0$
If $\mathrm{TJ}_{\mathrm{i}} \neq 0$ :
If $\left|T J_{i}\right| \leq K: 100 \mathrm{msT6}:$
TSt $=\mathrm{K}:$ T6tosec $T J_{i}$
$\mathrm{TJ}_{\mathrm{i}}=0$

```
(If \(\mathrm{TJ}_{1} \neq 0\))
 If \(\left|T J_{i}\right|>K: 100 \mathrm{msTS}:\)
 \(T J_{i}=T J_{i}-K: 100 \mathrm{msT} T 6 \operatorname{signTJ}_{i}\)
 TSt \(=K: 0.1\) secB0 signTJ \({ }_{1}\)
 \(T S_{i}=T S t\) NUMJETS \(_{1}\)
```



```
 If TSAnln \(\leq 0\) :
 \(T S d n \ln =-T S d n I n\)
 \(T S q=T S q+1\)
 DOWNTORK \(_{\text {TSq }}=\) DOWNTORK \(_{\text {TSq }}+\) TSAnln
 If \(i>0\) :
 \(1=1-1\)
 Proceed to 2nd step of "RATELOOP"
JETRATER \(=1 \mathrm{JACCR}\left(\mathrm{TS}_{1}+\mathrm{TS}_{2}\right)\)
JETRATEQ \(=1 \mathrm{JACCQ}\left(T S_{1}-\mathrm{TS}_{2}\right)\)
\(\underline{\text { BACKP }}\) JETRATEP \(=1 \mathrm{JACCP} \mathrm{TS}_{0}\)
\(T S=\) CDUxTMP
TSx = TS - OLDXFORP (converted to one's complement form)
OLDXFORP = TS
TRAPEDP \(=\) TRAPEDP \(-\frac{1}{2}\) JETRATEP
TRAPEDQ \(=\) TRAPEDQ \(-\frac{1}{2}(J E T R A T E Q+A O S Q T E R M)\)
TRAPEDR \(=\) TRAPEDR \(-\frac{1}{2}\) (JETRATER + AOSRTERM)
\(T S=C D U Y T M P\)
TSy = TS - OLDYFORP (converted to one's complement form)
OLDYFORP = TS
```

```
MEASRATE = (TSx + M11 TSy) / K:1d40 (limited)
TRAPEDP = TRAPEDP + MEASRATE - OMEGAP (limited)
DXERROR = DXERROR + (M11 TSy + TSx) - K:1d40 PLAST
TS = CDUzTMP
TSz = TS - OLDZFORQ (converted to one!s complement form)
OLDZFORQ = TS
MEASRATE = (MR1 TSy + MR2 TSz) / K:1d40 (limited)
TRAPEDQ = TRAPEDQ + MEASRATE - OMEGAQ
(1imited)
DYERROR = DYERROR + (MR1 TSy + MR2 TSz) - K:1d40 QLAST
MEASRATE = (M31 TSy + M32 TSz) / K:1d40
(IImited)
TRAPEDR = TRAPEDR + MEASRATE - OMEGAR
(limited)
DZERROR = DZERROR + (M31 TSy + M32 TSz) - K:1d40 RLAST
If DAPBOOLS bit 13 (CSMDOCKD) = 1:
 n = DKOMEGAN
 na}=\textrm{DKKAOSN
 TRAPSIZE = DKTRAP
If DAPBOOLS bit 13 (CSMDOCKD) = 0:
 n = LMOMEGAN
 na = LMKAOSN
 TRAPSIZE = LMTRAP
If |TRAPEDP| > - TRAPSIZE:
 OMEGAP = OMEGAP + TRAPEDP / NPTRAPS (limited)
 TRAPEDP = 0
 NPTRAPS = n
NPTRAPS = NPTRAPS + 1
```

```
OMEGAP = OMEGAP + JETRATEP
If |TRAPEDQ| > - TRAPSIZE:
 QKALERR = TRAPEDQ / NQTRAPS
 TRAPEDQ = 0
 OMEGAQ = OMEGAQ + QKALERR
 AOSQ = AOSQ + K:1d100ms QKALERR / (NQTRAPS + na)
 NQTRAPS = n
NQTRAPS = NQTRAPS + 1
OMEGAQ = OMEGAQ + JETRATEQ + AOSQTERM
If |TRAPEDR| > - TRAPSIZE:
 RKALERR = TRAPEDR / NRTRAPS
 TRAPEDR = 0
 OMEGAR = OMEGAR + RKALERR
(limited)
 AOSR = AOSR + K:1d100ms RKALERR / (NRTRAPS + na)
 NRTRAPS = n
NRTRAPS = NRTRAPS + 1
OMEGAR = OMEGAR + JETRATER + AOSRTERM
(limited)
If DAPBOOLS bit 8 (DRIFTBIT) = 1:
 ALPHAQ and ALPHAR = 0
 AOSQTERM and AOSRTERM = 0
 AOSQ and AOSR = 0
 (sp)
If DAPBOOLS bit 8 (DRIFTBIT) = 0:
 AOSQ = AOSQ + K:CALLCODE QACCDOT
 ALPHAQ = AOSQ
 AOSQTERM = K:aosint AOSQ
```

DAPA - 9
(If DAPBOOLS bit $8($ DRIFTBIT $)=0$ )
AOSR $=$ AOSR $+\mathrm{K}:$ CALLCODE RACCDOT
ALPHAR $=\mathrm{AOSR}$
AOSRTERM $=\mathrm{K}:$ sosint AOSR
Proceed to 2nd line of "SUPERJOB"
PAXFILT The following coding causes the "Resume" instruction to resume operations at "SUPERJOB" instead of at the job that was interrupted
If RCSFLAGS bit 5 (CALLGMBL) $=1$ :
Perform "ACDT+C12"
DAPARUPT $=$ ARUPT $^{d p}$
DAPBQRPT $=\mathrm{BRUPT}$
DAPBQRPT +1 = QRUPT
DAPZRUPT $_{d p}=$ ZRUPT $_{d p}$
BRUPT $=$ Instruction stored at location SUPERJOB
ZRUPT $=$ Address of SUPERJOB +1
Resume
The purpose of this unusual manipulation of the "Resume" instruction is to establish "SUPERJOB" on a time-critical basis--immediately--while still allowing it to be interrupted by tasks and other interrupts.

SUPERJOB Proceed to "RATELOOP"
If QGIMTIMR = 0 :
$\mathrm{NEGU}_{\mathrm{O}}=0$
QACCDOT $=0$
Switch bits 9 and 10 of channel 12 to 0 (Q GTS drives)
QGIMTIMR $=-\mathrm{K}:$ posmaxsp
If QGIMTIMR > 0 :
QGIMTIMR = QGIMTIMR - 1

If RGIMTIMR = 0 :
$\mathrm{NEGU}_{2}=0$
RACCDOT $=0$
Switch bits 11 and 12 of channel 12 to 0 ( $R$ GTS drives)
RGIMTTMR $=-\mathrm{K}:$ posmaxsp
If RGIMTIMR > 0 :
RGIMTIMR $=$ RGIMTIMR - 1
PJETCTR $_{i}=$ PJETCTR $_{i}-1$ signPJETCTR $_{i} \quad(i=1,2,3) \quad$ (zero unchanged)
If RCSFIAGS bit $12=1$, proceed to "CHKVISFZ"
SKIPPAXS Switch RCSFLAGS bit 12 to 1
Proceed to "QRAXIS"
CHKVISFZ TS $=-$ contents of channel 31 (all bits complemented)
If bits 9-12 of TS all $=0$ :
$T S=00000_{8}$
Proceed to "TSNEXTP"
$i^{\prime}=$ bits 9-12 of $T S$ shifted right 8 to bit positions 1-4
ROTINDEX $=\mathrm{K}:$ INDXYZ $_{i} \quad \begin{gathered}\text { (if somehow is illegal, proceed to } \\ \text { two steps before "TSNEXTP") }\end{gathered}$
TRYUORV NUMBERT $=6$
Perform "SELECTP" with i = NUMBERT
If NUMBERT = 6: (required jets are all available)
TS = POLYTEMP
Proceed to "TSNEXTP"
If ROTINDEX $\leq$ 5: (Principal axis translation cannot be accomplished because of jet failure; try tacking along an appropriate $U$ or $V$ axis)
$T S=00000_{8}$
Invert RCSFLAGS bit 1
If RCSFLAGS bit $1=1, T S=00001_{8}$
(If ROTINDEX $\leq 5$ )
ROTINDEX $=$ ROTINDEX $+T S+4$
Proceed to "TRYUORV"
If NUMBERT $\geq$ 4: (One combination of jets is available to accomplish a $U$ or $V$ axis translation)
$T S=$ POLYTEMP
Proceed to "TSNEXTP"
Perform "ALARM" with TS $=02001_{8}$
Invert RCSFLAGS bit 1
$T S=00000_{8}$
TSNEXTP NEXTP = TS
If bit 13 of channel 31 = 1 and DAPBOOLS bit 9 (XOVINHIB) $=1$ :
Proceed to "PURGENCY" (Auto with X-axis override disabled)
If bit 13 of channel $31=1$ or DAPBOOLS bit 15 (PULSES) $=0$ :
Proceed to "DETENTCK" (Minimum impulse not allowed or not specified by DAPBOOLS)
(otherwise, minimum impulse mode)
PERROR $=0$
$\operatorname{CDUD}_{\mathrm{x}}=\mathrm{CDU}_{\mathrm{x}}$
If OLDPMIN $>0$ : (not returned to detent since jets fired)
$\mathrm{TS}=$ - contents of channel 31 (all bits complemented)
OLDPMIN = bits 3 and 4 of TS
Proceed to "JETSOFF"
(Otherwise, OLDPMIN $=0$, indication that no yaw commands were present during last DAP cycle)

If bits 3 and 4 of channel 31 both $=1$, proceed to "JETSOFF"
If bit 4 of channel $31=0, T J_{0}=-K: m i n i m p t j \quad(-P)$

If bit 3 of channel $31=0, T J_{0}=K$ :minimptj
OLDPMIN = 1
NUMBERT $=4$
If FLAGWRD5 bit 5 (AORBSFLG), NUMBERT $=5$
Proceed to "PJETSIEC"
ZEROENBL. SAVEHAND $D_{0}=$ RHCQ
SAVEHAND $_{1}=$ RHCR
RHCP, RHCQ, and RHCR $=0$
Perform "C13STALL" with interrupts inhibited
Switch bits 8 and 9 of channel 13 to 1 (Start RHC read and enable RHC counters)

Return
DETENTCK $\mathrm{TS}_{\text {ch31 }}=$ channel 31
If $\mathrm{TS}_{\text {ch31 }}$ bit $15=1$ and DAPBOOLS bit 12 (OURRCBIT) $=0$ : Proceed to "PURGENCY"

If $\mathrm{TS}_{\operatorname{ch} 31}$ bit $15=0$ and DAPBOOLS bit 12 (OURRCBIT) $=1$ :
Switch RCSFLAGS bit 9 (JUSTIN) to 1
Proceed to "RATERROR"
If $\mathrm{TS}_{\text {ch31 }}$ bit $15=0$ and DAPBOOLS bit 12 (OURRCBIT) $=0$ :
Switch RCSFLAGS bit 9 (JUSTIN) to 1
PERROR $=0$
Switch DAPBOOLS bit 12 (OURRCBIT) to 1
DXERROR $_{d p}=0$
$\mathrm{DYERROR}_{\mathrm{dp}}=0$
$\mathrm{DZERROR}_{\mathrm{dp}}=0$
PLAST $=0$
QLAST $=0$
RLAST $=0$
(If $\mathrm{TS}_{\text {ch31 }}$ bit $15=0$ and DAPBOOLS bit $12($ OURRCBIT) $=0$ )
RHCQ $=0$
RHCR $=0$
Switch RCSFLAGS bits 10 (PBIT) and 11 (QRBIT) to 0
Perform "ZEROENBL"
Proceed to "JETSOFF"
If $\mathrm{TS}_{\text {ch31 }}$ bit $15=1$ and DAPBOOLS bit 12 (OURRCBIT) $=1$ :
If RCSFLAGS bit 9 (JUSTIN) $=1$ :
If channel 31 bit $13=0$, proceed to "RATEDAMP" Switch RCSFIAGS bits 9 \& 11 (JUSTIN \& QRBIT) to 0 Proceed to "RATEDAMP"

If RCSFLAGS bit 10 (PBIT) $=1$, proceed to "RATEDAMP"
If RCSFLAGS bit 11 (QRBIT) = 1, proceed to "RATEDAMP"
Switch DAPBOOLS bit 12 (OURRCBIT) to 0
If channel 31 bit $13=1$ :
$\operatorname{CDUD}_{\mathrm{x}}=\operatorname{CDU}_{\mathrm{x}}$
Proceed to "PURGENCY"
Perform "ZATTEROR"
Proceed to "PURGENCY"
RATERROR CDUD $_{\mathrm{x}}=\mathrm{CDU}_{\mathrm{x}}$
$\mathrm{TSp}=$ PLAST
PLAST $=$ STIKSENS RHCP $((|R H C P|-1)+K: L I N R A T)$
TS1 $=$ PLAST $-T S p$
Perform "ZEROENBL"
EDOT $=$ OMEGAP - PLAST

```
 If |TS1| > RATEDB:
 TCP = K:40cyc
 Proceed to "PEGI"
 If RCSFLAGS bit 10 (PBIT) = 1, proceed to "PEGI"
 E = DXERROR
 PERROR = DXERROR
 Proceed to third line of "PURGENCY"
RATEDAMP RHCP = 0
 Proceed to "RATERROR"
PEGI }\mp@subsup{C}{0}{}\mp@subsup{CDUD}{\mathbf{x}}{}=\mp@subsup{\textrm{CDU}}{\mathbf{x}}{
 DXERROR }\mp@subsup{\textrm{dp}}{}{=}=
 PERROR = 0
 ABSEDOTP = |EDOT|
 If ABSEDOTP > RATEDB and if TCP > 0:
 Switch RCSFLAGS bit 10 (PBIT) to 1
 Skip next step
 Switch RCSFLAGS bit 10 (PBIT) to 0
 TJO}=-2 K:25B5 EDOT 1dANETP
If ABSEDOTP > 2JETLIM:
 NUMBERT = 6
 Proceed to "PJETSLEC"
TJ O}=2T\mp@subsup{J}{0}{
NUMBERT = 4
If FLAGWRD5 bit 5 (AORBSFLG) = 1, NUMBERT = 5
Proceed to "PJETSLEC"
```

```
CALCPERR \(E=M 11\left(\right.\) CDU \(_{y}-\) CDUD \(\left._{\mathrm{y}}\right)\)
 \(E=E+C D U_{\mathrm{x}}-\mathrm{CDUD}_{\mathrm{x}}+\) DELPEROR
 PERROR \(=E\)
 Return
PURGENCY Perform "CALCPERR"
 EDOT \(=\) OMEGAP - OMEGAPD
 AXISCTR \(=-1\)
 If DAPBOOLS bit 13 (CSMDOCKD) \(=1\) :
 Perform "SPSRCS" with interrupts inhibited
 If \(\mathrm{TJ}_{0}=0\) :
 Invert FLAGWRD5 bit 5 (AORBSFLG)
 Proceed to "JETSOFF"
 NUMBERT \(=4\)
 If FLAGWRD5 bit 5 (AORBSFLG) \(=1\), NUMBERT \(=5\)
 Proceed to "PJETSIEC"
 SENSETYP \(=0\)
 Perform "TJETLAW" with interrupts inhibited
 NUMBERT \(=6\)
 If \(F\) IREFCT \(\geq \mathrm{K}: m\) FOURDEG or if \(\left|T J_{0}\right| \leq K: 160 \mathrm{msT} 6:\)
 NUMBERT \(=4\)
 If FLAGWRD5 bit 5 (AORBSFLG) \(=1\), NUMBERT \(=5\)
PJETSLEC TS = 1
 If \(T J_{0}=0\), proceed to "JETSOFF"
 If \(T J_{0}<0, T S=0\)
```

```
 ABSTJ = |TJ |
 ROTINDEX = TS
 Perform "SELECTP" with i = 6
 If NUMBERT = 6, TS = 4 (jets all available for 4-jet rotation)
 If NUMBERT }\not=6,TS=
 NUMJETS
 Perform "WRITEP" with TS = POLYTEMP (turn on rotation)
 If ABSTJ \geq K:150msT6, proceed to "QRAXIS"
 If ABSTJ < K:150msT6 - K:136msT6:
 ABSTJ = K:150msT6 - K:136msT6
 TJ
 Inhibit interrupts
 T6NEXTTMM }= ABSTJ
 T6NEXTAX }=0\mathrm{ (0 indicates P-axis)
 Perform "JTLST"
 Switch RCSFLAGS bit 12 to 0
 Invert FLAGWRD5 bit 5 (AORBSFIG)
 Release interrupt inhibit
 Proceed to "QRAXIS"
JETSOFF Perform "WRITEP" with TS = NEXTP
 TJ
 Proceed to "QRAXIS"
WRITEP Set bits 1-8 of channel 6 = bits 1-8 of TS
 Return
SELECTP TSa = K:quadsP NUMBERT
```

$\mathrm{TSb}=\mathrm{K}:$ typman $_{\text {ROTINDEX }}$
POLYTEMP $=T S a \wedge T S b \quad$ (logic "and" function)
If any of the binary bits that are 1 in POLYTEMP are also 1 in CH6MASK (at least one of the required jets has been failed)

```
If \(i=0\) : (i cannot be zero in selection of
 translation jets)
 Perform "ALARM" with \(T S=02003 g\) (rotation failure)
 Proceed to "JETSOFF"
```

$1=1-1$
NUMBERT = 1
Proceed to "SEUECTP"

Return
QRAXIS EDOTR $=$ OMEGAR - OMEGARD
$E D O T Q=O M E G A Q-O M E G A Q D$
If channel 31 bit $13=0$ :
If DAPBOOLS bit 12 (OURRCBIT) $=1$, skip next step
Perform "QERRCALC"
If COTROLER $=0$, proceed to "TRYGTS"
If COTROLER > 0, proceed to "GIS"
Proceed to "RCS"
QERRCALC $T S y=C D U_{y}-C D U D_{y}$
(converted to one's comp. form)
$T S z=\mathrm{CDU}_{\mathrm{z}}-\mathrm{CDUD}_{\mathrm{z}}$
QERROR = MR1 TSy + MR2 TSz + DELQEROR
RERROR $=$ M31 TSy + M32 TSz + DELREROR
Return
RGS $\quad$ COTROLER $=0$

$$
\begin{aligned}
& \text { OMEGAU = - COEFFQ EDOTQ + COEFFR EDOTR } \\
& \text { OMEGAV = COEFFQ EDOTQ + COEFFR EDOTR } \\
& \text { If channel } 31 \text { bit } 7=0 \text { : } \\
& T S=5 \\
& \text { Proceed to "+XORULGE" } \\
& \text { If channel } 31 \text { bit } 8=0 \text { : } \\
& T S=4 \\
& \text { Proceed to "+XORULGE" } \\
& \text { If DAPBOOLS bit } 6 \text { (ULLAGER) }=1 \text { : } \\
& T S=5 \\
& \text { Proceed to "+XORIJLGE" } \\
& \mathrm{NEXTU}=0 \\
& \mathrm{NEXTV}=0 \\
& \text { If DAPBOOLS bit } 8 \text { (DRIFTBIT) }=1 \text { : } \\
& \text { SENSETYP }=0 \\
& \text { Proceed to 3rd step of "TSNEXTS" } \\
& \text { SENSETYP }=0 \\
& \text { If FLGNRD10 bit } 13 \text { (APSFLAG) }=1 \text {, SENSETYP }=2 \\
& \text { Proceed to 3rd step of "TSNEXTS" } \\
& \text { +XORULGE ROTINDEX }=T S \\
& \text { SENSETYP = ROTINDEX - } 3 \\
& \text { If DAPBOOLS bit } 11 \text { (ACC4OR2X) = 1: } \\
& \text { TS1 }=4 \text { and skip next } 3 \text { steps } \\
& \text { If DAPBOOLS bit } 10 \text { (AORBTRAN) = 1: } \\
& \text { TS1 }=3 \text { and skip next step } \\
& \mathrm{TS} 1=2
\end{aligned}
$$

NUMBERT = TS1
Perform "SELCTSUB"
If POLYTEMP > 0, proceed to "TSNEXTS"
Perform "ALARM" with $T S=02002_{8}$
TSNEXTS
NEXTU $=$ bits 8,7, 4 and 3 of POLYTEMP
NEXTV $=$ bits $6,5,2$ and 1 of POLYTEMP
(Note that translation codes in NEXTU and NEXTV may not be implemented at the same time, but each cell contains codes for a jet pair on diagonally opposite quads.)

If channel 31 bit $13=1$, proceed to "ATTSTEER"
If DAPBOOLS bit 15 (PULSES) $=0$, proceed to "CHEKSTIK"
(Otherwise, minimum impulse)
Perform "ZATTEROR" with interrupts inhibited
QERROR $=0$
RERROR $=0$
TS = - contents of channel 31 (all bits complemented)
If OLDQRMIN $>0$ : (not returned to detent since jets fired)
OLDQRMIN $=$ bits $1,2,5$ and 6 of TS ( $+\mathrm{Q},-\mathrm{Q},+\mathrm{R},-\mathrm{R}$ )
Proceed to "XTRANS"
(Otherwise, $O L D Q R M I N=0$, indication that no $Q$ or $R$ commands were present during the last DAP cycle)

If bits 1,2,5 and 6 of TS all $=0$, proceed to "XTRANS"
If bit 1 of $T S=1: \quad(+Q)$

$$
\begin{align*}
& \mathrm{TJ}=\mathrm{K}: \mathrm{pTJ} \mathrm{NINT}_{1} 6  \tag{U}\\
& \mathrm{TJ} \mathrm{~J}_{2}=-\mathrm{K}: \mathrm{pTJMINT6} \tag{v}
\end{align*}
$$

Proceed to "MINQR"

$$
\begin{align*}
& \text { If bit } 2 \text { of } \mathrm{TS}=1 \text { : }  \tag{-Q}\\
& T J_{1}=-K: p T J M I N T 6  \tag{U}\\
& \mathrm{TJ} \mathrm{~J}_{2}=\mathrm{K}: \text { pTJMINT6 } \\
& \text { Proceed to "MINQR" } \\
& \mathrm{T} \mathrm{~J}_{1}=\mathrm{K}: \mathrm{pTJMINT} 6  \tag{U}\\
& \mathrm{TJ} \mathrm{~J}_{2}=\mathrm{K}: \mathrm{pTJMINT} 6  \tag{V}\\
& \text { Proceed to "MINQR" } \\
& \text { If bit } 6 \text { of } T S=1 \text { : }  \tag{-R}\\
& \mathrm{TJ} 1=-\mathrm{K}: \text { pTJMINT6 }  \tag{U}\\
& \mathrm{TJ} \mathrm{~J}_{2}=-\mathrm{K}: \mathrm{pTJMINT} 6  \tag{V}\\
& \text { MINQR RETJADR }=\text { "MINRTN } \\
& \text { OLDQRMIN = } 1 \\
& \text { AXISCTR }=1 \\
& \text { MINRTN If DAPBOOLS bit } 13 \text { (CSMDOCKD) }=1 \text { : } \\
& T J_{A X I S C T R}=\operatorname{signTJ}_{\text {AXISCTR }} \mathrm{K}: 60 \mathrm{msT} 6 \\
& \text { NUMBERT }=2 \\
& \text { If DAPBOOLS bit } 10 \text { (AORBTRAN) }=1 \text {, NUMBERT }=3 \\
& \text { Proceed to "AFTERTJ" } \\
& \text { CHEKSTIK INGTS }=0 \\
& \text { COTROLER }=-1 \\
& \text { If } \mathrm{TS}_{\mathrm{ch} 31} \text { bit } 15=0 \text {, proceed to "RHCACTIV" ( } \mathrm{TS}_{\mathrm{ch} 31} \text { was loaded } \\
& \text { If DAPBOOIS bit } 12 \text { (OURRCBIT) }=0 \text { : } \\
& \text { in "DETENTCK") } \\
& \text { Proceed to "ATTSTEER" } \\
& \text { Switch RCSFLAGS bit } 9 \text { (JUSTIN) to } 0 \\
& \text { SAVEHAND }_{0}=0 \\
& \text { SAVEHAND }_{1}=0
\end{align*}
$$

RHCACTIV TSq = QLAST
QLAST $=$ STIKSENS SAVEHAND $_{0}\left(\left(\mid\right.\right.$ SAVEHAND $\left._{0} \mid-1\right)+K:$ IINRAT $)$
$T S 3=$ QLAST $-T S q$
$\mathrm{TS} \mathrm{r}=\mathrm{RLAST}$
RLAST $=$ STIKSENS $^{\operatorname{SAVEHAND}}{ }_{1}\left(| |\right.$ SAVEHAND $\left._{1} \mid-1\right)+K:$ LINRAT $)$
TS4 $=$ RLAST $-T S r$
QRATEDIF $=$ OMEGAQ - QLAST
RRATEDIF $=$ OMEGAR - RLAST
URATEDIF $=-$ COEFFQ QRATEDIF + COEFFR RRATEDIF
VRATEDIF $=$ COEFFQ QRATEDIF + COEFFR RRATEDIF
If $|T S 3|$. ${ }^{\text {RATEDB, proceed to "ENTERUV" }}$
If $|T S 4|>$ RATEDB, proceed to "ENTERUV"
If RCSFLAGS bit 11 (QRBIT) $=1$ :
Proceed to 2nd step of "ENTERUV"
Proceed to "ATTSTEER"
ENTERUV TCQR $=\mathrm{K}: 40$ 0yc
Inhibit interrupts
Perform "ZATTEROR"
Release interrupt inhibit
DYERROR $_{d p}=0$
$\mathrm{DZERROR}_{d p}=0$
If |URATEDIF| < RATEDB:
If |VRATEDIF| < RATEDB:
Proceed to "TOPSEUDO"
URATEDIF $=0$
Proceed to "QRTMME"

$$
\text { DAPA - } 22
$$

```
 If |VRATEDIF| < RATEDB:
 VRATEDIF = 0
QRTIME If TCQR > 0:
 Switch RCSFLAGS bit 11 (QRBIT) to 1
 Skip next step
TOPSEUDO Switch RCSFLAGS bit 11 (QRBIT) to 0
 RETJADR = "BACKHAND"
 AXISCTR = 1
BACKHAND NUMBERT = 4
 If SKIPUV AXISCTR }=0
 SKIPणV AXISCTR }=
 If AXISCTR = 0, proceed to "CLOSEOUT"
 AXISCTR = AXISCTR - 1
 Proceed to location stored in RETJADR
 TS = URATEDIF
 If AXISCTR = 1, TS = VRATEDIF
 1=16 AXISCTR + 2 (2 or 18)
 If TS < 0, i= i + 1
 TSt = - K:bksel TS 1dANET
 If |TSt| \geq K:bklim,TSt = TSt / 3 (still > K:150msQR)
 i= AXISCTR + 1
 TJ i
 Proceed to "AFTERTJ"
ATTSTEER UERROR = - COEFFQ QERROR + COEFFR RERROR
 VERROR = COEFFQ QERROR + COEFFR RERROR
 (limited)
```

RETJADR = "TJLAW4"
AXISCTR $=1$
TJLAW4 If SKIPUV ${ }_{\text {AXISCTR }}=0$ :
SKIPUV $_{\text {AXISCTR }}=4$
If AXISCTR $=0$, proceed to "CLOSEOUT"
AXISCTR $=$ AXISCTR -1
Proceed to location stored in RETJADR
If $\mathrm{AXISCTR}=1$ :
$\mathrm{E}=\mathrm{VERROR}$
EDOT $=$ OMEGAV
If AXISCTR $=0$ :
$\mathrm{E}=\mathrm{UERROR}$
EDOT $=$ OMEGAU
If DAPBOOLS bit 13 (CSMDOCKD) $=1$ :
If DAPBOOLS bit 14 (USEQRJTS) $=0$, COTROLER $=8191$
Perform "SPSRCS" with interrupts inhibited
NUMBERT $=4$
Proceed to "AFTERTJ"
Perform "TJETLAW"
AFTERTJ If FLAGWRD5 bit 13 (SNUFFER) $=0$, proceed to "DOROTAT"
If FLGWRD10 bit 13 (APSFLAG) $=1$, proceed to "DOROTAT"
If DAPBOOLS bit 8 (DRIFTBIT) $=0$, proceed to "XTRANS"
DOROTAT : $1=$ AXISCTR +1
If $\mathrm{TJ}_{i}=0$ : (no rotation command; execute trans command)
If $\mathrm{AXISCTR}=1$ :
Perform'"WRITEV" with TS = NEXTV
(If AXISCTR = 1: )
$\mathrm{AXISCTR}=0$
Proceed to address specified by RETJADR
Perform "WRITEU" with TS = NEXTU
Proceed to "CLOSEOUT"

$$
T S=2
$$

$$
\text { If } T J_{1}<0, \mathrm{TS}=0
$$

$$
\mathrm{ABSTJ}=\left|\mathrm{TJ} J_{i}\right|
$$

$$
\text { ROTINDEX }=\text { AXISCTR }+T S \quad(0,1,2,3)
$$

If ABSTJ > K:150msQR
Perform "SELCTSUB"
If $\operatorname{AXISCTR}=1$, perform "WRITEV" with $T S=$ POLYTEMP
If $\mathrm{AXISCTR}=0$, perform "WRITEU" with $\mathrm{TS}=$ POLYTEMP
Proceed to "FEEDBACK"
If ABSTJ < K: PTJMINT6:
ABSTJ $=K:$ :PTJMINT6
$1=$ AXISCTR +1
$\mathrm{TJ}_{1}=\mathrm{K}: \mathrm{pTJMINT} 6$ signTJ $_{1}$
NUMBERT $=0$
If bit 1 of channel $4=1$, NUMBERT $=1$
(Bit 1 of channel 4 is used here as sort of a random number generator; it is part of the computer clock and oscillates at a frequency of 3200 pps.)

If SENSETYP $>0$, NUMBERT $=$ SENSETYP -1
Perform "SELCTSUB"
If $\operatorname{AXISCTR}=1, T S=13$
If $\mathrm{AXISCTR}=0, \mathrm{TS}=-4$

Inhibit interrupts
$\mathrm{T}^{2} \mathrm{NEXTAX}_{3}=\mathrm{TS}$
If T6NEXTAX $_{3}=13$, perform "WRITEV" with $T S=$ POLYTEMP
If TGNEXTAX $_{3}=4$, perform "WRITEU" with TS = POLYTEMP
$\mathrm{T}^{2} \mathrm{NEXTTM}_{2}=\mathrm{ABSTJ}$
Perform "JTLST"
Release interrupt inhibit
SKIPUV $_{\text {AXISCTR }}=0$ (cause this axis to be skipped next cycle)
FEEDBACK $i=$ AXISCTR +1
If NUMBERTT $>3$, NUMJETS ${ }_{1}=2$
If NUMBERT $\leq 3$, NUMJETS ${ }_{1}=1$
If AXISCTR $=0$, proceed to "CLOSEOUT"
AXISCTR $=$ AXISCTR -1
Proceed to address specified in RETJADR
$\underline{X T R A N S} \quad T J_{1}=0$
$\mathrm{TJ}_{2}=0$
Inhibit interrupts
If SKIPUV $_{0} \neq 0$, perform "WRITEU" with $T S=$ NEXTU
SKIPUV $_{0}=4$
If SKIPUV $_{1} \neq 0$, perform "WRITEV" with $T S=$ NEXTV
$\mathrm{SKIPUW}_{1}=4$
Release interrupt inhibit
Proceed to "CLOSEOUT"
WRITEU Set bits $3,4,7$ and 8 of channel $5=$ bits $3,4,7$ and 8 of TS Return

WRITEV Set bits $1,2,5$ and 6 of channel $5=$ bits $1,2,5$ and 6 of TS Return

If any of the binary bits that are 1 in POLYTEMP are also 1 in CH5MASK (at least one of the required jets is flagged as failed):

NUMBERT $=3$
Proceed to "FAILOOP"
Return
FAINOOP $T S a=K: q^{\prime}$ uadsQR $_{\text {NUMBERT }}$
$T S b=K: \operatorname{typman} Q R_{\text {ROTINDEX }}$
POLYTEMP $=\mathrm{TSa} \wedge \mathrm{TSb}$ (logic "and" function)
If POLYTEMP $\wedge$ CH5MASK $\neq 00000_{8}$ :
If NUMBERT = 0:
Perform "ALARM" with TS $=020048$
If $\operatorname{AXISGTR}=0$ :
$T J_{1}=0$
Perform "WRITEU" with TS = NEXTU
Proceed to "CLOSEOUT"
$T J_{2}=0$
Perform "WRITEV" with TS = NEXTV
$\mathrm{AXISCTR}=0$
Proceed to address specified by RETJADR
NUMBERT = NUMBERT - 1
Proceed to "FAILOOP"
Return (to routine that called "SELCTSUB")
TRYGTS
If DAPBOOLS bit 14 (USEQRJTS) $=1$, proceed to "RCS"

```
 If ALLOWGTS = 0, proceed to "RCS"
 If channel 5 = 000000, proceed to "GTS"
 If INGTS = 0, proceed to "RCS"
 Perform "TIMEGMBL" with interrupts inhibited
 INGTS = 0
 Proceed to "RCS"
GTS COTROIER = -1
SKIPUV
SKIPUV
INGTS = 2
QGIMTIMR = 2
RGIMTIMR = 2
QRCNTR = 2
TS L = AOSR . (rescaled to B-3)
(limited)
WCENTRAL = EDOTR
ACENTRAL = TS
KCENTRAL = RDAPK
If KCENTRAL = 0:
 K2THETA = 0
 Proceed to "NEGUSUM"
TS = RERROR
ALGORTHM K2THETA \(=\) KCENTRAL TS
```

```
A2CNTRAL \(=\) ACENTRAL \(^{2} /(2\) KCENTRAL \()\)
```

A2CNTRAL $=$ ACENTRAL $^{2} /(2$ KCENTRAL $)$
(limited)
(limited)
K2CNTRAL $=$ WCENTRAL (rescaled to B3)

```
K2CNTRAL \(=\) WCENTRAL (rescaled to B3)
```

FUNCTION $=$ K2CNTRAL + A2CNTRAL signACENTRAL
DEL = 1 signFuNCTION
If $\mid$ FUNCTION $\mid<2^{-25}$, DEL $=0$
K2CNTRAL $=$ DEL K2CNTRAL + A2CNTRAL
A2CNTRAL $=$ K2CNTRAL - A2CNTRAL $/ 3$
K2THETA $=$ K2THETA + ACENTRAL A2CNTRAL
FUNCTION $=$ KCENTRAL K2CNTRAL
K2CNTRAL = DEL K2CNTRAL
If DEL $=0$, proceed to "NEGUSUM"
RSTOFGTS Perform "GTSQRT"
K2CNTRAL $=T S_{s q r t}$ K2CNTRAL
SHFTFLAG $=$ ININDEX $/ 2+$ SHFTFLAG
$T S=2^{-S H F T F L A G} \mathrm{~K} 2 C N T R A L$
K2THETA $=$ K2THETA + TS (values less than $2^{-28}$ are considered to be zero)
NEGUSUM $T S_{1}=$ NEGU $_{\text {QRCNTR }}$
NEGII $_{\text {QRCNTR }}=1 \cdot$ signK2THETA
If K2THETA $<2^{-28}$, NEGU $_{\text {QRCNTR }}=0$
$T_{2}=T S_{1}$ NEGU $_{\text {QRCNTR }}$ (old NEGU value times new NEGU value)
If $\mathrm{TS}_{2}<0$ : (If a reversal of gimbal drive direction is called for)
QACCDOT $_{\text {QRCNTR }}=0$
If QRCNTR > 0 :
Set bits $11 \& 12$ of channel $12=0$
Skip next step
Set bits 9 \& 10 of channel $12=0$
If $\mathrm{TS}_{2} \leq 0$, set bit 5 (CALLGMBL) of RCSFLAGS $=1$

If $Q R C N T R=2:$
QRCNTR $=0$
WCENTRAL = EDOTQ
ACENTRAL $=$ AOSQ $\quad$ (rescaled to B-3) (limited)
KCENTRAL $=$ QDAPK
If KCENTRAL $=0$ :
$\mathrm{K} 2 \mathrm{THETA}=0$
Proceed to "NEGUSUM"
$T S=$ QERROR
Proceed to "ALGORTHM"
CLOSEOUT This routine returns processing to Task status via the EDRUPT instruction and then uses the following equations to resume operation at the job whose address is in DAPZRUPT ( thus ending a prolonged semi-interrupt of that fob)
ARUPT $_{d p}=$ DAPARUPT $_{d p}$
BRUPT $=$ DAPBQRPT
$Q=D A P B Q R P T+1$
ZRUPT $_{\mathrm{dp}}=$ DAPZRUPT $_{\mathrm{dp}}$
DAPZRUPT $=-K:$ posmaxsp
Resume

ACDT+N12 QACCDOT $=-$ NEGU $_{0}$ ACCDOTQ
RACCDOT $=-\mathrm{NEGU}_{2}$ ACCDOTR
$T S=00000_{8}$
If $\operatorname{NEGU}_{0}=1$, switch bit 10 of $T S$ to 1
If NEGU $_{0}=-1$, switch bit 9 of TS to 1
If $\operatorname{NEGU}_{2}=1$, switch bit 12 of TS to 1
If $\mathrm{NEGU}_{2}=-1$, switch bit 11 of $T S$ to 1
Set bits 9-12 of channel $12=$ bits $9-12$ of TS
Switch bit 5 of RCSFLAGS (CALLGMBL) to 0
Return
TIMEGMBL ALLOWGTS $=1$
$\mathrm{NEGUS}_{2}=0$
If $A C C D O T R \leq 0$ or if $A O S R=0$, proceed to "TIMQGMBL"
$T S=-K: 0.4 \mathrm{gts}$ AOSR
$\mathrm{NEGU}_{2}=-1$ signTS (If $\mathrm{TS}=0$, NEGU will be zeroed below)
If $|T S| \geq 2$ ACCDOTR:
RGIMTIMR $=\mathrm{K}:$ OCT31
ALLOWGIS $=0$
Proceed to "TIMQGMBL"
TSt $=|T S| \mathrm{K}: 00 \mathrm{~T} 00240 / \mathrm{ACCDOTR}$ (units of 100 milliseconds)
If TSt < K:gtstmin, $\mathrm{NEGU}_{2}=0$
If TSt $\geq$ K:gtstmin, RGIMTIMR $=$ TSt
TIMQGMBL NEGUJ $_{0}=0$
If $A C C D O T Q \leq 0$ or if $A O S Q=0$, proceed to "DONEYETR"
$T S=-K: 0.4 \mathrm{gts} \mathrm{AOSQ}$
$\mathrm{NEGU}_{0}=-1 \mathrm{signTS}$

```
 If |TS| \geq2 ACCDOTQ:
 QGIMTMNR = K:OCT31
 ALLOWGTS = 0
 Proceed to "DONEYET2"
 TSt = |TS K:OCTOO24O / ACCDOTQ (units of 100 milliseconds)
 If TSt < K:gtstmin, NEGJO}=
 If TSt \geq K:gtstmin, QGIMTIMR = TSt
 DONEYET2 Perform "ACDT+C12"
 Return
 ALLCOAST Perform "STOPRATE"
 AOSQ and AOSR = 0
 ALPHAQ and ALPHAR = 0
 AOSQTERM and AOSRTERM = 0
 Switch DAPBOOLS bit }8\mathrm{ (DRIFTBIT) to }
 Perform "RESTORDB"
 Return
ZATTEROR CDUD = CDU
STOPRATE OMECAPD, OMEGAQD and OMEGARD = 0
DELCDU = 0
DELPEROR, DELQEROR, and DELREROR = 0
Return
DAPT4S (Entered every 240 milliseconds from "T4RUPT"; also called GPMATRIX. This calculates the gimbal rate to body rate matrix)
\(\mathrm{m} 11=\sin _{\mathrm{sp}} \mathrm{CDU}_{\mathrm{z}}\)
\(\operatorname{COSMG}=\mathrm{cos}_{\mathrm{sp}} \mathrm{CDU}_{\mathrm{z}}\)
\[
\text { DAPA }-32
\]
```

$\mathrm{M} 22=\sin _{\mathrm{sp}} \mathrm{CDU}_{\mathrm{x}}$

$$
\text { M31 }=-\operatorname{COSMG} \text { M22 }
$$

$$
\mathrm{M} 32=\cos _{\mathrm{sp}} \mathrm{CDU}_{\mathrm{x}}
$$

M21 = COSMG M32
Return
RCSMONIT (Entered every 480 milliseconds from "T4RUPT", also calledRCSMON)
$\mathrm{TS}=-$ contents of channel 32 (all bits complemented)
$T S q=$ bits $1-8$ of TS (RCS thruster fail discretes)

$$
T S=00000_{8}
$$

For $1=1,2,3,4,5,6,7$ and 8 : If bit 1 of $T S q \neq$ bit 1 ofPVALVEST, switch bit 1 of $T S$ to 1
If $T S=00000_{8}$, return (no change)
For $1=8$ through 1, in that order, examine bit 1 of TS; uponfinding the first bit that is a "1", continue at next stepwith $1=$ that bit number.
If bit 1 of PVALVEST $=1$, proceed to "VOPENED"
Switch bit of CH5MASK indicated by K: 5 FAILTAB ${ }_{i}$ to 1
Switch bit of CH6MASK indicated by K: 6FAILTAB ${ }_{i}$ to 1
Switch bit 1 of PVALVEST to 1
Establish "1/ACCJOB" ..... (pr 27)
Return
VOPENED Switch bit of CH5MASK indicated by K:5FAHTAB ${ }_{i}$ to 0
Switch bit of CH6MASK indicated by K: 6FAILTAB ${ }_{i}$ to 0
Switch bit 1 of PVALVEST to 0
Establish " 1 /ACCJOB" ..... (pr27)
Return

```
If FUNCTION \(\leq 0\) : (bad argument for square root)
```

If FUNCTION $\leq 0$ : (bad argument for square root)
SHFTFLAG $=0$
SHFTFLAG $=0$
$T S_{\text {sqrit }}=0$
$T S_{\text {sqrit }}=0$
Return
Return
SHFTFLAG $=0$
SHFTFLAG $=0$
If FUNCTION $<2^{-20}: \quad$ (most significant half $=0$ )
If FUNCTION $<2^{-20}: \quad$ (most significant half $=0$ )
SHFTFLAG $=7$
SHFTFLAG $=7$
FUNCTION $=$ FUNCTION $2^{14} \quad$ (operate on least significant half)
FUNCTION $=$ FUNCTION $2^{14} \quad$ (operate on least significant half)
ININDEX $=12$
ININDEX $=12$
SCALLOOP If $2^{- \text {ININDEX }-6}$ - FUNCTION $\leq 0$ :
SCALLOOP If $2^{- \text {ININDEX }-6}$ - FUNCTION $\leq 0$ :
ININDEX $=$ ININDEX -2
ININDEX $=$ ININDEX -2
If ININDEX $=0$, Skip next step
If ININDEX $=0$, Skip next step
Proceed to "SCALLOOP"
Proceed to "SCALLOOP"
$T S=$ FUNCTION $/ 2^{-6}$ - ININDEX $\quad$ (rescaled for square root accuracy)
$T S=$ FUNCTION $/ 2^{-6}$ - ININDEX $\quad$ (rescaled for square root accuracy)
HALFARG = TS / 2
HALFARG = TS / 2
$T S_{\text {sqrt }}=K:$ ROOTHALF
$T S_{\text {sqrt }}=K:$ ROOTHALF
If HALFARG $\geq \frac{1}{4}, T S_{\text {sqrt }}=1$
If HALFARG $\geq \frac{1}{4}, T S_{\text {sqrt }}=1$
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG $/ \mathrm{TS}_{\text {sqrt }} \quad$ (Newton algorithm)
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG $/ \mathrm{TS}_{\text {sqrt }} \quad$ (Newton algorithm)
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG/TS sqrt
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG/TS sqrt
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG $/ T S_{\text {sqrt }}$
$T S_{\text {sqrt }}=\frac{1}{2} T S_{\text {sqrt }}+$ HALFARG $/ T S_{\text {sqrt }}$
TSsqrt $=$ TSsqrt $2^{-3}$
TSsqrt $=$ TSsqrt $2^{-3}$
Return

```
 Return
```


## Quantities In Computations

$1^{d A N E T}{ }_{i}(i=2,3,18,19):$ See DAPB section.
1dANETP: Single precision inverse of the acceleration expected from the simultaneous firing of two P-axis RCS jets scaled B8 in units of seconds squared per revolution, (also called 1dANET_14).

1 JACCP, 1JACCQ, 1 JACCR: See DAPB section.
2JETLIM: Single precision rate limit used in "PEGI" to decide if two or four jets should be used for a P-axis rotation, scaled B-3 in units of revolutions per second. Actually stored as a negative quantity with the program notation -2JETLIM, but interpreted in this document as positive.

A2CNTRAL: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $\alpha^{2} / 2 \mathrm{~K}$ scaled B3 with units rev/sec; when next used it contains $-\Delta \omega+\alpha^{2} / 3 \mathrm{~K}$ scaled B 3 with units revs/sec.

ABSEDOTP: Temporary single precision storage for the magnitude of EDOT in "PEGI" scaled B-3 in units of revolutions per second. Actually ABSEDOTP = the magnitude of EDOT minus one least increment (not compensated for CCS instruction)

ABSTJ: Temporary storage for the magnitude of $\mathrm{TJ}_{i}$, scaled B 10 in units of centiseconds.

ACCDOTQ, ACCDOTR: See DAPB section.
ACENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains $\alpha$, the disturbing acceleration scaled B-3 with units of revs/sec ${ }^{2}$.

AK: Single precision vector containing the desired setting of the FDAI error needles, scaled B-1 in units of revolutions for attitude errors and B-3 in units of revs/sec for rate errors.

ALLOWGTS: A single precision, binary switch set to allow entry into the Gimbal Trim System attitude control law if other conditions are satisfied, scaled B14 and unitless.

ALPHAQ, AlPHAR: Single precision storage for the most significant halves of AOSQ and AOSR for down telemetry, scaled B-2 in units of revolutions per second squared.

AOSQ, AOSR: Double precision disturbing acceleration due to thrust vector/c.g. offset or other external torques, scaled B-2 in units of revolutions per second squared.

AOSQTERM, AOSRTERM: Single precision addition to vehicle rate that would be added during onettoo millisecond period as a result of disturbing accelerations, scaled B-3 in units of revolutions per second.

ARUPT, BRUPT, ZRUPT, and Q: Special cells used with the interrupt and resume instructions. $Q$ is also the return address register.

AXISCTR: Single precision index used to differentiate among the three axes, scaled B14 and unitless. A value of 1 corresponds to the $V$ axis, 0 to the $U$ axis and -1 to the $P$ axis.

CDU ( $\operatorname{CDU}, \operatorname{CDU}, \operatorname{CDU}_{z}$ ): Single precision vector containing the measured $\forall a l u e s^{2}$ of the IMU gimbal angles (outer, inner and middle gimbal in $X, Y$ and $Z$ components, respectively), scaled $B-1$ in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.
$C D U_{X} C M D, C D U_{y} C M D, C D U_{z} C M D$ : See IMUC section.
CDUiTMP ( $i=x, y, z$ ): Single precision storage locations for values of $C D U_{x}, C D U$ and CDU respectively. Used to obtain a synchronous sample of the $C D U$ values for rate estimation.

CDUD: Single precision vector interface with steering and attitude maneuver routines containing the desired values for the IMU gimbal angles (outer, inner and middle gimbal angles in $x, y$ and $z$ components, respectively), scaled B-1 in units of revolutions and stored in two's complement form.

CH5MASK, CH6MASK: Single precision octal flagwords whose individual bits ( 1 through 8 only) are set to indicate jet failures (in "RCSMONIT"). See description of K: 5FAILTAB and K:GFAILTAB.

COEFFQ: Single precision negative of the quantity used for the first column of the matrix taking a vector expressed in $Q, R$ coordinates to one expressed in the non-orthogonal $U^{?}$, $V^{\prime}$ coordinates. Scaled BO and unitless.

COEFFR: Single precision quantity used for the second column of the matrix taking a vector expressed in $Q, R$ coordinates to one expressed in the non-orthogonal UI , $\mathrm{V}^{\prime}$ coordinates. Scaled BO and unitless.

COSMG: Single precision cosine of middle gimbal angle, scaled BO and unitless.

COTROLER: Single precision variable cell scaled B14 and unitless controlling access to the $Q, R$-axis gimbal trim system.

DAPBOOLS: Single precision flagword whose individual bits have the following meanings:

Bit Mnemonic Meaning when set (1) Meaning when clear (0)
15 PULSES Minimum impulse Not minimum impulse

14 USEQRJTS GTS not allowed GTS allowed
13 CSMDOCKD CSM attached to LM
CSM not attached Normal LM DAP

12 OURRCBIT Still in Rate Command Not in Rate Command Mode

11 ACC40R2X 4-jet P-axis transla- 2-jet P-axis translation tion requested

10 AORBTRAN X-trans B system
X-trans A system
9 XOVINHIB LPD phase; X-axis
Not in Landing Point Designation Phase

8 DRIFTBIT Assume that offset Offset acceleration likely acceleration is zero

7 RHCSCALE Normał RHC scaling Fine RHC scaling
6 ULLAGER Internal ullage No program ullage request request

5 DBSLECT2 Bits 4 and 5 are used together to select attitude
4 DBSELECT deadbands. The meanings are:

$\frac{\text { bit } 5}{1}$	$\frac{\text { bit } 4}{1}$	$\frac{\text { Deadband }}{5^{\circ}}$
1	0	$5^{\circ}$
0	1	$1^{\circ}$
0	0	$0.3^{\circ}$

3 ACCSOKAY Computed accelerations Computed accelerations probably correct probably incorrect

2 AUTRATE2 Used together to determine index (RATEINDX)
1 AUTRATE1 which is used to select attitude maneuver rate
DAPARUPT, DAPBQRPT, DAPZRUPT: Double precision storage locations for the accumulator, L register, $Q, B, Z$ and BBANK registers for the job interrupted by "SUPERJOB".

DEL: Single precision switch which is described in MIT's Luminary GSOP, Section 3, as a capital delta ( $-\Delta$ ); scaled $B 14$ and unitless.

DELCDU: Interface with steering and attitude maneuver routines, minus desired change in gimbal angles per 100 millisecond period, scaled B-1 in units of revolutions, stored in two's complement form.

DELPEROR, DELQEROR, DELREROR: Single precision smoothing terms calculated during attitude maneuver and steering routines, used un automatic control portions of the DAP. Scaled B-1 in units of revolutions.

DKOMEGAN, DKKAOSN: Single precision Kalman filter gains for the docked configuration, scaled B14 and unitless. See discussion of the "Recursive State Estimator" in Section 3 of the Luminary GSOP. Part of the erasable load.

DKTRAP: Single precision deadband for the state estimator in the docked configuration, scaled B-3 in units of revolutions per second. Part of the erasable load.

DOWNTORK, $(i=0-5)$ : Single precision table of quantities for downink which give comulative jet on times for the various axes; the correspondence is ( $0,+\mathrm{P} ; 1,-\mathrm{P} ; 2,+\mathrm{U} ; 3,-\mathrm{U} ; 4,+\mathrm{V} ; 5,-\mathrm{V}$ ); Scaled B5 in units of seconds. Part of erasable load.

DXERROR, DYERROR, DZERROR: Double precision cumulative error between the actual rate and the rate requested through the hand controller. Scaled B-1 with units of revolutions.

E, EDOT: See DAPB section.
EDOTQ, EDOTR: Single precision biased rate estimates, scaled B-3 in units of revolutions per second.

EDRIVE: Single precision vector containing the present settings of the FDAI error needles, scaled B-1 in units of ten revoluti ons for attitude errors or B-3 in units of 10 revs/sec for rate errors.

## FIREFCT: See DAPB section.

FUNCTION: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains first $\omega+\alpha|\alpha| / 2 K$ scaled B3 with units of revs/sec; second it contains $K\left(-\Delta \omega+\alpha^{2} / 2 K\right)$ scaled $B-6$ with units of revs ${ }^{2} / \sec ^{4}$.

HALFARG: One half of the argument, in single precision, for the square root iteration in "SCALIOOP", scaling variable and units "revolutions per second squared" squared.

IMODES33: See INTR section.

IivINDEX: Single precision variable used in the same way as SHFTFLAG to count multiplications by four in the square-root routine. Scaled B14 and unitless.

INGTS: Single precision two-valued switch set to indicate that the GTS attitude control law was operating during the previous cycle, scaled B14 and unitless.

JETRATEP, JETRATEQ, JETRATER: Single precision addition to vehicle rate expected to have been contributed by the RCS jets during the last period, scaled B-3 in units of revolutions per second. Alternate program notations, JETRATE+0, JETRATE+1, JETRATE+2.

K:0.1secBO: Single precision constant, program notation -100 MS , stored as -0.1 , scaled BO. in units of seconds. Equation value: 0.1. (Equivalent to +100 milliseconds).
$\mathrm{K}: 0.4 \mathrm{gts}:$ Single precision constant actually equal to $1+0.6$ (stored value 0.6, program notation OCT23146, added to 1) but scaled B-2 and unitless. Equation value: 0.4

K:100msT6: Single precision constant, program notation -100MST6, stored as $-160 \times 2^{-14}$, scaled B10 in units of centiseconds. Equation value: +10 . (Equivalent to +100 milliseconds)

K:136msT6: Single precision constant, program notation -136MST6, stored as 774458, scaled B10 in units of centiseconds. Equation value ${ }^{2}+13.625$ (Equivalent to +136.25 milliseconds).

K:150msQR: Single precision constant, program notation -150MS, stored as 774178 , soaled B10 in units of centiseconds. Equation value: +15 (Equivalent to +150 milliseconds)

K:150msT6: Single precision constant, program notation +150MST6, stored as 003608 , scaled B10 in units of centiseconds. Equation value: +15 (Equivalent to +150 milliseconds)

K:160msT6: Single precision constant, program notation -160MST6, stored as 773778, scaled B10 in units of centiseconds. Equation value: +16 . (Equivalent to +160 milliseconds)

K:1d100ms: Single precision constant stored as 00005g, program notation FIVE, scaled B15 in units of seconds ${ }^{-1}$. Equation value: 10 (Equivalent to $1 / 0.100$ )

K:ld40: Single precision constant, program notation $1 / 40$, stored as 006328 , scaled B2 in units of seconds. Used to convert sensed vehicle attitude change data, scaled $B-1$ in units of revolutions, to vehicle rate data, scaled B-3 in units of revolutions per second. Equation value: 0.10 (Equivalent to 100 milliseconds)

K:25B5: Single precision constant, program notation 25/32, stored as 31000 , scaled B5 in units of centiseconds per second. Equation value: 25.

K:40cyc: Single precision constant, program notation 40CYCL or $40 C Y C$, stored as 000508 , scaled Bl 4 with units of deci-second. Used as the initial setting for the timing cell for the "direct" manual control mode. Equation value: 40

K:5FAILTAB ${ }_{i}$ : Table of eight single precision octal constants indicating which bit of channel 5 is to be disabled by each one of bits l-8 of channel 32.

$\mathbf{i}$	K: 5FAILTAB	jet \#	Channel 5 code and bit \#	
8	00040	10	$2 D$	6
7	00020	9	$2 U$	5
6	00100	13	$1 U$	7
5	00200	14	$1 D$	8
4	00010	6	$3 D$	4
3	00001	1	$4 U$	1
2	00004	5	$3 U$	3
1	00002	2	$4 D$	2

K:60msT6: Single precision constant stored as 001408 , scaled Blo in units of centiseconds. Equation value 6. Used as minimum impulse jet on time for the docked configuration for the $Q, R$ axes.

K:6FAILTAB ${ }_{i}$ : Table of eight single precision octal constants indicating which bit of channel 6 is to be disabled by each one of bits l-8 of channel 32.

i	K:6FATLTAB ${ }_{\text {i }}$	jet \#	Channel 6 code and bit \#
8	00010	11	2 F
7	00020	12	2 S
6	00004	15	IF 3
5	00200	16	158
4	00001	7	$3 \mathrm{~F} \quad 1$
3.	00002	3	4 F
2	00040	8	$35 \quad 6$
1	00100	4	4 S

K:aosint: Sinble precision constant, program notation 200MS, stored as 063158 , scaled $\mathrm{B}-1$ in units of seconds. Equation value: 0.1 (Equivalent to 100 milliseconds.)

DAPA - 40

K:BIT10: Single precision constant, stored as 01000 , scaled B5 and unitless. Used to rescale the jet on times for the downlink. Equation value 1.0.

K: bklim: Value of overflow in a quantity scaled B10 in units of centiseconds. Equation value: 1024

K:bkscl: Actually not a constant as such, rather a multiplication by three implemented as a double and an add; effective units, centiseconds per second; effective scale factor, B5. Equation value: $100 \times 0.96$ ( 0.96 is the error introduced because the method is approximate).

K:CALLCODE: Single precision constant, stored as 00032, scaled B6 in units of seconds. Equation value: 0.1016 (Equivalent to 102 milliseconds).

K: eclim: Single precision constant stored as 00600 , program notation DACLIMIT +1, scaled B-1 for attitude errors in units of ten revolutions or B-3 for rate errors in units of ten revolutions / second. Equation values are: attitude errors, 0.01171875 (equivalent to 42.1875 degrees); rate errors, 0.00292968 , (equivalent to 10.5469 $\mathrm{deg} / \mathrm{sec}$ ). Note however that the FDAI error needles are pinned by attitude commands of 5.06250 deg. and rate commands of 1.265625 तeg/sec.

K:gtstmin: Value of least significant bit in a single precision quantity scaled B14 and unitless. Equation value: 1

K:INDXYZ ${ }_{i}$ : Table of eight single precision constants to translate any of the eight possible combinations of inputs from the $Q$ and $R$ axes of the translational hand controller (bits 9-12 of channel 31) into an index to select the proper jets from the table of K:typmanP; scaled B14, unitless and stored as follows:

$\underline{i}$	function	K: INDXYZ
1	+Q	4
2	-Q	2
3	error	
4	+R	5
5	+U	9
6	+V	10
7	error	
8	-R	3
9	-V	8
10	-U	7

K:LINRAT: Single precision constant stored as 00056 , scaled B12 in units of RHC counts. Used as the coefficient of the linear term in the quadratic expression for hand controller response. Equation value: 11.5

K:mFOURDEG: Single precision constant, program notation -FOURDEG, stored as 75117 , scaled B-3 in units of revolutions.
Equation value: -0.01111 (Equivalent to -3.9996 deg )
K:minimptj: Single precision constant stored as 00012, program notation TEN, scaled B1O in units of centiseconds. Equation value: 0.625 (corrected to true minimum impulse time in jet selection routine)

K:MINTIMES: Single precision constant stored as 777751 , scaled B10 in units of centiseconds. Equation value: 1.375.

K:OCTO0240: Single precision constant stored as 00240 , scaled B10 in units of $1 /$ seconds (actually computation cycles per second). Equation value: 10.

K:OCT31: Single precision constant stored as 00031 g, scaled B14 and unitless. Equation value: 25. (Corresponds to an interval of 2.5 seconds, 25 cycles at 100 ms per cycle.)

K: ONETENTH: Single precision constant stored as 03146 , scaled BO and unitless. Equation value: 0.10.

K: pTJMINT6: Single precision constant, program notation +TJMINT6, stored as 00026 , scaled B10 in units of centiseconds. Equation value: 1.375 (Equivalent to 13.75 milliseconds).

K:quadsP ${ }_{i}$ : Table of seven single precision octal constants, program notation TYPEP, containing the binary codes for various jet pairs that can be used to accomplish a given maneuver, stored in order of their desirability ( $i \geq 4$, more desirable; $i \leq 3$, less desirable). The constants and their significance is indicated below.

$\underline{i}$	K:quadsP $_{i}$	
6 00377    5 00245 11111111   4 00132 01010101     1010,$l$		


3	00151	01101001	
2	00231	10011001	
1	00226	10010110	
0	00146	0110	0110

Use
All quads; translation or rotation
Quads 1 and 3; jets 7,8,15,16
Quads 2 and 4; jets 3,4,11,12
2-jet rotations above use diagonal quads
2-jet rotations below use adjacent quads
Rotation using jets 4,7 or 8,11 Rotation using jets 7,12 or 11,16 Rotation using jets 12,15 or 3,16 Rotation using jets 4,15 or 3,8

K:quadsQR: Table of five single precision octal constants, program notation TYPEPOLY, containing the binary codes for primary and secondary jet combinations that can be used to accomplish rotations around an axis in the $Q-R$ plane and translations perpendicular to the Q-R plane.

i	K:quadsQR ${ }_{i}$	Bits 8-1	Use
4	00377	11111111	All quads; 2-jet rotation, 4-jet trans
3	00231	10011001	1-jet rotation, B-system ( $1,6,9,14$ )
			+X jets 6,14 (quads 1,3 ); -X jets 1,9 (quads 2,4)
2	00146	01100110	1-jet rotation, A-system ( $2,5,10,13$ )
			+X jets 2,10 (quads 2,4); -X jets 5,13 (quads 1,3)
1	00252	10101010	1-jet rotation using only +X jets
0	00125	01010101	1 -jet rotation using only -X jets

K:ROOTHALF: Single precision constant, stored as 26501 g , scaled BO and unitless. Used as a starting value of the Newton algorithm in the GTS law square root routine. Equation value 0.70710.

K:T6lim: Single precision constant, program notation 1 - PRIO37, stored as $\left(40000\right.$ g $\left.-37000_{8}\right)$, scaled B10 in units of centiseconds. Equation value: 32. (equivalent to 320 milliseconds)

K:T6tosec: Single precision constant, program notation ELEVEN, stored as 00013 , used in such a way (I register retained after multiplication) that effective scaling is B-10 in units of seconds per centisecond. Equation value 11/1024 or 0.010742 .

K:trvtoc: Constant implicit in the FDAI error counter, equation interface, scaled B15 or B17 in units of ICDU error counter increments per ten revolutions for attitude errors or ten revs per second for rate errors. Equation value 32768 or 131072. (one least increment to the error counter represents about 0.11 degrees on the FDAI error needles)

K:typmanP: Table of eleven single precision octal constants, program notation JETSALL, each containing the binary codes for all the jet pairs that can be used to accomplish a particular maneuver. The constants and their significance is indicated below.

i	K: typman $\mathrm{P}_{i}$	Bi.ts 8-1	Maneuver (jet numbers)
0	00252	10101010	-P rotation ( $3,8,11,16$ )
1	00125	01010101	+P rotation ( $4,7,12,15$ )
2	00140	01100000	-Y translation ( 4,8 )
3	00006	00000110	-Z translation ( 3,15 )
4	00220	10010000	+Y translation ( 12,16 )
5	00011	00001001	+Z translation (7,11)
6	00151	01101001	$+V$ translation (4,11 and 7,8)
7	00146	01100110	-U translation ( 8,15 and 3,4)
8	00226	10010110	-V translation ( 3,12 and 15, 16)
9	00231	10011001	+U translation ( 7,16 and 11, 12)
10	00151	01101001	$+V$ translation ( 4,11 and 7,8)

$K: t y p m a n Q R_{i}: T a b l e ~ o f ~ s i x ~ s i n g l e ~ p r e c i s i o n ~ o c t a l ~ c o n s t a n t s, ~$ program notation ALLJETS, each containing the binary codes for all the jets that can be used to accomplish rotations around an axis in the $Q-R$ plane and translations perpendicular to the Q-R plane.

1	$\underline{K}$ typmanQ $_{1}$	Bits 8-1	Maneuver (iet numbers)
0	00110	01001000	-U rotation ( 6,13 )
1	00022	00010010	-V rotation ( 2,9 )
2	00204	10000100	+U rotation ( 5,14 )
3	00041	00100001	+V rotation ( 1,10 )
4	00125	01010101	-X translation ( $1,5,9,13$ )
5	00252	10101010	+X translation (2,6,10,14

K2CNTRAL: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $\omega$ scaled B3 with units of revs / sec; second it contains $-\Delta \omega+\alpha^{2} / 2 K$ scaled B3 with units of revs / sec ; third it contains $-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)$ scaled B3 with units of revs / sec; fourth it contains (K $\left.\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right)^{\frac{1}{2}}\left(-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right)$ with scaling undetermined at this point because of variable scale return from square root routine and with units of $r \mathrm{rev}^{2} / \mathrm{sec}^{3}$.

K2THETA: Double precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it first contains $K \theta$ scaled $B O$ in units of revs ${ }^{2} / \mathrm{sec}^{3}$; second it contains $K \theta+\alpha\left(-\Delta \omega+\alpha^{2} / 3 K\right)$ scaled BO with units of revs $2 / \mathrm{sec}^{3}$; third it contains $K \theta+\alpha\left(-\Delta \omega+\alpha^{2} / 3 K\right)+\left(K\left(-\Delta \omega+\mu^{2} / 2 K\right)\right)^{\frac{1}{2}}\left(-\Delta\left(-\Delta \omega+\alpha^{2} / 2 K\right)\right)$, or $U$, scaled BO with units of revs ${ }^{2} / \mathrm{sec}^{3}$.

KCENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains K , three tenths of the "jerk" or time derivative of angular acceleration, scaled B-9 with units of $\mathrm{rev} / \mathrm{sec}^{3}$.

LMOMEGAN, LMKAOSN: Single precision Kalman filter gains for the LM alone configuration, scaled B14 and unitless. See discussion of the "Recursive State Estimator" in section 3 of the Luminary GSOP. Part of the erasable load.

LMTRAP: Single precision deadband for the state estimator in the LM alone configuration, scaled B-3 in units of revolutions per second. Part of the erasable load.

M11, MR1, MR2, M31, M32: Single precision factors used in transforming from gimbal angle differences into body axis rotations, scaled BO and unitless.

MEASRATE: Single precision temporary storage for measured rate, program notation OMECAU, scaled B-3 in units of revolutions per second. Carefully limited in case of overflow to $\pm 0.12499( \pm 44.997$ degrees $/ \mathrm{sec})$

NEGU , NEGU 2: Single precision switches, program notations NEGUQ
and NEGUR, indicating whether the DPS gimbal drives should be driven and whose signs indicate the complement of the direction in which each gimbal is to be driven; scaled B14 and unitless. See the discussion of the GTS control law in MIT'siLuminary GSOP, Chp 3.

NEXTP, NEXTU, NEXTV: Single precision atorage for the P, U and $V$-axis translation jet codes to be implemented as soon as rotation commands are completed. Stored as octal quantities and set to 00000 g to indicate that all jets are to be turned off.

NPTRAPS, NQTRAPS, NRTRAPS: Single precision time varying portion of the Kalman filter gain, scaled B14 and unitless.

NUMBERT: Single precision index used to select the number of jots to be used for a particular maneuver and to specify which jet quads will be used, scaled B14 and unitless.

NUMJETS ${ }^{\prime}$ NUMJETS $_{1}$, NUMJETS ${ }_{2}$ : Single precision number of jets used for P,U and V-axis rotation, respectively, scaled B14 and unitless. Program notations NO.PJETS, NO.UJETS, and NO.VJETS.

NXTGAXIS: Single precision quantity used to indicate which set of jets is to be turned off at the next TIME6 interrupt ( 0 for $P$, 4 for $U$, and 13 for V), program notation NXT6ADR, scaled B14 and unitless.

OLDPMIN, OLDQRMIN: Single precision flagwords set greater than zero when a minimum impulse command is sensed and reset to zero when no commands are present.

OLDXFORP, OLDYFORP, OLDZFORQ: Single precision storage for the value of the gimbal angles at the previous sample, used to calculate rate of change of gimbal angles, scaled B-1 in units of revolutions and stored in two's complement form.

OMEGAP, OMEGAQ, OMEGAR, OMEGAU, OMEGAV: Single precision estimated vehicle rate, calculated using commanded accelerations and times, scaled B-3 in units of revolutions per second. Limited to $\pm 0.12499( \pm 44.997$ degrees $/ \mathrm{sec}$ ) by orerflow checks

OMEGAPD, OMEGAQD, OMEGARD: Single precision rate biases generated in the attitude maneuver and steering routines, scaled B-3 in units of revs / sec.

PERROR: Single precision P-axis error, scaled B-1 in unita of revolutions.

PJETCTR ( $i=1,2,3$ ): Single precision timing counters used to separate RCS jet firings for the docked configuration. The index correspondence is 1 - $P$ axis; $2-U$ axis; $3-V$ axis. Scaled B14 with units of deci-seconds. For $1=2$ or 3 alternate program notation is UJETCTR or VJETCTR.

PLAST, QLAST, RLAST: Single precision quantities, giving the rate requested by the astronaut via the hand controller. Scaled B-3 with units of revolutions per second.

POLYTEMP: Single precision logical intersection of octal constants from the tables K:typman and K:quads. Bits 9 through 15 will be zero and bits 1 through 8 will contain, at most, four binary ones indicating four jets to be actuated to perform a maneuver. See tables below showing codes for various types of maneuvers.

PVALVEST: Single precision octal quantity reflecting the latest estimation of the state of the jet failure bits in CH5MASK and CH6MASK.

QACCDOT, RACCDOT: Actual rate of change of the rotational rates induced by the thrist vector/c.g. offset, single precision, scaled B-8 in units of revolutions per second cubed; equal to zero or plus or minus ACCDOTQ and ACCDOTR, respectively; These can be loaded by indexing as in the routine "NEGUSUM".

QDAPK, RDAPK: Single precision derivatives of angular acceleration about the positive $Q$ and $R$ axes, respectively, multiplied by a fractional gain (in "SPSCONT") and scaled B-9 in units of revs per second cubed. Program notations KQ and KRDAP.

QERROR, RERROR: Single precision $Q$ and $R$-axis error, scaled $B-1$ in units of revolutions.

QGIMTIMR, RGIMTIMR: Single precision counters scaled B14 in units of 100 millisecond intervals.

QKALERR, RKALERR: Single precision filtered difference between calculated rate and measured rate, scaled B-3 in units of revolutions per second. Program notations DAPTEMP1 and DAPTEMP2.

QRATEDIF, RRATEDIF: Single precision storage for difference between desired rate and actual rate for the $Q$ and $R$ axes, respectively, used only in non-automatic modes, scaled B-3 in units of revolutions per second.

QRCNTR: Single precision index scaled B14 and unitless.
RATEDB: Single precision rate deadband, scaled B-3 in units of revolutions per second. RATEDB is called -RATEDB in the program and is stored as a negative quantity for convenience. In this document however, for convenience. in interpretation, the sign has been changed and RATEDB is a positive quantity.

RCSFLAGS: Listed separately on next page.
RETJADR: Return address used to distinguish between manual and automatic modes during the $Q, R-a x i s$ computations when the same routine must be performed twice. Equals "BACKHAND", "TJLAW4", or "MINRTN".

RHCP, RHCQ, RHCR: Three single precision counters, program notations P-RHCCTR, Q-RHCCTR and R-RHCCTR, scaled B14 in units of : counts from the Rotational Hand Controller. The value of these counts in terms of commanded rate is variable and determined by the astronaut through the DAP Data Load Routine (03).

ROTINDEX: Single precision index indicating the type of maneuver for which jets are to be selected, scaled B14 and unitless. See detailed descriptions of K: INDXYZ.

SAVEHAND $_{0}$, SAVEHAND $_{1}$ : Temporary storage for the Rotational Hand Controller inputs from the $Q$ and $R$ axes, necessary because all the RHC counters are reset at once during the P-axis routines.

SENSETYP: Single precision quantity scaled B14 and unitless. Used to indicate $X$-axis translational sense desired during $U$ and $V$ rotations. A value of 0 implies balanced couples, 1 implies $-X$, and 2 implies $+X$.

RCSFLAGS: Single precision flagword whose individual bits have the following meanings (note that not all bits are used at present):

Bit	Mnemonic	Meaning when set (1)	Meaning when reset (0)
15	---	-----	
14	---	-----	-----
13	-----	Job to calculate DAP parameters not needed at present	Set up job to calculate DAP parameters
12	----	Perform P-axis calculations	Skip P-axis calculations
11	QRBIT	In "direct" rate comnand for $Q, R$ axes	Not in "direct" rate command
10	PBIT	In "direct" rate command for P-axis	Not in "direct" rate command
9	JUSTIN	Hand-controller just sensed as out of detent	Hand-controller just sensed as in detent
8	-----	-----	
7	--	-----	----- .
6	---	-----	-----
5	CALIGMBL	Perform "ACDT+C12" routine to set engine gimbal drive bits	"ACDT+Cl2" not being called
4	DSPLYALT	Output errors to FDAI	Calculate the errors (this bit controls the display-calculate cycle)
3	DSTEPONE	Initialize FDAI error drive	Drive already initialized
2	DSTEPTWO	Initialize the displaycalculate cycle for the FDAI errors	Cycle already initialized
1	-----	Used to alternate in "tacking" translation policies	Used to alternate in "tacking" translation policies

SHFTFLAG: Single precision variable scaled B14 and unitless, used to count multiplications by four; used in the square-root routine to maintain accuracy.

SKIPUV $_{0}$, SKIPUV ${ }_{1}$ : Single precision flags set equal to zero when either U or V-axis computations are to be skipped because a shortodetjet firing was calculated on the last DAP pass. Scaled B14 and unitless. Program notation SKIPU and SKIPV.

STIKSENS: A single precision conversion factor which converts a quadratic expression in hand-controller counts to a rate desired in revolutions per second. Scaled B-15 in units of revolutions per second per RHC - count squared.

T5ADR: Double precision variable starting address for the TIME5 interrupt. Set equal to "PAXIS" or "DAPIDLER".

T6NEXTAX , T6NEXTAX ${ }_{3}$ : Single precision quantities, program notations T6NEXT +1 and T6FURTHA +1, respectively, used to form a list of jets to be cut off at various intervals after the next TDME6 interrupt, scaled B14 and unitless. See description of NXT6AXIS.

T6NEXTIM ${ }^{2}$, T6NEXTIM ${ }_{2}$ : Single precision quantities, program notations T6NEXT and T6FTRTHA, respectively, used to store the time interval after the next TIME6 interrupt when the jets indicated in TGNEXTAX ${ }_{1}$ and T6NEXTAX 3 are to be cut off, scaled B10 in units of centiseconds.

TCP, TCQR: A single precision timer used in the "direct" manual rate control. Scaled B14 with units of deciseconds.

THETAD: See list of major variables.
TIME5: Single precision counter incremented every 10 milliseconds (every centisecond) which causes the "T5RUPT" routine to be entered in the interrupt mode whenever it overflows.

TIME6: Single precision counter decremented every 0.625 milliseconds when enabled (channel 13, bit 15); causes the "DOT6RUPT" routine to be entered as an interrupt whenever it is reduced to zero ( -0 ).
$\mathrm{TJ}_{0}, \mathrm{TJ}_{1}, \mathrm{TJ}_{2}$ : Single precision jet fire times for the $\mathrm{P}, \mathrm{U}$, and V axes, respectively, scaled B1O in units of centiseconds. Program notations TJP, TJU, and TJV.

TRAPEDP, TRAPEDQ, TRAPEDR: Transient rate error measured as the difference between measured rate and calculated rate at every 100 millisecond interval, filtered and used to correct rate calculation parameters, scaled B-3 in units of revolutions per second. Carefully limited in case of overflow to $\pm 0.12499$ ( $\pm 44.997$ degrees).

TRAPSIZE: Single precision filter deadband, stored as a negative quantity. Scaled B-3 in units of revolutions per second. Program notation, DAPTREG6.

UERROR, VERROR: Single precision storage for the attitude errors around the $U$ and $V$ axes, scaled $B-1$ in units of revolutions.

URATEDIF, VRATEDIF: Single precision storage for attitude rate error in non-automatic modes of operation, scaled B-3 in units of revolutions per second.

WCENTRAL: Single precision working storage for trim gimbal control logic. Using the notation of section 3 of the Luminary GSOP it contains $\omega$, the angular velocity, scaled B-3 with units of rev/sec.

Codes for jets with thrust perpendicular to the P-axis
Bits 1-8 of channel 6 (in the order 8765 4321) (Jets $16,4,8,12,11,15,3,7$ )
NUMBERT -P Rotation $+P$ Rotation $-Y$ Trans. -Z Trans. ROTINDEX $=0$ ROTINDEX $=1$ ROTINDEX $=2$ ROTINDEX $=3$

6	10101010	01010101	01100000	00000110
5	10100000	00000101	0010 0000*	0000 0100*
4	00001010	01010000	0100 0030*	0000 0010*
3	00101000	01000001	0110 0000*	0050 0030*
2	10001000	00010001	0000 0000*	0000 0000*
1	10000010	00010100	0000 0000*	0000 0110*
0	00100010	01003100	0110 0000*	0000 0110*
	+Y Trans.   OTINDEX =	+Z Trans. TTINDEZ $=$	+V Trans.   TINDEX $=6$	


6	10010000	0000 1001	01101001	
5	$10000000^{*}$	0000 0001*	00100001	
4	$00010000^{*}$	0000 1000*	01001000	
3210	meaningless	meaningless	meaningless	(see above and below)
	-U Trans.	TV Trans.	+U Trans.	+V Trans.
	ROTINDEX $=7$	ROTINDEX $=8$	ROTINDEX $=9$	ROTINDEX $=10$


| 6 | 01100110 | 10010110 | 10011001 | 01101001 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 00100100 | 10300100 | 10000001 | 00100001 |  |
| 4 | 01000010 | 00010010 | 00011000 | 01001000 |  |
| 3 | $01100000^{*}$ | $00000000^{*}$ | $00001001^{*}$ | $01101001^{*}$ |  |
| 2 | $00000000^{*}$ | $1031000^{*}$ | $10011001^{*}$ | $00001001^{*}$ |  |
| 1 | $00000110^{*}$ | $10010110^{*}$ | $10010000^{*}$ | $00000000^{*}$ |  |
| 0 | 0110 | $0110^{*}$ | $00000110^{*}$ | $00000000^{*}$ | $01100000^{*}$ |

* Those codes immediately followed by asterisks are meaningless because 1) they include less than two binary one's (less than two jets would be actuated), 2) they are identical to a code higher in the list, or 3) they contain one pair of binary one's but this pair does not accomplish the required maneuver.

Codes for jets with thrust perpendicular to the Q-R plane
Channel 5 bits 1-8 (in the order 8765,4321 ) (jets $14,13,10,9,6,5,2,1$ )

NUMBERT	$-U$ Rotation	$-V$ Rotation	+U Rotation	+V Rotation
ROTINDEX $=0$	ROTINDEX $=1$	ROTINDEX $=2$	ROTINDEX $=3$	

| 4 | 01001000 | 00010010 | 10000100 | 00100001 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 00001000 | 00010000 | 10000000 | 00000001 |
| 2 | 01000000 | 00000010 | 00000100 | 00100000 |
| 1 | $00001000^{*}$ | $00000010^{*}$ | $10000000^{*}$ | $00100000^{*}$ |
| 0 | $01000000^{*}$ | $00010000^{*}$ | $00000100^{*}$ | $00000001^{*}$ |

    -X Trans. \(+X\) Trans.
        ROTINDEX \(=4\) ROTINDEX \(=5\)
    | 4 | 01010101 | 10101010 |
| :--- | :--- | :--- | :--- |
| 3 | 00010001 | 10001000 |
| 2 | $01000100 *$ | 00100010 |
| 1 | $0000000 *$ | $10101010^{*}$ |
| 0 | $01010101^{*}$ | $00000000^{*}$ |

* Those codes immediately followed by asterisks are meaningless because, for the rotations, they are identical to a code higher in the list, and for the translations, they are identical to a code higher in the list or are zero. It should be noted that the rotation codes derived with NUMBERT $=0$ or 1 are valid and are used to assure that l-jet rotation commands will complement X translation commands in effect.

Jet Thrust Directions, Numbers and Channel 5 or 6 codes (each jet indicated as belonging to either system $A$ or $E$,
( Horizontal jets, P-axis rotations and Y,Z translations


Channel 6
Jet Bit
$\therefore$ Vertical jets, $U, V$ axis rotations and $P$ translations


## Digital Autopilot Phase Plane Logic

```
1/ACCSET AOSQ and AOSR = 0 (most aignificant halves of d.p. words)
 ALPHAQ and ALPHAR = 0
1/ACCJOB Perform "1/ACCS"
End Job
1/ACCS DOCKTEMP = bit 13 of DAPBOOLS (CSMDOCKD)
LEMMASS = MASS
If DOCKTEMP = 1, LEMMASS = MASS - CSMMASS
Inhibit interrupts
If FLGNRD10 bit 13 (APSFLAG) = 1: (ascent or lunar surface)
 2JETLIM = K:nomaxjts
 i=12
 If LEMMASS < K:LOASCENT, LEMMASS = K:LOASCENT
 If LEMMASS \geq HIASCENT, LEMMASS = HIASCENT
If FLGWRD10 bit 13 (APSFLAG) = 0:
 2JETLIM = . K:2jlimdwn
 i=6
 If LEMMASS < K:LODESCNT + HIASCENT:
 LEMMASS = K:LODESCNT + HIASCENT
 If LEMMASS \geq K:HIDESCNT, LEMMASS = K:HIDESCNT
MASS = LEMMASS
If DOCKTEMP = 1, MASS = LEMMASS + CSMMASS
Release interrupt inhibit
If DOCKTEMP = 1, proceed to "DOCKED"
1=1-2
1JACCR = K:\mp@subsup{INERCONB }{i}{}+\textrm{K}:\mp@subsup{\mathrm{ INERCONA }}{1}{}/(\mp@subsup{\mathrm{ LEMMASS + K:INERCONC }}{1}{})
```

$i=i-2$
1JACCQ $=\mathrm{K}:$ INERCONB $_{i}+\mathrm{K}:$ INERCONA $_{i} /\left(\right.$ IEMMASS $+\mathrm{K}:$ INERCONC $\left._{i}\right)$
$i=i-2$
$1 \mathrm{JACCP}^{-K}:$ INERCONB $_{i}+\mathrm{K}:$ INERCONA $_{i} /\left(\right.$ IEMMASS $+\mathrm{K}:$ INERCONC $\left._{i}\right)$
Perform "COMMEQS" (see pg. DAPB - 22)
$1 \mathrm{JACCU}=-\mathrm{COEFFQ} 1 \mathrm{JACCQ}+\mathrm{COEFFR} 1 \mathrm{JACCR}$ (rescaled to B-2)
If $i>0$ (ascent)
ALLOWGIS $=0$
INGTS $=0$
Proceed to "1/ACCONT"
LPVTARM = K:LconB $+\mathrm{K}: \operatorname{LconA} /($ LEMMASS $+K: L c o n C)$
$M_{M P A C}=$ ( $\mathrm{K}:$ dvtoacc ABDELV MASS / K:GFACTM) LPVTARM (limited)
Inhibit interrupts
ACCDOTR $=$ MPAC $_{0} 1$ JACCR $/ \mathrm{K}:$ TORKJET1 (limited)
$\mathrm{ACCDOTQ}=\mathrm{MPAC} \mathrm{O}_{0} 1 \mathrm{JACCQ} / \mathrm{K}:$ TORKJET1
(limited)
Proceed to "SPSCONT"
DOCKED

$$
\begin{aligned}
& \mathrm{MPAC}_{\mathrm{O}}=\mathrm{K}: \text { inrtcofC LEMMASS CSMMASS }+\mathrm{K}: \text { inrtcofF } \\
& M P A C_{0}=M P A C_{0}+(K: i n r t c o f A \text { CSMMASS }+K: i n r t c o f D) \text { CSMMASS } \\
& \mathrm{MPAC}_{0}=\mathrm{MPAC} \mathrm{O}_{0}+(\mathrm{K}: \text { inrtcofB LEMMASS }+\mathrm{K}: \text { inrtcofe }) \text { LEMMASS } \\
& \mathrm{MPAC}_{1}=\mathrm{MPAC}_{0} \\
& \mathrm{MPAC}_{0}=\mathrm{K}: \text { cgcoefC LEMMASS CSMMASS }+\mathrm{K}: \text { cgcoefF } \\
& M P A C_{0}=M P A C_{0}+(K: c g c o e f A \text { CSMMASS }+K: c g c o e f D) \text { CSMMASS } \\
& M P A C_{0}=M P A C_{0}+(\mathrm{K}: \text { cgcoefB LEMMASS }+\mathrm{K}: \text { cgcoefE }) \text { LEMMASS } \\
& 1 \mathrm{JACCP}=\mathrm{K}: 1 \mathrm{JACCON} / \mathrm{MASS} \\
& \text { (limited) } \\
& \text { 1dANET }_{-14}=\mathrm{K} \text { : posmax } \\
& \text { 1dANET }_{+2}=\mathrm{K} \text { : posmax }
\end{aligned}
$$

```
 1dANET}+3=K:posmax
 1dANET +18 = K:posmax
 1dANET +19 = K:posmax
 Inhibit interrupts
 1JACCQ = K:TORQCONS / MPAC
 1JACCR = 1JACCQ
 COEFFQ = - 0.70711
 COEFFR = 0.70711
ACCDOTR = K:dvtoacc ABDELV MASS MPAC % / MPAC 1
ACCDOTQ = ACCDOTR
SPSCONT QDAPK = ACCDOTQ K:DGBF
 RDAPK = ACCDOTR K:DGBF
 MPAC
 TS = bits 12(-R GTS) and 11(+R GTS) of MPAC
 If TS = 0, RACCDOT = 0
 If TS f0:
 If bit 12 of MPAC }=0, RACCDOT = ACCDOTR
 If bit 12 of MPAC }=1, RACCDOT = - ACCDOTR
TS = bits 10 (-Q GTS) and 9 (+Q GTS) of MPAC
If TS = 0, QACCDOT = 0
If TS f 0:
 If bit 10 of MPAC }1=0, QACCDOT = ACCDOTQ
 If bit 10 of MPAC }=1, QACCDOT = - ACCDOTQ
If DAPBOOLS bit 14 (USEQRJTS) = 1:
 ALLOWGTS = 0
 INGTS = 0
 Proceed to "DOCKTEST"
 DAPB - 3
```

If T5ADR $\neq$ "PAXIS":
ALLOWGTS $=0$
INGTS $=0$
Proceed to "DOCKTEST"
If INGTS $=0$, perform "TIMEMBL"
DOCKTEST If DOCKTEMP $=1$, proceed to $" 1 /$ ACCRET"
1/ACCONT DBVAL1 $=\mathrm{DB}$
DBVAL2 $=-3 \mathrm{DB} / 4$
DBVAL3 $=\mathrm{DB} / 2$
Inhibit interrupts
AOSU $=-$ COEFFQ AOSQ + COEFFR AOSR
(limited)
AOSV $=$ COEFFQ AOSQ + COEFFR AOSR
Release interrupt inhibit
DRIFTER = bit 8 of DAPBOOLS (DRIFTBIT)
FLATEMP $=0$
If ALLOWGTS = 1 or DRIFTER = 1:
FLATEMP $=\mathrm{K}:$ FLATVAL
Z3TEM $=0$
If DRIFTER = 1:
Z3TEM $=\mathrm{K}:$ ZONE 3 MAX
TS = $1+2$ 1JACCP / K:acp
Inhibit interrupts
1dANET $_{-14}=1 /\left(\begin{array}{ll}21 J A C C P\end{array}\right)$
1dANET $_{-13}=1 /\left(\begin{array}{ll}2 & 1 \mathrm{JACCP}\end{array}\right)$
ACCFCT $_{-14}=\left(-\right.$ dANET $\left._{-14}\right) / T S$
ACCFCT $_{-13}=$ ACCFCT $_{-14}$
1dACOAST $_{-16}=\mathrm{K}: 1 \mathrm{dp} 03$
1dACOAST $_{-15}=\mathrm{K}: 1 \mathrm{dpO} 3$

```
Release interrupt inhibit
If DRIFTER = 1, AOSU and AOSV = 0
UV = 0
BOTHAXES
i = 0
If UV = 0:
 If AOSU \leq 0, i= =
 ABSAOS = |AOSU
If UV = 1:
 If AOSV \leq 0, i = 1
 ABSAOS = |AOSV|
DBB1 = DBVAL1
DBB2 = DBVAL1
If ABSAOS \leq K:miniacc, proceed to "NOTMUCH"
If FLATEMP = 0: (powered flight without fine GTS)
 If i= 0:
 DBB2 = DBB2 + DBVAL1
 DBB4 = DBB2
 If ABSAOS \leq K:m. }187
 DBB1 = (1 - 32 ABSAOS) DB
 Skip next step
 DBB1 = - DBVAL3
 DBB3 = DBVAL2
 If i = 1:
 DBB1 = DBB1 + DBVAL1
 DBB3 = DBB1
 If ABSAOS \leq K:m. }187
 DBB2 = (1 - 32 ABSAOS) DB
 Skip next step
 DBB2 = - DBVAL3
 DBB4 = DBVAL2
j = |i - 1|
1dACOSTT
1dACOSTT }\mp@subsup{\mp@code{i}}{}{= K:1dp03
```

```
TS = 1 + (2 1JACCU + ABSAOS)/K:acp
If overflow (}|TS|\geq\mp@subsup{2}{}{6}\mathrm{): (ANET }\geq88.6\mathrm{ degrees/second}\mp@subsup{}{}{2}
ANET = 1 JACCU + \frac{1}{2}}\mathrm{ ABSAOS
1dATEMP = \frac{l}{2}/ ANEET
TSf = - 交 1dATENP / (\frac{1}{2}+\textrm{ANET}/\textrm{K}:acp)
Proceed to "ACCTHERE"
ANET = 2 1JACCU + ABSAOS
1dATEMP = 1/ ANET
TSf = - 1dATEMP / (1 + ANET / K:acp)
Proceed to "ACCTHERE"
NOTMUCH 1dACOSTTTO = K:1dp03
1dACOSTT 1 = K:1dp03
If FLATEMP = 0:
 If ABSAOS > K:miniacc - K:tinyacc:
 If i = 0:
 DBB3 = DBVAL3
```



```
 If i = 1:
 DBB4 = DBVAL3
 DBB3 = 2 DBVAL3
 If ABSAOS S K:miniacc - K:tinyacc:
 DBB3 = DBVAL1
 DBB4 = DEVALI
ANIET = 2 1JACCU + ABSAOS
1dATEPP = 1/ ANET
TSP = - 1dATENP / (1 + MNET / K:acp)
```

$$
\begin{aligned}
& j=|i-1| \\
& \text { ACCTHERE } \text { ACFTEM }_{j+2}=T S f \\
& \text { 1dATEMI }_{j+2}=1 \text { dATEMP } \\
& T S=1+(1 J A C C U+\text { ABSAOS }) / K: a c p \\
& \text { If overflow ( } \mid \text { TS } \mid \geq 2^{6} \text { ): } \\
& \text { TS = K: posmaxsp } \\
& \text { ANET }=\mathrm{K}: \operatorname{acp}(\mathrm{TS}-1) \\
& \text { 1dATEMP = } 1 / \text { ANET } \\
& \text { TSf }=-1 \text { dATEMP } /(1+\operatorname{ANET} / \mathrm{K}: a c p) \\
& \text { ACFTEM }_{j}=\text { TSI } \\
& 1 \mathrm{dATEMM}_{j}=1 \mathrm{dATEMP} \\
& \text { ANET = } 2 \text { 1JACCU - ABSAOS } \\
& \text { ACCSWTEM }=0 \\
& \text { If ANET } \leq K \text { Kminiacc: } \\
& \text { ANET }=K \text { :miniacc } \\
& \text { 1dATEMP = } 1 / \text { ANET } \\
& \text { TSf }=-1 \mathrm{dATEMP} /\left(1+\operatorname{ANET} 1 \mathrm{dACOSTT}_{j}\right) \\
& \text { ACFTEM }_{i+2}=\text { TSf } \\
& \text { 1dATEM1 }_{1+2}=1 \text { dATEMP } \\
& \text { ANET }=1 \text { JACCU }- \text { ABSAOS } \\
& \text { If ANET } \leq \mathrm{K}: \text { miniacc: (replace } 1 \text {-jet params with 2-jet params } \\
& \text { unless relevant jet failed.) } \\
& \text { ACCSWTEM = } 2 \text { i-1 } \\
& \text { If } \mathrm{UV}=0 \text { and } i=0 \text { and bits } 4 \text { and } 7 \text { of CH5MASK }=0 \text { : } \\
& \text { Proceed to "STMIN-" (no minus U jets failed) }
\end{aligned}
$$

```
(If NNT \leqK:miniacc)
```

If $U V=0$ and $i=1$ and bits 3 and 8 of $\operatorname{CHFASK}=0$ :
Proceed to "STMMI-" (no plus U fots failed)
If $\mathrm{UV}=1$ and $1=0$ and bits 2 and 5 of CH5MASK $=0$ :
Proceed to "Sy-mi-" (no minus V jets failed)
If $\mathrm{UV}=1$ and $1=1$ and bits 1 and 6 of CH5NASK $=0$ :
Proceed to "STMTN-" (no plus $V$ jets failed)
ANET = K:miniacc (jet failure; use $K$ :miniacc instead of 2-jet parameters)
1dATEMP $=1 /$ ANET

```
TSf = - 1dATEMP / (1 + ANET 1dACOSTT
```

STMIN-

$$
\begin{aligned}
& \text { ACFTEM }_{i}=\text { TSf } \\
& \text { 1dATEM }_{i}=1 \mathrm{dATEMP}
\end{aligned}
$$

If $U V=0$ and bit 3 or 8 of CH5MASK $=1$, or if $U V=1$ and bit
1 or 6 of CH5MASK = 1: (jet failure - positite torque)
$1 \mathrm{dATEMI}_{3}=1 \mathrm{dATEMI}_{1}$
ACFTEM $_{3}=$ ACFTEM $_{1}$
If $U V=0$ and bit 4 or 7 of CH 5 MASK $=1$, or if $U V=1$ and bit
2 or 5 of CH5MASK = 1: (det failure - negative torque)
$1 \mathrm{dATEMH}_{2}=1 \mathrm{dATEM}_{0}$
$\mathrm{ACFTEM}_{2}=$ ACFTEM $_{0}$
AXDSTEM $0=$ FLATEMM + DBB1 - DBB3
AXDSTEM $_{1}=$ FLATEMP + DBB2 - DBB $_{4}$
Inhibit interrupts
$\operatorname{ACCSW}_{\text {UV }}=\operatorname{ACCSWTEM}$
If $U V=0$ :
$1 \mathrm{dANET}_{0}=1 \mathrm{dATEMI}_{0}$

## (If $\mathrm{UV}=0$ )

$$
\begin{aligned}
& 1 \mathrm{dANET}_{1}=1 \mathrm{dATEMM}_{1} \\
& 1 \mathrm{dANET}_{2}=1 \mathrm{dATEMI}_{2} \\
& 1 \mathrm{dANET}_{3}=1 \mathrm{dATEMH}_{3} \\
& 1 \mathrm{dACOAST} \mathrm{O}_{\mathrm{O}}=1 \mathrm{dACOSTT} \mathrm{O}_{0} \\
& 1 \mathrm{dACOAST}_{1}=1 \mathrm{dACOSTT} 1 \\
& \mathrm{ACCFCT}_{0}=\text { ACFTEM }_{0} \\
& \mathrm{ACCFCT}_{1}=\mathrm{ACFTEM}_{1} \\
& \mathrm{ACCFCT}_{2}=\mathrm{ACFIEM}_{2} \\
& \mathrm{ACCFCT}_{3}=\mathrm{ACFTEM}_{3} \\
& \text { Release interrupt inhibit } \\
& \text { UDB1 }=\text { DBB1 } \\
& \text { UDB2 }=\text { DBB2 } \\
& \text { UDB3 }=\text { DBB3 } \\
& \text { UDB4 }_{4}=\text { DBB4 } \\
& \text { UAXDIST }_{0}=\text { AXDSTEM }_{0} \\
& \mathrm{UAXDIST}_{1}=\mathrm{AXDSTEM}_{1} \\
& W V=1
\end{aligned}
$$

Proceed to "BOTHAXES"

$$
\begin{aligned}
& {1 \mathrm{dANET}_{16}=1 \mathrm{dATEMI}_{0}}^{1 \mathrm{dANET}_{17}=1 \mathrm{dATEMI}_{1}} \\
& 1 \mathrm{dANET}_{18}=1 \mathrm{dATEMI}_{2} \\
& 1 \mathrm{dANET}_{19}=1 \mathrm{dATEM}_{3} \\
& 1 \mathrm{dACOAST}_{16}=1 \mathrm{dACOSTT} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ACCFCT }_{16}=\text { ACFITS }_{0} \\
& \text { ACCFCT }_{17}=\text { ACFIES }_{1} \\
& \text { ACCFCT }_{18}=\text { ACFTEM }_{2} \\
& \text { ACCFCT }_{19}=\text { ACFTBM }_{3} \\
& \text { FLAT }=\text { FLATKAP } \\
& \text { ZONEBLTM }=\text { Z3TEM } \\
& \text { FIREDB }-16 \text { = DBVAL1 } \\
& \text { FIREDB }-15 \text { = DBVAL1 } \\
& \text { COASTDB }_{-16}=\text { DBVALI }+ \text { FLAT } \\
& \text { COASTDB }_{-15}=\text { DBVALI }+ \text { FLAT } \\
& \text { AXISDIST }_{-16}=0 \\
& \text { AXISDIST }_{-15}=0 \\
& \text { If FLLAT > } 0 \text { : } \\
& \text { FIRRED }_{0}=\text { DEVALI } \\
& \text { FIREDB }_{1}=\text { DBVAL1 } \\
& \text { FIRTEDB }_{16}=\text { DBVALI } \\
& \text { FIREDB }_{17}=\text { DBVALI } \\
& \text { COASTDB }_{0}=\text { DBVALI }+ \text { FLAT } \\
& \text { COASTDB }_{1}=\text { DBVALL }+ \text { FLAT } \\
& \mathrm{COASTD}_{16}=\text { DBVALI + FLAT } \\
& \operatorname{COASTDB}_{17}=\text { DBVALI }+ \text { FLAT } \\
& A_{X I S D I S T}^{0}=0 \\
& \text { AXISDIST }_{1}=0 \\
& \text { AXISDIST } 16=0 \\
& \text { AKISDIST }_{17}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If FLAT }=0 \text { : (Powered flight without fine GTS) } \\
& \text { FIREDB }_{0}=U D B 1 \\
& \text { FIREDB }_{1}=\text { UDB2 } \\
& \mathrm{COASTDB}_{\mathrm{O}}=\mathrm{UDB} 4_{4} \\
& \mathrm{COASTDB}_{1}=\text { UDB3 } \\
& \text { AXISDIST }_{0}=\text { UAXDIST }_{0} \\
& \text { AXISDIST }_{1}=\text { UAXDIST }_{1} \\
& \text { FIREDB }_{16}=\text { DBB1 } \\
& \text { FIREDB }_{17}=\text { DBB2 } \\
& \mathrm{COASTDB}_{16}=\mathrm{DBB}_{4} \\
& \mathrm{COASTDB}_{17}=\mathrm{DBB} 3 \\
& \text { AXISDIST }_{16}=\text { AXDSTEM }_{0} \\
& \text { AXISDIST }_{17}=\text { AXDSTEM }_{1} \\
& \text { 1/ACCRET Switch DAPBOOLS bit } 3 \text { (ACCSOKAY) to } 1 \\
& \text { Release interrupt inhibit } \\
& \text { Return }
\end{aligned}
$$

```
ADRSDIF1 = K:AXISDIFF
 AXISCTR
If EDOT > 0:
 ADRSDIF2 = ADRSDIF1
 ROTSENSE = K:SENSOR
If EDOT S O:
 E=-E
 EDOT = - EDOT
 ADRSDIF1 = ADRSDIF1 + 1
 ADRSDIF2 = ADRSDIF1
 RO'TSENSE = - K:SENSOR
```

i = ADRSDIF1
If $|E| \geq 2^{-5}: \quad(|E| \geq 11.25$ degrees $)$
If $\mathrm{E}<\mathrm{O}$, proceed to "RUFLAW1"
If $E>0$, proceed to "RUFLAW2"
( $\mathrm{E}=\mathrm{E}$ rescaled from $\mathrm{B}-1$ to $\mathrm{B}-3$ )
If $\mid$ EDOT $\mid \geq 2^{-6}$, proceed to "RUFLAWB" (EDOT $\geq 5.625 \mathrm{deg} / \mathrm{sec}$ )
(EDOT $=$ EDO'T rescaled from $B-3$ to $B-6$ )
EDOTSQ $=$ EDOT $^{2}$
If $|E| \leq$ FIREDB $_{i}$ - K:m3deg
NUMBERT = SENSETYP - 1
If $|E|>$ FIREDB $_{i}-K: m 3 d e g$ or if SENSETYP $=0$ :
ADRSDIF2 $=$ ADRSDIF2 +2 (index 2-jet parameters rather
NUMBERT $=4$
$j=\operatorname{ADRSDIF2}$

```
 FIREFCT = FIREDB
 If FIREFCT \leq 0:
 Perform "Z123COMP"
 If FIREFCT + FLAT \leq 0:
 TS = FIREFCT + FLLAT
 Proceed to "ZONE1" (reverse rate orror and
 reach switch curve)
 If TTOAXIS > ZONE3LIM, proceed to "ZONE2" (null rate error)
 Proceed to "ZONE3" (minimum impulse zone)
 TS = COASTDB
 If TS > 0, proceed to "ZONEL" (coast zone)
 Proceed to "ZONE5" (increase orror rate and reach
 8witch curve)
Z123COMP ROTSENSE = - ROTSENSE
 TTOAXIS = EDOT 1dANET
 If TTOAXIS > K:tjmax:
 TSt = K:250msB2
 Proceed to "RETURNTJ"
 Return
ZONE1
 HH=2(TS - AXISDIST i
 TS = (TTOAXIS - K:tjmax)}\mp@subsup{)}{}{2}-HH\quad\mathrm{ (only high half of HH used)
 If TS \leq O: (total time greater than K:tjmax)
 TSt = K:250msB2
 Proceed to "RETURNTJ"
 If HH > K:50mssq: (H between 44 and 150 milliseconds)
 TSt = (HH / K:200msB2) + K:37.5msB2 + TTOAXIS
```

If $\mathrm{HH} \leq \mathrm{K}: 50 \mathrm{mssq}: \quad$ ( H between 0 and 44 milliseconds)

$$
\mathrm{TSt}=(\mathrm{HH} / \mathrm{K}: 50 \mathrm{msB2})+\mathrm{TTOAXIS}
$$

If $T S t \leq K: t j \min , T S t=0$
Proceed to "RETURNTJ"
ZONE2 $\quad$ TSt $=$ TTOAXIS
Proceed to "RETURNTJ"
ZONE3
$\mathrm{ZONE}_{4}$
$\mathrm{k}=\mathrm{AXISCTR}+1$
If $T J_{k}$ ROTSENSE < 0 : (jets on and firing toward desired state)
If FLAT $=0$ and AXISDIST $_{i}-$ FIREFCT $>0$ :
Perform "Z123COMP"
$T S=F I R E F C T$
Proceed to "ZONE1"
If FLAT $>0$ and FIREFCT -2 FTREDB $_{i} \leq 0$ :
Perform "Z123COMP"
If TTOAXIS $>$ ZONE 3 LIM, proceed to "ZONE2"
Proceed to "ZONEB"
(In all other cases, coast)
$\mathrm{TSt}=0$
Proceed to "RETURNTJ"
ZONE5 If ROTSENSE $<0, j=j-1$ (indices were chosen to select
If ROTSENSE $>0, j=j+1$ parameters opposing ENOT; in zone 5, acceleration should
be in same direction as EDOT)
$\mathrm{HH}=2 \mathrm{TS} \mathrm{ACCFCT}_{j}$

```
 TTOAXIS = 1dANET }\mp@subsup{}{j}{}\mathrm{ EDOT
 TS = HH - K:100msB2 TTOAXIS - K:50mssq (more sig half of HH)
 If TS \leq 0:
 TSt = \frac{3}{2}HH/(TTOAXIS + K:25msB2)
 If TSt \leq K:tjmin, TSt =0
 Proceed to "RETURNTJ"
 TS = HH - K:300msB2 TTOAXIS - K:150mssq
 If TS > 0:
 TSt = K:250msB2
 Proceed to "RETURNTJ"
 TSt = \frac{1}{2}}(\textrm{HH}+\textrm{K}:85\textrm{mssq})/(TTOAXIS + K:100msB2)
 Proceed to "RETURNTJ"
RUFLAW1 EDOT = EDOT - K:RUFRATE
 If EDOT \leq 0: (rate below 6.50 degrees per second)
 NUMBERT = 4
 FIREFCT = - K:posmaxsp (if P-axis, call for 4 jets)
 ADRSDIF2 = ADRSDIF2 + 1 signROTSENSE
 TS = - EDOT
 Proceed to "RUFLAW12"
 ROTSENSE = - ROTSENSE
 NUMBERT = 4
 FIREFCT = - K:posmaxsp
 TS = EDOT
 Proceed to "RUFLAW12"
RUFLAW2 ROTSENSE = - ROTSENSE
```

NUMBERT $=4$
FIREFCT $=-K:$ posmaxsp $\quad$ (if P -axis, call for 4 jets)
$T S=$ EDOT $+K:$ RUFRATE
If overflow $\left(|T S| \geq 2^{-3}\right)$ :

- TSt $=\mathrm{K}: 250 \mathrm{~ms} \mathrm{~B} 2$

Proceed to "RETURNTJ"
RUFLAW12 $j=$ ADRSDIF2 +2
TSt = TS 1dANET ${ }_{j}$
If TSt $\geq \mathrm{K}: 4 \mathrm{sec} \mathrm{B} 5:$
$\mathrm{TSt}=\mathrm{K}: 250 \mathrm{msB}$ 2
Proceed to "RETURNTJ"
TSt $=$ TSt rescaled from B5 to B2

If TSt $\leq K: t_{j m i n}$, TSt $=0$
Proceed to "RETURNTJ"
RUFLAW3 ROTSENSE $=-$ ROTSENSE
NUMBRRT $=4$
FIREFCT $=-\mathrm{K}:$ posmaxsp $\quad$ (if P-axis, call for 4 jets)
$\mathrm{i}=\mathrm{ADRSDIF1}+2 \quad(=\mathrm{ADRSDIF2}+2)$
$T S=E+\frac{1}{2} 1$ dANET $_{i}$ EDOT $^{2}-$ FIREDB $_{i-2}$
If $\mathrm{TS}>0$, $\mathrm{TSt}=\mathrm{K}: 250 \mathrm{msB} 2$
If $\mathrm{TS} \leq 0, \mathrm{TSt}=0$
RETURNTJ $i=A X I S C I R+1$
$T J_{i}=T S t$ ROTSENSE
If $\mathrm{TJ}_{i}$ ACCSW $_{\text {AXISCIR }}>0: \quad$ (Note that for P-axds, this
NUMBERT $=4$
test is not validd, but NUMBERT is set after "TJETLAW")
Return via HOLDQ

If $\mathrm{TJ}_{i}=0:$
OLDSENSE $=0$
Proceed to "SPSSTART"
OLDSENSE $=1 \operatorname{signTJ}_{i}$
$\mathrm{TS}_{1}=-$ OLDSENSE EDOT
If DAPBOOLS bit 8 (DRIFTBIT) $=0: \quad$ (powered flight)

$$
\mathrm{TS}_{1}=\mathrm{TS}_{1}+\mathrm{K}: \text { RATEDB1 }
$$

If $\mathrm{TS}_{1}>0$, proceed to 2nd line of "POSTHRST"
SPSSTART If $\mid E D O T$ K:RATELIM1| $\geq 1$ : (check to see if outer rate limit has been exceeded)

$$
\begin{aligned}
& \mathrm{TS}_{\mathrm{t}}=-0.5 \text { signEDOT } \\
& \text { Proceed to "POSTHRST" } \\
& \mathrm{TS}_{2}=\mathrm{DKDB}(\mathrm{~K}: \mathrm{m} 3 \text { tom1 EDOT }+\mathrm{E}) \\
& \mathrm{TSt}=0 \\
& \text { If }\left|\mathrm{TS}_{2}\right|<1 \text {, proceed to "POSTHRST" } \quad \begin{array}{l}
\text { (E will be less than the } \\
\text { deadband within } 4 \text { seconds } \\
\text { Without firing) }
\end{array} \\
& \text { If } \mathrm{TS}_{2}<0 \text { and EDOT } \leq \mathrm{K}: \text { RATELIM2, TSt }=0.5
\end{aligned}
$$

POSTHRST $\mathrm{TJ}_{1}=\mathrm{K}:$ BOtoB10 TSt
If OLDSENSE $=0$, proceed to "CTRCHECK"
If OLDSENSE > 0: $\mathrm{TS}=\mathrm{TJ}_{i}$
Skip next step
$T S=-\mathrm{TJ}_{1} \quad$ (OLDSENSE $<0$ )
If $T S>0$, return
PJETCTR $_{1}=K:$ UTIME $_{1}$
$T J_{i}=0$
Return
CTRCHECK If PJETCTR $_{1}=0$, return
$T J_{i}=0$
Return
RESTORDB If DAPBOOLS bit 5 (DBSLECT2) $=1$, proceed to "SETMAXDB"
If DAPBOOLS bit 4 (DBSELECT) $=0$, proceed to "SETMINDB"
$\mathrm{DB}=\mathrm{K}:$ POWERDB
Proceed to 2nd step of "SETMAXDB"
SETMINDB $\mathrm{DB}=\mathrm{K}:$ NARROWDB
Establish "1/ACCJOB"
Return
SETMAXDB $\quad D B=K: W I D E D B$
Establish "1/ACCJOB"
Return
PFLITEDB Perform "ZATTEROR"
$D B=K: P O W E R D B$
Establish "1/ACCJOB"
Return
(Entered from a verb 48, this is Routine 03)
DAPDATA1 DAPDATR1 $=$ bits $13,11,10,7,5,4,2$ and 1 of DAPBOOLS (CSMDOCKD, ACC 4OR2X, AORBTRAN, RHCSCALE, DBSLECT2,DBSELECT, AUTRATE2,AUTRATE1)

If FLGNRD10, bit 13 (APSFLAG) $=0$ : DAPDATR1,bit14: 0 , otherwise DAPDATR1 bit $14=1$

If DAPDATR1, bits 13 and $14=0$, set bit 13 of DAPDATR1 $=1$
Perform "GOXDSPFR" with TS = K:V01N46 (display DAPDATR1)
(If terminate, proceed to "ENDEXT"; If proceed, proceed to "DPDAT1"; other response, skip next two steps)

Perform "BLANKET" with TS $=0^{00006}{ }_{8}$
End job
DAPDATR $1=$ bits $14,13,11,10,7,5,4,2$ and 1 of DAPDATR1
Proceed to third step of "DAPDATA1"
DPDAT1 Inhibit interrupts
FLGWRD10, bit 13 (APSFLAG) = complement of DAPDATR1, bit 14
If DAPDATR1, bits 13 and $14 \neq 1$, bit 13 of DAPDATR1 $=0$
Set bits $13,11,10,7,5,4,2$ and 1 of DAPBOOLS $=$ bits $13,11,10,7$, $5,4,2$ and 1 of DAPDATR1

MASS $=$ LEMMASS
If DAPBOOLS bit 13 (CSMDOCKD) $=1$, MASS $=$ MASS + CSMMASS
If DAPBOOLS bit 11 (ACC4OR2X) $=1$, switch FLAGNRD1 bit 15 (NJETSFLG) to 0
If DAPBOOLS bit 11 (ACC4OR2X) $=0$ :
Switch FLAGWRD1 bit 15 (NJETSFLG) to 1
RATEINDX $=$ bits 2 and 1 of DAPBOOLS
STIKLOAD STIKSENS = K:FINE
If DAPBOOLS bit 7 (RHCSCALE) $=1$ :
STIKSENS $=$ STIKSENS $+\mathrm{K}:$ NORMAL

```
 RATEDB = K:mO.6DdS
 If DAPBOOLS bit 13 (CSMDOCKD) = 1:
 STIKSENS = K:1d10 STIKSENS
 RATEDB = K:m0.3DdS
Release interrupt inhibit
DAPDATA2 Perform "GOXDSPFR" with TS = K:VO6N47 (LEMMASS, CSMMASS)
 (If terminate, proceed to "ENDRO3"; if proceed, skip
 next two steps; if other response, repeat this step.)
Perform "BLANKET" with TS = 00004g
End Job
TS = K:MINMINIM (ascent)
If FLGNRD10 bit 13 (APSFLAG) = 0, TS = TS + K:MINLMD (descent)
If LEMMASS \leqTS, proceed to "DAPDATA2"
MASS = LEMMMASS
If DAPBOOLS bit 13 (CSMDOCKD) = 1:
 If CSMMASS \leq K:MINCSM, proceed to "DAPDATA2"
 MASS = LRMMASS + CSMMASS
Perform "REsTORDB" with interrupts inhibited
If FLGNRD10 bit 13 (APSFLAGG) = 1, proceed to "ENDEXT" (ascent)
Perform "GOXDSPFR" with TS = K:VO6N48 (PITTIME, ROLITIME)
 (If terminate, proceed to "ENDEXT"; if proceed, skip
 next two steps; if other response, repeat this step)
Perform "BLANKET" with TS = 00004g
(blank R3)
End Job
Call "TRIMGIMB" in 0.01 second
End Job
```

TRIMGIMB Switch FLAGWRD6 bit 10 (GMBDRVSW) to 0
Switch bits 12 and 10 of channel 12 to 0 ( $-Q$ and $-R$ off)
Switch bits 11 and 9 of channel 12 to 1 ( $+Q$ and $+R$ on)
Delay 60 seconds (drive gimbals to stops)
Switch bits 11 and 9 of channel 12 to 0
Switch bits 12 and 10 of channel 12 to 1
Call "PITCHOFF" in PITTIME centiseconds
Delay ROLLTIME centiseconds
Switch bit 12 of channel 12 to 0
Skip next step
PITCHOFF Switch bit 10 of channel 12 to 0
If FLAGWRD6 bit 10 (GMBDRVSW) = 1, establish "TRIMDONE" (pr10)
If FLAGWRD6 bit $10=0$, switch FLAGWRD6 bit 10 to 1
End task
TRIMDONE Perform "GOMARK3R" with TS $=$ K:V50N48 (PITTIME, ROLLTIME) The TS is formed by adding $13000_{8}$ to K:VO6N48 (If terminate, proceed to "ENDEXT"; if proceed, proceed to "ENDEXT"; If other response, proceed to "ENDEXT")

Perform "BLANKET" with TS $=00024 g \quad$ (PERFREQ and R3BLNK)
End job
ENDRO3 Inhibit interrupts
Perform "RESTORDB"
Proceed to "ENDEXT"

If 1J.JACCR 5 1JACCQ, proceed to "BIGIQ"
EPSILON $=(1 \mathrm{JACCQ}-1 \mathrm{JACCR}) / 1 \mathrm{JACCQ}$
If EPSILON >K:EPSMAX, EPSILON $=K:$ EPSMAX
COEFFR $=\mathrm{K}: 0.707+\mathrm{K}: 0.35356$ EPSILON
COEFFQ $=(-1+$ EPSIION $)$ COEFFR
Return
BIGIQ mEPSILON $=(1 \mathrm{JACCQ}-1 \mathrm{JACCR}) / 1 \mathrm{JACCR}$
If $\mid$ mEPSIION $\mid>K: E P S M A X, \operatorname{mEPSILON}=-K: E P S M A X$
COEFFQ $=-\mathrm{K}: 0.707+\mathrm{K}: 0.35356 \mathrm{mEPSILON}$
COEFFR $=(-1-$ mEPSILON $)$ COEFFQ
Return

1dACOAST -16, 1dACOAST $_{0}, 1 \mathrm{dACOAST}_{16}$, 1dACOSTT $_{0}$ : Single precision inverse of magnitude of offset acceleration expected to oppese positive jet torques, scaled B8 in units of seconds squared per revolution. Limited to a maximum value. See description of storage sequence below.

1dACOAST $_{-15}, 1 d A C O A S T_{1}, 1$ dACOAST $_{17}$, 1dACOSTT $_{1}$ : Single precision inverse of magnitude of offset acceleration expected to oppose negative jet torques, scaled B8 in units of seconds squared per revolution. Limited to a maximum value. See description of storage sequence below.
1dANET ${ }_{0}, 1 \mathrm{dANET}_{16}$, $1 . \mathrm{dATEM} 1_{0}$, 1dATEMP: Single precision inverse of the 1-jet, net acceleration expected in a negative sense around an axis, scaled B8 in units of seconds squared per revolution. If this 1-jet acceleration cannot counteract an opposing offset acceleration and the required jets are not failed, the appropriate ACCSW is set to -1 and the inverse of the $2-j e t$, net acceleration is stored in this cell. See description of storage sequence below.
1dANET ${ }_{1}$, 1dANET ${ }_{17}$, 1dATEM1 $_{1}$, 1dATEMP: Single precision inverse of the 1 -jet, net acceleration expected in a positive sense around an axis, scaled B8 in units of seconds squared per revolution. If this 1-jet acceleration cannot counteract an opposing offset acceleration and the required jets are not failed, the appropriate ACCSW is set to 1 and the inverse of the $2-j e t$, net acceleration is stored in this cell. See description of storage sequence below.
1dANET -14 , 1dANET ${ }_{2}$, 1dANET $_{18}$, 1dATEM1 2 , 1dATEMP: Single precision inverse of the 2 -jet, net acceleration expected in a negative sense around an axis, scaled B8 in units of seconds squared per revolution. If a jet failure is present for the axis in question, the $1-j e t$, net acceleration is stored in this cell. See description of storage sequence below.

1dANET $13^{\prime}$ 1dANET ${ }^{2}, 1 d A N E T$ 19, 1dATEM1 3 , 1dATEMP: Single precision inverse of the 2 -jet, net acceleration expected in a positive sense around an axis, scaled B8 in units of seconds squared per revolution. If a jet failure is present for the axis in question, the 1 -jet, net acceleration is stored in this cell. See description of storage sequence below.

1JACCP, 1JACCQ, 1JACCR: (Program notation also 1JACC, 1JACC +1, and $1 \mathrm{JACC}+2$, respectively). Single precision angular accelerations expected from a single RCS jet fired around the $P, Q$ and $R$ axes, respectively; computed in "1/ACCS" or in "DOCKED" from empirical functions of the mass of the vehicle, scaled B-3 in units of revolutions per second squared.

1JACCU: Single precision angular acceleration expected from a single RCS jet fired around the $U$ or $V$ axes; computed from a function of $1 J A C C Q$ and $1 J A C C R$ and scaled B-2 in units of revolutions per second squared.
2JETLIM: See DAPA sectipn.

ABDELV: Single precision magnitude of sensed change in velocity, scaled B14 in units of centimeters per second.

ABSAOS: Single precision magnitude of sensed offset acceleration, scaled $B-2$ in units of revolutions per second squared.

ACCDOTQ, ACCDOTR: Magnitude of rate of change of the offset acceleration; a function of inertia and c.g. position for the DPS whose gimbals are driven at a constant rate; zero for the APS which has no gimbals; scaled B-8 in units of revolutions per second cubed. Single precision.
$A^{\prime} C C_{C T}$, ACCFCT ${ }_{16}$, ACFTEM ${ }_{0}$ Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the l-jet, net acceleration expected in a negative sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a positive sense around an axis. If no offset acceleration is expected in a positive sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
ACCFCT $_{1}$, ACCFCT $_{17}$, ACFTEM $_{1}$ : Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the l-jet, net acceleration expected in a positive sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a negative sense around an axis. If no offset acceleration is expected in a negative sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.
ACCFCT ${ }^{\prime}$, ACCFCT ${ }_{2}$, ACCFCT ${ }_{18}$, ACFTEM ${ }_{2}$ : Single precision function defining the fintersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the $2-j e t$, net acceleration expected in a negative sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a positive sense around an axis. If no offset acceleration is expected in a positive sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.

$$
\text { DAPB }-24
$$

ACCFCT-13, $\operatorname{ACCFCT}_{3}, \operatorname{ACCFCT}_{19}, \mathrm{ACFTEM}_{3}$ : Single precision function defining the intersection on the phase plane of two parabolic trajectories (paths of constant acceleration), scaled B8 in units of seconds squared per revolution. One trajectory corresponds to the 2-jet, net acceleration expected in a positive sense around an axis, and the other trajectory corresponds to the offset acceleration expected in a negative sense around an axis. If no offset acceleration is expected in a negative sense around the axis, the second parabola is based on a minimum acceleration and defines the minimum limit cycle that can be achieved. See description of storage sequence below.

ACCSW ${ }_{0}$, ACCSW ${ }_{1}$, ACCSWTEM: Single precision, three-option switches for the U and V axes, respectively, scaled B14 and unitless. Set if the net acceleration in one direction is very small (large opposing offset acceleration) to indicate to "TJETLAW" that maximum jets must be used if a rotation in that direction is required. (See "RETURNTJ".)

ADRSDIF1, ADRSDIF2: Single precision address indices, scaled B14 and unitless. ADRSDIFl distinguishes among the 3 axes and between positive and negative torque and acceleration parameters; ADRSDIF2 distinguishes between one and two jet parameters. (Only 2-jet parameters computed for the P-axis.)

ALLOWGTS: See DAPA Section.
ALPHAQ, ALPHAR: See DAPA Section.
ANET: Single precision expected net acceleration, scaled B-2 in units of revolutions per second squared.

AOSQ, AOSR: See DAPA Section.
AOSU, AOSV: Single precision disturbing acceleration due to thrust vector/ c.g. offset or other external torques around the $U$ and $V$ axes respectively, scaled B-2 in units of revolutions per second squared.
AXISCTR: See DAPA Section.
AXISDIST ${ }_{j}$ : Single precision difference between the E axis intercept defining the zone 1 boundary and the $E$ axis intercept defining the cutoff parabola, scaled B-3 in units of revolutions. The cutoff parabola is one with slope defined by Amin and intercept at FIREDB + FLAT on the same side of the EDOT axis, or the cutoff parabola is one with slope defined by offset acceleration and intercept at 0.75 FIREDB on the other side of the EDOT axis.

AXISDIST-I6, AXISDIST $0, \operatorname{AXISDIST}_{16}$, AXDSTEMO, UAXDIST 0 : AXISDIST for positive EDOT:

AXISDIST $_{-15}, \operatorname{AXISDIST}_{1}$, AXISDIST $_{17}$, AXDSTEM $_{1}$, UAXDIST $_{1}:$ AXISDIST $^{\text {for }}$ negative EDOT.

CH5MASK: See DAPA Section.
COASTDB $_{i}(i=-16,-15,0,1,16,17):$ Single precision deadband defining the ZONE4, ZONE5 border, scaled B-3 in units of revolutions. See description of storage sequence below.

COEFFQ, COEFFR: See DAPA Section.
CSMMASS: Single precision astronaut input of the mass of the CSM, scaled B16 in units of kilograms. Part of erasable load.

DAPBJOLS: See DAPA Section.
DAPDATRI: Single precision communication cell used in the astronaut interface routine to allow him to change APSFLAG and selected bits of DAPBOOLS.

DB: Single precision RCS deadband, set by the astronaut or by internal programs at one of 3 fixed values, scaled B-3 in units of revolutions.

DBBl, DBB4: FIREDB and COASTDB for positive EDOT, scaled B-3 in units of revolutions.

DBB2, DBB3: FIREDB and COASTDB for negative EDOT, scaled B-3 in units of revolutions.

DBVALl, DBVAL2, DBVAL3: Single precision modifications to the basic deadband used to define COASTDB and FIREDB under various different operational conditions of the DAP, scaled B-3 in units of revolutions.

DKDB: Single precision inverse of the attitude deadband in the CSM-docked RCS control law, scaled Bl5 in units of revs ${ }^{-1}$; initialized to 00200 (corresponding to $1 / 1.4 \mathrm{deg}$ ) by a fresh start. Part of erasable load.

DOCKTEMP: Single precision storage for bit 13 of DAPBOOLS sceled B2 and unitless. Used to eliminate unnecessary masking operations.

DRIFTER: Single precision storage for bit 8 of DAPBOOLS to assure uniformity of drifting flight assumptions throughout "l/ACCS," scaled Bl 4 and unitless.

E, EDOT: Single precision attitude error and attitude rate error used to define positions on the phase plane and calculate the duration of any RCS jet firings that are deemed necessary, scaled B-1 and B-3, respectively in units of revolutions and revolutions per second at entry to "TJETLAW" and "SPSRCS" subroutines. Note that EDOT is also used as rate-to-be-gained in response to RHC commands.

EDOTSQ: Single precision square of EDOT, scaled B-10 in units of revolutions squared per second squared.

EPSILON: Single precision quantity providing a measure of control torque cross-coupling. It is equal to the ratio of the Q-axis inertia to the R-axis inertia subtracted from one. Scaled BO and unitless.

FIREDB $_{i}(i=-16,-15,0,1,16,17):$ Single precision deadband defining the ZONE123, ZONE/4 border, scaled B-3 in units of revolutions.

FIREFCT: Single precision function of E, EDOT, net acceleration and FIREDB used to define zones $1-2-3$ and $4-5$ and used with ACCFCT and TTOAXIS to calculate the duration of the RCS jet firing time, scaled B-3 in units of revolutions. See description of storage sequence below.

FLAT, FLATEMP: Single precision deadband defining the ZONE1, ZONE2-3 boundary, scaled B-3 in units of revolutions.

HH: The double precision square of the time from the E-axis to the intersection of the parabolic phase plane trajectories and the parabolic switch curve, scaled B4 in units of seconds squared.

HIASCENT: Single precision upper bound on the mass of the ascent stage, scaled B16 in units of kilograms. Initialized in fresh start and/or loaded with the erasable load.

HOLDQ: Single precision octal return address storage.
INGTS: See DAPA Section.
K:0.35356: Single precision constant, stored as $13241_{8}$. It is equal to $\sqrt{2} / 4$, scaled BO and unitless.

K:0.707: Single precision constant, program notation .7071 , stored as $26501_{8}$, scaled BO and unitless. Equation value: 0.70709

K:l00msB2: Single precision constant, program notation -.05AT2 or .1AT4, stored at $\pm 0.025$, scaled B2 in units of seconds. Equation value: +0.1 (equivalent to 100 milliseconds)

K:150mssq: Single precision constant, program notation -. Oll2A8, stored as 777508 , scaled $B 4$ in units of seconds squared. Equation value: +0.02246 . (equivalent to $149.9^{2}$ milliseconds ${ }^{2}$ )

K:ldlo: Single precision constant stored as 031468 , program notation $1 / 10$, scaled BO and unitless. Equation value: 0.1

K:ldp03: Single precision constant stored as 37777 , scaled B8 in units of seconds squared per revolution. Equation value: 255.98 (equivalent to $1 /\left(1.407 \mathrm{deg} / \mathrm{sec}^{2}\right)$ )

K:lJACCON: - Single precision constant stored as 001678 and scaled B13 in units of $\mathrm{rev}-\mathrm{Kg} / \mathrm{sec}^{2}$. Equation value 59.50. Used to obtain P-axis control authority for the docked configuration.

K:200msB2: Single precision constant, program notation .lAT2, stored as 014638, scaled B2 in units of seconds. Equation value: 0.2

K:250msB2: Single precision constant, program notation BITll, stored as $02000_{8}$, scaled B2 in units of seconds. Equation value: 0.25.

K:25msB2: Single precision constant, program notation -.025AT4, stored as $77631_{8}$, scaled B2 in units of seconds. Equation value: 0.025

K: 2jlimdwn: Single precision constant stored as $01000_{8}$, program notation BITl0 scaled B-3 in units of revolutions per second. Equation value: 0.00391 (equivalent to 1.4 degrees per second)

K:300msB2: Single precision constant, program notation -.15AT2, stored as 754628, scaled B2 in units of seconds. Equation value: 0.3

K:37.5msB2: Single precision constant, program notation .0375AT4, stored as 00232 g , scaled B2 in units of seconds. Equation value: 0.0376.

K:4secB5: Single precision constant stored as 737778, prognam notation $-1 / 8$, scaled B5 in units of seconds. Equation value: +4.0

K:50msB2: Single precision constant, program notation -.025AT2, stored as -0.0125 , scaled B2 in units of seconds. Equation value: +0.05 (equivalent to +50 milliseconds)

K:50mssq: Single precision constant, program notation NEG2, stored as 77775 , scaled B 4 in units of $\mathrm{f}_{2}$ seconds squared. Equation value: +0.001953 (equivalent to $44.2^{2}$ milliseconds squared)

K:85mssq: Double precision constant, program notation .00375A8, stored as $0.00375 \times 2^{-3}$, scaled B4 in units of seconds squared. Equation value: 0.0075 (equivalent to $86.6^{2}$ milliseconds squared)

K:acp: Constant implicit in addition of two quantities of unequal scaling, scaled $B-8$ in units of revolutions per second squared. Equation value: 0.00390625 (equivalent to 1.4 degrees per second squared)

K: AXISDIFF ${ }_{i}$ : Three single precision constants, scaled $B 14$ and unitless. Equation value: $-16,0$ and 16 for $i=-1,0$ and 1.

K: BOtoBlO: Effective scale factor introduced by treating a quantity scaled BO as if it were scaled BlO, scaled B1O in units of centiseconds. Equation value: 1024 (equivalent to 10.24 seconds)

K:cgcoef $A, B, C, D, E, F$ Six single precision coefficients for a curve fit of the form $A x^{2}+B y^{2}+C x y+D x+E y+F$, used to find the rate of change of the DPS moment arm around the c.g. of the docked configuration.

Program	Stored	Scale
Notation	Value	Factor
COEFF+9	-0.37142	B-31
COEFF+8	0.75704	B-31
COEFF+6	0.20096	B-31
COEFF+11	0.41179	B-15
COEFF+10	-0.63117	B-15
COEFF+7	0.13564	B1


Units	Equation Value
cm $\mathrm{sec}^{-1}$ rev rad ${ }^{-1} \mathrm{~kg}^{-2}$	-1.7296 E-10
cm sec ${ }^{-1}$ rev rad ${ }^{-1} \mathrm{~kg}^{-2}$	3.5252 E-10
cm sec ${ }_{-1}^{-1}$ rev rad ${ }^{-1} \mathrm{~kg}$	9.3579 E-11
$\mathrm{cm} \mathrm{sec}-1 \mathrm{rev} \mathrm{rad}^{-1} \mathrm{~kg}^{-1}$	1.2567 E-5
cm sec ${ }^{-1}$ rev rad ${ }^{-1} \mathrm{~kg}^{-1}$	-1.9262 E-5
cm sec ${ }^{-1}$ rev rad ${ }^{+1}$	0.27128

The equation value of each constant embodies the two constant factors $1 / 2 \pi$ and 0.2 degrees per second. The first is a conversion factor to convert radians to revolutions; the second is the DPS gimbal rate. If the equation value is maltiplied by $2 \pi$ and divided by 0.2 , the resulting coefficients will give an idea of the programmed value for DPS moment arm per degree of thrust vector/c.g. offset. For exsmple, ( 0.27128 2 $1 /$ / $0.2) 360=2 \pi 488.3$, the circumference of a circle with radius equal to the c.g. to pivot point distance. Thus, using only the constant term of the polynomial, this distance is about 500 centimeters or about 200 inches.

K:DGBF: Single precision constant, stored as 231468 , scaled B-1 and unitless. Equation value: 0.3

K:dvtoacc: Constant implicit in the 2 -second navigation cycle, scaled B-1 in units of seconds to the minus one power. Equation value: $\frac{1}{2}$

K:EPSMAX: Single precision constant, stored as 623628, but used in this writeup as though it were positive. It provides the magnitude limit for EPSILON and mEPSILON. Scaled BO and unitless. Effectively constrains the $U$ ' and $V^{\prime}$ axes within 15 deg. from the $U, V$ axes. Equation value: 0.422668

K:FINE: Single precision constant stored as $05220_{8}$, scaled B-15 in units of revolutions per second per RHC-count squared. See definition of STIKSENS in the DAPA Section. Equation value: 0.0000050365.

K:FLATVAL: Single precision constant, stored as 004438 , scaled B-3 in units of revolutions. Equation value: 0.00222 (equivalent to 0.8 degrees)

K:GFACTM: Single precision constant stored as 003378, used to convert from units of pounds (force) to units of $\mathrm{kg} \mathrm{cm} /$ second2; scaled Bl5 in units of $\mathrm{kg} \mathrm{cm} \mathrm{sec}-2 / \mathrm{lbs}$. Equation value: 446 (corresponds to 4.4482 newtons per pound times $100 \mathrm{~cm} /$ meter )

K:HIDESCNT: Single precision constant stored as $0736 l_{8}$, saaled Bl6. in units of kilograms. It is the upper bound on descent stage mass. Equation value: 15300

K:INERCONA $A_{i}$ : Set of six double precision constants scaled Bl3 in units of revolutions $/ \mathrm{sec}^{2} \mathrm{~kg}^{-1}$.

$\underline{i}$	Stored value	Equation value
0	0.0059347674	48.6176145
2	0.0014979264	12.2710131
4	0.0010451889	8.5621875
6	0.0065443852	53.6116036
8	0.0035784354	29.3145428
10	0.0056946631	46.6506801

K:INERCONB ${ }_{j}$ : Set of six single precision constants scaled B-3 in units of revolutions per second squared.

$\mathbf{i}$	Stored value		
			Equation va
0	0.002989		$3.7363 \mathrm{E}-4$
2	0.018	791	
4	0.021345		$2.3489 \mathrm{E}-3$
6	0.000032		$2.6681 \mathrm{E}-3$
8	0.162862		$2.0030 \mathrm{E}-6$
10	0.009312		$1.1640 \mathrm{E}-2$

K:INERCONC ${ }_{i}$ : Set of six single precision constants scaled Bl6 in units of kilograms.

i	Stored value		Equation value
0	0.008721		571.5
2	-0.068163	-4467.1	
4	-0.066027	-4327.1	
6	-0.006923	-453.7	
8	0.002588	169.6	
10	-0.023608	-1547.2	

K:inrtcofA, B, C, D, E and F: Six single precision coefficients of a curve fit of the form $A x^{2}+B y^{2}+C x y+D x+E y+F$ used to find the approximate moment of inertia around an axis in the $Q-R$ plane of the combined CSM LM.

	Program   Notation	Stored Value	Scale Factor	Units	Equation   Value
A	COEFF +3	-0.03709	B6	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}^{2}$	-2.37376
B	COEFF +2	-0.17670	B6	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg} 2$	-1.13088 E1
C	COEFF +0	0.19518	B6	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}{ }^{2}$	1.24915 El
D	COEFF +5	0.02569	B22	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}$	1.07752 E 5
E	COEFF +4	0.06974	B22	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad} \mathrm{kg}$	2.92511 E5
F	COEFF +1	-0.00529	B38	$\mathrm{kg} \mathrm{cm} 2 / \mathrm{rad}$	-1.45410 E9

K:LconA: Double precision constant, program notation INERCONA -2, stored as 0.0410511917, scaled B19 in units of kilograms feet per radian. Equation value: 21522.647

K:LconB: Single precision constant, program notation INERCONB -2, stored as 0.155044 , scaled B3 in units of feet per radian. Equation value: 1.240352

K:LconC: Single precision constant, program notation INERCONC -2, stored as -0.025233 , scaled B16 in units of kilograms. Equation value: -1653.7

K:LOASCENT: Single precision constant stored as $2200 \times 2^{-16}$; the lower bound on ascent stage mass, scaled Bl6 in units of kilograms. Equation value: 2200

K:LODESCNT: Single precision constant stored as 00666 , scaled Bl6 in units of kilograms. It plus HIASCENT is the lower bound on the unstaged LM mass. Equation value 1752

K:m.1875: Single precision constant stored as 7l777g, but used in this writeup as though it were positive. Scaled B-2 with units of revs/ $\mathrm{sec}^{2}$. Equation value: 0.04687 (corresponds to $16.87 \mathrm{deg} / \mathrm{sec}^{2}$ )

K:m0.3DdS: Single precision constant stored as 776228 , program notation $-0.3 \mathrm{D} / \mathrm{S}$, scaled $\mathrm{B}-3$ in units of revolutions per second. Equation value: 0.00083 (equivalent to 0.3 degrees per second)

K:m0.6DdS: Single precision constant, program notation $-0.6 \mathrm{D} / \mathrm{S}$, stored as 774458 , scaled B-3 in units of revolutions per second. Equation value: 0.00166 (equivalent to 0.6 degrees per second)
, K:m3deg: Single precision constant stored as 756738. Scaled B-3 in units of revolutions. Equation value: -0.00833 (equivalent to -3 degrees)

K:m3toml: Constant implied in combining EDOT, scaled B-3 in units of revolutions per second, with E, scaled B-l in units of revolutions; scale factor B2, units seconds. This is the inverse of the slope of the switch curves in the docked RCS phase plane. Equation value: 4

K:MINCSM: Single precision constant stored as 02000 g, scaled Bl6.in units of kilograms. Equation value: 4096

K:miniacc: Single precision constant, program notation -. 03R/S2, stored as 773778, scaled B-2 in units of revolutions per second squared. Equation value: +0.0039 (corresponds to 0.02454 radians per second squared or $1.4060 / \mathrm{sec}^{2}$ )

K:minimpt: Single precision constant, stored as 000408, program notation BIT6, scaled B2 in units of seconds. Equation value: $2^{-7}$ (equivalent to 7.8 ms )

K:MINLMD: Single precision constant stored as 764668 , but used as positive, scaled B16:in units of kilograms. Equation value: 2852.

K:MINMINLM: Single precision constant stored as 767318, but used as positive, scaled B16 in units of kilograms. Equation value: 2200.

K:NARROWDB: Single precision constant stored as 001558, scaled B-3 in units of revolutions. Equation value: 0.00083 (equivalent to $0.2994^{\circ}$ )

K:nomaxjts: Single precision constant stored as 400008 , scaled B-3 in units of revolutions per second. Equation value: +0.12499 (equivalent to 44.997 degrees per second)

K: NORMAL: Single precision constant stored as 25101 , scaled B-15 in units of revolutions per second per RHC-count squared. Equation value: 0.000020148 . See definition of STIKSENS in the DAPA Section.

K: POWERDB: Single precision constant stored as 005548 , scaled B-3 in units of revolutions. Equation value: 0.00277 (equivalent to 1 degree)

K: RATEDB1: Single precision constant, stored as 000458, scaled B-3 in units of revolutions per second. Equation value: 0.0002823 (equivalent to $0.102^{\circ} / \mathrm{sec}$ )

K: RATELIMI: Single precision constant, stored as $00032_{8}$, scaled Bl7 in units of seconds per revolution. Equation value: 208 or 1.0/0.0048 (equivalent to $1 / 1.730 / \mathrm{sec}$ )

K: RATEIIM2: Single precision constant stored as 006328, scaled B-3 in units of revolutions per second. Equation value: 0.003128 (equivalent to $1.126^{\circ} / \mathrm{sec}$ )

K: RUFRATE: Single precision constant stored as 044768, scaled B-3 in units of revs/sec. Used as a rate limit in TJETLAW phase plane calculations. Equation value: 0.01805 (equivalent to 6.5 degrees $/ \mathrm{sec}$ )

K:SENSOR: Single precision constant stored as 14400 , scaled B8 in units of centiseconds per second. Used to convert scaling used in "TJETLAW" to that used for TIME6 calculations. Equation value: 100

K:tinyacc: Single precision constant, program notation. $023 \mathrm{R} / \mathrm{S} 2$, stored as 003558 , scaled $B-2$ in units of revolutions per second squared. Equation value: 0.003631 (equivalent to 0.02281 radians per $\sec ^{2}$ or 1.307 degree $/ \mathrm{sec}^{2}$ )

K:tjmax: Single precision constant, program notation -TJMAX, stored as -0.0375 , scaled B2 in units of seconds. Equation value: +0.15 (equivalent to +150 milliseconds)

K:tjmin: Single precision constant, program notation -TJMIN or TJMIN, stored as $\pm 0.005$, scaled B2 in units of seconds. Equation value: +0.02 (equivalent to 20 milliseconds)

K:TORKJETl: Single precision constant stored as 0.03757, scaled B22 in units of foot-pounds/radians sec ${ }^{-1}$. Equation value: 157580 (corresponds to about 550/0.00349). The torque expected from one RCS jet is 550 foot-pounds and the rotation rate of the DPS gimbals is nominally $0.2^{\circ} / \mathrm{sec}$.

K:TORQCONS: Double precision constant stored as $0.51443 \times 2^{-14}$, scaled B35 in units of kilogram centimeters squared revolutions/radians seconds squared. Equation value: 1078837.90 (equivalent to 500 foot-pounds $x 13557 \mathrm{~kg} \mathrm{~cm}^{2}$ per ft-lb x $\left.1 / 6.2832 \mathrm{rev} / \mathrm{rad}\right)$

K: UTIME ${ }_{i}$ ( $i=0,1,2$ ): Single precision constants giving time in deciseconds between RLS jet firings for the docked configuration. Stored as: 000048 for the P-axis, 00012 for the U-axis, $00012 g$ for the V-axis. Scaled B14 with units of deciseconds. Equation values: 4, 10, and 10, respectively.

K:WIDEDB: Single precision constant stored as 034348, scaled B-3 in units of revolutions. Equation value: 0.013885 (equivalent to 4.9990 )

K:ZONE3MAX: Single precision constant stored as 0.004375 , scaled B2 in units of seconds. Equation value: 0.0175 (equivalent to 35 msec . of single jet firing)

LEMMASS: Single precision mass of thia LM, scaled B16 in units of kilograms; part of:sthe enasable load.

LPVTARM: Single precision proportionality factor between the DPS gimbal angle and the moment arm of the thrust around the c.g., scaled B3 in units of feet per radian, program notation L,PVT-CG. Because the DPS gimbal angles are small, LPVTARM is approximately equal to the distance between the c.g. and the DPS pivot point.

MASS: Double precision mass of the vehicle, scaled B16 in units of kilograms; part of the erasable load.
mEPSILON: Single precision quantity with same function as EPSILON. It is equal to one subtracted from the ratio of the R-axis inertia to the Q-axis inertia. Scaled BO and unitless.
$M P A C_{0}$ : Single precision working storage used in "l/ACCS" to store the torque expected from the DPS engine, scaled B17 in units of foot-lbs per radian (radians of rotation of the DPS bell); used in "DOCKED" to store the rate of change of the DPS moment arm, scaled Bl in units of centimeters per second-revolutions per radian.
$M P A C_{1}$ : Single precision working storage used in "DOCKED" to store the combined vehicle moment of inentia around an axis in the $Q-R$ plane, scaled B38 in units of kilogram centimeters squared per radian.

NUMBERT: See DAPA Section.
OLDSENSE: Single precision quantity giving the sign of the jet firing time, calculated in the preceding pass through the DAP, for the axis under consideration. Scaled Bl4 with units of deciseconds.

PITTIME: Single precision time to drive the DPS gimbal in a positive direction around the Q-axis starting at the hard stop to position it prior to a burn, scaled Bl4 in units of centiseconds. Pad loaded.

PJETCTR $_{i}$ : See DAPA Section.

QACCDOT, RACCDOT: See DAPA Section.
QDAPK, RDAPK: See DAPA Section.
RATEDB: See DAPA Section.
RATEINDX: Single precision index used by large attitude maneuver calculation routines to select the maneuver rate, scaled Bl3 and unitless. Determined by the setting of bits 1 and 2 of DAPBOOLS: possible values $0,1,2$, or 3.

ROLLTME: Single precision time to drive the DPS gimbal in a positive direction around the R-axis starting at the hard stop to position it prior to a burn, scaled B14 in units of centiseconds. Pad loaded.

ROTSENSE: Single precision, two-valued switch specifying the direction of desired rotation, scaled B8 in units of centiseconds per second.

SENSETYP: See DAPA Section.
STIKSENS: See DAPA Section.
T5ADR: See DAPA Section.
$T J_{0}, T J_{1}, T J_{2}:$ See DAPA Section.
TTOAXIS: Time from the present point on the phase plane to the E-axis along the parabolic trajectory defined by the net acceleration, scaled B2 in units of seconds.
$\mathrm{UAXDIST}_{i}:$ See AXISDIST pgs. DAPB 25 and 26.
UDB1, UDB2, UDB3, UDB4: Temporary storage for DBB1, DBB2, DBB3, and DBB4 as computed for the U-axis, scaled B-3 in units of revolutions.

UV: Single precision index to distinguish between $U$ and $V$ axes, scaled B14 and unitless.

Z3TEM: Temporary storage with same scaling as K:ZONE3MAX.
ZONE3LIM: Single precision time defining the border between ZONE2 and ZONE3, scaled B2 in units of seconds.

E-memory Register

BLOCKTOP +0
BLOCKTOP+1
BLOCKTOP+2
BLOCKTOP +3
BLOCKTOP+4
BLOCKTOP+5
BLOCKTOP+6
BLOCKTOP +7
BLOCKTOP+8
BLOCKTOP+9
BLOCKTOP+10
BLOCKTOP+11
BLOCKTOP+12
BLOCKTOP+13
BLOCKTOP+14
BLOCKTOP+15
BLOCKTOP+16
BLOCKTOP +17
BLOCKTOP+18
BLOCKTOP +19
BLOCKTOP +20
BLOCKTOP+21
BLOCKTOP+22
BLOCKTOP+23
BLOCKTOP +24
BLOCKTOP +25
BLOCKTOP +26
BLOCKTOP +27
BLOCKTOP+28
BLOCKTOP+29
BLOCKTOP +30
BLOCKTOP+31
BLOCKTOP +32
through
BLOCKTOP +47

Contents of cell

ACCSWU
ACCSWV
1dANET for negative, 2-jet acceleration around P-axis 1dANET for positive, 2 -jet acceleration around P-axis 1dACOAST, negative around $P$ 1dACOAST, positive around $P$ FLAT
ZONE3LIM
ACCFCT corresponding to negative, 2-jet acceleration around $P$ ACCFCT corresponding to positive, 2-jet acceleration around $P$ FIREDB for positive EDOT around $P$ FIREDB for negative EDOT around P COASTDB for positive EDOT around $P$ COASTDB for negative EDOT around $P$ AXISDIST for positive EDOT, P-axis AXISDIST for negative EDOT, P-axis

1dANET for negative, 1-jet acceleration around U-axis 1dANET for positive, 1-jet acceleration around U-axis 1dANET for negative, 2 -jet acceleration around U-axis 1dANET for positive, $2-j e t$ acceleration around U-axis 1dACOAST, negative around $U$ 1dACOAST, positive around U ACCFCT corresponding to negative, 1-jet acceleration around U
ACCFCT corresponding to positive, 1-jet acceleration around U
ACCFCT corresponding to negative, 2-jet acceleration around U
ACCFCT corresponding to positive, 2-jet acceleration around U
FIREDB for positive EDOT around U FIREDB for negative EDOT around U COASTDB for positive EDOT, U-axis COASTDB for negative EDOT, U-axis AXISDIST for positive EDOT, U-axis AXISDIST for negative EDOT, U-axis

V-axis parameters identical in description to U-axis parameters but around V-axis instead of U-axis

Address used in Computations

```
ACCSW
ACCSW
1 dANET
 \(-14\)
1 dANET
 -13
```

1dACOAST
$1 \mathrm{dACOAST}_{-15}^{-16}$
FLAT
ZONE3LIM
ACCFCT-14
ACCFCT-13
FIREDB
FIREDB ${ }^{-16}$
COASTDB ${ }^{15}$
COASTDB ${ }^{-16}$
AXISDIST̄ ${ }^{15}$
AXISDIST ${ }^{-15}$
$1 \mathrm{dANET}_{0}$
$1 \mathrm{dANET}_{1}$
$1 \mathrm{dANET}_{2}$
$1 \mathrm{dANET}_{3}$
1dACOAST
$1 \mathrm{dACOAST}_{1}^{0}$
$\mathrm{ACCFCT}_{0}$
$\mathrm{ACCFCT}_{1}$
$\mathrm{ACCFCT}_{2}$
$\mathrm{ACCFCT}_{3}$
FIREDB
F IREDB
COASTDB
COASTDB
AXISDIST
AXISDIST ${ }_{1}^{0}$
U-axis subscripts
plus 16
-

```
NVSUB (Entered with TSvm and TSmonopt in A and L)
 NVTEMP = TSvn (verb-noun code)
FREEDSKY = 0
If DSPLOCK > 0, return (astronaut using DSKY)
If bit 14 of MONSAVE1 = 1, return (externally initiated monitor)
NVQTEM = return address
MONSAVE2 = TSmonopt (monitor options)
MONSAVE1 = 400008 (terminate monitor)
ENTRET = "NVSUBEND"
If |NVTEMP| = 0, proceed to "DSPALARM"
If NVTEMP < O, proceed to "BLANKDSP"
TSnoun = low 7 bits of NVTEMP
TSverb = bits 14-8 of NVTEMP shifted right 7 places (NPAC4)
If TSnoun = 0:
VERBREG \(=\) TSverb
 Perform "UPDATVB"
 REQRET = +0 (process verb-noun information)
 Proceed to "NVSUBEND"
If TSverb = 0:
 NOUNREG = TSnoun
 Perform "UPDATNN"
 Proceed to "NVSUBEND"
TSadr = MPAC2
 (MPAC 5)
VERBREG = TSverb
Perform "UPDATVB"
```

```
 NOUNREG = TSnoun
 Perform "UPDATNN"
 LOADSTAT = +o
 CLPASS = 0
 REQRET = +0
MPAC 2 = TSadr
Proceed to "ENTPASO"
BLANKDSP CODE = 6 +|NVTEMP | (CODE = 7, 8, 9 or 10 for legal options;
Inhibit interrupts
Perform indented steps for i = CODE, CODE - 1, ... 4, 3, 2, 1, 0
 If DSPTAB}\mp@subsup{i}{i}{}>0, NOUT = NOUT + 1
 DSPTAB}\mp@subsup{i}{i}{}=04000% complemented to flag for outpu
 (end of "indented steps")
 Release interrupt inhibit
 If NVTEMP \leq - 3, VERBREG = 0
 If NVTEMP \leq-2, NOUNREG = 0
 CLPASS = 0
 DSPCOUNT = -19 (inhibit all numerical inputs)
 Switch bit 6 of channel }11\mathrm{ to O (flash off)
 REQRET = +O , (process verb-noun information)
NVSUBEND FREEDSKY = 1
Return via NVQTEM
```

ENTPASO Switch DECBRNCH to $00000_{8}$
DSPCOUNT $=-19 \quad$ (to block entry of numerical characters)
VERBSAVE $=-$ VERBREG
If VERBREG $\geq 28$, proceed to "VERBFAN"
TESTNN Perform "LODNNTAB"
If MLXBR $=2$, proceed to "MDXNOUN"
If NNADTEM $>0$ : (normal noun address)
NOUNCADR $=$ NNADTEM
EBANK = bits 11-9 of NNADTEM
NOUNADD $=01400_{8}+$ bits $8-1$ of NOUNCADR
Proceed to "VERBFAN"
If NNADTEM $=+0$, proceed to "DSPALARM" (noun is not valid)
If NNADTEM $=-0$ : (increment present noun address)
NOUNCADR $=$ NOUNCADR +1
FBANK = bits 11-9 of NOUNCADR
NOUNADD $=01400_{8}+$ bits $8-1$ of NOUNCADR
If VERBREG $\neq 5$ : (verb 5 uses R3; cannot display NOUNCADR)
DSPCOUNT $=K:$ R3D1
Perform "DSPOCTWD" with TSwd = NOUNCADR
Proceed to "VERBFAN"
(Otherwise, address is to be specified)
CLPASS $=-K:$ posmaxsp (to prevent multiple clears)
If ENTRET $\neq$ "ENDOFJOB": (internal)
NOUNCADR $=$ MPAC $_{2}$
EBANK = bits 11-9 of NOUNCADR

```
(If internal "address to be specified")
 NOUNADD = 014008
 If VERBREG }=5\mathrm{ 5:
 DSPCOUNT = K:R3D1
 Perform "DSPOCTWD" with TSwd = NOUNCADR
Proceed to "VERBFAN"
Perform "REQDATZ" (request noun address; return via REQRET)
If DECBRNCH }\not=000008\mathrm{ , proceed to "ALMCYCLE"
DSPCOUNT = - 19 (to block further numerical characters)
If CADRSTOR }\not=+0\mathrm{ : (internal display request interrupted)
 Switch.bit 6 of channel }11\mathrm{ to 1 (leave flash on)
NOUNCADR = ZREG (loaded in "REQDATZ")
EBANK = bits 11-9 of NOUNCADR
NOUNADD = 014008
Perform "LODNNTAB" (reload NNTYPTEM)
Proceed to "VERBFAN"
LODNNTAB NNADTEM = K:NNADTAB NOUNREG
NNTYPTEM = K:NNTYPTAB
If NOUNREG < 40: ("normal" noun)
 MIXBR = 1
 Return
MIXBR =2 (miyed noun)
RUTMXTEM = K:RUTMXTAB }\mp@subsup{\mathrm{ NOUNREG}}{}{\mathrm{ N}
i = low 10 bits of NNADTEM
IDADTEM
IDADTEM
DATA - 4
```

IDADTEM $_{3}=\mathrm{K}:$ IDADTAB $_{\mathbf{i}+2}$
Return
MIXNOUN
If NNADTEM $=$ +o, proceed to "DSPALARM" (noun not valid)
If VERBREG $>6$, proceed to "VERBFAN" (not a display verb)
Perform the indented steps for $\mathrm{i}=2,1$, and 0 NOUNTEM $=$ IDADTEM $_{i+1}$ $T S=$ high $5(i=2)$, mid $5(i=1)$ or low $5(i=0)$ bits of RUTMXTEM shifted right 10, 5 or 0 places to bit positions 5 through 1

If TS $=4,5,7$ or 10: (double precision)
NOUNTEM $=$ NOUNTEM +1 (specify minor part for octal display)
EBANK = bits II-9 of NOUNTEM
TSadr $=01400_{8}+$ low 8 bits of NOUNTEM
MIXTEMP $_{i}=$ contents of address specified in TSadr (End of "indented steps")

NOUNADD $=$ "MIXTEMP" (In a routine such as "DSPABC" then, the "contents of cell specified by ( $2+$ NOUNADD)" will be the contents of MIXTEMP $_{2}$, loaded above.)
Proceed to "VERBFAN"
DSPALARM If ENTRET $=$ "NVSUBEND", proceed to "POODOO" with $T S=21501_{8}$
If ENTRET = "PASTEVB":
MONSAVEI $=40000_{8}$
Switch bit 7 of channel 11 to 1 (operator error)
Proceed to "PASTEVB"
Switch bit 7 of channel 11 to 1
End job
VERBFAN If VERBREG $\geq 40$ : (extended verb)
TSextfan $=$ VERBREG -40
Perform "RELDSP"
Proceed to "GOEXTVB"

Proceed to routine specified by the contents of VERBREG


DSPA

DSPB

DSPC

If $\mathrm{MIXBR}=1$, $\mathrm{TS}=$ high 5 bits of NNTYPTEM ( $\mathrm{xxx} \times x 0000000000$ ) If $\operatorname{MLXBR}=2, \mathrm{TS}=$ high 5 bits of NNADTEM

If bit 14 of $T S=1$, proceed to "DSPALARM" (noun is decimal oniy) If $\operatorname{NNADTEM}=-1$ : (noun specified a channel)
$\mathrm{BUF}_{0}=-$ (contents of channel specified by 1 ow 9 bits of NOUNCADR)
Proceed to "DSPCOM2"
If MIXBR $=1$ :
(minor part
TS $=$ mid 5 bits of NNTYPTEM shifted right 5
If $T S=4,5,7$ or $10 ;$ NOUNADD $=$ NOUNADD +1 (specify minor part if double precision) already specified for mixed nouns in "MIXNOUN" logic)
$\mathrm{BUF}_{\mathrm{O}}=-$ contents of cell specified by NOUNADD
(mixed noun
Proceed to "DSPCOM2"
If $\operatorname{MIXBR}=1, \mathrm{TS}=$ high 5 bits of NNTYPTEM
If $\operatorname{MLXBR}=2$, $T S=$ high 5 bits of NNADTEM
If bit 14 of $T S=1$, proceed to "DSPALARM"
$\mathrm{TS}=$ Iow 2 bits of (TS shifted right 10)
If $T S<1$, proceed to "DSPALARM" (noun has no second component)
$\mathrm{BUF}_{\mathrm{O}}=-$ contents of cell specified by $\left(1+\right.$ NOUNADD) $\underset{\text { (mixed noun specifies } \text { MIXTEMP }_{1} \text { ) }}{\text { nen }}$
Proceed to "DSPCOM2"
If $\operatorname{MDXBR}=1, \mathrm{TS}=$ high 5 bits of NNTYPTEM
If $\operatorname{MLXBR}=2$, $T S=$ high 5 bits of NNADTEM
If bit 14 of $T S=1$, proceed to "DSPALARM"
TS = low 2 bits of (TS shifted right 10)
If $\mathrm{TS}<2$, proceed to "DSPALARM"
$\mathrm{BUF}_{\mathrm{O}}=-$ contents of cell specified by ( $2+$ NOUNADD $)$
Proceed to "DSPCOM2"

DSPAB
If $\operatorname{MLXBR}=1, T S=$ bits $12-11$ of NNTYPTEM shifted right 10
If $\mathrm{MLXBR}=2$, $\mathrm{TS}=$ bits $12-11$ of NNADTEM. shifted right 10
If $T S<1$, proceed to "DSPALARM" (noun has no second component)
$\mathrm{BUF}_{1}=-$ contents of cell specified by ( $1+$ NOUNADD $)$
Proceed to "DSPA"
DSPABC If $M T X B R=1, T S=$ bits $12-11$ of NNTYPTEM shifted right 10
If $\operatorname{MLXBR}=2, \mathrm{TS}=$ bits $12-11$ of NNADTEM shifted right 10
If $T S<2$, proceed to "DSPALARM" (noun has no third component)
$\mathrm{BUF}_{2}=-$ contents of cell specified by $(2+$ NOUNADD $)$
Proceed to "DSPAB"
DSPCOM2 $i=0$
If $\operatorname{VERBREG}=4$, $i=1$
If VERBREG $=5$, $i=2$
If $i=2$ :
DSPCOUNT $=\mathrm{K}:$ R3D1 $\quad(4)$
Perform "DSPOCTWD" with TSwd $=-\mathrm{BUF}_{2}$
i $=$ i-1
If $i=1$ :
DSPCOUNT $=K:$ R2D1
Perform "DSPOCTWD" with TSwd $=-$ BUF $_{1}$
DSPCOUNT $=\mathrm{K}:$ R1D1
Perform "DSPOCTWD" with TSwd $=-$ BUF $_{0}$
If ENTRET $=$ "ENDOFJOB", end job
Proceed to address specified by ENTRET

```
DECDSP If MIXBR \(=1\), DECOUNT \(=\) bits \(12-11\) of NNTYPTEM
If \(\operatorname{MIXBR}=2\), DECOUNT \(=\) bits \(12-11\) of NNADTEM \(\quad \mathrm{B} 4\) to B14)
If DECOUNT = 2: (three components)
 ZREG \(=-\) contents of cell specified by (\(2+\) NOUNADD \()\)
If DECOUNT \(\geq 1\) : (two or three components)
 YREG \(=-\) contents of cell specified by (\(1+\) NOUNADD)
XREG \(=\) - contents of cell specified by NOUNADD
DSPDCPUT If DECOUNT \(=2\) :
 DSPCOUNT = K:R3D1
\(\mathrm{MPAC}_{\text {sp }}=-\) ZREG
If \(\mathrm{MIXBR}=1\), \(\mathrm{i}=\) low 5 bits of NNTYPTEM
If \(M I X B R=2\), \(i=\) high 5 bits of NNTYPTEM shifted right 10
If DECOUNT = 1 :
DSPCOUNT \(=\mathrm{K}:\) R2DI
\(\mathrm{MPAC}_{\mathrm{sp}}=-\mathrm{YREG}\)
If MIXBR = l, i = low 5 bits of NNTYPTEM
If MIXBR \(=2\), \(i=\) mid 5 bits of NNTYPTEM shifted right 5
If DECOUNT \(=0\) :
DSPCOUNT \(=\mathrm{K}:\) RIDI
\(\mathrm{MPAC}_{\mathrm{sp}}=-\mathrm{XREG}\)
If \(\operatorname{MIXBR}=1\), \(\mathbf{i}=\) low 5 bits of NNTYPTEM
If \(\mathrm{MIXBR}=2\), \(\mathbf{i}=\) low 5 bits of NNTYPTEM
SFTEMPI \(=K:\) SFOUTAB \(_{i}\)
If MIXBR \(=2\), i \(=\) high 5, mid 5 or low 5 bits of RUTMXTEM shifted right 10,5 or 0 according to whether DECOUNT \(=2,1\) or 0
```

If $M I X B R=1$, $i=$ mid 5 bits of NNTYPTEM shifted right 5
(i now contains the index determining the type of display)
DECDSP3
If $i=0$ : (octal only noun)
DSPCOUNT $=-19$
Proceed to "DSPALARM"
If $i=1$, proceed to "DSPDCEND"
If $i=2$, proceed to "DEGOUTSF"
If $i=3$, proceed to "ARTOUTSF"
If $i=4$ :
Perform "DPOUT"
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}:$ bl4tob0 $\mathrm{MPAC}_{\mathrm{tp}}$
If $i=5$ or 10:
Perform "DPOUT"
If $i=6$, proceed to "LRPOSOUT"
If $i=7$ :
Perform "DPOUT"
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}: \mathrm{b}^{\text {7tob0 }} \mathrm{MPAC}_{\text {tp }}$
If $i=8$, proceed to "HMSOUT"
If $i=9$, proceed to $" M /$ SOUT"
If $i=11$, proceed to "AROUTISF"
If $i=12$, proceed to "2INTOUT"
If $i=13$, proceed to "360-CDUO"
If $i=14$, proceed to "RRANGOUT"
If $i=15$, proceed to "RRDOTOUT"
Proceed to "DSPDGEND"
ARTOUTSF If $\mathrm{MPAC}_{\mathrm{O}}=-0:$

$$
\begin{gathered}
\mathrm{MPAC}_{\mathrm{dp}}=-0, \text { skip next line } \\
\text { DATA }-10
\end{gathered}
$$

$M P A C_{d p}=$ SFTEMP1 MPAC $s p$
Proceed to "DSPDCEND"
DEGOUTSF (Entered with SFTEMP1 $=0$ and MPAC $_{\text {sp }}$ between $-\frac{1}{2}$ and $+\frac{1}{2}$ revs $B-1$ ) $\mathrm{MPAC}=\mathrm{MPAC}_{\mathrm{sp}}$ converted to one's complement form
If MPAC $<0$ :

$$
\mathrm{MPAC}=\mathrm{MPAC}+\frac{1}{2}
$$

$$
\text { SFTEMPI }=\frac{1}{2}
$$

$M_{P A C}=K: 0.180(M P A C+S F T E M P 1)$
(exit with MPAC ${ }_{d p}$ between 0 and 360 degrees scaled E3)
Proceed to "DSPDCEND"
DPOUT If MLXBR = 1 , TS = NOUNADD
If $\mathrm{MLXBR}=2:$

$$
\mathrm{i}=\mathrm{DECOUNT}+1
$$

EBANK = bits ll-9 of IDADTEM $_{i}$
$\mathrm{TS}=0140 \mathrm{~g}_{8}+$ bits $8-1$ of IDADTEM $_{i}$
$M P A C_{d p}=\begin{gathered}\text { contents of double precision register whose address is } \\ \text { specified by } T S\end{gathered}$
Force sign agreement between two halves of $M P A C_{d p}$
$M P A C_{t p}=M P A C_{d p}$ SFTEMP1
Return
LRPOSOUT $M_{s p}=-$ bits $7-6$ of channel 33 shifted right 5
Proceed to "ARTOUTSF"
HMSOUT If MLXBR = 2:

$$
\begin{aligned}
& i=\text { DECOUNT }+1 \\
& \text { EBANK }=\text { bits } 11-9 \text { of } \text { IDADTEM }_{i} \\
& \text { TS }=01400_{8}+\text { bits } 8-1 \text { of } \text { IDADTEM }_{i}
\end{aligned}
$$

If $\mathrm{MLXBR}=1, \mathrm{TS}=\mathrm{NOUNADD}$
$\begin{aligned} M P A C \\ d p\end{aligned}=\begin{aligned} & \text { contents of double precision register whose address } \\ & \text { is specified by TS }\end{aligned}$
Force sign agreement between two halves of $M P A C d p$
$T S_{t p}=K: S E C O N I M P A C_{d p}$
HITEMOUT $=$ most significant third of $\mathrm{TS}_{t p}$
LOTEMOUT $=$ second most significant third of $\mathrm{TS}_{t p}$
$\mathrm{MPAC}_{d p}=$ fractional part of $T S_{t p}$
$\mathrm{MPAC}_{d p}=\mathrm{K}:$ SECON2 $\mathrm{MPAC}_{d p}$
DSPCOUNT $=\mathrm{K}:$ R3D1
Perform "DSPDECWD"
Discard fractional part of LOTEMOUT (shift right 12 then left 12)
$M_{P A C}$ tp $=\mathrm{K}:$ MINCON1 (HITEMOUT + LOTEMOUT added with regard for scaling) (yields hours in $\mathrm{MPAC}_{0}$ and minutes/60 in $\mathrm{MPAC}_{1}$, scaled B14 and BO respectively)

HITEMOUT $=$ most significant third of $\mathrm{MPAC}_{t p} \quad\left(\mathrm{MPAC}_{0}\right)$
If $\mathrm{MPAC}_{0}=-0$ :
$M P A C_{d p}=-0$, skip next line
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}: \operatorname{MINCON2} \mathrm{MPAC}_{1}$
DSPCOUNT $=\mathrm{K}: \mathrm{R} 2 \mathrm{D} 1$
Perform "DSPDECWD:
If HITEMOUT $=-0$ :
$M_{\text {MAC }}{ }_{d p}=-0$, skip next line
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{K}:$ HRCONI HITEMOUT
DSPCOUNT $=K: R I D 1$
Perform "DSPDECWD"
If ENTRET = "ENDOFJOB", end job
Proceed to address specified by ENTRET

If $\mathrm{MLXBR}=1, \mathrm{TS}=$ NOUNADD
If $\mathrm{MIXBR}=2$ :
$\mathbf{i}=$ DECOUNT +1
EBANK = bits 11-9 of DAADTEM $_{i}$
$T S=01400_{8}+$ bits 8-1 of IDADTEM $i$
$\begin{aligned} M P A C \\ d p\end{aligned}=\begin{aligned} & \text { contents of double precision register whose address } \\ & \text { is specified by TS }\end{aligned}$
Force sign agreement between two halves of $M P A C ~ d p$
If $\mid$ MPAC $_{d p}\left|\geq|K: M d S C O N 1|, M P A C_{d p}=K: M d S C O N 3\right.$ signMPAC $_{d p}$
If $\left|M P A C_{d p}\right|<|K: M d S C O N 1|, M P A C_{d p}=M P A C_{d p}+K: R N D C O N$ signMPAC $C_{d p}$ $T S_{t p}=K$ :SECON1 MPAC ${ }_{d p}$
HITEMOUT $=$ most significant third of $\mathrm{TS}_{t p}$
LOTEMOUT $=$ second most significant third of $\mathrm{TS}_{t p}$
$M_{\mathrm{MPAC}}^{d p} 10$ fractional part of $\mathrm{TS}_{t p}$
$M P A C_{d p}=K:$ HISECON MPAC ${ }_{d p}$
DSPCOUNT $=$ DSPCOUNT - 3 (previously set in "DSPDCPUT")
Perform "DSPDC2NR" (display seconds in RxD 4 and RxD5)
CODE $=0$
$T S=K: R 1 D 1, K: R 2 D 1$ or $K: R 3 D 1$ according to whether $D E C O U N T=0,1$ or 2
COUNT $=T S-2$
Perform "DSPIN" (blank middle digit)
Discard fractional part of LOTEMOUT (shift right 12 then left 12)
$M P A C_{t p}=$ K:MINCON1 (HITEMOUT + LOTEMOUT added with regard for scaling) (yields fraction of hours in MPAC ${ }_{1}$ scaled BO)
MPAC $_{d p}=K:$ HIMINCON MPAC $_{1}$
DSPCOUNT $=K:$ R3D1, $K:$ R2D1 or $K: R 1 D 1$ according to whether DECOUNT equals 2,1 or 0

	Perform "DSPDC2NR" (display minutes in RxD1 and RxD2)
	Proceed to second step of "DSPDCEND" (display already performed)
2INTOUT	Perform "5BLANK"
	Perform "+ON"
	Perform "DSPDECVN" with TS $=$ MPAC ${ }_{\text {sp }}$ (first integer to RxD1 and D2)
	$T S=K: R 1 D 1, K: R 2 D 1$ or K:R3D1 according to whether DECOUNT $=0,1$ or 2
	DSPCOUNT $=\mathrm{TS}-3$
	If $\operatorname{MLXBR}=1, \mathrm{TS}=1+$ NOUNADD
	If $\mathrm{MIXBR}=2$ :
	$\mathbf{i}=$ DECOUNT +1
	EBANK = bits 11-9 of IDADTEM ${ }_{\text {i }}$.
	$\mathrm{TS}=01400{ }_{8}+1+$ bits $8-1$ of IDADTEM $_{i}$
	$\mathrm{MPAC}_{1}=$ contents of single precision register whose address is specified by TS
	Perform "DSPDECVN" with TS $=\mathrm{MPAC}_{1}$ (second to RxD 4 and RxD 5 )
	Proceed to second step of "DSPDCEND" (display already performed)
360-CDUO	If MPAC ${ }_{\text {sp }} \neq 0$ or $-\frac{1}{2}$ :
	$\mathrm{MPAC}_{s p}=-\mathrm{MPAC}_{s p} \quad$ (two's complement)
	Proceed to "DEGOUTSF"
DSPDCEND	Perform "DSPDECWD"
	If DECOUNT > 0 :
	DECOUNT $=$ DECOUNT - 1
	Proceed to "DSPDCPUT"
	If ENTREIT. = "ENDOFJOB", end job
	Proceed to address specified by ENTRET

DSPDPDEC If MIXBR $=2$, proceed to "DSPALARM".
$\begin{aligned} & M P A C \\ & d p\end{aligned}=$ contents of double precision register whose address
DSPCOUNT $=\mathrm{K}:$ R1D1
Force sign agreement in MPAC ${ }_{d p}$
Perform "DSP2DEC"
If $E N T R E T=$ "ENDOFJOB", end job
Proceed to address specified by ENTRET

```
MONITOR TSadr \(=\) NOUNCADR with bits 15 and 14 switched to 0
 If ENTRET = "ENDOFJOB" (externally initiated)
 Switch bit 14 of TSadr to 1
 MONSAVE2 \(=00000_{8} \quad\) (set in "NVSUB" if internal)
 TSvn \(=\) (bits 7-1 of VERBREG shifted left 7) + NOUNREG
 DSPLOCK \(=0\)
 If CADRSTOR \(=0\), perform "RELDSP1"
 Inhibit interrupts
 If MONSAVE = O, call "MONREQ" in 0.01 second
 MONSAVE \(=\) TSvn
 MONSAVE1 = TSadr
 Release interrupt inhibit
 If ENTRET = "ENDOFJOB", end job
 Proceed to address specified by ENTRET
MONREQ SAMPTIME \(=\) TIMENOW
 If bit 15 of MONSAVE1 = 1 :
 MONSAVE \(=0\)
```

```
 (If bit 15 of MONSAVE1 = 1:)
 MONSAVE1 = 0000008
 End task
 Call "MONREQ" in 1 second
 Establish "MONDO" (pr30)
 End task
MONDO
 If bit 15 of MONSAVE1 = 1, end job
 If DSPLOCK > 0:
 Switch bit 5 of channel 11 to 1 (key release lamp)
 End job
 NOUNREG. = bits 7-1 of MONSAVE
 Perform "UPDATNN"
 VERBREG = (bits 14-8 of MONSAVE shifted right 7) - 10
 ENTRET = "PASTEVB"
 MPAC 2 = bits 13-1 of MONSAVE1 (address)
 Proceed to "TESTNN" (continues at "PASTEVB" after display
 verb is executed)
PASTEVB TS = bits 14-8 of MONSAVE2
 If TS = 0, TS = bits 14-8 of MONSAVE
 VERBREG = TS shifted right 7 places
 Perform "UPDATVB"
 REQRET = +0
 TSblank = MONSAVE2
 Perform "BLANKSUB"
 End job
```

```
UPDATNN Perform "LODNNTAB"
 If NNADTEM こ+O:
 NOUNCADR = NNADTEM
 EBANK = bits 11-9 of NNADTEM
 NOUNADD = 014008
 DSPCOUNT = K:ND1
 Perform "DSPDECVN" with TS = NOUNREG
 Return
UPDATVB DSPCOUNT = K:VD1
 Perform "DSPDECVN" with TS = VERBREG
 Return.
DSPMMJOB TSmmtemp = DSPCOUNT
 DSPCOUNT = K:MD1
 If MODREG = -0, perform "2BLANK"
 If MODREG \geq +O, perform "DSPDECVN" with TS = MODREG
 DSPCOUNT = TSmmtemp
 End job
ALMCYCLE Switch bit 7 of channel 11 to 1 (operator error lamp)
 REQRET = - VERBSAVE (to make it positive)
 VERBREG = - VERBSAVE
 Perform "UPDATVB"
 CLPASS =0
 ENTRET = "ENDOFJOB"
 Proceed to "ENTPASO"
```

ALOAD Perform "REQDATX" (return is via REQRET after data entry)
Perform "LODNNTAB"
Perform "PUTCOM" with DECOUNT $=0$
Store TS from "PUTCOM" in address specified by NOUNADD
Proceed to "LOADLV"
BLOAD Perform "GETCOMP"
$T S=$ low 2 bits of (TS shifted right 10)
If $\mathrm{TS}<1$, proceed to "DSPALARM" (noun has no 2nd component)
CLPASS $=-K:$ posmaxsp
Perform "REQDATY" (return is via REQRET after data entry)
Perform "LODNNTAB"
Perform "PUTCOM" with DECOUNT = 1
Store TS from "PUTCOM" in address specified by (1 + NOUNADD)
Proceed to "LOADLV"
CLOAD . Perform "GETCOMP"
$\mathrm{TS}=$ low 2 bits of (TS shifted right 10)
If $\mathrm{TS}<2$, proceed to "DSPALARM" (noun has no 3rd component)
CLPASS $=-K:$ posmaxsp
Perform "REQDATZ" (return is via REQRET after data entry)
Perform "LODNNTAB",
Perform "PUTCOM" with DECOUNT $=2$
Store TS from "PUTCOM" in address specified by ( $2+$ NOUNADD)
Proceed to "LOADLV"

ABLOAD
TS = low 2 bits of (TS shifted right
If $\mathrm{TS}<1$, proceed to "DSPALARM" (noun has no 2nd component)
Perform "GETCOMP"
If bit 15 of $T S=1$, proceed to "DSPALARM" ("no-load" noun)
VERBREG $=\mathrm{K}:$ VB21
Perform "UPDATVB"
Perform "REQDATX". (return is via REQRET after data entry)
VERBREG $=\mathrm{K}:$ VB22
Perform "UPDATVB"
Perform "REQDATY"
Bits 5 and 4 of DECBRNCH now indicate whether the numbers loaded were decimal (1) or octal.(0). (See routine "BOTHSGN") If both are not the same (one component octal, the other decimal):

Proceed to "ALMCYCLE"
Perform "LODNNTAB"
Perform "PUTCOM" with DECOUNT $=0$
Store TS from "PUTCOM" in address specified by NOUNADD
Perform "PUTCOM" with DECOUNT = 1
Store TS from "PUTCOM" in address specified by (1 + NOUNADD)
Proceed to "LOADLV"
ABCLOAD Perform "GETCOMP"
$\mathrm{TS}=$ low 2 bits of (TS shifted right 10)
If $T S<2$, proceed to "DSPALARM" (noun has no 3rd component)
Perform "GETCOMP"
If bit 15 of $T S=1$, proceed to "DSPALARM" ("no-load" noun)
VERBREG $=\mathrm{K}:$ VB2I
Perform "UPDATVB"

Perform "REQDATX" (return is via REQRET after data entry)
VERBREG = K:VB22
Perform "UPDATVB"
Perform "REQDATY"
VERBREG $=\mathrm{K}: \mathrm{VB} 23$
Perform "UPDATVB"
Perform "REQDATZ"
Bits 3, 4 and 5 of DECBRNCH now indicate whether the numbers loaded were decimal (1) or octal (0). If the three bits are not all 1 or all 0 (some components octal and some decimal):

Proceed to "ALMCYCLE"
Perform "LoDNNTAB"
Perform "PUTCOM" with DECOUNT $=0$
Store TS from "PUTCOM" in address specified by NOUNADD
Perform "PUTCOM" with DECOUNT $=1$
Store TS from "PUTCOM" in address specified by ( $1+$ NOUNADD).
Perform "PUTCOM" with DECOUNT $=2$
Store TS from "PUTCOM" in address specified by ( $2+$ NOUNADD)
If NOUNREG $\neq 7$, proceed to "LOADLV"
Inhibit interrupts
$\mathrm{TS}=\mathrm{XREG}-30_{8}$
If $T S \leq 0$, proceed to "CHANBITS"
EBANK = bits ll-9 of XREG
NOUNADD $=01400_{8}+$ (bits 8-1 of XREG)
Channel 1 = contents of location specified by Nounadd
$\mathrm{XREG}=1 \quad$ (channel 1 is the computer L register)
$\mathrm{TS}=1$
CHANBITS If TS $+21_{8}=0$, proceed to "BITSOFF2" (channel 7)
If $\mathrm{ZREG} \leq 0$ :
Set those bits of channel ${ }_{\text {XREG }}=0$ that are 1 in YREG

Set those bits of channel XREG $=1$ that are 1 in YREG
BITSOFF1 If XREG $=1$ or $X R E G<0, E_{\text {NOUNADD }}=$ Channel 1 (computer L register BITSOFF2 Release interrupt inhibit

Proceed to "LOADLV"

GETCOMP If MDXBR $=1$, TS $=$ high 5 bits of NNTYPTEM
If $\mathrm{MIXBR}=2$, $\mathrm{TS}=$ high 5 bits of NNADTEM
Return
PUTCOM DECRET = return address
Set overflow indicator to 0
$\begin{aligned} \mathrm{MPAC}_{\mathrm{dp}}= & (\mathrm{XREG}+\mathrm{XREGLP}),(\text { YREG }+ \text { YREGLP) or }(\text { ZREG }+ \text { ZREGLP) }) \\ & \text { according to whether } D E C O U N T=0,1 \text { or } 2\end{aligned}$
If $M I X B R=1$, proceed to "PUTNORM"
$i=$ DECOUNT +1
NOUNCADR = low 11 bits of IDADTEM $_{i}$
EBANK = bits 11-9 of NOUNCADR
NOUNADD $=\left(01400_{8}+\right.$ bits $8-1$ of NOUNCADR $)-$ DECOUNT
If DECBRNCH $>0$ : (decimal)
Perform "GETI" with TS = NNTYPTEM
SFIEMP1 $=K:$ SFINTAB $_{i}$
Perform "GETI" with TS = RUTMXTEM
Proceed to "PUTDCSF2"
Perform "GETCOMP"
If bit 14 of $T S=1$, proceed to "ALMCYCLE" (decimal only)
Perform "GETI" with TS = RUTMXTEM

If $i=4,5,7$ or 10 : (double precision noun)
Set (the more significant half of the double precision register specified by NOUNADD + DECOUNT) $=0$

NOUNADD $=$ NOUNADD +1 (specify minor part)
Proceed to "PUTCOM2"

GETI	$i=$ high 5 bits (DECOUNT $=2$ ), mid 5 bits (DECOUNT = 1) or
	low 5 bits (DECOUNT = 0) of TS shifted right 10, 5 or 0 places according to whether DECOUNT $=2,1$ or 0 .
	(i is of the form $0000000000 \times x \times x x_{2}$ )
	Return
PUTNORM	EBANK = bits 11-9 of NOUNCADR (NOUNCADR set in "TESTNN")
	NOUNADD $=01400{ }_{8}+$ bits $8-1$ of NOUNCADR
	If DECBRNCH $>0: \quad$ (decimal)
	$\mathrm{i}=$ low 5 bits of NNTYPTEM
	SFTEMP1 $=\mathrm{K}$ : SFINTAB ${ }_{i}$
	i $=$ mid 5 bits of NNTYPTEM shifted right 5
	Proceed to "PUTDCSF2"
	Perform "GETCOMP"
	If bit 14 of TS = 1, proceed to "ALMCYCIE" (decimal only)
	i $=$ mid 5 bits of NNTYPTEM shifted right 5
	If $i=4,5,7$ or 10: (double precision noun)
	Set (the more significant half of the double precision register specified by NOUNADD $=0$
	NOUNADD $=$ NOUNADD +1
	Proceed to "PUTCOM2"

If NNADTEM = -1: $\quad$ (channel load)
If NOUNCADR $=7$, proceed to "LOADLV"
Set channel specified by NOUNCADR equal to the more significant half of $M P A C$ dp (in low 9 bits of NOUNCADR)

Proceed to "LOADLV"
Proceed to "PUTCOM2"

```
PUTDCSF2 If i = 0, proceed to "ALMCYCLE" (octal only)
If i = 1, proceed to "BINROUND"
If i = 2, proceed to "DEGINSF"
If i = 3:
```

MPAC $_{\mathrm{dp}}=$ SFTEMP1 K:bOtobm14 MPAC ${ }_{\mathrm{dp}}$
If overflow, proceed to "ALMCYCLE"
Proceed to "BINROUND"
If $i=4$ or 7:
$M P A C_{t p}=S F T E M P 1$ MPAC ${ }_{d p}$
Proceed to "DPINSF+2"
If $i=5$ :
MPAC $_{\text {tp }}=$ SFTEMP1 $\mathrm{K}:$ bOtobm7 MPAC ${ }_{\mathrm{dp}}$
Proceed to "DPINSF+2"
If $i=6$, proceed to "DSPALARM" (LR position is display only)
If $i=8$, proceed to "HMSIN"
If $i=9$, proceed to "DSPALARM" ( $\mathrm{min} / \mathrm{sec}$ cannot be loaded)
If $i=10$ :
MPAC $_{t p}=$ SFTEMP1 $\mathrm{K}:$ bOtobm3 MPAC ${ }_{d p}$
Proceed to "DPINSF+2"

If $1=11$ :
MPAC $_{d p}=$ MPAC $_{d p}$ SFTEMP1
Proceed to "BINROUND"
If $1=12$, proceed to "DSPALARM"
If $1=13$, proceed to "DEGINSF"
If $1=14$ or 15 , proceed to "DSPAIARM" (RR data cannot be loaded)
BINROUND $M P A C \quad C_{s p}=M P A C_{d p}$ rounded off
If overflow, proceed to "ALMCYCLE"
Proceed to "PUTCOM2"
DPINSF+2 $\quad M P A C_{d p}=M P A C_{t p}$ rounded off
If overflow, proceed to "ALMCYCLE"
If $\mathrm{MIXBR}=1, \mathrm{TS}=$ NOUNADD
If $\mathrm{MIXBR}=2, \mathrm{TS}=\mathrm{NOUNADD}+\mathrm{DECOUNT}$
Store less significant half of MPAC in less significant half of double precision register specified by TS

MPAC $_{s p}=$ more significant half of MPAC ${ }_{d p}$
Proceed to "PUTCOM2"
DEGINSF $\quad M P A C_{d p}=K:$ DEGCON1 MPAC ${ }_{d p}$
$M P A C_{s p}=M P A C C_{d p}$ rounded off and rescaled to $\mathrm{B}-1$
If $\left|M P A C_{s p}\right| \geq 1\left(360^{\circ}\right)$, proceed to "ALMCYCLE"
MPAC $=M_{P A C}$ converted to two's complement form
If MPAC $\geq \frac{1}{2}\left(180^{\circ}\right)$ :

$$
M P A C=-(1-M P A C)
$$

If MPAC $<-\frac{1}{2}$ :
MPAC $=M P A C+1$
If $\mathrm{MIXBR}=1$, $\mathrm{i}=$ mid 5 bits of NNTYPTEM shifted right 5

If MIXBR $=2$, perform "GETI" with TS = RUTMXTEM
If $i \neq 2: \quad$ (360-CDU)
If $M P A C_{s p} \neq 0$ or $-\frac{1}{2}, M P A C_{s p}=-M P A C_{s p} \quad$ (two's complement)
$\mathrm{MPAC}_{\text {sp }}=\mathrm{MPAC}$
Proceed to "PUTCOM2"
HMSIN
If bits 3, 4 and 5 of DECBRNCH are not all 1: (three decimal components have not been loaded) VERBSAVE $=-\mathrm{K}:$ VB25 (initiate ABCLOAD) Proceed to "ALMCYCLE"
$T S=K: \operatorname{HRCON}\left(10^{5} \mathrm{MPAC}_{\mathrm{dp}}\right.$ rounded to whole hours)
If $|\mathrm{TS}| \geq 2^{28}$, proceed to "ALMCYCLE" (745 hour max)
HITEMIN $=$ TS
$T S=10^{5}$ (YREG + YREGLP) rounded to whole minutes
If $|\mathrm{TS}|>\mathrm{K}: 59 \mathrm{MIN}$, proceed to "ALMCYCLE"
HITEMIN $=$ HITEMIN $+\mathrm{K}:$ MINCON TS
If $\mid$ HITEMMN $\mid \geq 2^{28}$, proceed to "ALMCYCLE"
$T S=10^{5}$ (ZREG + ZREGLP) rounded to whole centiseconds
If $|\mathrm{TS}|>\mathrm{K}: 59.99 \mathrm{SEC}$, proceed to "ALMCYCLE"
$T S=$ HITEMIN $+T S$
If $|T S| \geq 2^{28}$, proceed to "ALMCYCLE"
$M P A C_{d p}=T S$ with forced sign agreement between two halves
Store $M P A C C_{d p}$ in double precision register specified by NOUNADD
Proceed to "LOADLV"
PUTCOMR $\quad$ TS $=$ MPAC $_{\text {Sp }}$
Return via DECRET

DSPFMEM DSPCOUNT $=\mathrm{K}:$ R1D1
If NOUNCADR $\neq 11 \mathrm{x} \times \times x \times x \times x \times x \times x_{2}$ :
$T S=$ contents of fixed memory cell whose address is specified by information in NOUNCADR (Standard fixed memory CADR format contains FBANK information in bits 15-11 and S-register information in bits 10-1.)

$\mathrm{TS}=$ contents of fixed memory cell whose address is specified by information in NOUNCADR and in DSPTEM1 ${ }_{2}$. (DSPTEM1 ${ }_{2}$ contains FBANK extension or "Superbank" information in bits 7-5 and must be loaded prior to verb 27 entry with a verb 23 , noun 26 for access to fixed memory banks $30_{8}$ through $43^{\circ}$.)

Perform "DSPOCTWD"
End job
MMCHANG
Perform "REQMM" (return is via REQRET on data entry)
If DSPCOUNT $\neq-16$, proceed to "ALMCYCLE"
$T S=$ NOUNREG $\quad$ (which contains desired major mode)
NOUNREG $=0$
Perform "2BLANK" with DSPCOUNT $=K$ :ND1
DSPCOUNT $=-19 \quad$ (to block further numerical entries)
MMNUMBER $=T S$
Proceed to "V37"
RRANGOUT $M P A C ~(15$ magnitude bits) converted to double precision
If RADMODES bit 3 (RRRSFLAG) $=0$ : (low scale)
Skip next step
$M P A C_{d p}=8 \mathrm{MPAC}_{\mathrm{dp}} \quad$ (high scale)
$M P A C_{t p}=$ MPAC $_{d \mathrm{p}}$ SFTEMP1
$\mathrm{MPAC}_{d p}=K: b 14$ tob0 $\mathrm{MPAC}_{t p}$
Proceed to "DSPDCEND"

$$
\begin{aligned}
& \text { RRDOTOUT }^{\text {MPAC }}{ }_{d p}=\text { MPAC }_{s p} \text { ( } 15 \text { magnitude bits) converted to double precision } \\
& M_{\text {MPAC }}=\text { MPAC }_{\mathrm{dp}}-17000 \quad \text { (subtract bias of } 17000 \text { counts) } \\
& \text { MPAC }_{t p}=\text { MPAC }_{d p} \text { SFTEMPI } \\
& \text { MPAC }_{d p}=K: b 14 t_{o b O} \text { MPAC }_{t p} \\
& \text { Proceed to "DSPDCEND" } \\
& \text { "AROUTISF" If MPAC }{ }_{0}=-0 \text { : } \\
& \text { MPAC }_{d p}=-0 \\
& \text { Skip next line } \\
& \mathrm{MPAC}_{d p}=\mathrm{K}: \text { bl4tobO SFTEMP1 MPAC }{ }_{\text {sp }} \\
& \text { Proceed to "DSPDCEND" }
\end{aligned}
$$

BUF $_{i}(i=0,1,2)$ : Three single precision octal working storage cells.

CADRSTOR: See DINT section.
CLPASS, CODE, COUNT: See DSKY section.

DECBRNCH: See DSKY section.
DECOUNT: Single precision number of components in a noun display, extracted from the relevant bits of NNTYPTEM or NNADTEM, scaled B14 and unitless. (Number of components = DECOUNT + 1.)

DECRET: Single precision octal return address storage.
DSPCOUNT, DSPLOCK: See DSKY section.
DSPTAB $_{i}(i=0-10):$ See DSKY section.
DSPTEM1, DSPTEM2, DSPTEMX: Single, double or triple precision display interface registers with variable scaling and units. See tables below.

EBANK: See MATX section.

ENTRET: Single precision octal address indicating whether the data input/output is under control of the astronaut or of internal programs.
FBANK: See MATX section.
FREEDSKY: Variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether the DSKY is free or unavailable for use by internal programs.

HITEMIN: Double precision working storage in "HMSIN", scaled B28 in units of centiseconds.

HITEMOUT: Single precision working storage for minutes scaled B16 or hours scaled B14.

DADTEM $_{i}$ ( $\mathrm{i}=1,2,3$ ): Three single precision octal words containing the address and EBANK information for each of the three separate registers that can be displayed or loaded by a mixed noun. (Equal to to if the component of the mixed noun is not utilized.)

K:0.180: Double precision constant stored as 05605803656 , scaled B1 in units of degrees per revolution; program notation is DEGTAB. Equation value: $360 / 1000$.

K:59Mm : Single precision constant stored as 00073 g, scaled B14 in units of minutes. Equation value: 59.

K:59.99SEC: Single precision constant stored as 135578, scaled B14 in units of centiseconds. Equation value: 5999.

K:bOtobm14: Constant representing the effect of a left shift of 14 , scaled B-14 and unitless. Equation value: 1.

K:bOtobm3: Constant representing the effect of a left shift of 3, scaled B-3 and unitless. Equation value: 1.

K:bOtobm7: Constant representing the effect of a left shift of 7, scaled B-7 and unitless. Equation value: 1.

K:b14tob0: Constant representing the effect of a left shift of 14 , scaled B-14 and unitless. Equation value: 1.

K:b7tob0: Constant representing the effect of a left shift of 7, scaled $B-7$ and unitless. Equation value: 1.

K:DEGCON1: Double precision constant stored as $5.555555555 \times 2^{-3}$, scaled B2 in units of revolutions per degree. Equation value: 1000 / 360.

K:HIMINCON: Single precision constant stored as 23346 , scaled BO in units of minutes per hour. Equation value: $60.8 / 100$ (for round off).

K:HISECON: Single precision constant stored as 23147 , scaled BO in units of seconds per minute. Equation value: 609100.

K:HRCON: Double precision constant stored as 00025837100 , scaled B28 in units of centiseconds per hour. Equation value: 360,000.

K:HRCON1: Double precision constant stored as 0.16384 , scaled B-14 and unitless. Equation value: 0.00001.

K:IDADTAB $(i=0-179)$ : Table of single precision addresses for mixed nouns, ${ }^{1}$ loaded into IDADTEM $1,2,3$ according to the value of NNADTEM Program name; IDADDTAB. 1,2,3

K:MD1: Single precision constant to cause a numerical display to be started in the first digit of the major mode (program) register, scaled Bl4 and unitless. Equation value: 21.

K:MdSCON1: Double precision constant stored as $77753_{\text {g }} 41126$, scaled B28 in units of centiseconds. Equation value: $-359,850^{\circ}$ (Equivalent to $-59: 58.5=-25 \mathrm{~g} 36652_{\mathrm{g}}$ because of CCS.)

K:MdSCON3: Double precision constant stored as 00025 , 37016 , scaled B28 in units of centiseconds. Equation value: 359,950. ${ }^{8}$ (Equivalent to 59:59.5.')

K:MINCON: Single precision constant stored as 13560 g, scaled B14 in units of centiseconds per minute. Equation value: 6000.

K:MINCON1: Double precision constant stored as 02104 g 10422 , scaled $B-2$ in units of hours per minute. Equation value: $1 / 60 .{ }^{8}$

K:MINCON2: Double precision constant stored as $00011_{8} 32445$ g, scaled BO in units of minutes per hour. Equation value: 60\%100000.

K:NDI: See DSKY section.
K:NNADTAB ( $i=0-99$ ): Table of single precision constants to be loaded into NhADTEM according to the value of NOUNREG. See tables 1 and 2 below.

K:NNTYPTAB; (i $=0-99$ ): Table of single precision constants to be loaded into NNTYPTEM according to the value of NOUNREG. See tables 1 and 2 below.

K:posmaxsp: See "Major Variables" section.
K:R1D1, K:R2D1, K:R3D1: See DSKY section.
$\mathrm{K}:$ RNDCON: Double precision constant stored as 00000 g 00062 g , scaled B28.
in units of centiseconds. Equation value: 50.0
K: RUTMXTAB ( $i=40-99$ ): Table of single precision constants to be loaded into RUTMXTEM according to the value of NOUNREG. See table 2 below.
K:SECON1: Double precision constant stored as $1.66666666 \mathrm{E}-4 \times 2^{12}$, scaled B-12 in units of minutes per centisecond. Equation value: 1/6000.

K:SECON2: Double precision constant stored as 01727801217 , scaled B-14 in units of seconds per minute. Equation value: 68/1000.

K:SFINTAB (i $=0-28$ ): Table of double precision constants with variable scaling and units, used to convert from units used on a DSKY display into units used in the LGC. See table 3 below.

K:SFOUTAB ( $i=0-28$ ): Table of double precision constants with variable scaling and units, used to convert from units used in the LGG to units used on a DSKY display. See table 3 below.

K:VB21, K:VB22, K:VB23, K:VB25: Single precision constants stored as 21,22 , 23, and 25 times two to the minus fourteenth power, scaled B14 and unitless: Equation values respectively: $21,22,23,25$.

K:VDI: See DSKY section.
LOADSTAT: ' See DINT 'section.
LOTEMOUT:'" Single precision working storage for minutes, scaled B2.
MIXBR: Single precision index indicating whether the noun being processed is a "mixed" noun (addresses non-consecutive E-memory cells) or a "normal" noun (addresses one or more consecutive E-memory cells); scaled B14 and unitless.

MIXTEMP ( $i=0,1,2$ ): Three consecutive single precision E-memory cells loaded with the values of the three non-consecutive registers addressed by a mixed noun so that the same display logic can be used for both normal and mixed after the MIXTEMP; are loaded and NOUNADD is set equal to the address of MIXTEMP ${ }_{0}$.

MMNUMBER: See PGSR section.
MODREG: Single precision register reflecting the status of the "major mode" or "program" number on the DSKY, scaled B14 and unitless.

MONSAVE: Single precision storage for monitor verb and noun (verb number in bits 14-8, noun in bits 7-1).

MONSAVEI: Single precision octal storage for the address of the noun to be displayed by the monitor routines. Bits 15 and 14 are used as flag bits; Bit 15 is set to terminate the monitor, and bit 14 is set to indicate that the monitor was initiated by the astronaut and thus takes priority over displays requested by the program.

MONSAVE2: Single precision storage for an octal blanking code and/or a verb to be "pasted" over the display verb during a monitor.
$M P A C, M P A C$ sp, $M P A C_{t p}$ : Single, double and triple precision working storage cells: $M P A C_{s p}=M P A C_{0}, M P A C_{d p}=M P A C_{0,1}, M P A C_{t p}=M P A C_{0,1,2}$
$M \mathrm{MPC}_{2}$ : Single precision storage for an octal address when an "address-tó-be-specified noun" is used by LGC programs. Instead of requesting the address from the astronaut, the program finds it in $M P A C C_{2}$. (see "TESTNN")

NNADTEM: Single precision octal word containing the following information. If the noun is a normal noun, NNADTEM contains the normal noun address and EBANK. If the noun is a mixed noun, NNADTEM contains the "no-load" and "decimal only" indicators (bits 15 and 14); the indication of the number of components in the noun (bits 12-11), and the index used to load IDADTEM $_{i}$ (see "LODNNTAB").

NNTYPTEM: Single precision octal word containing the following information. If the noun is a normal noun, NNTYPTEM contains the "no-load" and "decimal only" indicators (bits 15 and 14), the indication of the number of components in the noun (bits 12-11), the specification of the routine to be used for input/output (bits $10-6$ ), and the index used in selecting the scale factor to be used in input/output scaling (bits 5-1). If the noun is a mixed noun, NNTYPTEM contains the index used in selecting the scale factor for each of the three components. Bits 15-11 contain the index for the third component, bits $10-6$ contain the index for the second component, and bits 5-1 contain the index for the first component.

NOUNADD: Single precision octal address of register or registers to be displayed or loaded by the noun being processed.

NOUNCADR: Single precision octal address of the most recent register displayed by a normal noun or loaded.

NOUNREG: Single precision storage for the value of the number currently displayed in the noun register on the DSKY, scaled Bl4 and unitless.

NOUNTEM: Single precision temporary storage for the address of one of the components of a mixed noun.

NOUT: See INTR section.
NVQTEM: Double precision octal return address storage. Program notation for least significant half is NVBNKTEM.
NVTEMP: Single precision storage for verb-noun combination, the noun number stored in bits $7-1$ and the verb number stored in bits 14-8; used instead to indicate a desired blanking option if bit 15 is set (if NVTEMP is negative).

OPTION1, OPTION2, OPTION3: Three single precision option codes for display to the astronaut via noun 6. The first indicates the subject of the decision to be made, the second indicates the choice made, which he may accept or change, the third indicates flagbit settings.
RADMODES: See RADR section.
REQRET: See DSKY section.
RUTMXTEM: Single precision octal word loaded only for mixed nouns. Bits $15-11$ specify the routine to be used in input/output of the third component of the mixed noun; bits $10-6$ specify the routine for the second component; bits $5-1$ specify the routine for the first component.

SAMPTIME: See DSKY section.
SFTEMPI: Double, precision storage for the conversion/scale factor in decimal input/output routines.

TIMENOW: See EXVB section.
VERBREG: Single precision storage for the value of the number currently displayed in the verb register on the DSKY, scaled Bl4 and unitless.

VERBSAVE: Single precision storage for the value of VERBREG (complemented at the beginning of verb processing, see "ALMCYCLE").

VGDISP: See DELVSAB in BURN section.
XREG, XREGLP: Two halves (most and least significant) of the five digit number currently input into the first data register on the DSKY (RI), scaled BO assuming that the decimal point is on the left of the display register.

YREG, YREGLP: The equivalent of XREG and XREGLP for $R 2$ instead of R1.
ZREG, ZREGLP: The equivalent of XREG and XREGLP for R3 instead of R1.

Table 1
Normal Nouns


## Table 2

Mixed Nouns


Table 2 continued
8
|: $60 \quad 010260$

61110263

62110266

63010269
$64 \quad 110272$
$65 \quad 010275$
$66 \quad 110178$
67. 000281
$68 \quad 110284$
$69 \quad 010287$
,

69

K:IDADTAB
RANGE 001000101000111 RRATE RTHETA
NN
ELEV
CENTANG
RR-AZ
RR-ELEV
$+0$
5700000
$58 \quad 010254$
$59 \quad 010257$
K:NNTYPTAB

001000010000000

000000010000100

000000000000000
+0
+0
$+0$
POSTITPI DELVTPI DELVTPF
DVIOS $_{\mathrm{X}} \quad 010100101001010$ DVIOS ${ }_{y}$ DVIOS $_{\text {z }}$ HDOTDISP
HGALCI
TTTFDISP TTOGO OUTOFPLN
ABVEL TTIOGO DVTOTAL
ABVEL HDOTDISP HCALCI HDOTDISP
HCALC
SAMPTIME SAMPTIME SAMPTIME RSTACK6 000000000001110 $+0$
$+0$ RSTACK2
RSTACK 4
RANGEDSP TTFDISP DELTAH
DIANDZ DLANDY

FORVEL 110000101010001001000011100011

FUNNYDSP 110000101000000001000011101100

RSTACK $\quad 101011010010011 \quad 001000010000100$ DLANDX

K:RUTMXTAB
010100011100100

010100101000011

000000101001010

000000000000000

001110011100111

001110011100111

010100100101001

001110100100111

001000011100111

010000100001000

000000011000100

001000100101010

001000010000100

Table 2 continued

Noun	K : NNA ${ }^{\text {dTAB }}$		K:IDADTAB	K:NNTYPPTAB			K:RUTMXTAB		
70	0002	90	AOTCODE $\mathrm{AOTCODE}_{1}$ AOTCODE2	00000	00000	00000	00000	00000	00000
71	0002	93	AOTCODE AOTCODE1 AOTCODE?	00000	00000	00000	00000	00000	00000
72	0001	96	$\begin{aligned} & \mathrm{CDU}_{\mathrm{t}} \\ & \mathrm{CDUS}_{\mathrm{S}} \\ & +0 \end{aligned}$	00000	00010	00010	00000	00010	01101
73	0001	99	TANG 0 TANG 1 $+0$	00000	00010	00010	00000	00010	01101
74	1102	102	$\begin{aligned} & \text { TTOGO } \\ & \text { YAW } \\ & \text { PITCH } \end{aligned}$	00100	00100	00000	01010	01010	01001
75	1102	105	$\begin{aligned} & \text { DIFFALT } \\ & \text { T1TOT2 } \\ & \text { T2TOT3 } \end{aligned}$	00000	00000	01000	01001	01001	00111
76	0102	108	ZDOTD   RDOTD   XRANGE	01000	01010	01010	00111	00111	00111
77	1101	111	$\begin{aligned} & \text { TTOGO } \\ & \text { YDOT } \\ & \text { +O } \end{aligned}$	00000	01010	00000	00000	00111	01001
78	1102	114	DNRRANGE DNRRDOT TTOTIG	00000	01101	01100	01001	01111	01110
79	0102	117	CURSOR SPIRAL POSCODE	00000	00010	00010	00011	00010	00010
80	0001	120	DATAGOOD OMEGDISP $+0$	00000	00100	00000	00000	01010	00011
81	0102	123	DELVLVC $_{x}$ DELVLVC $_{y}$ DELVLVC $_{2}$	01010	01010	01010	00111	00111	00111
82	0102	126	DELVLVC ${ }_{x}$ DELVLVC $_{y}$ $\mathrm{DELVLVC}_{2}$	01010	01010	01010	00111	00111	00111
83	0102	129	DELVIMU ${ }_{x}$ DELVIMUy DELVIMU $_{2}$	01010	01010	01010	00111	OOLIl	00111
84	0102	132	DELVOV $_{x}$ DELVOVy $\mathrm{DELVOV}_{z}$	01010	01010	01010	00111	00111	00111

Table 2 continued


Table 3
Input/Output Scaling
Each description in the table is arranged in the following order:
Equation value
Scale factor and units
Stored value
(comment)

Index
0


2
0
B-l, revolutions 0
(used with nouns $3,18,20,22,41,72,73,79,87$ )
3 when used with noun 89

$$
\begin{array}{ll}
(100 / 360)+2^{-28} & 360 / 100 \\
B 0, \text { revolutions per degree } & \text { B7, degrees per revolution } \\
107078034358 & 007148314638
\end{array}
$$

3 when used with noun 93
$(100 / 360) 2^{-21}+2^{-7} \quad 2^{21} 360 / 100$
B-21, gyro torque pulses/deg B28 degrees per gyro pulse 107078034358 007148314638
$4 \quad(1000 / 360)+2^{-25}$
B3, revolutions per degree 130708343458 $360 / 1000$
BO, degrees per revolution 134128075348
(used with nouns $4,5,43,45,51,52,54,55,56,74,80,90,91$ )

$5 \quad$$1000 / 360$   Bl3, revolutions per degree   000058216168	$360 / 1000$   Bl degrees per revolution   056058036568

(not used)

K:SFINTABi
$10^{5} \times 0.45359237$
Bl6, kilograms per pound 261138317133
(used with noun 47)
$1852 \times 10^{3}$
B29, meters per nmi 000708204608
(used with nouns $54,89,90$ )
$1852 \times 10^{4}$
B29, meters per nmi 010658057408
$\underline{K}$ SFOUTAB $_{i}$
$2.2046268 / 10^{5}$
B-2, pounds per kilogram $\mathrm{OOOO1}_{8}{ }^{161708}$
(used with nouns $42,43,44,49,58,75,76,91$ )
$(0.3048 / 100) \times 10^{5}$
Blo, meters/cs per fps 114148314638
(used with noun 91)
(0.3048 / 100) $\times 10^{4}$ B7, meters/cs per fps 074758160518
$(100 / 0.3048) \times 105$
BO , fps per meter/cs $15340_{8} \quad 15340_{8}$ (equal halves)
(used with nouns $40,42,49,54,58,59,60,62,63,64,76,77,81-86,90,92$ )
$10^{2} / 360 \quad 360 / 10^{2}$
B12, revolutions per degree 000018034348

B2, degrees per revolution 346318231468
(used with noun 41)
$185210^{3} / 2.859026 \quad 2.859024 / 10^{3} 1852$
$B 28, R R$ range counts per nmi $B-14$ nmi per $R R$ range count 000478211358 006368145528
(used with noun 78)
$-1.59286 \times 10^{5}$
$-0.6278 / 10^{5}$
B28, RR rate counts per fps $77766850711_{8}$

B-14, fps per RR rate count 745528703078
(used with noun 78)
$(100 / 0.3048) 10^{-4}+2^{-21}$
BO, fps per meter/cs 010318210328
$5.3996 \times 10^{-4} / 10^{3}$
B-15, nmi per meter $00441_{8} 343068$
$5.3996 \times 10^{-4} / 10^{4}$
B-22, nmi per meter $07176_{8} 216038$

Index	K:SFINTAB ${ }_{i}$	K:SFOUTAB ${ }_{i}$
14	$\begin{aligned} & 10^{5} / 1.0790 \\ & \text { B28, IR alt counts per foot } \\ & 0.9267840599 \mathrm{E} 52^{-28} \\ & \text { (used with noun } 66 \text { ) } \end{aligned}$	$\begin{aligned} & 1.0790 / 10^{5} \\ & \mathrm{~B}-14, \text { feet per LR alt count } \\ & 1.079 \mathrm{E}-5 \mathrm{x} 214 \end{aligned}$
15	$\begin{aligned} & 105 / 2.345 \\ & \text { B28, bits per foot } \\ & 000028232248 \\ & \text { (not used) } \end{aligned}$	```2.345 / 105 B-14, feet per bit 142268 317578```
16	```105 / 0.5 B28, bits per fps 000148065008 (not used)```	$\begin{aligned} & 0.5 / 10^{5} \\ & \text { B-14, fps per bit } \\ & 024768{ }^{05531_{8}} \end{aligned}$
17	$\begin{aligned} & 0.18125 \times \mathrm{E} 5 \\ & \text { B28, bits. per fps } \\ & 0.18125 \mathrm{E} 5 \times 2^{-28} \\ & \text { (used with noun } 60 \text { ) } \end{aligned}$	$\begin{aligned} & 5.517 / 10^{5} \\ & \text { B-14, fps per bit } \\ & 5.517 \text { E-5 } 2^{14} \end{aligned}$
18	```105 / 360 B1l., rev per deg/sec 042568 070718 (not used)```	```360 / 105 B-3, deg/sec per rev 000078 137348```
19	$\begin{aligned} & -1.55279503 \times 10^{5} \\ & \text { B28, IRVX counts per fps } \\ & -1.55279503 \text { E5 } \times 2^{-28} \text { fps } \\ & \text { (used with noun } 67 \text { ) } \end{aligned}$	$\begin{aligned} & -0.6440 / 10^{5} \\ & \text { B-14, fps per IRVX count } \\ & -0.6440 \mathrm{E}-5 \times 2^{14} \end{aligned}$
20	$\begin{aligned} & 0.8250825087 \times 10^{5} \\ & \text { B28, LRVY counts per }{ }^{f} \mathrm{ps} \\ & 0.8250825087 \mathrm{E5} \times 2^{-28^{2}} \\ & \text { (used with noun } 67 \text { ) } \end{aligned}$	$\begin{aligned} & 1.212 / 10^{5} \\ & \text { B-14, fps per } \\ & 1.212 \mathrm{ERVY} \text { count } \end{aligned}$
21	$\begin{aligned} & 1.153668673 \times 10^{5} \\ & \text { B28, LRVZ counts per } \\ & 1.153668673 \mathrm{E} 5 \times \mathrm{e}^{\text {fps }} \\ & \text { (used with noun } 67 \text { ) } \end{aligned}$	$0.8668 / 10^{5}$   B-14, fps per IRVZ count $\begin{aligned} & \mathrm{D}-14, \\ & 0.8668 \mathrm{E}-5 \times 2^{14} \end{aligned}$

(used with nouns 61,68)
K:SFINTAB ${ }_{i}$
$1852 \times 10^{4}$
B27, meters per nmi 043248276008

## K:SFOUTABi

$5.399568 \times 10^{-4} / 10^{4}$
B-24, nmi per meter 347728070168
$0.002 / 10^{3}$
B-14, deg per centisecond $01030_{8} 33675$
(used with noun 48)
$24 \quad 0.3048 \times 10^{5}$
B24, meters per foot 000358304008
$3.2808399 / 10^{5}$
B-10, feet per meter 010468157008
(used with nouns $60,63,64,68,69,92$ )

25

## Display Quantities

ABVEL: See SERV section.
ACTCENT: See TRGL section.
ALMCADR: See PGSR section.
ALPHASB: Same as PITCHANG, see EXVB section.
ALT: See COOR section.
AOTCODE: See ALIN section.

AZ: See ALIN section.
BETASB: Same as YANANG, see EXVB section.
GDU: See IMUC section.
$C D U_{s}$ : See RADR section.
$C_{t}$ : See RADR section.
GENTANG: See TRGL section.
CSMMASS: See DAPB section.
CURSOR: See ALIN section.
DAPDATRI: See DAPB section.
DATAGOOD: See RNAV section.
DELTAH: See SERV section.
DELVIMU $_{x, y, z}$ : See BURN section.
DELVLVC $_{x, y, z}$ : See TRGX section.
DELVOV $_{x, y, z}$ : See ORBI section.
DELVTPF: See TRGL section.
DELVTPI: See TRGL section.
DIFFALT: See TRGX section.
DLANDX,DLANDY,DLANDZ: See DESC section.
DNRRANGE: See RADR section.
DNRRDOT: See RADR section.
DSPTEMX: See DATA section.
DSPTEMI: See DATA section.
DSPTEM2: See DATA section.
$\operatorname{DVLOS}_{x, y, z}:$ See TRGL section.
DVTOTAL: See SERV section.
EL: See ALIN section.
ELEV: See TRGL section.
ERCOUNT: See TEST section.
FAILREG: See PGSR section.
FDAI: See ATIM section.
FORVEL: See SERV section.
FUNNYDSP: See DESC section.
HAPO: See TRGX section.
HAPOX: See EXVB section.
HCALC: See SERV section.
HCALCl: See SERV section.
HDOTDISP: See SERV section.
HPER: See TRGX section.
HPERX: See EXVB section.
IGC: See COOR section.
LANDALT: See ALIN section.
LANDLAT: See ALIN section.
LANDLONG: See ALIN section.
LAT: See COOR section.
LEMMASS: See DAPB section.
LONG: See COOR section.
MGC: See COOR section.
mTPER: See EXVB section.
NN: See TRGX section.
OGC: See COOR section. OMEGDISP: See RNAV section. OPTIONX: See EXVB section. OPTIONI: See DATA section. OPTION2: See DATA section. OPTION3: See DATA section. OUTOFPLN: See DESC section.
PIPA: See IMUC section.
PITCH: See ASCT section.
PITTIME: See DAPB section.
pMGA: See TRGX section.
POSCODE: See ALIN section.
POSTTPI: See TRGL section.
P21ALT: See RNAV section.
P21GAM: See RNAV section.
P2IVEL: See RNAV section.

RANGE: See EXVB section.
RANGEDSP: See DESC section.
RDOTD: See ASCT section.
ROLLTIME: See DAPB section.
RRATE: See EXVB section.
RR-AZ: See RNAV section.
RR-EIEV: See RNAV section.
RSTACK: See RADR section.
RTHETA: See EXVB section.
R22DISP: See R22DISPR in RNAV section.
R22DISP+2: See R22DISPV in RNAV section.
SAMPTIME: See DSKY section.
SMODE: See TEST section.
SPIRAL: See ALIN section.
$\operatorname{STARAD}_{\mathbf{x}, \mathrm{y}, \mathbf{z}}$ : See ALIN section.
TANG: See RADR section.
TCDH: See TRGX section.
TCSI: See TRGX section.
TET: See ORBI section.
TFF: See EXVB section.
THETAD: See IMUC section.
THRDISP: See DESC section.
TIG: See BURN section.
TIMENOW: See EXVB section.
TRKMKCNT: See RNAV section.
TTFDISP: See DESC section.
TTOGO: See BURN section.
TTOTIG: See RADR section.
TTPI: See TRGL section.
TITOṪ2: See TRGX section.
T2TOT3: See TRGX section.
$\operatorname{VGBODY}_{x, y, z}$ : See BURN section.
VGDISP: Same as DELVSAB, see TRGX section.

WWBIAS: See RNAV section.
WWPOS: See RNAV section.

WWVEL: See RNAV section.

## XRANGE: See ASCT section.

XREG: See DATA section.
YAW: See ASCT section.
YDOT: See ASCT section.
YREG: See DATA section.
ZDOTD: See ASCT section.
ZREG: See DATA section.
-K:posmaxsp: See "Major Variables" section.
-
-

```
P63LM Perform "R02BOTH"
 WHICH = "P63TABLE"
 DVTHRUSH = K:DPSTHRSH
 DVCNTR = 4
 WCHPHASE = - 1
 FLPASSO = 0
 Switch bit }14\mathrm{ of channel 12 to O (disable RR tracker)
 Switch FLAGWRD5 bit 12 (NOTHROTL) to 0
 Switch FLAGWRD6 bit 6 (REDFLAG) to 0
 Switch FLGWRD11 bit 15 (LRBYPASS) to 0
 Switch FLAGWRD6 bit }8\mathrm{ (muNFLAG) to 1
 Switch FLAGWRDO bit }9\mathrm{ (P25FLAG) to 0
 Switch FLAGWRDO bit }7\mathrm{ (RNDVZFLG) to 0
 TPIP = TLAND
TSt = TLAND
Perform "MOONMX"
LAND = [REFSMMAT] [MOONMAT] T
TSt = TIMENOW
Perform "MOONMX"
WM = K:MOONRATE [REFSMMAT] [MOONMAT] T (\underline{K}:UNITZ + LM5O4 * K
LANDMAG = |RLS
TDEC1 = TLAND - K:GUIDDURN
Perform "LEMPREC"
NIGNLOOP = 40
```

```
 [GCMAT]] [llll
 DELTAH = K:99999CON
 UNFC = 0
 TTF = 0
IGNALOOP PIPTIME1 = TAT
 R=[REFSMMAT] RATT
 Perform "MUNGRAV" with TSr= R
 GDT = GDT1
 NGUIDSUB = 2
 (continues at "EXGSUB"
 Proceed to the second step of "GUILDRET" after one iteration
 of guidance computations)
EXGSUB
 UNFC = K:TRIMACCL ZOOMTIME unit\underline{UNFC}
 If NGUIDSUB > 0:
 (argument of unit operation
 adjusted to reduce the
 possibility of overflow)
 NGUIDSUB = NGUIDSUB - 1
 Proceed to "CALCRGVG"
If NIGNLOOP = 0:
 Perform "ALARM" with TS = 01412g
 TS = 3313g (S-register portion of adतress of cell
 containing alarm pattern)
If NIGNLOOP > 0:
 TS = NIGNLOOP - 1
NIGNLOOP = TS
TSden = VGU
TSnum = (DESIGNRZ - RGU_z
TSv = DESKIGNV (|VGU | - DESIGNV)
TSt = (TSv + TSnum) / TSden
TDEC1 = PIPTIME1 + TSt
```

    If |TSt | K:DDUMCRIT: (reiterate)
    Perform "INTSTALL"
    Switch FLAGNRD3 bit 4 (INTYPFLG) to 1
    Switch FLAGWRDO bit 12 (MOONFLAG) to 1
    TET = PIPTIME1
    RCV = RATT
    VCV = VATT
    Perform "INTEGRVS"
    Proceed to "IGNALOOP"
    TIG = TDEC1 - Z00MTIME
    OUTOFPLN = unit(\underline{V}* | ( ) - LAND
    R60SAVE = UNFC
DISPDEX = - 21 (enable astronaut branch to "ASTNRET")
Perform "STCLOK3"
End job
ASTNRET Proceed to "GOPERF1" with TS = 00014g
(If terminate, proceed to "GOTO POOH"; if proceed, continue
at next step; if other response, skip next step.)
Perform "R51"
POINTVSM = unitR6OSAVE
SCAXIS = K
Perform "PFLITEDB" with interrupts inhibited
Perform "R6OLEM"
If bit 6 of channel 33=1: (LR not in position \#1)
Proceed to "GOPERF1" with TS.= 005008
(If terminate, proceed to "GOTO POOH"; if proceed, continue
at previous step; if other response, continue at next step.)
Perform "SETPOS1" (Initialize landing radar control)

```
Proceed to "BURNBABY"(Standard pre-ignition sequence; initializes average-gnavigation at TIG-30 seconds; calls "P63IGN" at time ofignition which sets AVEGEXIT to "LUNLAND" establishing thetwo-second guidance loop; calls "P63Z00M" at throttle-uptime.)
LUNLAND If FLAGWRD5 bit 8 (ZOOMFLAG) \(=0\) :(R13)Proceed to "DISPEXIT" (do display only; no throttle-up yet)
If MODREG = 66: (in P66)
If FLAGNRD1 bit 12 (RODFLAG) \(=0\) :
Proceed to "STRTP66A"
Proceed to "P66"
If bit 13 of channel \(31=0\) and RODCOUNT \(\neq 0\) :Proceed to "STARTP66"
GUILDRET RODCOUNT \(=0\)
TPIPOLD \(=\mathrm{TPIP}\)
TPIP = PIPTIME1
TTFTMP \(=\mathrm{TTF}\)
If FLPASSO >0, proceed to "TTFINCR"
Proceed to K:NEWPHASE \({ }_{\text {WCHPHASE }}\)
(TTFINCR, TTF INCR, STARTP64, STARTP66)
STARTP64 MODREG \(=64\)
Establish "DSPMMJOB" (pr30)TTFTMP \(=\) TTFTMP + DELTTTAP
Inhibit interrupts
Perform "C13STALL"
Switch bit 12 of channel 13 to 1 (enable RHC interrupt \#10)
\(\mathrm{DB}=\mathrm{K}: \mathrm{P} 64 \mathrm{DB}\)
Switch FLAGNRD6 bit 6 (REDFLAG) to 0

Release interrupt inhibit
Proceed to "TTFINCR"
```

P65START MODREG = 65 (this coding not exercised)
Establish "DSPMMJOB" (pr30)
WCHVERT = 0
Switch DAPBOOLS bit 9 (XOVINHIB) to 0 (permit X-axis override)

```
TIFINCR TSt = TPIP - TPIPOLD (rescaled to B17 centiseconds)
 IANDTEMP = LANDMAG unit(LAND - TSt LAND * WM) • (argument of unit
 TTFTMP \(=\) TTFTMP + TSt
 \(\mathrm{TMF}=\mathrm{THFTMP}\)
 operation adjusted
 to reduce the
 possibility of
 overflow)
Perform "TDISPSET"
 Change job priority to 31 (pr31)
 IAND \(=\) LANDTEMP + DLAND
 LANDMAG \(=\mid\) IAND \(\mid\)
 DIAND \(=0\)
 Change job priority to 20
 (pr20)
Proceed to K: PREGUIDE
(CALCRGVG, RGVGCALC, REDESIG, RGVGCALC)

REDESIG If FLAGNRD6 bit 6 (REDFLAG) \(=0\) or if TREDES \(=0\) : Proceed to "RGVGCALC"

Inhibit interrupts
\(E L I N C R_{d p}=(E L I N C R 1,0)\)
\(\operatorname{AZINCR}_{d p}=(\) AZINCR1, 0\()\)
ELINCR1 \(=0\)
AZINCR1 \(=0\)
Release interrupt inhibit
\(\underline{T} S=\) unit(IAND \(-\underline{R}\)) (argument of unit operation adjusted to reduce \(\underline{T S}=\underline{T} S+A Z I N C R\) YNBPIP - ELINCR TS * YNBPIP
\[
\begin{aligned}
& \text { If } \mathrm{TS}_{x} \geq \mathrm{K}: \text { DEPRCRIT, } \mathrm{TS}_{x}=\mathrm{K}: \text { DEPRCRIT } \\
& \text { LANDTEMP }=\text { LANDMAG unit }\left(\underline{R}+\underline{T S}\left(\text { LAND }_{x}-R_{x}\right) / T S_{x}\right) \\
& \text { LAND }=\text { LANDTEMP } \\
& \text { Proceed to "RGVGCALC" } \\
& \text { CALCRGVG } \underline{V}=[\text { REFSMMAT }] \text { VATT }+\underline{\text { UNFC }} \text { (VATT used here is VATT1 scaled } \\
& \text { RGVGCALC } \text { ANGTERM }=\underline{R} * \underline{W M}+\underline{V} \\
& \underline{V G U}=[\text { GCMAT }] \text { ANGTERM } \\
& \underline{T S}=\underline{R}-\underline{L} A N D \\
& \underline{R G U}=[\text { GCMAT }] \underline{T} \\
& \text { RANGEDSP }=|\underline{R G U}| \\
& \text { LOOKANGL }=\mathrm{K}: 180 \mathrm{degs}\left(\arcsin _{\mathrm{sp}}\left(\text { unit }^{*} \underline{T S} \cdot \underline{\text { XNBPIP }}\right)+\mathrm{K}: 1 \mathrm{~d} 2 \mathrm{DEG}+\mathrm{ELBIAS}\right) \\
& \text { Proceed to K:WHATGUID * (argument of unit operation } \\
& \text { WCHPHASE } \\
& \text { adjusted to reduce the } \\
& \text { (TTF/8CL, TTF/8CL, TTF/8CL, CGCALC) } \\
& \text { possibility of overflow) } \\
& \text { TTF/8CL LUNDEX }=\mathrm{K}: \text { TARGTDEX } \\
& \text { LUNDEX = K:TARGTDEX }{ }_{\text {WCHPHASE }} \\
& \text { (0, 0, 28) } \\
& A_{3}=T T F J D G Z_{\text {LUNDEX }} \\
& \left(j_{\text {DZG }}\right) \\
& \Delta_{2}=\operatorname{TTFADGZ}{ }_{\text {LUNDEX }} \\
& \left(6 a_{D Z G}\right) \\
& A_{1}=K: \operatorname{ttf} 6 \mathrm{~b} 3 \mathrm{VGU}_{z}+\mathrm{TTFVDGZ}_{\text {LUNDEX }} \\
& \left(6 \operatorname{VGU}_{z}+18 \mathrm{~V}_{\mathrm{DZG}}\right) \\
& \underline{T} S=\underline{T}^{\text {ARGRDG }}{ }_{\text {LUNDEX }} \\
& A_{0}=K: \operatorname{ttf} 24 b 6\left(T S_{z}-\operatorname{RGU}_{z}\right) \\
& \operatorname{PREC}=2^{-7} \\
& \text { ROOTPS }=T T F \\
& \mathrm{n}=3 \\
& \text { Perform "ROOTPSRS" }
\end{aligned}
\]
\[
\begin{aligned}
& \text { If ROOTGOOD }=0 \text {, proceed to K:WHATALM } \text { WCHPHASE } \\
& \text { (1406P00, 1406ALM, 1406ALM) } \\
& \text { TTF = ROOTPS } \\
& \text { Perform "TDISPSET" } \\
& \text { QUADGUID } T S t=-T T F_{m s}+\text { LEADTIME } \\
& \text { If TSt }<0 \text {, TSt }=0 \\
& \mathrm{RA}=\mathrm{TSt} / \mathrm{TTF}_{\mathrm{ms}} \quad(-\mathrm{r}) \\
& T S 1=2 R A^{2}+R A \\
& \left(2 r^{2}-r\right) \\
& T S 2=3 \mathrm{RA}^{2}+2 \mathrm{RA} \quad\left(3 \mathrm{r}^{2}-2 \mathrm{r}\right) \\
& T S 3=4 R A^{2}+3 R A \quad\left(4 r^{2}-3 r\right) \\
& \mathrm{TS} 4=6\left(R A^{2}+\mathrm{RA}\right)+\mathrm{K}: \operatorname{posmaxsp} \quad\left(6 \mathrm{r}^{2}-6 \mathrm{r}+1\right) \\
& \text { LUNDEX }=\mathrm{K}: \text { TARGTDEX }{ }_{\text {WCHPHASE }} \quad(0,0,28) \\
& \underline{T S b}=T S 1 \quad \text { VGU } \\
& \underline{T S c}=\mathrm{TS} 3 \underline{T A R G V D G}_{\text {LUNDEX }} \\
& \underline{T S d}=2 T S 2(\underline{T A R G R D G} \text { LUNDEX }-\underline{R G U}) / T T F \\
& \underline{T S e}=\mathrm{K}: \operatorname{ttf} 6 \mathrm{~b} 3(\underline{T} S b+\underline{T} S c+\underline{T} S d) / T T F \\
& \underline{T S a}=T S 4 \text { TARGADG }_{\text {LUNDEX }}+\underline{T S e} \quad \text { (desired acceleration) } \\
& \text { AFCCALC1 UNFC }=[\text { GCMAT }]^{T} \text { TSa }-\underline{G D T} / \mathrm{K}: G S C A L E \\
& \text { AFCMAG }=|\underline{U N F C}| \\
& \mathrm{TS}=(\mathrm{K}: \mathrm{HIGHESTF} / \mathrm{MASS})^{2}-\mathrm{UNFC}_{\mathrm{y}}^{2}-\mathrm{UNFC}_{\mathrm{x}}{ }^{2} \\
& \text { If } T S<0, T S=0 \\
& \text { If } \mathrm{UNFC}_{z}<-\sqrt{T S}, \mathrm{UNFC}_{z}=-\sqrt{T S} \\
& \text { WCHPHOLD }=\text { WCHPHASE } \\
& \text { FLPASSO }=\text { FLPASSO }+1 \\
& \text { Proceed to K:AFTRGUID }{ }_{\text {WCHPHASE }} \\
& \text { (CGGALC, EXTLOGIC, EXTLOGIC, STEER?) }
\end{aligned}
\]

EXTLOGIC \(T S t=\) TEND \(_{\text {WCHPHASE }}+\mathrm{TTF}_{\mathrm{ms}}\)
If TSt \(>0\) :
WCHPHASE \(=\) WCHPHOLD +1
FLPASSO \(=0\)
GGCALC \(\quad i=K: T A R G T D E X ~ W C H P H A S E ~(0,0,28)\)
If \(\mathrm{TTF}_{\mathrm{ms}}\left\langle-\mathrm{TCGI}_{i}\right.\) or \(\left.T T F_{\mathrm{ms}}\right\rangle-\mathrm{TCGF} \mathrm{i}\) :
Proceed to K:WHATEXIT WGHPHOLD
(EXGSUB, EXBRAK, EXNORM, -----)
LUNDEX \(=\mathrm{K}:\) TARGIDEX \(_{\text {WCHPHASE }} \quad(0,0,28)\)
\(\underline{T S a}=\) unitI_AND

\(\underline{T S c}=\underline{T S a} * \underline{T} S b\)
\(\left[\operatorname{GCMAT}^{\prime}\right]=\left[\begin{array}{lll}\mathrm{TSa}_{x} & \mathrm{TSa}_{y} & \mathrm{TSa}_{z} \\ \mathrm{TSb}_{x} & \mathrm{TSb}_{y} & \mathrm{TSb}_{z} \\ \mathrm{TSc}_{x} & \mathrm{TSc}_{y} & \mathrm{TSc}_{z}\end{array}\right]\)
Proceed to K:WHATEXIT WCHPHOLD
(EXGSUB, EXBRAK, EXNORM, ----)
* (argument of unit operation adjusted to reduce the possibility of overflow)

EXBRAK UNWC \(=\underline{U N I T R}\)
Proceed to "STEER?"
EXNORM UNWC \(=u n i t^{*}(\) IAND \(-\underline{R})\)
\(\underline{T S}=\) second row of [GCMAT] (YDGC \({ }_{\text {Sm }}\))
PROJ \(=\underline{U N W C} * \underline{X N B P I P} \cdot \underline{T S}\)
PROJ1 = K:PROJMAX - PROJ
If PROJ1 \(\leq 0\), PROJ1 \(=0\)
PROJ2 = PROJ - K:PROJMIN

If \(\mathrm{PROJ} 2 \leq 0\), PROJ2 \(=0\)
UNWC \(_{z}=\) PROJ1 GCMAT \(_{33}+\) PROJ2 UNWC \(_{z}\)
UNWC \(_{\mathbf{y}}=\) PROJ1 GCMAT \(_{32}+\) PROJ2 UNWC \(_{y}\)
UNWC \(_{x}=\) PROJ1 GCMAT \(_{31}+\) PROJ2 UNWC \(_{x}\)
OGABIAS \(=\) AZBIAS
STEER? If overflow occurred anywhere above: (interpretive language overflow) Perform "ALARM" with TS \(=01410_{8}\)
Perform "STOPRATE"
Proceed to "DISPEXIT"
If FLAGWRD2 bit 11 (STEERSW) \(=0\) :
Perform "STOPRATE"
Proceed to "DISPEXIT"
Perform "THROTTLE"
Perform "FINDCDUW"
DISPEXIT If FLAGWRD8 bit 10 (FLUNDISP) \(=1\), end job
Proceed to K:WHATDISP \({ }_{\text {WCHPHOLD }}\)
(---, P63DISPS, P64DISPS, VERTDISP)
P63DISPS Proceed to "REGODSP" with TS = K:V06N63 (ABVEL, HDOTDISP, HCALC1)
P64DISPS If TREDES \(=0:\)
Switch FLAGNRD6 bit 6 (REDFLAG) to 0
Proceed to "REGODSP" with TS = K: V06N64
If FLAGWRD6 bit 6 (REDFLAG) \(=1\) :
Proceed to "REGODSP" with TS \(=\mathrm{K}:\) V06N64
Proceed to "REFLASH" with TS = K:VO6N64 (FUNNYDSP, HDOTDISP, HCALC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, proceed to "P64DISPS".)
\[
\text { DESC - } 9
\]
```

    ELINCR1 = 0
    AZINCR1 = 0
    Switch FLAGWRD6 bit 6 (REDFLAG) to 1
    End job
    VERTDISP Proceed to "REFLASH" with TS = K:V06N60 (FORVEL, HDOTDISP, HCALC1)
(If terminate, proceed to "GOTOPOOH"; if proceed,
continue at next step; if other response, continue
at next step.)
WGHVERT = K:posmaxsp
End job
TDISPSET TTFDISP = K:TSCALINV TTF ms
TSt = K:TREDESCL (TCGF 28 + TTFF
If TSt \geq0:
TREDES = 99
Return
TSt = TSt + 99
If TSt \leq 0:
TREDES = 0
Return
TREDES = TSt
Return

```

VDGVERT \(=\) HDOTDISP
WCHVERT \(=-0\)
CNTTHROT \(=-\) TOOFEW
\(\underline{V H Z C}=\underline{W M} * \underline{R}\)
STRTP66A IS \(=\left(\right.\) PIPABIAS \(_{x}\), PIPABIAS \(_{y}\), PIPABIAS \(\left._{z}\right)\)
VBIAS \(=\mathrm{K}:\) BIASFACT \(\operatorname{TS}\)
Switch FLAGWRD1 bit 12 (RODFLAG) to 1
OLDPIPA \(=-\) TEM
DELVROD \(=0\)
RODSCAL1 \(=\) RODSCALE
LASTTPIP \(=\) PIPTIME
\(\mathrm{FCOLD}_{\text {sp }}=0\)
FWEIGHT \(_{\text {dp }}=0\)
WCHPHOLD \(=2\)
WCHPHASE \(=2\)
Perform "STOPRATE"
Switch DAPBOOLS bit 9 (XOVINHIB) to 0
Switch FLAGWRD6 bit 6 (REDFLAG) to 0
P66
TSt \(=\) TIMENOW - PIPTIME
If 2LATE466 \(\geq\) TSt:
Proceed to "P66HZ"
Switch FLAGWRD1 bit 12 (RODFLAG) to 0
TS = CNTTHROT
CNTTHROT \(=-\) TOOFEW
```

If TS}<0
Perform "ALARM" with TS = 014668
Proceed to "DISPEXIT"
P66HZ T
Change job priority to 21g
(pr21)
TS

```

```

If overflow anywhere above: (interpretive language overflow)
Perform "ALARM" with TS = 01410
Perform "STOPRATE"
Proceed to "P66VERT"
If bit 3 of channel 30=1: (Engine not armed)
If WCHVERT> 0:
T5ADR = "DAPIDLER"
Proceed to "P66VERT"
If WCHVERT<-0:
Proceed to "P66VERT"
If WCHVERT = - 0:
Continue at next step
UNFC = TS
Perform "FINDCDUW"
Proceed to "P66VERT"

```

P66VERT Call "RODTASK" in 1.0 second

Proceed to "RODCOMP"
RODTASK Establish "RODCOMP"
End task

RODCOMP Change job priority to 238
Inhibit interrupts
\(\begin{array}{ll}\text { VDGVERT }=\text { VDGVERT }+ \text { RODCOUNT RODSCAL1 } & \begin{array}{l}\text { (activation of the R.O.D. } \\ \text { switch causes routine }\end{array} \\ \text { RODCOUNT }=0 & \text { "DESCBITS" to be } \\ \text { POLDPIPA }=\text { OLDPIPA } & \text { entered which updates } \\ \text { RODCOUNT) }\end{array}\)
\(\underline{O L D P I P A}=\underline{P I P A}\)
THISTPIP \(=\) TIMENOW
TS \(_{s p}=\underline{O L D P I P A}+\underline{\text { PIPATMP }}\)
DELVROD \(=\) TEM \(-\underline{O} L D P I P A+\underline{P O L D P I P A ~}\)
\(\underline{T S}_{d p}=T S_{s p}\)
(least significant components set to 0)
TEM \(=0\)
Release interrupt inhibit
\({ }_{T} S=K: K P I P 1{ }^{T S}{ }_{d p}\)
TSdelt \(=\) THISTPIP - PIPTIME
```

TSv = (TSdelt / K:4SECb28) (\frac{1}{2}GDT - - 交 VBIAS) + V+TS
HDOTDISP = TSv • unitR
HCALC1 = TSdelt HDOTDISP + |R| - LANDMAG
TS1 = (VDGVERT - HDOTDISP) / TAUROD
(PDLO-1; B-2 m/cs}\mp@subsup{}{}{2}\mathrm{ )
TS2 = |GDT |/K:GSCAIE
(PDL20-21; B-2)
TS3 = TS2 + TS1
(PDLO-1; B-2)
Perform "CDUTRIG"
Perform "NBTOSM"
TS = [NBSMMAT] K
TS4 = TS • unitR
(PDL22-23; B2)
AFCMAG = TS3 / TS4
TS1 = KK:KPIP1 DELVROD + \frac{1}{2} VBIÁS | (PDLO-1; B7)
TSt3 = THISTPIP - IASTTPIP
(PDL2-3; B28)
IASTTPIP = THISTPIP
TSacc = TS1 / (TSt3 / K:SHFTFACT) (measured acgeleration in PDLO-1
TS5 = (FWEIGHT K:BIT1H)/(MASS K:SCAIEFAC) + TSacc (PDL2-3; B-4)
AFCMAG = AFCMAG + IAGdTAU ((TS2 / TS4) - TS5) (PDL2-3; B-4)
TSafcmax = MAXFORCE / MASS
(PDL/4-5; B-4)
TSafcmin = MLNFORCE / MASS
(PDL6-7; B-4)
If AFCMAG <TSafcmin , AFCMAG = TSafcmin
If AFCMAG \geqTSafcmax , AFCMAG = TSafcmax
TSthrot = TSacc
Perform "THROTTLE" (starting at second step; return will be
CNTTHROT = CNTTHROT + 1
Proceed to "DISPEXIT"

```

RTNHOLD \(=\) return address
\(\mathrm{FP}_{\mathrm{dp}}=\mathrm{K}:\) SCALEFAC MASS TSthrot
If \(F P_{\mathrm{dp}} \geq \mathrm{K}: \mathrm{fmax}_{\mathrm{max}}, \mathrm{FP} \mathrm{sp}=\mathrm{K}:\) posmaxsp
\(\mathrm{FCODD}_{\mathrm{dp}}=\mathrm{K}:\) SCALEFAC MASS AFCMAG
If \(\mathrm{FCODD}_{\mathrm{dp}} \geq \mathrm{K}: \mathrm{fmax}, \mathrm{FCODD}_{\mathrm{sp}}=\mathrm{K}:\) posmaxsp
\(F C=F C O D D\)
\(T S=F C\)
If \(\mathrm{TS} \geq 2^{13}\) throttle pulses, truncate bits \(\geq 2^{13}\)
THRDISP \(=(T S / K: \angle F M A X N O M) 400\)
TSt = (less significant half of TIMENOW) - TTHROT
If TSt \(\leq 0\), TSt \(=16384+\) TSt
If TSt < K:3SECS:
\[
F P_{\mathrm{dp}}=F P+F W E I G H T
\]

PIFPSET \(=0 \quad(-0)\)
If FCOLD \(>\) HIGHCRIT:
\[
\begin{aligned}
& \text { If } \mathrm{FCODD}_{\text {sp }} \leq \text { LOWCRIT: } \\
& \text { PIFPSET }=\mathrm{FP}_{\mathrm{sp}}-\mathrm{K}: \text { FMAXODD } \\
& \text { If } \mathrm{FCODD}_{\mathrm{sp}}>\text { LOWCRIT: } \\
& \text { FCODD }= \mathrm{FP} \\
& \text { PIFPSET }=\mathrm{K}: \text { FEXTRA }
\end{aligned}
\]

If FCOLD \(\leq\) HIGHCRIT:
\[
\text { If } \mathrm{FCODD}_{\mathrm{sp}}>\text { HIGHCRIT: }
\]
\[
\text { FCODD }=\mathrm{K}: \text { FMAXPOS }
\]
PIFPSET = K:FEXTRA

FCOLD \(=\) FCODD
\(P I F=F C O D D-F P\)
Proceed to "DOIT"

FLATOUT PIFPSET = K:FEXTRA
```

    FCOLD = 0 (-0)
    PIF = 0 (-0)
    RTNHOLD = return address (to caller of "FLATOUT")
    DOIT PSEUD055 = PIF
THRUST = PSEUDO55
Switch bit 4 of channel 14 to 1 (send throttle command from
THRUST)
TTHROT = less significant half of TIMENOW
TS1 = THISTPIP
TS2 = K:2SECS
If MODREG f= 66:
TS1 = PIPTIME 1S
TS2 = K:4SECS
TS3 = TS2 K:BIT6
TS4 = TS3 ls
TSt = K:THROTLAG + TIMENOW
If TSt<0, TSt = |TSt
IfgTSt }\geq\mp@subsup{2}{}{8}\mathrm{ centiseconds, truncate bits }\geq\mp@subsup{2}{}{8}\mathrm{ (i.e. subtract
28}\mathrm{ until TSt is less than 2 }\mp@subsup{2}{}{8}\mathrm{ centiseconds)
FWEIGHT = 2 PIF TSt / TS2
FWEIGHT = FWEIGHT + |PIF| PIF / TS4
Return via RTNHOLD

```

PITFALL (Entered on program interrupt \#10)
\[
\text { If MODREG } \neq 64 \text {, resume }
\]
\(\operatorname{ELVIR}=\) bits \(6,5,2\) and 1 of -channel 31
2ERLINA \(=2\)
(bits
Call "REDESMON" in 0.05 second on
Resume
channel 31
REDESMON TS = ELVIRA logically
ELVIRA \(=\) bits \(6,5,2\) and 1 of -channel 31 inverted).
If ELVIRA \(\neq 00000_{8}\) : (LPD still out of detent)
Delay 0.07 second
Proceed to "REDESMON"
If \(T S=00000_{g}\) :
If ZERLINA \(>0\) :
ZERLINA \(=\) ZERLINA -1
Delay 0.07 second
Proceed to nREDESMON"
Perform "C13stall"
Switch bit 12 of channel 13 to 1 (re-enable RHC interrupt \#10)
End task
If bit 13 of channel \(31=0\) :
Perform "C13STALL"
Switch bit 12 of channel 13 to 1 and end task
If bit 6 of TS \(=1\), AZINCR1 \(=\) AZINCR1 \(-K\) : AZEACH
If bit 5 of \(T S=1\), AZINCR1 \(=\) AZINCR1 \(+\mathrm{K}:\) AZEACH
If bit 1 of \(T S=1\), ELINCR1 \(=\) ELINCR1 \(-\mathrm{K}:\) ELEACH
(-AZ LPD)
(+AZ LPD)
(+EL LPD)
If bit 2 of \(T S=1\), ELINCR1 \(=\) ELINCR1 \(+\mathrm{K}:\) ELEACH
(-EL LPD) Perform "C13STALL"

Switch bit 12 of channel 13 to 1
(re-enable RHC interrupt \#10)
End task
DESCBITS (Entered from "SOMEKEY" with contents of channel 16 in TS)
If bit 7 of TS = 1, RODCOUNT \(=\) RODCOUNT -1
If bit 7 of \(T S=0\), RODCOUNT \(=\) RODCOUNT +1 (assume bit \(6=1\)) Resume
ROOTPSRS DXCRIT \(=\mid\) PREC ROOTPS \(\mid\)
\(\mathrm{p}=\mathrm{n}-1\)
DERCLOOP \(D A_{p}=(p+1) A_{p+1}\)
If \(p>0\) :
\[
p=p-1
\]
Proceed to "DERCLOOP"
ROOTLOOP TSderiv \(=\mathrm{DA}_{0}+D A_{1}\) ROOTPS \(+\ldots+\mathrm{DA}_{\mathrm{n}-1}\) ROOTPS \(^{\mathrm{n}-1}\) TSfunct \(=A_{0}+A_{1}\) ROOTPS \(+\ldots+A_{n-1}\) ROOTPS \(^{n-1}+A_{n}\) ROOTPS \(^{n}\)
TSdelt \(=\) - TSfunct \(/\) TSderiv
ROOTPS \(=\) ROOTPS + TSdelt
If \(p=8:\)
\[
\text { ROOTGOOD }=0
\]
Return
\(\mathrm{p}=\mathrm{p}+1\)
If \(\mid\) TSdelt \(\mid>\) DXCRIT, proceed to "ROOTLDOP"
ROOTGOOD \(=2\)
Return
1406P00 Procesd to "POODOO" with TS \(=21406_{8}\)
1406ALM Perform "ALARM" with \(T S=01406_{8}\)
Perform "STOPRATE"
Proceed to "DISPEXIT"(program 68)
Perform "Zatmeror"
Release interrupt inhibit
Switch DAPBOOLS bit 15 (PULSES) to 1
Swt toh FLAGWRD8 bit 8 (SURFFLAG) to 1
Switch FLAGWRD9 bit 9 (LETABORT) to 0
Switoh FLaWRD10 bit 13 (APSFLAG) to 1
ALPHAV = RN
TSt \(=\) PIPTIME
Switch FLAGWRD3 bit 12 (LUNAFLAG) to 1
Perform "LAT-LONG"
TSt \(=\) PIPTIME
Perform "MOONMX"
RLS \(=[\) MOONMAT \(]\left(\underline{R N}-\left([\text { MOONMAT }]^{T}\right.\right.\) LMM504) * RN)
Proceed to "GOFLASH" with TS = K:V06N43 (LAT, LONG, ALT) (If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; if other response, repeat this step.)
GSAV \(=\underline{K}:\) UNITX
Perform "REFMF"
Proceed to "GOTOPOOH"
DESC - 18

2LATE466: Double precision erasable memory constant representing the time delay after the accelerometer readings beyond which further P66 computations are bypassed, scaled B28 in units of centiseconds; part of the erasable load.
\(A_{i}(i=0,1,2, \ldots\)): Double precision coefficients of the polynomial input to "ROOTPSRS", unitless and scaled B30, B13, B-4 and B-21 when generated in "TTF/8CL".

ABDELV, ABVEL: see SERV section.
AFCMAG: Double precision magnitude of desired thrust acceleration, program notation /AFC/, scaled B-4 in units of meters per centisecond squared.

AHZLIM: Single precision erasable memory constant representing the maximum commanded pitch and roll attitude for horizontal nulling in P66 Auto, scaled B-4 in units of meters per centisecond squared; part of the erasable load.

ALPHAV: see COOR section.
ALT: see SERV section.
ANGTERM: Double precision velocity of the LM vehicle relative to the rotating moon, scaled B9 in units of meters per centisecond and expressed in the Platform coordinate system.

AZBIAS: Single precision quantity representing the desired outer gimbal angle bias for window pointing commands in P64 to account for window bending due to cabin pressurization, scaled B-1 in units of revolutions; part of the erasable load

AZINCR, AZINCR1: Double precision and single precision storage for the desired addition to the landing site azimuth, scaled BO in units of radians.

CNTTHROT: Single precision counter of the number of times that the "THROTTLE" routine is entered in P66; initialized to -TOOFEW, scaled B14 and unitless.
\(D A_{i}(i=0,1 \ldots)\) : Double precision coefficients of the polynomial \({ }^{i}\) derivative of the polynomial input to "ROOTPSRS"; unitless and scaled \(\mathrm{B} 13, \mathrm{~B}-4\), and \(\mathrm{B}-21\) when generated in response to the polynomial input from "TTF/8CL".

DAPBOOLS: see DAPA section.
DB: see DAPB section.
DELTAH: see SERV section.
DELTTFAP: Single precision time constant added to TTF at the start of P64, scaled B17 in units of centiseconds. DELTTFAP is a negative number and is part of the erasable load.

DELVROD: Double precision sensed-change-in-velocity vector for P66 computations, scaled B14 in units of centimeters per second.

DESIGNRX, DESIGNRZ: Double precision components of desired position relative to the landing site (desired crossrange position component is zero), scaled B24 in units of meters and expressed in the Descent Guidance coordinate system; program notations RIGNX and RIGNZ respectively; part of the erasable load.

DESIGNV: Double precision speed desired at ignition, relative to the rotating moon, scaled B10 in units of meters per centisecond; program notation VIGN; part of the erasable load.

DESKIGNV: Double precision speed error scale factor use in the ignition-time test quantity, scaled B18 in units of centiseconds; program notation KIGNV/B4; part of the erasable load.

DESKICNX: Double precision landing site vertical error scale factor used in the ignition-time test quantity, scaled \(B_{4}\) and unitless; program notation KIGNX/B4; part of the erasable load.

DESKIGNY: Double precision crossrange error scale factor used in the ignition-time test quantity, scaled B-16 in units of meters to the minus one power; program notation KIGNY/B8; part of the erasable load.

DISPDEX: see BURN section.
DLAND: Double precision vector expressed in the Platform coordinate aysten representing the correction to the Landing site vector LAND, acaled B24 in units of meters. DLAND is padloaded to zero and may be loaded by the crew in Moun 69 in the order DLAND \(_{z}\), DLAND \(y_{y}\), DLAND \(x_{x}\)
DVCNTR, DVTHRUSH: see SERV section.
DXCRIT: Double precision criterion for the convergence of the iterative calculation in "ROOTPSRS", with acaling and units identical to those of ROOTPS.

ELBIAS: Single precision quantity representing the LPD elevation angle bias used in calculating LOOKANGL to account for window bending due to cabin pressurization, scaled B-1 in units of revolutions; part of the erasable load.

ELINCR, ELINCR1: Double precision and single precision storage for the complement of the desired addition to landing site elevation, scaled BO in units of radians. (Sign changed to compensate for the inversion of the cross product in "REDESIG".)

ELVIRA: Single precision storage for the status of the landing site redesignation discretes from channel 31.

FC: Single precision storage for the magnitude of desired thrust, scaled B14 in units of DPS throttle pulses.

FCODD: Double precision magnitude of desired thrust, scaled B14 in units of DPS throttle pulses. (The less significant half is not always maintained.)

FCOLD: Single precision magnitude of previous value of desired thrust, scaled B14 in units of DPS throttle pulses.

FLPASSO: Single precision flag set to zero at the beginning of a new guidance phase (except at the beginning of P66) to initialize guidance quantities for the new guidance phase.
FORVEL: see SERV section.
FP: Double precision estimate of the magnitude of the present thrust, scaled B14 in units of DPS throttle pulses. (The less aignificant half is not always maintained.)

FUNNYDSP: Special display of LOOKANGL and TREDES in the same display register, both displayed in two digits only.

FWEIGHT: Double precision change in sensed thrust expected to have occurred since the sampling of the accelerometers, scaled B14 in units of DPS throttle pulses.

GAIN \(_{0}\) : Double precision gain constant used in the computation of the orientation of the Descent Guidance Coordinate System for the braking phase, scaled BO and unitless. Program notation: GAINBRAK; part of the erasable load.

GAIN \(_{28}\) : Double precision gain constant used in the computation of the orientation of the Descent Guidance Coordinate System for the approach phase, acaled BO and unitless. Program notation: GAINAPPR; part of the erasable load.
[GCMAT] : Double precision, \(3 \times 3\) transformation matrix defined such that Adgc \(=\) [GCMAT] Asmc, where \(\underline{A}\) is a vector expressed in the Descent Guidance and Platform (sm) coordinate systems respectively; scaled B1 and unitless; program notation CG+0 through CG+17. The Descent Guidance coordinate system is an orthogonal, cartesian system where the \(X\) axis is along the radius from the center of the moon through the present landing site, the \(Y\) axis is defined such that the velocity, acceleration and jerk vectors at the landing site lie entirely in the \(X-Z\) plane, and the \(Z\) axis is defined such as to complete the right handed system.
GDT, GDT1: See SERV section.
GSAV: See ALIN section
HCALC, HDOTDISP: See SERV section.
HCALC1: Double precision calculated altitude above the landing site radius for display in Nouns 60,63 and 92 , scaled B24 in units of meters. HCALC1 is set to HCALC in the SERV section and is calculated once per second in "RODCOMP"..

HIGHCRIT: Single precision upper limit on the variable throttle region in a situation of increasing thrust commands, scaled B14 in units of DPS throttle pulses. If the throttle setting is in the variable region, the throttle setting commanded by the program will correspond directly with the desired thrust until the desired thrust exceeds HIGHCRIT. Then the program will command full throttle. HIGHCRIT is part of the erasable load.

K:18ODEGS: Single precision: constant stored as \(180 \times 2^{-14}\), scaled B15 in units of degrees per revolution. Equation value: 360.
K:1d2DEG: Single precision constant stored as 0.00278 , scaled B-1 in units of revolutions. Equation value: 0.00139. (Equivalent to one-half of one degree.)
K:2SECS: Single precision constant stored as \(200 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 200.

K:3SECS: Single precision constant stored as \(300 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 300.
K: 4 FMAXNOM: Single precision constant stored as \(14908 \times 2^{-14}\), scaled B14 in units of DPS throttle pulses. Corresponds to \(4 \times 3727 \times 2^{-14}\). The 3727 corresponds to 10,500 lbf. converted to throttle pulses. Equation value: 14908.

K: 4SECb28: Double precision constant stored as \(400 \times 2^{-28}\), acaled B26 in units of centiseconds. Equation value: 100.
K:4SECS: Single precision constant stored as \(400 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 400.
K:99999CON: Double precision constant stored as \(30479.7 \times 2^{-24}\), scaled B24 in units of meters. Equation value: 30479.7. (Equivalent to 99999 fcet.)
K:ABAFCNST: Single precision constant stored as 0.13107, program notation/AF/CNST, scalod B-1B in urits of meters per centisecond squared centimeters per second per guidance cycle. Equation value: \(5 \mathrm{E}-7\). (Equivalent to \(\frac{1}{2} \times 0.01\) cubed.)

K:AFTRGUDD (i \(=-1\) thru 2): Table of single precision addresses for branching. Indexed in the order -1 thru 2, they are the addresses of: CGCALC, EXTLOGIC, EXTLOGIC, STEFR?.
K:AZEACH: Single precision constant stored as 0.03491 , scaled BO ir. units of radians. Equation value: 0.03491. (Equivalent to 2 degrees.)
K: BTASFACT: Double precision constant stored as \(655.36 \times 2^{-26}\), scaled B11 in units of seconds meters per centimeter. Equation value: 0.02. (Stored value corresponds to \(2 \mathrm{sec} \times 0.01 \mathrm{~m} / \mathrm{cm} \mathrm{x} 2^{-11}\).)

K:BIT1H: Double precision constant stored as \(1 \times 2^{-14}\), scaled B14 and unitless. Equation value: 1.0

K: BIT6: Single precision constant stored as 00040 , scaled B14 in units of DPS throttle pulses per centisecond. Equation value: 32.
K:DDUMCRIT: Double precision constant stored as \(8 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 8.
K:DEPRCRIT: Double precision constant stored as \(-0.02 \times 2^{-1}\), scaled \(\mathrm{B1}\) in units of radians. Equation value: -0.02.
K:DPSTHRSH: Single precision constant stored as \(36 \times 2^{-14}\), scaled B14 in units of centimeters per second. Equation value: 36. (Equivalent to \(\mathrm{K}:\) THRESH \(1+\mathrm{K}:\) THRESH 3 of the BURN section.)

K:ELEACH: Single precision constant stored as 0.00873 , scaled BO in units of radians. Equation value: 0.00873. (Equivalent to one-half of one degree.)

K:FEXTRA: Single precision constant stored as \(10000_{8}\), program notation also BIT13, scaled B14 in units of DPS throttle pulses. Equation value: 4096. (Equivalent to 51,331 newtons or 11,540 pounds force based on the value of \(\mathrm{K}:\) SGALEFAC.)
K:fmax: Value of overflow bit on a quantity scaled B14 in units of DPS throttle pulses. Equation value: 16384.
K: FMAXODD: Single precision constant stored as \(384.1 \times 2^{-14}\), scaled B14 in units of DPS throttle pulses. Equation value: 3841. (Equivalent to 48,135 newt ons or 10,821 pounds force based on the value of \(\mathrm{K}:\) SGALEFAC.)
K: FMAXPOS: Single precision constant stored as \(3467 \times 2^{-14}\), scaled B14 in units of DPS throttle pulses. Equation value: 3467. (Equivalent to \(43,1,48\) newtons or 9,767 pounds force based on the value of \(\mathrm{K}:\) SCALEFAC.)

K:GHZ: Single precision constant stored as \(1.62292 \mathrm{E}-4 \times 2^{4}\), scaled \(\mathrm{B}-4\) in units of meters per centisecond squared. Equation value: \(1.62292 \mathrm{E}-4\)

K:GSCAIE: Double precision constant stored as \(100 \times 2^{-11}\), scaled B12 in units of centiseconds per navigation cycle. Equation value: 200.
K:GUIDDURN: Double precision constant stored as \(664 ; 0 \times 2^{-28}\), scaled B28 in units of centiseconds. Equation value: 66440.
K:HIGHESTF: Double precision constant stored as \(4.34546769 \times 2^{-12}\); scaled B12 in units of kilogram meters per centisecond squared. Equation value: 4.34546769. (Equivalent to 9,769 pounds force.)

K:KPIP1: See SERV section.
K:MOONRATE: Double precision constant stored as 0.2661699489 E-7 \(\times 2^{19}\), scaled B-19 in units of radians per centisecond. Equation value: \(0.2661699489 \mathrm{E}-7\).

K:NEWPHASE i \(^{(i=-1}\) thru 2): Table of single precision addresses for branching. Indexed in the order -1 through 2, they are the addresses of: TTFINCR, TTFINCR, STARTP64, STARTP66.

K:P64DB: Single precision constant stored as 00155 , scaled B-3 in units of revolutions. Equation value: 0.00083. (Equivalent to 0.2994 degrees.)

K:posmaxsp: See Major Variables.
K:PREGUIDE (\(i=-1\) thru 2): Table of single precision addresses for branching. Indexed in the order - 1 through 2, they are the addresses of: CALCRGVG, RGVGCALC, REDESIG, RGVGCALC.

K:PROJMAX: Single precision constant stored as \(0.42262 \times 2^{-3}\), scaled B3 and unitless. Equation value: 0.42262. (Equivalent to the sine of 25 degrees.)
K:PROJMIN: Single precision constant stored as \(0.25882 \times 2^{-3}\), scaled B3 and unitless. Equation value: 0.25882. (Equivalent to the aine of 15 degreas.)

K:SCAIFFAC: Double precision constant atored as \(797.959872 \times 2^{-16}\), scaled B16 in units of DPS throttle pulses / kilogram meter per centisecond squared. Equation value: 797.959872. (Equivalent to 12.532 newtons or 2.8173 pounds force per pulse.)

K:SHPTACT: Double precision constant stored as \(1 \times 2^{-17}\), scaled B17 and unitless. Lquation value: 1.0.

K:TARGTDEX (\(i=-1\) thru 1): Table of single precision indexes, scaled B14 and unitless. Equation value indexed in the order -1 through 1: \(0,0,28\).
K:THROTLAG: Single precision constant stored as \(20 . \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 20.

K:TREDESCL: Single precision constant stored as -0.08 , scaled B-3 in units of seconds per centisecond . Equation value: -0.01.
K:TRIMACCL: Double precision constant stored as \(3.50132708 \mathrm{E}-5 \times 2^{8}\), scaled B-8 in units of meters per centisecond squared. Equation value: \(3.50132708 \mathrm{E}-5\).

K:TSCALINV: Single precision constant stored as \(00010_{8}\), scaled B11 and unitless. Equation value: 1.

K:ttf6b3: Double precision constant stored as 0.75, program notation \(3 / 4 D P\), scaled B3 and unitless. Equation value: 6.

K:ttf24b6: Double precision constant stored as 0.375, program notation 3/8DP, scaled B6 and unitless. Equation value: 24.

K:UNITX, K: UNITZ: Double precision vector constants, stored as (\(0.5, \overline{0}, 0\)) and (\(0,0,0.5\)) respectively, scaled B1 and unitless. Equation values: \((1,0,0)\) and \((0,0,1)\).

K:WHATALM, (\(1=-1\) thru 1): Table of single precision addresses for branching. Indexed in the order -1 through 1 they are the addresses of: \(1406 \mathrm{P} 00,1406 \mathrm{ALM}, 1406 \mathrm{ALM}\).

K:WHATDISP \((1=0\) thru 2): Table of single precision addresses for branching. Indexed in the order 0 through 2 they are the addresses of: P63DISPS, P64DISPS, VERTDISP.

K:WHATEXIT, (\(i=-1\) thru 1): Table of single precision addresses for branching. Indexed in the order -1 through 1, they are the addresses of: EXGSUB, EXBRAK, EXNORM.

K:WHATGUID, (i = -1 thru 2): Table of single precision addresses for branching. Indexed in the order -1 through 2, they are the addresses of: \(T T F / 8 C L, T T F / 8 C L, T T F / 8 C L, ~ C G C A L C\).

LAGdTAU: Double precision lag time divided by TAUROD, scaled BO and unitless. Program notation LAG/TAU; part of the erasable load.

LAND, LANDTEMP: Double precision position vector of the landing site, scaled B24 in units of meters, measured from the center of the moon and expressed in the Platform coordinate system.

LANDMAG: Double precision radius magnitude of the landing site, scaled B24 in units of meters; program notation /LAND/.

LASTTPIP: Double precision storage for the time of the previous PIPA reading during P66 (R.O.D.) computations, scaled B28 in units of centiseconds.

LAT: see COOR section.
LEADTIME: Single precision negative of the time increment specifying how far the guidance computations are to be projected forward in P63 and P64, scaled B17 in units of centiseconds; part of the erasable load.

يM504: see COOR aection.
LONG: see COOR section.
LOOKANGL: Single precision landing site elevation angle, scaled B14 in units of degrees. LOOKANGL is calculated as the complement of the angle between the \(L M+X\) axis and the negative LOS, which is equivalent to the angle between the LM YZ plane and the positive LOS.

LOWGRIT: Single precision upper limit on the variable throttle region in a situation of decreasing thrust commands, scaled B14 in units of DPS throttle pulses. If the throttle is set at maximum thrust, the desired thrust must fall below this limit before the program will command a throttle setting below marimum. LOWCRIT is part of the erasable load.

LUNDEX: Single precision index scaled B14 and unitless.
MASS: See SERV section.
MAXFORCE: Double precision maximum thrust that P66 will command, scaled B12 in units of kilogram meter per centisecond squared; part of the erasable load.

MINFORCE: Double precision minimum thrust that P66 will command, scaled B12 in units of kilogram meter per centisecond squared; part of the erasable load.

MODREG: See DATA section.
[MOONMAT]: See COOR section.
[NBSAMMT]: See COOR section.
NGUIDSUB: Single precision counter scaled B14 and unftless.
NIGNLOOP: Single precision counter scaled B14 and unitless.
OGABIAS: See BURN section.
OLDPIPA: Single precision storage for the accelerometer readings (PIPA) performed at time THISTPIP for P66 computations, scaled B14 in units of centimeters per second. Note that this is different from the normal two second cycle PIPA reading which is made at PIPTINR.

OUTOFPLN: Double precision distance of the landing site from the LM orbital plane at the projected time of ignition, scaled B24 in units of meters. (Positive if the orbital plane is to the right of the landing site, looking in the direction of travel.)
PIF: Double precision change in the desired thrust level, acaled B14 in units of DPS throttle pulses.
PIFPSET: Single precision bias on the throttle command, scaled B14 in unita of DPS throttle pulses.

PIPA, PIPATMP: See SERV section.
PIPABIAS \(_{x}\), PIPABIAS \(_{y}\), PIPABIAS \(_{z}\) : See IMJC section.
PIPTIME, PIPTIME1: See SERV section.
POINTVSM: See ATTM section.
POLDPIPA: Single precision storage for the previous cycle value of OLDPIPA, scaled B14 in units of centimeters per second; program notation RUPTREG.

PREC: Single precision specification of tie precision to which "ROOTPSRS" is to converge, scaled BO and unitless.

PROJ, PROJ1, PROJ2: Single precision projection of the Y Descent Guidance coordinate system axis onto the unit normal to the plane defined by the \(X\) body axds and the line-of-sight vector, and the difference between that projection and its upper and lower bounds; scaled B3 and unitless.

PSEUDO55: Single preciaion atorage for telemetry of the throttle command sent to the descent engine, scaled B14 in units of throttle pulses. (See definition of THRUST.)

QHZ: single precision erasable memory constant representing the gain on UNFC, scaled BO and unitless; part of the erasable load.

RGOSAVE: Double precision temporary storage for the UNFC vector, scaled B7 in units of metere per centisecond.

R: Double precision navigated present position vector of the LM, scaled B24 in units of meters, measured from the center of the moon and expressed in the Platform coordinate system.

RA: Single precision ratio of the lag-diminished TTF to TTF, scaled BO and unitless.

RANGEDSP: Double precision distance from the LM to the estimated landing site, scaled B24 in units of meters (displayed by noun 68).

RATT, VATT : see ORBI section.
RCV, VCV: see ORBI section.
[REFSMMAT]: see COOR section.
RGU: Double precision position vector of the LM, scaled B24 in units of meters, measured from the landing site on the moon's surface and expressed in the Descent. Guidance coordinate system.

RLS: Double precision vector position of the landing site relative to the center of the moon, scaled B27 in units of meters and expressed in the Selenographic (moon-fixed) coordinate system; part of the erasable load.

RN, VN: see SERV section.
RODCOUNT: Single precision count of the number and direction of astronaut deflections of the rate-of-descent switch, scaled B14 and unitless.

RODSCAL1: Single precision working storage for RODSCALE, scaled B-7 in units of meters per centisecond.

RODSCALE: Single precision erasable memory quantity representing the velocity increment to be added or subtracted per each deflection of the R.O.D. switch during P66, scaled B-7 in units of meters per centisecond; part of the erasable load.

ROOTGOOD: Variable introduced as a substitute for a variable return address: Set to 2 or 0 to indicate a successful or non-successful convergence on the root of the "ROOTPSRS" polynomial.

ROOTPS: Double precision root extracted from an arbitrary polynomial by the Newton iteration method, scaling and units variable.

RTNHOLD: Single precision octal return address storage.
SCAXIS: see ATTM section.
T5ADR: see DAPA section.
TARGADGO: Double precision Hi-gate acceleration aimpoint vector, scaled B-4 in units of meters per centisecond squared and expressed in the Descent Guidance coordinate system; program notation ADG or ABRFG; part of the erasable load.

TARGADG \({ }^{2 g}\) : Double precision Lo-gate acceleration aimpoint vector, scaled B-4 in units of meter per centisecond squared and. expressed in the Descent Guidance coordinate system; program notation AAPFG; part of the erasable load.

TARGRDG: Double precision Hi-gate position aimpoint vector, scaled B24 In units of meters and expressed in the Descent Guidance coordinate system; program notation RDG or RBRFG; part of the erasable load.

TARGRDG 28 : Double precision Lo-gate position aimpoint vector, scaled B24 in units of meters end expressed in the Descent Guidance coordinate system; program notation RAPFG; part of the erasable load.

TARGVDG: Double precision Hi-gate velocity aimpoint vector, scaled B10 In units of meters per centisecond and expressed in the Descent Guidance coordinate system; program notation VDG or VBRFG; part of the erasable load.

TARGVDG \({ }_{28}\) : Double precision Lo-gate velocity aimpoint vector, scaled B10 in units of meters per centisecond and expressed in the Descent Guidance coordinate system; program notation VAPFG; part of the erasable load.

TAT: See ORBI section.
TAUHZ: Double precision time constant for the horizontal velocity nulling in P66 Auto, scaled B11 in units of centiseconds; part of the erasable load.

TAUROD: Double precision time constant for the rate-of-descent equations in P66, scaled B9 in units of centiseconds; part of the erasable load.

TCGF: Single precision quantity representing the latest time at which the Descent Guidence coordinate system is erected in the braking phase (P63, WCHPHASE \(=0\)), scaled B17 in units of centiseconds; program notation TCGFBRAK; part of the erasable load.

TCGF 28 : Single precision quantity representing the latest time at which the Descent Guidance coordinate aystem is erected in the approach phase (P64, WCHPHASE = 1), scaled B17 in units of centiseconds; program notation TGGFAPPR; part of the erasable load.

TCGI : Single precision quantity representing the earliest time at which the Descent Guidance coordinate system is erected in the Braking phase (P 63 , WCHPHASE \(=0\)), scaled B17 in units of centiseconds; program notation TCGIBRAK; part of the erasable load.
\(\mathrm{TGGI}_{28}\) : Single precision quantity representing the earliest time at which the Descent Guidance coordinate system is erected in the approach phase (P64, WCHPHASE = 1), scaled B17 in units of centiseconds; program notation TGGIAPPR; part of the erasable load.

TDEC1: See ORBI section.

TEM: See SERV section.
TEND \({ }_{0}\) : Single precision quantity representing the time at which the approach phase (P64) is selected (i.e. WCHPHASE goes from 0 to 1 thus selecting P64), scaled B17 in units of centiseconds; program notation TENDBRAK; part of the erasable load.

TEND \({ }_{1}\) : Single precision quantity representing the time at which the vertical phase (P66) is automatically selected (i.e. WCHPHASE goes from 1 to 2 thus selecting P66 Auto provided the Mode Control switch is in the Auto position ; otherwise P66 "Manual" is selected'), scaled B17 in units of centiseconds; program notation TENDAPPR; part of the erasable load.

TET: See ORBI section.
THISTPIP: Double precision time of PIPA readings for P66 (R.O.D.) computations, scaled B28 in units of centiseconds. Note that this is a different reading than that which is taken at PIPTIME.

THRDISP: Single precision quantity representing the percent that desired thrust is of \(10,500 \mathrm{lbf}\). for display in Noun 92 , scaled B14 and unitless.

THRUST: Cell used to provide DPS throttle commands by setting bit 4 of channel 14; scaled B14 in units of DPS throttle pulses. One pulse corresponds to about 12.532 newtons or 2.8173 pounds force (depending on erosion of the DPS nozzle), and the maximum command recognized by the throttle is 3428 pulses or about 42,960 newtons or 9658 pounds force.

TIG: see BURN section.
TIMENOW: see EXVB section.
TTAND: Double precision nominal time of lunar landing, scaled B28 in units of centiseconds; part of the erasable load.

TOOFEW: Single precision erasable memory constant used to initialize CNTTHROT, scaled B14 and unitless; part of the erasable load.

TPIP, TPIPOLD: Double precision storage for consecutive times of entry in the TTF incrementing routine, scaled B28 in units of centiseconds and used to increment TTF.

TREDES: Single precision time remaining to redesignate the landing site, scaled B14 in units of seconds (limited to 99).

TTF, TTFTMP: Double precision time from now until the achievement of the target conditions of the present guidance phase, scaled B17 in units of centiseconds.

TTFADGZ: Double precision \(Z\) conponent of TARGADG multiplied by 6 ; scaled \(\mathrm{B}-4\) in units of meters per centisecond aquared; program notation ABRFG* or \(A^{2 D G 2 T T F}{ }_{0}\); part of the erasable load.

TTFADGZ \(28^{\text {: }}\) Double precision 2 component of TARGADG 28 multiplied by \(6 ;\) scaled B-4 in units of meters per centisecond squared; program notation AAPFG* or \(A^{\prime}\) G \(2 T T F ~_{28}\); part of the erasable load.

TTFDISP: Double precision storage for TTF for display purposes, scaled B28 in units of centiseconds.

TTFJDGZ: Double precision Hi-gate jerk aimpoint, \(Z\) component only, scaled B-21 in units of meters per centisecond cubed; program notation JBRFG* or JDG2TTF \(_{0}\); part of the erasable load.

TTFJDGZ \({ }^{2}\) : Double precision Lo-gate jerk aimpoint, \(Z\) component only, scaled B-21 in units of meters per centisecond cubed; program notation JAPFG* or \(\mathrm{JDG}^{2} \mathrm{TTF}_{28}\); part of the erasable load.

TTFVDGZ \({ }_{0}\) : Double precision \(Z\) component of TARGVDG \({ }_{0}\) multiplied by 18 ; scaled B13 in units of meters per centisecond; program notation VBRFG* or VDG2TTF \(_{0}\); part of the erasable load.

TTFVDGZ 28 : Double precision 2 component of TARGVDG 28 multiplied by 18; scaled B13 in units of meters per centisecond; program notation VAPFG* or VDG2TTF 28 ; part of the erasable load.

TTHROT: Single precision time of the last throttle command, scaled B14 in units of centiseconds.

UNITR: See SKRV section.
UNFC: See BURN section. During the pre-ignition phase computations for the powered descent maneuver (P63), UNFC represents the Delta-V vector for the pre-full throttle thrust, scaled B7 in units of meters per centisecond.

UNWC: See BURN section.

V: Double precision present navigated velocity vector of the LM, scaled \(\mathrm{B}^{7}\) in units of meters per centisecond and expressed in the Platform coordinate system.

VBIAS: Double precision velocity bias factor based on PIPA bias values for P66 (R.O.D.) computations, scaled B8 in units of meters per centisecond.

VDGVERT: Double precision vertical component of velocity desired in the final (vertical) phase of descent, scaled B7 in units. of meters per centisecond; altered in response to astronaut commands during manual descent control.

VGU: Double precision velocity vector of the LM relative to the rotating moon, scaled B10 in units of meters per centisecond and expressed in the Descent Guidance coordinate system.

VHZC: Double precision velocity vector representing the inertial velocity of a point at the LM as if it were rotating with the moon, scaled B7 in units of meters per centisecond.

WCHPHASE: Single precision index scaled B14 and unitless. Set to -1 in the pre-ignition phase ("P63LM"), 0 at ignition ("P63IGN"), 1 when TTF (negative) is greater than minus TEND ("EXTLOGIC") thus selecting P64, and 2 when TTF is greater than minus TEND ("EXTIOGIC") thus selecting P66 Auto or when the astronaut switches out of automatic control selecting P66 "Manual" ("STRTP66A")

WCHPHOLD: Single precision storage for WCHPHASE to preserve the present guidance mode through the present guidance cycle when WCHPHASE changes.

WCHVERT: Single precision flag to indicate whether the astronaut has responded to the flashing VO6N60 display in P66 with either a PROCEED or ENTER.

WHICH: See BURN section.
WM: Double precision mean angular velocity vector of the moon, scaled B-17 in units of radians per centisecond and expressed in the Platform coordinate system.

XNBPIP, YNBPIP, ZNBPIP: See SERV section.
ZERLINA: Single precision counter scaled B14 and unitless.
ZOOMTIME: See BURN section.

GODSP TSaddr \(=\) address of step that proceeded to "GODSP"
\(M P A C_{1}=T S\)
\(\mathrm{MPAC}_{4}=\mathrm{OOOOO}_{8}\)
Proceed to "GOFLASH2"
GODSPR TSaddr = address of step that performed "GODSPR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=00000_{8}\)
Proceed to "GODSPRS1"
GODSPRET TSaddr \(=\) address of step that performed "GODSPRET"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=00040_{8} \quad\) (DOTHNRET)
Proceed to "GOFLASH2"
GOFLASH TSaddr = address of step that proceeded to "GOFLASH"
\(M P A C_{1}=T S\)
\(\mathrm{MPAC}_{4}=\mathrm{OOO1O}_{8} \quad\) (FLREQ)
Proceed to "GOFLASH2"
GOFLASHR TSaddr = address of step that performed "GOFLASHR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=\mathrm{OOO1O}_{8} \quad\) (FLREQ)
Proceed to "GODSPRS1"
GOPERF1 TSaddr \(=\) address of step that proceeded to "GOPERF1"
DSPTEM1 \(=\mathrm{TS}\)
MPAC \(_{1}=K:\) VO1N25 (octal display of DSPTEM1 in R1)
\(\mathrm{MPAC}_{4}=00036_{8} \quad\) (PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GOFLASH2"

GOPERF1R TSaddr \(=\) address of step that performed "GOPERF1R"
DSPTEMI \(=T S\)
MPAC \(_{1}=\mathrm{K}:\) VO1N25 (octal display of DSPTEM1 in R1)
\(M_{4}=00036_{8} \quad\) (PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GODSPRS1"
GOPERF2 TSaddr \(=\) address of step that proceeded to "GOPERF2"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=00030_{8} \quad\) (PERFREQ, FLREQ)
Proceed to "GOFLASH2"
GOPERF2R TSaddr = address of step that performed "GOPERF2R"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=00030_{8} \quad\) (PERFREQ, FLREQ)
Proceed to "GODSPRS1"
GOPERF4 TSaddr \(=\) address of step that proceeded to "GOPERF4" \(\mathrm{MPAC}_{1}=\mathrm{K}:\) VO4NO6 (octal display of OPTION1 and OPTION2) \(\mathrm{MPAC}_{4}=00014_{8} \quad\) (FLREQ, R3BLNK)

Proceed to "GOFLASH2"
GOPERF4R TSaddr = address of step that performed "GOPERF4R" \(\mathrm{MPAC}_{1}=\mathrm{K}: \mathrm{VO}_{4} \mathrm{NO} 6\) (octal display of OPTION1 and OPTION2) \(\mathrm{MPAC}_{4}=00014_{8} \quad\) (FLREQ, R3BLNK)
Proceed to "GODSPRS1"
REGODSP TSaddr = address of step that proceeded to "REGODSP"
\(M P A C_{1}=T S\)
\(\mathrm{MPAC}_{4}=2000 \mathrm{~g}_{8}\) (RESETREQ).
Proceed to "GOFLASH2"

REGODSPR TSaddr = address of step that performed "REGODSPR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=20000_{8} \quad\) (RESETREQ)
Proceed to "GODSPRS1"
REFTASH TSaddr = address of step that proceeded to "REILASH"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=20010_{8} \quad\) (RESETPEQ, FLREQ)
Proceed to "GOFLASH2"
REFLASHR TSaddr \(=\) address of step that performed "REFLASHR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=20010_{8} \quad\) (RESETREQ, FLREQ)
Proceed to "GODSPRS1"
CLEANDSP TSaddr \(=\) address of step that proceeded to "CLEANDSP"
\(\mathrm{MPAC}_{1}=00000_{8}\)
\(\mathrm{MPAC}_{4}=20010_{8} \quad\) (RESETREQ, FLREQ)
Proceed to "GOFLASH2"
GOXDSP TSaddr \(=\) address of step that proceeded to "GOXDSP"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=40000_{8} \quad\) (MKEXREQ)
Proceed to "GOFLASH2"
GOXDSPR TSaddr \(=\) address of step that performed "GOXDSPR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=4000 \mathrm{~g}_{8} \quad\) (MKEXREQ)
Proceed to "GODSPRS1"

EXDSPRET TSaddr = address of step that performed "EXDSPRET"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=4004 \mathrm{O}_{8} \quad\) (MKEXREQ, DOTHNRET)
Proceed to "GOFLASH2"
GOXDSPF TSaddr = address of step that proceeded to "GOXDSPF"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=40010_{8} \quad(\) MKEXREQ, FLREQ)
Proceed to "GOFLASH2"
GOXDSPFR TSaddr = address of step that performed "GOXDSPFR"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=40010_{8} \quad\) (MKEXREQ, FLREQ).
Proceed to "GODSPRS1"
GOMARK2 TSaddr = address of step that proceeded to "GOMARK2"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=4_{40030_{8} \quad \text { (MKEXREQ, PERFREQ, FLREQ) }}^{8}\)
Proceed to "GOFLASH2"
GOMARK2R TSaddr = address of step that performed "GOMARK2R"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=4003 \mathrm{C}_{8} \quad\) (MKEXREQ, PERFREQ, FLREQ)
Proceed to "GODSPRSI"
GOMARK3 TSaddr = address of step that proceeded to "GOMARK3"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=40230_{8}\) (MKEXREQ, DECVERB, PERFREQ, FLREQ)
Proceed to "GOFLASH2"
GOMARK3R Analogous to "GOMARK2R" except \(\mathrm{MPAC}_{4}=40230_{8}\)

GOMARK4 TSaddr = address of step that proceeded to "GOMARK4"
\(M P A C_{1}=T S\)
\(M_{P A C}^{4}=40036_{8}\) (MKEXREQ, PERFREQ, FLREQ, R3BLNK, R2BLNK)
Proceed to "GOFLASH2"
KLEENEX TSaddr = address of step that proceeded to "KLEENEX"
\(\mathrm{MPAC}_{1}=0000 \mathrm{O}_{8}\)
\(\mathrm{MPAC}_{4}=40010_{8} \quad\) (MKEXREQQ, FLREQ)
Proceed to "GOFLASH2"
PRIODSP TSaddr \(=\) address of step that proceeded to "PRIODSP"
\(\mathrm{MPAC}_{1}=\mathrm{TS}\)
\(\mathrm{MPAC}_{4}=\mathrm{OONO}_{8} \quad\) (PRIOREQ, FLREQ)
Proceed to "GOFLASH2"
PRIODSPR TSaddr = address of step that performed "PRIODSPR" or "PRIOLARM"
\(M P A C_{1}=T S\)
\(\mathrm{MPAC}_{4}=00110_{8} \quad\) (PRIOREQ, FLREQ)
Proceed to "GODSPRS1"
GOFLASH2 Inhibit interrupts
Set bits 11-9 of \(\mathrm{MPAC}_{4}=\) EBANK
MPAC \(_{3}=\) TSaddr
Release interrupt inhibit
Proceed to "MAKEPLAY"
GODSPRS1 Inhibit interrupts
Establish "MAKEPLAY" (if a flashing register display use VAC, if not no VAC; priority same
Set bits 11-9 of \(\mathrm{MPAC}_{4}=\) EBANK as current job)

MPAC \({ }_{3}=\) TSaddr

Set MPAC \({ }_{1}\) of "MAKEPLAY" job \(=\mathrm{MPAC}_{i}\) of present job for \(1=1-4\)
Release interrupt inhibit
Return (in listing return is to calling address +4 , except if called by "GODSPR", "REGODSPR", or "GOXDSPR" then to caller + l)

BLANKET Switch MPAC 4 bits indicated by a binary 1 in TS to 1
Set \(\mathrm{MPAC}_{4}\) of "MAKEPLAY" job \(=\mathrm{MPAC}_{4}\) of present job
Return

MAKEPLAY USERPRIO = priority of present job
Change priority to 33 (higher than "CHARIN")
If bit 15 of \(\mathrm{MPAC}_{4}\) (MKEXREQ) = 1 , proceed to "MAKEMARK"
If bit 7 of \(\mathrm{MPAC}_{4}\) (PRIOREQ) \(=1\), proceed to "MAKEPRIO"
COPINDEX \(=2\)
If bit 14 of \(\mathrm{MPAC}_{4}\) (RESETREQ) \(=1\) : (REGODSP, REFLASH, CLEANDSP If \(\mathrm{CADRFLSH}_{2} \neq \mathrm{MPAC}_{3}\), proceed to "OKTOPLAY" If DSPLOCK \(=0\), proceed to "OKTOPLAY"

End job (display is already set and DSKY is busy; see "CLOKJOB" for example)
If DSPFLG bit 4 (FLREQ) \(=0\), proceed to "OKTOPLAY"
(Normal displays not requiring astronaut action can be replaced by other normal displays)

If FLAGWRD4 bits 13 (NRMIDFLG), 10 (NWAITFLG), 8 (NRMNVFLG) and 4 (NRUPTFLG) are all zero, proceed to "OKTOPLAY" (not replacing a display that has not yet been displayed)

Proceed to "BAILOUT" with TS \(=31502\) g (two simultaneous requests for normal display)

OKTOPLAY Inhibit interrupts
\(\mathrm{DSPFLG}_{2}=\mathrm{MPAC}_{4}\)
If DSPFLG \(_{2}\) bit 6 (DOTHNRET) or 4 (FLREQ) \(=1\) :
\(\mathrm{CADRFLSH}_{2}=\mathrm{MPAC}_{3}\)
\(\mathrm{NVWORD}_{2}=\mathrm{MPAC}_{1}\)
Release interrupt inhibit
If FLAGWRD 4 bit 15 (MRKIDFLG), 14 (PRIODFLG), 12 (PDSPFLAG), 11 (MWAITFLG), 9 (MRKNVFLG), 7 (PRONVFLG), 5 (MRUPTFLG) or \(1(\) XDSPFLAG \()=1\) :

Switch FLAGWRD4 bit 10 (NWAITFLG) to 1
\(M P A C=C O P I N D E X-1\)
If a job with LOC = "PLAYJUM1" is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
Put this job to sleep with a LOC \(=\) "PLAYJUM1" \(\quad\left(\right.\) MPAC \(_{0-7}\)
maintained in sleep)
When awakened, proceed to address specified in its LOC
(Otherwise, this job is free to proceed to use the DSKY)
Perform "WITCHONE"
If a job with \(L O C=T S\) is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
PLAYJUMI COPINDEX \(=2\) (COPINDEX not maintained by sleeping job)
Proceed to "NVDSP"
MAKEMARK COPINDEX \(=1\)
Inhibit interrupts
\(\mathrm{DSPFLG}_{1}=\mathrm{MPAC}_{4}\)
If DSPFLG \(_{1}\) bit 6 (DOTHNRET) or 4 (FLREQ) \(=1\) :
\(\mathrm{CADRFLSH}_{1}=\mathrm{MPAC}_{3}\)
\(\mathrm{NVWORD}_{1}=\mathrm{MPAC}_{1}\)
Release interrupt inhibit
If FLAGWRD4 bit 14 (PRIODFLG), 13 (NRMIDFLG), 12 (PDSPFLAG), 8 (NRMNVFLG) and 7 (PRONVFLG) are all 0: (no normal or priority display waiting for a response or a key release)
```

    (If FLAGWRD4 bit 14 ... are all 0:)
    If FLAGNRD4 bit 9 (MRKNVFLG) = 1, end job
    Proceed to "MARKPLAY"
    If FLAGNRD4 bit 14 (PRIODFLG), 12 (PDSPFLAG) and 7 (PRONVFLG)
    are all 0: (interrupt if a normal display)
    Switch FLAGNRD4 bit 3(MKOVFLAG) to l
    MPAC
    Proceed to "JOBXCHS" (substitute mark for normal display)
    If FLAGNRD4 bit ll (MWAITFLG) or 5 (MRUPTFLG) = l, end job
(otherwise, put mark to sleep until prio display is over)
Switch FLAGNRD4 bit ll (MWAITFLG) to l
MPAC
If a job with LOC = "MARKPLAY" is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
Put this job to sleep with a LOC = "MARKPLAY"
When awakened, proceed to address specified in its LOC
MARKPLAY Inhibit interrupts
Switch FLAGNRD4 bit 3 (MKOVFLAG) to 0 and bit l (XDSPFLAG) to l
Release interrupt inhibit
If DSPFLG bit 5 (PERFREQ) = 1, NVWORD 1 = -NVWORD 1
COPINDEX = 1
Proceed to "NVDSP"
MAKEPRIO COPINDEX = 0
If bit 14 (RESETREQ) of MPAC}4=0
If FLAGWRD4 bit l4 (PRIODFLG) or 7 (PRONVFLG) = l, proceed
to "BAILOUT" with TS = 315028 (too many priority displays)

```
```

    If bit 14 of MPAC (RESETREQ) = 1: (not expected)
    If CADRFLSH
    If FLAGWRD4 bit 15 (MRKIDFLG) or 9 (MRKNVFLG) = 1:
    MPAC O}=
    Proceed to "JOBXCHS" (replace mark with prio display)
    If FLAGWRD4 bit 13 (NRMIDFLG) or 8 (NRMNVFLG) = 1:
    MPAC
    Proceed to "JOBXCHS" (replace norm with prio display)
    OKTOCOPY COPINDEX = 0
Inhibit interrupts
DSPFLG
If DSPFLG
CADRFISH
NVWORD
Release intermupt inhibit
Perform "WITCHONE"
If a job with LOC = TS is asleep:
Awaken it and set its LOC = "ENDOFJOB"
REDOPRIO PRIOTIME = less significant half of TIMENOW
COPINDEX = 0
Proceed to "NVDSP"
JOBXCHS Perform "WITCHONE"
If a job with LOC = TS is asleep:
Awaken it and set its LOC = "XCHSLEEP" (to cause it
to continue at "XCHSLEEP" when this job is finished)
(If a job with LOC $=T S$ is asleep:)
Set $\mathrm{MPAC}_{0}$ of awakened job $=\mathrm{MPAC}_{0}$ of this job
If $M P A C_{0}=0: \quad$ (mark display replaced by a priority display)
Switch FLAGWRD4 bits 15 (MRKIDFLG) and 9 (MRKNVFLG) to 0
Switch FLLAGWRD4 bit 5 (MRUPTFLG) to 1
If $\mathrm{MPAC}_{0}=1: \quad$ (normal display replaced by mark or prio)
Switch FLAGWRD4 bits 13 (NRMIDFLG) and 8 (NRMNVFLG) to 0
Switch FLAGWRD4 bit 4 (NRUPTFLG) to 1
If FLAGWRD4 bit 3 (MKOVFLAG) $=1$, proceed to "MARKPLAY"
Proceed to "OKTOCOPY" (priority)
$\underline{\text { XCHSLEEP }}$ If $M P A C=0, T S=$ "MARKPLAY"
If $M P A C_{O}=1, T S=$ "PLAYJJM1"
If a job with $I O C=T S$ is asleep:
Awaken it and set its LOC = "ENDOFJOB" (kill it)
Put this job to sleep and set its LOC = TS
When awakened, proceed to the address specified in its LOC
WITCHONE Switch bit 5 of channel 11 to 0 (key release lamp off) If FLAGWRD4 bit 9 (MRKNVFLG), 8 (NRMNVFLG) or 7 (PRONVFLG) $=1$ :
$T S=$ DSPLIST
DSPLIST $=+0$
Return
$T S=$ CADRSTOR
CADRSTOR $=+0$
Return
(job active in the display interface routines is one that is awaiting' astronaut release of the DSKY)
(job active in the display interface routines is one that is awaiting an astronaut response)

GENMASK $=\mathrm{K}$ : dspoctab $_{\text {i }}$
$\mathrm{MPAC}_{4}=\mathrm{DSPFLG}_{\mathrm{i}}$
EBANK = bits 11-9 of DSPFLG $_{i}$
TSmonopt $=$ bits $3-1$ of DSPFLG $_{i}$
Switch DSPFLG ${ }_{i}$ bit 13 (2NDPERF) to 0
TSdec $=$ bit 8 of DSPFLG $_{i}$ (DECVERB)
MPAC2SAV $=$ MPAC $_{2}$
MARK2PAC $=$ MPAC $_{2}$
If $\mathrm{NVWORD}_{i}=0$ :
Establish "JAMTERM" (force return to calling (pr32)
Proceed to second step of "FLASHSUB"
If $\mathrm{NVWORD}_{i}>0$ :
TSvn $=$ NVWORD $_{i}$
If $\mathrm{NVWORD}_{\mathrm{i}}<0$ : (expected only with marks)
$\mathrm{NVWORD}_{1}=-\mathrm{NVWORD}_{1}$
$\mathrm{TS}=\mathrm{K}: \mathrm{V} 05 \mathrm{NOO}$
If TSdec $=0^{00200} 8$ (bit $8=1$ ), TS $=K: V O 6 N O O$
$T S V n=T S+$ low 7 bits of $\mathrm{NWWORD}_{1} \quad$ (verb 5 or 6 with noun)
NV50DSP Perform "NVSUB"
If FREFDSKY $=0: \quad$ (display system in use externally)
If CADRSTOR $\neq 0$, end job
If $C O P I N D E X=0$ (GENMASK $=20144_{g}$ ):
Switch FLAGWRD4 bit 7 (PRONVFLG) to 1
TSadr = "REDOPRIO"
(If FREFEDSKY = O:
If COPINDEX $=1$ (GENMASK $=424_{2}{ }_{8}$ ):
Switch FLAENRD4 bit 9 (MRKNVFLG) to 1
TSadr = "MARKPLAY"
If COPINDEX $=2$ (GENMASK $=11254_{8}$ ):
Switch FLAGWRD4 bit 8 (NRMNVFLG) to 1
TSadr = "PLAYJUM1"
(CADRSTOR $=0$ from above)
If DSPLIST $\neq 0$, proceed to "BAILOUT" with $T S=31206_{8}$
Switch bit 5 of channel 11 to 1 (light key release lamp)
DSPLIST $=$ TSadr
Put this job to sleep with a LOC = TSadr
When awakened, proceed to address specified in its LOC
Switch bit 6 of channel 11 to 0 (verb-noun flash off)
MPAC ${ }_{2}=$ MPAC2SAV
$i=$ COPINDEX
GENMASK $=K$ : dspoctab ${ }_{i}$
$\mathrm{MPAC}_{4}=$ DSPFLG $_{i}$
EBANK = bits 11-9 of $\mathrm{MPAC}_{4}$
Switch FLAGWRD4 bits 9 (MRKNVFLG), 8 (NRMNVFLG) and 7 (PRONVFLG) to 0
Perform "BLANKSUB" with TSblank $=\mathrm{MPAC}_{4}$ (blank extraneous Registers)
If FREEDSKY $=0$, proceed to "NVDSP"
If $\mathrm{MPAC}_{4}$ bit 5 (PERFRWQ) $=1$ and bit 13 (2NDPERF) $=0$ :
Switch DSPFLG ${ }_{i}$ bit 13 (2NDPERF) to 1
$\mathrm{TSvn}=$ bits $14-8$ of $\mathrm{NVWORD}_{1}$ (mark verb code)
TSmonopt $=00000_{8}$
If DSPFLG i bit 15 (MKEXREQ) $=1$, proceed to "NV50DSP"
(If PERFFEQ $=1$ and $2 N D P E R F=0$ )
If DSPFLG ${ }_{i}$ bit 12 (BURNREQ) $=1, \mathrm{TSvn}=\mathrm{K}:$ V97NOO-NVWORDD If DSPFLG ${ }_{i}$ bit 12 (BURNREQ) $=0, T S v n=K: V 50 N 00$ Proceed to "NV50DSP"

If $\mathrm{MPAC}_{4}$ bit 4 (FLREQ) $=1$, proceed to "FLASHSUB" If MPAC $_{4}$ bit 6 (DOTHNRET) $=1$ :

Change priority of this job to that stored in USERPRIO
Proceed to step following that whose address is stored in CADRFLSH COPINDEX
If low 7 bits of $\mathrm{NWWORD}_{i}=0$, proceed to "FLASHSUB" End job

REIDSP
Switch bit 14 of MONSAVE1 to 0
(turn off external monitor priority indicator)
If DSPLIST $\neq 0$ : (display job waiting for key release)
Awaken job with LOC = DSPLIST
DSPLIST $=0$
Switch bit 5 of channel 11 to 0 (key release lamp off)
DSPLOCK $=0$
Return
RELDSP1 If DSPLIST $=0$, switch bit 5 of channel 11 to 0 (key rel off) DSPLOCK $=0$

Return
FLASHSUB Switch bit 6 of channel 11 to 1 (start verb-noun flash) $\mathrm{MPAC}_{3}=\mathrm{COPINDEX}$
If GENMASK $=20144^{8}$, switch FLAGWRD4 bit 14 (PRIODFLG) to 1
If GENMASK $=42424^{8}$, switch FLAGWRD 4 bit 15 (MRKIDFLG) to 1

If GENMASK $=11254$, switch FLAGWRD4 bit 13 (NRMIDFLG) to 1
If COPINDEX $=1$ and R1SAVE $=2$ :
R1SAVE $=0$
Return to address specified by $\mathrm{CADRFLSH}_{1}+3$
If CADRSTOR $\neq 0$ :
If FLAGNRD4 bits 15 (MRKIDFLG) and 6 (PINBRFLG) both $=0$ :
Proceed to "BAILOUT" with TS $=31502_{8}$
End job
If DSPLIST $\neq 0$, proceed to "BAILOUT" with $T S=31206_{8}$
CADRSTOR $=\mathrm{K}:$ IDLERET1
Put this job to sleep with a LOC $=$ CADRSTOR
When awakened, proceed to address specified in its LOC
LOADSTAT $=-1$
(verb 34)
Skip next 3 steps
VBPROC $\quad$ LOADSTAT $=1$ (verb 33)

Skip next step
VBRESEQ LOADSTAT $=-0$ (verb 32)

MONSAVE1 $=40000_{8} \quad$ (kill monitor)
Perform "RELDSP"
Switch bit 6 of channel 11 to $0 \quad$ (verb-noun flash off)
Proceed to "RECALTST"
LOADLV DECBRNCH $=0^{00000_{8}} \quad$ (data entry, mark verb etc.)
LOADSTAT $=-0$
Perform "RELDSP"
DSPCOUNT $=-19$
Proceed to "RECALTST"

RECALTST If CADRSTOR $=0$, end job
TSadr $=$ CADRSTOR
CADRSTOR $=0$
Inhibit interrupts
Awaken job with LOC ${ }^{\prime}=$ TSadr
If LOADSTAT $=-1$, set LOC of awakened job to "TERMATE"
If LOADSTAT = 1, set LOC of awakened job to "PROCEED"
If LOADSTAT $=-0$, set LOC of awakened job to "IDLERET3"
TSnoun = NOUNREG $\quad\left(\right.$ MPAC $_{1}$ of awakened job)
TSverb $=$ VERBREG $\quad\left(M P A C_{O}\right.$ of awakened job)
Release interrupt inhibit
Perform "RELDSP"
End job
IDLERET3 If TSverb $=21,22$ or 23: (data load)

$$
i=M P A C_{3} \quad(\text { COPINDEX })
$$

If $T$ Snoun $\neq$ low 7 bits of NVWORD $_{i}$, proceed to "PINBRNCH" (load is not in response to request)

OUTHERE $=2$
Skip next 3 steps
PROCEED OUTHERE $=1$
Skip next step
TERMATE OUTHERE $=0$
If FLAGWRD4 bit 15 (MRKIDFLG) $=1$, proceed to "MARKRET"
If FLAGWRD4 bit 14 (PRIODFLG) $=0$, proceed to "NORMRET"
TS = (less significant half of TIMENOW) - PRIOTIME

If $T S<0, T S=16384+T S$
If $T S \leq K: 2 s e c B 14:$ (Priority display not up for 2 seconds)
COPINDEX $=0$
Proceed to "NVDSP"
NORMRET
If FLAGWRD4 bit 11 (MWAITFLG) or 5 (MRUPTFLG) = 1:
Proceed to "MARKWAKE"
If FLAGWRD4 bit 10 (NWAITFLG) or 4 (NRUPTFLG) $=1$ :
Proceed to "NORMWAKE"
If DSPFLG $_{2}$ bits 4 (FLREQ) and 6 (DOTHNRET) both $=0$ and NVWORD $_{2} \neq 0$ :
Establish "PLAYJUM1"
Skip next step
MARKRET Switch FLAGWRD4 bit 3 (MKOVFLAG) to 0 (also bit 2 - meaningless)
ENDRET If OUTHERE $<0$, end job
If GENMASK $=20144^{8}$, switch FLAGWRD4 bits 14 (PRIODFLG) and 6 (PINBRFLG) to 0

If GENMASK $=424248$, switch FLAGWRD4 bit 15 (MRKIDFLG) to 0
If GENMASK $=11254$, switch FLAGWRD4 bits 13 (NRMIDFLG) and 6 (PINBRFLG) to 0
$\mathrm{TSvn}=-3$
TSmonopt $=0$
Perform "NVSUB" (Blank display excepting MM number)
Change priority of this job to that specified in USERPRIO
$i=M P A C_{3} \quad$ (COPINDEX)
$\mathrm{MPAC}_{3}=\mathrm{CADRFLSH}_{i}$
If OUTHERE $=0$, proceed as specified in the "if terminate" option at the step whose address is stored in $\mathrm{MPAC}_{3}$

If OUTHERE $=1$, proceed as specified in the "if proceed" option at the step whose address is stored in MPAC 3
If OUTHERE $=2$, proceed as specified in the "other response" option at the step whose address is stored in $\mathrm{MPAC}_{3}$
NORMWAKE Switch FLAGWRD4 bit 4 (NRUPTFLG) and 10 (NWAITFLG) to 0 Awaken job with LOC = "PLAYJUM1"

Proceed to "ENDRET"
MARKWAKE Switch FLAGWRD4 bit 5 (MRUPTFLG) and 11 (MWAITFLG) to 0


Proceed to "ENDRET"
PINBRNCH Release interrupt inhibit (if any)
$M P A C C_{2}=\operatorname{MARK} 2 P A C$
If FLAGWRD4 bita 15 (MRKIDFLG), 14 (PRIODFLG), and 13 (NRMIDFLG) all $=0$ :

$$
T S v n=-3
$$

TSmonopt $=00000_{8}$
Perform "NVSUB"
End job
If FLAGWRD4 bit 15 (MRKIDFLG) $=1$, proceed to "MARKPLAY"
Proceed to "NORMBNCH"
ENDEXT EXTVBACT $=00000_{8}$
Inhibit interrupta
Switch FLAGWRD4 bit 1 (XDSPFLAG) to 0
Release interrupt inhibit
OUTHERE $=-1$
If FLAGWRD4 bit 14 (PRIODFLG) and 13 (NRMIDFLG) are both zero: Proceed to "NORMRET"

```
NORMBNCH Switch FLAGWRD4 bit 6 (PINBRFLG) to 1
 If FLAGWRD4 bit 14 (PRIODFLG) \(=1\) :
 COPINDEX \(=0\)
 Proceed to "NVDSP"
 Proceed to "PLAYJUMD"
JAMTERM REQRET \(=34\)
 DSPCOUNT \(=-19\)
 Proceed to "VBTERM"
PRIOLARM Perform "ALARM"
 Proceed to "PRIODSPR" with TS = K:VO5NO9
CLOCPLAY TSaddr \(=\) address of step that proceeded to "CLOCPLAY"
 \(\mathrm{MPAC}_{1}=\mathrm{TS}\)
 \(\mathrm{MPAC}_{4}=24030_{8}\) (RESETREQ, BURNREQ, PERFREQ, FLREQ)
 Proceed to "GOFLASH2"
```

        DINT - 18
    CADRFLSH ${ }_{i}$ ( $i=0,1,2$ ): Three single precision cells for storage of return address information required by priority, mark and normal display requests. In the program itself, CADRFLSH is used for storage of the address of the step after that at which the display interface routine is called; in this writeup, CADRFLSH refers to the address of the step that called a display interface routine.
CADRSTOR: Single precision storage for the address of the job that is asleep while awaiting an astronaut response.
COPINIEX: Single precision index used to determine which display control parameters are relevant (priority, mark/extended verb, or normal $=0$, 1, or 2), scaled B14 and unitless.

DECBRNCH: See DSKY section.
DSPCOUNT: See DSKY section.
DSPFLG $(i=0,1,2)$ : Three single precision flagwords containing control discretes for one priority ( $i=0$ ), one mark ( $i=1$ ) and one normal display (i=2) simultaneously. The individual bits have the same significance in each of the three flagwords (one would not expect bit 15 to be set in ${ }^{D S P F L G}$ or DSPFLG ${ }_{2}$, etc.). The following is a list of the significance of each when it is set (1).

Bit	Mnemonic	Significance
15	MKEXPEQ	Mark or extended verb display. (Higher priority than a normal display.)
14	RESETREQ	Reset request; replaces active display of same priority.
13	2 NDPERF	Second loop through a "please perform" type display; the first loop displays the noun using a display verb. The second loop replaces the display verb with the appropriate "please perform" verb.
12	BURNREQ	The "please perform" verb is to be 97/99 rather than 50.

Bits 11-9 are used to store the setting of EBANK from the program using a display interface routine.

8	DECVERB	The noun to be displayed with a "please perform"   verb requires a decimal display verb in the first
7	PRIOREQ	loop.   Priority display. (Higher priority than a mark or   a normal display.)
6	DOTHNRET	Return only after display is executed. (Used only   with displays that do not require astronaut action.)
5	PERFREQ	A "please perform" type display request.
4	FLREQ	This display requires astronaut response; set the   verb and noun registers flashing.


Bit	Mnemonic	Significance
3	R3BLNK	Blank register 3.
2	R2BiNK	Blank register 2.
1	R1BLNK	Blank register

Program notations EBANKSAV, MARKEBAN and EBANKTEM or DSPFLG, MARKFLAG and SAVEFLAG, respectively. $D S P F L G_{2}$ is set to $00000_{8}$ in "DOFSTRT1".

DSPLIST: Single precision storage for the address of the job that is asleep while waiting for the astronaut to release control of the DSKY.

DSFLOCK: Single precision flagword set positive when the astronaut has control of the DSKY, and reset to zero when the DSKY is free for use by internal programs.
DSPTEM1: See DATA section.

EBANK: See MATX section.

EXIVBACT: See EXVB section.
FREEDSKY: See DATA section.
GENMASK: Single precision flagword indicating which bits of the DSPFLG are to be set. Same as MPAC
K:2secB14: Single precision constant stored as $-200 \times 2^{-14}$, program notation -2SEC, scaled B14 in units of centiseconds. Equation value: 200.

K:dspoctab ${ }^{(i=0,1,2): ~ T h r e e ~ s i n g l e ~ p r e c i s i o n ~ o c t a l ~ c o n s t a n t s, ~ p r o g r a m ~}$ notation PRIOOCT+0, $+1,+2$, stored as $20144^{8}, 424248$, and $11254^{\circ}{ }^{\circ}$

K:IDLERET1: Single precision octal address changed in "RECALTST" to cause a flashing display interface routine to branch to "TERMATE", "PROCEED" or "IDLERET3".

K:VxxNxx: Single precision constant containing a seven-bit verb code (0-99) in bit positions $14-8$ and a seven-bit noun code ( $0-99$ ) in bit positions 7-1.

LOADSTAT: Single precision flag indicating whether an astronaut response is verb 34 , verb 33 , or verb 32 or a data entry or entry of a "please perform" verb.
LOC: See MATX section.

MONSAVEI: See DATA section.
$M P A C_{i}(i=0-7):$ A set of eight single precision cells associated with a particular job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, MPAC $0-7$ are saved to be reset exactly as they were when the interrupted job is reestablished. See MATX section.
$M P A C_{0}$ : Used as a flag to determine if a job being put to sleep is one handling a normal display or one handling a mark display.

MPAC $_{1}$ : Used to store the verb-noun code at entry to the display interface logic.
$\mathrm{MPAC}_{2}$ : Used to store the address for an "address to be specified" noun when that noun is used by a program (as opposed to use of that noun by the astronaut, in which case he would enter the address via the DSKY).
$M_{3 A C}$ : Used as temporary storage for $\mathrm{CADRFLSH}_{i}$ or COPINDEX.
$\mathrm{MPAC}_{4}$ : Used as temporary storage for $\mathrm{DSPFLG}_{i}$.
MPAC2SAV: Storage for $M P A C 2$ while it is being used as working storage.
NOUNREG: See DATA section.
NVWORD ( $i=0,1,2$ ): Set of three single precision erasable memory cells used to retain values of the verb-noun pattern (verb code in bits 14-8, noun code in bits 7-1) for priority, mark/extended verb, and normal displays, respectively. Program notations NVWORD, MARKNV and NVSAVE, respectively. $\mathrm{NVWORD}_{2}$ is initialized as 0 in "DOFSTRTl".

NVWORDI: See BURN section.
OPTION1, OPTION2: See DATA section.
OUTHERE: Single precision index used to determine the return from the display interface routines based on the type of estronaut response. Scaled B14.
PRIOTIME: Single precision time when a priority display is activated, scaled Bl4 in units of centiseconds. Used to assure that a reply to an interrupted normal or mark/extended verb display is not inter-
: preted as a response to the interrupting priority display.
RISAVE: Single precision cell, initialized to 0 in "STARTSB2", used in "FLASHSUB" to control a special return to the calling routine.

REQRET: See DSKY section.
MIMENOW: See EXVB section.
USERPRIO: Single precision storage for the priority of the job using the display interface routines. (Actually equal to MPAC ${ }_{7}$ and therefore maintained while the job is asleep.)

VERBREG: See DATA section.

## O

## -

KEYRUPT1 (Entered on program interrupt \#5)
SAMPTIME $=$ TIMENOW (for noun 65)

TS = low 5 bits of channel 15 (five bit key code)
Switch FLAGWRD5 bit 15 (DSKYFIAG) to 1
Establish "CHARIN"
Set $\mathrm{MPAC}_{0}$ of "CHARIN" job $=T S$
Resume

## CHARIN

21d22REG = DSPLOCK
DSPLOCK $=1$
If CADRSTOR $\neq+0$ and $M P A C_{0} \neq 22_{8}$ : (flashing display; not error reset Switch bit 5 of channel 11 to 1 (key release lamp)

CHAR $=$ MPAC $_{0}$
If $\mathrm{CHAR}=1,2,3,4,5,6$ or 7: (numbers 1 through 7).
Proceed to "NUM"
If CHAR $=10_{8}$ or $11_{8}$ : (numbers 8 and 9)
If DSPCOUNT $\leq-0$, end job
If bit 2 or 1 of $\operatorname{DECBRNCH}=1$, proceed to "NUM"
Proceed to "CHARALRM" (decimal numbers not allowed)
If $\mathrm{CHAR}=2 \mathrm{O}_{8}$ : (the number zero)
CHAR $=0$
Proceed to "NUM"
If $\mathrm{CHAR}=21_{8}$, proceed to "VERB" (verb)
If CHAR $=22_{8}$, proceed to "ERROR" (error reset)
If CHAR $=31_{8}$, proceed to "VBRELDSP" (key release)
If CHAR $=32$, proceed to "POSGN" (+ sign)


If bit 1 or bit 2 of $\operatorname{DECBRNCH}=1$ : ( ( or - decimal)
TS = VERBREG, NOUNREG, XREG, YREG or ZREG according to whether INREL $=0,1,2,3$ or 4
$T S=10 \mathrm{TS}+\mathrm{CHAR}$
If $T S \geq 16384$, proceed to "DECEND" (must be 5 th character)
If $\operatorname{INREL}=0$, set VERBREG $=T S$ and $i=18$
If INREL $=1$, set NOUNREG $=T S$ and $i=16$
If $\operatorname{INREL}=2$, set $X R E G=T S$ and $i=10$
If INREL $=3$, set YREG $=T S$ and $i=5$
If $\operatorname{INREL}=4$, set $Z R E G=T S$ and $i=0$
If i $\neq$ DSPCOUNT: (more characters may be inserted)
DSPCOUNT $=$ DSPCOUNT -1
End job
If bit 1 or bit 2 of $\operatorname{DECBRNCH}=1$, proceed to "DECEND"
DSPCOUNT $=-$ DSPCOUNT (block further numerical characters)
End job
DECEND If INREL $=0$ or 1: (verb or noun registers)
DSPCOUNT $=-$ DSPCOUNT $\quad($ scaling already B14)
Fnd job
If bit 1. of DECBRNCH $=1, \mathrm{TS}_{\mathrm{dp}}=10^{-5} \mathrm{TS}$
If bit 2 of DECBRNCH $=1, \mathrm{TS}_{\mathrm{dp}}=-10^{-5} \mathrm{TS}$
If $\operatorname{INREL}=2$, store $T S_{d p}$ in XREG and XREGLP (LP = lower half)
If INREL $=3$, store $T S_{d p}$ in YREG and YREGLP
If INREL $=4$, store $T S_{d p}$ in ZREG and $Z R E G L P$
DSPCOUNT $=-$ DSPCOUNT
End job

GETINREL Set INREL in accordance with DSPCOUNT and the following table: DSPCOUNT INREL Significance

0 thru 4	4	Register \#3, digits 5 (lowest) thru 1
5 thru 9	3	Register \#2, digits 5 thru 1
10 thru 14	2	Register. \#1, digits 5 thru 1
16 or 17	1	Noun register, digits 2 or 1
18 or 19	0	Verb register, digits 2 or 1
15,20 or over meaningless		

Return
POSGN Perform "SIGNTEST"
Perform "GETINREL"
SGNOFF $=5,3$ or 0 according to whether INREL $=2,3$ or 4
SGNON $=$ SGNOFF +1
Perform "SGNCOM"
Switch bit 1 of DECBRNCH to 1 .(to indicate + decimal)
Proceed to "BOTHSGN"
NEGSGN Perform "SIGNTEST".
Perform "GETINREL"
SGNON $=5,3$ or 0 according to whether INREL $=2,3$ or 4
SGNOFF $=$ SGNON +1
Perform "SGNCOM"
Switch bit 2 of DECBRNCH to 1 (to indicate - decimal)
Proceed to "BOTHSGN"
SGNCOM CODE $=0$
Perform "11DSPIN" with TS = SGNOFF
Switch bit 11 of CODE to 1
Perform "11DSPIN" with TS = SGNON
Return

$$
\text { DSKY - } 4
$$

BOTHSGN If INREL $=2$, switch bit 5 of DECBRNCH to 1
If INREL $=3$, switch bit 4 of DECBRNCH to 1
If $\operatorname{INREL}=4$, switch bit 3 of DECBRNCH to 1
If CLPASS >0, CLPASS $=0$
End job
REQDATX DSPCOUNT $=K:$ R1D1
Skip next 3 steps
REQDATY $\operatorname{DSPCOUNT}=K: R 2 D 1$
Skip next step
REQDATE DSPCOUNT $=K: R 3 D 1$
REQRET $=-$ return address (to cause "ENTER" to branch to caller
Perform "5BLANK" of "REQDATX" etc. when requested data

Switch bit 6 of channel 11 to 1 (verb-noun flash)
Proceed to address specified by ENTRET
REQMM $\quad$ REQRET $=-$ return address
DSPCOUNT $=K: N D 1$
NOUNREG $=0$
Perform "2BLANK"
Switch bit 6 of channel 11 to 1 (verb-noun flash)
DECBRNCH $=00001_{8} \quad$ (bit $1=1$ to indicate + decimal)
Proceed to address specified by ENTRET

ENTER
ENTRET = "ENDOFJOB"
If REQRET $\geq+0$, proceed to "ENTPASO" (normal data entry)
If $\mid$ REQRET $\mid=$ "MMCHANG" $+1:$ (data requested by "MMCHANG")
REQRET $=\mid$ REQRET $\mid$
Switch bit 6 of channel 11 to 0 (verb-noun flash off) Return via REQRET (to second step of "MMCHANG")

If bit 1 or bit 2 of DECBRNCH $=1$ and DSPCOUNT is positive:
Proceed to "DSPALARM" (decimal data requires all five characters before an enter)
REQRET $=\mid$ REQRET $\mid$
Switch bit 6 of channel 11 to 0 (verb-noun flash off)
Return via REQRET (to program that performed "REQDATX" etc.)
CLEAR $\quad T S=$ DSPCOUNT
Perform "GETINREL" with DSPCOUNT =|DSPCOUNT $\mid$
DSPCOUNT $=T S$
If CLPASS $\leq 0$ : (first "clear" since the last enter)
If INREL $\leq 1$, end job (the verb and noun registers are not cleared, they are changed)

Perform "5BLANK" skipping the first step (have INREL already)
CLPASS $=$ CLPASS $+1 \quad$ (enable multiple clears if needed)
Fnd job
(Otherwise, it's a multiple component clear)
INREL = INREL - 1 (Register \#n has already been cleared; decrement INREL to indicate that register \#n-1 is to be cleared as well.)

If INREL $\leq 1$, end job (Registers 1, 2 and 3 are already cleared; "CLEAR" can do no more.)

# REQRET = REQRET +3 <br> (change return address to loading program <br> to force it to back up to a previous step in the loading process; from "perform 'REQDATY'" to "perform 'REQDATXin etc.) 

TSI = INREL
VERBREG $=$ VERBREG -1
Perform "UPDATVB" (Change verb display to reflect the change in the component to be loaded.)

INREL $=$ TSI
Perform "5BLANK" skipping the first step
CIPASS = CLPASS +1 (enable clear of register \#l after \#3 and \#2)
End job
ERROR
DSPLOCK $=21 d 22 R E G$ (error reset leaves DSPLOCK unchanged)
Inhibit interrupts
Switch bit 10 of channel 11 to 1 (reset "Restart" lamp)
Switch DSPTAB ${ }_{11}$ to $100000000 \times 0 \times 000_{2}$
(reset "Program Alarm", "Tracker fail", "LR altitude fail", and "LR velocity fail"; bits 9, 8, 5, and 3. Leave bits 6 and 4 alone; "Gimbal lock" and "No attitude" lamps.')

Switch bits 13,12 and 11 of IMODES 33 to 1
(Set PIPA good, Downlink good and Uplink good bits)
Switch big 10 of IMODES 30 to 1
(Set PIPA good bit)
Switch RADMODES bits 8 (LRVELFLG), 5 (LRALTFLG) and 4 (RRDATAFL) to 0

Switch RADMODES bit 7 (RCDUFAIL) to 1
Perform "Cl3STALL"
Switch bit 10 of channel 13 to 0 (reset "test lamps" bit)
Switch bits 7 and 3 of channel 11 to 0 (reset "Operator Error" and "Uplink Activity" lamps)
$\operatorname{DSPTAB}_{i}=\left(\left|\mathrm{DSPTAB}_{i}\right|\right.$ with bit 12 set to 1$)$ signDSPTAB $_{i}$ for all values of 1 from 10 through 0

Release interrupt inhibit
FAILREG $_{1}=0$ for $i=0,1$
SFAIL $=0$
End job
VBRELDSP Switch bit 3 of channel 11 to 0 (Reset Uplink Activity lamp)
If 21d22REG $>0$ and bit 14 of MONSAVE1 $=1$ : (monitor going)
DSPLOCK $=0$
If CADRSTOR $=+0$, perform "RELDSP1"
End job
Perform "RELDSP"
If CADRSTOR $\neq+0$, proceed to "PINBRNCH"
End job

DSPOCTWD WDRET $=$ return address
Switch bit 14 of DSPCOUNT to 1 (to blank sign in "DSPIN")
$W D C N T=4$
WDAGAIN
TSwd = TSwd cycled left 3 places
(bit 15 shifted into bit 3 position, 14 into 2, etc.)
i = low 3 bits of TSwd
CODE $=$ low 5 bits of $\mathrm{K}:$ RELTAB $_{i}$
COUNT $=$ DSPCOUNT
If DSPCOUNT > 0 , DSPCOUNT $=$ DSPCOUNT -1
Perform "DSPIN" (display digit in position specified by COUNT)
If WDCNT $>0$ :
WDCNT $=$ WDCNT -1
Proceed to "WDAGAIN"
DSPCOUNT $=-19$
Return via WDRET
DSPDECWD WDRET = return address
Perform "DSPSIGN!" (returns with MPAC ${ }_{d p}=\left|M P A C_{d p}\right|$ )
MPAC $_{d p}=$ MPAC $_{d p}+K:$ DECROUND
If overflow (MPAC ${ }_{d p} \geq 1$ ), MPAC ${ }_{d p}=K$ :posmaxdp
$W D C N T=4$
DSPDCWD1 $i=$ integral part of (10 MPAC ${ }_{d p}$ ) (highest digit first)
CODE = low five bits of $K:$ RELTAB $_{i} \quad$ (character code)
$\mathrm{MPAC}_{\mathrm{dp}}=$ fractional part of (10 MPAC dp )
COUNT $=$ DSPCOUNT
If DSPCOUNT $>0$, DSPCOUNT $=$ DSPCOUNT -1
Perform "DSPIN"

```
 If WDCNT > 0:
 WDCNT = WDCNT - 1
 Proceed to "DSPDCWD1"
 DSPCOUNT = -19
 Return via WDRET
DSPSIGN
 If MPAC }\mp@subsup{d}{p}{}\geq+0, perform "+ON"
 If MPAC }\mp@subsup{d}{dp}{}\leq-0, perform "-ON"
 MPAC
 Return
+ON
 Perform "GETINREL"
 SGNOFF = 5,.3 or O according to whether INREL =2,3 or 4
 SGNON = SGNOFF + 1
 CODE = 00000
 Perform "11DSPIN" with TS = SGNOFF
 Switch bit }11\mathrm{ of CODE to 1
 Perform "11DSPIN" with TS = SGNON
 Return
-ON Perform "GETINREL"
SGNON = 5, 3 or 0 according to whether INRELL = 2, 3 or 4
SGNOFF = SGNON + 1
CODE = 000008 (bit 11 = 0)
Perform "11DSPIN" with TS = SGNOFF:
Switch bit }11\mathrm{ of CODE to 1
Perform "11DSPIN" with TS = SGNON
Return
```

```
DSPDC2NR WDRET = return address
 Perform "DSPSIGN"
 WDCNT = 1
 Proceed to "DSPDCWD1"
DSPDECVN WDRET = return address
 MPAC
 WDCNT = 1
 Proceed to "DSPDCWD1"
DSP2DEC WDRET = return address
CODE = 0000088 (bit 11 = 0)
Perform "11DSPIN" with TS = 3 (-R2S off)
Perform "11DSPIN" with TS = 4 (+R2S off)
Perform "DSPSIGN"
WDCNT = 9
Proceed to "DSPDCWD1"
BLANKSUB FREEDSSKY = 0
 If DSPLOCK > O, return
 If bit 14 of MONSAVE1 = 1, return (no blank for externally
 FREEDSKY = 1
If bits 3-1 of TSblank all = 0, return
TScnt = DSPCOUNT
If bit 1 of TSblank = 1, perform "5BLANK" with DSPCOUNT = K:R1D1
If bit 2 of TSblank = 1, perform "5BLANK" with DSPCOUNT = K:R2D1
If bit 3 of TSblank = 1, perform "5BLANK" with DSPCOUNT = K:R3D1
DSPCOUNT = TScnt
Return
```

5BLANK Perform "GETINREL"

```
CODE = O
```

If INREL $=2$ :
$X R E G=0$
XREGLP $=0$
Set bits 5, 2 and 1 of $\operatorname{DECBRNCH}=0$
Perform "DSPIN" with COUNT $=14$ (RIDI)
Perform "2BLANK" twice, with DSPCOUNT $=13$, then 11
DSPCOUNT $=\mathrm{K}:$ RIDI
If INREL = 3:
$Y R E G=0$
YREGLP $=0$
Set bits 4, 2 and 1 of $\operatorname{DECBRNCH}=0$
Perform "DSPIN" with COUNT $=5$ (R2D5)
Perform "2BLANK" twice, with DSPCOUNT $=9$, then 7
DSPCOUNT $=\mathrm{K}:$ R2DI
If INREL $=4$ :
ZREG $=0$
ZREGLP $=0$
Set bits 3, 2 and 1 of DECBRNCH $=0$
Perform "DSPIN" with COUNT $=4$ (R3DI)
Perform "2BIANK" twice, with DSPCOUNT $=3$, then 1
DSPCOUNT $=\mathrm{K}:$ R3DI
Return
$i=$ integral part of $\frac{1}{2}$ DSPCOUNT
If the sign of DSPTAB ${ }_{i}$ is positive, NOUTH $=$ NOUT +1

Return
11DSPIN $i=T S$
COUNT $=2$
Proceed to "DSPIN1"
DSPIN $\quad i=$ integral part of $\frac{1}{2}$ (low 5 bits of COUNT)
If bit 1 of COUNT $=0$ : (COUNT is even)
COUNT $=0$
proceed to "DSPIN1"
CODE $=$ CODE shifted left five places (to positions 6-10)
If bit 14 of COUNT $=0$ :
COUNT $=1$
Proceed to "DSPIN1"
COUNT $=3$ (sign to be changed as well as digit)
DSPIN1 Inhibit interrupts
$T S=\left|D S P T A B_{i}\right|$
If COUNT $=0$, set bits $1-5$ of $T S=$ bits $1-5$ of CODE
If COUNT $=1$, set bits $6-10$ of $T S=$ bits $6-10$ of CODE
If COUNT $=2$, set bit 11 of $\mathrm{TS}=$ bit $\cdot 11$ of CODE
(sign)
If COUNT $=3$, set bits $6-11$ of $\mathrm{TS}=$ bits $6-11$ of CODE
If TS $=\left|D S P T A B_{i}\right|$, skip next two steps
If DSPTAB $_{i}$ not already flagged for output, NOUT $=$ NOUT +1

```
DSPTAB i = - TS (complemented to flag for output)
Release interrupt inhibit
Return
```

2ld22REG: Single precision storage for the DSPLOCK indication so that an "error reset" may leave DSPLOCK unchanged.

CADRSTOR: See DINT section.

CHAR: The five bit octal keycode extracted from bits 5 through 1 of channel 15 when a keyboard interrupt is triggered by the depression of any of the DSKY keyboard buttons. The DSKY buttons and the binary codes gated into channel 15 by their respective depressions are:

10001	VERB	00010	2	01000	8
11111	NOUN	00011	3	01001	9
11010	+	00100	4	11110	CLR
11011	-	00101	5	11001	KEY REL
10000	0	00110	6	11100	ENTR
00001	1	00111	7	10010	RSET

CLPASS: A single precision register used to direct the logic enabling multiple-clearing of the three five-digit display registers. Set to zero whenever a valid numerical character or a sign is processed unless it has been previously set to a large negative number to disable multiple clears. See routine "CLEAR".

CODE: A five-bit, binary relay code to select the configuration of the DSKY illumination relays to form the proper character. The character codes are:

10101	0	01111	4	11101	8
00011	1	11110	5	11111	9
11001	2	11100	6	00000	blank
11011	3	10011	7		

COUNT: Single precision register used as working storage in the "DSPIN" routine, first to designate the $D S P T A B$ word to be changed, and second to indicate which of the two digits controlled by one DSPTAB word is to be changed and whether a sign is to be changed or blanked.

DECBRNCH: A single precision flagword whose bits have the following significance:

Bit $1 \quad$ Plus decimal 2 (not octal)
2 Minus decimal $\quad$ Register \#3 contains a decimal number
4 Register \#2 contains a decimal number
5 Register \#1 contains a decimal number
6-15 spare
Bits 3-5 are used in multiple component loads to assure all components are decimal or octal.

DSPCOUNT: A single precision quantity which indicates the register and digit position on the DSKY into which a number is to be placed. See description of DSPTAB registers. DSPCOUNT is set negative to indicate that further depressions of numerical keys are to be ignored by the program until another "command" key is depressed (VERB, NOUN, ENTR, etc.). Scaled Bl4.

DSPLOCK: Single precision flag set to some non-zero value to indicate when the display and keyboard are being used by the astronaut (or uplink).

DSPTAB ( $i=0-10$ ): Computer storage of the DSKY illumination relay settings. Bits 15 thru 13 are zero and bit 12 is 1 except when the DSPTAB register is complemented to direct the "T4RUPT" routine to change the displays.

R1, R2 and R3 are the three digital display registers, with D5 the least significant digit and Dl the most significant. Each of these registers has an associated sign bit, indicated below by -RiS or +RiS. If no sign is to be indicated, neither sign bit is set.

The two-digit (decimal) "noun", "verb" and "mode" or "program" registers are indicated below by $N, V$ and $M$ respectively and again, D1 is the more significant of the two digits.

The portion of the display that is controlled by each DSPTAB register is indicated below.

Register	Bit 11	Bits 6-10	Bits 1-5
$\mathrm{DSPTAB}_{10}$		MD1	MD2
DSPTAB9		VD1	VD2
DSPTAB8		ND1	ND2
$\mathrm{DSPTAB}_{7}$			R1D1
DSPTAB6	+R1S	R1D2	R1D3
$\mathrm{DSPTAB}_{5}$	-R1S	R1D4	R1D5
$\mathrm{DSPTAB}_{4}$	+R2S	R2D1	R2D2
DSPTAB3	-R2S	R2D3	R2D4
DSPTAB2		R2D5	R3D1
$\mathrm{DSPTAB}_{1}$	+R3S	R3D2	R3D3
DSPTAB0	-R3S	R3D4	R3D5

$\mathrm{DSPTAB}_{11}$ : See INTR section.
ENTRET: See DATA section.
FAILREG $_{i}(i=0,1)$ : See PGSR section.
FREEDSKY: See DATA section.
IMODES30: See IMUC section.

INREL: Single precision index to indicate whether numerical characters are to be placed into the verb register, the noun register or one of the five-digit registers R1, R2 or R3.

K:DECROUND: Double precision constant stored as $00000_{8} 02476$. Equation value: 0.000005 at a scaling of $B O$. Used to round a double precision AGC quantity to five decimal digits for display.

K:NDl: Single precision constant stored as 17 , scaled Bl4. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of the noun register. See description of $\operatorname{DSPTAB}_{0}-\operatorname{DSPTAB}_{10^{\circ}}$

K:R1D1, K:R2D1, K:R3D1: Single precision constants stored as 14,9 and 4. Used to set DSPCOUNT to indicate that the next numerical character received is to be placed into the most significant digit position of R1, R2 or R3. See description of $\operatorname{DSPTAB}_{0}-\operatorname{DSPTAB}_{10}$.
K: RELTAB $(i=0-11):$ Set of twelve single precision octal constants
$\quad$ stored as follows:

$i$		1	
0	04025	6	34034
1	10003	7	40023
2	14031	8	44035
3	20033	9	50037
4	24017	10	54000
5	30036	11	60000

K:VDl: Single precision constant stored as 19 , scaled B14. Used to set $D S P C O U N T$ to indicate that the next numerical character received is to be placed into the most significant digit position of the verb register. See description of $\operatorname{DSPTAB}_{0}-$ DSPTAB $_{10}$.

K:VNDSPCON: Single precision constant stored as 002448 . Equation value: 0.01. Used to convert decimal verb, noun and mode numbers (stored as whole numbers scaled B14) into fractions in preparation for the decimal display routine. Scaled BO.

MONSAVE1: See DATA section.
MPAC $C_{0}$ : Multiple precision accumulator associated with a particular job. Used in "KEYRUPT1" to store the keycode in the accumulator of the "CHARIN" job.

NOUNREG: See DATA section.
NOUT: See INTR section.
RADMODES: See RADR section.
REQRET: Single precision storage for the return address to an internal routine that has requested an astronaut input. Used also as a flag to avoid the processing of verb/noun information normally initiated by the "enter" keycode. Set equal to +0 to indicate that data is not a response to an internal request and that verb/noun information should be processed. Incremented by +3 to step backwards in the process of a multiple register load (from "REQDATY" to "REQDATX" for example). A "return address" is always a positive arithmetic quantity.

SAMPTIME: Double precision value of TIMENOW loaded at the time of astronaut entry of most recent keycode, by waitlist call for a monitor, or by an uplink interrupt.
SFAIL: See TEST section.
SGNOFF: Single precision index designating the DSPTAB register whose bit 11 is to be cleared to prevent illumination of both signs together.

SGNON: Single precision index designating the DSPTAB register whose bit 11 is to be set to illuminate a plus or minus sign in R1, R2 or R3. See description of DSPTAB $_{0}-$ DSPTAB $_{10}$.

TIMENOW: See EXVB section.
VERBREG: See DATA section.
WDCNT: Single precision index scaled B14 and unitless.
WDRET: Single precision octal return address storage.
XREG, XREGLP, YREG, YREGLP, ZREG, ZREGLP: See DATA section.

GOEXTVB
Proceed to routine specified by the contents of TSextfan
$\frac{\text { TSextfan }}{(v e r b)}$ Starting address of routine Function

0	40	VBZERO	zero IMU CDU or Rendezvous Radar CDU
1	41	VBCOARK	coarse align (ICDU or RRCDU)
2	42	IMUFINEK	fine align İMu
3	43	IMUATTCK	load IMU attitude error needles
4	44	RRDESEND	terminate continuous designate
5		ALM/END	not defined
6		ALM/END	not defined
7	47	V47TXACT	AGS initialization
8	48	DAPDISP	load autopilot data
9	49	CREWMANU	start automatic attitude maneuver
10	50	GOLOADLV	please perform
11		ALM/END	not defined
12	52	GOLOADLV	please mark X
13	53	GOLOADLV	please mark $Y$
14	54	GOLOADLV	please mark $X$ or $Y$
15	55	ALINTIME	align time
16	56	TRMTRACK	terminate tracking
17	57	LRON	permit landing radar updates
18	58	LROFF	inhibit landing radar updates
19	59	LRPOS 2 K	LR to position 2
20	60	RATEDISP	display DAP estimated rates
21	61	DAPATTER	display DAP attitude error
22	62	TOTATTER	display total attitude error
23	63	R04	sample radar once/second
24	64	VB64	calculate and display S-band ant. angles
25	65	SNUFFOUT	docked U_V control disable
26	66	ATTACHED	attached
27	67	V67	W matrix monitor
28	68	ALM/END	not defined
29	69	VERB69	cause restart
30	70	V70UPDAT	update liftoff time
31	71	V71UPDAT	universal update - block address
32	72	V72UPDAT	universal update - single address
33	73	V73UPDAT	update ACC time (octal)
34	74	DNEDUMP	initialize downlink for erasable dump
35	75	OUTSNUFF	remove U-V control disable
36	76	MINIMP	minimum impulse mode
37	77	NOMINIMP	rate command mode
38	78	R77	start LR spurious return test
39	79	R77END	terminate LR spurious return test


Perform "IMUZERO"
Perform "IMUSTALL"
Proceed to "PINBRNCH"
If NOUNREG $=72$ :(RRCDU)
Perform ${ }^{\text {nRDRUSECK" }}$
Perform "RRZERO"
Perform "RADSTALL"
Proceed to "PINBRNCH"
Proceed to "ALM/END"VBCOARK If NOUNREG $=20$ and IMUCADR $=0:$(vb41)
Perform "TESTXACT"
Proceed to "GOXDSPF" with TS $=\mathrm{K}: \mathrm{V} 25 \mathrm{~N} 22$(load THETAD)
(If terminate, proceed to "ENDEXT"; if proceed, continueat next step; if other response; continue at next step.)
Perform "EXDSPRET" with TS = K:V4INOO (coarse align verb)
Perform "IMUCOARS"
Perform "IMUSTALL"
Proceed to "ENDEXT"
If NOUNREG $=72$ :
Perform "RDRUSECK"
Perform "TESTXACT"
Switch RADMODES bits 15 (CDESFLAG) and 10 (DESIGFLG) to 0

Proceed to "GOXDSPF" with TS = K:V24N73
(load TANG ${ }^{2}$
(If terminate, proceed to "ENDEXT"; if proceed, repèat this step; if other response, continue at next step.)

OPTIONX $=2$
OPTIONX $_{0}=6$
Perform "GOXDSPFR" with TS = K:VOLN12 (OPTIONX ${ }^{(1)}$ ) (If terminate, proceed to "ENDEXI"; if proceed, , skip next two steps; if other response, repeat this step.)

Perform "BLANKET" with TS $=00004 \mathrm{~g}$
End job
If bit 2 of OPTIONX $_{1}=0$ : (OPTIONX $X_{1}=0,1,4,5, \ldots$ )
Switch FLAGWRDO bit 5 (LOKONSW) to 1
If bit 2 of OPTIONX $_{1}=1: \quad\left(\right.$ OPTIONX $_{1}=2,3,6,7, \ldots$ )
Switch FLAGWRDO bit 5 (LOKONSW) to 0
Switch RADMODES bit 15 (CDESFLAG) to 1
Switch FLAGWRD5 bit 4 (NORRMON) to 1
Release interrupt inhibit
Perform "EXDSPRET" with TS = K:V4NOO
Establish "RRDESK2"
Proceed to "ENDEXP"
Proceed to "nALM/END" (NOUNREG $\neq 20$ or 72)
IMUFINEK If IMUCADR $\neq 0$, proceed to "ALM/END"
Perform "TESTXACT"
Proceed to "GOXDSPF" with TS $=\mathrm{K}: \mathrm{V} 25 \mathrm{~N} 93$ (OGC, IGC, MGC)
(If terminate, proceed to "ENDEXP"; if proceed, continue at next step; if other response, continue at next step.)

Perform "EXDSPRET" with TS = K:V42NOO
Perform "IMUFINE"
Perform "IMUSTALL"
If ISSGOOD = 0, proceed to "ENDEXT"
Perform "IMUPULSE" with TS = address of (OGC, IGC, MGC).
Perform "IMUSTALL"
Proceed to "ENDEXT"
IMUATTCK If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb43)
If bit 4 or 5 of channel 12 is 1 , proceed to "ALM/END" (not allowed if in coarse align or zeroing mode)
If bit 13 or bit 14 of channel $31=0$, proceed to "ALM/END"(DAP is on)
Perform "TESTXACT"
Proceed to "GOXDSPF" with TS = K:V25N22 ..... (load THETAD)
(If terminate, proceed to "ENDEXI"; if proceed, continueat next step; if other response, continue at next step.)
Perform "EXDSPRET" with TS = K:V43NOO
Switch bit 6 of channel 12 to 1 (Enable ICDU error counters)
Call "ATTCK2" in 0.02 second (See IMUC section)
Proceed to "ENDEXT".
RRDESK2 Perform "RRDESNB" (established by verb 41 routine)
Perform "RADSTALL"
If RADGOOD $=0$, perform "ALARM" with $T S=00503_{8}$
End job
RRDESEND If RADMODES bit 15 (CDESFLAG) $=1$ : ..... (vb44)
Inhibit interrupts
Switch bits 15 (CDESFLAG) and 10 (DESIGFLG) of RADMODES to 0
Switch bit 2 of channel 12 to 0 (disable RR error counter)
Delay 1 second
Switch FLAGWRD5 bit 4 (NORRMON) to 0
Proceed to "PINBRNCH"




CSMVEC Switch FLAGWRD1 bit 8 (VEHUPFLG) to 1 ..... (vb81)
Switch FLAGWRDI bit 6 (NOUPFLAG) to 0
Proceed to "PINBRNCH"
V82PERF Perform "TESTXACT" ..... (vb82)
Proceed to "V82CALL" (this section) (change to pr07)
V83PERF Perform "TESTXACT" ..... (vb83)Call "R31CALL" in 0.02 seconds (this section)End job
VERB85 Perform "TESTXACT" ..... (vb85)
Proceed to "DSPRRLOS" (RNAV section)
V89PERF If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb89)
Perform "TESTXACT"
Establish "V89CALL" (ATTM section) ..... (pr10)
End job
V90PERF Perform "TESTXACT" ..... (vb90)Establish "R36" (this section)(pr07)End jobGOSHOSUM If MODREG $\neq 0$, proceed to "ALM/END"(vb91)
Perform "TESTXACT"
Proceed to "SHOWSUM2" (TEST section)
SYSTEST If MODREG $\neq 0$, proceed to "ALM/END" ..... (vb92)
Perform "TESTXACT"
Establish "REDO" (TEST section) ..... (pr22)End job
WMATRXNG Inhibit interrupts ..... (vb93)
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0

	Proceed to "PINBRNCH" (releases inter	
UPDATOFF	Switch FLAGWRDI bit 6 (NOUPFLAG) to 1	(vb95)
	Proceed to "PINBRNCH"	
VERB96	Switch FLAGWRD9 bit 5 (QUITFLAG) to 1	(vb96)
	MMNUMBER $=0$	
	Proceed to "V37" (PGSR section)	

Perform "ALARM" with $T S=00220_{8}$
Proceed to "ENDEXT"
DSPTEMX = AGSK
AGSDISPK Proceed to "GOXDSPF" with TS $=\mathrm{K}: V 06 \mathrm{~N} 16$ (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to "AGSVCALC"; if other response, continue at next step.)

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32: \quad$ (recycle)
AGSK $=$ SAMPTIME $\quad$ (time when enter button pushed)
If TSverb $\neq 32$, AGSK $=$ DSPTEMX $_{d p}$
DSPTEMX $=$ AGSK
Proceed to "AGSDISPK"
AGSVCALC Switch FLAGWRD2 bit 1 (NODOFLAG) to 1
Switch FLAGWRD4 bit 1 (XDSPFLAG) to 1
Perform "EXDSPRET" with TS = K:VO6N16
TDECI = TIMENOW
Perform "LEMPREC"
$\underline{T} S v=$ [REFSMMAT] VATT K:VSCALE rescaled to Bl5 or Bl3 feet per second rounded off to single precision and converted to 2 's complement

TSr = [REFSMMAT] RATT K:RSCALE rescaled to B25 or B23 feet, rounded off to single precision and converted to $2^{\prime}$ 's complement form

AGSBUFF $_{0}=T S r_{x}$
$\mathrm{AGSBUFF}_{1}=\mathrm{TSv}_{\mathrm{x}}$
$\mathrm{AGSBUFF}_{2}=\mathrm{TSr} \mathrm{y}_{\mathrm{y}}$
AGSBUFF $_{3}=\mathrm{TSv}_{\mathrm{y}}$
$\mathrm{AGSBUFF}_{4}=\mathrm{TSr}_{\mathrm{z}}$
$\mathrm{AGSBUFF}_{5}=\mathrm{TSv}_{\mathrm{z}}$

TDECI $=$ TAT

## Perform "CSMPREC"

TSv $=$ [REFSMMAT] VATT K:VSCALE rescaled to Bl5 or Bl3 feet per second, rounded off to single precision and converted to 2's complement

TSr = [REFSMMAT] RATT K:RSCALE rescaled to B25 or B23 feet, rounded off to single precision and converted to $2^{\prime}$ 's complement form
$\operatorname{AGSBUFF}_{6}=\mathrm{TSr}_{\mathrm{x}}$
$\mathrm{AGSBUFF}_{7}=\mathrm{TSv}_{\mathrm{x}}$
$\operatorname{AGSBUFF}_{8}=T S r_{y}$
$\operatorname{AGSBUFF}_{9}=T S v_{y}$
$\operatorname{AGSBUFF}_{10}=\mathrm{TSr}_{\mathrm{z}}$
$\mathrm{AGSBUFF}_{11}=\mathrm{TSv}_{2}$
TSt $=($ TAT -AGSK$) / \mathrm{K}:$ TSCALE
AGSBUFF $_{12}=$ most significant half of TSt
AGSBUFF $_{13}=$ least significant half of TSt
DNLSTCOD = 1
Delay 20 seconds (for downlink of AGS downlist)
DNLSTCOD $=$ AGSWORD (restore downlist)
If FLAGWRDO bit 8 (IMUSE) $=0$ :
If IMUCADR $\neq+0$, delay 0.1 second, then repeat this step
Perform "IMUZERO"
Perform "IMUSTALL"
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
Proceed to "GOMARK3" with TS = K:V5ON16 (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to "ENDEXT"; if other response, proceed to "ENDEXT".)

UPVERB = UPVERBSV
UPCOUNT $=1$
DNLSTCOD = 1
MODREG $=27$
Establish "DSPMMJOB"
If $\operatorname{UPVERB}=1$ or 2 , proceed to "OHWELLI" (get \# of components)
COMPNUMB $=2$
Proceed to "OHWELL2" (verbs 70 and 73 have only 2 components)
OHWELL1 $\quad \mathrm{MPAC}_{2}=$ UUPBUFF $_{0} " \quad$ (address of UPBUFF ${ }_{0}$ )
Proceed to "GOXDSPF" with TS = K:V21NO1
(If terminate, proceed to "UPOUT4"; if proceed, repeat this step; if other response, continue at next step.)

If TSverb $\left(\mathrm{MPAC}_{0}\right)=32$, repeat previous step (recycle)
If $\mathrm{UPBUFF}_{0}<3$, proceed to second line of "OHWELLL"
If UPBUFF $_{0}>20$, proceed to second line of "OHWELLI"
COMPNUMB $=$ UPBUFF $_{0}$
UPGOUNT = UPCOUNT + 1
OHWELL2 $i=$ UPCOUNT - 1
$\mathrm{MPAC}_{2}=$ "UPBUFF $_{i} " \quad$ (address of)
Proceed to "GOXDSPF" with TS = K:V21NO1
(If terminate, proceed to "UPOUT4"; if proceed, repeat this step; if other response, continue at next step.)

If $\operatorname{TSverb}\left(\mathrm{MPAG}_{0}\right)=32$, repeat previous step (recycle)
If UPCOUNT $\geq$ COMPNUMB, proceed to "UPVERIFY"
UPCOUNT = UPCOUNT +1
Proceed to "OHWELL2"

UPVERIFY $\mathrm{MPAC}_{2}=$ "UPTEMP"

> Proceed to "GOXDSPF" with TS = K:V21N02
> (If terminate, proceed to "UPOUT4"; if proceed, proceed to "UPSTORE"; if other response, continue at next step.)

If $\operatorname{TSverb}\left(\mathrm{MPAC}_{0}\right)=32$, repeat previous step (recycle)
If UPTEMP $\leq 0$, proceed to "UPVERIFY"
If UPTEMP > COMPNUMB, proceed to "UPVERIFY"
$1=$ UPTEMP - 1
Proceed to second step of "OHWELL2"
UPSTORE Inhibit interrupts
Invert bit 3 of FLAGWRD7 (VERIFLAG)
If UPVERB $>2$, proceed to "UPEND73"
Establish "UPJOB" • $\because \cdot i=\begin{gathered}\text { ' } \\ \text {. }\end{gathered}$
End job
UPEND73 UPBUFF $_{8,9}=$ UPBUFF $_{0,1}$
Perform "TIMEDIDL"; if error return, continue; otherwise skip next line
Switch bit 7 of channel 11 to 1 (error return)
Proceed to "UPOUT4"
TIMEDIDL UPBUFF $_{18,19}=$ TIMENOW $^{2}$
TIMENOW $=0$
$\mathrm{MPAC}_{\mathrm{dp}}=$ UPBUFF $_{8,9}$
UPBUFF $_{8,9}=0$
$\mathrm{MPAC}_{\mathrm{dp}}=\mathrm{MPAC}_{d p}+\mathrm{UPBUFF}_{18,19}$
If overflow $\left(\mid\right.$ MPAC $\left._{d p} \mid \geq 2^{28}\right)$ :

$$
\text { TIMENOW }=\text { TIMENOW }+ \text { UPBUFF }_{18,19}
$$

$$
\text { UPBUFF }_{18,19}=0
$$

(If overflow)
Return to caller + one line (indicating an error return)
Force sign agreement between components of MPAC ${ }_{d p}$
TIMENOW $=$ TIMENOW + MPAC $_{\mathrm{dp}}$
Return to caller + two lines (indicating a non-error return)
UPJOB Perform "INTSTALL"
Switch FLGWRD10 bit 7 (REINTFLG) to 1
If UPVERB $=0$, proceed to "UPEND70"
If UPVERB $=1$, proceed to "UPEND71"
If UPVERB $=2$, proceed to "UPEND72"
UPEND70 UPBUFF $_{8,9}=-$ UPBUFF $_{0,1}$
Perform "TIMEDIDL"; if error return, continue; otherwise skip next line
Switch bit 7 of channel 11 to 1 and skip next four lines (error return)
TETCSM $=$ TETCSM - UPBUFF $_{0,1}$
TETLEM $=$ TETLEM - UPBUFF $_{0,1}$
UPBUFF $_{i}=0$ for $i=10$ through 13
TEPHEM $=$ TEPHEM + UPBUPF $_{0,1} \quad$ (UPBUFF 0,1 zeroed in process)
Perform "INTWAKEU"
Proceed to "UPOUT4"
UPEND71 EBANK $=$ bits 11-9 of UPBUFF ${ }_{1}$
UPTEMP = low 8 bits of UPBUFF $_{1}$
i $=$ COMPNUMB -3
If UPTEMP $+_{i} \geq 00400_{8}$, proceed to "UPERROUT" (block of addresses extends heyond end of EBANK)
UPTEMP $=\mathrm{UPTEMP}+1400_{8}$
$E_{j+U P T E M P}=$ UPBUFF $_{j+2}$ for $j=0$ through $i$
Perform n INTWAKEU"

Proceed to "UPOUT4"
UPEND72
If COMPNUMB is an even number, proceed to "UPERROUT"
Perform indented steps for $i=1,3,5, \ldots$ through COMPNUMB - 2
EBANK $=$ bits ll-9 of UPBUFF ${ }_{i}$
TSadr $=$ low 8 bits of $\mathrm{UPBUFF}_{i}+1400_{8}$
$\mathrm{E}_{\mathrm{TSadr}}=$ UPBUFF $_{i^{+}}$(load specified address with given data)
(end of "indented steps")
Perform "INTWAKEU"
UPOUT4 4 MODREG $=$ UPOLDMOD
Establish "DSPMMJOB"
DNLSTCOD $=0$
Switch bit 3 of channel 11 to 0 (uplink activity lamp)
Proceed to "ENDEXT"
UPERROUT Switch bit 7 of channel 11 to 1 (operator error)
Perform "INTWAKEU"
Proceed to "UPOUT4"
V82CALL If FLAGWRD7 bit 5 (AVEGFLAG) $=1$, proceed to "V82GON"
OPTIONX $_{0}=2$
$\mathrm{OPTIONX}_{1}=1$
Proceed to "GOXDSPF" with TS $=\mathrm{K}: \mathrm{VO} \mathrm{LN} 12$
(If terminate, proceed to "ENDEXT"; if proceed, continue at next step; if other response, repeat this step.)

Call "TICKTEST" in 0.08 second
V82GOFLP $\quad$ V82FLAGS $=00000_{8}$
Establish "V82GOFF1" (pr07)
If bits 1 and 2 of V82FLAGS both $=0$, delay one second and then try this test again (i.e. delay until either is set to one)

```
 Proceed to "GOXDSPF" with TS = K:V16N44 (HAPOX, HPERX, TFF)
 (If terminate, switch bit 5 of EXTVBACT to O and end job;
 if proceed, switch bit }5\mathrm{ of EXTVBACT to 0 and end job;
 if other response, proceed to "V82GOFLP".)
V82GOFF1 TDEC1 = TIMENOW
 TSTART82 = TDEC1
 If OPTIONX
 If OPTIONX = 1, perform "LEMPREC"
 RONE = RATT
 VONE = VATT
 If PBODY = 0:
 TTFFdRTMU = K:IdRTMUE
 HPERMIN = K:MINPERE
 Switch FLAGWRD7 bit 2 (V82EMFLG) to 0
 TS = K:RPAD
 Proceed to "BOTHPAD"
If PBODY = 2:
TFFdRTMU = K:IdRTMUM
HPERMIN = K:MINPERM
TS = |RLS|
Switch FLAGWRD7 bit 2 (V82EMFLG) to l
BOTHPAD RPADTEM = TS
Perform "SR30.1" (get HAPOX, HPERX, TFF, mTPER)
TSTART82 = TIMENON - TSTART82
If mTPER # 0:
mTPER = TSTART82 + mTPER
Set V82FLAGS to 00001g

\section*{(If mTPER \(\boldsymbol{y}^{\prime} 0\))}

End job
\(\mathrm{TFF}=\mathrm{TFF}+\mathrm{TSTART82}\)
Set V82FLAGS to 00002 g
End job
TICKTEST If bit 5 of EXTVBACT \(=0\) :
Establish "ENDEXT"
End task
Call "TICKTEST" in 1 second
If bit 1 of V82FLAGS \(=1\) :
\(m T P E R=m T P E R+K: I S E C\)
If bit 2 of V82FLAGS \(=1\) :
\(T F F=T F F+K: 1 S E C\)
End task
V82GON Establish "V82GON1" (VAC area required) (pro7)
If NEWJOB > 0, perform "CHANGI"
Proceed to "GOXDSPF" with TS = K:V16N44 (HAPOX, HPERX, TFF)
(If terminate, continue at next step; if proceed, continue at next step; if other response, repeat this step.)

Switch bit 5 of EXIVBACT to 0
End job
V82GON1 BONE \(=\) RN
VONE \(=\) VN between storage of \(R\) and \(V\))
If FLAGWRD8 bit 11 (LMOONFLG) \(=1\) : (moon)
Switch FLAGNRD7 bit 2 (V82BMFLG) to 1
TFFdRTMU \(=\mathrm{K}: 1 \mathrm{dRTMLM}\)
```

    (If FLAGWRD8 bit ll (LMOONFLG) = 1:)
        HPERMIN = K:MINPERM
        TS = |RLS|
        Proceed to "V82GON2"
        If FLAGWRD8 bit ll (IMOONFLG) = 0: (earth)
        Switch FLAGNRD7 bit 2 (V82EMFLG) to 0
        TFFdRTMU = K:1dRTMUE
        HPERMIN = K:MINPERE
        TS = K:RPAD
    V82GON2 RPADTEM = TS
Perform "SR30.1"
If bit 5 of EXTVBACT = 0, proceed to "ENDEXT"
Delay l second
Proceed to "V82GONl"
SR30:1 If FLAGWRD7 bit 2 (V82EMFLG) = 1: (moon)
RONE = RONE, shifted left 2 places (B27)
VONE = VONE, shifted left 2 places (B5)
RMAGI = |RONE|
VONEPR = TFFdRTMU VONE
TFFNP = |(RMAGI VONEPR) * unitRONE | }\mp@subsup{}{}{2
TFFVSQ = - |VONEPR |
TFFALFA = 2/RMAGI + TFFVSQ
TFFRTALF = 在TFFALFA|
TS = TFFRTALF }\mp@subsup{}{}{2}\mathrm{ signTFFALFA
If TS = 0:
TFFldALF = 0
Skip next line

```
```

TFFIdALF = 1 / TS
TS = \sqrt{}{11 - TFFALFA TFFNP|}
RPER = TFFNP / (1 + TS )
TSI = (1 + TS) TFFIdALF
If TSI> 0:
If |TSI| < K:posmaxdp
RAPO = TSI
Skip next line
RAPO = K:posmaxdp
TS = RAPO - RPADTEM
If FLAGWRD7 bit 2 (V82FMFLG) = 1: (moon centered)
TS = TS, shifted right 2 places
HAPOX = TS (limited to }\leq\mathrm{ K:MAXNM)
TS = RPER - RPADTEM
If FLAGWRD7 bit 2 (V82FMFLG) = 1:
TS = TS, shifted right 2 places
HPERX = TS (limited to S K:MAXNM)
If HPERX < HPERMIN, mTPER = +0
If HPERX \geq HPERMIN:
TSr = RPER
Perform "CALCTPER"
mTPER = - TSt
TSr = HPERMIN + RPADTEM
Perform "CALCTFF"
TFF = -TSt
Return

```

CALCTPER Switch FLAGWRD7 bit 1 (TFFSW) to 1
Skip next step
CALCTFF Switch FLAGWRD7 bit 1 (TFFSW) to 0
\(\mathrm{RTERM}=\mathrm{TSr}\)
TSqsq \(=(2-\) RTERM TFFALFA) RTERM - TFFNP
If FLAGWRD7 bit 1 (TFFSW) \(=1\), TSqsq \(=0\)
If TSqsq < 0: (trajectory does not cross RTERM)
TSt \(=\mathrm{K}:\) posmaxdp
Return
QTERM \(=\sqrt{\text { TSqsq }}\)
TFFQ1 \(=\) VONEPR \(\cdot\) RONE, shifted left 3 places
If TFFQI \(\geq 0\) : (outbound)
```

TSnum $=-$ QTERM $-T F F Q 1$
(meters ${ }^{\frac{1}{2}}$ )
TSden $=2-$ RTERM TFFALFA - TFFALFA RMAGI (unitless)

```

If \(\mid\) TSden \(\mid<2^{-19}\), TSden \(=0\)
If TFFQ1 < 0: . (inbound)
TSnum \(=\) RTERM :- RMAGI (meters)
TSden \(=-\) QTERM + TFFQ1
(meters \({ }^{\frac{1}{2}}\))
If \(\mid\) TSden \(\mid<2^{-6}\) or \(2^{-7}\), TSden \(=0 \quad\left(2^{-6}\right.\) earth, \(2^{-7}\) moon \()\)
If TSden \(=0:\)
If TFFALFA \(\leq 0\) :
\(\mathrm{TSt}=0\)
Return
TSIdz \(=0\)
Proceed to "TFFELI"
If \(\mid\) TSnum TFFRTALF / TSden \(\mid \geq 1\) :
TSIdz \(=\) TSden \(/\) TSnumProceed to "TFFELI"
\(T S z=T S n u m / T S d e n\)
TFFTEM \(=\mathrm{TSz}^{2} \mathrm{TFFNP}\) signTSz (used only in CSM)
\(\mathrm{TFFX}=\mathrm{TS} \mathrm{z}^{2}\) TFFALFA\(\mathrm{TSpoly}=\mathrm{K}: \mathrm{TFFO}+\mathrm{K}: \mathrm{TFFI} \mathrm{TFFX}+\mathrm{K}: \mathrm{TFF} 2 \mathrm{TFFX}{ }^{2}+\ldots+\mathrm{K}: \mathrm{TFF} 5 \mathrm{TFFX}{ }^{5}\)TStrtmu \(=\mathrm{TSz}\) (RTERM \(-2 T S z^{2}\) TSpoly + RMAGI)
If TStrtmu \(\geq 0\), proceed to "ENDTFF"
If \(T\) Strtmu signTFFQ1 \(\geq 0\), proceed to "ENDTFF"
If TFFIdALF \(\leq 0\), proceed to "ENDTFF"
TStrtmu \(=\) TStrtmu + TFFIdALF \(\mathrm{K}:\) PIdI6 / TFFRTALF
Proceed to "ENDTFF"
TFFELI TFFDELQ \(=-\) QTERM \(-T F F Q 1\)
TFFX \(=\) TSIdz \({ }^{2}\) TFFIdALF
If \(|T F F X| \geq 1\), TFFX \(=K\) : posmaxdp sign TFFX
TSpoly \(=\mathrm{K}: \mathrm{TFFO}+\mathrm{K}: \mathrm{TFFI} \mathrm{TFFX}+\mathrm{K}: \mathrm{TFF} 2 \mathrm{TFFX}{ }^{2}+\ldots+\mathrm{K}: \mathrm{TFF} 5 \mathrm{TFFX}{ }^{5}\)TS = TSIdz TFFIdALF (TFFX TSpoly - 1)
TFFTEM \(=\) TFFNP TFFIdALF \(\operatorname{sign(TSIdz~RMAGI~+~TFFQI)~(CSM~only)~}\)
TStrtmu \(=\) TFFldALF \(\left(2 T S+\frac{1}{2} \sqrt{T F F I d A L F} K: P I d 16-T F F D E L Q\right)\)
ENDTFF \(\quad\) TSt \(=\) TStrtmu TFFdRTMU
If overflow, TSt \(=\mathrm{K}:\) posmaxdp
Return
R31CALL Establish "V83CALL" (pr03)
Delay 1 second
If bit 12 EXTVBACT \(=0\), proceed to second line of "R3ICALL"
Establish "DISPN5X" (pr05)
End Task

DISPN5X Proceed to "GOXDSPF" with TS = K:VI6N54 (RANGE, RRATE, RTHETA) (If terminate or proceed, set bit 5 of EXTVBACT \(=0\) and end job; if other response, repeat this step.)

V83CALL If FLAGWRD7 bit 5 (AVEGFLAG) \(=1\) :
If FLAGWRD6 bit 8 (MUNFLAG) \(=1\), proceed to "GETRVN"
Proceed to "DOCMBASE" with TS6 = TIMENOW
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\), proceed to "DOCMBASE" with TS6 = TIMENOW

TDECI = TIMENOW
Perform "IEMPREC"
BASETHP = RATT (scaled B29 or B27)
BASETHV \(=\) VATT (scaled B7 or B5)
TS6 = TAT
DOCMBASE BASETIME \(=\) TS6
TDECI \(=\) TS6
Perform "CSMPREC"
BASEOTP \(=\) RATT (scaled B29 or B27)
BASEOTV \(=\) VATT \(\quad(\) scaled \(B 7\) or B5)
REV83 If FLAGWRD7 bit 5 (AVEGFLAG) \(=1\), proceed to "GETRVN"
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
TDECI \(=\) TIMENOW
Perform "IEMPREC"
Proceed to "OTHCONIC"
TDECI \(=\) TIMENOW
Perform "INTSTALL"
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
RCV \(=\) BASETHP
```

    VCV = BASETHV
    If FLAGNRD8 bit ll (LMOONFIG)= 1:
    Switch FLAGWRDO bit 12 (MOONFLAG) to 1
    Switch FLAGWRD3 bit 4 (INTYPFLG) to 1
    TET = BASETIME
    Perform "INTEGRVS"
    OTHCONIC RONE = RATT
VONE = VATT
Perform "INTSTALL"
Switch FLAGWRD3 bit 4 (INTYPFLG) to I
TS = TAT
OTHINT TDECL = TS
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
RCV = BASEOTP
VCV = BASEOTV
If FLAGNRD8 bit 11 (LMOONFLG) = 1:
Switch FLAGWRDO bit 12 (MOONFLAG) to l
TET = BASETIME
Perform "INTEGRVS"
COMPDISP RANGE = {RATT - RONE|
RRATE = unit(RATT - RONE)\cdot(\mathrm{ VATT - VONE)}\mathbf{~}=\mp@code{M}
Perform "CDUTRIG"
Perform "NBTOSM"
ZNBrf = [REFSMMAT] T [NBSMMAT] K
TSp = unit(ZNBrf - (ZNBrf\cdot|=unitRONE) unitRONE)
TSu = ((unitRONE * VONE) * unitRONE) | TSp
EXVB - 25

```
```

    RTHETA = arccos(TSp. ZNBrf signTSu)
    If unitRONE • ZNBrf<0, RTHETA = l - RTHETA
    If bit 5 of EXTVBACT = 0, proceed to "ENDEXT"
    Set bit 12 of EXTVBACT to l
    Proceed to "REV83"
    GETRVN
    RONE = RN
    VONE = VN
    TSI = VCSM
    TS2 = KCSM
    TS = PIPTIME
    (change to pr03)
    If FLAGWRD6 bit 8 (MUNFLAG) = 0:
        Perform "INTSTALL"
        Switch FLAGWRD3 bit 4 (INTYPFIG) to 0
    Proceed to "OTHINT"
    RATT = TS2 [REFSMMAT] (note that RATT and VATT. are
    VATT = TSI [REFSMMAT]
    Proceed to "COMPDISP"
    R36
    DSPTEMX
(vb90)
Proceed to "GOXDSPF" with TS = K:VO6N16 (DSPTEMX)
(If terminate, proceed to "ENDEXT"; if proceed, continue
at next step; if other response, repeat this step.)
TDECI = DSPTEMX
If DSPTEMX = 0, TDECl = TTMENOW
Perform "CSMPREC"
RPASS36 = RATT
UNP36 = unit(VATT * unitRATT)
TDECl = TAT
Perform "IEMPREC"
TSIos = RPASS36 - RATT

```
 RANGE = RATT - UNP36
 RRATE = VATT • UNP36
 TSuf = unit((unitRATT * VATT) * unitR_ATT)
 TSuf = unit(1, TSuf y, TSuf z
 TSulos = unit(TSlos - (unitRATT | TSlos) unitRATT)
 TSulos = unit(I, TSulos
 RTHETA = arccos(TSulos ISuf)
 If (TSUlos * TSuf * RATT)< 0, RTHETA = 1 - RTHETA
```

    Proceed to "GOXDSPF" with TS = K:VO6N90 (RANGE, RRATE, RTHEPA)
    (If terminate, proceed to "ENDEXT"; if proceed, proceed to
        "ENDEXT"; if other response, proceed to "R36")
    SBANDANT TDECI $=$ TIMENOW
Perform "LEMCONIC"
If PBODY $=0$ : (means earth)
$T S=R A T T$
Skip next three lines
TSt $=$ TAT
Perform "LSPOS"
$T S=(K: R E M D I S T$ VMOON $)+\underline{R A T T}$
TS $=$-unitTS
Perform "CDUTRIG"
$T S=[$ REFSMMAT] $T S$ (transform to stable member)
PITCHANG $_{\mathrm{dp}}=+0$
$Y^{Y A W A N G}{ }_{\alpha p}=+0$
Perform "SMTONB"
RLM $=[$ S $M N B M A T] ~ T S$
RLMYTEMP $=$ RLM $_{y}$
$\operatorname{RLM}_{y}=\left(\operatorname{RLM}_{y}-\operatorname{RLM}_{x}\right) K: 10 V S Q R T 2$
RLM $_{x}=\left(\right.$ RLMYTEMP + RLM $_{x}$ ) K:IOVSQRT2
$\underline{\text { RLMTEMP }}=\underline{R L M}$
TSS2 $=\underline{R L M}-(\underline{R L M} \cdot \underline{K}: U N I T Y) \underline{K}: U N I T Y$
TS2 $=$ unitTS2; if overflow, proceed to "SBANDEX"
RLM $=-(\underline{T} S 2$ * $K$ : UNITZ $)$
$T S=$ RLM $\cdot \underline{K}:$ UNITY
PITCHANG $=\arcsin (\operatorname{signTS}|\underline{R L M}|)$
TS1 = TS2•K: UNITZ
If TSl<0:
PITCHANG $=0.5-$ PITCHANG
RLM $=$ unitRLMTEMP * TS2
$\underline{\underline{T} S}=(\underline{K}: U N I T X$ cosPITCHANG) - (K:UNITZ sinPITCHANG)
$T S=\underline{T S} \cdot \underline{R L M}$
YAWANG $=\arcsin (\operatorname{signTS}|\underline{R L M}|)$
SBANDEX If bit 5 of EXTVBACT $=0$, proceed to "ENDEXT"
Perform "GOXDSPFR" with TS = K:VO6N51 (PITCHANG, YAWANG)
(If terminate or proceed, set bit 5 of EXTVBACT $=0$ and end
job; if other response, end job.)
$\mathrm{TS}=10 \mathrm{O}_{2}$
Perform "BLANKET"
(change to prO4)
Proceed to "SBANDANT"
ATTACHIT Perform "INTSTALU"
Switch FLAGWRD8 bit 12 (CMOONFLG) to 1

```
If FLAGWRD8 bit 11 (LMOONFLG) \(=0\) :
 Switch FLAGWRD8 bit 12 (CMOONFLG) to 0
Inhibit interrupts
XKEPCSM \(=\) XKEPLEM
\(T C C S M=T C L E M\)
VCVCSM \(=\) VCVLEM
RCVCSM \(=\) RCVLEM
NOVCSM \(=\). NUVLEM
DELTACSM = DELTALEM
TETCSM \(=\) TETLEM
VRECTCSM = VRECTLEM
RRECTCSM \(=\) RRECTILEM
Release interrupt inhibit
If FLAGWRD8 bit 8 (SURFFLAG) \(=1\), proceed to "USEPIOS"
Perform "MOVEPLEM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 11 (LMOONFLG)
PBODY = 0
If FLAGWRDO bit 12 (MOONFLAG) \(=\cdots 1 ;\) PBODY \(=2\)
Perform "SVDWNI" (scaling controled by PBODY)
QPRET = "PINBRNCH"
Proceed to "INTWAKE"
RDRUSECK If FLAGWRD3 bit 11 (NOR29FLG) \(=0\), proceed to "ALM/END"
If FLAGWRD5 bit 11 (R77FLAG) \(=1\), proceed to "ALM/END"
If FLAGWRD7 bit 6 (V37FLAG) \(=0\), skip next line
If FLGWRDII bit 15 (LRBYPASS) \(=0\), proceed to "ALM/END"
```

If FLAGWRDI bit 5 (TRACKFLG) $=0$, return
Proceed to "ALM/END"
DSP68 Perform "GOXDSPFR" with TS $=$ K:VO6N68 (RANGEDSP, TTFDISP, DELTAH)
(If terminate, set bits 5 and 1 of EXTVBACT $x 0$ and end job; if proceed, proceed to "SET57"; if other response, end job.)

WAIT68 Delay two seconds
If bit 5 and bit 1 of EXTVBACT $=0$, proceed to ${ }^{\text {ENNDEXT" }}$
If bit 5 of EXTVBACT $=1$, proceed to "DSP68"
Perform "GOMARK3R" with TS = K:V50N68 ( RANGEDSP, TTFDISP, DELTAH)
(If terminate or proceed, set bits 5 and 1 of EXTVBACT $=0$ and end job; if other response, proceed to "RESET57".)
(TS is formed by adding $13000_{8}$ to $\mathrm{K}:$ V06N68)
Proceed to "WAIT68"
SET57 Switch FLGWRDII bit 8 (LRINH) to 1
Set bit 5 of EXTVBACT $=0$
End job
RESET57 Switch FLGWRDIl bit 8 (LRINH) to 0
EXTVBACT $=00025_{8}^{8}$
End job
LRP2COMM Perform "LRPOSZ" (See Anomaly Report No. L-1C-03)
Perform "RADSTALL"
If RADGOOD $=0$, perform "ALARM" with $T S=00523_{8}$
Proceed to "PINBRNCH"
V59GP63 RPCRTIME $=37777_{8}$
RPCRTQSW $=-1$
Proceed to "PINBRNCH"

AGSBUFF $_{0,2,4^{\circ}}{ }^{\text {: Single precision } X, Y \text { and } Z \text { components of the LM position }}$ vector, scaled B25 (earth) or B23 (moon) in units of feet and in stable member coordinates.
$\operatorname{AGSBUFF}_{1,3,5}$ : Single precision $X, Y$ and $Z$ components of the LM velocity vector, scaled Bl3 (moon) or Bl5 (earth) in units of feet/second and in stable member coordinates.

AGSBUFF $6,8,10^{\circ}$ : Single precision $X, Y$ and $Z$ components of the CSM position vector, scaled B25 (earth) or B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF $_{7,9,11}:$ Single precision $X, Y$ and $Z$ components of the CSM velocity vector, scaled Bl5 (earth) or B13 (moon) in units of feet/second and in stable member coordinates.
$A_{S S B U F F}^{12,13}$ : Double precision difference between the timetag of the state vectors in AGSBUFF $_{0-11}$ and the time stored in AGSK, scaled B18 in units of seconds.

AGSK: Double precision time of AGS initialization, scaled B28 in units of centiseconds.

AGSWORD: Single precision storage for the value of DNLSTCOD when a list is temporarily interrupted to change to another list.

BASEOTP, BASEOTV: Double precision vector storage for position and velocity of the CSM at BASETIME, scaled B29 (earth) or B27 (moon) for position; B7 (earth) or B5 (moon) for velocity. Position is in units of meters, and velocity is in units of meters/centisecond.

BASETHP, BASETHV: Double precision vector storage for position and velocity of the LM at BASETIME, scaled B29 (earth) or B27 (moon) for position in units of meters; B7 (earth) or B5 (moon) for velocity in units of meters per centisecond.

BASETIME: Double precision reference time for verb 83 routines, scaled B28 in units of centiseconds.

COMPNUMB: Single precision number of components (each single precision octal) in a program 27 update, scaled B14 and unitless.

DAPBOOLS: See DAPA section.
DELTACSM, DELTALEM: See ORBI section.
DELTAH: See SERV section.

DNLSTCOD: See TELE section.
DNTMGOTO: See TELE section.
DSPTEMX: See DATA section.
${ }^{E} A_{A D R}$ : Single precision erasable memory cell whose address is in ADR.
EBANK: See MATX section.
EXTVBACT: Single precision flagword indicating when extended verbs are in action.

HAPOX, HPERX: Double precision heights above the earth or moon at apogee and perigee, scaled B29 in units of meters; displayed by N44.

HPERMIN: Double precision minimum perigee altitude, scaled B29 (earth) or B27 (moon) in units of meters; used to define the entry interface altitude.
IGC: See COOR section.
IMUCADR, ISSOGGD: See. IMUC section.
K:IdRTMUE: Double precision constant, prggram notation $1 / R T M U E$, scale factor B-17, value $0.50087529 \mathrm{E}-5 \times 2^{17}$. Corresponding to the reciprocal of root of unmodified earth $\mu$.

K:IdRTMUM: Double precision constant, prggram notation l/RTMUM, scale factor B-14, value $0.45162595 \mathrm{E}-4 \times 2{ }^{14}$. Corresponding to the reciprocal of root of moon $\mu$.

K:1OVSQRT2: Double precision constant stored as 0.7071067815 , corresponding to $1 / \sqrt{2}$. Equation value: 0.7071067815. Scaled BO and unitless.
K:ISEC: Single precision constant stored as $100 \times 2^{-14}$, scaled B14 in units of centiseconds. Equation value: 100.

K:MAXNM: Double precision constant stored as 01065 g 05603 , scaled B29 in units of meters. Equation value: 18519814. ${ }^{8}$ (Equivalent to about 9999.8995 nautical miles.)

K:MINPERE: Double precision constant stored as $91440 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 91440.

K:MINPERM: Double precision constant stored as $10668 \times 2^{-27}$, scaled B27 in units of meters. Equation value: 10668.
K:PIdl6: Double precision constant stored as $3.141592653 \times 2^{-4}$, scaled B5 and unitless. Equation value: 6.2831853.

K:posmaxdp: See "Major Varinbles" section.
K:REMDIST: Double precision constant stored as $384402000 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 384402000.

K:RPAD: Double precision constant stored as $6373338 \times 2^{-29}$, scaled B29 in units of meters. Equation value: 6373338.
K:RSCALE: Double precision constant stored as $3.280839 \times 2^{-3}$, scaled B3 in units of feet per meter. Equation value: 3.280839.

K:TFFO, K:TFF1, K:TFF2, K:TFF3, K:TFF4, K:TFF5: Six double precision constant coefficients of a polynomial approximation. Scaled BO and unitless. Equation value:

$$
\begin{gathered}
0.3333333333 \\
-0.1999819135 \\
0.1418148467 \\
-0.101310997 \\
0.05609004986 \\
-0.01536156925
\end{gathered}
$$

K:TSCALE: Double precision constant stored as $100 \times 2^{-10}$, scaled B10 in units of centiseconds per second. Equation value: 100.

K:UNITX, $\underline{K}:$ UNITZ, $\underline{K}:$ UNITY: See SERV section.
K:VSCALE: Double precision constant stored as $328.0839 \times 2^{-9}$, scaled B9 in units of feet per second/meters per centisecond. Equation value: 328.0839 .

MGC: See COOR section
MMNUMBER: See PGSR section.
MODREG: See DATA section.
MPAC: See DINT section.
mTPER: Doubl precision time to perigee, scaled B28 in units of centiseconds.
[NBSMMAT]: See COOR section.
NEWJOB: See MATX section.
NOUNREG: See DATA section.
NUVCSM, NUULEM: See ORBI section.
OGC: See COOR section.

OPTIONX , OPTIONX, Display registers used by noun 12 with extended verbs. Similar to OPTION1, OPTION2. Same register as DSPTEMX.

PBODY: See ORBI section.
PIPTIME: See SERV section.
PITCHANG: Cell used to contain the pitch gimbal angle required to point the S-band antenna toward the center of the earth. Scaled BO, in units of revolutions.

QPRET: See ORBI section.
QTERM: Double precision product of the cotangent of flight path angle at RTERM and the square root of semi-latus rectum, scaled Bl6 (earth) or Bl5 (moon) in units of meters to the one-half power.

RADGOOD, RADMODES: See RADR section.
RANGE, RRATE: Double precision range and range-rate, scaled B29 for range in units of meters and B7 for range-rate in units of meters per centisecond. In "R36" contains out of plane pasition and velocity, same scaling and units.

RANGEDSP: See DESC section.
RAPO, RPER: Double precision radius at apogee and perigee, scaled B29 (earth) or B27 (moon) in units of meters.

RATT, VATT, TAT: See ORBI section.
RCSM: See SERV section.
$\underline{R} C V, \underline{V} C V:$ See CONC section.
RCVCSM, RCVLEM: See ORBI section.
[REFSMMAT] : See COOR section.
RLM: Double precision vector defined by transforming the unit line-of-sight vector (reference coordinates) first into stable member then into navigation base coordinates, and finally rotated and compensated by the orientation of the $S$-band antenna mount with respect to the navigation base.

RLMTEMP: Temporary storage location for RLM to be used in later calculations.
RLMYTEMP: Temporary storage location for RLM $y_{y}$.
RLS: See CONC section.
RMAGI: Double precision magnitude of RONE, scaled B29 (earth) or B27 (moon) in units of meters.

RN, VN: See SERV section.
RONE, VONE: Double precision position and velocity vectors at TSTART82; scaled B29 (earth) or B27 (moon) for position, and B7 (earth) or B5 (moon) for velocity. Position is in units of meters, with velocity in units of meters/centisecond.

RPADTEM: Double precision radius of launch site on earth or moon for use as a base for computing altitude, scaled B29 (earth) or B27 (moon) in units of meters.

RPASS36: Double precision vector storage for CSM position vector in routine 36 , scaled B29 in units of meters.

RPCRTIME: See SERV section.
RPCRTQSW: See SERV section.
RRECTCSM, RRECTLEM: See ORBI section.
RSAMPDT: See RADR section.
RTERM: Double precision terminal radius for calculation of TFF, scaled B29 (earth) or B27 (moon) in units of meters.

RTHETA: Display angle information for R31 and R36, scaled BO in units of revolutions.

SAMPTIME: See DSKY section.
SMNBMAT : See COOR section.
$\mathrm{TANG}_{0,1}$ : See RADR section.
TCCSM, TCLEM: See ORBI section.
TDECI: See ORBI section.
TEPHEM: See COOR section.
TET, TETCSM, TETLEM: See ORBI section.
TFF: Double precision time of free fall to RTERM, scaled B28 in units of centiseconds.

TFFIdALF: Double precision semi-major axis, stored in units of meters with variable scaling.

TFFALFA: Double precision reciprocal of the semi-major axis, stored as meters ${ }^{-1}$ with variable scaling.
TFFDELQ: Double precision difference between -QTERM and TFFQ1, scaled B16 (earth) or B15 (moon).

TFFARTMU: Double precision reciprocal of the square root of mu of primary body; variable scaling.

TFFNP: Double precision semi-latus rectum, stored in units of meters with variable scaling.

TFFQ1: Intermediate quantity calculated in "CALCTFF", scaled B16 (earth) or Bl5 (moon).
TFFRTALF: Double precision square root of TFFALFA, stored as meters ${ }^{-\frac{1}{2}}$ with variable scaling.

TFFTEM: Double precision intermediate variable used in "CALCTFF", stored in units of meters with variable scaling.

TFFVSQ: Double precision value of the complement of the square of the velocity divided by the root of mu; variable scaling.

TFFX: Double precision universal variable, scaled BO and unitless.
THETAD: See IMUC section.
TIG: See BURN section.
TIMENOW: Double precision current time scaled B28 in units of centiseconds; a! computer counter incremented every centisecond automatically, and modified by verbs 55, 70 and 73.

TSTART82: Double precision start time of the verb 82 routines, scaled B28 in centiseconds; used to update TFF from its value at the time of verb 82 initialization to a value corresponding to the time at which it is displayed. Also used to update mTPER.
TTFDISP: See DESC section.
UNP36: Double precision vector storage for normal to the CSM orbital plane, scaled Bl and unitless.

UPBUFF $_{0-19}$ : Single precision buffer cells for P27 updates.
UPCOUNT: Single precision number of components received in a P27 update, scaled B14 and unitless.

UPOLDMOD: Single precision storage for the value of MODREG at the initialization of a P27 update.

UPTEMP: Single precision storage for the number of a P27 update component to be corrected or for an address of a cell to be updated.

UPVERBSV, UPVERB: Single precision indication of the verb that initiated a P27 update, scaled B14 and unitless.

V82FLAGS: Single precision flagword used in verb 82 routines. Bit two is set when only TFF is computed and bit one is set when mTPER is computed.

VCSM: See SERV section.
VCVCSM, VCVIEM: See ORBI section.
VMOON: See COOR section.
VONEPR: Double precision value of VONE TFFdRTMU, scaled B-10 (earth) or B-9 (moon).

VRECTCSM, VRECTIEM: See ORBI section.

$$
\text { EXVB - } 36
$$

YAWANG: Cell used to contain the yaw gimbal angle required to point the S-band antenna toward the center of the earth, scaled BO in units of revolutions.

ZNBrf: See COOR section.
－

```
SVCT3 (This task is used as part of the waitlist control and
 is entered every }81.93\mathrm{ seconds)
 If PLAGNRD2 bit 15 (DRIPTFLG) = 1:
 If IMOCADR = +0, establish "NBDONLY^ (pr35)
 If IMUCADR }\not=+0\mathrm{ , call "SVCT3" in }5.0\mathrm{ seconds
```

Find tank
1/GYRO GCOMP $=$ GCOMP rescaled to B21 pulses (trunceted at $2^{-7}$ pulses)
TS $=$ address of GGOMP
Perform ${ }^{\text {M IMUPULSE" }}$
Perform "IMUSTALL"
If $\operatorname{ISSGOOD}=0$, $\operatorname{Ind}$ job
GCOMP $=$ fractional part of GCOMP rescaled to B14 pulses
End job
NBDONLY If GCOMPSW $<0$, Find job
Inhibit interrupts
If FLAGNRD2 bit 15 (DRIPTPLG) $=0$, End job
$T S=0$
If PLAGWRD8 bit 8 (SURFFLAG) $=1$ :
$T S=00200_{8}$
Perform "PIPASR" skipping first step
TS1 $=1 \mathrm{dPIPADT}$
1dPIPADT $=$ TIMENOW $_{1 \mathrm{~s}}$ ..... (load present time)
Release interrupt inhibit
$T S t=1 \mathrm{dPIPADT}-\mathrm{TS} 1 \quad$ (present time - previous time)

NBD2
TSt $=$ TSt (corrected for possible overflow of TIMENOW counter)
GCOMPSW $=0$
If $T S>0$ (SURFFLAG set)

$$
\begin{aligned}
& \quad \underline{G C O M P}=\operatorname{GCOMP}+\left[\begin{array}{ccc}
-\operatorname{ADIAX} & \text { ADSRAX } & 0 \\
0 & -A D I A Y & \text { ADSRAY } \\
0 & \text {-ADSRAZ } & \text {-ADIAZ }
\end{array}\right] \text { DELV } \\
& \text { GCOMP }=\operatorname{GCOMP}-\mathrm{TSt}\left[\begin{array}{c}
\mathrm{NBDX} \\
\mathrm{NBDY} \\
-\mathrm{NBDZ}
\end{array}\right]
\end{aligned}
$$

If $\left|\operatorname{GCOMP}_{x_{\text {Sp }}}\right|>2, \operatorname{GCOMPSW}=2\left(\right.$ integral part of $\left.\frac{1}{2}\left(\left|\operatorname{GCOMP}_{x_{\text {sp }}}\right|-1\right)\right)-1$
If $\left|\operatorname{GCOMP}_{\mathrm{y}_{\mathrm{sp}}}{ }_{\mathrm{sp}}\right|>2$, GCOMPSW $=2\left(\right.$ integral part of $\left.\frac{1}{2}\left(\left|\operatorname{GCOMP}_{\mathrm{y}_{\mathrm{sp}}}\right|_{\mathrm{sp}} \mid-1\right)\right)-1$
If $\left|\operatorname{GCOMP}_{\mathrm{z}_{\mathrm{sp}}}\right|>2, G C O M P S W=2\left(\right.$ integral part. of $\left.\frac{1}{2}\left(\left|\operatorname{GCOMP}_{\mathrm{z}_{\mathrm{sp}}}\right|-1\right)\right)-1$
If GCOMPSWD $>0$, proceed to $11 /$ GYROn
End job
1/PIPA If GCOMPSW $<0$, return
$\underline{D E L V}_{d p}=\underline{D E L V}_{s p}+\left[\begin{array}{llll}\text { PIPASCF }_{x} & 0 & 0 \\ 0 & \text { PIPASGF }_{\mathrm{y}} & 0 \\ 0 & 0 & \text { PIPASCF }_{z}\end{array}\right]$ DELV $_{\mathbf{s p}}-1 d$ PIPADT $\left(\begin{array}{l}\text { PIPABIAS }_{x} \\ \text { PIPABIAS }_{y} \\ \text { PIPABIAS }_{z}\end{array}\right)$
GCOMPSW $=0$

GCOMP $=$ GCOMP $+\left[\begin{array}{ccc}-A D I A X & \text { ADSRAX } & 0 \\ 0 & -A D I A Y & \text { ADSRAY } \\ 0 & -A D S R A Z & -A D I A Z\end{array}\right] \quad$ DELV - 1dPIPADT $\left(\begin{array}{c}N B D X \\ \text { NBDY } \\ -N B D Z\end{array}\right)$
If $\left|\operatorname{GCOMP}_{x}\right|>2, \operatorname{GCOMPSW}=\left|\operatorname{GCOMP}_{x}\right|-2$
If $\left|\operatorname{GCOMP}_{y}\right|>2, \operatorname{GCOMPSW}=\left|\operatorname{GCOMP}_{y}\right|-2$


```
 If GCOMPSW > 0, establish *1/GYRO"

\section*{Return}
LASTBIAS Perform "PIPUSE", skipping 1st step
```If GCOMPSW \(<0\), End job
\[
\mathrm{TS}=0
\]
\[
\text { If FLAGWRD8 bit } 8 \text { (SURFFLLAG) }=1, T S=00200_{8}
\]
\[
\mathrm{TSt}=\mathrm{PIPTIME}_{1 s}-1 \mathrm{dPIPADT}
\]
\[
1 \mathrm{dPIPADT}=\mathrm{K}: \mathrm{pip} 2 \mathrm{sec}
\]
Proceed to "NBD2"
```

PIPUSE

```\(\underline{P I P A}=0\)(-0)
```

If bit 6 of IMODES $30=1$: (IMU caged)
Return
Inhibit interrupts
Switch bit 1 of IMODES 30 to 0 (Enable PIPA fail monitor)
Perform "SETISSW"
Release interrupt inhibit
Return
PIPFREE Inhibit interrupts
Switch bit 1 of IMODES 30 to 1 (Disable PIPA fail monitor)
If bit 10 of IMODES $30=0$: (PIPA failure)
Perform "ALARM" with TS $=00212_{8}$
Perform "SETISSW"
Release interrupt inhibit
Return
$T S=00000_{g}$
For $i=15,14,13,12,11$ and 9 , set bit i of $T S$ to 1 if bit i of IMODES3O is not equal to bit i of channel 30

If TS $=0_{0000}$, proceed to "TNONTEST"
(no change in IMU related discretes on channel 30)
Set bits 15-11 and 9 of IMODES30 equal to bits $15-11$ and 9 of channel 30

If bit 15 of $T S=1: \quad$ (change in $I M U$ temperature discrete)
Switch bit 15 of TS to 0
If bit 15 of IMODES $30=1$: (IMU temp exceeding limits)
Switch bit 4 of channel 11 to 1
(turn on temperature caution lamp)
If bit 15 of IMODES3O $=0$: (temp returned within limits)
If bit 1 of IMODES33 = 0 , switch bit 4 of channel 11 to 0 (turn lamp off unless lamp test in progress)

If $\mathrm{TS}=0^{00000}$, proceed to "TNONTEST" (no further changes)
If bit 14 of $T S=1: \quad$ (change in ISS turn-on delay discrete)
Switch bit 14 of TS to 0
If bit 2 of $\operatorname{IMODES} 30=0$: . (no turn-on sequence failure in effect)

If bit 14 of IMODES3O = 0, perform "ITURNON2"
(ISS turn-on initiate; start turn-on sequence)
If bit 14 of mODES $30=1$: (ISS turn-on delay just terminated)

If bit 15 of channel $12=0$: (ISS turn-on
delay was not terminated by LGC; set bit 2 to indicate turn-on-sequence failure)

Switch bit 2 of IMODES3O to 1
Perform "ALARM" with TS $=0^{00207}{ }_{8}$
If $T S=00000_{8}$, proceed to "TNONTEST"

If bit 13 of $T S=1$: (change in status of IMU fail discrete)
Switch bit 13 of T 8 to 0
Perform "SETISSW"
If TS $=00000_{8}$, proceed to "TNONTEST"
If bit 12 of $T S=1$ (change in status of ICDU fail discrete)
Switch bit 12 of TS to 0

Perform "SETISSW"
If $T S=00000_{8}$, proceed to "TNONTEST"
If bit 11 of $T S=1$: (change in status of IMU cage discrete)
Switch bit 11 of TS to 0
If bit 11 of IMODES $30=0$: (IMU caged externally)
Switch bits 15-10 of channel 14 to 0 (stop all ICDU and RRCDU drive pulses)

Switoh bits 8, 6, 5, 4 and 2 of channel 12 to 0 (disable inertial data display, disable ICDU Error Counters, reset ICDU zero discrete, remove coarse align enable discrete, disable RRCDU Error Gounters)

Switch FLLAGRD5 bit 7 (ENGONFLG) to 0
Switch bit 13 of channel 11 to 0 and bit 14 of channel 11 to 1 (engine control discretes to off)

Perform "CAGESUB1"
Perform "RNDREPR" (reset TRACK, DRIFT and REFSM flags)
$C D U_{1} C M D=0$ for $i=x, y$ and $z \quad(-0)$
GYROGMD $=0$
Switch bits 9-6 of channel 14 to 0 (remove all gyro-torque logic discretes)

If bit 11 of IMODES $30=1$, proceed to "ISSZERO"
If $T S=00000_{8}$, proceed to "TNONTEST"

If bit 9 of $\mathrm{TS}=1$: (IMU power on/off)
Switch bit 9 of TS to 0
If bit 9 of TMODES30 $=1$: (IMU power off)
Switch bit 6 of TMODES33 to 1 (disable DAP)
Perform "RNDREFDR"
If FLAGWRDO bit 8 (IMUSE) $=1$:
Perform "ALARM" with TS $=00214_{8}$
Switch FLAGWRDO bits 8 (IMUSE) and 7 (RNDVZFLG) to 0
If bit 9 of IMODES $30=0$: (IMU power on)
If bit 2 of IMODES30 $=0$, perform "ITURNON2"
(Start turn-on sequence if no turn-on-sequence failure indication present)

TNONTEST If bit 7 of IMODES3O $=0$, proceed to "C33TEST"
If bit 8 of IMODES30 $=0$; (Delay till next TLRUPT cycle)
Switch bit 8 of IMODES30 to 1
Proceed to "C33TEST"
Switch bits 7 and 8 of IMODES3O to 0
If bit 14 of IMODES30 = 1: (ISS power on without initiation of turn-on delay, e.g. verb 36)

If bit 4 of channel $12=1$, proceed to "C33TEST"
(coarse align enabled; may be near gimbal lock)
If FLAGWRDO bit 8 (IMUSE) $=1$, proceed to "C33TEST"
Perform "CaGESUB2"
Proceed to "ISSZERO"
If bit 9 of IMODES $30=1$, perform "ALARM" with TS $=00213_{8}$
(Turn-on delay initiated without ISS power on)
Perform "CAGESUB"

Call "ENDTNON" in 90 seconds
Proceed to "C33TEST"
ISSZERO Switch bit 4 of DSPTAB $_{11}$ to 0 (turn off no attitude lamp)
Switch bit 15 of DSPTAB $_{11}$ to 1 . (to flag for output)
Switch bit 5 of channel 12 to 1 (ICDU zero)
$\underline{C D U}=0$
Call "UNZ2" in 0.32 second
C33TEST TS $=00000_{8}$
For $i=13,12$ and 11 , switch bit i of TS to 1 if bit i of IMODES33 is not equal to bit i of channel 33

If $T S=00000_{8}$, return (to T4RUPT routine)
Set bits 13-11 of IMODES33 = bits 13-11 of channel 33
(Channel 33 flip-flops reset by WAND instruction)
If bit 13 of $T S=1: \quad$ (change in status of PIPA fail discrete)
Switch bit 13 of TS to 0
Set bit 10 of IMODES $30=$ bit 13 of IMODES 33
Perform "SETISSW"
If bit 1 of IMODES $30=1$: (primary PIPA monitor inhibited)
If bits 10, 9, 8, 7 and 5 of IMODES30 all $=0$: (PIPA fail, IMU power on, turn-on delay complete, turn-on delay not just initialized, and secondary PIPA fail monitor enabled ("PFAILOK"))

Perform "ALARM" with $T S=00212_{8}$
If $T S=00000_{8}$, return (to TLRUPT routine)
If bit 12 of $T S=1$: (Downlink)
Switch bit 12 of TS to 0
Perform "DNTMFAST"
If $\mathrm{TS}=00000_{8}$, return (to $T 4 R U P T$ routine)

If bit 11 of $T S=1$: (Uplink)
Switch bit 11 of TS to 0
Perform "UPTMFAST"
Return (to TLRUPT routine)
CAGESUB Switch bits 6 and 15 of channel 12 to 0
(Disable ICDU Error Counter and reset "Turn-on delay complete" discrete.)

Switch bits 4 and 5 of channel 12 to 1
(Set coarse align discrete and ICDU zero discrete)
CAGESUB1 Switch bit 4 of DSPTAB ${ }_{11}$ to 1 and flag for output
(No attitude lamp ${ }^{1}$ n)
CAGESUB2 Switch bits 1, 3, 4, 5 and 6 of IMODES30 to 1
(Inhibit PIPA, CDU and IMJ fail monitors, inhibit secondary PIPA fail monitor, and set IMU caged flag)

Switch bit 6 of IMODES33 to 1 (Disable DAP)
Return
SETISSW TS $=00000_{8}$
If bits 13 and 4 of IMODES30 both $=0, T S=10000_{8} \quad$ (IMU fail)
If bits 12 and 3 of MMODES 30 both $=0, T S=04000_{8}+T S \quad$ (ICDU)
If bits 10 and 1 of IMODES 30 both $=0, T S=01000_{8}+T S \quad$ (PIPA)
If TS $\neq 00000_{8}: \quad$ (failure)
Perform "ALARM" with TS $=T S-00001_{8}$
Switch bit 1 of channel 11 to 1 (ISS warning lamp)
Return
If bit 1 of IMODES33 $=0$, switch bit 1 of channel 11 to 0 (Extinguish ISS warning lamp if lamp test not in progress)

Return
GLOCKMON TS $=00000_{8}$
If $\left|\operatorname{CDU}_{\mathbf{z}}\right| \leq \mathrm{K}: 7$ Odegs, proceed to "SETGLOCK"
Switch bit 6 of TS to 1

If $\left|\mathrm{CDU}_{\mathbf{z}}\right| \leq \mathrm{K}: 85 \mathrm{degs}$, proceed to "SETGLOCK"
If bit 4 of channel $12=1$, proceed to "SETGLOCK" (already in coarse align)

Perform "SETCOARS"
Call "CA CEE " in 0.06 seconds
SETGLOCK If bit 6 of DSPTAB $_{11} \neq$ bit 6 of TS:
If bit 6 of DSPTAB $_{11}=1$: (bit 6 of $T S=0$)
If bit 1 of IMODES $33=1$; return (lamp test)
If bit 6 of DSPTAB $_{11}=0$: (bit 6 of $T S=1$)
If bit 6 of IMODES $30=1$, return
Invert bit 6 of DSPTAB and flag for output (Gimbal lock warning light on or off)

Return . (to T4RUPT routine)
CA+ECE Switch bit 6 of channel 12 to 1 (Enable ICDU Error Counters)
End task
UNZ2 $\quad \underline{C D U}=0$
Switch bits 4 and 5 of channel 12 to 0
(Disable coarse align mode, reset ICDU zero discrete)
Delay 10.24 seconds
Switch bits 3, 4, and 6 of IMODES 30 to 0
(Enable ICDU and IMU fail monitors and reset IMU caged flag)
Switch bit 6 of IMODES 33 to 0 (Enable DAP)
If FLAGWRD2 bit 15 (DRIFTFLG) $=0$:
Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
ldPIPADT $=$ less significant half of TIMENOW
Perform "SETISSW"
Switich bit 15 of channel 12 to 0
(Switchover to normal operate mode should be complete)
Call "PFAILOK" in 4 seconds
End task

ITURNOA2	Switch bit 7 of INDDES30 to 1 (initiate DMJ turn-on delas)
	RADMDDES $=00102_{8}$
	Return
ENDTNON	If bit 2 of IMODES $30=1$: (turn-on sequence failure).
	Switch bit 2 of DMODES30 to 0
	If bit 14 of nODES $30=0$: (turn-on delay still in effect)
	Delay 90 seconds
	Proceed to "ENDTNON"
	If FTAGWRDO bit 8 (DMUSE) $=1$, proceed to "DMUBAD"
	Fnd task
	Switch bit 15 of channol 12 to 1 (Switch ISS to normal operate mode)
	Switch bit 4 of DSPTAB to 0 and flag for output (Turn off no attitude lamp)
	Proceed to "UNZ2"
PFAIIOK	If bit 6 of IMDDES $30=1$, end task (IMU caged)
	Switch bit 10 of IMODES30 to 1 (reset PIPA fail bit)
	Switch bit 13 of MMODES 33 to 1 (reset PIPA fail bit)
	Switch bit 5 of IMODES30 to 0 (Enable secondary PIPA fail mon.)
	Perform "SETISSW"
	End task
TMUPULSE	MPAC $5=\mathrm{TS}$
	If bit 6 of IMODES30 $=1$: (IMU caged)
	IMUCADR $=-0$
	Return
	If LGYRO $=0: \quad$ (gyro free for torquing)
	Switch bit 6 of channel 14 to 1 (Enable gyro torquing)
	TSt $=0.00_{4}$

If LGYRO > 0 : (gyro already being torqued)
Put this job to sleep
When awakened, continue at next step if LGYRO then $=0$, or proceed to previous step if LGYRO is still >0.
$\mathrm{TSt}=0.01$
Call "STRTGYRO" in TSt seconds
LGYRO $=\mathrm{MPAC}_{5}$
GYRODEX $=0$
Force sign agreement within each component of $E_{\text {LGYRO }}$
Return

```
STRTGYRO Switch bits 7, 8, 9 and 10 of channel 14 to 0
    (reset gyro select discretes, sign bit, gyro activity bit)
    If bit 6 of IMODES3O \(=1\), proceed to "IMUBAD"
STRTGYR2 If GYRODEX \(=3\) : (finished)
    LGYRO \(=0\)
    Awaken any job put to sleep in "IMUPUSE"
    Proceed to "IMUFINED"
    If GYRODEX \(=2: \quad\) (torque \(X\) gyro about its output axis)
    LGYRO \(=\) LGYRO \(-4 \quad\) (index \(X\) component)
    If GYRODEX = 1: (torque z gyro)
    LGYRO \(=\) LGYRO +2 (index Z component)
    If GYRODEX \(=0\) : (torque \(Y\) gyro first)
    LGYRO \(=\) LGYRO +2 (index Y component)
    GYRODEX \(=\) GYRODEX +1
```

$\mathrm{TS}_{\mathrm{dp}}=\mathrm{E}_{\text {LGYRO }} \quad(\mathrm{X}, \mathrm{Y}$ or Z component of vector specified at input)
If $\left.\right|_{\text {TS }}{ }_{\mathrm{df}} \mid<\mathrm{K}:$ gyromin, proceed to "STRTGYR2"
$\mathrm{TS}_{\mathrm{dp}}=\mathrm{TS}_{\mathrm{dp}}+\mathrm{K}$:GYROFRAC signTS ${ }_{\mathrm{dp}}$
If $\mathrm{TS}_{\mathrm{dp}}<0$, switch bit 9 of channel 14 to 1 (negative torque)
If GYRODEX $=1$, switch bit 8 of channel 14 to 1 (Y)
If GYRODEX $=2$, owltch bits 7 and 8 of channel 14 to 1
If GYRODEX $=3$, switch bit 7 of channel 14 to 1
RUPTREG2 = fractional part of $\left|\mathrm{TS}_{\mathrm{dp}}\right| \operatorname{sgnTS}_{\mathrm{dp}} \quad$ (bits 1-7 of LS half)
TScmd $=8192$ (fractionsl part of ($\left(\mathrm{TS}_{\mathrm{dp}}-\right.$ RUPTREG2) $\left./ 8192\right)$)
RUPTREGI $=\left|T S_{d p}-T S c m d\right|$
If RUPTREG1 $\leq 8192: \quad \cdots$ (equals 0 or 8192)
If RUPTREG1 $\neq 0$, TScmd $=T S c m d+8192$
$\mathrm{E}_{\text {LGYRO }}=$ RUPTREG2 (portion of cammand less than one pulse) GYROCMD $=$ TScmd

TSt $=\mathrm{K}$: gyrtm GYROCMD +0.03
Call "STRTGYRO" in TSt seconds
Proceed to "GYROEXIT"
$\mathrm{E}_{\text {IGYRO }}=$ RUPTREG1 $-16384+$ RUPTREG2
GYROCMD $=8192+$ TScmd
TSt $=\mathrm{K}:$ gyrtm GYROCND -0.03
Call "8192inJG". in TSt seconds
Proceed to "GYROEXIT"
8192AUG If bit 6 of IMODES $30=1$, proceed to "IMUBAD" (IMU caged)

$$
\begin{gathered}
\text { If bit } 4 \text { of channel } 12=1 \text {, proceed to "IMUBAD" } \\
\text { (coarse align enabled; disables gyro torquing) } \\
\text { TS }=E_{\text {LGYRO }} \begin{array}{l}
\text { rounded off to nearest multiple of } 8192 \\
\left(\mathrm{E}_{\text {LGYRO }} \text { contains multiples of } 8192\right. \text { plus a fraction } \\
\text { of one pulse; fraction is ignored })
\end{array} \\
\text { IMUC }-12
\end{gathered}
$$

If $T S=0:$
GYROCMD $=$ GYROCMD +8192
TSt $=\mathrm{K}:$ gyrtm GYROCMD +0.03
Call "STRTGYRO" in TSt seconds
Proceed to "GYROEXIT"
$E_{\text {LGYRO }}=E_{\text {LGYRO }}-8192$
GYROCMD $=$ GYROCMD +8192
TSt $=\mathrm{K}$:gyrtm GYROCMD - 0.03
Call "8192AUG" in TSt seconds

```
GYROEXIT Switch bit 10 of channel 14 to 1 (send GYROCMD)
    End task
IMUZERO Inhibit interrupts
    If bits 4 and.6 of DSPTAB 
        (No attitude and "Gimbal Lock" lamps both on)
            Perform "ALARM" with TS = 002068
            IMUCADR = -0
            Release interrupt inhibit
                    Return
If bit 6 of IMODES3O = 1: (IMU caged)
    IMUCADR = -0
    Release interrupt inhibit
    Retura
    Switch bits 5 and 6 of IMODES33 to 1
        (Indicate zeroing in progress; disable DAP)
```

Switch bits 3 and 4 of Dyodis30 to 1
(Inhibit ICDU and DW fail monitors)
Switch bits 4 and 6 of chamel 12 to 0 (Disable Coarse align mode and ICDU Error Counters)

Switch bit 4 of DSPTAB to 0 and flag for output (Turn off "no attitude" 1emp)

Switch bit 5 of cheron 12 to 1 (2ero ICDU's)
$\operatorname{CDU}=0$
Call "Duntion" in 0.32 second
If bit 9 of DMODES3O $=1$: (INU not operating)
Perform "ALARM" with $T S=00210_{8}$
Release interrupt inhibit
Return
IMUKERO2 If bit 6 of: IMODES30 $=1$, proceed to "IMUBAD" (IMU caged)
$\underline{C D U}=0$
Switch bit 5 of channel 12 to 0 (Release ICDU's)
Delay 10.24 saconds
If bit 6 of IMDES3O $=1$, proceed to "IMUBAD"
Switch bits 4 and 3 of IMODES3O to 0
(Remore IMU and ICDU fail monitor inhibit bits)
Switch bits 6 and 5 of IMODES 33 to 0
(Enable DAP and reset zeroing indication)
Perform "SETISSW"
Proceed to "ENDDMU"
IMUCOARS Inhibit interrupts
If bit 6 of IMODES $30=1$: (IMU caged)
IMUCADR $=-0$
Release interrupt inhibit
Return

Perform "SETCOARS"

Call "COARS" in 0.06 second
Release interrupt inhibit
Return

SETCOARS If bit 4 of channel $12=1$, return
Switch bit 6 of channel 12 to 0
Switch bit 10 of channel 14 to 0
GYROCMD $=0$
Switch bit 4 of channel 12 to 1 (Switch ICDU to coarse align)
Switch bit 4 of DSPTAB ${ }_{11}$ to 1 and flag for output
(turn on "No attitude" lamp)
Switch bit 6 of IMODES33 to 1 (disable DAP)
Switch bit 4 of IMODES3O to 1 (inhibit IMU fail monitor)
RNDREFDR Switch FLAGWRDI bit 5 (TRACKFLG) to 0
Switch FIAGWRD2 bit 15 (DRIFTFIG) to 0
Switch FLAGWRD3 bit 13 (REFSMFLG) to 0
Return
COARS
If bit 6 of IMODES $30=1$, proceed to "IMUBAD"
(caged)
Switch bit 6 of channel 12 to 1 (Enable ICDU Eirror Counters)
COMMAND $_{z}=$ THETAD $_{z}-$ CDU $_{z}$
COMMAND $=$ THETAD - CDU converted to one's complement form and rounded off
COMMAND $_{\mathbf{x}}=$ THETAD $_{\mathbf{x}}-$ CDU $_{\mathbf{x}}$
Delay 0.02 second
COARS2 If bit 6 of IMODES $30=1$, proceed to "IMUBAD"
(caged)
$1=0$
(already in coarse align)
(disable ICDU error counters)
(disable gyro torque pulses)

-

Switch FLAGWRD3 bit 13 (REFSMFIG) to 0

응

Perform the indented steps 3 times, for $j=z$, then y, then x
If \mid COMMAND $j \mid=0, \quad C D U_{j} C M D=-0$
If \mid COMMAND ${ }_{j} \mid \leq K$: commax, but $\neq 0$:
$\mathrm{CDU}_{j} \mathrm{CMD}=$ COMMAND $_{j}$
COMMAND $_{j}=0$
$\mathbf{i}=\mathbf{i}+1$
If \mid COMMAND $_{j} \mid>K$: conmax:
$\mathrm{CDU}_{j} \mathrm{CMD}=\mathrm{K}$: commax signCOMMAND ${ }_{\mathrm{j}}$
COMMAND $_{j}=$ COMMAND $_{j}-\mathrm{CDU}_{j} \mathrm{CMD}$
$\mathbf{i}=\mathbf{i}+1$
(End of "indented steps")
If i >0 : (command is not zero)
Switch bits 13,14 and 15 of channel 14 to 1
(Send output pulses to ICDU Error Counters from CDU CMD cells)
Delay 0.6 second
Proceed to "COARS2"
Delay 1.5 seconds
Perform the indented steps 3 times (or until "ALARM" situation is encountered), for $j=z$, then y, then x

$$
T S=C D U_{j}-T_{j E T A D}^{j} \text { converted to one's complement form }
$$

If $|T S|>K: C O A R S T O L: \quad$ (coarse align error)
Perform "ALARM" with TS $=00211_{8}$
Proceed to "IMUBAD"
(End of "indented steps")
Proceed to "ENDIMU"

$$
\text { IMUC - } 16
$$

$$
\text { If bit } 6 \text { of IMODES3O }=1: \quad \text { (IMU caged) }
$$

IMUCADR $=-0$
Release interrapt inhibit

Return

Switch bits 4 and 5 of channel 12 to 0 (Reset ICDU coarse align and zeroing discretes)

Switch bit 6 of IMODES33 to 0 (Enable DAP)
Switch bit 4 of DSPTAB 11 to 0 and flag for output (Turn off "No Attitude" Iamp)

Call "IFALLOK" in 5.12 seconds
Call "IMUFINED" in 2 seconds
Release intermupt inhibit
Return
IMUFINED If bit 6 of IMODES3O $=1$, proceed to "IMUBAD"
(caged)
Proceed to "ENDIMU"
IFAIIOK If bit 6 of TMODES3O $=1$, end task
If bit 4 of channel $12=1$, end task (Coarse align mode)

Switch bit 13 of IMODES3O to 1 (reset IMU fail bit)
Switch bit 4 of DMODES3O to 0 (enable IMU fail monitor)
Perform "SETISSW"
End task
IMUSTALI Inhibit interrupts
If IMUCADR >0 or if IMUCADR < -1 :
TS1 = Return address of routine calling "IMUSTALL" Proceed to "BAILOUT1" with $T S=31210_{8}$

```
    If DMUCADR = -1: (operation already complete and good)
    IMUCADR = +O
    Release interrupt inhibit
    ISSGOOD = 1
    Return
    If IMUCADR = -0: (operation already complete and bad)
        IMUCADR = +O
        Release. interrupt inhibit
        ISSGOOD = 0
        Return
    DMUCADR = return address (to caller of "IMUSTALL")
    Put present job to sleep
    When awakened, return via LOC
    ENDIMU If bit 1 of channel 11 = 1, proceed to "IMUBAD" (ISS bad)
    IMUGOOD If IMUCADR = +0: ("IMUSTALU" not entered yet)
    IMUCADR = -1
    End task
    LOC = IMUCADR
    ISSGOOD = 1
    Wake job put to sleep in "IMUSTALL"
    IMUCADR = +0
    End task
IMUBAD If DMUCADR. = +0:
    IMUCADR = -0
    End task
```

 IMUC - 18
    ```
    LOC = IMUGADR
    ISSGOOD = 0
    Wak: job put to sleop in "MMUSTALL"
    IMUGADR = +0
    End task
ATTCK2 CDU CMD = THETAD 
CDU }\mp@subsup{\textrm{y}}{}{CMD}=\mp@subsup{\mathrm{ THETAD }}{\mathbf{y}}{\textrm{K}
GDU }\mp@subsup{\mathbf{x}}{}{CMD}=\mp@subsup{\mathrm{ THETAD }}{x}{}\textrm{K}:\mathrm{ ONETENTH
Switch bits 13, 14 and 15 of channel 14 to 1 (send CDU GMD's)
End task
RO2BOTH If FLAGWRD3 bit 13 (REFSMFLG) = 1:
    Switch FLAGWRDO bit 8 (IMUSE) to 1
    Return
If bit 9 of IMODES3O = 1: (IMU not operating)
    Perform "ALARM" with TS = 002108
If bit 9 of IMODES30 = 0: (BEFSMMAT invalid)
    Perform nALARM" with TS = 002RO
Proceed to "GOTOPOOH"
```

IdPIPADT: Single precision time interval for application of PIPA biases and gyro drift compensation, scaled B8, or storage for present time for the purpose of computing that time interval, scaled Bl4, in units of centiseconds.

AIIAX: Single precision angular drift of the X gyro around its output axis caused by linear acceleration of the IMU in the direction of the X gyro input axis (+XSM), scaled $\mathrm{B}-6$ in units of gyro pulses / centimeters per second. (One gyro pulse corresponds to 2^{-21} revolutions.) Pad loaded.
AIIAY: Single precision angular drift of the Y gyro around its output axis caused by linear acceleration of the IMU in the direction of the Y gyro input axis (+ YSM), scaled B-6 in units of gyro pulses / centimeters per second. Part of the erasable load.

AIIIAZ: Single precision angular drift of the Z gyro around its output axis caused by linear acceleration of the IMU in the direction of the Z gyro input axis (+ZSM), scaled B-6 in units of gyro pulses / centimeters per second Part of the erasable load.
ADSRAX: Single precision angular drift of the X gyro around its output axis caused by linear acceleration of the IMU in the direction of the X gyro spin-reference axis (-YSM), scaled B-6 in units of gyro pulses / centimeters per second, Part of the erasable load.
ADSRAY: Single precision angular drift of the Y gyro around its output axis caused by linear acceleration of the IMU in the direction of the Y gyro spin-reference axis (-ZSM), scaled B-6 in units of gyro pulses / centimeters per seconde Part of the erasable load.

ADSRAZ: Single precision angular drift of the Z gyro around its output axis caused by linear acceleration of the IMU in the direction of the Z gyro spin-reference axis (+YSM), scaled B-6 in units of gyro pulses / centimeters per second rart of the erasable load.

CDU (CDU $X_{X}, C D U_{Y}, C D U_{z}$): Single precision vector containing the measured values of the IMU gimbal angles (outer, inner and middle gimbal in X, Y, and Z components, respectively), scaled $B-1$ in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.
CDU C CMD: $(i=x, y$ or $z)$: Three single precision counters scaled B1 in units of revolutions, gated to the ICDU Firror Counters by setting bits 15,14 and 13 of channel 14 . Bits $15-13$ reset when reapective counters reach -0 . --Scaling is B14 in units of pulses.
COMMAND: Temporary storage for changes to the three gimbal angles during coarse alignment, scaled B1 in units of revolutions.

DELV: See SERV section.
DSPTAB_{11} : See INTR section.
$E_{\text {LGYRO }}$: Double precision vector containing three desired gyro torque angles whose address is specified at entry to the IMUPULSE routine, scaled BO in units of revolutions, or B2l in units of pulses. $E_{\text {LGYRO }}=$ GCOMP or (OGC ,IGC ,MGC)

GCOMP: Double precision vector containing required gyro compensation angles, scaled B14 (or B2l) in units of gyro pulses (l gyro pulse $=2^{-21}$ revolutions).

GCOMPSW: Single precision switch indicating whether gyro compensation is required or inhibited, scaled Bl4 and unitless.

GYROCMD: Computercell counted down as torquing pulses are sent to one of the gyros, scaled B14 in units of gyro pulses. Used for commands to all three gyros; the pulse train is initiated by setting bit 10 of Channel 14 and it is routed to the appropriate gyro torque motor by the setting in bits 7 and 8 of Channel 14.
GYROIFX: An index equivalent to that maintained by the program in bits 15-13 of LGYRO; used to indicate which gyro is being torqued and assigned a separate label merely for convenience in functional representation.
i,j: Single precision index registers, scaled Bl4 and unitless.
IMOIES 30: Single precision flagword whose individual bits have the following meanings:
Bit 15 (1) IMU temperature not within prescribed limits
(0) IMU temperature within limits

Bit 14 (1) ISS turn-on delay not in effect
(0) ISS turn-on delay initiated and in effect

Bit 13 (1) IMU good
(0) IMU fail

Bit 12 (1) ICDU good
(0) ICDU fail

Bit 11 (1) IMU not externally caged
(0) IMU caged, externally

Bit $10 \quad$ (1) PIPA good (identical to bit 13 of IMODES33)
Bit 9 (1) IMU off
(0) IMU operating

Bit 8 (1) IMU turn-on delay in progress
(0) IMU turn-on delay complete or not initiated

Bit 7 (1) IMU tum-on delay initiate
(0) IMU turn-on delay not initiated

Bit 6 (1) IMU caged (Internally)
(0) IMU not caged

| Bit 5 | (I) Secondary PIPA fail monitor inhibited
 (0). Secondary PIPA fail monitor enabled |
| :---: | :---: |
| Bit 4 | (I) IMU fail monitor inhibited
 (0) IMU fail monitor enabled |
| Bit 3 | (I)ICDU fail monitor inhibited (0)ICDU fail monitor enabled |
| Bit 2 | (I) ISS turn-on sequence failure
 (0) No ISS turn-on sequence failure in effect |
| Bit 1 | (I) Primary PIPA fail monitor inhibited
 (0) Primary PIPA fail monitor enabled |

IMODES33: See INTR section.
IMUCADR: Single precision octal storage for address to return to program that is making use of the ISS and waiting for a particular operation to be accomplished.

ISSGOOD: Variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether an IMU mode switch was successfully completed (1) or not (0).
K:70degs: Single precision constant stored as -0.38888 , program notation "--70DEGS," scaled B-1 in units of revolutions. Equation value: +0.19444. (Equivalent to +69.9984 degrees).
K:85degs: Single precision constant stored as $-0.38888+-0.08333$, scaled $\mathrm{B}-1$ in units of revolutions. Equation value: to.23610. (Equivalent to +84.99 degrees.)
K:COARSTOL: Single precision constant stored as -0.01111 , scaled B-1 in units of revolutions. Equation value: 0.005555 . (Equivalent to +1.9998 degrees.)
K:commax: Single precision constant stored as -191×2^{-14} and -192×2^{-14}, program notations "-COMMAX" and "-COMMAX-", scaled B1 in units of revolutions. Equation value: +0.0234375. (Equivalent to +8.4375 degrees or half the mechanical limit of the ICDU Error Counter.)

K:GYROFRAC: Double precision constant stored as 0.215×2^{-21}, scaled B2I in units of gyro torque pulses. Equation value: 0.21875. (The closest approximation to 0.215 with a least increment of 0.0078125.)
K:gyromin: Single precision constant stored as 776018 , program notation "-GYROMIN," scaled B7 in units of gyro torque pulses. Equation value: 1.0. (1 gyro pulse is equivalent to 2^{-21} revolutions.)

K:gyrtm: Single precision constant stored as 01000 , program notation "BIT10," scaled BO in units of centiseconds/gyro torquing pulse. Equation value: $1 / 3200$ seconds/pulse.

K:ONETENTH: See DAPA section.
K:pip2sec: Single precision constant stored ac 31000_{8}, program notation "PRIO31", scaled B8 in units of centiseconds. Equation value: 200.

LGYRO: Single precision octal address (positive) of cell containing gyro torquing comaand.

LOG: See MATX section.
MPAC: See DINT section.
NBDX, NBDY: Single precision angular drift around the output axes of the X and Y gyros caused by the passage of time, scaled B-5 in units of gyro pulses per centisecond.

NBDZ: Single precision complement of the drift around the output axis of the Z gyro caused by the passage of time, scaled B-5 in units of gyro pulses per centisecond.

PIPA: Single precision sensed-change-in-velocity vector scaled B14 in units of centimeters per second, expressed in stable member (IMU) coordinates. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the IMU.

PIPABIAS $_{x}$, PIPABIAS y_{y}, PIPABIAS $_{z}$: Single precision bias factors for the X, Y and Z PIPA's, scaled B-3 in units of centimeters per second per centisecond (equivalent to PIPA counts per centisecond).

PIPASCF $_{x}$, PIPASGF ${ }_{y}$, PIPASCF $_{z}$: Single precision scale factor errors associated with the X, Y and Z PIPA's respectively, scaled B-9 and unitless (accelerometer counts per accelerometer count).

PIPTIME: See SERV section.
RADMODES: See RADR section.
RUPTREG1: Single precision storage for portions of gyro torque commands greater than or equal to 2^{3} pulses, scaled B27 in units of gyro pulses ($2^{-2 \mid}$ revolutions).

RIPTREG2: Single precision storage for portions of gyro torque command less than one pulse, scaled B7 in units of gyro torque pulses. Fractional values of commands are not issued. They are stored for addition to future commands.

THETAD: Single precision vector containing the gimbal angles that define desired orientation between the IMU and the spacecraft for ettitude maneuvers or IMU alignaent, scaled B-1 in units of revolutions and atored in tro's complement form.

TIMENOW: See EXVB section.
品

Caused by underflow of counter TIME6, starting address 40048 Proceed to "DOT6RUPT"

Caused by overflow of counter TIME5, starting address 4010_{8} Proceed to "T5RUPT"

Caused by overflow of counter TIMEB, starting address 40148 Proceed to "T3RUPT" (start scheduled task)

Caused by overflow of counter TMME 4 , starting address 4020_{8} Proceed to "TLRUPT"

Caused by depression of a key on the DSKY keyboard, starting address 4024_{8}
Proceed to "KEYRUPT1"
Caused by depression of mark or reject buttons or crew indication of change in desired descent rate, starting address 4030_{8}
Proceed to "MARKRUPT"
Caused by overflow of uplink serial input buffer, starting address 40348
Proceed to "UPRUPT"
Caused by end pulse from the downlink system, starting address $40_{8} 0_{8}$
Proceed to "DODOWNTM"
Caused by expiration of time delay ($90-100 \mathrm{~ms}$) after bit 4 of channel 13 is set, starting address 40448
Proceed to "Radaread"
Caused by input from the rotational hand controller, starting address 4050

Proceed to "PITFALL"
Caused by hardware difficulties, starting address 4000_{8} Proceed to "GOPROG"

```
T4RUPT If DSRUPTSW < O, proceed to "QUIKDSP"
    If DSRUPTSW = 0, DSRUPTSW = 8
    DSRUPTSW = .DSRUPTSW - 1
    TSruptsw = DSRUPTSW
    If bit 15 of DSPTAB \(_{11}=1\) : (flagged for output)
    Switch bits 15-12 of DSPTAB 11 to 0
    OUTO \(=\) DSPTAB \(_{11}+60000_{8}\)
    DSRUPTSW = DSRUPTSW - 8192 - (5)(256)
    Set TIME 4 to cause "TLRUPT" in 20 milliseconds
    Proceed to "PROCEEDE"
    If FLAGWRD5 bit 15 (DSKYFLAG) \(=0\) or if NOUT \(=0\) :
    OUTO \(=00000_{8}\)
    Set TIME4 to cause "T4RUPT" in 120 milliseconds
    Proceed to "PROCEEDE"
    NOUT = NOUT - 1
    \(T S=-0\)
    Perform "DSPSCAN"
If \(\operatorname{SENTCODE}=0\) :
    OUTO \(=0^{00000} 8\)
    Set TIME4 to cause "TLRUPT" in 120 milliseconds
    Proceed to "PROCEEDE"
DSRUPTSW \(=\) DSRUPTSW \(-8192-(5)(256)\)
Set TIMF4 to cause "T4RUPT" in 20 milliseconds
Proceed to "PROCEEDE"
```

 INTR - 2
 PROCEEDE If bit 14 of channel $32 \neq$ bit 14 of IMODES 33 : (proceed button)
Set bit 14 of IMODES $33=$ bit 14 of channel 32
If bit 14 of IMODES33 $=0$: (proceed button just pushed)
Establish "PROCKEY" (pr30)
If TSruptsw $=0$ or 4:
Perform "RCSMONIT"
If TSruptsw $=1$ or 5:
Perform "RRAUTCHK"
Perform "DAPT4S"
If TSruptsw $=2$ or 6:
Perform "IMOMON"
Perform "GLOCKMON"
If TSruptsw $=3$ or 7:
Perform "DAPT4S"
Resume
PROCKEY If $\mid 22$ - VERBREG $\mid \leq 1:$
Proceed to ${ }^{\text {GCHARALRM" }}$
REQRET $=0$
DSPCOUNT $=-19$
Proceed to "VBPROC"

QUIKDSP If DSRUPTSW < -8192:
(bit $14=0$)
OUTO $=0^{00000} 8$
Set TIME4 to cause "T4RUPT" in 20 milliseconds
DSRUPTSW $=$ DSRUPTSW $+256+8192$
Resume
If NOUT = 0 :
OUTO $=0^{00000} 8$
Proceed to "SYNCT4"
NOUT = NOUT - 1
$T S=-0$
Perform "DSPSCAN"
If $\operatorname{SENTCODE}=0$: (no display to be changed)
OUTO $=0^{00000} 8$
Proceed to "SYNCT4"
Set TIME4 to cause "T4RUPT" in 20 milliseconds
DSRUPTSW $=$ DSRUPTSW $-8192+256$
Resume
DSPSCAN If bit 15 of DSPTAB $_{\text {DSPCNT }}=1$: (negative to flag for output)
DSPTAB $_{\text {DSPCNT }}=\mid$ DSPTAB $_{\text {DSPCNT }} \mid$
OUTO $=$ bits $15-11$ of K: RELTAB DSPCNT + bits $11-1$ of DSPTAB ${ }_{\text {DSPCNT }}$
SENTCODE $=1$
Return
If DSPCNT >0 :
DSPCNT = DSPCNT - 1
Proceed to "DSPSCAN"

$$
\text { INTR - } 4
$$

```
    If TS = - 0: (first time through list)
    TS = +0
    DSPCNT = 10
    Proceed to "DSPSCAN"
    NOUT = O
    SENTCODE = 0
    Return
SYNCT4 TS = 20
DSRUPTSW = DSRUPISW + 256
If DSRUPTSW < 0:
    TS = TS + 20
    Proceed to second step of "SYNCT4"
Set TMME4 to call "T4RUPT" in TS milliseconds
Resume
```

DSPCNT: Single precision permanent index, scaled B14 and unitless.
DSPCOUNT: See DSKY section.
DSPTAB $_{i}(i=0-10):$ See DSKY section.
DSPTAB $_{1}$: Single precision flagword whose bits designate relays to be set to illuminate lamps on the DSKY. Bit 9 lights the "program alarm" (PROG) lamp when set; bit 8 lights the "tracker fail" (TRACKER) lamp when set; bit 6 lights the "gimbal lock warning" (GIMBAL LOCK) lamp when set; bit 5 lights the "LR altitude fail" lamp when set; bit 4 lights the "no attitude" (NO ATT) lamp when set; and bit 3 lights the "LR velocity fail" lamp when set.

DSRUPTSW: Single precision index used to cycle through the display and monitor functions of "T4RUPT", scaled B14 and unitless.

IMODES33: Single precision flagword whose individual bits have the following significance: (Bits $15,10,9$, and $4-2$ have no significance.)

Bit 14 (1) Proceed button not depressed during last "T4RUPT" cycle
(0) Proceed button just pushed

Bit 13 (1) PIPA good
(0) PIPA fail

Bit 12 (1) Downlink not too fast
(0) Downlink too fast

Bit 11 (1) Uplink not too fast
(0) Uplink too fast

Bit 8 (1) Inertial data just displayed
(0) Inertial data not displayed

Bit 7 (1) Display altitude
(0) Display altitude rate

Bit 6 (1) DAP disable
(0) DAP enabled

Bit 5 (1) ICDU zeroing (See IMUC section)
(0) ICDU not zeroing

Bit 1 (1) Lamp test in progress
(0) Lamp test not in progress

K:RELTAB (\quad ($=0-10$): Table of twelve single precision constants containing the routing codes for OUTO in bits 15-12. See DSKY section.

NOUT: Single precision count of the number of DSPTAB registers (excluding DSPTAB $_{11}$) to be output as soon as possible, scaled B14 and unitless.

OUTO: Single precision output register which routes an eleven-binarybit display relay code (in bits ll-1) according to the routing code in bits 15-12. OU'O remains set for only twenty milliseconds before being reset to $0000{ }_{8}$. (Equivalent to channel 10.)

REQRET: See DSKY section.
SENTCODE: Variable quantity introduced as a substitute for a variable return address, switched to l if a relay code is inserted in OUTO and switched to 0 if no code is inserted in OU'O.

TIME3:- Single precision counter incremented every 10 milliseconds (every centisecond) in phase with the computer clock (TIMENOW). Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#3 (when TIME3 overflows) and initiate the first task in the waitlist. (A task is a routine initiated at a specified time by a "Call" instruction.)

TIME4: Single precision counter incremented every 10 milliseconds (every centisecond), 7.5 milliseconds after the TIME3 increment. Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#4.

TIME5: Single precision counter incremented every 10 milliseconds (every centisecond) in phase with TIME3. Set under program control (to 16384 minus the required time delay in centiseconds) to cause program interrupt \#2 (see DAPA section).

TIME6: Single precision counter decremented every 0.625 millisecond when bit 15 of channel 13 is set. Set under program control (to required delay in units of 0.0625 centiseconds) to cause program interrupt \#1 (see DAPA section).

VERBREG: See DATA section.

Sine, Cosine
The routines "COSINE" and "SINE" are those normally used to calculate the cosine or sine of an angle. The angle is input in the multiple precision accumulator (MPAC) in one's complement form, scaled BO in units of revolutions. The output is a cosine or a sine in MPAC, scaled Bl and unitless.

COSINE $\quad M_{P A C}^{d p}=\frac{1}{4}-\left|M P A C_{d p}\right|$ ($\frac{7}{4}$ corresponds to 90 degrees)
SINE If $\left|M P A G_{d p}\right| \geq \frac{1}{2}$:

$$
\mathrm{MPAC}_{d p}=\frac{1}{2} \operatorname{signMPAC}_{d p}-\mathrm{MPAC}_{d p}
$$

If $\left|M P A C_{d p}\right| \geq \frac{1}{4}$:

$$
M P A C_{d p}=\frac{1}{2} \operatorname{signMPAC_{dp}}-M P A C_{d p}
$$

$$
x=M P A C d p \quad \text { (rescaled to } B-1)
$$

$$
T S=K: \operatorname{snl} x+K: \operatorname{sn} 3 x^{3}+K: \operatorname{sn} 5 x^{5}+K: \operatorname{sn} 7 x^{7}+K: \operatorname{sn} 9 x^{9}
$$

$M P A C_{d p}=T S \quad$ (rescaled from B3 to $B 1$)
Return

Constant Coefficients

| | Stored Value | Scaled | Equation Value |
| :--- | :---: | :--- | :---: |
| K:snl | 0.3926990796 | B4 | $2 \pi \quad(=6.28318527)$ |
| $\mathrm{K}: \operatorname{sn} 3$ | -0.6459637111 | B6 | $-(2 \pi)^{3} 0.166666570$ |
| $\mathrm{~K}: \operatorname{sn} 5$ | 0.318758717 | B8 | $(2 \pi)^{5} 0.00833302539$ |
| $\mathrm{~K}: \operatorname{sn} 7$ | -0.074780249 | B10 | $-(2 \pi)^{7} 0.000198074150$. |
| $\mathrm{K}: \operatorname{sn} 9$ | 0.009694988 | B12 | $(2 \pi)^{9} 0.00000260188699$ |

Single Precision Cosine and Sine ($\cos _{\mathrm{sp}}$ and $\sin _{\mathrm{sp}}$)
The routines "SPCOS" and "SPSIN" are used to calculate the cosine or the sine of an angle when only single precision accuracy is required. They make use of the trigonometric identities $\cos (x)=$ $\sin (x+\pi / 2)$ and $\sin (x)=\sin (\pi-x)$ and of the Taylor series

$$
\sin (x)=\sum_{i=0}^{n}(-1)^{i} \frac{x^{i+1}}{(i+1)!}
$$

modified for maximum accuracy using only three terms. The input to both of the routines is an angle. scaled B-l in units of revolutions. The output is a cosine or sine scaled BO. Input and output are both through the single precision accumulator, denoted by A. Entry to the routine is made at "SPCOS" to calculate the cosine and at "SPSIN" to calculate the sine.

SPCOS

$$
A=A+\frac{1}{4}
$$

SPSIN $\quad \mathrm{X}=\mathrm{A}$

$$
\begin{aligned}
& \text { If }|X| \geq \frac{1}{2}, X=\frac{1}{2} \operatorname{sign} X-X \\
& \text { If }|X| \geq \frac{1}{4}: \\
& X=\frac{1}{2} \operatorname{sign} X-X \\
& \quad \text { If }|X|=\frac{1}{4}: \\
& \quad A=K: \text { posmaxsp sign } X \quad \text { (K:posmaxsp }=\text { almost } I)
\end{aligned}
$$

Return
$T S=K: s n l s p X+K: s n 3 s p X^{3}+K: \operatorname{sn} 5 s p X^{5}$
If $|T S| \geq 1$, $T S=K$: posmaxsp signTS
$A=T S$
Return
Constant Coefficients

| | Stored Value | Scaled | Equation Value | |
| :--- | :---: | :--- | :---: | :--- |
| K:snlsp | 0.7853134 | B3 | $2 \pi \quad(=6.2824)$ | |
| K:sn3sp | -0.3216147 | B7 | $-(2 \pi)^{3} 0.16596$ | |
| K:sn5sp | 0.0363551 | B11 | $(2 \pi)^{5} 0.0076032$ | |

The routines "ARCSIN" and "ARCCOS" are those used to calculate the angle corresponding to a given sine or cosine. The input to the routine "ARCSIN" is a sine in MPAC, scaled B1. The output from "ARCSIN" is an angle between $-\frac{1}{4}$ and $+\frac{1}{4}$ that corresponds to the sine. The input to the routine "ARCCOS" is a cosine in MPAC, scaled B1. The output from "ARCCOS" is an angle between 0 and $\frac{1}{2}$ that corresponds to the cosine. The angle output is in MPAC and is scaled BO in units of revolutions (one's complement form). ($\frac{1}{4}$ in units of revolutions is equivalent to 90 in units of degrees, etc.)

ARCSIN Perform "ARCSUB"

$M P A C_{d p}=\frac{1}{4}-T S$
Return
ARCCOS Perform "ARCSUB"
$M P A C_{d p}=T S$
Return
ARCSUB If $\left|M P A C_{d p}\right|<2^{-27}$:

$$
T S=\frac{1}{4}
$$

Return
If $\mathrm{MPAC}_{d p}>0$, PorM $=0$
If $M P A C d p<0$, PorM $=1$
$X=\left|M P A C_{d p}\right|$
If $X \geq 1.000244\left(1+2^{-12}\right)$, or if the less significant half of X is negative and $X>1.000122\left(1+2^{-13}\right)$:

$$
T S I_{d p}=\left(L O C_{o}, \text { BANKSET }_{0}\right)
$$

Perform "ALARMI" with TS $=01301_{8}$

If $X \geq 1$:

$$
T S=\frac{1}{2} \operatorname{PorM}
$$

Return
$T S=\sqrt{(1-X) / 2}$
$T S=T S\left(K: a s 0+K: a s l X+K a s 2 X^{2}+\ldots+K: a s 7 X^{7}\right)$
If $\operatorname{PorM}=1, T S=\frac{1}{2}-T S$
Return

Constant Coefficients

| | Stored Value | Scaled | Equation Value |
| :--- | :--- | :---: | :--- |
| K:as0 | 0.353553385 | BO | $1.570796302 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ asl | -0.0483017006×2 | $\mathrm{~B}-1$ | $-0.214598801 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as2 | $0.0200273085 \times 2^{2}$ | $\mathrm{~B}-2$ | $0.088978987 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as3 | $-0.0112931863 \times 2^{3}$ | $\mathrm{~B}-3$ | $-0.050174305 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as4 | $0.00695311612 \times 2^{4}$ | $\mathrm{~B}-4$ | $0.030891881 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as5 | $-0.00384617957 \times 2^{5}$ | $\mathrm{~B}-5$ | $-0.017088126 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as6 | $0.001501297736 \times 2^{6}$ | $\mathrm{~B}-6$ | $0.006670090 / \sqrt{2} \pi$ |
| $\mathrm{~K}:$ as7 | $-0.000284160334 \times 2^{7}$ | $\mathrm{~B}-7$ | $-0.001262491 / \sqrt{2} \pi$ |

The numbers in the last column (excluding the factor of $1 / \sqrt{2} \pi$) agree closely with published Hastings series values.

Square Root

The "SQRT" routine computes the double precision square root of a triple precision number with variable scale factor i. The input is a triple precision scalar in MPAC with scale factor i. The output is a double precision scalar in MPAC with scale factor $\frac{1}{2}$ i. If i is an odd number, the output will have to be divided by the square root of 2 to reduce its scale factor to an integer.

SQRT

$$
\begin{aligned}
& i=\text { scale factor of } \text { MPAC }_{t p} \\
& X=M P A C_{t p} / 2^{i} \\
& \text { If } X \leq 0 \text { : } \\
& \text { If } \mathrm{X}<-2^{-14} \text {, proceed to "POODOO1" with } \mathrm{TS}=21302_{8} \\
& \text { and } T S 1_{d p}=\left(\mathrm{LOC}_{0}, \mathrm{BANKSET}_{0}\right) \\
& \text { Return with MPAC }{ }_{d p}=0 \\
& \text { If } X<\frac{1}{4} \text {, repeat the indented steps until } X \geqslant \frac{1}{4} \\
& i=i-2 \\
& X=4 X \\
& \text { (} \mathrm{X} \text { now double precision and between } \frac{1}{4} \text { and 1) } \\
& \mathrm{TS}_{\mathrm{sp}}=\text { more significant half of } \mathrm{X} \\
& \text { If } \mathrm{X} \geq \frac{1}{2}, \mathrm{BUF}_{\mathrm{sp}}=0.5884 \mathrm{TS}_{\mathrm{sp}}+0.4192 \\
& \text { If } \mathrm{X}<\frac{1}{2}, \mathrm{BUF}_{\mathrm{sp}}=0.8324 \mathrm{TS}_{\mathrm{sp}}+0.2974 \\
& \mathrm{BUF}_{\mathrm{sp}}=\frac{1}{2} \mathrm{BUF}_{\mathrm{sp}}+\frac{1}{2} \mathrm{TS}_{\mathrm{sp}} / \mathrm{BUF}_{\mathrm{sp}} \\
& T S_{d p}=\frac{1}{2} \mathrm{BUF}_{\mathrm{sp}}+\frac{1}{2} \mathrm{X} / \mathrm{BUF}_{\mathrm{sp}} \\
& \text { If } T S_{d p} \geq 1, T S_{d p}=1-2^{-28} \\
& i=\frac{1}{2} i \\
& \text { MPAC }_{d p}=2^{i} T S_{d p} \\
& \text { Return }
\end{aligned}
$$

Natural Logarithm (complemented)

The routine "LOGSUB" is used to calculate the natural logarithm of a scalar using the Taylor series approximation

$$
\text { MATX - } 5
$$

$$
\ln (x)=-\sum_{i=1}^{\infty} \frac{(1-x)^{i}}{i}
$$

truncated at $i=7$ and modified for maximum accuracy in the domain $\frac{1}{2} \leq x<1$. The input to the routine is the argument of the function, scaled BO and stored in MPAC (double precision). The output is the complement of the natural logarithm of the input, scaled B5 and stored in MPAC (double precision).

LOGSUB $\quad i=0$
$\mathrm{X}=\mathrm{MPAC}_{\mathrm{dp}}$
If $\mathrm{X}<\frac{1}{2}$, repeat the indented steps until $X \geq \sum_{2^{\frac{1}{2}}}$

$$
\begin{aligned}
& i=i-1 \\
& X=2 X
\end{aligned}
$$

(X now between $\frac{1}{2}$ and 1)
$x=1-\dot{X}-2^{-28}$
$T S_{d p}=K: \ln 0+K: \ln 1 x+K: \ln 2 x^{2}+\ldots+K: \ln 7 x^{7}+i K: c \ln 2$
$M P A C_{d p}=-T S_{d p}$
Return

Constant Coefficients

| | Stored Value | Scaled | Equation Value |
| :--- | :---: | :---: | :---: |
| K:ln0 | 0.0000000060 | B5 | 0.0000001920 |
| K:ln1 | -0.0312514377 | B5 | -1.0000460064 |
| K:ln2 | -0.0155686771 | B5 | -0.4981976672 |
| K:ln3 | -0.0112502068 | B5 | -0.3600066176 |
| K:ln4 | -0.0018545108 | B5 | -0.0593443456 |

| $\mathrm{K}: \ln 5$ | -0.0286607906 | B5 | -0.9171452992 |
| :--- | :--- | :--- | :--- |

| K:ln6 | 0.0385598563 | B5 | 1.2339154016 |
| :--- | :--- | :--- | :--- |
| $K: \ln 7$ | -0.0419361902 | B5 | -1.3419580864 |
| $K: c \ln 2$ | 0.0216608494 | B5 | 0.6931471808 |

Conversion from Two's Complement Form to One's Complement Form

Conversion from two's complement form into one's complement form is accomplished using the "CDULOGIC" routine. The input is a single precision angle in two's complement form, stored in the multiple precision accumulator MPAC and scaled B-1 in units of revolutions. The output is a double precision angle in one's complement form, stored in MPAC and scaled BO in units of revolutions.

CDULOGIC If MPAC ${ }_{s p} \geq 0$: (one's complement binary equivalent to
$M P A C_{d p}=M P A C_{s p}$
(shifted right one to change scaling from $B-1$ to $B O$)
If $\mathrm{MPAC}_{s p}<0$: (one's complement binary equivalent to sp two's complement binary minus one least $M P A C_{d p}=M P A C_{s p}$ significant bit)
(shifted right one to change scaling from $\mathrm{B}-1$ to BO ; minus 2^{-15}, the value of one least significant bit)

Return

Conversion from One's Complement Form to Two's Complement Form
Conversion from one's complement form to two's complement form is accomplished using one of the three routines "lSTO2S", "2V1STO2S" or "V1STO2S" and their common subroutine "lTO2SUB", depending on whether the quantity to be converted has one, two or three components. The input to "lTO2SUB" is a double precision angle in one's complement form, stored in MPAC and scaled BO in units of revolutions. The output from "lTO2SUB" is a single precision angle in two's complement form, stored in MPAC and scaled B-1 in units of revolutions.

$$
\text { MATX - } 7
$$

1STO2S Perform "1T02SUB"
Return
2V1STO2S Perform "1T02SUB" with MPAC ${ }_{d p}=T S_{x}$
$T S_{x}=M P A C_{s p}$
Perform "1TO2SUB" with MPAC ${ }_{d p}=T S_{y}$
$\mathrm{TS}_{\mathrm{y}}=\mathrm{MPAC}_{\mathrm{sp}}$
Change interpretive mode to double precision (two single precision components stored as one double precision scalar)

Return
V1ST02S Perform "1T02SUB" with MPAC ${ }_{d p}=T S_{x}$
$T S_{x}=\operatorname{MPAC}_{s p}$
Perform "lTORSUB" with MPAC ${ }_{d p}=T S_{z}$
$T S_{z}=M P A C_{s p}$
Perform "1TO2SUB" with $M P A C_{d p}=T S_{y}$
$T S_{y}=M P A C_{s p}$
Change interpretive mode to triple precision (three single precision components stored as one triple precision scalar)

Return
 one's complement binary)
$\mathrm{MPAC}_{s p}=\mathrm{MPAC}_{\mathrm{dp}}$
(shifted left one to change scaling from $B 0$ to $B-1$)
If $M P A C_{d p}=-0: \quad$ (there is only one "zero" in two's complement form and it is equivalent to the +0 in one's complement form)

$$
\mathrm{MPAC}_{\mathrm{sp}}=+0
$$

$$
\begin{aligned}
& \text { If } \mathrm{MPAC}_{\mathrm{dp}}<0: \quad \begin{array}{l}
\text { (two's complement binary equivalent to } \\
\text { one's complement binary plus one least } \\
\text { significant bit) }
\end{array} \\
& \mathrm{MPAC}_{\mathrm{sp}}=\mathrm{MPAC}_{\mathrm{dp}} \\
& \text { (shifted left one to change scaling from } \mathrm{BO} \text { to } \mathrm{B}-1 \text {; } \\
& \begin{array}{l}
\text { plus } 2^{-15} \text {, the value of one least significant bit in } \\
\text { single precision two's complement form scaled } \mathrm{B}-1 \text {) }
\end{array} \\
& \text { If overflow (} \left.\left|\mathrm{MPAC}_{\mathrm{sp}}\right| \geq \frac{1}{2}\right): \\
& \mathrm{MPAC}_{\mathrm{sp}}=\mathrm{MPAC}_{\mathrm{sp}}-1 \text { signMPAC } \\
& \text { Return }
\end{aligned}
$$

Single Precision Arcsine Routine (arcsin ${ }_{s p}$)
The routine "SPARCSIN" is used to calculate an angle from a given sine of the angle when only single precision accuracy is gequired. The input to the routine is the sine of an angle (or cosine of an angle if the complement of the angle is desired), scaled Bl and unitless. The output is the angle scaled B-l in units of revolutions. Input and output are both through the single precision accumulator, denoted by A.

SPARCSIN $A=2 \mathrm{~A} \quad$ (rescales to BO)

$$
\text { If overflow (i.e. }|A| \geq 1 \text {): }
$$

$A=$ signA K :posmaxsp
$A=K:$ DPLI $A / 2+K: D P L 3 A^{3} / 2+K: D P L 5 A^{5} / 2$ $+K: D P L 7 A^{7} / 2+K: D P L 9 A^{9} / 2$

Return (A contains 2 times the angle in revolutions i.e., scaled B-1)

Constant Coefficients

| | Stored Value | Scaled. | Equation Value |
| :--- | :--- | :--- | :--- |
| K:DPLI | 0.64099121 | B0 | 10502×2^{-14} |
| K:DPL3 | 0.02636718 | B0 | 432×2^{-14} |

$$
\text { MATX - } 9
$$

| | Stored Value | Scaled | Equation Valu |
| :---: | :---: | :---: | :---: |
| K:DPL5 | 0.44555664 | B0 | 7300×2^{-14} |
| K:DPL7 | -0.72039794 | BO | -11803×2^{-14} |
| K: DPL9 | 0.51251221 | B0 | 8397×2^{-14} |
| DUMMYJB2 | Release interrupt inhibit | | |
| | Switch bit 2 of channel 11 to 0 (COMP ACT off) | | |
| ADVAN | $\begin{aligned} & \text { If } \mathrm{NEWJOB}=-0: \\ & \text { SUPERBNK }=4 \end{aligned}$ | | bs; do self te |
| | | | |
| | $\text { EBANK }=2$
 (bits 3-1 of BBANK) | | |
| | FBANK $=338 \quad$ (bits $15-11$ of BBANK) | | |
| | Proceed to address specified in SELFRET
 (return to self test routines where they left off) | | |
| | If NEWJOB >0 | | has been awak job core set ot the next step lish or awaken ity with job co NEWJOB would next step.) |
| | If NEWJOB >0 : | | |
| | Swit TS | bit 2
 OC_{0} | hannel 11 to 1 |
| | $\mathrm{TS}_{1}=\mathrm{BANKSET}_{0}$ | | |
| | Proceed to "CHANJOB4" | | |
| | Release interrupt inhibit | | |

(Otherwise, NEWJOB $=+0$)
Switch bit 2 of channel 11 to 1
SUPERBNK $=$ bits $7-5$ of BANKSET $_{0}$
EBANK = bits 3-1 of BANKSET \quad. (via BBANK)
FBANK $=$ bits $15-11$ of BANKSET $_{0} \quad$ (via BBANK)
Proceed to address specified in LOC_{0}
FINDVAC (Entered to "Establish" a job that requires working storage)
Inhibit interrupts
NEWPRIO $=\mathrm{A} \quad$ (priority, octal, in bits $1_{4}-10$ of accumulator)
NEWLOC $_{d p}=\underset{\text { register }}{\text { ref }} \begin{aligned} & \text { double precision cell specified in } Q-1 .\end{aligned}$ (stored in fixed memory after a "TC FINDVAC")
EXECTEMI = FBANK
FBANK $=1 \quad$ (note: SUPERBNK setting does not affect FBANK \#1)

FINDVAC2 Scan VACiUSE for $i=1-5$ for an available VAC area (If available, VACiUSE = its own address; if not, it $=+0$)

If none available, proceed to "BAILOUT1" with $T S=312018$, and $T S I_{d p}=$ (Q-register, EXECTEMI)

NEWPRIO = NEWPRIO + VACiUSE + 1 (priority in bits 14-10; address of "1 + VACiUSE" in bits 9-1)

VACIUSE $=+0$
Proceed to "NOVAC2"
SPVAC (Entered with interrupts inhibited and priority in NEWPRIO to "Establish" a job that requires a working storage)

Q-register $=$ Q-register -2

```
    NEWLOC }\mp@subsup{}{dp}{}=(A,L)\quad(job starting address in accumulator
    EXECTEMI = FBANK
    FBANK = 1
    Proceed to "FINDVAC2"
NOVAC (Entered to "Establish" a job that requires no working
    Inhibit interrupts
    NEWPRIO = A + "MPAC6" - "QPRET"
    NEWLOC 
    EXECTEML = FBANK
    FBANK = 1
NOVAC2 LOCGTR = 0
    EXECTEM2 = 7
NOVAG3 If PRIORITY LOCCTR }=-0,\mathrm{ proceed to "CORFOUND"
    LOCCTR = LOCCTR + 12
    If EXECTEM2 > 0:
        EXECTEM2 = EXECTEM2 - I
        Proceed to "NOVAG3"
    Proceed to "BAILOUTl" with TS = 3T202, and TSl dp =}=\mp@code{(No available dob cores)
CORFOUND PRIORITY LOCGTR }= NEWPRIO
    PUSHLOC LOCGTR = bits 9-1 of NEWPRIO
    If LOCCTR> 0, proceed to "SETLOC"
```

 MATX - 12
 OVFIND $=0$
FIXLOC $=$ PUSHLOC $_{0}$
SPECTEST If NEWJOB is negative non-zero or +0 , proceed to "CCSHOLE"
If NEWJOB > 0, proceed to "SETLOC" (new job just established with job core aero, but job of higher priority awakened during same interrupt with job core other than zero)

NEWJOB $=+0$
LOC ${ }_{0}=$ more significant half of NEWLOC
BANKSET $_{0}=$ less significant half of NEWLOC
FBANK $=$ EXECTEMI
Return to $2+$ address in Q-register
SETLOC \quad LOC $_{\text {LOCCTR }}=$ more significant half of NEWLOC
BANKSET ${ }_{\text {LOCCTR }}=$ less significant half of NEWLOC
$T S=$ PRIORITY $_{\text {NEWJOB }}$
If $T S<$ NEWPRIO, NEWJOB = LOCCTR (this job will be started at the next entry to "CHANJOB4" if NEWJOB is set here)

FBANK $=$ EXECTEMD
Return to $2+$ address in Q-register
CHANGI (Entered from jobs programmed in "basic" language to check for jobs of higher priority)
$T S_{0}=$ Q-register
$T S_{1}=$ FBANK + EBANK (FBANK in bits 15-11; EBANK in bits 3-1)
EBANK $=2$ (bits 3-1 of BBANK)
FBANK $=1 \quad$ (bits 15-11 of BBANK)
Inhibit interrupts
$\mathrm{TS}_{1}=\mathrm{TS}_{1}+$ SUPERBNK (SUPERBNK in bits 7-5)
Proceed to "CHANJOB4"
CHANG2 (Entered after the completion of a line of interpretive instructions to check for a job of higher priority)
$T S_{0}=-L_{0}$
EBANK $=2$ (bits 3-1 of BBANK)
FBANK $=1 \quad$ (bits $15-11$ of BBANK)
Inhibit interrupts
$\mathrm{TS}_{1}=$ BANKSET $_{0}+$ SUPERBNK
CHANJOB4
$\mathrm{LOC}_{0}=\mathrm{LOC}_{\text {NEWJOB }}$ (no change if $\mathrm{NEWJOB}=+0$)
BANKSET $_{0}=$ BANKSET $_{\text {NEWJOB }}$
$\mathrm{LOC}_{\text {NEWJOB }}=\mathrm{TS}_{0}$
BANKSET $_{\text {NEWJOB }}=\mathrm{TS}_{1}$
SUPERBNK = bits 7-5 of BANKSET ${ }_{0}$
Exchange MPAC ${ }_{i}$ of this job with MPAC ${ }_{i}$ of new job for $i=0-7$
If OVFIND $\neq 0$, PUSHLOC $_{0}=-$ PUSHLOC $_{0}$
OVFIND $=0$
Exchange PUSHLOC $_{0}$ WIth PUSHLOC ${ }_{\text {NEWJOB }}$
Exchange PRIORITY ${ }_{0}$ with PRIORITY ${ }_{\text {NEWJOB }}$
FIXLOC = bits 9-1 of PRIORITY ${ }_{0}$
If PUSHLOC ${ }_{0}<0$:

$$
\begin{aligned}
& \text { PUSHLOC }_{0}=- \text { PUSHLOC }_{0} \\
& \text { OVFIND }=1
\end{aligned}
$$

NEWJOB $=+0$
ENDPRCHG Release interrupt inhibit
If $\mathrm{LOC}_{0} \leq 0$:
$L O C_{0}=-L O C_{0}+1$
EBANK = bits 3-1 of BANKSET $_{0}$ (vịa BBANK)
FBANK = bits $15-11$ of BANKSET $_{0} \quad$ (via BBANK)
Proceed to interpretive decoder
EBANK = bits 3-1 of BANKSET 0 (via BBANK)
FBANK = bits $15-11$ of BANKSET $_{0} \quad$ (via BBANK)
Proceed to job whose address is specified in LOC $_{0}$
PRIOCHNG Inhibit interrupts (Entered to "Change priority" of a job)
NEWPRIO $=\mathrm{A} \quad$ (Priority in bits 14-10 of accumulator)
BANKSET ${ }_{0}=$ FBANK + EBANK (FBANK in bits 15-11; EBANK in bits
EBANK $=2$
FBANK $=1$
$\mathrm{LOC}_{\mathrm{O}}=$ Q-register
$B F_{0}=+0$
PRIORITY $_{0}=$ NEWPRIO $^{+}$bits $9-1$ of PRIORITY ${ }_{0}$ (changing priority in bits $14-10$ but leaving VAC address unchanged)
$\mathrm{BUF}_{1}=-$ PRIORITY $_{0}$
Proceed to "EJSCAN"
JOBSLEEP (Entered with "address at which sleeping job is to begin when awakened" in accumulator)

$$
\begin{aligned}
& L O C_{0}=A \\
& \text { FBANK = } 1 \\
& \text { Inhibit interrupts } \\
& \text { PRIORITY }{ }_{0}=- \text { PRIORITY } Y_{0} \text { (to indicate that job is asleep) } \\
& \text { BANKSET }_{0}=\text { SUPERBNK }+ \text { EBANK } \\
& \mathrm{BUF}_{1}=-0 \\
& \text { Proceed to "EJSCAN" } \\
& \text { ENDOFJOB FBANK }=1 \text { (Entered to "End job") } \\
& \text { Inhibit interrupts } \\
& \mathrm{BUF}_{1}=-0 \\
& \text { TS = bits 9-1 of PRIORITY } \quad \text { (} 1+\text { address of VAC area if any) } \\
& \text { PRIORITY }_{0}=-0 \\
& \text { If TS > "MPAC } 6 \text { - "QPRET": (VAC area to be released) } \\
& \text { VACiUSE }=T S-1 \quad \text { (using VACiUSE }+1 \text { address in TS) } \\
& \text { EJSCAN } \quad i=12 \\
& \text { If } \text { PRIORITY }_{i}>0 \text { : } \\
& \text { If PRIORITY }{ }_{i}-1>- \text { BUF }_{1} \text { : (the " } 1 \text { " is insignificant) } \\
& \mathrm{BUF}_{1}=- \text { PRIORITY }_{i}+1 \text { ("l" does not change priority } \\
& B U F_{0}=i \quad \text { (effectively) } \\
& \text { If PRIORITY }{ }_{i}=+0 \text {, proceed to "CCSHOLE" } \\
& \text { If } i<84 \text { : } \\
& i=i+12 \\
& \text { Proceed to second step of "WJSCAN" }
\end{aligned}
$$

$$
\text { MATX - } 16
$$

> If $\mathrm{BUF}_{1} \geq+0$, proceed to "CCSHOLE"
> If $\mathrm{BUF}_{1}=-0$: (all jobs completed)
> NEWJOB $=-0$
> Proceed to "DUMMYJB2"
> If $\mathrm{BUF}_{\mathrm{O}}=+0: \quad$ ("PRIOCHNG")
> NEWJOB $=+0$
> Proceed to "ENDPRCHG"
> NEWJOB $=$ BUF $_{0}$
> $\mathrm{TS}_{\mathrm{O}}=\mathrm{LOC}_{\mathrm{O}} \quad$ (contents meaningless if end of job)
> Inhibit interrupts
> $\mathrm{TS}_{1}=$ BANKSET $_{0}+$ SUPERBNK
> Proceed to "CHANJOB4"
> JOBWAKE Inhibit interrupts
> $T S=A \quad$ (starting address of job when awakened)
> Q-register $=$ Q-register -2
> EXECTEML $=$ FBANK
> FBANK $=1$
> LOCCTR $=0$
> EXECTEM2 $=7$
> JOBWAKE4 If PRIORITY LOCCTR <0 and TS $=$ LOC LOCCTR : (correct sleeper)
> NEWPRIO $=-$ PRIORITY $_{\text {LOCCTR }}$
> PRIORITY $_{\text {LOCCTR }}=$ NEWPRIO
> ${ }^{\text {NEWLOC }}$ ms $=2000_{8}+$ bits $10-1$ of $T S$

```
    (If PRIORITY LOCGTR }<0\mathrm{ and TS = LOC LOCCTR:)
    NEWLOC }\mp@subsup{1}{1s}{}=\mathrm{ bits 15-11 of TS + BANKSET LOCCTR
    If LOCCTR > 0, proceed to "SETLOC"
    Proceed to "SPECTEST"
LOCCTR = LOCCTR + 12
If EXECTEM2 > 0:
    EXECTEM2 = EXECTEMR - I
    Proceed to "JOBWAKE4"
LOCCTR = -1 (indicating that no such sleeper was found)
FBANK = EXECTEMI
Return to 2 + address in Q-register
DELAYJOB Inhibit interrupts
TSt = A
RUPTREGI = 2
DELLOOP If DELAYLOC RUPTREGI }\not=0
    If RUPTREGI = 0, proceed to "BAILOUTl" with TS = 31104
    and TS1 
    RUPTREGI = RUPTREGI - 1
    Proceed to "DELLOOP"
WAITEXIT = "TGGETCAD" - 2
L = FBANK + RUPTREGI (FBANK = 0)
WAITADR = "WAKER"
Proceed to "DLY2" ("returns" to "TCGETGAD")
```

MATX - 18

TCGETCAD $^{\text {DELAYLOC }}{ }_{\text {RUPTREGI }}=$ bits $10-1$ of BUF2 $_{\mathrm{O}}+\mathrm{BUF}_{1}$
Proceed to "JOBSLEEP" with A = DELAYLOC RUPTREGI
WAKER (Must be in FBANK \#O)
$i=$ FBANK + EBANK (= RUPTREGI of above)
$A=$ DELLAYLOC $_{i}$
DELAYLOC $_{i}=0$
Perform "JOBWAKE"
Proceed to "TASKOVER"
WAITLIST (Entered to "Call" a task with "delta-time to interrupt" in accumulator)

Inhibit interrupts
WAITDELT $=\mathrm{A}$
WAITEXIT = Q-register ("Calling address" + 1)
$T S_{d p}=\underset{\text { WAITEXIT }}{\text { contents }}$ double precision register specified in
L = less significant half of TS
WAITADR $=$ more significant half of TS
Proceed to "DLY2"
TWIDDLE (Entered to "Call" a task with the same FBANK, SUPERBNK and EBANK as the caller.)

Inhibit interrupts
Q-register = Q-register - I
$\mathrm{L}=$ FBANK + SUPERBNK + EBANK
Inhibit interrupts

$$
\text { MATX - } 19
$$

WAITDELT $=\mathrm{A}$
WAITEXIT = Q-register
TSadr = Q-register +1
WAITADR $=$ contents of single precision register specified in TSadr
DLY2 WAITBANK $=$ FBANK + EBANK (FBANK in bits 15-11; EBANK in bits 3-1)
EBANK $=3$
FBANK $=1$
If WAITDELT ≤ 0, proceed to "POODOO1" with $T S=2120 / 4$ and $\mathrm{TSl}_{\mathrm{dp}}=$ (WAITEXIT, WAITBANK)
If $\operatorname{TIME} 3>128, \mathrm{Tl}=16384-\mathrm{TMME} 3$ (delta-t to first task in list)

If TIME3 $=128, \mathrm{Tl}=1$ (improper performance; unexpected)
If TIME3 < 128, T1 = - TMME3 (interrupt has occurred and is waiting to be processed; TIME3 continues to count (every centisecond) until it is reset)
$\mathrm{TSdt}=\mathrm{Tl}$
If WAITDELT > TSdt - 1: (Call time greater than or equal to time to earliest task, task zero)
$i=0$
Proceed to "WTLST5"
TSt $=(8192-$ WAITDELT $)+8192$ modulo 2^{14}
Exchange TIME3 and TSt (Switch contents of one to the other)
$\mathrm{LSTl}_{i}=\mathrm{LSTl}_{\mathrm{i}-1}$ for $\mathrm{i}=7$ thru 1 in that order
LSTl $_{0}=1-(16384-$ TSt - WAITDELT $)$
$\mathrm{TS}=$ more significant half of LST_{16}
$\operatorname{LST2}_{2 i}=$ LST2 $_{2 i-2}$ for $i=8$ thru 0 in that order

LST2 ${ }_{0}=$ (WAITADR, L (double precision)
If TS \neq "SVCT3", proceed to "BAILOUTI" with $T S=3120.38$ and $T S 1_{d p}=$ (WAITEXIT, WAITBANK)
EBANK = bits 3-1 of WAITBANK (via BBANK)
FBANK $=$ bits $15-11$ of WAITBANK (via BBANK)
TSadr $=2+$ WAITEXIT
Proceed to address specified in TSadr (return to caller)
WTLST5 TSdt $=T S d t-L S T l_{i}+1 \quad \begin{array}{ll}\left(L S T 1_{i}=1-\text { delta time between }\right. \\ \text { tasks } i \text { and } i+1 \text { where time to }\end{array}$ task zero is counting down now)

If WAITDELT > TSdt - 1:

$$
i=i+1
$$

If $i=8$, proceed to "BAILOUT1" with TS $=31203_{8}$ and $\mathrm{TSI}_{\mathrm{dp}}=$ (WAITEXIT, WAITBANK)
P: , Proceed to "TWTLST5"
WAITTEMP = TSdt - WAITDELT - 1
$\operatorname{LSTI}_{i}=\operatorname{LSTl}_{i}+$ WATTTEMP $+1 \quad\left(=1-\begin{array}{c}\text { delta time from task i } \\ \text { to new task" })\end{array}\right.$
$\operatorname{LSTl}_{j}=\operatorname{LSTl}_{j-1}$ for $j=7$ thru $i+2$ in that order for i
LST1 $_{\text {i }+1}=-$ WATTRFAPP $^{\text {for }}$ i 7 ($=1$ - "delta time from new task to task which was number i+1 but has been displaced")

TS = more significant half of LST2 ${ }_{16}$
$\operatorname{LST}_{2 j}=\operatorname{LST}_{2 j-2}$ for $j=8$ thru $i+2$ in that order for $i \quad 7$
LST2 $2_{i+2}=$ (WATTADR , L) (double precision)
If TS \neq "SVCT3", proceed to "BAILOUT1" with $T S=31203_{8}$ and $T S 1_{d p}=$ (WATTEXIT, WAITBANK)

$$
\text { MATX - } 21
$$

```
    EBANK = bits 3-l of WAITBANK (via BBANK)
    FBANK = bits 15-1l of WAITBANK (via BBANK)
    TSadr = 2 + WAITEXIT
    Proceed to address specified in TSadr (return to caller)
    T3RUPT BANKRUPT = FBANK + SUPERBNK + EBANK
    QRUPT = Q-register
TS = LSTl
LSTl }\mp@subsup{i}{i}{}=LST\mp@subsup{l}{i+1}{}\mathrm{ for i=0 thru 6 in that order
LST1 }\mp@subsup{7}{7}{= 1 - 8193
RUPTAGN = -0
TIME3 =(16383 + TS + TIME3)modulo 16384
If overflow, RUPTAGN = 1 (two simultaneous tasks or tardy
                                    "T3RUPT")
TSadr = more significant half of LST2%
TSbanks = less significant half of_LST2 O
LST2 2i = LST2 2i+2 for i = 0 thru 7 in that order
LST2 16 = "SVCT3" (less significant half insignificant)
SUPERBNK = bits 7-5 of TSbanks
FBANK = bits 15-ll of TSbanks (via BBANK)
EBANK = bits 3-1 of TSbanks (via BBANK)
Proceed to address specified in TSadr
TASKOVER If RUPTAGN > 0:
    EBANK = 3
    FBANK = I
    Proceed to third step of "T3RUPT"
        MATX - 22
```

(Gtherwhe, RUPTAGN $=-0$)
SUPERBNK $=$ bits $7-5$ of BANKRUPT
Q-register $=$ QRUPT
EBANK = bits 3-1 of BANKRUPT . (via BBANK)
FBANK $=$ bits 15-11 of BANKRUPT (via BBANK)
$\mathrm{A}=\mathrm{ARUPT}$
$\mathrm{L}=\mathrm{LRUPT}$
Release any interrupt inhibits
Resume
LONGCADR $=$ contents of double precision register specified in
Q-register. (stored in fixed at "calling address" + 1)
$\mathrm{IONGEXIT}_{1}=$ FBANK + EBANK
EBANK $=3$
FBANK $=1$
LONGEXIT $_{0}=$ Q-register +2
If LONGTTME ms 2, proceed to "LONGCYCL"
If LONGTIME Me $=0$ and LONGTIME ${ }_{1 s} \leq 0$ or if LONGITME ms <0,
$\begin{aligned} & \text { proceeg to "POODOO1" with } \mathrm{TS}=21204_{8} \text { and } \mathrm{TSI}_{\mathrm{dp}}=\text { (LONGEXIT }{ }_{0} \text {, } \\ & \text { IONGEXIT }{ }_{1} \text {) }\end{aligned}$
LONGEXIT $_{1}$)
LONGCYCL LONGTTME $=$ LONGTIME -8192
If LONGTIME ${ }_{\mathrm{dp}}>0$:
Call "LONGCYCL" in 81-92: seoonds

$$
\text { MATX - } 23
$$

```
    If LONGTIME 
    TSt = LONGTMME 1s }+819
    Call "GETCADR" in TSt centiseconds
    EBANK = bits 3-1 of LONGEXIT 
    FBANK = bits 15-11 of LONGEXIT 
    TSadr = LONGEXIT O
    LONGEXIT 
    Proceed to address specified in TSadr (return or "End task")
GETCADR TSbanks = less significant half of LONGCADR
    'TSadr = more significant half of LONGCADR
    EBANK = bits 3-1 of TSbanks
    FBANK = bits 15-11 of TSbanks
    Proceed to address specified in TSadr
FIXDELAY (Entered to "delay" during a task)
    A = contents of single precision cell specified in Q-register
    Q-register = Q-register + I
VARDELAY WAITDELT = A
    WAITADR = Q-register
    L = FBANK + SUPERBNK + EBANK
    WAITEXIT = "TASKOVER" - 2
    Proceed to "DLY2"
```

 MATX - 24
    ```
    Routines used for inter-bank communication
    (not a complete list; included for example only)
    BANKCALL BUF2O}=\textrm{A
    BUF2
    A = contents of single precision cell specified in Q-register
    Q-register = Q-register + I
SWCALL FGADR = A
    TS = FBANK
    FBANK = bits 15-11 of FCADR
    TSadr = 02000
    A = BUF2O
    L= BUF2
    BUF2; = Q-register
    BUF2
    Proceed to address specified in TSadr
SWRETURN EBANK = BUF2 1 (without disturbing contents of A or L)
    Proceed to address specified in BUF2
POSTJUMP TS = A
    A = contents of single precision cell specified in Q-register
BANKJUMP FBANK = bits 15-11 of A
    TSadr = 02000
    A = TS
```

 Proceed to address specified in TSadr
 MATX - 25
    ```
MAKECADR FCADR = BUF2 }+\mathrm{ + bits 10-1 of BUF2
    Return
SUPDACAL TSmp = FBANK + SUPERBNK
    FBANK = bits 15-11 of FCADR
    TSadr = 02000
    Inhibit interrupts
    SUPERBNK = bits 7-5 of L
    A = contents of cell whose address is specified in TSadr
    SUPERBNK = bits 7-5 of TSmp
    Release interrupt inhibit
    FBANK = bits 15-1l of TSmp
    Return
```

 MATX - 26
 A: Single precision accumulator with overflow bit in addition to the usual sign bit and fourteen magnitude bits. (Stored in ARUPT during an interrupt.)

BANKRUPT: Single precision storage for current bank settings when a job is interrupted and the banks are reset to process the interrupt.

BANKSETi $_{\text {i }}(i=0,12,24,36,48,60,72,84):$ Single precision storage for the FBANK, SUPERBNK, and EBANK settings required by each job; part of the job core assigned to each active job. (FBANK in bits 15-11; SUPERBNK in bits 7-5; EBANK in bits 3-1.)

BUF $\quad(i=0,1):$ Single precision working storage cells used in "EJSCAN" to determine the job of highest priority if any are active.

BUF2 $_{i}(i=0,1):$ Single precision storage for the return address and FBANK setting during a temporary trafefer to anb屯her-GBNDK.

DELAYLOC ${ }_{1}$ ($1=0,1,2$): Single precision address of one of three jobs being "delayed".

EBANK: Single precision register which controls erasable memory access; scaled B6 and expressed as an octal quantity between 0 and 7. Gated directly to bits 3-1 of BBANK.

EXECTEML, EXECTEMR: Single precision temporary storage cells.
FBANK: Single precision register which controls fixed memory access in conjunction with the SUPERBNK register; scaled B4 and expressed as an octal quantity between 0 and 37 g . Gated directly to bits 15-11 of BBANK.

FCADR: Single precision address with FBANK setting used for inter-bank communication with no change in the SUPERBNK setting. Bits 15-11 contain the FBANK setting and bits 10-1 contain the address.

FIXLOC: Single precision address of the VAC area (or job core accumulator, $\mathrm{MPAC}_{6}-42$) of the job being executed.

L: Single precision "less significant" half of the accumulator when it contains a double precision number. (Stored in LRUPT during an interrupt.)

LOCi (i $=0,12,24,36,48,60,72,84$): jSingle precision atorage for the S-register portion of the starting address of a job; part of the job core assigned to each active job. If an interrupted job is using the interpreter language, LOC is complemented.

LOCCTR: Single precision job core index, scaled B14 and unitless.
LONGCADR: Double precision storage for starting address and bank settings for a task in "LONGCALL".

LONGEXIT ${ }_{i}(i=0,1):$ Single precision storage for address and bank settings of routine that is "calling" a task via "LONGCALL".

LONGTIME: Double precision time interval from "now" to the time of initiation of a task in "LONGCALL"; scaled B28 in units of centiseconds.

LSTl. (i=0-7): Single precision storage for "one minus the delta-time between tasks i and $i+1, "$ where task $i=0$ is the one for which TMME3 is counting down; scaled Bl4 in units of centiseoonds.

LST2 ($i=0,2,4,6,8,10,12,14,16$): Double precision storage for address and bank settings for each task in the waitlist. Set equal to the address of "SVCT3" when not in use (to cause "SVCT3" to be executed every 81.93 seconds).
$M P A C_{i}$ (i=0-7): Multiple precision accumulator used automatically by jobs coded in the interpretive language (via the interpretive decoder) and sometimes by jobs coded in basic language. A set of eight single precision cells associated with a particular job and used exclusively by that job. When a job is put to sleep or is interrupted by a job of higher priority, $M P A C_{0-7}$ are saved as part of the "job core" reserved for that job, and they are reset exactly as they were when the interrupted job is re-established.

NEWJOB: Single precision index of the job core of the active job of highest priority, scaled Bl4 and unitless; set to -0 when no jobs are active.

NEWLOC: Double precision temporary storage for the LOC and BANKSET of a job being established.

NEWPRIO: Single precision temporary storage for the priority and VAC area address for a job being established.

$$
\text { MATX - } 28
$$

OVFIND: Single precision overflow indicator associated with the job being executed.

PRIORITY $i(i=0,12,24,36,48,60,72,84)$: Single precision storage for the priority (bits 14-10) and VAC area address assigned to each active job; if a job is "sleeping", PRIORITY is negative; if the job core of which a particular PRIORITY i is a part is available, PRIORITY ${ }_{i}$ is equal to -0. (Adjusted for a NOVAC job so that QPRET will equal $M P A C_{6}{ }^{\circ}$)

PUSHLOC $_{i}(i=0,12,24,36,48,60,72,84)$: Single precision address of the next available position in the VAC area of a particular job, set equal to the first position in the list when a job is established. If a job is interrupted while the overflow indicator is set, PUSHLOC . is complemented.

Q-register: Single precision return address register automatically set by a TC instruction (basic) equal to "calling address" + 1 (address of instruction immediately following the TC instruction).

QPRET: Single precision octal return address storage cell loaded by interpretive transfer instructions (equals VAC 4_{2} or MPAC6).

QRUPT: Single precision storage for current value of Q-register when a job is interrupted, for reloading the Q-register when the interrupt is completed.

RUPTAGN: Single precision cell used in "T3RUPT" to determine if more than one task must be processed at a single interrupt.

RUPTREGl: Single precision temporary storage cell.
SELFRET: See TEST section.
SUPERBNK: Single precision LGC channel which controls fixed memory access in conjunction with the FBANK register; scaled B1O and expressed as. an octal quantity between 0 and 4 .

TIME3: See INTR section.
VACiUSE (i=1, 2, 3, 4, 5): Single precision register at the head of each of the five working storage areas (VAC areas) that may be assigned to jobs. Each VAC area contains 43 single precision cells plus VACiUSE.

WAITADR: Single precision "S-register" portion of the address of a task being inserted in the waitlist.

WAITBANK: Single precision storage for current EBANK and FBANK while these banks are switched to enter a task in the waitlist.

WAITDELT: Single precision time interval between "now" and time at which a task is to start, scaled B14 in units of centiseconds.

WAITEXIT: Single precision return address to routine that is "calling" a task; used to locate the task address when it is stored in fixed memory at the calling address +1 and 2 .

WAITTEMP: Single precision delta-time between time-from-now at which task $i+1$ will be executed (time to task zero is counting down "now") and time-from-now at which new task is to be executed.

曽

```
STATEINT Establish "STATINTl"
End task
STATINT1 If FLAGWRD9 bit 5 (QUITFLAG) = 1:
    Switch FLAGWRD9 bit 5 (QUITFLAG) to 0
    End job
    TDECl = TIMENOW
    Perform "INTSTALL" (wait until orbital integration free)
    Switch FLAGWRD2 bit 1 (NODOFLAG) to I
    Perform "SETIFLGS" (Set up for Encke without W-matrix)
    Switch FLAGWRD3 bits 15 (POOHFLAG) and 3 (VINTFLAG) to l
    If FLAGWRD8 bit 8 (SURFFLAG) = 1 and FLAGWRD5 bit 1
    (RENDWFLG) = 1:
    Switch FLLAGNRD3 bit 1 (DIMOFLAG) to 1 (6x6)
    Switch FLAGWRD3 bit 8 (PRECIFLG) to 0
    Perform "INTEGRV"
    If FLAGWRD8 bit 8 (SURFFLAG) = 1:
    Switch FLAGWRD2 bit l (NODOFLAG) to O
    Proceed to "ENDINT"
    TDECI = TETCSM
    Perform "INTSTALL"
    Switch FLAGWRD3 bit 3(VINTFLAG) to 0
    Perform "SETIFLGS"
```

```
    If FLAGWRD5 bit 1 (RENDWFLG) = 1:
        Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D60R9FLG)
        to 1
    Switch FLAGWRD3 bit }8\mathrm{ (PRECIFLG) to 1
    Perform "INTEGRV"
    Switch FLAGWRD2 bit I (NODOFLAG) to 0
    Proceed to "ENDINT"
SETIFLGS Switch FLAGWRD3 bit 5 (STATEFLG) to 1 (store integrated
                                    state vector)
    Switch FLAGWRD3 bit 4 (INTYPFLG) to 0 (Specify Encke)
    Switch FLAGWRD3 bits l (DIMOFLAG) and 2 (D60R9FLG) to 0
    Return
    ENDINT Switch FLAGWRD3 bit 5 (STATEFLG) to 0
    Call "STATEINT" in 600 seconds
    End job
CSMPREC Perform "INTSTALL"
    IRETURN = return address to caller of "CSMPREC"
    Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
    Switch FLAGwRD3 bit }8\mathrm{ (PRECIFLG) to l
    Switch FLAGWRD3 bits 1 (DIMOFLAG) and 4 (INTYPFLG) to 0
    Proceed to second step of "INTEGRV"
LEMPREC Perform "INTSTALL"
    IRETURN = return address to caller of "LEMPREC"
    Switch FLAGwRD3 bit 3 (vINTFLAG) to O
        ORBI - 2
```

Switch FLAGWRD3 bit 8 (PRECIFLG) to 1
Switch FLAGWRD3 bits 1 (DIMOFLLAG) and 4 (INTYPFLG) to 0
Proceed to second step of "INTEGRV"
CSMCONIC Perform "INTSTALL"
IRETURN $=$ return address to caller of "CSMCONIC"
Switch FLAGWRD3 bits 3 (VINTFLAG) and 4 (INTYPFLG) to 1
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
Proceed to second step of "INTEGRV"
LEMCONIC Perform "INTSTALL"
IRETURN $=$ return address to caller of "LEMCONIC"
Switch FLAGWRD3 bits 3 (VINTFLAG) and 1 (DIMOFLAG) to 0
Switch FLAGWRD3 bit 4 (INTYPFLG) to 1
Proceed to second step of "INTEGRV"
INTEGRV IRETURN = return address (to caller of "INTEGRV")
Switch FLAGWRD8 bits 15 (RPQFLAG) and 13 (NEWIFLG) to 1 .
If FLLAGNRD3 bit 3 (VINTFLAG) $=1$:
Perform "MOVEPCSM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 12 (CMOONFLG)
If FLAGWRD3 bit 3 (VINTFLAG) $=0$:
If FLAGGRD8 bit 8 (SURFFIAG) $=1$, proceed to "USEPIOS"
Perform "MOVEPLEM"
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 11 (LMOONFLG)
PBODY $=0$

If FLAGWRDO bit 12 (MOONFLAG) $=1$, PBODY $=2$
Proceed to "ALOADED"
INTEGRVS IRETURN $=$ return address
Switch FLAGWRD3 bit 8 (PRECIFLG) to 1
$\operatorname{PBODY}=0$
If FLAGWRDO bit 12 (MOONFLAG) $=1$, PBODY $=2$
TDELTAV $=0$
$\underline{T N U V}=0$
Perform "RECTIFY"
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
Switch FLAGWRD8 bits 15 (RPQFLAG) and 13 (NEWIFLG) to 1
ALOADED TDEC $=T D E C 1$
If FLAGNRD3 bit 4 (INTYPFLG) $=0$, proceed to "TESTLOOP"
RVCON \quad TAU $=$ TDEC $-T E T$
Perform "RECTIFY"
Perform "KEPPREP"
$T E T=T E T+T C$
RECTOUT Perform "RECTIFY"
$\underline{\mathrm{RATT}}=\underline{\mathrm{RRECT}}$
$\underline{V A T T}=\underline{V R E C T}$
$\mathrm{TAT}=\mathrm{TET}$
TSmu $=K: M U_{P B O D Y}$
MUDEX $=0 \quad$ (-2 in index register $1, \mathrm{XI}$)

```
    If FLAGWRDO bit 12 (MOONFLAG) = 1, MUDEX = 8
    (-10 in index register 1, X1)
    INTEXIT Switch FIAGWRD9 bit 1 (AVEMIDSW) to 0
    Switch FLAGWRD3 bit 8 (PREGIFLG) to 0
    Switch FLAGNRD3 bit 5 (STATEFIG) to 0
    Perform "INTWAKE" (awaken any jobs waiting to integrate)
    Return via IRETURN (with PBODY in index register 2, X2)
    RECTIFY KRRECT = R-RCV + TDELTAV (Scaling
    RCV = \underline{RRECT controlled}
    VRECT = VCV + TNNUV by PBODY)
    VCV = VRREGT
    TDELTAV = 0
    TNUV = 0
    TC=0
    XPREV = 0
    Return
TESTLOOP If FLLAGWRD9 bit 5 (QUITFLAG) = 1:
    Switch FLAGWRD3 bit 5 (STATEFLG) to 0
    Proceed to "INTEXIT"
i = PBODY
Switch FLAGWRDO bit 13 (MIDFLAG) to 0 (MIDFLAG should
                                    remain zero in
                                    LUMINARY)
If |RCV 
    Switch FLAGWRDO bit 13 (MIDFLAG) to 1
```

TSstep $=K: P 3 D \sqrt{|R C V|^{3} / K: M U_{i}} \quad$ (truncated to TSstep $=2^{7}$ [integral part of (TSstep $/ 2^{7}$) $\begin{aligned} & \text { a multiple of } \\ & 128 \text { centiseconds) }\end{aligned}$ If overflow or if TSstep > $2 \mathrm{~K}: \mathrm{DT}$ d2MAX, TSstep $=2 \mathrm{~K}: D T d 2 \mathrm{MAX}$ $\mathrm{DTd} 2=\frac{1}{2}(\mathrm{TDEC}-\mathrm{TET})$

If overflow or if \mid DTd $2 \left\lvert\, \geq \frac{1}{2}\right.$ TSstep, DTd2 $=\frac{1}{2}$ TSstep signDTd2
If |DTdal < K:DTd2MIN, proceed to "A-PCHK" (convergence)
If FLAGWRD3 bit 15 (POOHFLAG) $=1$ and bit 8 (PRECIFLG)=0: ("STATEINT")
If DTd2 < $\frac{1}{2}$ TSstep, proceed to "A-PCHK" (don't integrate past even timestep)
If FLAGNRD8 bit 13 (NEWIFLG) = 1 :
Switch FLAGWRD8 bit 13 (NEWIFLG) to 0
If TET > TDEC, proceed to "INTEXIT" (don't integrate backwards)

If (TDEC - TET) < 8 DTd2, proceed to "INTEXIT" (don't integrate unless more than 4 timesteps behind)

TIMESTEP If FLAGWRDO bit 13 (MIDFLAG) $=0$, proceed to "RECTEST" (MIDFLAG should remain zero in JUMIFAREX.)
If DTd2 [RCV • VCV] < 0 , proceed to "RECTEST"
If FLAGNRDO bit 12 (MOONFLAG) = 1, proceed to "LUNSPH"
If FLAGWRD8 bit 15 (RPQFLAG) = 1 :
$\mathrm{TSt}=\mathrm{TET}$
Perform "LSPOS"
$\underline{\mathrm{RPQV}}=\underline{\mathrm{T}} \mathrm{S}$ sun
$i=\operatorname{PBODY}$
If |RCV - RPQV| < K:RSPHERE:
Perform "ORIGCHNG"

ORBI-6

```
    (If |RCV - RPQV| < K:RSPHERE:)
    Proceed to "INTGRATE"
    Proceed to "RECTEST"
LUNSPH If |RCO| < K:RSPHERE, proceed to "RECTEST"
    If FLAGWRD8 bit 15 (RPQFLAG) = 1:
    TSt = TET
    Perform "LSPOS"
    RPQV = -TSsun
    Perform "ORIGCHNG"
    Proceed to "INTGRATE"
ORIGCHNG Perform "RECTIFY"
    RRECT = RCV - RPQV
    RCV = RRECT
    If FLAGWRDO bit 12 (MOONFLAG) = 1:
    TS
VRECT = पCV - T- Syyy
VCV = VRECT
If FLAGWRDO bit 12 (MOONFLAG) = 1:
    PBODY = 0
    Convert RCV, RRECT, VCV and VRECT to earth scaling
If FLAGWRDO bit 12 (MOONFLAG) = 0:
    PBODY = 2
```

(If FLAGWRDO bit 12 (MOONFLAG) $=0$:)
Convert RCV, RRECT, VCV and VRECT to moon scaling Invert FLAGGRDD bit 12 (MOONFTLAG)

Return
RECTEST If |TDELTAV| $\geq \mathrm{K}:$ rectr, if |TDELTAV| / |RCV| $\geq \mathrm{K}:$ RECRATIO, or if |TNUV| \geq K:rectv:

Perform "RECTIFY"
INTGRATE $\underline{Z V}=\underline{T N U V}$
$\underline{Y} V=\underline{T D E L T A V}$
Switch FLLAGWRDO bit 14 (JSWITCH) to 0
DIFEQCNT $=0$
ALPHAV = YV
$\mathrm{H}=0$
If FLAGWRDO bit 14 (JSWITCH) $=1$:
Proceed to "DOW.."
ACCOMP $\quad i=P B O D Y$
$\mathrm{FV}=0$
$\underline{B E T A V}=$ ALPHAV $+\underline{R} C V$
If FLAGWRD3 bit 1 (DIMOFLAG) $=1$:
j = - DIFEQCNT
VECTAB $_{\mathbf{j}}=$ BETAV
ALPHAM $=\mid$ |ALPHAV|
Perform "GAMCOMP"
ALPHAV = BETAV

If FLAGWRDO bit 13 (MIDFLAG) $=0$: (MIDFLAG should remain zero in LUMINARY)
Perform "OBLATE"
Proceed to "NBRANGH"
TSt $=\mathrm{TET}$
Perform "LSPOS"
$i=2$ (index MU of secondary body)
If FLAGWRDO bit 12 (MOONFLAG) $=1$:
TSsun $=-\underline{T}$ Ssun

$$
i=0
$$

$\underline{B E T A V}=\underline{T S s u n}$
$\underline{\mathrm{RPQV}}=\mathrm{BETAV}$
$\underline{R P S V}=$ TSxxx \quad (note that ISxxx is not defined)
If MODREG $=23$ or if FLAGWRD3 bit 1 (DIMOFLAG) $=1$:

$$
\mathbf{j}=6-\text { DIFEQCNT }
$$

$$
\underline{V E C T A B}_{\mathbf{j}}=\underline{A L P H A V ~-~ B E T A V ~}
$$

$$
\underline{R Q V V}=\underline{V E C T A B}_{j}
$$

Switch FLAGWRD8 bit 15 (RPQFLAG) to 0
If FLAGWRDO bit 12 (MOONFLAG) $=1$, $\underline{R} P S V=\underline{R P S V}+\underline{R} P Q V$
Perform "GAMCOMP" (BETAV = RPQV)
BETAV $=$ RPSV
$i=4 \quad$ (to index MU of the sun)
Perform "GAMCOMP"

```
    Perform "OBLATE"
    Proceed to "NBRANCH"
GAMCOMP BETAM = |BETAV |
RHO = ALPHAM / BETAM
    q = RHO ( RHO - 2 unitALPHAV - unitBETAV )
    DdBETA = \sqrt{}{1+q}
        3+3q+ q
    Fq=q}\overline{1+(1+q)\mp@subsup{)}{}{3/2}
    TSgam = - K:MU i RHỌ (unitALPHAV + unitBETAV Fq/RHO)
    FV = F
    If overflow, proceed to "GOBAQUE"
    Return
OBLATE i = PBODY
    If ALPHAM \geq K:RD
    If FLAGWRDO bit 12 (MOONFLAG) = 0:
    COS\emptyset = Z component of unitALPHAV
    UZ = \underline{K}:UNITZ
    If FLAGWRDO bit 12 (MOONFLAG) = 1:
        TSt = TET
        Perform "MOONMX"
        URPV = [MOONMAT] (unitALPHAV - ( [MOONMAT] T IMM504)*
        COS\emptyset = Z component of URPV
        unitALPHAV)
    TS = [MOONMAT]T (\underline{K}:UNITZ - (K_K:UNITZ * LM504))
    UX =[MOONMAT ]T (\underline{K}:UNITX - (\underline{K}:UNITX * L्LM504))
    UZ}=\underline{T
```

$$
\begin{aligned}
& P_{2}{ }^{\prime}=3 \cos \varnothing \\
& P_{3}{ }^{\prime}=\frac{1}{2}\left(15 \cos \not \phi^{2}-3\right) \\
& P_{4}{ }^{\prime}=(1 / 3)\left(7 P_{3}{ }^{\prime} \cos \varnothing-4 P_{2}{ }^{1}\right) \\
& P_{5}{ }^{\prime \prime}=\frac{1}{4}\left(9 P_{4}^{\prime} \cos \varnothing-5 P_{3}{ }^{i}\right) \\
& T S=\left[P_{3}{ }^{\prime \prime}+\frac{K: j 3 j 2 j}{A L P H A M}\left(P_{4}{ }^{4}+\frac{K: j 4 j 3_{i}}{A L P H A M} P_{5}^{\prime}\right)\right] \text { unitALPHAV } \\
& \underline{T} S=T S-\left[P_{2}^{\prime \prime}+\frac{K: j 3 j 2 i}{A L P H A M}\left(P_{3}{ }^{\prime}+\frac{K: j 4 j 3 j}{\operatorname{ALPHAM}} P_{4}^{\prime}\right)\right] \underline{U Z} \\
& \underline{T} S=\underline{T} S: j 2_{i} / A L P H A M^{4} \text { (computed quasi floating point) } \\
& \underline{F V}=\underline{F V}+\underline{T} S \\
& \text { If overflow, proceed to "GOBAQUE" } \\
& \text { If FLAGWRDO bit } 12 \text { (MOONFLAG) }=0 \text {, return }
\end{aligned}
$$

$$
\begin{aligned}
& \underline{T} S 2=(E 32 C 31 \mathrm{RM} / \mathrm{ALPHAM}) \mathrm{TS}+\mathrm{E} 3 \mathrm{~J} 22 \mathrm{R} 2 \mathrm{M} \mathrm{TS} \\
& \underline{T} S=T S 2 / A L P H A M^{4} \\
& \underline{F V}=\underline{F V}+\underline{T} S \\
& \text { If overflow, proceed to "GOBAQUE" } \\
& i=P B O D Y
\end{aligned}
$$

Return

```
GOBAQUE If \(\mid\) TDELTAV \(\mid=0, \begin{aligned} & \text { proceed to "POODOO" } \\ & \text { with } T S=204308\end{aligned}\)
    \(T A U=T C-H\)
    \(T E T=T E T-H\)
    Perform "KEPPREP"
    Perform "RECTIFY"
    Switch FLAGWRD8 bit 15 (RPQFLAG) to 1
    Proceed to "TESTLOOP"
NBRANCH If DIFEQCNT \(=-24\), proceed to "DIFEQ+2"
    If \(D I F E Q C N T=-12:\)
        \(\underline{P S S I V}=\) PHIV +4 FV
    \(\underline{P H I V}=\underline{P H I V}+2 \underline{F V}\)
    If DIFEQCNT = 0 :
        \(\underline{P H I V}=\underline{F V}\)
    \(\mathrm{H}=\mathrm{H}+\mathrm{DT} \mathrm{d}_{2}\)
    DIFEQCNT = DIFEQCNT - 12
    \(\underline{A L P H A V}=\underline{Y V}+\mathrm{H}\left(\underline{Z V}+\frac{1}{2} \mathrm{H} \underline{\mathrm{FV}}\right)\)
    If FLAGWRDO bit 14 (JSWITCH) = 1, proceed to "DOW.."
    \(T A U=T C+D T d 2\)
    \(\mathrm{TET}=\mathrm{TET}+\mathrm{DT} 22\)
                                    (DTd2 rounded to nearest centisecond if
                                    DIFEQCNT \(=-24\) )
Perform "KEPPREP"
Proceed to "ACCOMP"
DIFEQ+2 \(\underline{Y V}=\underline{Y} V+H(\underline{Z} V+\underline{P H I V} H / 6)\)
\(\underline{Z} V=\underline{Z V}+(\underline{P S I V}+\underline{\underline{F V})} \mathrm{H} / 6\)
If FLAGWRDO bit 14 (JSWITCH) \(=0\), proceed to "ENDSTATE"
```

$\left(W_{4 n}, W_{5 n}, W_{6 n}\right)=\underline{Z V}$
$\left(W_{1 n}, W_{2 n}, W_{3 n}\right)=\underline{Y}$
If overflow, proceed to "WMATEND"
If $n \leq 1$:
TDECI $=$ TDEC
Proceed to third step of "INTEGRV"
$\mathrm{n}=\mathrm{n}-\mathrm{l}$
Proceed to "NEXTCOL"
ENDSTATE If overflow, proceed to "GOBAQUE"
TNUN = ZV
$\underline{\underline{T}} \mathrm{DELTAV}=\underline{Y} \mathrm{~V}$
If FLAGWRD9 bit 2 (MIDAVFLG) = 1, proceed to "CKMID2"
If FLAGWRD3 bit 1 (DIMOFLAG) $=0$, proceed to "TESTLOOP"
Switch FLGWRDD10 bit 7 (REINTFLG) to 1
(integration routine to be restarted)
If FLAGWRD3 bit 3 (VINTFLAG) $=1$:
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
Perform "SVDWN工"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
If FLAGWRD3 bit 3 (VINTFLAG) $=0$:
Perform "MOVEALEM"
Switch FLAGWRD8 bit 11 (LMOONFLG) to 1
Perform "SVDWN2"

```
    (If FLAGWRD3 bit 3(VINTFLAG) = 0:)
        Set FLAGWRD8 bit 11 (LMOONFLG) = FLAGWRDO bit 12
                                    (MOONFLAG)
    Switch FLAGWRDO bit 14 (JSWITCH) to I
    n=6
    If FLAGWRD3 bit 2 (D60R9FLGG) = 1, n = 9
NEXTCOL YV = (W Whn},\mp@subsup{W}{2n}{},\mp@subsup{W}{3n}{}
    \underline { Z V } = ( W _ { 4 n } , W _ { 5 n } , W _ { 6 n } )
    j = 0
    DIFEQGNT = 0
    ALPHAV = YV
    H=0
    If FLAGWRDO bit 14 (JSWITCH) = 0, proceed to "ACCOMP"
DOW.. }\quadi= PBOD
    j = - DIFEQCNT
    BETAM = K:MU 
    TS = 3(\underline{ALPHAV • unitVECTAB ji) unitVECTABj - ALPHAV}
    FV = TS BETAM/ \UECTAB j |
    If FLAGWRDO bit 13 (MIDFLAG) = 0, proceed to "NBRANCH"
    (MIDFLAG should remain zero in LUMINARY)
    j = 6-DIFEQCNT
    i = 2-PBODY (earth or moon)
    BETAM = K:MU i
TS = 3(\underline{ALPHAV • unitVECTAB }\mp@subsup{)}{j}{\prime})\mathrm{ unitVECTAB }
TS = TS BETAM / |VECTAB\}\mp@subsup{|}{}{3
```

```
    If FLAGWRDO bit 12 (MOONFLAG):= 0:
    Shift TS right 6 places for scaling
    FV = FV + TS
    Proceed to "NBRANCH"
KEPPREP KEPRTN = return address
    i = PBODY
    ROOTMU = 知:MU
    A5 = \frac{1}{2}}\mathrm{ unitRCV • VCV
    Q = (TAU - TC) / |RCV|
    TS = \frac{1}{6}\mp@subsup{Q}{}{2}(K:MU
    XKEPNEW = XPREV + ROOTMU Q (1 - A5 Q + 2A A5 2 Q + TS)
    MUDEX = 0 (-2 in index register 1, XI)
    If FLAGWRDO bit 12 (MOONFLAG) = 1, MUDEX = 8 (-10 in index
    register l, XI)
Proceed to "KEPLERN" (retirn directly to calling program
    from "KEPLERN")
WMATEND Switch FLAGWRD3 bits 1 (DIMOFLAG) and 6 (ORBWFLAG) to 0
    Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
    Switch FLAGWRD3 bit 5 (STATEFLG) to l
    Perform "ALARM" with TS = 004218
    Proceed to "TESTLOOP"
USEPIOS TSt = TDECI
    TET = TDECl
    Perform "MOONMX"
```

 ORBI - 15


```
Switch FLAGWRDO bit 12 (MOONFLAG) to I
Perform "MOONMX"
TS =[MOONMAT] T (\underline{K}:UNITZ + LMM5O4 * K
VCV = K:OMEGMOON IS * \underline{RCV}
TDELTAV = 0
PBODY = 2
TNUV = 0
A-PCHK If FLAGWRD3 bit 5 (STATEFLG) = 0, proceed to "RECTOUT"
    Switch FLGWRD10 bit 7 (REINTFLG) to I
    If FLAGWRD3 bit 3 (VINTFLAG) = 1:
        Perform "MOVEACSM"
        Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
        Perform "SVDWNI"
        Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
    If FLAGWRD3 bit 3 (VINTFLAG) = 0:
        Perform "MOVEALEM"
        Switch FLAGWRD8 bit ll (LMOONFLG) to l
        Perform "SVDWN2"
        Set FLLGWRD8 bit ll (LMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
    Proceed to "RECTOUT"
```

MOVEPCSM XPREV $=X K E P C S M$
ORBI $=16$

```
    TC = TCCSM
    VCV =VCVCSM
    RCV = RCVCSM
    TNUN = NUVCSM
    TDELTAV = DELTACSM
    TET = TETCSM
    VRECT = VRECTCSM
    RRECT = RRECTCSM
    Return.
MOVEPLEM XPREV = XKEPLEM
    TC = TCLEM
    VCV = VCVLEM
    RCV = RCVLEM
    TNUN = NUVLEM
    TDELTAV = DELTALEM
    TET = TETLEM
    VRECT = VRECTLEM
    RRECT = RRECTLEM
    Return
MOVEACSM XKEPCSM = XPREV
    TCCSM = TC
    VCVCSM = प
    RCVCSM = \underline{RCV}
```

$$
\begin{aligned}
& \text { NUVCSM }=\text { TNUV } \\
& \text { DELTACSM }=\text { TDELTAV } \\
& \text { TETCSM }=\text { TET } \\
& \text { VRECTCSM }=\text { VRECT } \\
& \text { RRRECTCSM }=\text { RRECT } \\
& \text { Return } \\
& \text { MOVEALEM } \\
& \hline
\end{aligned}
$$

```
(If FLAGWRD5 bit l (RENDWFLG) or FLAGWRD3 bit 6 (ORBWFLAG) = 1:)
    TDECL = PIPTIME
    Perform "INTEGRV"
    Perform "IN$SRALl"
    Switch FLAGWRD3 bit 3 (VINTFLAG) to I
    Perform "SETIFLGS"
TDECI = PIPTIME
Perform "INTEGRV"
Perform "INTSTALL"
RRECT = RN (scaling controlled by LMOONFLG)
RCV = \underline{RN}
TET = PIPTIME
VRECT = VN
VCV = पN
IDELTAV = 0
INNU = O
TC = 0
XPREV = 0
Perform "MOVEA,AmH"
TRKMKCNT = 0
Perform "INTWAKE"
Return via EGRESS
MIDTOAVI IRETURN1 = return address
TSerror = 0
ORBI - 19
```

```
Switch FLAGWRD9 bit 3 (MIDIFLAG) to 1
If TDECl < TIMENOW + K:TIMEDELT:
Siwitch FLAGWRD9 bit 3 (MIDIFLAG) to 0
TSerror \(=1\)
Perform "ALARM" with \(T S=01703_{8}\)
TDECI \(=\) TIMENOW \(+K: T I M E D E L T\)
Skip next three steps
MIDTOAV2 IRETURN1 = return address
Switch FLAGWRD9 bit 3 (MIDIFLAG) to 0
TDECI \(=\) TIMENOW + K:TIMEDELT
Perform "INTSTALL"
Switch FLAGWRD3 bits 1 (DIMOFLAG), 3 (VINTFTLAG) and 4 (INTYPFLG) to 0
Switch FLAGWRD9 bit 2 (MIDAVFLG) to 1
Perform "INTEGRV"
Switch FLAGWRD9 bit 2 (MIDAVFLG) to 0
\(\underline{R N I}=\underline{R A T T}\)
\(\underline{\text { VNI }}=\underline{\text { VATT }}\)
PIPTIMEI = TAT
RTX2 = X2 ( 0 for earth, 2 for moon)
RTXI \(=\) XI ( -2 for earth, -10 for moon)
Inhibit interrupts
TSt = PIPTIME1 - TITMENOW
Force sign agreement between the two halves of TSt
Return via IRETURN1
```

$$
\text { ORBI - } 20
$$

If FLAGWRD9 bit 3 (MIDIFLAG) = 1 :
If TDEC \geq TIMENOW + K:TIMEDELT, proceed to "TESTLOOP"
Switch FLAGWRD9 bit 3 (MIDIFLAG) to 0
TSerror $=1$
Perform "ALARM" with TS $=01703_{8}$
TDEC $=$ TIMENOW $+\mathrm{K}: T$ IMEDELT
Proceed to "TESTLOOP"
If |TDEC - TET| < K:3CSECS, proceed to "A-PCHK"
TDEC $=$ TIMENOW $+\mathrm{K}: T$ TMEDEL T
Proceed to "TESTLOOP"
INTSTALL QPRET = return address
If FLGWRDIO bit 14 (INTFLAG) or 7 (REINTFLG) $=1$:
Put present job to sleep
When awakened, job will resume at second step of "INTSTALL" when jobs of higher priority have been completed

Switch FLGWRD10 bit 14 (INTFLAG) to 1
Return via QPRET
INTWAKE If FLGWRD10 bit 7 (REINTFLG) $=1$: (means restarted)
TBASE2 = QPRET of present job
Set restart group 2 to resume computations at next step

QPRET (of present job) = TBASE2
If FLGWRDIO bit 7 (REINTFLG) $=0$: (i.e. if got a restart)
Return via QPRET (of present job)

INTWAKE1 AWaken job or jobs put to sleep in "INTSTALL"
Switch FLGWRDIO bits \mathcal{H}_{4} (INTFLAG) and 7 (REINTFLG) to 0
Return via QPRET (of present job)
INTWAKEU Release interrupt inhibit
If UPSVFLAG $=0$: (UPSVFLLAG is the third component of of a state vector update)

```
    Perform "INTWAKE7"
    Return
    RCV = RRECT
    VCV = VRECT
    TDELTAV = 0
    TNUV = 0
TC=0
XPREV = 0
i=0
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If |UPSVFLAG| = 2:
    i=2
    Switch FLAGWRDO bit 12 (MOONFLAG) to l
If UPSVFLAG>0:
    Perform "MOVEACSM"
    Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
    Perform "SVDWNN"
```

 ORBI - 22
 Set FLAGNRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12
(MOONFLAG)
Switch FLAGWRD3 bit 6 (ORBWFLAG) to 0
If UPSVFLAG < 0:
Perform "MOVEALEM"
Switch FLAGGRD8 bit 11 (LMOONFLG) to 1
Perform "SVDWN2"
Set FLLAGWRD8 bit 11 (LMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
Switch FLLAGWRD5 bit 1 (RENDWFLG) to 0
UPSVFLAG $=0$
Perform "INTWAKEl"
Return
P76 Switch FLAGWRD1 bit 5 (TRACKFLG) to 1
DELVOV = DELVLVC
Proceed to "GOFLASH" with TS = K:VO6N33
(TIG)
(If terminate, proceed to "ENDP76"3 if proceed, continue at next step; if other response, repeat this step.)

Proceed to "GOFLASH" with TS $=\mathrm{K}:$ V06N84 (DELVOV)
(If terminate, proceed to "ENDP76"; if proceed, continue at next step; if other response, repeat this step.)

Switch FLAGWRU2 bit 1 (NUDUFLAG) to 1
TDECI = TIG
Perform "CSMPREC"

Perform "INTSTALL"

```
Set FLAGWRDO bit 12 (MOONFLAG) = FLAGWRD8 bit 12 (CMOONFLG)
VCV = TSv (scaling controlled by MOONFLAG)
RCV = RATT
TET = TIG
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
TDECI = TETLEM
Perform "INTEGRVS"
Perform "INTSTALL"
RRECT = RATT
RCV = R_RATT
TET = TAT
VRECT = VATT
VCV = VATT
TDELTAV = 0
TNUN = 0
TC = 0
XPREV = 0
Switch FLGWRDIO bit 7 (REINTFLG) to 1
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
Perform "SVDWNI"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGGRDO bit 12 (MOONFLAG)
Perform "INTWAKEl"
Switch FLAGWRD2 bit 1 (NODOFLAG) to O
ORBI - }2
```

ENDP76 TRKMKCNT $=0$

Proceed to "GOTOPOOH"

A5: Double precision intermediate quantity used in calculation of XKEPNEW, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

ALPHAM: Double precision magnitude of ALPHAV, with identical scaling and units.

ALPHAV: Working storage for double precision position deviation vector, scaled B22 (earth) or B18 (moon) in units of meters, or for total position vector, scaled B29 (earth) or B27 (moon) in units of meters. Actually, ALPHAV is changed to a unit vector, but this was not shown for ease in presentation.

BETAM: Double precision magnitude of BETAV or magnitude of $K: M U_{i}$ with variable scaling and units.

BETAV: Double precision total position vector of the spacecraft in relation to the earth, moon or sun, expressed in reference coordinates with variable scaling in units of meters.
$\cos \varnothing:$ Double precision argument for "OBLATE" equations, scaled Bl and unitless. Equivalent to the cosine of the angle between the unit polar vector (earth or moon) and the total position vector (earth or moon centered coordinates).

DdBETA: Double precision ratio of D divided by BETAM where D is the magnitude of the vector $\underline{D}=$ BETAV - ALPHAV; scaled Bl and unitless.

DELVLVC: Double precision value of velocity increment in local vertical coordinates, scale factor B7, units meters per centisecond.

DELVOV: Double precision, instantaneous delta-velocity vector to be added (at time specified in TIG) to the permanent CSM state vector maintained in the LGC to reflect a burn performed by the CSM; scaled B7 in units of meters per centisecond and expressed in local vertical coordinates of the CSM at TIG.

DIFEQCNT: Single precision cell used for program control purposes, having values of $0,-12$ and -24 at the beginning, middle and end of each integration step, scaled B14 and unitless.

DTd2: Double precision time increment for precision integration corresponding to half of one integration time-step, scaled B19 in units of centiseconds.
 giving information on the C_{31} term for the lunar gravity model. The cell contains $C_{31} \times 1.5 \times{ }^{\times}{ }^{3} \times \mathrm{mu}_{\mathrm{m}}$. The value corresponds to $C_{31} \times 1.5 \times\left(1.73809 \times 10^{6}\right)^{\frac{M}{3}} \times 0.4902778 \times 10^{9} \times 2^{-80}$. ORBI - 26

E3J22R2M: Single precision erasable memory constant, scale factor B58, giving information on the J_{22} term for the lunar gravity model. The cell contains $J_{22} \times 3 \times r_{M}^{2} \times m u_{m}$. The value corresponds to $J_{22} \times 3 \times\left(1.73809 \times 10^{6}\right)^{2} \times 0.4902778 \times 10^{9} \times 2^{-58}$.

EGRESS: Single precision octal return address storage cell.
Fq: Special function used in Encke's method of integration to achieve greater accuracy, double precision, scaled B1. See pages 11 and 190 in Astronautical Guidance by R. H. Battin (McGraw-Hill, 1964).

FV: Double precision disturbing acceleration vector, scaled B-16 (earth) or B-20 (moon) in units of meters per centisecond squared. See pages 189-191 of Astronautical Guidance by R. H. Battin (McGraw-Hill, 1964)

H: Double precision time since beginning of integration step, scaled B19 in units of centiseconds.
i: Single precision index scaled B14.
IRETURN, IRETURN1: Single precision octal return address storage cells.
j: Single precision index scaled B14.
KEPRTN: See CONC section.
K:3CSECS: Double precision constant stored as 3×2^{-28}, scaled B28 in units of centiseconds. Equation value: 3.
K:DTd2MAX: Double precision constant stored as $4 \times 10^{5} \times 2^{-20}$, scaled B19 in units of centiseconds. Equation value: 200,000.
K:DTd2MIN: Double precision constant stored as 3×2^{-20}, scaled B19 in units of centiseconds. Equation value: 1.5 .
K: j_{o} : Double precision constant stored as $1.75501139 \times 10^{21} \times 2^{-72}$, program notation "J2REQSQ", scaled B72 in units of ${ }_{2}$ meters ${ }^{5} /$ centi- 2
 to $3.986032 \times 10^{10} \times\left(6.378165 \times 10^{6)^{2}} \times 0.10823 \times 10^{-2}\right.$.)
K: j_{2} : Double precision constant stored as $3.067493316 \times 10^{17} \times 2^{-60}$, program notation "J2REQSQ-2" , scaled B60 in units rof meters ${ }^{5}$ /centisecond squared. Equation value: $3.067493316 \times 10^{17}$. (Equivalent to $0.4902778 \times 10^{9} \times\left(1.738090 \times 10^{6}\right)^{2} \times 0.207108 \times 10^{-3}$.)
K: $33 j 2_{0}$: Double precision constant stored as $-1.355426363 \times 10^{4} \times 2^{-27}$, program notation "2J3RE/JZ", scaled B27 in units of meters. Equation value: $-1.355426363 \times 10^{4}$. (Equivalent to $-0.23 \times 10^{-5} \times 6.378165 \mathrm{x}$ $10^{6} / 0.10823 \times 10^{-2}$.)

$$
\text { ORBI - } 27
$$

K: $33 j 2_{2}$: Double precision constant stored as $-1.7623602 \times 10^{5} \times 2^{-25}$ program notation "2J3RE/J2-2", scaledeB25-in units of meters. Equation ${ }^{h}$ 罂hue: $-1.7623602 x^{-3} 10^{5}$. (Equiyalent to $\left(-2.10 \times 37 \theta^{2} / 0.207108 \mathrm{x} .10^{-3}-14 \times 1.73809 \times 10_{-\infty}^{6}\right)$
$\mathrm{K}: \mathrm{j} 4 \mathrm{j} 3_{0}$: Double precision constant stored as $4.991607391 \times 10^{6} 2^{-26}$, program notation "J4REQ/J3," scaled B26 in units of meters. Equation value: $4.991607391 \times 10^{6}$. (Equivalent to $-0.18 \times 10^{-5} \times$ $6.378165 \times 10^{6} /-0.23 \times 10^{-5}$.)

K: $\mathrm{j} 4 \mathrm{j} 3_{2}$: Double precision constant stored as 0 , program notation "J4REQ/J3-2." Equation value: 0.
K:MUO: Double precision constant stored as $3.986032 \times 10^{10} 2^{-36}$, program notation "MUEARTH", scaled B36 in units of meters cubed/ centisecond squared. Equation value: 3.986032×10^{10}.
$\mathrm{K}: \mathrm{MU}_{2}$: Double precision constant stored as $4.9027780 \times 10^{8} 2^{-30}$, program notation "MUM", scaled B30 in units of meters cubed/centisecond squared. Equation value: 4.9027780×10^{8}.
$\mathrm{K}: \mathrm{MU}_{4}$: Double precision constant stored as $1.32715445 \times 10^{16} 2^{-54}$, program notation "MUEARTH-4;" scaled B54 in units of meters cubed/ centisecond squared. Equation value: $1.32715445 \times 10^{16}$.
K:OMEGMOON: Double precision constant stored as $2.66169947 \times 10^{-8} 2^{23}$, scaled B-23 in units of radians per centisecond. Equation value: $2.66169947 \times 10^{-8}$.
K:p3D: Double precision constant stored as 0.3×2^{-2}, scaled B2 and unitless. Equation value: 0.3.
$\mathrm{K}: \mathrm{RD}_{\mathrm{O}}$: Double precision constant stored as $80,467,200 \times 2^{-29}$, program notation "RDE," scaled B29 in units of meters. Equation value: 80,467,200.
$\mathrm{K}: \mathrm{RD}_{2}$: Double precision constant stored as $16,093,440 \times 2^{-27}$, program notation "RDM," scaled B27 in units of meters. Equation value: 16,093,440.

K:RECRATIO: Double precision constant stored as 0.01 , scaled $B O$ and unitless. Equation value: 0.O1.

K:rectr: Double precision constant stored as 0.75 , program notation "3/4," scaled B22 (earth) or B18 (moon) in units of meters. Equation value: 3,145,728 (earth) or 196,608 (moon).

K:rectv: Double precision constant stored as 0.75, program notation "3/4," scaled B3 (earth) or B-1 (moon) in units of meters per centisecond. Equation value: 6 (earth) or 0.375 (moon).
$\mathrm{K}: \mathrm{RM}_{0}$: Double precision constant stored as $1-2^{-28}$, program notation "RME," scaled B29 in units of meters. Equation value: 536,870,910.
$\mathrm{K}: \mathrm{RM}$: Double precision constant stored as $1-2^{-28}$, program notation "RMM," scaled B27 in units of meters. Equation value: 134,217,727.5.
K:RSPHERE: Double precision constant stored as $64,373,760 \times 2^{-29}$, scaled B29 in units of meters. Equation value: $64,373,760$.
K:TIMEDELT: Double precision constant stored as 2000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 2000.

K: UNITX, K:UNITZ: See SERV section.

IM504: Double precision libration vector of the moon, scaled BO in units of radians, and expressed in moon-centered, moon-fixed coordinates.

MODREG: Program number from DSKY; see DATA section.
[MOONMAT]: See COOR section.
MUDEX: See CONC section.
n: Single precision index scaled Bl4 and used to indicate the column of the W-matrix that is being integrated.
$P_{2}{ }^{\prime}, P 3^{\prime}, P_{4}^{\prime}, P 5^{\prime}:$ Double precision Legendre polynomial derivatives, scaled B6, B5, B7 and B10, respectively.

PBODY: Single precision index used to distinguish between constants pertaining to the earth (0) and the moon (2); scaled B14.

PHIV: Double precision intermediate storage for the disturbing acceleration vector, scaled B-13 (earth) or B-17 (moon) in units of meters per centisecond squared. Used to implement the second-order difference equation,

$$
\underline{R}_{t+h}=\underline{R}_{t}+h\left[\underline{V}_{t}+\frac{h}{6}\left(2 \underline{a}_{t+\frac{1}{2} h}+\underline{a}_{t}\right)\right]
$$

which is valid to the fourth degree. (\underline{R}_{t+h} is the position deviation vector at time $t+h$, etc.)

PIPTIME, PIPTIMEI: See SERV section.
PSIV: Double precision vector storage for intermediate values of disturbing acceleration, scaled B-13 (earth) or B-17 (moon) in units of meters per centisecond squared. Used to implement the first-order difference equation,

$$
\underline{v}_{t+h}=\underline{v}_{t}+\frac{h}{6}\left(\underline{a}_{t+h}+4 \dot{a}_{t+\frac{1}{2} h}+\underline{a}_{t}\right)
$$

which is valid to the fourth degree. ($\underline{a}_{t+\frac{1}{2}}$ is the second derivative of the position deviation at time $t+\frac{1}{2} h$, etc.)
q: Double precision argument for Fq, scaled B2 and unitless.
Q: Double precision intermediate quantity used in calculating an initial guess for the universal conic variable; scaling varies downward from BO (earth) and B2 (moon); units of centiseconds per meter.

QPRET: Single precision octal return address associated with a particular job, saved when a job is put to sleep; actually one of several mutually exclusive cells, each addressed only within a particular job. "QPRET" for one job is independent of and not affected by the address stored in "QPRET" by another job. See MATX section.

RATT: Double precision position vector output from orbital integration, valid at time TAT, scaled B29 in units of meters. (Called RATTl and scaled B29 (earth) or B27 (moon) for output to routines desiring segregated scaling.)

RCV: Double precision conic portion of the position vector at TET, computed from the osculating conic at rectification (TET - TC), scaled B29 (earth) or B27 (moon) in maits of meters.

RCVCSM, RCVLEM: The permanent state vectors for the CSM and LM contain six double precision vectors and three double precision scalars - a total of twenty-one double precision components. They are listed below along with the name of the equivalent working variable used in precision integration of each.

| CSM | LM | |
| :--- | :--- | :--- |
| RCVCSM | RCVLEM | |
| VCVCSM | RCVLEM | RCV |
| TCCSM | TCLEM | TCV |

| DELTACSM | DELTALEM | TDELTAV |
| :--- | :--- | :--- |
| NUVCSM | NUVLEM | TNUV |
| TETCSM | TETLEM | TET |
| RRECTCSM | RRECTLEM | RRECT |
| VRECTCSM | VRECTLEM | VRECT |
| XKEPCSM | XKEPLEM | XPREV |

RHO: Ratio of position deviation to total distance from the primary body, or ratio of spacecraft radius to radius of secondary body (moon or sun, earth or sun), scaled Bl and unitless.

RLS: See CONC section.
RN, RNL: See SERV section.
ROOTMU: See CONC section.
RPQV: Double precision position vector of secondary body with respect to the primary body, scaled B29 in units of meters; expressed in reference coordinates.

RPSV: Double precision position vector of the sun with respect to the primary body, scaled B38 in units of meters and expressed in reference coordinates.

RQVV: Double precision spacecraft position vector with respect to the secondary body, scaled B29 in units of meters; expressed in reference coordinates.

RRECT: Double precision total position vector at the last rectification, scaled B29 (earth) or B27 (moon) in units of meters. See CONC section.

RTX1, RTX2: Single precision values of index registers XI and X2 respectively at the end of integration to identify the nature of the origin of the state vector.

TAT: Double precision state vector time-tag output from orbital integration, scaled B28 in units of centiseconds.

TAU: See CONC section.
TBASE2: Single precision cell normally used to retain time base information for restart group 2, for waitlist restarts. It is used in "INTWAKE" to retain the value of QPRET for restart purposes.

TC: See CONC section.

TDEC: Double precision time at the end of the desired integration interval, scaled B28 in units of centiseconds.

TDECl: Double precision storage for TDEC in individual job registers so that several jobs can maintain different values of TDEC simultaneously. (See description of QPRET).

TDELTAV: Double precision deviation-from-conic-position vector, scaled B22 (earth) or B18 (moon) in units of meters.

TET: Double precision time associated with the most recently computed state vector, scaled B28 in units of centiseconds.

TETCSM: See description of RCVCSM.
TIG: See BURN section.
TIMENOW: Current time, B28, centiseconds. See EXVB section.
TNU: Double precision deviation-from-conic-velocity vector, scaled B3 (earth) or B-1 (moon) in units of meters per centisecond.

TRKMKCNT: See RNAV section.
TSsun: Double precision vector contents of the MPAC when return from "LSPOS", representing the unit position vector of the sun, scaled Bl and unitless. See COOR section. (It should be noted that TSsun is a unit vector scaled Bl but RPQV, into which it is stored, is scaled B29. However, the affected section should not be entered in LUMINARY).

UPSVFLAG: Single precision flag loaded with a state vector update (address of UPSVFLAG is just before that of RRECT) to indicate whether update is for LM state or CSM state and whether it is in moon-centered or earth-centered coordinates, scaled B14 and unitless. See ORBI - 22.
URPV: Double precision position vector in moon-centered, moonfixed coordinates, scaled Bl and unitless.

UX: Double precision lunar X-axis expressed in reference coordinates for the oblateness calculations, scaled Bl and unitless.

UZ: Double precision polar vector for earth or moon expressed in reference coordinates for the oblateness calculations, scaled Bl and unitless.

VATT: Double precision velocity vector output from orbital integration, valid at time TAT, scaled B7 in units of meters per centisecond. (Called VATTl and scaled B7 (earth) or B5 (moon) for output to routines desiring segregated scaling.)

VCV: Double precision conic portion of the velocity vector at TET, computed from the osculating conic at rectification (TET - TC), scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

VECTAB $_{i}$: Temporary storage for total position vectors with respect to primary and one secondary body at the beginning, middle and end of each integration time-step for use in W-matrix propagation.

VN, VNI: See SERV section.
VRECT: Double precision total velocity vector at last rectification scaled B7 (earth) or B5 (moon) in units of meters per centisecond.
$[\mathrm{W}]$: See RNAV section.
X1, X2: Index registers one (1) and two (2) respectively.
XKEPNEW, XPREV: See CONC section.
YV: Double precision position deviation vector scaled B22 (earth) or Bl8 (moon) in units of meters. (State vector or W-matrix.)

ZV: Double precision velocity deviation vector scaled B3 (earth) or B-l (moon) in units of meters per centisecond. (State vector or W-matrix.)

```
SLAPI Inhibit interrupts
    Perform "STARTSUB"
    Switch DSPTAB 11 to \(100.000000 \mathrm{xOx} \mathrm{OOO}_{2}\)
    ERCOUNT \(=0\)
    FAILREG \(_{i}=0\) for \(i=0,1,2\)
    REDOCTR \(=0\)
    DSRUPTSW = -5120
DOFSTART Switch channel 11 to \({20000_{g}}\) (bit 14 is engine off)
    THRUST \(=-0\)
DOFSTRT1 RCSFLAGS \(=00004^{g}\)
    \(\mathrm{ABDELV}=0\)
    NVSAVE and DSPFLG \(2=0\)
    CH5MASK, CH6MASK, and PVALVTEST \(=0\)
    ERESTORE \(=0\)
    SMODE \(=+0\)
    DNLSTCOD \(=0\)
    AGSWORD \(=0\)
    UPSVFLAG \(=0\)
\(\mathrm{ABDELV}=0\)
NVSAVE and DSPFLG \(2=0\)
CH5MASK, CH6MASK, and PVALVTEST \(=0\)
ERESTORE \(=0\)
SMODE \(=+0\)
DNLSTCOD \(=0\)
AGSWORD \(=0\)
UPSVFLAG \(=0\)
Switch channels 5, 6, 12, 13, and 14 to \(0_{0000}^{8}\)
If \(\mathrm{DSPTAB}_{11}\) bit 4 (no attitude) and bit 6 (gimbal lock warning) both \(=1\) :
Switch channel 12 to \(0_{8}\)
Make all restart groups inactive
MODREG \(=-0\)
IMODES30 \(=37471_{8}\)
\(D B=K: M A X D B\)
RATEINDX \(=2\)
DAPBOOLS \(=21322_{8}\)
        (DESC)
\[
\begin{align*}
& \text { EBANK }=\mathrm{K}: \text { EBANK6 } \\
& \text { STIKSENS }=\mathrm{K}: \text { STIKSTRT } \\
& \text { RATEDB }=K: \text { RATESTRT } \\
& \text { HIASCENT }=\mathrm{K}: \text { FULLAPS } \\
& \text { DKTRAP }=\mathrm{K}: 770010 \mathrm{CT} \\
& \text { LMTRAP }=\mathrm{K}: 770010 \mathrm{CT} \\
& \text { DKKAOSN and LMKAOSN }=60 \\
& \text { LMOMEGAN }=0 \\
& \text { DKOMEGAN }=10 \\
& \mathrm{DKDB}=\mathrm{OO}_{\mathrm{D}} \mathrm{DO}_{8} \\
& \text { IMODES } 33=16040_{8}  \tag{INTR}\\
& \text { Switch } \mathrm{FLAGWRD}_{i} \text { to } 0^{00000_{8}} \text { for } i=0,1,2,4,5,6,9 \\
& \text { FLAGWRD7 }=00100_{8} \\
& \text { FLAGWRD8 }=000 \times x 00 \times 0000000{ }_{2} \text { (leave bit } 12 \text { (CMOONFLG), bit } \\
& 11 \text { (LMOONFLG), and bit } 8 \text { (SURFFLAG) alone) } \\
& \text { FLAGWRD3 }=00 \times 010000000000{ }_{2} \text { (leave bit } 13 \text { (REFSMFLG) alone) } \\
& \text { FLGWRD10 }=00 \times 0000000000002 \text { (leave bit } 13 \text { (APSFLAG) alone) } \\
& \text { FLGWRDIl }=40000_{8} \quad \text { (bit } 15 \text { is LRBYPASS) } \\
& \text { Proceed to "DUMMYJB2" } \\
& \text { STARTSUB DNTMGOTO = "DNPHASEI" } \\
& \text { RADMODES }=00102_{8}+\text { bit } 6 \text { of channel } 33 \text { (LR pos) } \\
& \text { STARTSB1 Set TIME3 to cause program interrupt \#3 in } 10 \text { milliseconds } \\
& \text { Set TIME4 to cause program interrupt \#4 in } 30 \text { milliseconds } \\
& \text { Set TIME5 to cause program interrupt \#2 in } 40 \text { milliseconds } \\
& \text { EBANK }=K \text { : EBANK6 } \\
& \text { Switch RCSFLAGS bit } 13 \text { to } 0 \\
& \mathrm{TGNEXTTM}_{0}=377778 \text { (disable TIME6 clock) }
\end{align*}
\]

Switch bit 15 of channel 13 to 0
NXT6AXIS \(=0\)
(DAPA)
(DAPA)
(DAPA)
(DAPA)

STARTSB2 Switch channel 11 to \(0 x x 00000000000 x\)
(leave engine on/off and ISS warnifg alone)
Switch FLAGWRD3 bit 9 (READRFLG) to 0
If FLAGWRD3 bit 11 (NOR29FLG) \(\neq 0\) :
RADMODES \(=\times 00 \times 00 \times 0 \times 1 \times 0 \times \mathrm{xO}_{2}\)
Skip next line
RADMODES \(=\times 00 \times 0 \times 2 \times x \times x \times x_{2}\)
Switch channel 12 to \(0 \times 0 \times 0 \times 0 \times 000\)
Switch FLAGWRD5 bit 4 (NORRMON) and bit 11 (R77FLAG) to 0
Switch channel 13 to \(\mathrm{max} 10000 \mathrm{x} \times \mathrm{OO} \mathrm{OOO}_{2}\)
Switch channel 14 to \(000000000 \times 00000_{2}\)
EBANK = K:STARTEB
Set all 8 waitlist times to 81.93 seconds
Set all 9 waitlist task addresses to "SVCT3"
Make all 8 job register sets available
DSRUPTSW \(=-0\)
NEWJOB \(=-0\)

RISAVE \(=0\)
INLINK \(=00000_{8}\)
DSPCNT \(=0\)
CADRSTOR \(=+0\)
REQRET \(=+0\)
CLPASS \(=0\)
DSPLOCK \(=0\)
MONSAVE and MONSAVEI \(=0\)
VERBREG and NOUNREG \(=0\)
DSPLIST \(=+0\)
MARKSTAT \(=+0\)
EXTVBACT \(=0\)
IMUCADR \(=+0\)
OPTCADR \(=+0\)
RADCADR \(=+0\)
\(\operatorname{ATTCADR}=+0\)
LGYRO \(=+0\)
FLAGWRD4 \(=00000_{8}\) (kill display interface routine action)
NOUT = 11
SAMPLIM \(=-1\)
IMODES33 \(=001110000 \mathrm{xOO}_{0} 000_{2}\) (set PIPA good, downlink good, uplink good bits; leave DAP disable bit alone)

DSPCOUNT \(=-19\)
Return
If IMODES 30 bit \(6=1\) : (IMU caged)
Perform "ALARM" with \(T S=01520_{8}\)
Proceed to "V37BAD"
If MMNUMBER \(=70\), proceed to "P70"
If MMNUMBER = 71, proceed to "P71"
If \(\operatorname{MMNUMBER}=0:\)
If FLAGWRD7 bit 6 (V37FLAG) \(=0\), proceed to "CANV 37"
(Otherwise, "SERVICER" is running; cause it to exit to "CANV 37")

Switch FLAGWRD7 bit 5 (AVEGFLAG) to 0
End job
If FLAGWRD2 bit 1 (NODOFLAG) \(=1\) :
Perform "ALARM" with TS \(=01520_{8}\)
Proceed to "V37BAD"
If MMNUMBER \(\neq\) low 7 bits of \(K:\) PREMMI \(_{1}\) for some 1 from 0 to 24
Switch bit 7 of channel 11 to 1 (operator error)
Proceed to "V37BAD"
MINDEX = i for which MMNUMBER = low 7 bits of \(\mathrm{K}:\) PREMM1 \(_{i}\)
If FLAGWRD7 bit 6 (V37FLAG) m 0, proceed to "CANV37"
Switch FIAGWRD7 bit 5 (AVEGFILAG) to 0
End job
V37BAD Perform "RELDSP"
Proceed to "PINBRNCH" (reinstitute any interrupted display)
CANV 37 SUPERBNK \(=0\)
```

 Perform "INTSTALL" (wait until integration is free)
 Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
 Switch FLAGWRD3 bit 15 (POOHFLAG) to 0
 Switch FLGWRDII to 40000
 Switch FLAGWRD3 bits 9 (ROLFLAG) and 14 (GLOKFAIL) to 0
 Switch FLAGWRD6 bit 8 (MUNFLAG) to 0
 Switch FLAGWRD9 bit 7 (ABTTGFLG) to 0
 Switch DAPBOOLS bit 9 (XOVINHIB) to 0
 If MMNUMBER = 0, proceed to "POOH"
 If FLAGWRDO bit 7 (RNDVZFLG) and 9 (P25FLAG) both =0:
 Switch FLAGWRDO bit }8\mathrm{ (IMUSE) to O
 DNLSTCOD = K:DNLADMMI MINDEX
 Inhibit interrupts
 Proceed to "SEUDOPOO"
 POOH Perform "RELDSP"
Inhibit interrupts
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel 12 to 0 (disable RR Error counter)
Switch FLAGWRD2 bit I (NODOFLAG) to 0
Clear P20, P25 restart logic and cause "GOPROG3" to
establish "STATINTl"
(pr05)
Switch FLAGWRDO bits 7 (RNDVZFLG), 8 (IMUSE) and 9 (P25FLAG) to 0
DNLSTCOD = 0
SEUDOPOO
AGSWORD = DNLSTCOD
Perform "ENGINOFI"
Perform "ALLCOAST"

```

DSPFLG \(_{2}=77657_{8}\)
Switch FLAGWRDI bit 5 (TRACKFLG) and 7 (UPDATFLG) to 0
If MMNUMBER \(=0\) :
Maintain "STATINTl" restart.logic and clear allother
MODREG \(=0\)
Proceed to "GOPROG2"
If MODREG or MMNUMBER \(=22\) :
Switch FLAGWRDO bit 7 (RNDVZFLG), bit 8 (IMUSE) and bit 9 (P25FLAG) to 0
Switch RADMODES bit 10 (DESIGFLG) and 15 (GDESFLAG) to 0
Switch channel 12 bit 2 to 0
Clear P20, P25 restart logic
Cause "GOPROG3" to call "V37XEQ"
Proceed to "GOPROG2"
If MMNTMBER \(\neq 20\) or 25 :
If FLAGWRDO bit 7 (RNDVZFLG) or bit 9 (P25FLAG) \(=1\) :
Proceed to 5th step of "RESET22"
Proceed to "RESET22"
If MODREG \(=20\) or 25:
Proceed to 4th step of "RESET22"
If MMNOMBER \(=20\) and FLAGWRDO bit 7 (RNDVZFLG) \(=1\) and bit 9 (P25FLAG) \(=0\), or if MMNUMBER \(=25\) and FLAGNRDO bit 9 (P25FLAG) \(=1\) and bit 7 (RNDVZFLG) \(=0\) :

Switch FLAGWRDI bit 5 (TRACKFLG) and 7 (UPDATFLG) to 1
Maintain P20, P25 restart logic and clear all other
MODREG \(=\) MMNUMBER
Proceed to "GOPROG2"
Proceed to 4th step of "RESET22"
```

MMTEMP $=K:$ PREMM1 $_{\text {MINDEX }}$

```
ii \(=\) bits \(15-11\) of MMTEMP (priority)
BASETEMP \(=\mathrm{K}: \mathrm{FCADRMM1}_{\text {MINDEX }}\)
Establish job specified in BASETEMP (EBANK information in (prii)
MODREG \(=\) MMNUMBER

Establish "DSPMMJOB"
Perform "RELDSP"
Release interrupt inhibit
End job
VBRQEXEC (Entered from "VERBFAN" on verb 30; DSPTEM1 tp \(^{\text {must be loaded }}\) with three single precision components as follows:
\begin{tabular}{ll} 
DSPTEM1 1 & Opp ppp 000 000 00 v \\
DSPTEM1 & OOO sss sss sss sss \\
DSPTEM1 1 & fff ffO 00x xx0 eee
\end{tabular}

Where "p" represents one of the bits of the five-bit priority to be assigned to the job; "v" is a single binary bit indicating whether the job is to be assigned working storage (1) or not (0); "s" is one of the 12 bits of the "S-register" portion of the address; "f" is one of the bits of the five-bit fixed-memorybank code; "x" is one of the bits in the three-bit fixed-bankextension code; "e" is one of the bits in the three-bit erasable memory-bank code; and " 0 " is a binary zero.)

\section*{Perform "RELDSP"}

Establish job whose starting address is contained in 2CADR form in DSPTEM1 1 and DSPTEM1 \({ }_{2}\), with priority and storage allocation according to the information in DSPTEM1 \({ }_{0}\). ("FINDVAC" or "NOVAC")

End job
VBRQWAIT (Entered from "VERBFAN" on verb 31; DSPTEM1 tp must be preloaded with three single precision components as follows:
```

| DSPTEMI | time in centiseconds scaled Bl 4 |
| :--- | :--- |
| DSPTEM1 | 000 sss sss sss sss |
| DSPTEMI | fff ffO 00 x xxO eee |

where "s, f, x" and "e" have the meanings described above.)
Perform "RELDSP"
Call the task whose starting address is contained in 2CADR form
in DSPTEM1 }1\mathrm{ and DSPTEMI 2, in DSPTEM1 }\mp@subsup{|}{0}{}\mathrm{ centiseconds. ("WAITLIST")
End job
GOPROG
REDOCTR = REDOCTR + 1 (hardware restart)
RSBBQ = address of step performed before restart occurred
If bit 4 of DSPTAB II = 1: (no attitude lamp on)
Switch bits 4 and 6 of channel 12 to l
(coarse align discrete, ICDU Error Counter enable)
Perform "LIGHTSET"
If bits 15-1l of ERESTORE }=0\mathrm{ 0:
Perform "STARTSUB"
Proceed to "DOFSTRTl"
If ERESTORE }\not=0\mathrm{ :
If ERESTORE f SKEEP7:
Perform "STARTSUB"
Proceed to "DOFSTRTl"
EBANK = bits 11-9 of SKEEP4
1 = SKEEP7
E 1 = SKEEP5
1 = SKEEP7 + 1
E i
ERESTORE = O
Perform "STARTSUB"
Switch FLGWRD10 bit 14 (INTFLAG) to 0
Switch DSPTAB 11 to 100 000 x00 x0x 000 2
(bit 15 is flag for output; leave bits 9,6,4 alone)

```

Switch IMODES30 to 011111 x00 0xx xOx
(leave IMU, CDU, and both PIPA fail monitor bits alone)
DNLSTCOD \(=\) AGSWORD
Switch bit 4 of channel 14 to 1 (thrust drive discrete)
If FLAGWRD5 bit 7 (ENGONFLG) \(=\cdots\) :
Switch bit 13 of channel 11 to 1 (engine on discrete)
Skip next line
Switch bit 14 of channel 11 to 1 (engine off discrete)
Proceed to "GOPROG3"
LIGHTSET If bit 5 channel \(16=1\) and channel \(15=22_{8}\) :
Perform "STARTSUB"
Proceed to "DOFSTART"
Return
ENEMA Inhibit interrupts
Perform "STARTSB1"
Skip next line
GOPROG2 Perform "STARTSB2"
GOPROG2A Perform "LIGHTSET"
Switch FLGWRD10 bit 7 (REINTFLG) and bit 14 (INTFLAG) to 0
GOPROG3 If restart information is stored improperly:
Perform "ALARM" with TS \(=011078\)
Proceed to "DOFSTRT1"
Establish "DSPMMJOB" (pr30)
Release interrupt inhibit
(allows possibility of intérrupt)
Inhibit interrupts

Switch FLAGWRDI bit 14 (DIDFLAG) to 0
Switch FLAGWRDI bit 12 (RODFLAG) to 0
Switch FLAGWRDO bit 11 (P2IFLAG) to 0
If all restart groups are inactive:
If bit 15 of MODREG \(=1\), proceed to "ENDRSTRT"
Proceed to "GOTOPOOH" ("GOFLASH" will put "DSPMMJOB" to sleep, leaving program number blank)
Restart all jobs and tasks indicated by active restart groups
ENDRSTRT Proceed to "DUMMYJB2".
GOTOPOOH Switch DAPBOOIS bit 9 (XOVINHIB) and bit 6 (ULLAGER) to 0
Inhibit interrupts
Switch FLAGWRD4 bit 1 (XDSPFLAG) to 0
Release interrupt inhibit
Proceed to "GOFLASH" with TS = K:V37N99 (noun not processed)
(If terminate, repeat this step; if proceed, repeat this step; if other response, repeat this step.)

ALARM Inhibit interrupts
\(\operatorname{ALMCADR} R_{0}=\) "calling address + 1" (S-register portion)
ALARM2 ALMCADR \({ }_{1}=\) BBANK + SUPERBNK (or'ed into bits 7-5)
If FAILREG \(_{0}=0\) :
FAILREG \(_{0}=T S \quad\) (TS contains alarm code)
Proceed to "PROGLARM"
If FAILREG \(_{I}=0\) :
FAILREG \(_{I}=T S\)
Proceed to "PROGIARM"
\(\underline{P R O G L A R M ~}^{\text {FAILREG }_{2}}=\mathrm{TS}\)
Switch bit 9 of DSPTAB \(1 I\) to \(I\) and flag for output
Release interrupt inhibit

\section*{Return}

BAILOUT Inhibit interrupts
\(A_{\text {ALMCADR }}^{0}\) = "calling address \(+1 " \quad\) (S-register portion)
Perform "ALARM2"
WHIMPER Resume (after this Resume, return is to next line)
Proceed to "ENEMA"
POODOO Inhibit interrupts
ALMCADR \(_{0}=\) "calling address +1 ". (S-register portion)
Perform "ALARM2" (TS contains the alarm code)
Switch FIAGWRD3 bit 5 (STATEFLG) to 0
Switch FLGWRD10 bit 7 (REINTFLG) to 0
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
If FLAGWRD? bit 6 (V37FLAG) \(=1\); proceed to "SERVIDIE"
Make all restart groups inactive
Proceed to "WHIMPER"
CURTAINS Inhibit interrupts
\(\mathrm{ALMCADR}_{0}=\) "calling address +1 "
Perform "ALARM2" with TS \(=00217_{8}\)
Return
BAILOUTI Inhibit interrupts
ALMGADR \(_{d p}=T S l_{d p}\)
Perform "ALARM2" starting at second line
Inhibit interrupts
Proceed to "WHIMPER"
POODOO1 InHibit interrupts
\(\operatorname{ALMCADR}_{\mathrm{dp}}=T S l_{\mathrm{dp}}\)

Perform "ALARM2" starting at second line
Proceed to 4 th line of \({ }^{\text {nPOODOO" }}\)
ABORT Proceed to "WHIMPER"
P06 Switch FLAGWRD2 bit 1 (NODOFLAG) to 1
Inhibit interrupts
TIME2SAV = TIMENOW
\(T S t_{d p}=\) channel 3, channel 4 (sampled with special precaution to assure that the two halves are consistent)

Release interrupt inhibit
If TIMENOW was incremented during the last \(1 / 3200\) of a second
(channel \(4=\) xx. 5 centiseconds): (TIMENOW incompatible with channel 4)
Proceed to second step of "PO6"
TSt \(=\) TSt rounded to the nearest centisecond
SCALSAVE \(=\) TSt
Inhibit interrupts
Perform "RNDREFDR"
Switch FLAGWRDO bit 8 (IMUSE) and bit 7 (RNDVZFLG) to 0
Switch bit 11 of channel 13 to 1 (enable standby)
Set restart tables to establish "POSTAND" when a restart is triggered by the recovery from standby

Proceed to "GOPERF1" with TS \(=00062_{8}\)
(If terminate, repeat this step; if proceed, repeat this step; if other response, repeat this step.)

POSTAND
Switch bit 11 of channel 13 to 0
(disable atandby)
Inhibit interrupts
TIMENOW \(=0\)
\(T S t_{d p}=\) channel 3, channel 4 (sampled with special precaution to assure that the two halves are consistent)

Release interrupt inhibit
If TIMENOW was incremented during the last \(1 / 3200\) of a second (channel \(4=\mathrm{xxx} .5\) centiseconds):

Proceed to second step of "POSTAND."
TSt \(=\) TSt rounded to the nearest centisecond
\(\mathrm{TS}=\mathrm{TSt}-\) SCALSAVE \(\quad\) (rescaled from B23 to B28)
Force sign agresment in TS
If \(T S \leq-0, T S=2^{23}+T S\)
\(T S t=T I M E 2 S A V+T S\)
Force sign agreement in TSt
TIMENOW \(=\) TIMENOW + TSt
Switch FLAGWRD2 bit 1 (NODOFLAG) to 0
Proceed to "GOTOPOOH"
V37RET If FLAGWRDO bit 7 (RNDVZFLG) \(=1:\)
Cause "GOPROG3" to call "P2OLEMCl" in 15 seconds
Proceed to "CANV37"
If FLAGWRDO bit 9 (P25FLAG) \(=1\) :
Cause "GOPROG3" to establish "P25LEMC" (pr14)
Proceed to "CANV37"
ALARMI Inhibit interrupts
\(\operatorname{ALMCADR}_{\mathrm{dp}}=\mathrm{TSI}_{\mathrm{dp}}\)
Proceed to second step of "ALARM2"
VARALARM. Inhibit interrupts
\(A_{M C A D R}^{0}=" c a l l i n g ~ a d d r e s s ~+1 " ~\)
Perform "ALARM2"
Proceed to ALMCADR \(R_{0}\)

AGSWORD: See EXVB section.
ALMCADR': "Double precision storage for retürn address ('address in most significant haif, bank information in least significant half) of the routine that generated the latest elarm.

BASETEMP: Single precision storage for octal address of program to be started by verb 37.

BBANK: A computer hardware cell containing in bits \(15-11\) the fixed memory bank (FBANK) currently being used and in bits 3-1 the erasable, memory bank number.

DNLSTCOD: See TELE section.
DSPFLG \(_{2}\) : See DINT section.
\(\mathrm{DSPTAB}_{11}\) : See INTR section.
DSPTEMI: See DATA section.
\(E_{i}\) : Single precision memory cell whose address is in \(i\).
EBANK: See MATX section.
ERESTORE: See TEST section.
FAILREG \((1=0,1,2)\) : Three single precision registers used for storage of alarm code information. FAILREG 0 , are zeroed via an "error reset", FAILREG is unalterad. All three registers are zeroed by a Verb 36 (fresh start). FAILREG contains the first alarm code generated after the "Error Reset"; FAILREG \({ }_{1}\) contains the second; and FAILREG 2 always contains the most recent.

IMODES30: See IMUC section.
IMODES 33: See IMUC section.

K:770010CT: Single precision constant stored as \(77001_{8}\), scaled B-3 in units of revolutions per second. Equation value: +0.00389. (Equation value: 1.4 degrees per secomd.)

K:DNLADMMI ( \(i=0-24\) ): Table of 25 single precision indexes which determine the downlist sent during each major mode. See table below.

K:EBANK6: Single precision constant stored as \(03000_{\text {g }}\), scaled B6 and unitless. Equation value: 6.

I: \(\operatorname{FGADRMM1}\) ( \(i=0-24\) ): Table of 25 single precision addresses of the 25 major mode programs. See table below.

K:FULLAPS: Single precision constant atored as \(5050 \times 2^{-16}\), scaled Bl6 in units of kilograms. Equation value: 5050.

K:MAXDB: Single precision constant stored as 03434; used to initialize the attitude deadband. Scaled B-3 in revolutions and corresponds to approximately 5 degrees.

K: PREMM1 ( \(i=0-24\) ): Table of 25 major mode numbers with as sociated EBANK settings and priorities.
K:RATESTRT: Single precision constant stored as 77445 , scaled B-3 in units of revolutions/second. Used to initialize location -RATEDB (referred to as RATEDB in DAPA section) in "DOFSTRT1". Equation value: -218.

K:STARTEB: Single precision constant stored as 01400 , scaled B6 and unitless. Equation value: 3.

K:STIKSTRT: Single precision constant stored as \(32321_{8}\), scaled B-15 in revolutions per second/RHC counts. Used to initialize location STIKSENS in "DOFSTRTI". Equation value: 0.825268.

MINDEX: Single precision register used to select the appropriate table entries for a V37 selected program change (loaded based upon equality of MMNUMBER and bits 7-1 of \(K:\) PREMM \(_{i}\) with the value of \(i\). )

MMNUMBER: Single precision storage for the desired value of the major mode register, scaled B14 and unitless.

MMTEMP: Single precision storage for the number of the program being started by verb 37 (bits 7-1, bits 10-8 for EBANK) and for the priority with which the program is to be started (bits 11-15).

MODREG: See DATA section.
NVSAVE: See NVWORD in the DINT section.

RADMODES: See RADR section.
REDOCTR: Single precision counter set to zero in a fresh start and incremented whenever a hardware restart occurs; scaled Bl4 and unitless.

RSBBQ: Storage for the value of the address where a hardware restart occurred. The most significant part contains the BBANK and SUPERBNK information; the least significant part contains the Q-register information.

SCALSAVE: Double precision value of the standby clock (channels 3 and 4)

1 at the time program 06 enables standby, scaled B23 in units of centiseconds.

SKEEP4, SKEEP5, SKEEP6, SKEEP7: See TEST section.
STILBADH: See SERV section.
STILBADV: See SERV section.
SUPERBNK: See MATX section.
TIME3, TIME4, TIME5: See "Major Variables" section.
TIME2SAV: Double precision value of TIMENOW when program 06 enables standby, scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1} & \multicolumn{3}{|c|}{K:PREMM1} & \multirow[t]{2}{*}{\[
\frac{\text { K:FCADRMMI }}{\text { (octal address) }}
\]} & \multirow[t]{2}{*}{K:DNLADMM} \\
\hline & & AN & & & \\
\hline 0 & 13 & 7 & 76 & P76 & 2 (RENDEZVU) \\
\hline 1 & 13 & 7 & 75 & P75 & 2 (RENDEZVU) \\
\hline 2 & 13 & 7 & 74 & P74 & 2 (RENDEZVU) \\
\hline 3 & 13 & 7 & 73 & P73 & 2 (RENDEZVU) \\
\hline 4 & 13 & 7 & 72 & P72 & 2 (RENDEZVU) \\
\hline 5 & 13 & 7 & 68 & LANDJUNK & 4 (DESASCNT) \\
\hline 6 & 13 & 7 & 63 & P63LM & 4 (DESASCNT) \\
\hline 7 & 13 & 5 & 57 & P57 & 5 (LUNRSALN) \\
\hline 8 & 13 & 5 & 52 & PROG52 & 0 (COSTALIN) \\
\hline 9 & 13 & 5 & 51 & P51 & 0 (COSTALIN) \\
\hline 10 & 13 & 7 & 47 & P47LM & 3 (ORBMANUV) \\
\hline 11 & 13 & 7 & 42 & P42LM & 3 (ORBMANUV) \\
\hline 12 & 13 & 7 & 41 & P4ILM & 3 (ORBMANUV) \\
\hline 13 & 13 & 7 & 40 & P4OLM & 3 (ORBMANUV) \\
\hline 14 & 13 & 7 & 35. & P35 & 2 (RENDEZVU) \\
\hline 15 & 13 & 7 & 34 & P34 & 2 (RENDEZVU) \\
\hline 16 & 13 & 7 & 33 & P33 & 2 (RENDEZVU) \\
\hline 17 & 13 & 7 & 32 & P32 & 2 (RENDEZVU) \\
\hline 18 & 13 & 7 & 30 & P30 & 2 (RENDEZVU) \\
\hline 19 & 13 & 7 & 25 & PROG25 & 2 (RENDEZVU) \\
\hline 20 & 13 & 7 & 22 & PROG22 & 5 (LUNRSALN) \\
\hline 21 & 13 & 7 & 21 & PROG21 & 2 (RENDEZVU) \\
\hline 22 & 13 & 7 & 20 & PROG20 & 2 (RENDEZVU) \\
\hline 23 & 13 & 7 & 12 & Pl2LM & 4 (DESASCNT) \\
\hline 24 & 13 & 4 & 06 & P06 & 0 (COSTALIN) \\
\hline
\end{tabular}

RRAUTCHK If bit 2 of channel 33 = bit 2 (AUTOMODE) of RADMODES:
Proceed to "RRCDUCHK" ( ON/OFF status of RR unchanged)
Set RADMODES bit 2 (AUTOMODE) = bit 2 of channel 33
Switch bits 15 (CDESFLAG), 14 (REMODFLG), 13 (RCDUOFLG),
11 (REPOSMON) and 1 (TURNONFL) of RADMODES to 0
If RADMODES bit 2 (AUTOMODE) \(=1\) : ( RR just turned off )
Sisitch bit 2 of channel 12 to 0 (disable RRCDU Error Counters)
Proceed to "RRCDUCHK"
Switch RADMODES bits 1 (TURNONFL) and 13 (RCDUOFLG) to 1
Call "RRTURNON" in 0.01 second
Proceed to "NORRGMON"
RRCDUCHK If bit 7 of channel \(30=\) bit 7 (RCDUFAIL) of RADMODES:
Proceed to "RRGIMON" (RR CDU fail discrete unchanged)
If RADMODES bit 2 (AUTOMODE) \(=1\), proceed to "NORRGMON"
( RR not in auto mode: might be reading \(I R\) data)
Set RADMODES bit 7 (RCDUFAIL) \(=\) bit 7 of channel 30
If RADMODES bits 13 (RCDUOFLG), 7 (RCDUFAIL) and 2 (AUTOMODE)
\(=0\), and FLAGWRDO bit 7 (RNDVZFLG) \(=1\) :
Perform "ALARM" with TS \(=00515_{8}\)
Perform "SETTRKF"
RRGIMON If FLAGWRD5 bit 4 (NORRMON) \(=1\), proceed to "NORRGMON"
If FLAGWRD7 bit 5 (AVEGFLAG) \(=1\) :
If FLAGWRD6 bit 8 (MUNFLAG) \(=1\), proceed to "NORRGMON"
If RADMODES bit 14 (REMODFLG), 13 (RCDUOFLG), 11 (REPOSMON) or 2 (AUTOMODE) \(=1\), proceed to "NORRGMON"
```

RADR - 1

```
Perform "RRLIMCHK" with \(\mathrm{TS}_{0}=\mathrm{CDU}_{\mathrm{t}}\) and \(\mathrm{TS}{ }_{1}=\mathrm{CDU} \mathrm{S}_{\mathrm{s}}\)If TSchk \(=0: \quad\) (RR positioned out of limits)
Switch RADMODES bit 11 (REPOSMON) to 1
Switch bits 14 and 2 of channel 12 to 0(Disable RR tracker and RRCDU Error Counter)
Call "DORREPOS" in 0.02 second
NORRGMON If RADMODES bit 2 (AUTOMODE) = 1:
Switch bit 1 of channel 12 to 1 (Zero RR CDUs)
Return ( to caller of "RRAUTCHK" in the T4RUPT routine)
RRTURNON Perform "RRZEROSB"
Delay 1 second
Switch RADMODES bit 1. (TURNONFL) to 0 (Turn-on complete)
End task
RRZEROSB Switch bit 1 of channel 12 to 1 (Drive RR CDUs to zero)
Delay 0.02 second
\(C D U_{t}=0\)\(C D U_{S}=0\)Switch bit 1 of channel 12 to 0 (Release RR CDUs)
Delay 10 seconds (Allow time for CDUs to match gimbal angles)
Switch RADMODES bit 13 (i DUOFLG) to 0
If \(\left|C D U_{t}\right| \leqslant K: p 25\), switch RADMODES bit 12 (ANTENFLG) to 0
If \(\left|C D U_{s}\right|>K: p 25\), switch RADMODES bit 12 (ANTENFLG) to 1
Perform "SETTRKF"
Return
SETTRKF If bit 1 of IMODES \(33=1\), return (lamp test in progress)
\(T S=0^{00200}{ }_{8} \quad(\) bit \(8=1)\)

If RADMODES bit 13 (RCDUOFLG), 7 (RCDUFAIL) or 2 (AUTOMODE) \(=1\) :
If RADMODES bit 4 (RRDATAFL) \(=0, \quad T S=00000_{8}\) (bit \(8=0\) )
If bit 8 of DSPTAB \(_{11} \neq\) bit 8 of TS:
Set bit 8 of DSPTAB \(_{11}=\) bit 8 of TS (tracker fail light)
Switch bit 15 of DSPTAB 11 to 1 (flag for output)
Return
DORREPOS Perform "SETRRECR"
Delay 0.02 second
RDES \(=0\)
If RADMODES bit 12 (ANTENFLG) \(=1\), RDES \(=-\frac{1}{2} \quad\left(-180^{\circ}\right.\) for Mode II)
Perform "RRTONLY"
\(\operatorname{RDES}=0\)
If RADMODES bit 12 (ANTENFLG) \(=1\), RDES \(=-\mathrm{K}: 1 \mathrm{~g} \frac{1}{4} \quad\left(-90^{\circ}\right)\)
Perform "RRSONLY"
Switch R:ADMODES bit 11 (REPOSMON) to 0 (repositioning complete)
If RADMODES bit 10 (DESIGFLG) \(=1\), proceed to "BEGDES" (someone waiting to designate)

Switch bit 2 of channel 12 to 0 (disable RR Error Counter)
End task
SETRRECR If bit 2 of channel \(12=0\) : (RR Error Counters disabled) Switch bit 2 of channel 12 to 1

LASTTCMD \(=0\)
LASTSCMD \(=0\)
Return
RRTONLY RRRET \(=\) return address
\[
\text { RADR - } 3
\]
```

 RRINDEX = 0
 Proceed to "RR1AX2"
 RRSONLY RRRET = return address
RRINDEX = 1
RR1AX2 If RADMODES bits 14 (REMODFLG) and 11 (REPOSMON) both = 1:
(Remode requested while repositioning in progress)
Switch RADMODES bit 11 (REPOSMON) to O
If RADMODES bit 10 (DESIGFLG) = 1, proceed to "BEGDES"
(Someone waiting to designate)
Switch bit 2 of channel 12 to 0 (disable RRCDU Error Counter)
End task
If RRINDEX = 0, TS = RDES - CDU
If RRINDEX = 1, TS = RDES - CDUs
If |TS| S K:0.00555 or RADMODES bit 2 (AUTOMODE) = 1, return
via RRRET
TRUNNCMD
TRUNNCMD RRINDEX = K:RRSPGAIN TS
Perform "RROUT"
Delay 0.5 second
Proceed to "RR1AX2"
RROUT
If |TS| > K:rrlimit, TS = K:rrlimit signTS
CDUSCMD = TS - LASTSCMD
LASTSCMD = TS
TS = TRUNNCMD
If |TS| \rangle K:rrlimit, TS = K:rrlimit signTS
CDUTCMD = TS - LASTTTGMD
LASTTCMD = TS

```
```

 Switch bits 12 and 11 of channel 14 to 1
 (Send contents of CDUTCMD and CDUSCMD to RR CDU's)
 Return
 RRDESSM DESRET = return address
Switch FLAGWRDO bit 6 (RRNBSW) to 0
Perform "CDUTRIG"
Perform "SMIONB"
TSlos = [SMNBMAT] RRTARGET
Perform "RRANGLES"
Inhibit Interrupts
Perform "RRLIMCHK" with TS O}=\mp@subsup{MODEPRES}{0}{}\mathrm{ and TS
If TSchk = 0: (not within limits in present mode)
If FLAGNRD8 bit 8 (SURFFLAG) = 1:
RADCADR = +0
RADLIMCK = 0
Proceed to "DESRETRN"
Perform "RMODINV"
Perform "RRLIMCHK" with TS
If TSchk = 0: (not within limits of either mode)
Perform "RMODINV"
RADLIMCK = 1
RADCADR = +0
Proceed to "DESRETRN"
Perform "RMODINV"
Switch RADMODES bit 14 (REMODFLG) to 1 (request remode)

```
RADR - 5
```

 RADLIMCK = 2
 Proceed to "STARTDES"
 RRDESNB DESRET = return address
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
DESCOUNT = K:MAXTRYS
Inhibit Interrupts
Perform "RRLTMNB" with TS
If TSchk = 0: (not within limits of present mode)
Perform "RMODINV"
Perform "RRLIMNB" with TS O = TANG
If TSchk = 0: (not within limits in either mode)
Perform "RMODINV"
Perform "ALARM" with TS = 005028
Inhibit Interrupts
Switch RADMODES bits }10\mathrm{ (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel }12\mathrm{ to 0 (disable RRCDU Error
Counters)
End job
Perform "RMODINV"
Switch RADMODES bit 14 (REMODFLG) to 1
Release interrupt inhibit
TANGNB
Perform "RRNB" (get LOS vector in NB coordinates)

```
RADR - 6

RRTARGT = TS
Switch FLAGWRDO bit 6 (RRNBSW) to 1
Inhibit interrupts
STARTDES Switch RADMODES bit 10 (DESIGFLG) to 1
If RADMODES bit 11 (REPOSMON) = 0: (see "DORREPOS")
Perform "SETRRECR"
Call "BEGDES" in 0.02 second
DESRETRN If RADCADR \(\neq 0\), end job
Release interrupt inhibit
Return via DESRET
RRLIMCHK TSchk \(=1\) (Entered with angles in two's complement form)
If RADMODES bit 12 (ANTENFLG) \(=0\) : (Mode I)
If \(\left|T_{0}\right|>K: 0.30555, \quad\) TSchk \(=0\)
If \(\left|T S_{1}+K: 5.5 \mathrm{DEGS}\right|>\mathrm{K}: 0.35833\), TSchk \(=0\)
Return
MODE2CHK If \(\left|T S_{1}+\mathrm{K}: 82 \mathrm{DEGS}\right|>\mathrm{K}: 0.31667\), TSchk \(=0\)
If \(\left|\mathrm{TS}_{\mathrm{O}}\right| \leq \mathrm{K}: 0.69444, \quad \mathrm{TSch} k=0\)
Return
RRANGLES TSta \(=\arcsin \left(-T S l_{0}{ }_{y}\right)\)
\(\mathrm{TStb}=\frac{1}{2}-\arcsin \left(-\mathrm{TSIOs}_{\mathrm{J}}\right)\)
\(\mathrm{TSIos}_{\mathrm{y}}=0\)
TS \(=\) unitTSIos
If \(|T S l o s|<2^{-20}:\) (unit vector poorly defined) (trunnion angle nearly 90 degrees)

Proceed to "LUNDESCH"

RADR - 7

SINTH \(=\) TS \(_{\mathrm{x}}\)
\(\operatorname{cosTH}=\mathrm{TS}_{\mathrm{z}}\)
Perform "ARCTRIG" (get THETA from SINTH and COSTH)
If RADMODES bit 12 (ANTENFLG) \(=0\) : (Mode I)
MODEALT \(_{0}=\) TStb converted to two's complement form MODEALT \(_{1}=\frac{1}{2}+\) THETA similarly converted MODEPRES \(_{O}=\) TSta converted to two's complement form MODEPRES \(_{1}=\) THETA similarly converted

If RADMODES bit 12 (ANTENFLG) \(=1\) :
MODEALT \(_{0}=\) TSta converted to two's complement form MODEALT \(_{1}=\) THETA similarly converted MODEPRES \(_{0}=T S t b\) converted to two's complement form MODEPRES \(_{1}=\frac{1}{2}+\) THETA similarly converted
Return
RRNB \(\quad\) TStr \(=\) TANGNB \(_{0}\) converted to one's complement form
TSsh \(=\) TANGNB 1 converted to one's complement form Skip next two lines

RRNBMPAC \(T S t r=T S_{1}\) converted to one's complement form
\(T S s h=T S_{2}\) converted to one's complement form
\(T S_{y}=-\operatorname{sinTStr}\)
\(\mathrm{TS}_{\mathrm{z}}=\operatorname{cosTSsh} \operatorname{cosTStr}\)
\(T S_{x}=\operatorname{sinTSsh} \operatorname{cosTStr}\)
Return
RMODINV If RADMODES bit 12 (ANTENFLG) \(=1:\)
Switch RADMODES bit 12 (ANTENFLG) to O (change to Mode I) Return

BEGDES If RADMODES bit 14 (REMODFLG) \(=0\), proceed to "STDESIG"
REMODE RDES \(=0\)
If RADMODES bit 12 (ANTENFLG) \(=1\), RDES \(=-\frac{1}{2}\)
Perform "RRTONLY"
RDES \(=\mathrm{K}: \mathrm{m} 45 \mathrm{DEGSR}\)
Perform "RRSONLY"
RDES \(=K:\) m50DEGSR (Mode II)
If RADMODES bit 12 (ANTENFLG) \(=0\), RDES \(=\) RDES + K:m8ODEGSR
Perform "RRTONLY"
RDES \(=0\)
If RADMODES bit 12 (ANTENFLG) \(=0\), RDES \(=-\frac{1}{2}\)
Perform "RRTONLY"
\(\mathrm{RDES}=0\).
If RADMODES bit 12 (ANTENFLG) \(=0\), RDES \(=-K: 1 \mathrm{~s} \frac{1}{4}\left(-90^{\circ}\right)\)
Perform "RRSONLY"
Perform "RMODINV"
Switch RADMODES bit 14 (REMODFLG) to 0
If RADMODES bit 10 (DESIGFLG) \(=0\), proceed to "RGOODEND"
STDESIG If RADMODES bit 11 (REPOSMON) \(=1\) :
Switch RADMODES bit 10 (DESIGFLG) to 0
Proceed to "RDBADEND"

RADR - 9
```

 If RADMODES bit 15 (CDESFLAG) = 1, proceed to "MOREDES"
 If RADMODES bit 10 (DESIGFLG) = 0, proceed to "ENDRADAR"
 If DESCOUNT > 0:
 DESCOUNT = DESCOUNT -1
 Proceed to "MOREDES"
 Switch bits 14 and 2 of channel 12 to 0
 (disable RR tracker and RR CDU Error Counters)
 Switch RADMODES bit 10 (DESIGFLG) to 0
 Proceed to "RDBADEND"
 MOREDES
Establish "DODES"
(pr26)
Call "STDESIG" in 0.5 second
End task
DODES TANG}=\mp@subsup{CDU}{t}{
TANG}=\mp@subsup{\textrm{CDU}}{\mathbf{s}}{
TSlos = RRTARGET
If FLAGWRDO bit 6 (RRNBSW) = 0:
Perform "CDUTRIG"
Perform "SMTONB"
TSlos = [SMNBMAT] unit(MLOSV RRTARGFT + K:MCTOMS LOSVEL)
TStr = TANG converted to one's complement form
TSsh = TANG converted to one's complement form
TANG
RADR - 10

```
\[
\begin{aligned}
& \text { TRUNNCMD }{ }_{0}=-K: \text { RDESGAIN }\left(\begin{array}{l}
\text { sinTStr } \operatorname{sinTSsh} \\
\text { cosTStr } \\
\text { sinTStr } \operatorname{cosTSsh}
\end{array}\right) \cdot \text { TSlos } \\
& \text { If RADMODES bit } 12 \text { (ANTENFLG) }=1, \text { TANG }_{1}=- \text { TANG }_{1} \\
& \text { (A relay in the } \mathrm{HK} \text { reverses polarity of the shaft commands } \\
& \text { TRUNNCMD }_{1}=K: \text { RDESGAIN TANG }{ }_{1} \\
& T S=\left(\begin{array}{l}
\text { sinTSsh } \cos T S t r \\
-\operatorname{sinTStr} \\
\operatorname{cosTSsh} \cos T S t r
\end{array}\right) \\
& \text { If FLAGWRDO bit } 6 \text { (RRNBSW) }=0 \text { : } \\
& \underline{T S}=[\text { NBSMMAT }] \underline{T S} \\
& \text { TSchk }=0 \\
& T S_{d p}=T S \cdot R R T A R G E T-K: \operatorname{Cos} 1 d 2 D G \\
& \mathrm{TS}_{\mathrm{sp}}<0, \mathrm{TSchk}=1 \text { (single precision check of double } \\
& \text { precision quantity) } \\
& \text { If RADMOBES bit } 15 \text { (CDESFLAG) }=1 \text {, proceed to "DORROUT" } \\
& \text { If TSchk }=0 \text { and FLAGWRDO bit } 5 \text { (LOKONSW) }=0 \text {, proceed .to "RRDESDUN" } \\
& \text { If TSchk }=0 \text { and FLAGNRDO bit } 5 \text { (LOKONSW) }=1 \text { : } \\
& \text { Switch bit } 14 \text { of channel } 12 \text { to } 1 \text { (enable RR tracker) } \\
& \text { If bit } 4 \text { of channel } 33=1 \text {, proceed to "DORROUT" } \\
& \text { (designate until data good discrete is present) } \\
& \text { RRDESDUN } T S=\text { RADMODES (with bit } 10 \text { forced to } 0 \text { ) } \\
& \text { Inhibit interrupts } \\
& \text { RADMODES }=T S \\
& \text { Switch FLAGNRD2 bit } 12 \text { (LOSCMFLG) to } 0 \\
& \text { Switch bit } 2 \text { of channel } 12 \text { to } 0 \text { (Disable RR Error Counter) } \\
& \text { Release interrupt inhibit } \\
& \text { End job }
\end{aligned}
\]

DORROUT If FLAGWRD2 bits 12 (LOSCMFLG) or 14 (SRCHOPTN) \(=1\) :
TS \(=\) MLOSV RRTARGET \(+\frac{1}{2} \mathrm{~K}:\) MCTOMS LOSVEL
RRTARGT = unitTS
MLOSV \(=|\underline{T} S|\)
Inhibit Interrupts
If RADMODES bit 11 (REPOSMON) \(=0\), perform "RROUT"
If FLAGWRD2 bit 12 (LOSCMFLG) \(=0\), proceed to "ENDOFJOB"
If LOSCOUNT \(=0\) :

Remove "STDESIG" from waitlist if it is there
Release interrupt inhibit
If NEWJOB > 0, perform "CHANG1"
If NEWJOB \(=+0\), proceed to "R21LEM2"
LOSCOUNT \(=\) LOSCOUNT -1
Proceed to "ENDOFJOB"
RRZERO If RADMODES bit 1 (TURNONFL) or bit 11 (REPOSMON) \(=1\) :
Call "RgOODEND" in 0.01 second
Return
Inhibit interrupts
Switch RADMODES bit 13 (RCDUOFLG) to 1
Call "RRZZ" in 0.01 second
If RADMODES bit 2 (AUTOMODE) \(=1\), perform "ALARM" with \(T S=00510_{8}\)
Release interrupt inhibit
Return
RRZ2 Perform "RRZEROSB"
Proceed to "ENDRADAR"
```

R04Z RSAMPDT = K:1SECp.1
RTSTLOC = 0
RFAILCNT = 0
Inhibit interrupts
Set RADMODES bits 9 (ALTSCALE), 6 (LRPOSFLG), and 3 (RRRSFLAG) =
bits 9, 6, and 3 of channel }3
Release interrupt inhibit
If FLAGNRD3 bit 9 (RO4FLAG) = 0: (R77)
RSAMPDT = K: 250MSp1
RTSTBASE = 2
RTSTMAX = 6
Call "RADSAMP" in 0.06 second
Proceed to "PINBRNCH"
OPTIONX
OPTIONX
Perform "GOXDSPFR" with TS = K:VO4N12 (OPTIONX , OPTIONX)
(If terminate, proceed to "RO4END"; if proceed, skip
next two steps; other response, repeat this step)
Perform "BLANKET" with TS = 00004g (blank R3)
End job
RTSTDEX = OPTIONX
R04X If RTSTDEX < 1: (Bits 3 and 2 are both 0; RR)
RT́STBASE = 0
If bit 2 of channel 33=1: (RR not in AUTO mode)
DSPTEM1 = 002018

```
            RADR - 13
(If bit 2 of channel \(33=1\) :)

> Proceed to "GOMARK4" with TS = K:V5ON25 (DSPTEM1)
> (If terminate, proceed to "ROLEND"; if proceed, repeat at second previous step(to assure that RR has been switched to AUTO); other response, repeat at previous step.)

Switch bit 14 of channel 12 to 1 (enable \(R R\) tracker)
RTSTMAX \(=2\)
If RTSTDEX > 1: (Bit 3 or 2 is 1 ; LR)
RTSTBASE \(=2\)
\(\operatorname{RTSTMAX}=6\)
Call "RADSAMP" in RTSTMAX centiseconds
Release interrupt inhibit
If RTSTDEX \(\leq 1\) : (RR)
Proceed to "GOXDSPF" with TS = K:V16N72 (CDU \({ }_{t}\), and \(C D U_{s}\) )
(If terminate, proceed to "RO4END"; if proceed, continue at next step; other response, repeat this step.)

Proceed to "GOXDSPF" with TS = K:V16N78 (DNRRANGE, DNRRDOT,
(If terminate, proceed to "RO4END";if proceed, TTOTIG) continue at next step; other response, repeat at previous step.)

If RTSTDEX \(>1\) (LR)
Proceed to "GOXDSPF" with TS = K:V16N66
( \(\mathrm{RSTACK}_{6}\), channel 33)
(If terminate, proceed to "ROLEND"; if proceed, continue at next step; other response, repeat this step.)
 continue at next step; other response, repeat at previous step.)

RSAMPDT \(=+0\) (to stop "RADSAMP")
Delay 2 seconds

RADR - 14
```

 RSAMPDT = K:1SECp1
 RTSTLOC = 0
 If RTSTBASE = +0, TS = 2
 If RTSTBASE > 0, TS = 1
 RTSTDEX = TS
 Proceed to "RO4X"
 RO4END RSAMPDT = +0
Delay 1.28 seconds
Inhibit interrupts
Switch bit }14\mathrm{ of channel 12 to O (disable RR tracker)
Switch.FLAGWRD3 bit 9 (RO4FLAG) to 0
Proceed to "ENDEXT"
RADSAMP If RSAMPDT = +0, end task
Call "RADSAMP" in (|RSAMPDT| - 1) centiseconds
Establish "DORSAMP" (pr25)
RTSTDEX = RTSTBASE + RTSTLOC / 2
End task

```
        RADR - 15
```

DORSAMP If RTSTDEX $=0$, perform "RRRANGE" with $T S n=1$
If RTSTDEX = 1, perform "RRRDOT" with TSn = 1
If RTSTDEX $=2$, perform "LRVELX" with $T S n=1$
If RTSTDEX $=3$, perform "LRVELY" with $T S n=1$
If RTSTDEX = 4, perform "LRVELZ" with TSn = 1
If RTSTDEX = 5, perform "LRALT" with TSn = 1
Perform "RADSTALL"
If RADGOOD $=0$, RFAILCNT $=$ RFAILCNT +1
Inhibit interrupts
If FLAGWRD5 bit 11 (R77FLAG) $=0$:
RSTACK $_{\text {RTSTLOC }}=$ SAMPLSUM $_{\text {dp }}$
If RADMODES bit 6 (LRPOSFLG) \neq bit 6 of channel 33 :
Perform "ALARM" with TS $=00522_{8}$
RFAILCNT = RFAILCNT + 1
If RTSTLOG \neq RTSTMAX:
RTSTLOC $=$ RTSTLOC +2
End job
RTSTLOC $=0$
End job
RRRANGE TSset $=00011_{8}$ (bits 1 and $4=1$)
Perform "INITREAD" with $\mathrm{TSn}=1$
Return

```
        RADR - 16
TSset \(=00012_{8} \quad(\) bits 2 and \(4=1)\)
Perform "INITREAD" with \(T S n=1\)
Return
TSset \(=00014 \mathrm{~g} \quad\) (bits 3 and \(4=1\) )
Perform "INITREAD"
Return

LRVELY \(\quad\) TSset \(=00015_{\mathrm{g}} \quad\) (bits 1, 3 and \(4=1\) )

\section*{Perform "INITREAD"}

Return
LRVELZ TSset \(=00016_{8} \quad\) (bits 2, 3 and \(4=1\) )

\section*{Perform "INITREAD"}

\section*{Return}

LRALT \(\quad\) TSset \(=00017\) g (bits 1, 2, 3 and \(4=1\) )
Perform "INITREAD" with \(T S n=1\)
Return
INITREAD Inhibit interrupts
TIMEHOLD \(=\mathrm{TSn} \mathrm{K:40ms}\)
NSAMP \(=T S n-1\)
SAMPLIM \(=T S n\)
OLDATAGD \(=\) bits 4,5 and 8 of channel 33
(RR data good, LR pos data good, \(L R\) vel data good discretes)
Switch bits 1 - 4 of channel 13 to 0
\(T S=T S s e t\)
Perform "RADSTART"
TIMEHOLD = TIMEHOLD + TIMENOWSAMPLSUM \(=0\)
Release interrupt inhibit
Return
RADSTALL Inhibit interrupts
If RADCADR > 0 or if RADCADR < -1:
\(\mathrm{TS}_{\mathrm{dp}}=\) return address of routine calling "RADSTALL"
Proceed to "BAILOUT1" with \(T S=31210_{8}\)
If RADCADR \(=-1\) : (operation already complete and good)RADCADR \(=+0\)Release interrupt inhibit\(\operatorname{RADGOOD}=1\)Return
If RADCADR \(=-0\) : (operation already complete and bad)\(\operatorname{RADCADR}=+0\)Release interrupt inhibit\(\operatorname{RADGOOD}=0\)
Return
RADCADR \(=\) return address (to caller of "RADSTALL")
Put present job to sleep
When awakened, return via LOC
ENDRADAR If RADMODES bit 7 (RCDUFAIL) \(=0\), proceed to "RDBADEND"
RGOODEND If RADCADR \(=+0\) :
RADCADR \(=-1\)
End task
```

 If RADCADR = -0 or RADCADR = -1: (should never be true)
 RADCADR = +0
 End task
 LOC = RADCADR
 RADGOOD = 1
 Wake job put to sleep in "RADSTALL"
 RADCADR = +0
 End task
 RDBADEND If RADCADR = +0:
RADCADR = -0
End task
If RADCADR = -0 or RADCADR = -1: (should never be true)
RADCADR = +0.
End task
LOC = RADCADR
RADGOOD = 0
Wake job put to sleep in "RADSTALL"
RADCADR = +o
End task
RADAREAD (entered on interrupt 85-95 ms after bit 4 of channel 13 is set)
TTOTIG = TTOGO
DNINDEX = bits 3-1 of channel 13 (radar selection bits)
If DNINDEX \# 0: (If radar select bits zero, do not store data
for downlist (erasable problems))
DNRADATA DNINDEX = RNRAD (radar data)

```
```

 If SAMPLIM < 0:
 Perform "ALARM" with TS = 005208
 Resume
 If SAMPLIM = 0:
 If FLGWRD11 bit 15 (LRBYPASS) = 0, proceed to "BADRAD"
 If FLAGWRD3 bit 9 (ROLFLAG) = 0, perform "ALARM"
 with TS = 005218
 Proceed to "BADRAD"
 SAMPLIM = SAMPLIM - 1
 If bit 3 of channel 13=0, proceed to "RENDRAD"
 Perform "R77CHECK"
 If bits 1 and 2 channel 13 are both 1, proceed to "LRHEIGHT"
 (LR range/altitude measurement)
 TS dp
 i=8
Perform "DGCHECK" (returns only if data is good)
If NSAMP > 0:
NSAMP = NSAMP - 1
Proceed to "RESAMPLE"
Proceed to "GOODRAD"
LRHEIGHT i = 5
If bit 9 of RADMODES (ALTSCALE) f bit 9 of channel 33:
Proceed to "SCALCHNG" with j = 9
TS dp}= RNRA
RADR - 20

```

If bit 9 of channel \(33=1\) : (LR range high scale) \(T S_{d p}=5 T S_{d p}\)
Perform "DGCHECK"
Proceed to "GOODRAD"
RENDRAD If RADMODES bit 7 (RCDUFAIL) \(=0\) or if RADMODES bit 11 (REPOSMON) \(=1\), proceed to "BADRAD"
\(i=4\)
If bit 1 of channel \(13=0\) : ( RR range rate measurament)
\(T S_{d p}=\) RNRAD \(-K: R D O T B I A S\)
Perform "DGCHECK"
Proceed to "GOODRAD"
If bit 3 of RADMODES (RRRSFLAG) \(\neq\) bit 3 of channel 33:
Proceed to "SCALCHNG" with \(j=3\)
\(T S_{d p}=R N R A D\)
If bit 3 of channel \(33=1\) : ( RR range high scale)
\[
\mathrm{TS}_{\mathrm{dp}}=8 \mathrm{TS}_{\mathrm{dp}}
\]

Perform "DGCHECK"
Proceed to "GOODRAD"
DGGHECK If bit \(i\) of channel \(33=0\) and bit \(i\) of OLDATAGD \(=0\) :
(bit 8 is LR velocity data good, bit 5 is LR altitude data good, bit 4 is RR data good, if zero)

SAMPLSUM \(=\) SAMPLSUM \(+T S_{d p}\)
Return (with good sample)
Set bit i of OLDATAGD = bit i of channel 33
\(T S=00010_{8}\)
Perform "RADSTART"
Resume
Switch bit 1 of RADMODES to 1
(bit 8 is LRVELFLG, bit 5 LRALTFLG, bit 4 RRDATAFL)
SAMPLSUM \(=T S_{d p} \quad\) (return with bad sample rather than none because no more tries are available)Perform "RADLITES"
If FLGNRD11 bit 15 (LRBYPASS) \(=0\), proceed to "BADRAD"
If FLAGWRD3 bit 9 (RO4FLAG) \(=0\), perform "ALARM" with \(T S=00521_{8}\)
Proceed to "BADRAD"
SCALCHNG Invert RADMODES bit \(j\)
(bit 9 is ALTSCALE, bit 3 is RRRSFLAG)
OLDATAGD = bits 4, 5 and 8 of channel 33 (data good bits)
Switch FLAGWRD5 bit 10 (RNGSCFLG) to 1
BADRAD \(\quad\) SAMPLIM \(=-1\)Cause "End task" instruction in "RDBADEND" to perform thesame function as a "Resume" instruction
Proceed to "RDBADEND"
GOODRAD \(\quad\) SAMPLIM \(=-1\)
Switch bit 1 of RADMODES to 0(bit 8 is LRVELFLG, bit 5 is LRALTFLG, bit 4 is RRDATAFL)
Perform "RADLITES"
Cause "End task" instruction in" RGOODEND" to perform thesame function as a "Resume" instruction
Proceed to "RGOODEND"

Inhibit Interrupts
Switch RADMODES bit 6 (LRPOSFLG) to 1
If bit 7 of channel \(33=0\) : (already in position two)
Call "RGOODEND" in 0.01 second
Release interrupt inhibit
Return
Switch bit 13 of channel 12 to 1 (command LR to position 2)
Call "LRPOSCAN" in. 6 seconds
Release interrupt inhibit
Return
LRPOSCAN SAMPLIM \(=168\)
Delay 1 second
If bit 7 of channel \(33=0\) : (position 2 achieved)
Delay 2 seconds
Switch bit 13 of channel 12 to 0
Proceed to "RGOODEND"
If SAMPLIM \(>0\) :
SAMPLIM \(=\) SAMPLIM -1
Proceed to second step of "LRPOSCAN"
Switch bit 13 of channel 12 to 0 (terminate positioning commands
Proceed to "RDBADEND"
RRLIMNB \(\quad\) TSchk \(=1\)
If RADMODES bit 12 (ANTENFLG) \(=1\), proceed to "MODE2CHK"
\[
\text { RADR - } 23
\]

If \(\left|T S_{0}\right|>K: 0.30555\), TSchk \(=0\)
If \(\mathrm{TS}_{1}>0\) and \(\left|T S_{1}+\mathrm{K}: 5.5 \mathrm{DEGS}\right|>\mathrm{K}: 0.35833\), \(\mathrm{TSchk}=0\)
If \(\mathrm{TS}_{1} \leq 0\) and \(\left|T S_{1}+\mathrm{K}: 20.5 \mathrm{DEGS}\right|>\mathrm{K}: 0.35833\), TSchk \(=0\)
Return
LUNDESCH If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
RADLIMCK \(=0\)
RADCADR \(=+0\)
Proceed to "DESRETRN"
If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end job
Perform "RMODINV"
RADLIMCK \(=1\)
RADCADR \(=+0\)
Proceed to "DESRETRN"
R77CHECK If FLAGWRD5 bit 11 (R77FLAG) \(=0\), return
Set bits 5 (LRALTFLG) and 8 (LRVELFLG) of RADMODES \(=\) bits 5 and 8 of channel 33

Cause "End task" instruction in "RGOODEND" to perform the same function as a "Resume" instruction

Proceed to "RGOODEND"
RADSTART \(\mathrm{TS}_{3}=\) LOSCALAR
\(\mathrm{TS}_{1}=\) low 5 bits of \(\mathrm{TS}_{3}\)
RADDEL \(=\) low 5 bits of \(\left(00040_{8}-\mathrm{TS}_{1}\right)\)
If RADDEL \(\leq 00002_{8}\), proceed to "RADSTART" (If a T5 interrupt is
Set bits TS of channel 13 to 1
RADTIME \(=-\mathrm{TS}_{3}\)
Return
scheduled to occur in \(1 / 16\) th of a centisecond, then these operations repeat until the interrupt has occurred)

C13STALL If bit 4 of channel \(13=0\), return
\(\mathrm{TS}_{4}=\) LOSCALAR + RADTIME
(LOSCALAR may have overflowed once since RADTIME was last
If \(\mathrm{TS}_{4} \geq \mathrm{K}: 90 \mathrm{MSCALR}+\mathrm{RADDEL}\), return loaded, but this occurrence has been compensated for in
If \(\mathrm{TS}_{4}<(\mathrm{K}: \mathrm{mDTSCALR}+\mathrm{K}: 90 \mathrm{MSCALR}+\mathrm{RADDEL})\), return the coding \()\)
Proceed to second step of "C13STALL"
RADLITES If \(i<5\), proceed to second step of "SETTRKF"
If \(1=8: \quad\) (LR velocity data good)
\(k=+2\)
\(T S=00004_{\mathrm{g}}\)
\(j=3\)
If \(1=5\) : (IR altitude data good)
\(k=+1\)
\(T S=00020_{g}\)
\(j=5\)
If bit i of RADMODES \(=1\), proceed to "ONLITES"
If bit \(k\) of FLGWRD11 = 1, proceed to second step of "SETTRKF"
\(T S=00000_{8}\)
LITIT If bit \(j\) of \(\operatorname{DSPTAB}_{11} \neq\) bit j of TS : (bit 5 is LR altitude
Set bit j of \(\mathrm{DSPTAB}_{11}=\) bit j of TS
Switch bit 15 of DSPTAB \(_{11}\) to 1
Return
ONLITES Switch bit \(k\) of FLGWRD11 to 0
Proceed to "LITIT"

RADR - 25
\(\mathrm{CDU}_{\mathrm{t}}\), CDU : LGC input counters incremented directly from the CDU to maintain LGC knowledge of the RR trunnion and shaft angles, respectively. Single precision angles stored in two's complement form and scaled B-1 in units of revolutions.

CDUSCMD, CDUTCMD: LGC output counters connected to the RR shaft and trunnion channels of the CDU. The contents of each of these counters is a rate command scaled \(B 14\) in units of RR pulses (one's complement form) and is sent to its respective CDU Error Counter by setting the appropriate enabling discrete in channel 14. See definition of K:RRSPGAIN.

COSTH: See COOR section.
DESCOUNT: Single precision counter defining the maximum amount of time allowed for an attempt to designate, scaled B14 and unitless.

DESRET: A single precision octal return address storage cell.
DNINDEX: A single precision index for selection of appropriate downlink buffer cell for radar data. \(\operatorname{DNINDEX~}=1,2,4,5,6\) or 7 for \(R R\) range, \(R R\) range-rate, LR X-velocity, LR Y-velocity, LR Z-velocity and IR altitude data, respectively; scaled B14 and unitless.

DNRADATA \(\mathrm{i}_{1}\) Special storage for downlink of radar data. \(i=1,2,4,5,6\), and \({ }^{1} 7\) to index-six single precision cells (consecutive except. between \(i=2\) and 4) alternately labelled DNRRANGE, DNRRDOT, DNLRVELX, DNLRVELY, DNLRVELZ and DNLRALT, respectively.

DSPTAB \({ }_{11}\) : See INTR section.
DSPTEM1: Temporary storage cell used mainly for display interface purposes.
IMODES33: See INTR section.
K: 0.00555: Single precision constant stored as -. 00555, scaled
\(B-1\) in units of revolutions. Equation value: +0.002775.
(Equivalent to +1.0 degree.)
Note: Because a constant is stored in one's complement form, its equation value changes if it is compared with the absolute value of a negative two's complement number. In such a comparison, a single precision constant assumes an equation value of " \(A+2^{b-14 "}\) where \(b\) is the scale factor of the constant and \(A\) is the stated equation value of the constant. In the case of the constant "K:p25" for instance, A is 0.25 and b is -1 .
\[
\text { RADR - } 26
\]

K: 0.30555. K: 5.5DEGS, K:0.35833: Three single precision constants for checking whether the radar position angles are within the bounds of \(R R\) Mode I. Stored as \(-0.30555,0.03056\), and -0.35833 , scaled B-1 in units of revolutions. Equation values: \(+0.152775,0.01528\) and +0.179165, respectively. See note above. (Equivalent to +55 degrees, 5.5 degrees, and +64.5 degrees.)

K: 0.31667, K: 82DEGS, K: 0.69444 : Three single precision constants for checking whether the radar position angles are within the bounds of RR Mode II. Stored as \(-0.31667,0.45556\) and -.69444 , scaled B-1 in units of revolutions. Equation values: +0.158335, 0.22778, and +0.34722 . See note above. (Equivalent to +57 degrees, 82 degrees and +125 degrees.)
The limits of Mode I are: \(-55^{\circ} \leq\) trunnion \(\leq 55^{\circ}\) and \(-70^{\circ} \leq\) shaft \(\leq 59^{\circ}\). The limits of Mode II are: \(125^{\circ}<\) trunnion \(<-125^{\circ}\) and \(-139^{\circ}<\) shaft \(<-25^{\circ}\). The latter corresponds to limits on the LOS angle of \(41^{\circ}\) and \(155^{\circ}\).

K:1s \(\frac{1}{4}\) : Single precision constant, program notation "HALF" stored as 0.5, scaled B-1 in units of revolutions. Equation value when used as a two's complement, negative number: \(0.25-2^{-15}\). (Equivalent to about 90 degrees.)

K:1SECp1: Single precision constant stored as \(101 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 101.

K:20.5DEGS: Single precision constant stored as 0.11389 , scaled B-1 in units of revolutions. Equation value: 0.05695. (Equivalent to 20.5 degrees.)

K:250MSp1: Single precision constant stored as \(26 \times 2^{-14}\), scaled B14 in units of centiseconds. Equation value: 26.

K:40ms: Single precision constant, program notation "BIT3", stored as 000048 , scaled B14 in units of centiseconds. Equation value: 4. (Equivalent to half the nominal value of one radar sampling cycle.)
K: 90MSCALR: Single precision constant stored as \(9 \times 2^{-9}\), scaled B9 in units of centiseconds. Equation value 9. (Equivalent to 90 milliseconds.)

K:COS1d2DG: Double precision constant stored as \(0.999961923 \times 2^{-2}\), scaled B2 and unitless. Equation value: 0.99996192.

K: LVELBIAS: Single precision constant stored as \(-12288 \times 2^{-14}\), scaled B14 in units like those of RNRAD. Equation value: -12288. (Program comment states, "Landing radar bias for 153.6 kc.")

K:m45DEGSR: Single precision constant stored as \(70000_{8}\), scaled B-1 in units of revolutions. Equation value when used as a two s complement number: -0.125. (Equivalent to - 45 degrees.')

K:m80DEGSR: Single precision constant stored as -0.44444, scaled B-1 in units of revolutions. Equation value when used as a two's complement number: -0.22225. (Equivalent to -80.01 degrees.)

K:mDTSCALR: Single precision constant stored as \(-.59375 \times 2^{-9}\), scaled B9 in units of centiseconds. Equation value -.59375. (Equivalent to -5.9375 milliseconds)
K:MAXTRYS: Single precision constant stored as \(60 \times 2^{-14}\), scaled B14 and unitless. Equation value: 60. (Equivalent to 30 seconds of time for RR designate.)

K: MCTOMS: Double precision constant stored as \(100 \times 2^{-13}\), scaled B13 in units of centiseconds. Equation value: 100.

K: p25: Single precision constant stored as -0.5, scaled B-1 in units of revolutions. Equation value: +0.25 . (Equivalent to +90 degrees)

K: RDESGAIN: Single precision constant stored as 0.53624 , scaled B12 in units of RR drive pulses per radian of error. Equation value 2196.5. (Equivalent to \(0.5 \times 2 \mathrm{sec}^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}\) pulses per degree per second. The first two terms null 0.5 of the error in \(\frac{1}{2}\) second, and the fourth is derived from the fact that a saturated error counter causes a drive rate of 10 degrees per second.)
K: RDOTBIAS: Double precision constant stored as \(17000 \times 2^{-28}\), scaled B28 in units of radar counts (same as RNRAD). Equation value: 17000.

K:rrlimit: Single precision constant, program notation "-RRLIMIT", stored as \(-384 \times 2^{-14}\), scaled 14 in units of RR drive pulses. Equation value: 384. (See K:RRSPGAIN for explanation.)
\[
\text { RADR - } 28
\]

K:RRSPGAIN: Single precision constant stored as 0.59062 , scaled B15 in units of RR drive pulses per revolution of error. Equation value: 19353. (Equivalent to \(0.7 \times 2 \mathrm{sec}^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}\) pulses per degree per second. The first two terms "null 0.7 of the error in \(\frac{1}{2}\) second," and the fourth is derived from the fact that a saturated error counter causes a drive rate of 10 degrees per second.)

LASTSCMD, LASTTCMD: Storage for the previous value of total RR shaft and trunnion CDU error counters; scaled B14 in units of RR drive pulses. Used to convert present position deviation into a desired rate command to be inserted into CDUSCMD or CDUTCMD.

LOC: See MATX section.
LOSCALAR: A 14 bit register corresponding to channel 4 of the computer. It is incremented 1 bit every \(1 / 3200\) of a second and is driven by a 102.4 kc signal from the computer oscillator. It overflows (and is propagated to channel 3) every 5.12 seconds. This register is 0.005 second out of phase with the TIMENOW registers. It is equivalent to a single precision time cell scaled B9 in units of centiseconds.

LOSCOUNT: Single precision counter defining the interval between computation of a new line-of-sight vector, scaled B14 and unitless.

LOSVEL: See RNAV section.
MLOSV: See RNAV section.
MODEALT \(,{ }_{0}, M_{D E D E L T}^{1}\) : Value of the trunnion and shaft angles, respectively, which are necessary to point the RR along the desired line-of-sight in the alternate mode of the RR. Single precision angles in two's complement form, scaled \(\mathrm{B}-1\) in units of revolutions. Program notation "MODEB".
\(M_{M O D E P R E S}{ }_{0}\), MODEPRES \(_{1}\) : Value of the trunnion and shaft angles, respectively, which are necessary to point the RR along the desired line-of-sight in the present mode of the RR. Single precision angles in two's complement form, scaled B-1 in units of revolutions. Program notation "MODEA".
[NBSMMAT]: See COOR section.
NEWJOB: See MATX section.

NSAMP: A single precision counter, scaled B14. Controls the number of sampling cycles in the total sampling interval for IR velocity measurements.

OLDATAGD: A single precision cell containing the status of radar "data good" discretes at the beginning of a sample. (See RADMODES)

OPTIONX \(_{0}\), OPTIONX \({ }_{1}\) : See EXVB section.
RADCADR: Single precision octal storage for address to return to program that is sampling the radar and waiting for sample to be completed.

RADDEL: Computed in "RADSTART" it is a single precision time until the next T5 interrupt, scaled B9 in units of centiseconds. Derived from the low five bits of IOSCALAR.

RADGOOD: Temporary variable introduced as a substitute for variable return address; set to 1 or 0 to indicate whether a radar operation was successfully completed or not.

RADLIMCK: Temporary variable indication which of three return options from "RRDESSM" is taken.

RADMODES: A flagword whose bits have the following significance when set (1).

\section*{Bit Mnemonic Meaning}

15 CDESFLAG Continuous designate; used in conjunction with bit 10
14 REMODFLG \(R R\) remode required
13 RCDUOFLG RR zeroing in progress
12 ANTENFLG \(R R\) in Mode II (in Mode I if zero)
11 REPOSMAN RR repositioning in progress; RR was outside of prescribed limits.

10 DESIGFLG RR designation in progress
9 ALTSCALE \(L R\) range high scale (low scale if bit is zero)
8 LRVELFLG LR velocity data bad (LR vel data good if bit is zero)

RADMODES: (continued.)

\section*{Bit Mnemonic Meaning}

7 RCDUFAIL RR CDU operative (RR CDU failed if bit is zero)
6 LRPOSFLG LR commanded to and presumed to be in position \#2
5 LRALTFLG LR position data bad (LR pos data good if bit is zero)
4 RRDATAFL \(R R\) data bad (if zero, the \(R R\) data is "good"; the RR tracker has acquired a target, hopefully the CSM and hopefully not a side lobe).

3 RRRSFLAG \(R R\) range high scale (low scale if bit is zero)
2 AUTOMODE RR not turned on or not in automatic mode of operation (if zero, the RR is on and it is in the automatic mode)

1 TURNONFL RR turn-on in progress
RADTIME: Single precision storage for the complement of the value of LOSCALAR at the time bit 4 of channel 13 was set, scaled B9 in units of centiseconds.

RDES: Desired RR position angle (shaft or trunnion); a single precision variable in two's complement form, scaled B-1 in units of revolutions.

RFAILCNT: Single precision counter scaled B14 and used to keep track of the number of unsuccessful attempts to read the radar data.

RNRAD: Single precision LGC counter advanced directly by whichever radar circuit is enabled for sampling, scaled B14 in units of counts. \(\frac{\text { Sample }}{\text { RRRDOT }}\) RRRANGE
\begin{tabular}{llll} 
low scale & 2.859024 & meters & 9.38 feet \\
high scale & 22.872192 & meters & 75.04 feet \\
RVELX & -0.1962912 & meters/second & -0.6440 fps \\
RVELY & 0.3694176 & meters/second & 1.212 fps \\
RVELZ & 0.2642006 & meters/second & 0.8668 fps \\
RALT & & & \\
low scale & 0.3288792 & meters & 1.0790 feet \\
high scale & 1.644296 & meters & 5.3950 feet
\end{tabular}

RADR - 31

RRINDEX: Single precision index to indicate whether the content of RDES is a desired shaft angle (1) or a desired trunnion angle (0), scaled B14.

RRRET: Single precision octal return address storage.
RRTARGET: Desired line-of-sight vector, a double precision unit vector scaled B1 in stable member or navigation base coordinates (see FLAGWRDO bit 6).

RSAMPDT: A cell used for storage of the low-speed sampling interval, in centiseconds scaled B14.

RSTACK: A series of 4 double precision cells loaded with radar sample data for display in nouns. 66 and 67. ( \(i=0,2,4,6\) )

RTSTBASE: Single precision quantity scaled B14 used to set RTSTDEX for LR or RR sampling in an automatic sampling mode.

RTSTDEX: An option loaded by the astronaut or set by the program to designate the specific radar data to be sampled single precision, scaled B14.

RTSTIOC: A single precision index used to postion sampled data in the downlink communication cells RSTACK RTSTLOC \({ }^{-}\)

RTSTMAX: A single precision limit on the number of RSTACK \(_{i}\) cells to be loaded, scaled B14.

SAMPLIM: A limit on the number of sampling cycles that may be executed in a given sampling interval to limit the number of bad samples that may be attempted before the sampling is abandoned, scaled B14.

SAMPLSUM: Double precision total of radar data accumulated in \(n\) sampling intervals ( \(n\) always 1 for \(R R\) and LRALT), scaled B28 in units of radar input counts. Sample Type

Value for 1 sample RRRDOT RRRANGE -0.19135344 meters/second 2.859024 meters LRVELX -0.1962912 meters/second LRVELY 0.3694176 meters/second LRVELZ 0.2642006 meters/second LRALT 0.3288792 meters

SINTH: See COOR section.
[SMNBMAT]: See COOR section.
TANG \(_{0}\), TANG \(_{1}\) : Single precision storage for desired values of or desired changes in the RR trunnion and shaft angles, respectively. Scaled B-1 in units of revolutions, two's complement form in the "RRDESNB" and "R21LEM" routines. Scaled B2 in units of radians (one's complement form) in the "DODES" routine.

TANGNB \(_{0}\), TANGNB \({ }_{1}\) : Temporary two's complement storage (astronaut desired or radar marked) radar position angles (trunnion and shaft, respectively), scaled B-1 in units of revolutions.

THETA: See COOR section.
TIMEHOLD: Double precision time at the middle of the total sampling interval (assuming no bad samples), scaled B28 in units of centiseconds.

TIMENOW: See EXVB section.
TRUNNCMD \({ }_{0,1}\) : Single precision storage for the desired values of the \(R R\) trunnion and shaft angle drive rates, respectively. Scaled B14 in units of \(R R\) drive pulses. An alternate mnemonic for TRUNNCMD \({ }_{1}\) is SHAFTCMD.

TTOGO: See BURN section.
TTOTIG: Double precision time to TIG, loaded in the radar read routine "RADAREAD" at the time of the radar reading, scaled B28 in units of centiseconds.
－

品

\section*{Rendezvous Navigation}

PROG20 If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :
```

(PROG22) Switch FLAGNRD1 bit 8 (VEHUPFLG) to 0
Proceed to "PROG2OA"
ORBCHGO Switch FLAGWRD1 bit 8 (VEHUPFLG) to 1
OPTION2 = 1 (CSM orbit option)
Proceed to "GOPERF4" with OPTION1 = 00012g
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
at next step; other response, repeat this step.)
If OPTION2 = 1, proceed to "PROG2OA"
Proceed to "GOFLASH" with TS = K:VO6N33
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
with next step; other response, repeat this step.)
Perform "INTSTALL"
TS lnchtm}= TIG
TDEC1 = TIG
Switch FLAGWRD3 bits 4 (INTYPELG), 3 (VINTFLAG), 2 (D60R9FLG)
and }1\mathrm{ (DIMOFLAG) to 0
Perform "INTEGRV"
RSUBL = RATT
TDEC1 = TAT
Perform "INTSTALL"
Switch FLAGGND3 bit 3 (VINTFLAG) to 1
Switch FLAGNRD3 bits 4 (INTYPFLG) and 1 (DIMOFLAG) to 0

```
RNAV - 1
```

If FLAGWRD5 bit 1 (RENDWFLG) $=1$:
Switch FLAGNRD3 bits 1 (DIMOFLAG) and 2 (DGOR9FLG) to 1
Perform "INTEGRV"
$\underline{\text { VSUBC }}=\underline{\text { VATI }}$
$\underline{\text { RSUBC }}=\underline{\text { RATT }}$
$\underline{U C S M}=u n i t\left(\underline{R S U B L}{ }^{*} \operatorname{unit}\left(\underline{R S U B C}^{*} \underline{V} S U B C\right)\right)$
CSTH $=$ unit $(\underline{\text { RSUBC }}) \cdot \underline{U C S M}$
$\mathrm{SNTH}=\sqrt{1-\mathrm{CSTH}^{2}}$
$\underline{R} V E C=\underline{R S U B C}$
$\underline{V V E C}=-\underline{V} S U B C$
Switch FLAGWRD7 bit 9 (RVSW) to 0
Perform "TIMETHET"
NEWVEL $=-\underline{T S}_{V}$
NEWPOS $=$ TS $_{r}$
$\mathrm{TS}_{\text {transtm }}=\mathrm{T}$
NCSMVEL $=|\underline{N E W V E L}|$ unit(unit(NEWPOS*RSUBL)*NEWPOS)
Perform "InTSTALL"
$T E T=T S_{\text {lnchtm }}-T_{\text {transtm }}$
RRECT $=\underline{\text { NEWPOS }}$
$\underline{R C V}=\underline{N E W P O S}$
$\underline{V R E C T}=\underline{N C S M V E L}$
$\underline{V C V}=\underline{N C S M V E L}$
TDELTAV $=0$

```

TNUV \(=0\)
\(\mathrm{TC}=0\)
XPREV \(=0\)
PBODY \(=2\)
Perform "MOVEACSM"
Switch FLAGWRD8 bit 12 (CMOONFLG) to 1
Perform "SVDWN1"
Set FLAGWRD8 bit 12 (CMOONFLG) = FLAGWRDO bit 12 (MOONFLAG)
Perform "INTWAKE1"
PROG2OA Perform "RO2BOTH" (IMU status check routine)
Switch FLAGWRD1 bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
Switch FLAGWRDO bit 7 (RNDVZFLG) to 1
Switch FLAGWRD2 bits 14 (SRCHOPTN) and 13 (ACMODFLG) to 0
Switch FLAGWRD3 bit 9 (RO4FLAG) to 0
Switch FLAGWRD5 bit 4 (NORRMON) to 0
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 channel 12 *o 0
P2OLEM1 TRKMKCNT \(=0\)
TDEC1 \(=\) TIMENOW
Perform "LPS20.1" (get RR target vector)
If MLOSV \(\supseteq \mathrm{K}: \mathrm{FH} M\) :
Perform "PRIOLARM" with TS \(=005268\)
(If terminate, proceed to "TRMTRACK"; if proceed, repeat this step; other response, proceed to "P2OLEM1".)

End job
P20LEMA If FLAGWRD8 bit 8 (SURFFLAG) \(=0\), perform "R61LEM"
\[
\text { RNAV - } 3
\]

P2OLEMB Change priority to 268
If FLAGWRD1 bit 5 (TRACKFLG) \(=0\), proceed to "P20LEMWT"
P2OLEMB7 If bit 2 of channel \(33=0\), proceed to "P20LEMB3" (RR auto mode)
If MODREG \(\neq 20\) and if MODREG \(\neq 22\) :

Perform "PRIOLARM" with TS \(=005140\)
(If terminate, proceed to "TRPTRACK"; if proceed, proceed to "P2OLEMB"; other response, proceed to "P20LEMB":)

End job
Proceed to "GOPERF1" with TS \(=00201\)
(If terminate, proceed to "TRMTRACK"; if proceed, proceed to "P2OLEMB"; other response, continue at next step.)

If FLAGWRD8 bit 8 (SUUFFLAG) \(=1\) :
Switch bit 7 of channel 11 to 1 (operator error lamp)
Proceed to "P20LEMB"
Proceed to "R23LEM" (manual acquisition monitor)
P20LEMB1 Switch FLAGWRD2 bit 13 (ACMODFLG) to 1
Proceed to "P20LEMB"
P2OLEMB3 If RADMODES bit 13 (RCDUOFLG) \(=1\) : (RR just turned on and
Delay 2.5 seconds
Proceed to "P20LEMB3"
If FLAGWRD2 bit 14 (SRCHOPTN) or 13 (ACMODFLG) \(=1\) :
Switch FLAGWRD2 bits 14 (SRCHOPTN) and 13 (ACMODFLG) to 0
Proceed to "P2OLEMWT"
\[
\text { RNAV - } 4
\]
```

P2OLEMC3 TDEC1 = TIMENOW
Perform "UPPSV"
P2OLEMC If FLAGWRDO bit 7 (RNDVZFLG) = 0, end job
If FLAGWRD1 bit 5 (TRACKFLG) = 1, proceed to "P2OLEMF"
Call "P2OLEMD1" in 15 seconds
End job
P2OLEMD1 If FLAGWRD1 bit 5 (TRACKFLG) = 0: (stall until TRACKFLG
Call "P2OLEMD1" in 15 seconds continue at automatic
acquisition)
End task
Establish "P2OLEMC3"
(pr26)
End task
P2OLEMF Proceed to "R21LEM"
P2OLEMWT Call "P2OLEMC1" in 2.5 seconds
End job
P20LEMC1 If FLAGWRDO bit 7 (RNDVZFLG) = 0, end task
If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Call "P2OLEMC1" in 15 seconds
End task
Establish "R22LEM42" (pr26)
End task
PROG21 OPTION2 = 1
Proceed to "GOPERF4" with OPTION1=2
(If terminate, proceed to "GOTOPOOH"; if proceed, continue
at next step; other response, repeat this step.)
RNAV - 5

```
```

 DSPTEM1 dp = 0
 Proceed to "GOFLASH" with TS = K:VO6N34 (get time in DSPTEM1)
 (If terminate, proceed to "GOTOPOOH"; if proceed,
 continue at the next step; other response, repeat this
 step.)
 TS = DSPTEM1 }d
If TS = O,TS = TIMENOW
TDEC1 = TS
Perform "INTSTALL"
If FLAGWRDO bit 11 (P21FLAG) = 1:
Proceed to "P21CONT"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
If |OPTION2|\ 2: (CSM option)
Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 4 (INTYPFLG) to 0
Perform "INTEGRV"
P21VSAVE P21TIME = TAT
P21BASER = RATT (scaled B29 or B27)
P21BASEV = VATT (scaled B7 or B5)
P21VEL = |VATT | (insured scaling of B7 for N91 display)
P21GAM = arcsin (unit RATT - VATT / P21VEL) (RATT-B29, VATT-B7)
P210RIG = PBODY (PBODY in index register 2)
If |OPTION2| { 1:
If FLLAGWRD8 bit 8 (SURFFLAG) = 1:
Skip next line
Switch FLAGWRDO bit 11 (P21FLAG) to 1

```
```

 Switch FLAGWRD3 bit 12 (LUNAFLAG) to 0
 If P210RIG f 0 :
 Switch FLAGWRD3 bit.12 (LUNAFLAG) to 1
 ALPHAV = RATT
 TS
 Switch FLAGWRD1 bit 13 (ERADFLAG) to 0
 Perform "LAT-LONG"
 P21ALT = ALT K:K.01' %. (ALT/100 for N91 display)
 Proceed to "GOFLASH" with TS = K:VO6N43 (LAT, LONG, ALT)
 (If terminate, proceed to "GOTOPOOH"; if proceed, proceed
 to "GOTOPOOH"; other response, continue at next step.)
 DSPTEM1dp = P21TTME + K:600SEC
 Proceed to the fourth step of "PROG21"
 P21CONT RCV = P21BASER
VCV = P
TET = P21TIME
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If P2TORIG }\not=0\mathrm{ :
Switch FLAGWRDO. bit 12 (MOONFLAG) to 1
Perform "INTEGRVS"
Proceed to "P21VSAVE"
PROG25 Perform "RO2BOTH"
Switch FLaGWRD1 bit 5 (TRACKFLG) to 1

```
        RNAV - 7
```

 Switch FLAGwRDO bit 9 (P25FLAG) to 1
 Switch FLAGWRDO bit 7 (RNDVZFLG) to O
 P25LEM1 If FLAGWRDO bit 9 (P25FLAG) = 0, end job
If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Delay 60 seconds
Establish "P25LEM1"
(pr14)
End job
R65CNTR = 7
Perform "R65LEM"
Proceed to "P25LEM1"
LPS20.1 LS21X = return address
If FLAGWRD2 bit 12 (LOSCMFLG) = 1:
If FLAGWRD8 bit 8 (SURFFLAG) = 1, proceed to "CSMINT"
Perform "LEMCONIC"
LMPOS = RATT
LMVEL = VATT
TDEC1 = TAT
CSMINT Perform "CSMCONIC"
TS = [REFSMMAT] (VATT - LMVEL)
Remove "STDESIG" from waitlist if it is there
LOSVEL = TS
TS = RATT - LMMPOS
If FLAGWRDO bit 7 (RNDVZFLG) = 1:
If OVFIND }\not=0\mathrm{ , OVFIND = 0
TS}=unit(TS\times2.29
RNAV - 8

```
(If FLAGWRDO bit 7 (RNDVZFLG) \(=1:\) )
If OVFIND \(\neq 0\) : (OVFIND reset to 0)
Perform "PRIOLARM" with TS \(=00526\) (If terminate, proceed to "TRMTRACK"; if proceed, repeat this step; other response, proceed to "P20LEM1".)
End job
If FLAGWRDO bit 7 (RNDVZFLG) \(=0\) :
\(\underline{T S}=\) unit \(\underline{T} S\)
If OVFIND \(\neq 0\) : (OVFIND reset to 0 )Perform "PRIOLARM" with TS \(=00526\)(If terminate, proceed to "TRMTRACK"; ifproceed, repeat this step; other response,proceed to "P20LEM1".)
End job
RRTARGET \(=\) [REFSMMMT] unit TS
MLOSV \(=|\underline{T S}|\)
Switch FLAGWRDO bit 6 (RRNBSW) to 0
Proceed to ..... LS21X
UPPSV LS21X = return address
Perform "INTSTALL"
Perform "SETIFLGS"
If FLAGWRD5 bit 1 (RENDWFLG) = 1 :
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 1
If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :
Switch FLAGWRD3 bit 2 (D60R9FLG) to 1
If FLAGWRD1 bit 8 (VEHUPFLG) \(=0\) :
Switch FLAGWRD3 bit 3 (VINIFLAG) to 0
Perform "INTEGRV"
Perform "INTSTALL"
Switch FLAGWRD3 bit 3 (FINTFLAG) to 1
(If FLAGWRD1 bit 8 (VEHUPFLG) \(=0\) :)
```

 TDEC1 = TETLEM
 Proceed to "UPPSV4"
 Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
 Perform "INTEGRV"
 Perform "INTSTALL"
 TDEC1 = TETCSM
 Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
 TPPPSV4 Perform "SETIFLGS"
Perform "INTEGRV"
If FLAGWRD8 bit 8 (SURFFLAG) = 0:
Proceed to "P20LEMC"
LMPOS = RCVLLEM (rescaled by 2-2)
IMVEL = VCVLEM (rescaled by 2-2)
Return via LS21X
R61LFMM GENRET = return address
Switch FLAGWRD1 bit 10 (R61FTAG) to 1
Proceed to "R61C+L02"
R65LEM GENRET = return address
Switch FLAGWRD1 bit 10 (R61FLAG) to 0
R61C+LO1 If bit 4 of channel 33=1, proceed to "R61C+LO2"
Switch FLAGWRD3 bit 9 (RO4FLAG) to 1
Perform "RRRDOT"
Perform "RADSTALL"
Perform "RRRANGE"

```
                RNAV - 10
```

 Perform "RADSTALL"
 Switch FLAGWRD3 bit 9 (RO4FLAG) to 0
 R61C+LO2 If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Proceed to "P2OLEMWT"
SCAXIS = K
TDEC1 = TIMENOW + K:3SECONDS
Perform "LPS20.1" (get RR target vector)
POINTVSM = RRTARGET
Inhibit interrupts
TScdu = CDUD
Release interrupt inhibit
Perform "VECPNT1"
THETAD = TS S.
If FLAGWRD1 bit 5 (TRACKFLG) = 0:
Proceed to "P2OLEMNT"
If bit 10 of channel 30 or bit 14 of channel 31=1:
Perform "BALIANGS"
Proceed to "R61C+L06"
TSref = RRTARGET

```
        RNAV - 11
```

 Perform "CDUTRIG"
 Perform "SMTONB"
 TS ref = [SMNBMAT] TS ref
 If TS refz - K:COSl5DEG<0:
 Inhibit interrupts
 Perform "ZATTEROR"
 Perform "SETMINDB"
 Switch FLAGWRD5 bit 6 (3AXISFLG) to 0
 Switch FLAGWRD4 bit 12 (PDSPFLAG) to 1
 Perform "R60LEM"
 Inhibit interrupts
 Periorm "RESTORDB"
 Switch FLAGNRD4 bit 12 (PDSPFLAG) to 0
 Proceed to "R61C+L06"
 Inhibit interrupts
 CDUD = THETAD
    ```
    Release interrupt inhibit
\(\underline{\text { R61C+L06 }}\) If FLAGWRD1 bit 10 (R61FLAG) \(=1\) or \(\mathrm{R} 65 \mathrm{CNTR}=0\), return
    via GENRET
    R65CNTR \(=\) R65CNTR -1
        RNAV - 12
```

 Delay 6 seconds
 Establish "R61C+L01" (pr 26)
 Proceed to "ENDOFJOB"
 R21LEM Switch bit 14 channel }12\mathrm{ to 0
If FIAGNRD8 bit 8 (SURFFLAG) = 0:
TANG
TANG1 = 0
If FLAGWRD8 bit 8 (SURFFLAG) = 1:
If RADMODES bit 12 (ANTENFLG) = 1:
Proceed to "R21IEM10"
TANG O = -\frac{1}{2}
TANG
Switch FLAGWRDO bit 5 (LOKONSW) to 0
Perform "RRDESNB"
Perform "RADSTALL"
If RADGOOD = 0:
Perform "PRIOLARM" with TS = 00503,
(If terminate, proceed to "TRATRACK"; if proceed,
proceed to "R24IEM"; other response, proceed
to "P2OIEMC3".)
End job
R21IEM10 Switch FLAGWRD2 bit 12 (LOSCMFLG) to 1
DESCOUNT = K:MAXTRIES
R21IEM2 LOSCOUNT = 3
R21LEM1 TDEC1 = TIMENOW + K:HALFSEC
Perform "LPS20.1" (get RR target vector)
RNAV - }1

```
```

 Switch FLAGWRDO bit 5 (LOKONSW) to 1
 Switch FLAGWRD5 bit 4 (NORRMON) to 0
 Perform "RRDESSM"
 If RADLIMCK = 0: (not within mode 2 limits on lunar surface)
 Proceed to "R21IEM4"
 If RADLIMCK = 1: (not within limits in either mode)
 Proceed to "P2OLEMA"
 (Otherwise, RADLIMCK = 2)
 Perform "RADSTALL"
 If RADGOOD = 0 : (lock-on not achieved)
 Perform "PRIOLARM" with TS = 00503,
 (If terminate, proceed to "TRMTRACK"; if proceed,
 proceed to "R24IEM"; other response, proceed
 to "P2OLEMC3".)
 End job
 Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
 If FLAGWRD8 bit 8 (SURFFLAG) = 1, proceed to "P2OLEMWT"
 Proceed to "R21DISP要
 R21LEM4 REPOSCNT = K:MAXTRIES
Switch FLAGWRDE bit 10 (FSPASFLG) to 1
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
REPOSTM = TIMENOW + K:TENSEC
TDEC1 = TIMENOW + K:TENSEC

```
        RNAV - 14
```

60TIMES Perform "LPS20.1"
Perform "RRDESSM"
If RADLIMCK = 0:
If REPOSCNT = 0: (looked 600 seconds ahead did not find)
Perform "PRIOLARM" with TS = 5308
(All responses go to "TRMTRACK")
End job
REPOSCNT = REPOSCNT - 1
REPOSTM = REPOSTM+K:TENSEC
TDEC1 = REPOSTM (old designate time plus 10 seconds)
Proceed to "60TIMES"
If RADLIMCK = 1:
End of job
If RADLIMCK = 2:
Remove "BEGDES" from waitlist
If FLAGWRDO bit 10 (FSPASFLG) = 0:
Proceed to "R21LEM8"
Switch FLAGWRDO bit 10 (FSPASFLG) to 0
REPOSTM = REPOSTM }+\textrm{K}:TENSE
TDEC1 = REPOSTM (old designate time plus 10 seconds)
Proceed to "60TIMES"

```
        RNAV - 15
```

R21LEM8 TDEC1 = REPOSTM
Perform "UPPSV"
Switch RADMODES bit 15 (CDESFLAG) to 1
Switch FLAGWRDO bit 5 (LOKONSW) to 0
Switch FLAGWRD5 bit 4 (NORRMON) to 1
Perform "RRDESNB"
Call "R21LEM9" in (REPOSTM-TIMENOW seconds)
End of job
R21LEM9 Remove "STDESIG" from waitlist
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel }12\mathrm{ to 0
Establish "R21LEM10" (pr26)
End task
R21DISP Perform "GOPERF2R" with TS = K:VO6N72. (CDU
(If terminate, proceed to "TRMTRACK"; if proceed, proceed
to "P2OLEMNT"; other.response, repeat this step.)
Perform "BLANKET" with TS = 00100%
End of job
R22LEM42 If FLAGWRD8 bit 8 (SURFFLAG) = 0:
R65CNTR = 2
Perform "R65LEM"
Proceed to "R22LEM"
Delay 2 seconds
Proceed to "R22LEM"

```
        RNAV - 76

If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end job
If FLAGWRD1 bit 5 (TRACKFLG) = 0, proceed to "R22WAIT"
If bit 14 of channel \(12=0\) : ( \(R\) tracker disabled)
Proceed to "P20LEMA"
If bit 2 of channel \(33=1\) : (RR AUTO mode switch not set)
Proceed to second step of "P2OLEMB7"
If RADMODES bit 13 (RCDUOFLG) = 1 :
Proceed to "R22LEM42"

\section*{Perform "LRS22.1"}

If TSerror \(=1\), proceed to "P2OLEMC"
If TSerror \(=2: \quad\) (actual LOS differs from computed LOS)
Perform "PRIOLARM" with \(T S=005258\)
(If terminate, proceed to "TRMTRACK"; if proceed, skip next step; other response, repeat this step.)

End job
Proceed to "PRIODSP" with TS = K:VO6NO5 (display deviation)
(If terminate, proceed to "TRMTRACK"; if proceed, continue at next step; other response, proceed to "P2OLEMC".)

If FLAGWRD8 bit 8 (SURFFLLAG) \(=0\) :
If FLAGWRD1 bit 5 (TRACKFLG) \(=0\), proceed to "R22WAIT"
If arccosRRBORSIT \({ }_{z} \geq \mathrm{K}: 30 \mathrm{DEG}\) :
Perform "R61LEM"
Proceed to "R22WAIT"
If FLAGWRD1 bit 6 (NOUPFLAG) \(=1\) :
Proceed to "R22LEM42"
If FLAGWRD1 bit 7 (UPDATFLG) \(=0\) :
Proceed to "R22LEM42"
Perform "LSR22.3"
TRKMKCNT \(=\) TRKMKCNT +1
If FLAGWRD8 bit 8 (SURFFLAG) \(=0\) :R65CNTR \(=5\)
Perform "R65LEM"
Proceed to "R22LEM"
Delay 2 seconds
Proceed to "R22LEM"
R22LEM96 N49FLAG \(=0\)
Establish "N49DSP" ..... (pr27)
If \(\mathrm{N} 49 \mathrm{FLAG}=0\), repeat this step (delay until N49FLAG \(\neq 0\) )
If N49FLAG < 0 :
If N49FLAG \(=-2\), proceed to "R22LEM"Proceed to "ASTOK"
Return via LGRET
R22WAIT Call "P20LEMC1" in 15 seconds
Proceed to second step of "P2OLEMWT"
R22RSTRT Perform "RRRDOT" (If a restart occurs while reading radar Perform "RADSTALL"If RADGOOD \(=0\), proceed to "P2OLEMC"(could not read radar)
Proceed to "R22LEM"
N49DSP Proceed to "PRInDSP" with TS= K:VO6N49
        (If terminate, set N49FLAG to - 2 and end job; if
        proceed, set N49FLAG = -1 and end job; other
        response, set N49FLAG to + value and end job.)
R23LEM Switch FLAGWRD5 bit / / (NORRMON) to 1
Perform "SETMINDB" with interrupts inhibited
Swit.ch bit 14 of channel 12 to 1 ( \(R R\) track enable)
Proceed to "GOPERF1" with TS \(=00205\) g (request manual acquisition)(If terminate, proceed to "R23LEM2"; if proceed, continueat next step; other response, proceed to "R23LEM3".)
Inhibit interrupts
Perform "RRLIMCHK" with \(\mathrm{TS}_{\mathrm{O}}=\mathrm{CDU}_{\mathrm{t}}\) and \(\mathrm{TS}_{1}=\mathrm{CDU}_{\mathrm{s}}\)
If TSchk \(=0\) : (Manual acquisition not within limits)
Perform "PRIOLARM" with TS \(=00501\)
(If terminate, proceed to "R23LEM2"; if proceed,repeat this step; other response, proceed to "R23LEM3".)
End job
Perform "RESTORDB"
Release interrupt inhibit
Switch FLAGWRD5 bit 4 (NORRMON) to 0
Proceed to "P2OLEMB1"
RNAV - 19
```

R23LEMR Switch FLAGWRD5 bit 4 (NORRMON) to 0
Proceed to "TRMTRACK"
R23LEM3 Perform "R61LEM"
Proceed to third step of "R23LEM"
R2LLEM Switch FLAGWRD2 bit 14 (SRCHOPTN) to 1
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
DATAGOOD = 0
OMEGDISP = 0
Perform "PRIODSPR" with TS = K:V16N80 (monitor DATAGOOD, OMEGDISP)
(If terminate, proceed to "TRMTRACK": if proceed, proceed
to "R24END"; other response, proceed to "R24LEM3".)
Proceed to "LRS24.1"
R24END Remove "CALLDGGH" from waitlist (kill it)
Switch RADMODES bits 10 (DESIGFLG) and 15 (GDESFLAG) to 0
Switch bit 2 of channel }12\mathrm{ to O (disable RR CDU error counters)
Proceed to "P2OLEM1"
R24LEM3 Remove "CALLDGCH" from waitlist (kill it)
Switch RADMODES bits 10 (DESIGFLG) and 15 (CDESFLAG) to 0
Switch bit 2 of channel 12 to O (disable RRCDU Error Counters)
Delay 0.5 second
If FLLAGWRD8 bit 8 (SURFFLAG) = 0:
Perform "R61LEM"
RADCADR = +0
RNAV - 20

```
```

 Proceed to fifth step of "R24LFM"
 LRS22.1
Switch FLAGWRD5 bit 10 (RNGSCFLG) to 0
Inhibit interrupts
Set RADMODES bit 3 (RRRSFLAG) = bit 3 of channel 33 (RR range
scale)
Release interrupt inhibit
READRDOT Perform "RRRDOT" (read RR range-rate)
Perform "RADSTALL"
If RADGOOD = 0:
TSerror = 1
Return
Inhibit interrupts
TS 586 = TIMEHOLD
RDOTMSAV = SAMPLSUM
TS 3}=\mp@subsup{\textrm{CDU}}{\textrm{y}}{
TS}
TS
TS
TANG
TANG
Release interrupt inhibit
Perform "RRRANGE" (read RR range)
Perform "RADSTALL"

```
RNAV - 21
```

If RADGOOD = 0:
If FLAGWRD5 bit 10 (RNGSCFLG) = 1:
Proceed to "READRDOT"
TSerror = 1
Return
Inhibit interrupts
RANGRDOT = DNRADATA }1\&
MKTIME = TS
AIG = TS 3
AMG = TS
TANGNB
TANGNB
AOG = TS 2
release interrupt inhibit
RDOTM = K:RDOTCONV RDOTMSAV (scaled to (meters/centisecond)/27)
RRTRUN = TANG converted to one's complement form
RRSHAFT = TANG
RM = K:RANGCONV SAMPLSUM
Perform "RRNB" (determine actual LOS from radar position angles)
RRBORSIT = TS
TDEC1 = TS
Perform "LPS20.1" (get estimate of LOS based of present state
vector information)

```

Perform "CD*TR*GS" with \({ }^{A N G}=\) (AOG, AIG, AMG)

\section*{Perform "SMTONB"}

TS \(=\) SMNBMAT] RRTARGET
DSPTEM1 \(=\arccos (\underline{T} S \cdot \underline{R R B O R S I T)}\) ) (angular error between If DSPMEM1 \(\mathbb{Z}:\) THREEDEG:

TSerror \(=2\)
Return
TSerror \(=0\)
Return
LSR22. 3 If FLAGWRD8 bit 8 (SURFFLAG) \(=1\) :
Proceed to "LSR22.4"
Switch FLAGWRD5 bit 9 (DMENFLG) to 1
If FLAGWRD1 bit 8 (VEHUPFLG) \(=1\) :
Perform "INTSTALL"
Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
Perform "SETIFLGS"
TDEC1 \(=\) MKTIME
Perform "INTEGRV" (LM)
Perform "INTSTALL"
Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
If FLAGWRD5 bit 1 (RENDWFLG) \(=1\) :
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D6OR9FLG) to 1
Switch FLAGWRD3 bits 3 (VINTFLAG) and 5 (STATEFLG) to 1
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
TDEC1 \(=\) MKTIME
\[
\text { RNAV - } 23
\]
```

 (If FLAGWRD1 bit 8 (VEHUPFLG) = 1:)
 Perform "INTEGRV"
 If FLAGWRD5 bit 1 (RENDWFLG)=0:
 Perform "WLINIT"
 Proceed to "RANGEBQ"
 Perform "INTSTALL"
 Switch FLAGWRD3 bit 3 (VINTFLAG) to 1
 Perform "SETIFLGS"
 TDEC1 = MKTIME
 Perform "INTEGRV"
 Perform "INTSTALL"
 Switch FLAGWRD3 bit 1 (DIMOFLAG) to 0
 If FLAGWRD5 bit 1 (RENDWFLG) = 1:
 Switch FLAGWRD3 bits 1 (DIMOFLAG) and 2 (D60R9FLG) to 1
 Switch FLAGWRD3 bits 3 (VINTFLAG) and 4 (INTYPFLG) to 0
 Switch FLAGWRD3 bit 5 (STATEFLG) to 1
 TDEC1 = MKTTME
 Perform "INTEGRV"
 If FLAGWRD5 bit 1 (RENDWFLG) = 0:
 Perform "WLINIT"
 Proceed to "RANGEBQ"
 LSR22.4 Perform "INTSTALL"
Switch FLAGWRD3 bit 5 (STATEFLG) to 1 (On\y two flag
settings necessary
because of SURFFLAG = 1)
RNAV - 24

```
```

Switch FLAGWRD3 bit 3 (VINTFLAG) to 0
TDEC1 = MKTIME
Perform "INTEGRV"
Switch FLAGWRD5 bit 9 (DMENFLG) to 0
Perform "INTSTALL"
If TRKMKCNT = 0:
Perform "WLINIT"
Switch FLAGWRD3 bit 3(VINTFLAG) to 1
Perform "SETIFLGS" (Standard flag setting for integration)
TDEC1 = MKTIME
Perform "INTEGRV"
Proceed to "RANGEBQ"
Switch FLAGWRD3 bits 1 (DIMOFLAG) and 3 (VINTFLAG) to }
Switch FLAGWRD3 bits 2 (D60R9FLG) and 4 (INTYPFLG) to 0
TDEC1 = MKTIME
Perform "INTEGRV"
Proceed to "RANGEBQ"

```
RNAV - 25

RANGEBQ If FLAGWRD8 bit 8 (SURFFLAG) \(=0:\)
\[
\begin{aligned}
& \text { R65CNTR }=0 \\
& \text { Perform "R65LEM" } \\
& \text { WHCHREAD }=1 \text { (RANGE code in N49) } \\
& \text { TSrlc = DELTACSM + RCVCSM - DELTALEM - RCVLEM (scaling controlled } \\
& \underline{U L C}=\text { unitTSrlc (quasi-floating point) } \\
& \text { BVECTOR }{ }_{0}=\text { ULC } \\
& \text { If FLAGWRD1 bit } 8 \text { (VEHUPFLG) }=0 \text {, } \underline{B V E C T O R}_{0}=-\underline{U L C} \\
& \text { BVECTOR }_{1}=0 \\
& \text { BVECTOR }_{2}=0 \\
& \text { DELTAQ }=\text { RM }-|\underline{T S r l c}| \\
& \text { VARIANCE }=\text { RANGEVAR } \mid \text { TSrlc }\left.\right|^{2} \\
& \text { If VARIANCE } \leq \text { RVARMIN, VARIANCE }=\text { RVARMIN } \\
& \text { Perform "LGCUPDTE" } \\
& \text { WHCHREAD }=2 \quad \text { (R-RATE code in N49) } \\
& \text { TSrlc }=\text { DELTACSM }+ \text { RCVCSM }- \text { DELTALEM }- \text { RCVLEM } \\
& \underline{U L C}=\text { unitTSrlc } \quad \text { (quasi-floating point) } \\
& \text { BVECTOR }_{1}=\underline{T S r l c} \\
& \text { If FLAGWRD1 bit } 8 \text { (VEHUPFLG) }=0 \text {, } \underline{B V E C T O R}_{1}=- \text { TSrlc }^{\text {S }} \\
& \text { TSvlc }=\text { NUVCSM }+ \text { VCVCSM }- \text { NUVLEM }- \text { VCVLEM } \\
& \text { TSrdot }=\text { ULC } \cdot \underline{T S v l c} \\
& \text { VARIANCE }=\text { RATEVAR TSrdot }{ }^{2} \\
& \text { If VARIANCE < VVARMIN, VARIANCE = VVARMIN } \\
& \text { DELTAQ }=\mid \text { TSrlc } \mid(\text { RDOTM }- \text { TSrdot }) \\
& \text { BVECTOR }_{0}=\text { (ULC * TSVIC) * ULC }
\end{aligned}
\]
\[
\text { RNAV - } 26
\]
```

If FLAGWRD1 bit 8 (VEHUPFLG) $=0$, BVECTOR $_{0}=-$ BVECTOR $_{0}$
$\mathrm{BVECTOR}_{2}=0$
appropriate scaling change made (See definition of BVECTOR ${ }_{0}$)
VARIANCE $=$ VARIANCE $|\underline{T S r l c}|^{2}$
Perform "LGCUPDTE"
If FLAGWRD bit 8 (SURFFLAG) $=1$, return (to caller of "LSR22.3")
ANG $=(A O G, A I G, A M G)$
Perform "CD*TR*GSi"
Perform "NBTOSM"
$\underline{X N B}_{\text {ref }}=\left[\right.$ REFSMMAT] ${ }^{T}[$ NBSMMAT] K:UNITX
$\underline{Y N B}_{\text {ref }}=\left[\right.$ REFSMMAT] ${ }^{T}[$ NBSMMAT] K:UNITY
ZNB $_{\text {ref }}=\left[\right.$ REFSMMAT] ${ }^{T}$ [NBSMMAT] K: UNITZ
ISrlc = DELTACSM + RCVCSM - DELTALEM - RCVLEM
$\underline{U L C}=$ unittisrlc
SINTHETA $=-\underline{U L C} \cdot$ YNB $_{\text {ref }}$
$\mathrm{RXZ}=|\underline{\mathrm{T}} \mathrm{Srlc}| \sqrt{1-\text { SINTHETA }^{2}}$
WHCHREAD $=3 \quad$ (shaft code in N49)
SINTH $=$ ULC $\cdot \underline{X N B}_{\text {ref }}$
$\mathrm{COSTH}=\underline{\mathrm{ULC}} \cdot \underline{Z} \mathrm{NB}_{\text {ref }}$
Perform "ARCTAN"
DELTAQ $=$ RXZ ($\mathrm{K}: 2 \mathrm{PId} 8$ RRSHAFT $-\mathrm{K}: 2 \mathrm{PId} 8 \mathrm{THETA}-\mathrm{X789} \mathrm{x}$)
BVECTOR $_{0}=-\operatorname{unit}\left(\underline{\mathrm{ULC}} \mathrm{Z}_{\mathrm{YNB}}^{\text {ref }}\right.$) $)$
If FLAGWRD1 bit 8 (VEHUPFLG) $=0$, BVECTOR $_{0}=-\underline{B V E C T O R}_{0}$
$\mathrm{BV}^{\mathrm{B}} \mathrm{VCTOR}_{1}=0$
$\mathrm{BVECTOR}_{2}=(\mathrm{RXZ}, 0,0)$

```
RNAV \(=27\)
\[
\begin{aligned}
& \text { VARIANCE }=\text { RXZ }^{2} \text { (SHAFTVAR }+\mathrm{K}: \text { IMUVAR) } \\
& \text { Perform "LGCUPDTE" } \\
& \text { TSrlc = DELTACSM + RCVCSM - DELTALEM - RCVLEM } \\
& \underline{U L C}=\text { unitTSrlc } \\
& \text { SINTHETA }=-\underline{U L C} \cdot \underline{Y N B}_{\text {ref }} \\
& R X Z=\mid \underline{T S r l d} \sqrt{1-\text { SINTHETA }^{2}} \\
& \text { WHCHREAD }=4 \text { (trunnion code in N49) } \\
& \underline{B V E C T O R}_{0}=-\left(\underline{U L C} * \underline{Y N B}_{\text {ref }}\right) * \underline{U L C} \\
& \text { If FLAGWRD1 bit } 8 \text { (VEHUPFLG) }=0 \text {, } \text { BVECTOR }_{0}=-\underline{B V E C T O R}_{0} \\
& \text { BVECTOR }_{1}=0 \\
& \text { BVECTOR }_{2}=(0, \mathrm{RXZ}, 0) \\
& \text { VARIANCE }=R X Z Z^{2} \text { (TRUNVAR }+K: \text { IMUVAR) } \\
& \text { DELTAQ }=\text { RXZ (K:2PId8 RRTRUN }-K: 2 P I d 8 \text { arcsinSINTHETA }-X 789 \text { y }) \\
& \text { Perform "LGCUPDTE" } \\
& \text { Return (to caller of "LSR22.3") }
\end{aligned}
\]
RNAW - 28
```

TSv = VATT
TDEC1 = TAT
Perform "CSMCONIC"
LOSDESRD = unit(RATT - RLMSRCH)
VXRCM = unit(unitVATT.. * RATT)
TS
If NSRCHPNT = 0:
RRTARGET = [REFSMMAT] LOSDESRD
If NSRCHPNT = 1:
UXVECT = unit(VXRCM * LOSDESRD)
UYYVECT = unit(LOSDESRD * UXVECT)
RRTARGET = [REFSMMAT] unit(K:OFFSTFAC UYVECT + LOSDESRD)
If NSRCHPNT > 1:
UXVECTPR = UXVECTT
UYVECTPR = UYYECT
UXVECT = unit(K:SIN60DEG UYYECTPR + K:COS60DEG UXVECTPR)
UYVECT = unit(K:COS60DEG UYVECTPR - K:SIN60DEG UXVECTPPR)
RRTARGET = [REFSMMAT] unit(K:OFFSTFAC UYVECT + LOSDESRD)
LOSVEL = TS V
Inhibit interrupts
Remove "STDESIG" from waitlist if it is there
Switch RADMODES bit 15 (CDESFLAG) to 1
Perform "RRDESSM"

```
RAMAV-22
If RADLIMCK \(\neq 2\) : (not within limits)
Perform "ALARM" with TS \(=00527_{8}\)
Inhibit interrupts
Remove a call to "CALLDGCH" from waitlist if it is there
Proceed to "ENDOFJOB"
OMEGCALC TANGNB \({ }_{0}=C D U U_{t}\)
\(\operatorname{TANGNB}_{1}=\mathrm{CDU}_{s}\)
Perform "RRNB" (get LOS vector in nav. base coordinates)
OMEGDISP \(=\arccos \mathrm{TS}_{\mathrm{z}}\)
Proceed to "ENDOFJOB"
CALLDGCH If FLAGWRDO bit 7 (RNDVZFLG) \(=0\), end task
Establish "DATGDCHK"
End task
DATGDCHK If bit 4 of channel \(33=0\) : (RR data good)
DATAGOOD \(=\mathrm{K}:\) ALIL1S
Inhibit interrupts
Remove "STDESIG" from waitlist if it is there
Proceed to "ENDOFJOB"
If NSRCHPNT \(=6\), proceed to "LRS24.1"
NSRCHPNT \(=\) NSRCHPNT +1
Proceed to second step of "LRS24.1"

If RADMODES bit 10 (DESIGFLG) \(=1\), proceed to "R29.LOS"

Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
Switch FLAGWRDO bit 1 (OLDESFLG) to 0
Perform "SETRRECR"
If RADMODES bit 12 (ANTENFLG)= 1:
Call "PREPOS29" in 0.01 second
Switch RADMODES bit 11 (REPOSMON) to 1
Proceed to "NOR29NOW"
Establish "R29REMOJ"
Switch RADMODES bit 10 (DESIGFLG) to 0
Switch RADMODES bit 14 (REMODFLG) to 1
Proceed to "NOR29NOW"
R29.LOS
\(T S_{t}=\) TIMENOW - PIPTIME
\(\underline{T S}=\underline{R} C S M-\underline{R}+T S_{t}(\underline{V C S M}-\underline{V})\)
If FLLAGWRD2 bit 12 (LOSCMFLG) \(=1\), proceed to "NOR29NOW"
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 1
LOSSM \(=\underline{T} S\)
LOSVDTd4 \(=\mathrm{K}: .5\) SECB17 ( \(\underline{\text { VCSM }}-\underline{\mathrm{V}}\) )
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
If FLAGWRDO bit 1 (OLDESFLG) \(=1\), proceed to "NOR29NOW"
Inhibit interrupts
Switch FLAGWRDO bit 1 (OLDESFLG) to 1
\[
\text { RNAU }=34
\]
\[
T S=100
\]
If \(\operatorname{PIPCTR}>0, \quad T S=4\)
Call "BEGDES29" in TS centiseconds
Release interrupt inhibit
Proceed to "NOR29NOW"
R29REMOJ Call "REMODE" in 0.01 second
Perform "RADSTALL"
End job
PREPOS29 \(\operatorname{RDES}=-\frac{1}{2} \quad\left(-180^{\circ}\right)\)
Perform "RRTONLY"
Switch RADMODES bit 11 (REPOSMON) to 0
End task
R29READ Establish "R29RDJOB" ..... (pr26)
Delay 2 seconds
If FLAGNRD3 bit 9 (READRFLG) \(=1\), proceed to "R29READ"
End task
R29RDJOB If FLLAGWRD3 bit 11 (NOR29FLG) = 1, proceed to "ENDR29RD"
If RADMODES bit 2 (AUTOMODE) = 1, proceed to "ENDRRD29"
Perform "RRRDOT"
Perform "RADSTALL"
If RADGOOD = 0, proceed to "ENDRRD29"
\(T S_{t}=T M M E H O L D\)
Inhibit interrupts
\(\mathrm{TS}_{\text {cdut }}=\operatorname{CDU}_{\mathrm{t}}\)
\(T S_{\text {cdus }}=\mathrm{CDU}_{\mathrm{S}}\)
\[
\begin{aligned}
& \mathrm{TS}_{\text {eduy }}=\operatorname{CoDV} \\
& \mathrm{TS}_{\text {cduz }}=\mathrm{CDU}_{\mathrm{z}} \\
& \mathrm{TS}_{\text {edux }}=\operatorname{GDU}_{z} \\
& \text { R29RANGE Perform "RRRANGE" } \\
& \text { Perform "RADSTALL" } \\
& \text { If RADGOOD }=0 \text { : } \\
& \text { If FLLAGWRD5 bit } 10 \text { (RNGSCFLG) }=0 \text {, proceed to "ENDRRD29" } \\
& \text { Switch FLAGWRD5 bit } 10 \text { (RNGSCFLG) to } 0 \\
& \text { Proceed to "R29RANGE" } \\
& \text { Inhibit interrupts } \\
& \mathrm{RM}_{\mathrm{O}}=\text { DNRADATA }_{1} \\
& \mathrm{RM}_{1}=\text { DNRADATA }_{2} \\
& \text { MKTIME }=T S_{t} \\
& \operatorname{TANGNB}_{0}=\mathrm{TS}_{\text {cdut }} \\
& \operatorname{TANGNB}_{1}=T S_{\text {cdus }} \\
& A I G=T S_{\text {cduy }} \\
& \text { AMG }=\text { TS }{ }_{\text {cduz }} \\
& A O G=T S_{\text {edux }} \\
& \text { TRKMKCNT }=1 \\
& \text { Release interrupt inhibit } \\
& \text { End job } \\
& \text { ENDRRD29 Switeh channel } 12 \text { bit } 14 \text { to } 0 \\
& \text { ENDR29RD TRKMKCNT }=0 \\
& \text { Switch FLAGWRD3 bit } 9 \text { (READRFLG) to } 0 \\
& \text { RNPNAL }-3 y^{2} 8
\end{aligned}
\]
```

 End job
 BEGDES29 Establish "R29DODES"
Delay 0.5 second
If RADMODES bit 10 (DESIGFLG) = 0, end task
If FLAGNRD2 bit 12 (LOSCMFLG) = 1:
Delay 0.01 second
Proceed to third line of "BEGDES29"
Switch FLAGWRD2 bit 12 (LOSCMFLG) to 1
Proceed to "BEGDES29"
R29D0DES TANG = 1
If TANG > 0, ISsm = LOSSM
If TANG = 0:
LOSSM = LOSSM + LOSVDTd4
TSsm = LOSSM + LOSVDTd4
TS LOSSM
If TANG > 0:
Inhibit interrupts
TS cdut }= CDUT (t
TS cdus }=\mp@subsup{\textrm{CDU}}{s}{
ANG}=\underline{CDU
Perform "QUICTRIG"
Perform "SMTONB"

```
RNAVA 34
\[
\begin{aligned}
& \underline{U L O S N B}=\left[S_{S N B M A T}\right] \quad \underline{T S}_{\text {LOSSM }} \\
& \text { If TANG }=0 \text {, proceed to }{ }^{\text {RR29DPAS } 2 " ~} \\
& \text { Inhibit interrupts } \\
& \text { TANG }=0 \\
& \mathrm{TS}_{\text {cost }}=\cos _{\text {sp }} \mathrm{TS}_{\text {cdut }} \\
& \mathrm{TS}_{\text {sint }}=\sin _{\text {sp }} T S_{\text {cdut }} \\
& T_{\text {sins }}=\sin _{\text {sp. }} T S_{\text {cdus }} \\
& \mathrm{TS}_{\text {coss }}=\cos _{\text {sp }} \mathrm{TS}_{\text {cdus }} \\
& T S_{m}=T S_{\text {coss }} T S_{\text {cost }} U L O S N B_{z}-T_{\text {sint }} \text { ULOSNB }_{y}+T S_{\text {cost }} T S_{\text {sins }} \text { ULOSNB } \\
& T S m=2 T S m \text { (cosine of angle between actual LOS and radar LOS) } \\
& \text { If overflow, } T S=+1 \text { (overflow will occur when radar LOS } \\
& \text { converges with actual LOS) } \\
& \text { If } T S=+1 \text { : } \\
& \text { Switch bit } 14 \text { of channel } 12 \text { to } 1 \text { (self track enable) } \\
& \text { Release interrupt inhibit } \\
& \text { Proceed to second step of "R29DODES" } \\
& \text { R29DPAS2 } \text { TANG }_{0}=T S_{\text {coss }} \text { ULOSNB }_{x}-\text { TS }_{\text {sins }} \text { ULOSNB }_{z} \\
& T S_{m}=T S_{\text {sint }} T_{s i n s} \text { ULOSNB }_{x}+T_{\text {cost }} \text { ULOSNB }_{y}+T_{\text {coss }} T S_{\text {sint }} \text { ULOSNB } \\
& \text { SHAFTCMD }=K: \text { RR29GAIN TANG }{ }_{0} \\
& \text { TRUNNCMD } D_{0}=K: R R 29 G A I N T S m \\
& \text { If bit } 4 \text { of channel } 33=1 \text { : ( } R R \text { tracker not locked on) } \\
& \text { Perform "RROUT" } \\
& \text { Switch FLAGWRD2 bit } 12 \text { (LOSCMFLG) to } 0 \\
& \text { End job } \\
& \text { Switch RADMODES bit } 10 \text { (DESIGFLG) to } 0 \\
& \text { Switch bit } 2 \text { of channel } 12 \text { to } 0 \text { (disable RRCDU Error Counters) } \\
& \text { Switch FLAGWRD3 bit } 9 \text { (READRFLG) to } 1 \\
& T S=100
\end{aligned}
\]
```

 If PIPCTR > 0, TS = 4
 Call "R29READ" in TS centiseconds
 Switch FLAGWRD2 bit 12 (LOSCMFLG) to 0
End job
WLINIT p = WRENDPOS
v = WRENDVEL
If FLAGWRD8 bit 8 (SURFFLAG) = 1:
p = WSURFPOS
v = WSURFVEL
s = WSHAFT
t = WTRUN
W]}=[$$
\begin{array}{llllllllll}{p}&{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}\\{0}&{p}&{0}&{0}&{0}&{0}&{0}&{0}&{0}\\{0}&{0}&{p}&{0}&{0}&{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{v}&{0}&{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}&{v}&{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}&{0}&{v}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}&{0}&{0}&{}&{s}&{0}&{0}\\{0}&{0}&{0}&{0}&{0}&{0}&{0}&{t}&{0}\\{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}\end{array}
$$
Switch FLAGWRD5 bit 1 (RENDWFLG) to 1
TRKMKCNT = 0
Return
LGCUPDTE LGRET = return address
Perform "INCORP1"
R22DISPR = |⿻上丨LTAX
R22DISPV = | DELTAX |}
If R22DISPR > RMAX or if R22DISPV > VMAX:
Proceed to "R22LEM96" (get astronaut OK)

```

Return via LCRET
INCORP1 EGRESS = return address

If FLAGWRD5 bit 9 (DMENFLLG) \(=0, \underline{Z I}_{2}=0\)
\(T S=\) VARIANCE \(+\underline{Z} I_{0} \cdot \underline{Z I}_{0}+\underline{Z} I_{1} \cdot \underline{Z I}_{1}+\underline{Z I_{2}} \cdot \underline{Z I_{2}}\)
GAMMA \(=1 /(\sqrt{\text { VARIANCE TS }}+T S)\)
Proceed to "NEWZCOMP"

If FLAGWRD5 bit 9 (DNENFLLG) \(=0, \underline{O M E G A}_{2}=0\)
\(\underline{D E L T A X}_{0}=\) OMEGA \(_{0}\) DELTAQ \(/ T S\)
\(\underline{D E L T A X}_{1}=\underline{O M E G A}_{1}\) DELTAQ / TS
DELTAX \(_{2}=\) OMEGA \(_{2}\) DELTAQ \(/ T S\)
Return via EGRESS

NEWZCOMP Set \(T S_{1}\) to the largest \(\left|Z I_{i}\right| \quad(i=0,1,2)\)
\(\mathrm{TS}_{2}=\) (number of leading zeros in \(\mathrm{TS}_{1}\) ) - 2
Shift each \(\underline{Z I}_{i}\) left by \(\mathrm{TS}_{2}\) places ( \(i=0,1,2\) )
Proceed to "INCOR2-3" (effect of TS 2 taken into account in subsequent scaling shifts)
INCORP2 EGRESS = return address
\[
\begin{aligned}
& \text { Perform "INTSTALL" (wait until orbital integration is free) } \\
& \underline{O M E G A M}_{0}=\text { GAMMA } \text { OMECA }_{0} \\
& \text { OMEGAM }_{1}=\text { GAMMA } \text { OMEGA }_{1} \\
& \underline{O M E G A M}_{2}=\text { GAMMA } \underline{O M E G A}_{2} \\
& \text { Switch FLGWRD10 bit } 7 \text { (REINTFLG) to } 1 \\
& \text { (Assure that this job retains control of the } \\
& \text { integration routines even in case of a restart) } \\
& {\left[\begin{array}{lll}
W_{11} & W_{21} & W_{31} \\
W_{12} & W_{22} & W_{32} \\
W_{13} & W_{23} & W_{33}
\end{array}\right]=\left[\begin{array}{lll}
W_{11} & \dot{W}_{21} & W_{31} \\
W_{12} & W_{22} & W_{32} \\
W_{13} & W_{23} & W_{33}
\end{array}\right]-\left[\begin{array}{l}
z I_{0} \\
z I_{0} \\
z I_{0} \\
z
\end{array}\right]\left(\text { OMEGAM }_{0}, \text { OMEGAM }_{0}, \text { OMAEGAM }{ }_{0}\right. \text { ) }} \\
& {\left[\begin{array}{lll}
W_{41} & W_{51} & W_{61} \\
W_{42} & W_{52} & W_{62} \\
W_{43} & W_{53} & W_{63}
\end{array}\right]=\left[\begin{array}{lll}
W_{41} & W_{51} & W_{61} \\
W_{42} & W_{52} & W_{62} \\
W_{43} & W_{53} & W_{63}
\end{array}\right]-\left[\begin{array}{l}
Z I_{0} \\
Z I_{0} \\
Z I_{0} \\
\mathrm{ZI}_{z}
\end{array}\right] \quad\left(\text { OMEGAM }_{1_{x}}, \text { OMEGAM }_{1_{y}}, \text { OMEGAM }_{1}\right)}
\end{aligned}
\]

If FLAGWRD5 bit 9 (DMENFLG) \(=0\), skip next step
\(\left[\begin{array}{lll}W_{71} & W_{81} & W_{91} \\ W_{72} & W_{82} & W_{92} \\ W_{73} & W_{83} & W_{93}\end{array}\right]=\left[\begin{array}{lll}W_{71} & W_{81} & W_{91} \\ W_{72} & W_{82} & W_{92} \\ W_{73} & W_{83} & W_{93}\end{array}\right]-\left[\begin{array}{c}\mathrm{ZI}_{0} \\ \mathrm{ZI}_{0} \\ 2 I_{y} \\ \mathrm{Z}_{\mathrm{z}}\end{array}\right] \quad\left(\right.\) OMEGAM \(_{2}\), OMEGAM \(_{2}, 0\) OMEGAM \(\left._{2}\right)\)

\[
R N A=-38
\]
\(\left[\begin{array}{lll}W_{44} & W_{54} & W_{64} \\ W_{45} & W_{55} & W_{65} \\ W_{46} & W_{56} & W_{66}\end{array}\right]=\left[\begin{array}{lll}W_{44} & W_{54} & W_{64} \\ W_{45} & W_{55} & W_{65} \\ W_{46} & W_{56} & W_{66}\end{array}\right]-\left[\begin{array}{c}Z_{1} \\ 2 I_{1} \\ 2 I_{1} \\ \mathrm{Z}_{z}\end{array}\right]\) (OMEGAM \(1_{x}\), OMEGAM \(_{1}\), OMEGAM \(_{1}\) )
If FLAGWRD5 bit 9 (DMENFLG) \(=0\), proceed to "FAZC"
\(\left[\begin{array}{lll}W_{74} & W_{84} & W_{94} \\ W_{75} & W_{85} & W_{95} \\ W_{76} & W_{86} & W_{96}\end{array}\right]=\left[\begin{array}{ccc}W_{74} & W_{84} & W_{94} \\ W_{75} & W_{85} & W_{95} \\ W_{76} & W_{86} & W_{96}\end{array}\right]-\left[\begin{array}{l}Z_{1} \\ \mathrm{ZI}_{1} \\ \mathrm{ZI}_{1} \\ \mathrm{ZI}_{1} \\ \mathrm{Z}_{\mathrm{z}}\end{array}\right]\left(\right.\) OMEGAM \(\left._{2}, 0 \mathrm{OMEGM}_{2}, \mathrm{OMEGAM}_{2}\right)\)

\(\left[\begin{array}{lll}\mathrm{W}_{47} & \mathrm{~W}_{57} & \mathrm{~W}_{67} \\ \mathrm{~W}_{48} & \mathrm{~W}_{58} & \mathrm{~W}_{68} \\ \mathrm{~W}_{49} & \mathrm{~W}_{59} & \mathrm{~W}_{69}\end{array}\right]=\left[\begin{array}{lll}\mathrm{W}_{47} & \mathrm{~W}_{57} & \mathrm{~W}_{67} \\ \mathrm{~W}_{48} & \mathrm{~W}_{58} & \mathrm{~W}_{68} \\ \mathrm{~W}_{49} & \mathrm{~W}_{59} & \mathrm{~W}_{69}\end{array}\right]-\left[\begin{array}{l}\mathrm{ZI}_{2} \\ \mathrm{ZI}_{2} \\ \mathrm{ZI}_{2} \\ \mathrm{y}_{\mathrm{z}}\end{array}\right]\left(\right.\) OMEGAM \(_{1_{1}}\), OMEGAM \(_{1}\), OMEGAM \(_{1}\) )
\(\left[\begin{array}{lll}\mathrm{W}_{77} & \mathrm{~W}_{87} & \mathrm{~W}_{97} \\ \mathrm{~W}_{78} & \mathrm{~W}_{88} & \mathrm{~W}_{98} \\ \mathrm{~W}_{79} & \mathrm{~W}_{89} & \mathrm{~W}_{99}\end{array}\right]=\left[\begin{array}{lll}\mathrm{W}_{77} & \mathrm{~W}_{87} & \mathrm{~W}_{97} \\ \mathrm{~W}_{78} & \mathrm{~W}_{88} & \mathrm{~W}_{98} \\ \mathrm{~W}_{79} & \mathrm{~W}_{89} & \mathrm{~W}_{99}\end{array}\right]-\left[\begin{array}{l}\mathrm{ZI}_{2} \\ \mathrm{ZI}_{2} \\ \mathrm{ZI}_{2} \\ z_{z}\end{array}\right]\left(\right.\) OMEGAM \(_{2}, 0\) OMEGAM \(_{2}, 0 \mathrm{MEGAM}_{2}\) )
FAZC \(\quad\) TX789 \(=\underline{X} 789+\) DELTAX \(_{2}\)
If FLAGWRD1 bit 8 (VEHUPFLG) \(=1\), perform "MOVEPCSM"
If FLAGWRD1 bit 8 (VEHUPFLG) \(=0\), perform "MOVEPLEM"
\(\underline{T S}=\) TDELTAV + DELTAX \(_{0}\)
PBODY \(=0\) (scaling controlled by PBODY)
If FLaGWRD8 bit 11 (LMOONFLG) \(=1\), PBODY \(=2\)
If overflowitu
\[
\begin{aligned}
& \underline{\mathrm{RCV}}=\underline{\mathrm{DELTAX}}_{0}+\underline{\mathrm{RCV}} \\
& \underline{\mathrm{VCV}}=\underline{\mathrm{DELTAX}}_{1}+\underline{\mathrm{VCV}}
\end{aligned}
\]

RNAV : 39
(If overflow:)Perform "RECTIFY"Proceed to "FAZAB3"
TDELTAV \(=T S\)
\(\underline{T S}=\underline{N N U V}+\) DELTAX \(_{1}\)
If overflow:
\(\underline{\mathrm{V} C V}=\underline{D E L T A X}_{1}+\underline{\mathrm{V} C V}\)
Perform "RECTIFY"
Proceed to "FAZAB3"
\(\underline{T N U V}=\underline{T} S\)
FAZAB3 If FLAGNRD1 bit 8 (VEHUPFLG) \(=1\) :
Perform "MOVEACSM"
Perform "SVDWN1"
If FLLAGNRD1 bit 8 (VEHUPFLG) \(=0\) :
Perform "MOVEALEM"
Perform "SVDWN2"
If FLAGWRD5 bit 9 (DMENFLG) \(=1\) :
\(\underline{X} 789=\) TX789
Perform "INTWAKE"
Return via EGRESS
V67CALL If OVFIND \(=1\), Switch OVFIND to 0
Switch FLAGWRD7 bit 8 (V67FLAG) to 0
Perform "INTSTALL"
RNAWAL 40 :


If OVFIND \(\neq 0\) :
OVFIND \(=0\)
WWPOS \(=K:\) DPPOSMAX
WWVEL \(=K:\) DPPOSMAX
WWBIAS \(=\mathrm{K}:\) DPPOSMAX
If WWPOS > K:FT99999:
WWPOS \(=\mathrm{K}:\) FT99999
Perform "INTWAKE"
\(\mathrm{TS}_{\mathrm{WPOS}}=\mathrm{WWPOS}\)
\(T_{\text {WVEL }}=\) WWVEL
\(T_{\text {WBIAS }}=\) WWBIAS
Proceed to "GOXDSPF" with TS = K:V06N99 (WWPOS, WWVEL, WWBIAS)
(If terminate, proceed to "ENDEXT"; if proceed, proceed to next step; other response, repeat this step.)

If TS WVEL - WWVEL \(+T S_{W P O S ~}-\) WWPOS \(+T S_{\text {WBIAS }}-\) WWBIAS \(\neq 0\) (crew input) Switch FLAGWRD7 bit 8 (V67FLAG) to 1

If FLAGWRD7 bit 8 (V67FLAG) \(=0\), proceed to "ENDEXT"
\(T S_{O}=\) WWPOS (double precision - rescaled for internal use)
\(T S_{1}=\) WWVEL (double precision)
\(\mathrm{TS}_{2}=\) WWBIAS (double precision - rescaled for internal use)
```

If FLAGWRD8 bit 8 (SURFFLAG) = 1:
WSURFPOS = TS O . single precision
WSURFVEL = TS
WTRUN = TS 2 single precision
WSHAFT = TS 2 single precision
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
Proceed to "ENDEXT"
WRENDPOS = TS O . single precision
WRENDVEL = TS 1 single precision
WTRUN = TS 2 single precision
WSHAFT= TS 2 single precision
Switch FLAGWRD5 bit 1 (RENDWFLG) to 0
Proceed to "ENDEXT"

```
RNAV - 42
Change priority to 048
Perform "GOXDSPFR" with TS = K:V16N56 (RR-AZ,RR-ELEV) (Any response, switch bit 5 of EXTVBACT to 0 . and end job.)
Perform "BLANKET" with \(T S=00004\) g (Blank R3)
End job
RRLOSDSP \(\mathrm{TS}_{1}=\mathrm{CDU}_{\mathrm{t}}\)
\(\mathrm{TS}_{2}=\mathrm{CDU}_{\mathrm{S}}\)
Perform "RRNBMPAC"
\(T S_{e}=\operatorname{undt}\left(T S_{z}, 0, T S_{z}\right)\)
\(T S_{a}=T S\)
\(\operatorname{COSTH}=\) TS \(_{\mathrm{e}} \cdot \underline{K} \cdot \mathrm{UNITZ}\)
SINTH \(=\underline{K}:\) UNITX \(\cdot \underline{T S}_{e}\)
Perform "ARCTRIG"
If THETA \(<0\), THETA \(=1+\) THETA
RR-ELEV \(=\) THETA
SINTH \(=\) TS \(_{a} \cdot \underline{K}:\) UNITY
\(\operatorname{COSTH}=\underline{T S}_{a} \cdot \underline{T S}_{e}\)
Perform "ARCIRIG"
If THETA \(<0\), THETA \(=1+\) THETA
RR-AZ \(=\) THETA
Delay 1 second
If bit 5 of EXTVBACT \(=1\), proceed to "RRLOSDSP"
Proceed to "ENDEXT"
```

ALPHA: See CONC section.
ALT: See COOR section.
ANG: See COOR section.
AOG, AIG, AMG: Single precision storage for ICDU angles, scaled B-1 in units of revolutions and stored in two's complement form.

BVECTOR $_{0}$: Double precision vector defining the resolution of a navigation measurement into corrections to the position components of the state vector and the W-matrix; scaled B1 and unitless or scaled. in units of meters per centisecond. Scaling is changed depending on whether BVECTOR 0 or BVECTOR $_{1}$ has the largest unscaled magnitude. That term is then normalized and BVECTOR ${ }_{n}$, BVECTOR $_{1}$, DELTAQ and VARIANCE are rescaled to reflect the change in BVECTOR

BVECTOR 1 : Double precision vector defining the resolution of a navigation measurement into corrections to the velocity components of the state vector and the W-matrix; scaled B24 in units of meters. Scaling change is described in $\mathrm{BVECTOR}_{0}$.

BVECTOR ${ }_{2}$: Double precision vector defining the resolution of a navigation measurement into corrections to the Rendezvous Radar position biases (shaft and trunnion) and the RR components of the W-matrix; scaled B25 in units of meters.
${ }^{C D U_{t, s}}$: See RADR section.
CDU: See COOR section.
CDUD: See DAPA section.
COSTH: See COOR section.
CSTH: See CONC section.
DATAGOOD: Single precision display register, sealed B14 and unitless. Used in Routine 24 to indicate to the astronaut that the RR has acquired a target.

$$
\text { RNAV - } 44
$$

DELTAQ: Double precision difference between measured and predicted values of a navigation measurement; range measurement scaled B29 (earth) or B27 (moon) in units of meters; range-rate measurement scaled B33 (earth) or B31 (moon) in units of meters squared per centisecond; RR position angle measurement scaled B29 (earth) or B27 (moon) in units of meters. Scaling change described in BVECTOR ${ }_{0}$.

DELTAX $_{0}$: Double precision position correction vector scaled B29 (earth) or B27 (moon) in units of meters.

DELTAX : Double precision velocity correction vector, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

DELTAX $: \quad$ Double precision Rendezvous Radar position bias correction vector (shaft and trunnion with third component zero) scaled B5 (earth) or B3 (moon) in units of radians.

DESCOUNT: See RADR section.
DNRADATA $_{i}: \quad$ See RADR section.
DSPTEM1: Temporary storage cell used mainly for display interface purposes.

EGRESS: Single precision octal return address storage cell.

EXTVBACT: See EXVB section.

GAMMA: Double precision weighting factor in update of W-matrix, scaled B-40 in units of meters ${ }^{-2}$ or $\mathrm{B}-48$ in units of centiseconds squared per meter 4.

GENRET: Single precision octal return address storage cell.
K: .5SECB17: Double precision constant stored as 50×2^{-17}, scaled B17 in units of centiseconds. Equation value 50.
K:1.5SECS: Double precision constant stored as 150×2^{-28}, scaled B28 in units of centiseconds.
K:2PId8: Double precision constant stored as $3.141592653 \times 2^{-2}$, scaled B3 and unitless. Equation value: 6.283185306.

K:30DEG: Double precision constant stored as 0.083333333 , scaled BO in units of revolutions. Equation value: 0.083333333 . (Equivalent to 30 degrees.)

$$
\text { RNAV - } 45
$$

K: 3SECONDS: Double precision constant stored as 300×2^{-28} scaled B28 in units of centiseconds. Equation value; 300. (Equivalent to 3.0 seconds.)
K: 600SEC: Double precision constant stored as 60000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 60000. (Equivalent to 10 minutes.)
K:ALL1S: Single precision constant stored as 11111×2^{-14}, scaled B14 and unitless. Equation value: 1111.
K: COS15DEG: Double precision constant stored as 0.96593×2^{-1}, scaled B1 and unitless. Equation value: cosine of 15 degrees.

K:COS60DEG: Double precision constant stored as 0.5 , scaled BO and unitless. Equation value: 0.5 .

K:DPPOSMAX: Double precision constant stored as $37777_{8} 37777_{8}$.
K: FHNM: D.ouble precision constant stored as 740800×2^{-20}, scaled B20 in units of meters. Equation value: 740800. (Equivalent to 400 nautical miles.)
K: FT99999: Double precision constant stored as 30479×2^{-19}, scaled B19 in units of meters.
K: HALFSEC: Double precision constant stored as 50×2^{-28}, scaled B28 in units of centiseconds. Equation value: 50.
K: IMUVAR: Double precision constant stored as $10^{-6} \times 2^{12}$, scaled $B-12$ in units of radians squared. Equation value: 10^{-6}.

K: K. 01: Double precision constant stored as 0.01, scaled BO. Used to convert output from "LAT-LONG" from units of meters to meters $/ 100$.
K:MAXTRIES: Single precision constant stored as 60×2^{-14}, scaled B14 and unitless. Equation value: 60.

K:OFFSTFAC: Double precision constant stored as 0.05678 , scaled BO and unitless. Equation value: 0.05678.
K: RANGCONV: Double precision constant stored as 2.859024×2^{-3}, scaled B3 in units of meters per count. Equation value: 2.859024. (Equivalent to 9.38 feet per count or 2.859 meters per count.)

$$
\text { RNAV - } 46
$$

K: RDOTCONV: Double precision constant stored as $-0.0019135344 \times 2^{7}$, scaled B-7 in units of meters per centisecond per count. Equation value: -0.0019135344. (Equivalent to -0.6278 fps or -0.19135 meters per second per count.)

K:RR29GAIN: Single precision constant stored as -0.53624 , scaled B12 in units of $R R$ drive pulses per radian of error. Equation value: 2196.5. (Equivalent to $\mathrm{K}:$ RDESGAIN as defined in RADR section.)

K:SIN60DEG: Double precision constant stored as 0.86603 , scaled $B 0$ and unitless. Equation value: 0.86603 .
K:TENSEC: Double precision constant stored as 1000×10^{-28} scaled B28 in units of centiseconds. Equation value: 1000. (Equivalent to 10 seconds.)

K:THREEDEG: Double precision constant stored as 0.008333333 , scaled BO in units of revolutions. Equation lue: 0.008333333. (Equivalent to 3.0 degrees.)

K:UNITX, K:UNITY, K:UNITZ: Dauble precision constant unit vectors, scaled B1 and unitless. Equation value: (1, 0, 0), (0, 1, 0) and $(0,0,1)$, respectively.

LAT: See COOR section.
LGRET: Single precision octal return address storage cell.
LMPOS: Double precision temporary storage vector of the LM position, scaled B29 in units of meters.

LMVEL: Double precision temporary storage vector of the LM velocity, scaled B7 in units of meters per centisecond.

LONG: See COOR section.
LOSCOUNT: See RADR section.
LOSDESRD: Double precision desired line-of-sight vector from the LM to the CSM, a unit vector scaled B1 and unitless.

IOSSM: Double precision LOS vector, scaled B24 in units of meters.
LOSVDTAL: Double precision change in LOS vector derived from $\frac{1}{2}$ second of $L 0 S$ velocity, scaled B24 in units of. meters.

LOSVEL: Double precision velocity vector of CSM with respect to LM, scaled B7 in units of meters per centisecond.

LS21X: Single precision octal return address storage cell.
MKTIME: Double precision time at which the RR range rate measurement is made, considered as "time-of the mark" for incorporation purposes, scaled B28.in units of centiseconds.

MLOSV: Double precision magnitude of the LOS vector, scaled B29 in units of meters if FLAGWRDO bit $7=0$, scaled B20 otherwise. (See RNAV - 8)

MODREG: See DATA section.
N49FLAG: Single precision flag to control the delay in "R22LEM96".
[NBSMMAT]: See COOR section.
NCSMVEL: Double precision velocity vector for the velocity after a plane change in routine "ORBCHGO", scaled B7 (earth) or B5 (moon) in units on meters per centisecond.

NEWPOS: Double precision position vector for the state prior to a plane change maneuver, scaled B29 (earth) or B27 (moon) in units of meters.

NEWVEL: Double precision velocity vector for the state prior to a plane shange maneuver, scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

NSRCHPNT: Single precision counter to direct the search pattern in routine 24 to one of its six options, scaled B14 and unitless.

NUVCSM, NUVLEM: See RCVCSM in ORBI section.
$\underline{O M E G A}_{0}$: Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the position components of the state vector and W-matrix; scaled B39 in units of meters squared or B 43 in units of meters cubed per centisecond, for no "NEWZCOMP".

OMEGA $_{1}$: Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the velocity components of the state vector and W-matrix; scaled B2O in units of meters squared per centisecond or B24 in units of meters cubed per centisecond squared, for no "NEWZCOMP".

$$
\text { RNAV - } 48
$$

OMEGA $_{2}$: Double precision vector containing part of the weighting factors to determine the impact of a navigation measurement on each of the $R R$ position biases and the RR components of the W-matrix; scaled B15 in units of meters or B19 in units of meters ${ }^{2} /$ centisecond for no "NEWZCOMP"

OMEGAM $_{0}$, OMEGAM ${ }_{1}$, OMEGAM ${ }_{2}$: Double precision product of GAMMA with OMEGA ${ }_{0}$, $\underline{O M E G A} \bar{A}_{1}$ and $\underline{O M E G A}{ }_{2}$; with variable scaling and units.

OMEGDISP: Double precision angle between line-of-sight vector and $L M+Z$ axis, scaled BO in units of revolutions.

OPTION1, OPTION2: See DATA section.
OVFIND: Single precision cell which is set to some non-zero value if an overflow occurs.

P21ALT: Value of ALI K:K. 01 computed in "P21VSAVE" for (optional) display in R1 of N91, scaled factor B29, units (meters/100): see K: K. 01.

P21BASER: Value of P21 "base" vector for position, scale factor B29 (earth) or (moon), units meters (earth/moon). Loaded after completion of integration to specified input time, and used to initialize the integration if bit 11 (P21FLAG) of FLAGWRDO $=1$, thus permitting computation time to be saved if it is desired to iterate about a point which is a number of orbital integration time steps removed from the "permanent" CSM/LM state vector.

P21BASEV: Value of P21 "base" vector for velocity, scale factor B7 (earth) or B5 (moon), units meters/centisecond. See P21BASER.

P21GAM: Value of flight path angle computed in "P21VSAVE" for (optional) display in R3 of N91, scale factor BO, units revolutions.

P210RIG: Single precision cell used to determine scaling pertaining to either earth or moon centered vectors; valtie of 0 (earth); 2(moon) scaled B14.

P21TIME: Cell used to retain time information, scale factor B28, units centiseconds. Used in P21 to contain the time tag of P21BASER and P21BASEV, and to permit the incrementing of the time for which the N34 display is generated

P21VEL: Double precision storage for the magnitude of the predicted velocity of the vehicle (crew option CSM or LM) at the time specified in Noun 34, scaled B7 in units of meters/centisecond.

PBODY: See ORBI section.
PIPCTR: See SERV section.
PIPTIME: See SERV section.
POINTVSM: See ATIM section.
R: See DESC section.
R22DISPR, R22DISPV: Double precision registers for display of navigation update to position and velocity, scaled B29 and B7 in units of meters and meters per centisecond respectively. (Listing mnemonics R22DISP and R22DISP+2).

R65CNTR: Single precision number of passes at six second intervals to be accomplished of routine 65, scaled B14 and unitless.

RADCADR: See RADR section.
RADGOOD: See RADR section.
RADLIMCK: See RADR section.
RADMODES: See RADR section.
RANGEVAR: Double precision, pad loaded variance expected in measured range, scaled B-12 and unitless. Previously a fixed memory constant with an equation value of 0.0033333 squared.

RANGRDOT: Double precision word used to store DNRADATA 1,2 for telemetry use.

RATEVAR: Double precision, pad loaded variance expected in measured range rate, scaled $\mathrm{B}-12$ and unitless. Previously a fixed memory constant with an equation value of 0.0043333 squared.

RATT: See ORBI section.
RCSM: See SERV section.
RCV: See CONC section.
RCVCSM, RCVLEM: See ORBI section.

$$
\text { RNAV - } 50
$$

RDES: See RADR section.
RDOTM: Double precision measured range rate, scaled B7 in units of meters per centisecond.

RDOTMSAV: Double precision temporary storage location for SAMPLSUM, scaled B28 in units of radar counts (where one count represents -0.19135344 meters/second).
[REFSMMAT]: See COOR section.
REPOSCNT: Single precision cell used as a counter for limiting the number of calls to integration in R26 scaled B14.

REPOSTM: Double precision storage used to save the time of the state vectors used in the previous $R R$ target vector calculation, scaled B28 in units of centiseconds.

RLMSRCH: Double precision LM position vector scaled B29 in units of meters.

RM: Double precision magnitude of measured range, scaled B29 in units of meters. Also used in routine 29 as two single precision storage cells (RM_{0} and RM_{1}) for downlink. They are identical to DNRADATA $_{1}$ and DNRADATA 2 , respectively.

RMAX: Pad loaded maximum value of position update allowed without astronaut approval, scaled B19 in units of meters. (Single precision)

RR-AZ: Double precision angle measured from the $X-Z$ nav. base plane to the $R R$ LOS vector, scaled $B O$ in units of revolutions.

RRBORSIT: Double precision measured line-of-sight vector, a unit vector scaled B1, unirless and expressed in nav. base coordinates.

RRECT: See CONC section.
RR-ELEV: Double precision angle measured from the Z nav. base axis to the projection of the RR LOS vector in the X-Z n\&.v. base plane, scalec. BO ir: units of revolutions.

RRSHAFT: Double precision measured value of Rendezvous Radar shaft angle, scaled BO in units of revolutions.

RRTARGET: See RADR section.

RRTRUN: Double precision measured value of Rendezvous Radar trunnion angle, scaled BO in inits of revolutions.

RSUBC: Double precision CSM position storage vector used in the "ORBCHGO" routine, scaled B29 (earth) or B27 (moon) in units of meters.

RSUBL: Double precision LM position storage vector used in the "ORBCHGO" routine, scaled B29 (earth) or B27 (moon) in units of meters.

RVARMIN: Single precision, pad loaded minimum expected value of VARIANCE in a range measurement, scaled B12 in units of meters squared. Changed by the program to a triple precision value scaled B40 in units of meters squared. Previously a fixed memory constant with an equation value of 8.1 squared meters squared or 27 is squared feet squared.

RVEC: See CONC section.
RXZ: Double precision component of the LOS vector in the LM X-Z plane, beSore normalization scaled B29(earth) or B27(moon) in units of meters.

SAMPLSUM: See RADR section.
SCAXIS: See ATTM section.
SHAFTCMD: An alternate memonic for $T_{R U N N C M D}^{1}$, see RADR section.
SHAFTVAR: Single precision pad loaded variance associated with the measured

SINTH: See COOR section.
SINTHETA: Double precision sine of the RR trunnion angle, scaled B1 and unitless.
[SMNBMAT]: See COOR section.
SNTH: See CONC section.
T: See CONC section.
$\operatorname{TANG}_{0,1}$: See RADR section.
$\mathrm{TANGNB}_{0,1}$: See RADR section.

TAT: See ORBI section.
TC: See CONC section.
TDEC1: See ORBI section.
TDELTAV: See ORBI section.
TET: See ORBI section.
TETCSM, TETLEM: See RCVCSM in ORBI section.
THETA: See COOR section.
THETAD: See ATTM section.
TIG: See BURN section.
TIMEHOLD: See RADR section.
TIMENOW: See EXVB section.
TNNUV: See ORBI section.
TRKMKCNT: Single precision count of number of navigation updates made during P2O or P22, scaled B14 and unitless. Cell also used in R29 to indicate data storage for down telemetry; 1 - data stored, 0 - data not stored.

TRUNNCMD 0 : See RADR section.
TRUNVAR: Single precision pad loaded variance associated with the measured value of the $R R$ trunnion angle, scaled $B-12$ in units of radians ${ }^{2}$.

TX789: Temporary storage for updated X789 vector.
UCSM: Double precision unit vector of the extimated CSM position at the orbit change maneuver point, scaled B1 and unitless.

ULC: Computed line-of-sight vector, a unit vector scaled B1.
ULOSNB: Double precision unit vector of the RR LOS in nav. based coordinates, scaled B1 and unitless.

UXVECT: Double precision unit vector used in defining UYVECT for the $R R$ search routine ($R 24$), scaled $B 1$ and unitless.

UXVECTPR: Double precision storage for the UXVECT of the previous position of the $R R$ in the search routine ($R 24$), scaled B1. and unitless.

UYVECT: Double precision unit vector used to give the direction of the offset factor from the computed LOS in determining the desired $R R$ boresight vectar for the $R R$ search routine ($R 24$), scaled B1 and unitless.

UYVECTPR: Double precision storage for the UYVECT of the previous position of the $R R$ in the search routine ($R 24$), scaled B1 and unitless.

V: See DESC section.
VARIANCE: Triple precision variance associated with a navigation measurement, scaled B4O in units of meters squared or in units of meters 4 per centisecond squared. Scaling changed as described in BVECTOR 0_{0} in this section.

VATT: See ORBI section.
VCSM: See SERV section.
VCV: See CONC section.
VCVCSM, VCVLEM: See RCVCSM description in ORBI section.
VMAX: Pad loaded maximun value of welocity update allowed without astronaut approval, scaled B7 in units of meters/centisecond, single precision.

VRECT: See CONC section.
VSUBC: Double precision CSM velocity storage vector used in the "ORBCHGO" routine scaled B7 (earth) or B5 (moon) in units of meters per centisecond.

VVARMIN: Single precision, pad loaded minimum expected value of range rate measurement variance, scaled $B-12$ in units of meters squared per centisecond squared. Changed by the program to a double precision value scaled B4 in the same units. Previously a fixed memory constant with an equation value of 0.0013 squared meters squared per centisecond squared:per second squared.

VVEC: See CONC section.

$$
\text { RNAV - } 54
$$

VXRCM: Double precision unit vector defining the CSM orbital plane for the $R R$ search routine, scaled $B 1$ and unitless.
[W]: Double precision "error transition matrix," a $9 x 9$ matrix (whose last three rows and columns are not always maintained) defined such that the covariance matric E equals W WT. The individual elements of the matrix are denoted by two subscripts, the first indicating the row, the second indicating the column. The first three rows are scaled B19 in units of meters; the middle three rows are scaled BO in units of meters per centisecond; the last three rows are scaled B-5 in units of radians. Because of LGC limitations on vector manipulations, the elements of the W-matrix are stored in the following order:

Address	Standard	Address	Standard	Address	Standard
W+0	W_{11}	W+54	W_{41}	W+108	W_{71}
W+2		W+56	W_{51}^{41}	W+110	W_{81}
W+4	W 21	W+58	W_{61}^{51}	W+112	W91
W+6	W12	W+60	W_{42}	W+114	$\mathrm{W}_{72} 9$
W+8	${ }^{-12}$	W+62	W^{42}	W+116	W 82
W+10	W_{32}^{22}	W+64	W_{62}	W+118	W^{82}
W+12	W_{13}	W+66	W_{43}	W+120	W_{73}
:	:		.	:	-
W+46	W_{38}	W+100	W68	W+154	W_{98}.
W+48	W 38	W+102	W 68	W+156	W79
W+50		W+104	W ${ }^{49}$	W+158	W89
W+52	W39	W+106	W69	W+160	W99

In other words:

$$
[W]=W+\left[\begin{array}{lllllllll}
0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 \\
2 & 8 & 14 & 20 & 26 & 32 & 38 & 44 & 50 \\
4 & 10 & 16 & 22 & 28 & 34 & 40 & 46 & 52 \\
54 & 60 & 66 & 72 & 78 & 84 & 90 & 96 & 102 \\
56 & 62 & 68 & 74 & 80 & 86 & 92 & 98 & 104 \\
58 & 64 & 70 & 76 & 82 & 88 & 94 & 100 & 106 \\
108 & 114 & 120 & 126 & 132 & 138 & 144 & 150 & 156 \\
110 & 116 & 122 & 128 & 134 & 140 & 146 & 152 & 158 \\
112 & 118 & 124 & 130 & 136 & 142 & 148 & 154 & 160
\end{array}\right]
$$

WHCHREAD: Single precision code to indicate which navigation measurement is being incorporated into a state vector scaled B14 (1-range, 2 -range rate, 3 -shaft, and 4 -trunnion).

WRENDPOS, WRENDVEL, WSURFPOS, WSURFVEL, WSHAFT, WTRUN: Single precision initial estimates for the uncorrelated variance in spacecraft position, spacecraft velocity in flight and on the surface, and Rendezvous Radar position estimates, scaled B14, B0, B14, BO, B-5, B-5 in units of meters, meters per centisecond, meters, meters per centisecond, radians and radians respectively, pad loaded value.

WWPOS, WWVEL, WWBIAS: Double precision square roots of the sums of the squares of the position, velocity, and shaft alements of the Wmatrix, scaled B19, B0, and B5, respectively, in units of meters, meters per centisecond, and radians.

X789: Double precision vector containing the best estimate of bias necessary to offset $R R$ position error, scaled B5 (earth) or B3 (moon) in units of radians, pad loaded value.
 and unitless; expressed in reference coordinates.

XPREV: See CONC section.
$\mathrm{ZI}_{0}, \mathrm{ZI}_{1}, \mathrm{ZI}_{2}$: Double precision intermediate vector quantities in the navigation measurement updates of the state vector and the W-matrix, scaled B2O in units of meters or B24 in units of meters squared per centisecond, before "NEWZCOMP" shifts.

$$
\text { RNAV - } 56
$$

```
PREREAD Establish "LASTBIAS"
(pr21)
    Perform "PIPASR" skipping first step (PIPTIME1 unchanged)
    Switch FLAGWRD7 bits 6 (V37FLAG) and 5 (AVEGFLAG) to 1
    Switch FLAGWRD2 bit 15 (DRIFTFLG) to 0
    Establish "NORMLIZE"
        (pr22)
    Delay 2 seconds
READACCS TS = TIME5 - 16377
    If TS f 0, TIME5 = TIME5 - 1 sign(TS )
    Perform "PIPASR"
    Establish "SERVICER" (pr20)
    Switch bit 9 of channel 11 to 1 (test connector output)
    If FLAGWRD7 bit 5 (AVEGFLAG) = 0:
        AVEGEXIT = "AVGEND"
        End task
        If FLAGWRD6 bit 8 (MUNFLAG) = 1:
        PIPCTR = 7
        Call "R10,R11" in 0.2 second
        Call "READACCS" in 2 seconds
        End task
PIPASR PIPTIME1 = TIMENOW
DELV 
DELV
DELV }\mp@subsup{\textrm{XIS}}{15}{}=
TEM = - PIPA
DELV = PIPA (single precision into more significant
PIPA = 0 (-0)
                                halves of DELV romponents)
PGUIDE = PIPTIME1 - PIPTIME
```

CDUTEMP = CDJ
PIPATMP = DELV
Return
NORMLIZE If FLAGWRD6 bit 8 (MUNFLAG) $=1$:
$\underline{R}=[$ REFSMMAT $]$ RN1
Perform "MUNGRAV" with $\operatorname{TSr}=\underline{R}$
$\underline{\mathrm{V}}=[\mathrm{REFSMMAT}] \mathrm{VN} 1$
UHYP $=$ unit($\underline{\text { VCSM }}$ * RCSM)
If FLAGWRD6 bit 8 (MUNFLAG) $=0$:
Perform "CALCGRAV" with $\operatorname{TS} S r=$ RN1
Inhibit interrupts
Perform "COPYCYC" skipping first two steps (MASS unchanged)
Release interrupt inhibit
End job
SERVICER 1dPIPADT = K:PRI031
Perform "1/PIPA"
ABDELV $=|\underline{\text { DELV }}|$
ABDVCONV $=K: K P I P$ ABDELV
MASS1 $=$ MASS
If FLAGWRD8 bit 8 (SURFFLAG) $=0$:
TSv = K:DPSVEX
If FLGWRD10 bit 13 (APSFLAG) $=1$, 1 Sv $=\mathrm{K}:$ APSVEX
MASS1 $=$ MASS1 + MASS ABDVCONV $/ T S v$
DVTOTAL $=$ DVTOTAL + K:KPIP1 \mid DELV \mid
Perform "QuICTRIG" with ANG = CDUTEMP
XNBPIP $=($ COSIGA COSMGA, SINMGA, - SINIGA COSMGA $)$
$\mathrm{ZNBPIP}_{\mathbf{z}}=$ COSIGA COSOGA - SINIGA SINOGA SINMGA
$\mathrm{ZNBPIP}_{\mathrm{y}}=-$ SINOGA COSMGA
$\mathrm{ZNBPIP}_{\mathrm{x}}=$ COSOGA SINIGA + COSIGA SINOGA SINMGA
YNBPIP $=$ ZNBPIP * XNBPIP

```
AVERAGEG If FLAGWRD6 bit 8 (MUNFLAG) \(=1\), perform "RVBOTH"
    If FLLAGWRD6 bit 8 (MUNFLAG) \(=0\), perform "CALCRVG"
    Perform "COPYCYC"
    PIPATMP \(=0\)
    Switch FLAGWRD2 bit 11 (STEERSW) to 0
    If FLAGWRD7 bit 7 (IDLEFLAG) \(=0\) :
        If FLAGWRD6 bit 2 (AUXFLAG) \(=1\) :
            Proceed to "DVMON"
        Switch FLAGWRD6 bit 2 (AUXFLAG) to 1
        Switch DAPBOOLS bit 14 (USEQRJTS) to 1
        Proceed to. "SERVOUT"
        Switch FLAGWRD6 bit 2 (AUXFLAG) to 0
        Switch DAPBOOLS bit 14 (USEQRJTS) to 1
        Proceed to "SERVOUT"
DVMON If ABDELV \(\leq\) DVTHRUSH:
        If \(\operatorname{DVCNTR}=0:\)
            If "COMFAIL" is already active: (determined from
            Proceed to "SERVOUT"
            Establish "COMFAIL"
                                    (pr25)
            Proceed to "SERVOUT"
```

 SERV - 3
 (If ABDELV \leq DVTHRUSH:)
DVCNTR $=$ DVCNTR -1
Inhibit interrupts
Perform "STOPRATE"
Switch DAPBOOLS bit 14 (USEQRJTS) to 1
Proceed to "SERVOUT"
Switch FLAGWRD2 bit 11 (STEERSW) to 1
DVCNTR $=1$
If FLGWRD10 bit 13 (APSFLAG) $=0$:
If bit 9 of channel $32=1$:
Switch DAPBOOLS bit 14 (USEQRJTS) to 0
Proceed to "SERVOUT"
Switch DAPBOOLS bit 14 (USEQRJTS) to 1
SERVOUP Release interrupt inhibit
Perform "1/ACCS"
Proceed to AVEGEXIT
COPYCYC Inhibit interrupts
MASS $=$ MASS1
$\underline{G D T}=\underline{G D T 1}$
PIPTIME = PIPTIME1
$\underline{V N}=\underline{V N} 1$
$\underline{\mathrm{RN}}=\mathrm{RN} 1$
Return
SERVEXIT End job

```
AVGEND
    1dPIPADT = less significant half of PIPTIME
    Switch FLAGWRD2 bit 15 (DRIFTFLG) to 1
    Perform "PIPFREF"
    Switch bit 9 of channel 11 to 0 ('test connector output)
    Switch FLAGWRD3 bit 11 (NOR29FLG) to 1
    Switch FLAGWRD7 bit }11\mathrm{ (SWANDISP) to 0
    Switch FLAGWRD6 bit 8 (MUNFLAG) to 0
    Perform "AVETOMID"
    Switch FLAGWRD7 bit 6 (v37FLAG) to 0
    Proceed to "V37RET"
SERVIDLE AVEGEXIT = "SERVEXIT"
    Switch FLAGWRD7 bit 7 (IDLEFLAG) to 1
    Switch FLGWRD11 to 400008 (bypass all LR updates)
    If FLAGWRD6 bit 8 (MUNFLAG) = 1:
    Maintain Group 2 in restart logic
Maintain Group 5 in restart logic
Establish "GOTOPOOH" in Group 4 of restart logic with priority 318
Clear all other restart logic
Proceed to "WHTMPER"
CALCRVG DELVREF = K:KPIP1 DELV [REFSMMAT]
\underline{RN1 = \underline{RN + PGUIDE (VN}+\frac{1}{2}}\underline{DELVREF + \frac{1}{2}}\underline{GDTT)}
Perform "CALCGRAV" with TSSr = RN1
VNN1 = \underline{WN}+\underline{DELVREF + \frac{1}{2}}(\underline{GDT + GDT1)}
Return
```

CALCGRAV RMAGSQ $=|\underline{T S r}|^{2}$
$\underline{\text { UNITR }}=$ unitTSr
If RTX2 $=0: \quad$ (earth orbit)
TSsel $=\underline{K}:$ UNITZ $\cdot \underline{U N I T R}$
$T S=\left(1-5 T S s e I^{2}\right) / 20$
TSrdr $=\mathrm{K}:$ RESQ $/$ RMAGSQ
UNITGOBL $=$ TSrdr K:20J TS UNITR + TSrdr K:2J TSsel K: UNITZ
GDT1 $=\mathrm{K}:$ mMUDT $_{\text {RTX2 }}$ (UNITGOBL $+\underline{\text { UNITR })} /$ RMAGSQ
If RTX2 = 2: (Iunar orbit)
GDT1 $=\mathrm{K}: \mathrm{mMODT}_{\text {RTX2 }}$ UNITR $/ \mathrm{RMAGSQ}$
Return
$\underline{R V B O T H} \quad \underline{R} 1 S=\underline{R C S M}+\operatorname{PGUIDE} \quad\left(\underline{V C S M}+\frac{1}{2} \underline{G C S M}\right)$
Perform "MUNGRAV" with $\underline{T} S r=\underline{R} 1 S$
$\underline{V} 1 S=\underline{V C S M}+\frac{1}{2}(\underline{G C S M}+\underline{G} D 1)$
GCSM $=$ GDT1
$\underline{R} C S M=\underline{R} 1 S$
$\underline{V C S M}=\underline{\mathrm{V}} 1 \mathrm{~S}$
TSdv = K:KPIP2 DELV
$\underline{R} 1 S=\underline{R}+P G U I D E\left(\underline{V}+\frac{1}{2} \underline{T S d V}+\frac{1}{2} \underline{G} D T\right)$
Perform "MUNGRAV" with $\underline{T} S r=\underline{R} 1 S$
$\underline{V} 1 S=\underline{V}+\underline{T} S d v+\frac{1}{2}(\underline{G D T}+\underline{G D T 1})$
$\mathrm{ABVEL}=|\underline{\mathrm{V} 1 S}|$
HDOTDISP $=$ UNITR $\cdot \underline{V} 1 S$
$\underline{\text { DELVS }}=\underline{R} 1 \mathrm{~S} * \underline{\mathrm{WM}}$
HCALC $=|\underline{\text { R1S }}|-$ LANDMAG
Proceed to "MUNRETRN"
$\underline{N} I T R=$ unitiss

$$
\begin{aligned}
& \text { RMAGSQ }=|\underline{T S}|^{2} \\
& \underline{G D T 1}=\dot{K}: \operatorname{mMUD} T_{2} \text { UNITR } / \text { RMAGSQ }
\end{aligned}
$$

Return
MUNRETRN If FLGWRD11 bit 15 (LRBYPASS) $=1$, proceed to "COPYCYC1" If FLGWRD11 bit 9 (XORFLG) $=0$:

If HCALC $<K$: 30kft:
Switch DAPBOOLS bit 9 (XOVINHIB) to 1
Switch FLGWRD11 bit 9 (XORFLG) to 1
If FLGWRD11 bit 10 (NOLRREAD) $=1$, proceed to "CONTSERV"
If FLGWRD 11 bit 3 (N0511FLG) $=1$, proceed to "UPDATCHK"
If FLGWRD11 bit 11 (PSTHIGAT) = 1:
If bit 7 of channel $33=0$:
(IR in position \#2)
Proceed to "UPDATCHK"
Perform "ALARM" with $T S=00511_{8}$
Proceed to "CONTSERV"
If TTF $\leq-$ RPCRTIME or XNBPIP $_{x}<$ RPCRTQSW: 2
If bit 6 of channel $33=0$:
(IR in position \#1)
Proceed to "UPDATCHK"
Perform "ALARM" with TS $=00511_{8}$
Proceed to "CONTSERV"
Establish "HIGATJOB"
Switch FLGWRD11 bits 11 (PSTHIGAT) and 10 (NOLRREAD) to 1
Proceed to the second step of "CONTSERV"
HIGATJOB Perform "LRPOS2"
Perform "RADSTALL"

If RADGOOD $=0$: (bad return from "RADSTALL")
POSALARM

> Perform "PRIOLARM" with TS $=005238$
> (If terminate, end job; if proceed, proceed to "P1CHK"; if other response, proceed to "P2CHK".)

End job
POSGOOD Change job priority to 23
Perform "SETPOS2"
Switch FLGWRD11 bit 6 (LPOS2FLG) to 1
Switch FLGWRD11 bit 10 (NOLRREAD) to 0
End job
P1CHK Switch FLGWRD11 bit 3 (NO511FLG) to 1
If bit 6 of channel $33=0$: (IR in position \#1)
Switch FLGWRD11 bit 10 (NOLRREAD) to 0
End job
Proceed to "POSGOOD"
P2CHK If bit 7 of channel $33=0$: (LR in position \#2)
Proceed to "POSGOOD"
Proceed to "POSALARM"
UPDATCHK If FLGWRD11 bit 10 (NOLRREAD) $=1$, proceed to "CONTSERV"
If FLGWRD11 bit 4 (RNGEDATA) $=0$, proceed to "VMEASCHK"
TSh $=$ HBEAMNB [XNBPIP]
$T S=$ RADSKAL TSh • (V1S + DELVS $)$
If RADMODES bit 9 (ALTSCALE) $=0$, $T S=$ SKALSKAL TS
DELTAH $=\mathrm{K}:$ HSCAL (TS + HMEAS) TSh - UNITR - HCALC
If FLGWRD11 bit 11 (PSTHIGAT) $=0$, proceed to "NOREASON"
$T S=\mid$ DELTAH $\mid-$ DELQFIX - HCALC $/ 8$
LRLCTR $=$ LRLCTR +1

```
            If TS\geq0: (DELTAH too large)
            If LRRCTR }=0\mathrm{ and LRLCTR - LRRCTR < 4:
                                    Switch FLGWRD11 bit 1 (HFLSHFLG) to 1
                                    LRRCTR = IRLCTR
                                    Proceed to "VMEASCHK"
                                    Switch FLGWRD11 bit 1 (HFISHFLG) to 0
NOREASON If FLGWRD11 bit 8 (IRINH) = 0, proceed to "VMEASCHK"
    If HCALC < HLROFF:
            Switch FLGWRD11 bit 8 (LRINH) to 0
            Proceed to "VMEASCHK"
            If HCALC}\geqslant LRHMAX, proceed to "TMEASCHK"
            TS = deltah LrwH (lrHmax - hCALC) / LRHMAX
            TSr = R1S + TS UNITR
                                    Perform "MUNGRAV"
                                    R1S = TSr
VMEASCHK If FLGWRD11 bit 7 (VELDATA) = 0, proceed to "VALTCHK"
    ANG = IRCDU
    Perform "QUICTRIG"
    If VSELECT = 0, TSuv = VZBEAMNB
    If VSELECT = 1, TSuv = VYBEAMNB
    If VSELECT = 2, TSuv = VXBEAMNB
    Perform "NBTOSM"
    j = 2 vSELECT
    VBEAM = [NBSMMAT] TSuv
    TSgV = GDT (LRVTIME - PIPTIME) / K: 2SECb28
    TS = TSgV + V + K:KPIP1 PIPTEM + DELVS
    vEST = TS - vbRAM
        SERV - 9
```

```
    DELTAV = K:VSCAL j VMEAS - VEST
    TS = |DELTAV }-(|TS|/8+ VELBIAS 
    LRMCTR = LRMCTR + 1
    If TS\geq0: (DELTAV too large)
    If LRSCTR }\not=0\mathrm{ and LRMCTR - LRSCTR < 4:
    Switch FLGWRD11 bit 2 (VFLSHFLG) to 1
    LRSCTR = LRMCTR
    If VSELECT = 0, switch FLGWRD11 bit 12 (VXINH) to 1
    Proceed to "VALTCHK"
Switch FLGNRD11 bit 2 (VFLSHFLG) to 0
If FLGWRD11 bit 12 (VXINH) = 1:
    Switch FLGWRD11 bit 12 (VXINH) to 0
    If VSELECT = 2, proceed to "VALTCHK"
If FLGWRD11 bit 8 (LRINH) = 0, proceed to "VALTCHK"
    If ABVEL\leq LRVF:
    TS = LRWVF VSELECT
    Proceed to "WSTOR"
    If LRVMAX }\leq ABVEL
        TS = 0
        Proceed to "WSTOR"
    TS = LRWV VSELECT (LRVMAX - ABVEL) / LRVMAX
WSTOR If MODREG> 64:
        TS = LRWVFF
TS dp}=(TS,0
TSv}=\underline{V}1S+TS dp DELTAV VBEAM
V1S = TS
Proceed to "VALTCHK"
```

VALTCHK If FIGWRD11 bit 5 (READVEL) $=0$:
If $A B V E L \geq K: 6 K F T d S E C$, proceed to "CONTSERV" Switch FIGWRD11 bit 5 (READVEL) to 1

Establish "LRVJOB"
CONTSERV Inhibit interrupts
Switch FLGWRD11 bits 4 (RNGEDATA) and 7 (VELDATA) to 0

COPYCYC1 If FLAGWRD3 bit 9 (READRFLG) $=1$ or FLAGWRD3 bit 11 (NOR29FLG) $=1$ or RADMODES bit 13 (RCDUO FLG) $=1$ or RADMODES bit 2 (AUTOMODE) $=1$:

Switch RADMODES bit 10 (DESIGFLG) to 0
Proceed to "NOR29NOW"
If RADMODES bit 14 (REMODFLG) and bit 11 (REPOSMON) $=0$: Proceed to "R29"

NOR29NOW Release interrupt inhibit
HCALC $=|\underline{R} 1 S|-$ LANDMAG
HCALC1 $=$ HCALC
ALTBITS $=\mathrm{K}:$ ALTCONV HCALC
$\underline{U H Z P}=$ unit(UNITR * UHYP)
$\underline{R N} 1=\underline{R} 1 S[R E F S M M A T] \quad\left(=[\text { REFSMMAT }]^{T} \underline{R} 1 S\right)$
$\underline{V N} 1=\underline{V} 1 \mathrm{~S}$ [REFSMMAT]
$T S=K: A R C O N V 1|\underline{U N I T R} * \underline{V} 1 S|^{2} /|\underline{R} 1 S|$
Inhibit interrupts
$\underline{R U N I T}_{s p}=\underline{U N I T R}$
DALTRATE $_{\mathrm{sp}}=\mathrm{TS}$
$\underline{R}=\underline{R} 1 S$
$\underline{V}=\underline{V} 1 S$
Return (to caller of "RVBOTH")

LRHJOB Perform "LRALT"
Perform "RADSTALL"
If RADGOOD = 0 :
If FLAGWRD5 bit 10 (RNGSCFLG) $=1$:
Switch FLAGWRD5 bit 10 (RNGSCFLG) to 0
End job
STILBADH $=2$
End job
If STILBADH >0 :
STILBADH $=$ STILBADH -1
End job
Inhibit interrupts
HMEAS = SAMPLSUM
MKTIME $=$ PIPTIME1
AIG $=$ CDUTEMP $_{y}$
AMG $=$ CDUTEMP $_{z}$
$A O G=$ CDUTEMP $_{x}$
Switch FLGWRD11 bit 4 (RNGEDATA) to 1
Release interrupt inhibit
End job
LRVJOB Call "RDGIMS" in 0.17 second
$\operatorname{TSn}=5$
If VSELECT $=0$, perform "LRVELX"

```
    If VSELECT = 1, perform "LRVELZ"
    If VSELECT = 2, perform "LRVELY"
```

Perform "RADSTALL"

```
    If RADGOOD = 0:
        STILBADV = 2
        Proceed to "ENDLRV"
If STILBADV > 0:
    STILBADV = STILBADV - 1
    Proceed to "ENDLRV"
    Inhibit interrupts
    VMEAS = SAMPLSUM
    LRVTIMDL = LRVTIME
    IRCDUDL = IRCDU
    Switch FLGWRD11 bit 7 (VELDATA) to 1
ENDLRV If VSELLECT = 0, VSELECT = 3
    VSELECT = VSELECT - 1
    End job
RDGIMS LRVTIME = TIMENOW
    IRCDU = CDU
    PIPTEM = PIPA
    End task
```

R10.R11 If FLAGWRD7 bit 5 (AVEGFLAG) $=0$, end task

$$
\begin{aligned}
& \text { If } \mathrm{PIPCTR}=0: \quad \text { (PIPTIME }+1.95 \text { seconds) } \\
& \text { If FLGWRD11 bit } 15 \text { (LRBYPASS) }=0 \\
& \text { and bit } 10 \text { (NOLRREAD) }=0:
\end{aligned}
$$

Establish "LRHJOB" (pr32)
Skip next two (2) steps
PIPCTR1 = PIPCTR - 1
Call "R10,R11" in 0.25 second

If FLGWRD11 bit 1 (HFISHFLG) $=1$:
Invert bit 5 of DSPTAB 11
Switch bit 15 of DSPTAB_{11} to 1 (flag for output)
If FLGWRD11 bit 2 (VFLSHFLG) $=1$:
Invert bit 3 of DSPTAB $_{11}$
Switch bit 15 of DSPTAB $_{11}$ to 1 (flag for output)
If FLAGWRD9 bit 9 (LETABORT) $=0$:
Proceed to "LANDISP"
If MODREG $=71$, proceed to "LANDISP"
If bit 4 of channel $30=0$ (abort stage)
Proceed to "P71A"
If MODREG $=70$, proceed to "LANDISP"
If bit 1 of channel $30=0$:
(abort)
Proceed to "P70A"
Proceed to "LANDISP"

LANDISP PIPCTR = PIPCTR1
If FLAGWRD7 bit 11 (SWANDISP) $=0$, proceed to "DISPRSET"
LADQSAVE $=$ "ALTROUT1"
If IMODES 33 bit $7=1$, LADQSAVE $=$ "ALTOUT1"
If bit 6 of channel $30=1$, proceed to "DISPRSET" (inertial data display discrete is reset)

If FLAGWRD1 bit 14 (DIDFLAG) $=1$, proceed to "SPEEDRUN"
Switch FLAGWRD1 bit 14 (DIDFLAG) to 1
Switch IMODES33 bit 7 to 0 . (display rate first)
If FLAGWRDO bit 2 (R1OFLAG) $=1$, end task
Switch bit 8 of channel 12 to 1 (set inertial data display
TRAKLATV $=0$
$T R A K F W D V=0$
LATVMETR $=0$
FORTMETR $=0$
Call "INTLZE" in 0.08 second
End task
INILZE Switch bit 2 of channel 12 to 1 (enable RRCDU error counter)
Switch IMODES 33 bit 8 to 1
End task
SPEEDRUN DT ${ }_{\text {sp }}=$ TIMENOW - PIPTIME
$\underline{V V E C T}=\frac{1}{2} \underline{G D T} D T / K: 1 S E C$

Delay 0.04 second
If FLAGWRDO bit 2 (R10FLAG) $=1$, proceed to LADQSAVE
If bit 2 of channel $12=0$, proceed to "DISPRSET"
$\underline{T S}=$ VVECT $^{+} \underline{\text { DELVS }}_{\mathrm{ms}}$

```
VHY = TS • UHYP
VHZ = TS - UHZP
LATVEL = K:VELCONV (M32 VHY + M22 VHZ)
FORVEL = K:VELCONV (M32 VHZ - M22 VHY)
If |FORVEL| < K:MAXVBITS:
    If TRAKFWDV FORVELZ }\geq0
        TS = FORVEL - FORVMETR
        If TRAKFWDV = 0 and FORVEL FORVMETR <0:
            If }|TS|>K:MAXVBITS,TS = K:MAXVBITS signTS
        If TRAKFWDV FORVEL < 0:
        TS = - FORVMETR
        TRAKFWDV = 0
If |FORVEL }|\geqK:MAXVBITS
        If FORVMETR FORVEL <0:
        TS = K:MAXVBITS signFORVEL
        i = 0
        If FORVMETR FORVEL\geq0:
        If TRAKFWDV FORVEL \geq0:
            TS = K:MAXVBITS signFORVEL - FORVMEIR
            i=1 signFORVEL
        If TRAKFWDV FORVEL < 0:
            TS = K:MAXVBITS signFORVEL
            i=0
        TRAKFWDV = 1
CDUSCMD = TS
FORVMETR = FORVMETR + TS
        SERV - 16
```

If \mid LATVEL $\mid<K: M A T V B I T S:$
If TRAKLATV LATVEL ≥ 0 :
TS = LATVET - LATVMETR
If TRAKLATV $=0$ and LATVEL LATVMETR <0 :
If $|T S|>K: M A X V B I T S, T S=K: M A X V B I T S$ signTS
If TRAKLATV LATVEL < 0 :
TS = - LATVMETR
TRAKLATV $=0$
If \mid LATVEL $\mid \geq K: M A X V B I T S:$
If LATVMETR LATVEL< 0:
TS = K:MAXVBITS signLATVEL
$\mathrm{i}=0$
If LATVMETR LATVEL ≥ 0 :
If TRAKLATV LATVEL ≥ 0 :
TS = K:MAXVBITS signLATVEL - LATVMETR $1=1$ signLaTVEL

If TRAKLATV LATVEL < 0 :
TS = K:MAXVBITS signLATVEL
$i=0$
TRAKLATV $=1$

CDUTCMD $=T S$
LATVMETR $=$ LATVMETR $+T S$
Switch bits 11 and 12 of channel 14 to 1
Proceed to LADQSAVE
ALTROUT1 Switch IMODES33 bit 7 to 1
Switch bit 2 of channel 14 to 1 (select altitude rate display)

```
    ALTRATE = DT DALTRATE + K:ARCONV RUNIT - VVECT
    ALTM = - ALTRATE
    If ALTM < 0, ALTM = ALTRATE with bit 15 switched to 1
    Switch bit 3 of channel 14 to 1 (altitude meter activity bit)
    End task
    ALTOUT1 Switch IMODES33 bit 7 to 0
    Switch bit 2 of channel 14 to 0 . (select altitude display)
    TS = K:ARTOA
    If ALTBITS \geq0:
        ALTSAVE = ALTBITS
        ALTBITS. = - 1
        TS = K:ARTOA2 DT
    ALTSAVE = ALTSAVE + TS ALTRATE
    If ALTSAVE < O, ALTSAVE = 0
    TS = ALTSAVE
    If ALTSAVE K:altlim, TS = 2 14 (fractional part of (ALTSAVE/214}))+\mp@subsup{2}{}{14
    ALTM = TS
    Switch bit 3 of channel 14 to 1 (altitude meter activity bit)
    End task
    DISPRSET If FLAGWRDO bit 2 (R10FLAG) = 0:
    If IMODES33 bit 8 = 1:
            Switch bit 2 of channel }12\mathrm{ to 0
            Switch bit 8 of channel }12\mathrm{ to 0
    Switch bits 7 and 8 of IMODES33 to 0
    Switch FLAGWRD1 bit 14 (DIDFLAG) to 0
    End task
```

SETPOS1	STILBADH $=2$
	STILBADV $=2$
	LRLCTR $=0$
	LRMCTR $=0$
	LRRCTR $=0$
	LRSCTR $=0$
	VSELECT $=0$
	Perform "SETPOS"
	Return
SETPOS2	
	Perform "SETPOS"
	Return
SETPOS	Perform "CD*TR*GS"
	Perform "SMTONB"
	$\underline{\text { VYBEAMNB }}=$ [SMNBMAT] $\mathrm{K}:$ UNITY
	VXBEAMNB $=$ [SMNBMAT] K UNITX
	VZBEAMNB $=$ VXBEAMNB $*$ VYBEAMNB
	HBEAMNB $=[$ SMNBMAT $]$ K SBEAMANT
	Return

1dPIPADT: See IMUC section.
ABDELV: Single precision magnitude of sensed change in velocity (DELV), scaled B14 in units of centimeters per second.

ABDVCONV: Double precision magnitude of DELV converted to units of meters per centisecond and scaled B5.

ABVEL: Double precision magnitude of velocity for display, scaled B7 in units of meters per centisecond.

AIG, AMG, AOG: Single precision storage for CDUTEMP $y_{y}, \operatorname{CDUTEMP}_{z}$ and
CDUTEMP $_{\mathrm{z}}$ respectively for downlink purposes.
ALTBITS: Double precision altitude computed for display on the tape-drive: altitude meter, scaled B28 in units of Analog-altitudedisplay bits. Set to -1 to indicate that it has not been updated since the last time it was sampled to drive the display.

ALTM: Single precision cell used. to provide altitude and altitude rate information to the tape-drive altitude and altitude rate meters, scaled B14 in units of Analog-altitude-display bits or Analog-altitude-rate-display bits. One Analog-altitude-display bit is equivalent to 0.714755 meters (2.345 feet), and one Analog-altitude-rate-display bit is equivalent to 0.1524 meters per second (0.5 feet per second). Data is provided to the meters in serial binary form at a 3200 pps rate when bit 3 of channel 14 is set, and bit 2 of channel 14 is set or reset by the program to distinguish between altitude-rate (1) and altitude (0) information.
ALTRATE: Single precision altitude rate calculated for display on the tape-drive altitude rate meter, scaled B14 in units of Analog-altitude-rate-display bits.
ALTSAVE: Double precision storage for previous altitude value for altitude meter display, scaled B28 in units of Analog-altitude-display bits.
ANG: See COOR section.
AVEGEXIT: Double precision variable address (program notation also AVGEXIT) to branch to the guidance routines specified by whichever program is controlling a burn.

CDU: See IMUC section.
CDUSCMD, CDUTCMD: Single precision cells loaded with values to be transmitted to the Error Counters in the two Rendezvous Radar channels of the Coupling Data Unit (RRCDU), for use in controlling the shaft and trunnion angles of the $R R$ or for positioning the forward and lateral velocity meters. Information is gated out of .. the cells if bits 11 and 12 respectively of channel 14 are set, and the RRCDU Error Counters recognize the information if bit 2 of channel 12 is set. (Error Counters reset to zero whenever bit 2 of channel 12 is reset.) A saturated Error Counter (384 pulses)
corresponds to an $R R$ drive rate of 10 degrees per second; each bit represents 0.1698 meters per second (0.5571 feet per second) when used to drive the velocity meters.
CDUTEMP: Single precision vector storage for the reading of the ICDU at the time of a PIPA read, scaled B-1 in units of revolutions and stored in twos complement form.

COSIGA, COSMGA, COSOGA: See COOR section:
DALTRATE: Single precision expected rate of change of ALTRATE, scaled. $B \mathrm{~B}$ in units of Analog-altitude-rate-display bits per centisecond.
DAPBOOLS: See DAPA section.
DELQFIX: Double precision Landing Radar Data reasonableness test parameter, scaled B24 in units of meters; part of the erasable load.

DELTAH: Double precision difference between the calculated altitude and that measured by the Landing Radar, scaled B24 in units of meters.

DELTAV: Double precision difference between the calculated velocity component and that measured by the Landing Radar, scaled B6 in units of meters per centisecond.
DELV: Double precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second (one PIPA pulse represents one centimeter per second on the LM) and expressed in Platform coordinates.
DELVREF: Double precision sensed-change-in-velocity vector converted to a scaling of $B 7$ in units of meters per centisecond and expressed in the Reference coordinate system.
DELVS: Double precision vector difference between velocity relative to the rotating moon and inertial velocity, scaled B5 in units of meters per centisecond and expressed in the Platform coordinate system.
DSPTAB_{11} : See INTR section.
DT: Single precision time interval from beginning of navigation interval to the time of the generation of the display on the tape-drive metcrs, scaled B14 in units of centiseconds.
DVCNTR: Single precision counter set to determine the length of the tir rust monitor, scaled B14 in units of navigation cycles.
DVTHRUSH: Single precision delta-v threshold, scaled B14 in units of centimeters per second; set according to the engine in use.
DVTOTAL: Dauble precision sum of velocity gained, scaled B7 in units of meters per centisecond.

FORVEL: Single precision forward velocity component (Body coordinates) of the LM relative to the rotating moon, scaled B14 in forward velocity display units.

FORVMETR: Single precision storage for the total value of velocity displayed on the Forward velocity meter, scaled B14 in forward velocity display units (see definition of CDUSCMD)

GCSM: Double precision gravity vector at the CSM, scaled B8 in units of meters per centisecond and expressed in the Platform coordinate system.
GDT, GDT1: Double precision gravity vector,
scaled B8 in units of meters per centisecond and expressed in the Platform coordinate system.

HBEAMNB: Double precision unit vector in the direction of the Landing Radar measurement of altitude, scaled B1 and expressed in the Body coordinate system.

HCALC, HCAIC1: Double precision calculated altitude above the landing site radius, scaled B24 in units of meters. HCALC1 is for display purposes.
HDOTDISP: Double precision calculated value of altitude rate, scaled B7 in units of meters per centisecond.

HLROFF: Double precision quantity representing the altitude at which LR altitude updates are inhibited during the final phase of descent, scaled B24 in units of meters.

HNEAS: Double precision Landing Radar measurement of altitude, scaled B28 in units of Landing Radar low scale altitude bits.

IMODES33: See INTR section.
K:1SEC: Single precision constant stored as 100×2^{-14}, scaled BiH in units of centiseconds. Equation value: 100.
$\mathrm{K}: 2 \mathrm{~J}:$ Double precision constant stored as $3.24692010 \mathrm{E}-3$, scaled BO and unitless. Equation value: 3×0.0010823067.
K:20J: Double precision constant stored as $3.24692010 \mathrm{E}-2$, scaled BO and unitless. Equation value: Ten times $\mathrm{K}: 2 \mathrm{~J}$.

K: 2SECb28: Double precision constant stored as 200×2^{-28}, program notation 2SEC(28), scaled B28 in units of centiseconds. Equation value: 200.

K: 30kft: Double precision constant stored as $1.6768072 \mathrm{E} 7 \times 2^{-24}$, program notation "1-30KFT", scaled B24 in units of meters. Represents 2^{24} - 9144 meters ($\mathrm{K}:$ posmaxdp plus one least increment minus 9144 meters). Used to check current altitude against 9144 meters. Equation value: 9144 (Equivalent to 30,000 feet).

K:6KFTdSEC: Single precision constant stored as 18.288×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 18.288. (Equivalent to 6000 feet per second.)

K:ALTCONV: Double precision constant stored. as $1.399078846 \times 2^{-4}$, scaled B_{4} in units of Analog-altitude-display bits per meter. Equation value: 1.399078846. (Equivalent to 0.714756 meters, or 2.345 feet, per bit.)
K:altlim: Single precision constant value of bit 16 in a quantity scaled B14 in units of Analog-altitude-display bits. Equation value: 32768.
K:APSVEX: Single precision constant stored as -3030 . E-2 $\times 2^{-5}$, scaled. B5 in units of meters per centisecond. Equation value: -30.30.
K:ARCONV: Single precision constant stored as 24402 , scaled B10 in units of Analog-altitude-rate-display bits / meter per centisecond:Equation value: 656.125. (Equivalent to 0.1524 meters per second, or 0.5 feet per second, per bit.)
K:ARCONV1: Double precision constant stored as $656.167979 \times 2^{-10}$, scaled B10 in units of Analog-altitude-rate-display bits / meter per centisecond. Equation value: 656.167979. (Equivalent to 0.1524 meters per second, or 0.5 feet per second, per bit.)

K:ARTOA: Single precision constant stored as 0.1066098×2^{-1}, scaled B1 in units of seconds times Altitude bits / Altitude rate bits. Equation value: 0.1066098. (Equivalent to 0.5 seconds $x 0.5 / 2.345$.)
K:ARTOA2: Single precision constant stored as 0.0021322×2^{8}, scaled B-8in units of Altitude bits per centisecond / Altitude rate bits per second. Equation value: 0.0021322 . (Equivalent to $0.01 \times 0.5 / 2.345$.)
K:DPSVEX: Single precision constant stored as $-29.5588868 \times 2^{-5}$, scaled scaled B5 in units of meters per centisecond. Equation value: - 29.5588868

K:HBEAMANT: Double precision vector constant stored as (-0.4687018041 , 0 , -0.1741224271), scaled B1 and unitless. Equation value: ($-0.9374036082,0,-0.3482448542$). (Altitude beam direction expressed in the LR coordinate system.)
K:HSCAL: Double precision constant stored as -0.3288792 , scaled BO in units of meters per bit. Equation value: -0.3288792 . (Equivalent to 1.0790 feet per bit.)

K:KPIP: Single precision constant stored as 0.0512, scaled B-9 in units of meters per centisecond / centimeters per second. Equation value: 0.0001.

K:KPIP1: Double precision constant stored as 0.0128 , scaled B-7 in units of meters per centisecond / centimeters per second. Equation value: 0.0001 .

K:KPIP1b5: Double precision constant stored as 0.0512, scaled B-9 in units of meters per centisecond / centimeters per second. Equation value: 0.0001 .

K:KPIP2: Double precision constant stored as 0.0064 , scaled $B-6$ in units of meters per centisecond / centimeters per second. Equation value: 0.0001.

K:MAXVBITS: Single precision constant stored as 00547 g, scaled B14 in forward/lateral velocity display units. Equation value: 359. (Equivalent to 61.0 meters per second or 200.0 feet per second.)
$\mathrm{K}: \mathrm{mMUDT}_{\mathrm{O}}$: Double precision constant stored as $-7.9720645 \mathrm{E} 12 \times 2^{-44}$, scaled B44 in units of meters cubed per centisecond. Equation value: -7.9720645 E12. (Equivalent to -200 cs $x 0.3986032$ E11 m3/cs2.)
$\mathrm{K}: \mathrm{mMUDT}$: Double precision constant stored as $-9.8055560 \mathrm{E} 10 \times 2^{-44}$, scaled B44 in units of meters cubed per centisecond. (Also called $-M O D T M N$ with a scaleufactor of B38;) Equation value: -9.8055560.E10. (Equivalent to -200 es $\times 0.4902778$ E9 meters cubed per centisecond squared.)

K:PRI031: Single precision constant stored as 31000_{g}, scaled B8 in units of centiseconds. Equation value: 200.
K :RESQ: Double precision constant stored as $40.6809913 \mathrm{E} 12 \times 2^{-58}$, scaled B 58 in units of meters squared. Equation value: 6,378,165 squared.
K:UNITX, K:UNITY, K:UNITZ: Three double precision vector constants stored as $(0.5,0,0),(0,0.5,0)$ and ($0,0,0.5$), scaled B1 and unitless. Equation values: ($1,0,0$), ($0,1,0$) and ($0,0,1$).
K:VELCONV: Single precision constant stored as 22316_{8}, scaled B10 in forward/lateral velocity display units / meter per centisecond. Equation value: 588.875. (Equivalent to 0.1698 meters per second, or 0.5571 feet per second, per bit.)
K:VSCAL 0 : Double precision constant stored as 0.5410829105 , program notation VZSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: $0.002642006 / 5$. (Equivalent to 0.8668 fps per bit; the " 5 " averages the sum of five samples.)

K:VSCAL 2 : Double precision constant stored as 0.7565672446 , program notation VYSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: $0.003694176 / 5$. (Equivalent to 1.212 fps per bit; the " 5 " averages the sum of five samples.)

K:VSCAL $:$ Double precision constant stored as -0.4020043770 , program notation VXSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: -0.001962912/5. (Equivalent to -O.644 fps per bit; the "5" averages the sum of five samples.)

LADQSAVE: Single precision octal return address storage.
LANDMAG: see DESC section.

LATVEL: Single precision lateral velocity component (Body coordinates; positive to the right when looking forward) of the LM relative to the rotating moon, scaled B14 in forward/lateral velocity units.

LATVMETR: Single precision storage for the total value of velocity displayed on the lateral velocity meter, scaled B14 in forward/ lateral velocity display units.

LRALPHA $_{1}$, LRALPHA $_{2}$: Single precision angle from the Z spacecraft axis to the Z IR coordinate axis measured in a right hand rotation around the -X spacecraft axis, for $I R$ positions 1 and 2 respectively, scaled B-1 in units of revolutions and stored in twos complement form. Part of the erasable load.
LRBETA $_{1}$, LRBETA $_{2}$: Single precision angle from the $+X$ spacecraft axis to the $+\mathrm{X} L R^{2}$ coordinate axis measured in a right hand rotation around the -Z LR coordinate axis, for LR positions 1 and 2 respectively, scaled B-1 in units of revolutions and stored in twos complement form. Part of the erasable load.
IRCDU, IRCDUDL: Single precision vector storage for the value of the three ICDU angles at the estimated midpoint of an LR velocity reading, scaled B-1 in units of revolutions and stored in twos complement form. IRCDUDL is for downlink purposes.

LRHMAX: Single precision maximum limit for altitude calculations that are allowed to be updated by the Landing Radar measurement, scaled B14 in units of meters. Part of the erasable load.

LRLCTR: Single precision count of the number of comparisons made between HMEAS and HCALC, scaled B14 and unitless.
LRMCTR: Single precision count of the number of comparisons made between measured velocity and calculated velocity, scaled B14 and unitless.

LRRCTR: Single precision counter used in conjunction with LRLCTR to determine if at least four good comparisons between HMEAS and HCALC have been made since the last unreasonable one, scaled B14 and unitless.

LRSCTR: Single precision counter used in conjunction with LRMCTR to determine if at least four good comparisons between measured velocity and calculated velocity have been made since the last unreasonable one, scaled B14 and unitless.

IRVF: Single precision erasable memory constant representing the velocity at which the velocity update coefficients are changed, scaled B7 in units of meters per centisecond. Part of the erasable load.

LRVMAX: Single precision maximum limit for velocity calculations that are allowed to be updated by the $L R$ measurement, scaled B7 in units of meters per centisecond. Part of the erasable load.

LRVTIME, LRVTIMDL: Double precision time at the estimated midpoint of the LR velocity sample, scaled B28 in units of centiseconds. LRVTIMDL is for downlink purposes.
LRWH: Single precision weighting factor for the incorporation of LR altitude measurements into the LM state vector, scaled BO and unitless. Part of the erasable load.

LRWV, ($i=0,1,2$): Single precision weighting factors for LR Z, Y and X axis velocity updates, scaled $B O$ and unitless. Part of the erasmble load.

LRWVF. ($i=0,1,2$): Single precision weighting factors for LR Z, Y and X axis velocity updates, scaledi BO and unitless. Part of the erasable load.

LRWVFF: Single precision weighting factor for LR velocity updates for P65 and P66, scaled B0 and unitless. Part of the erasable load. M22, M32: See DAPA section.
MASS, MASS1: Double precision mass of the vehicle, scaled B16 in units of kilograms. Loaded by the astronaut (routine 03) and updated during average-g navigation.

METIME: Double precision time of PIPA readings which are associated with the Landing Radar altitude measurement for downlink purposes, scaled B28 in units of centiseconds.

MODREG: See DATA section.

[NBSMMAT]: See COOR section.

PGUIDE: Double precision length of the navigation-guidance period, scaled B28 in units of centiseconds.
PIPA: Single precision sensed-change-in-velocity vector, scaled B14 in units of centimeters per second and expressed in the Platform coordinate system. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the Inertial Measurement Unit.
PIPATMP: Single precision vector storage for the current PIPA reading for use by the analog display routines, reset to zero after the current reading is incorporated into the navigation state vector; scaled B14 in units of centimeters per second and expressed in the Platform coordinate system.

PIPCTR: Single precision counter scaled B14 and unitless; used to determine time elapsed from the beginning of the navigation cycle in "R10,R11" and routine 29.

PIPCTR1: Single precision temporary storage for PIPCTR.
PIPTEM: Single precision vector storage for the sensed change in velocity between the beginning of the navigation cycle and the mean time of the LR velocity sample, scaled B14 in units of centimeters per second and expressed in the Platform coordinate system.
PIPTIME: Double precision time of the most recent PIPA read cycle, scaled B28 in units of centiseconds; time at which the state vector is valid.
PIPTTME1: Temporary storage for PIPTIME to avoid changing the downlink state vector until it is updated homogeneously.

R: see DESC section.
R1S: Temporary storage for \underline{R} to avoid changing the state vector on the downlink until it is updated homogeneously, scaled B24 in units of meters and expressed in the Platform coordinate system.
RADGOOD, RADMODES: See RADR section.
RADSKAL: Double precision erasable memory quantity representing the LR scale information for high scale radar output, scaled B21 in units of low-scale altitude bits per meter per centisecond; part of erasable load.
RCSM: Double precision position vector of the CSM measured from the center of the earth or moon, program notations R-OTHER and R(CSM), scaled B29 or B24 (descent guidance) in units of meters and expressed in the Reference or the Platform (descent) coordinate system.
[REFSMMAT]: see COOR section.
RMAGSQ: Double precision square of the magnitude of the position vector, scaled B58 (CALCGRAV) or B48 (MUNGRAV) in units of meters squared.

RN: Double precision vector position of the LM measured from the center of the earth or moon, scaled B29 in units of meters and expressed in the Reference coordinate system.

RN1: Temporary storage for RN^{R} to avoid changing the state vector on the downlink until it is updated homogeneously.

RPCRTQSW: Double precision required X component of the X-body axis in Platform coordinates at the time of LR reposition to position 2, scaled B1 and unitless; part of the erasable load and may be altered by V59.
RPCRTIME: Single precision value of TTF at which the LR may be repositioned to position 2, scaled B17 in units of centiseconds; part of the erasable load and may be altered by V59.
RTX1, RTX2: See ORBI section.
RUNIT: Single precision unit vector along the position vector of the LM with respect to the center of the moon, scaled B1, unitless, and expressed in the Platform coordinate system.
SAMPLSUM: See RADR section.
SINIGA, SINMGA, SINOGA: See COOR section.
SKALSKAL: Single precision erasable memory factor by which the correction to the LR data is reduced if the $L R$ is on low range scale, scaled BO and unitless; part of the erasable load.
[SMNBMAT]: see COOR section.
STILBADH, STILBADV: Single precision counters, scaled B14 and unitless.
TEM: Single precision storage for -PIPA, scaled B14 in units of centimeters per second. TEM is used in the R.O.D. computations of the DESC section.

TIMENOW: see EXVB section,

TRAKFWDV: Single precision flag set to 1,0 or -1 to indicate whether the previously computed value of FORVEL wes limited to K:MAXVBITS or not, scaled B14 and unitless.

TRAKLATV: Single precision flag set to 1,0 or -1 to indicate whether the previously computed value of LATVEL exceeded K:MAXVBITS or not, scaled B14 and unitless.

TTF: see DESC section.
UHYP: Double precision unit vector normal to the CSM orbital plane, scaled B1 and unitless.

UHZP: Double precision unit local vertical vector in the forward direction, scaled B1 and unitless.

UNITGOBL: See BURN section.
UNITR: Double precision unit vector along the vector from the center of the moon or the earth to the LM, program notation UNIT/R/, scaled B1, unitless and expressed in the Platform or Reference coordinate system.

V: See DESC section.
V1S: Temporary storage for V to avoid changing state vector on the downlink until it is updated homogeneously, scaled B7 in units of meters per centisecond and expressed in the Platform coordinate system.
VBEAM: Double precision unit vector along one of the three Landing Radar velocity measurement directions, scaled B1 and expressed in Platform coordinates at LRVTIME.

VCSM: Double precision inertial velocity vector of the CSM, program notations V-OTHER and V(CSM), scaled B7 in units of meters per centisecond and expressed in the Reference or the Platform (for Descent) coordinate system.

VELBIAS: Double precision erasable constant representing the Landing Radar velocity reasonability test limit, scaled B6 in units of meters per centisecond; part of the erasable load.

VEST: Double precision projection of calculated velocity onto the par-' ticular IR velocity component direction being processed, scaled B6 in units of meters per centisecond.
VHY, VHZ: Single precision lateral and forward components of velocity relative to the rotating moon expressed in the Platform coordinate system (lateral velocity positive to the right when looking forward); scaled B5 in units of meters per centisecond.
VMEAS: Double precision velocity measurement from the LR sampling, scaled B28 in units of Landing Radar velocity bits.

VN: Double precision inertial velocity vector of the LM, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.

VN1: Temporary storage for VN to avoid changing the state vector on the downlink until it is updated homogeneously.

VSELECT: Single precision index used to distinguish among the Z (0), Y (1) and X (2) axes of the Landing Radar coordinate system, scaled B14 and unitless.

VVECT: Single precision velocity vector used in the calculation of forward, lateral and vertical velocity components of the analog display, scaled B5 in units of meters per centisecond and expressed in the Platform coordinate system.

VXBEAMNB, VYBEAMNB, VZBEAMNB: Double precision unit vectors along the X, Y and Z Landing Radar velocity measurement directions (orthogonal), scaled B1 and expressed in the Body coordinate system.

WM: see DESC section.
XNBPIP, YNBPIP, ZNBPIP: Double precision unit vectors along the X, Y and Z spacecraft axes, scaled B1 and expressed in the Platform coordinate system at PIPTIME.
[XNBPIP]: Double precision matrix with the first row equal to the components of XNBPIP, the second row equal to the components of YNBPIP, and the third row equal to the components of $\mathbb{Z N B P I P}$, scaled B1 and unitless.

UPRUPT
SAMPTIME = TIMENOW
(for noun 65)
TS $=$ INLINK
UNLINK $=00000_{8}$
Switch bit 3 of channel 11 to 1 (unlink activity lamp)
TS should be of the form xxix kkkkk $x^{2} x_{0 x}$ where five $x^{\prime} s$ represent the five bit keycode and five k^{\prime} s represent the complement of that keycode. If TS is not of this form:

Switch FLAGWRD7'bit 4 (UPLOCKFL) to 1
Resume
TS code $=$ low 5 bits of TS
If TScode $=22_{\mathrm{g}}$: (error reset)
Switch FLAGWRD7 bit 4 (UPLOCKFL) to 0
If TScode $\neq 22_{\mathrm{g}}$:
If FLAGWRD7 bit 4 (UPLOCKFL) $=1$, resume
Establish "CHARIN"
Set MPAC 0 of "CHARIN" job = TS code
Resume
UPTMFAST If bit 17 of IMODES33 $=0$:
Perform "ALARM" with TS $=01106_{8}$
Return
DNTMFAST If bit 12 of $\operatorname{IMODES33}=0$:
Perform "ALARM" with TS $=01105_{g}$
Return
DODOWNTM If bit 7 of channel $13=1$: (word order code)
Proceed to address specified in DNTMGOTO
Perform "Cl3STALL"
Set bit 7 of channel 13 to 1

```
    Proceed to address specified in DNTMGOTO
DNPHASE1 SUBLIST = -1
    DNECADR = -1
    DNTMGOTO = "DNPHASE2"
    CTLIST = K:DNTABLE DNLSTCOD
    Perform "WOZERO"
    Channel 34= -DNLSTCOD
    Channel 35 = K:LOWIDCOD
    Resume
DNPHASE2 If DNECADR and SUBLIST are both <O: (control list)
        If CTLIST \leq 0:
            Proceed to 4th line of "DNPHASEl"
        ADR = E CTLIST
        If ADR > 0, CTLIST = CTLIST + I
        If ADR<0: (end of list)
        CTLIST = _CTLIST
        ADR = -ADR
        DNECADR = ADR
        If DNECADR = K:timeadr, perform "WOZERO"
        DOWNTYPE =' bits 14-12 of DIJEGADR
        If DONNTYPE < 6, proceed to "FETCH2WD"
        If DOWNTYPE = 6, proceed to "DODNPTR"
        Proceed to "DODNCHAN"
    If DNECADR > 0, proceed to "FETCHZND"
    Proceed to "NEXPINSL"
DODNCHAN i = low }8\mathrm{ bits of DNECADR
```

```
    j = i + l
    DNECADR = -1
    Ghannel 34 = channel i
    Channel 35 = channel j
    Resume
FETCH2WD EBANK = bits ll-9 of DNECADR
    TS = low }8\mathrm{ bits of DNECADR
    DOWNTYPE = DOWNTYPE - 1
    DNECADR = 2ll DOWNTYPE + 2 % EBANK + TS + 2
    (putting DOWNTYPE into bits 14-12, EBANK into bits
        11-9; making DNECADR negative after DOWNTYPE is
        reduced below zero)
    ADRI = TS + 1400 
    ADR2 = TS + 14018
    Channel 34 = E EADRI
    Channel 35= E ADR2
    Resume
DODNPTR SUBADR = E DNECADR - 300008
    If SUBADR < 0:
    (snapshot)
    SUBLIST = DNECADR (address of sublist)
    i=0
    SUBADR = |SUBADR| - 000018
    Proceed to "SNAPLOOP"
    SUBLIST = DNECADR
NEXTINSL SUBADR }=\mp@subsup{E}{\mathrm{ SUBLIST }}{}-30000\mp@subsup{0}{8}{
    If SUBADR > 0, SUBLIST = SUBLIST + 1
```

 TELE - 3
    ```
    If SUBADR < 0, SUBLIST = -l
    DNECADR = \SUBADR 
DOWNTYPE = bits 14-12 of DNECADR
If DOWNTYPE < 6, proceed to "FETCH2WD"
If DOWNTYPE = 6, proceed to "DODNPTR"
Proceed to "DODNCHAN"
SNAPLOOP EBANK = bits ll-9 of SUBADR
ADRI = 14018}+ low 8 bits of SUBADR . (1401 and 1402 to
compensate for the
ADR2 = 1402g + low 8 bits of SUBADR 5th step of "DODNPTR"
DNTMBUFF
j = i + l
DNTMBUFF }\mp@subsup{j}{j}{}=\mp@subsup{E}{ADR2}{
i=i + 2
SUBLIST = SUBLIST + I
SUBADR = E ESUBLIST - 30000
If SUBADR > 0: (continue snapshot)
    SUBADR = |SUBADR| - l
    Proceed to "SNAPLOOP"
SUBLIST = |SUBADR| - I
DNECADR = -1
SUBADR = SUBLIST
SUBLIST = -l
EBANK = bits ll-9 of SUBADR
ADRI = 14018}+ low 8 bits of SUBADR
ADR2 = 1402g}+\mathrm{ low }8\mathrm{ bits of SUBADR
Channel 34 = E ADRI
```

```
    Channel 35 = E EADR2
    Resume
DNDUMPI DUMPLOC = 00000
    DNTMGOTO = "DNDUMPI3"
    Perform NWOZERON
    Channel 34=K:ERASID
    Channel 35 = K:IOWIDCOD
    Resume
DNDUMPI3 DNTMGOTO = "DNDUMP1"
    Channel 34= DUMPLOC
    Channel 35 = least significant half of TIMENOW
    Resume
DNDUMP1 DNTMGOTO = "DNDIMMPN
    Proceed to "DNDUMP2"
DNDUMP DUMPLOC = DUMPLOC + 2
    TS = low 8 bits of DUMPLOC
    If TS >0, proceed to "DNDUMP2"
    (Otherwise, TS = O and dump is changing banks)
    If bit }13\mathrm{ of DUMPLOC = 0:
    Proceed to second line of "DNDUMPI"
    Proceed to "DNPHASF1"
DNDUMP2 EBANK = bits ll-9 of DUMPLOC
    TS = low }8\mathrm{ bits of DUMPLOC
    ADR2 = 14018
    ADRI = 1400 g}+T
        TELE - 5
```

| | Channel $34=\mathrm{E}_{\text {ADRI }}$ | |
| :---: | :---: | :---: |
| | Channel $35=\mathrm{E}_{\text {ADR2 }}$ | |
| | Resume | |
| SUDWNI | $\underline{\mathrm{R}}$-OTHER $=\underline{\text { RCV }}+\underline{\text { TDELTAV }}$ | |
| | $\underline{V}-0 T H E R=\underline{V C V}+\underline{T N U V}$ | |
| SVDWN2 | Return | |
| | If FLAGWRD9 bit 1 (AVEMIDSW) $=0$: | |
| | $\underline{\mathrm{RN}}=\underline{\mathrm{R} C V}+\underline{\mathrm{T}} \mathrm{DELTAV}$ | |
| | $\underline{V N}=\underline{V C V}+\underline{T N U V}$ | |
| | PIPTIME $=$ TET | |
| WOZERO | Return | |
| | Perform "Cl3Stall" | |
| | Switch bit 7 of channel 13 to 0 | (word order code) |
| | Return | |

ADR: Single precision temporary storage for the address taken from the control list. If it is negative this indicates the end of a downlist.

ADRI, ADR2: Single precision addresses (without EBANK information) of the two consecutive registers to be transmitted on the downlink.

CTLIST: Single precision address of the next entry in the downlink control list. When the final downlist quantity is read, CTLIST is complemented to cause downlist to be started again.

DNECADR: Single precision octal address of the first of two consecutive registers to be transmitted on the downlink (in bits 8-1). Bits 14-12 contain a code indicating the type of sample to be taken (see DOWNTYPE). Bit 15 is set (DNECADR made negative) to indicate that control is to be returned to the control list.

DNLSTCOD: Single precision index (range 0-5) indicating which of the downlists is to be telemetered, scaled B14 and unitless. Loaded by various programs to select the proper downlist. See K:DNTABLE.

DNTMBUFF: A series of single precision buffer cells used to store a simultaneous "snapshot" of a series of E-memory cells all sampled at the same downlink interrupt, thereby making the data time homogeneous.

DNTMGOTO: Single precision octal address controlling the phase of operation of the downlink program.

DOWNTYPE: Variable describing bits 14-12 of DNECADR in the normal downlink mode. If DOWNTYPE = 7, the address in DNECADR is interpreted as that of a channel. If DOWNTYPE is less than 6, the address in DNECADR is interpreted as that of a series of N consecutive registers ($N=2$ (DOWNTYPE + 1)). If DOWNTYPE $=6$, the address in DNECADR is interpreted as that of a sub-list and control is transferred to the sub-list decoder ("DODNPTR").

DUMPLOC: Single precision E-memory register which contains the counter
and ECADR for each dump-word being sent. Bits $8-1$ provide the relative address within the Thing bits 11-9 define the EBANK (propagated from bit 8); bits 13-12 serve as a counter of the number of complete dumps which have occurred. When bit 13 becomes 1 then memory has been dumped twice and the dumping stops.
$\mathrm{E}_{\mathrm{ADR}}$ Single precision register whose address is in ADR.
EBANK: See MATX section.
IMODES33: See INTR section.
INLINK: Single precision serial input register for receipt of uplink data. When the required sixteen bits of data are received from the uplink decoder, program interrupt \#7 is generated.

K:DNTABLE $(i=0-5)$: Table of six octal starting addresses of the downlink lists.

| i | List address |
| :--- | :--- |
| 0 | "LMCSTADL" |
| 1 | "LMAGSIDL" |
| 2 | "LMRENDDL" |
| 3 | "LMORBMDL" |
| 4 | "LMDSASDL" |
| 5 | "LMLSALDL" |

K:ERASID: Single precision octal constant stored as 01776. Used as E-memory octal dump downlist I.D. word, loaded in downlink word.la.

K:LOWIDCOD: Single precision octal constant stored as 773408. Loaded into downlist word lb of each of the six downlink lists. Sometimes referred to as the "sync" bits.

K: timeadr: Single precision constant stored as 77753g, program notation MINTIME2. Equation value: 00024g, address of TIMENOW.
MPAC_{0} : See DSKY section.
PIPTIME: See SERV section.
R-OTHER, V-OTHER: Double precision navigation state vectors of the CSM, scaled B29 and B7 respectinely in units of meters and meters/centiseconds. See RCSM, VCSM in SERV section.

RCV, VCV: See CONC section.
RN: See SERV section.
SAMPTIME: See DSKY section.

SUBADR: Single precision address oode word like DNECADR but taken from a sub-list.

SUBLIST: Single precision address of the next entry in a downlink sub-list.

TDELTAV, TNJV: See ORBI seotion.
TET: See ORBI section.
TIMENOW: See EXVB section.
VN: See SERV seotion.

The LM Guidance Computer (LGC) downlink takes the form of 40 -bit words transmitted as a basic rate of 50 words/second (part of a telemetry stream at 51.2 kbps). A "low bit rate" of one-fifth of this transmission rate also exists, although no computer words are included in low bit rate data. Each 40-bit word is divided into.four parts:
a) The first bit is the word order code bit, set zero for the first word pair and the fifty-first word pair and one for the other 98 pairs in the standard telemetry cycle.
b) Bits \#2 - \#17 contain the first word of the word pair (bit 15 is in bit \#2, bit 14 in bit \#3, ... bit 1 in bit \#16, and an odd parity bit in bit \#17). The odd parity bit makes the total number of binary "ones" in bits \#2 - \#17 an odd number.
c) Bits \#18 - \#33 contain the second word of the word pair (bit 15 is in bit \#18, bit 14 in bit \#19, ... bit 1 in bit \#32, and an odd parity bit for bits \#18 - \#33 in bit \#33).
d) Bits \#34 - \#40 are the same as bits \#2 - \#8 (bits 15-9 of first word of the word pair), so that the total number of bits in the digital downlink from the computer is a multiple of 8 bits (i.e., $5 \times 8=40$).

The computer hardware monitors the period of the telemetry interrupts received from the telemetry system, and rejects the interrupt (takes no action) if the interrupts occur too rapidly. The mechanization requires a computer 100 pps pulse to occur between each accepted telemetry interrupt (which, under normal conditions, only occur once every 20 ms , or at a 50 pps rate). A channel bit (channel 33 bit 12) is set to a binary zero if an interrupt is rejected, and an alarm pattern (1105_{8}) is also produced.

The convention is established in the program that "bit 15 " is the sign bit (a binary one if quantity negative) and "bit 1 " is the least significant magnitude bit. Using "a" for the first word of a pair and "b" for the second word, the bit stream would appear as follows:

WOC 15a 14a 13a 12a 1la 10a 9a 8a 7a 6a 5a 4a 3a 2a la Parity 15b 14b 13b 12b 11b 10b 9b 8b 7b 6b 5b 4b 3b 2b 1b Parity ${ }_{b}$

15a 14 a 13a 12a 11a 10a 9a
(WOC is the "word order code", discussed in item (a) above.)

Most telemetered words have negative numbers expressed in ones complement form, and in general the signs of the most significant and least significant portions will not agree, since the individual portions of a multiple precision quantity are considered generally as separate "words" in the computer arithmetic unit. Several words in the downlist are used as control quantities in the program and have explicit meanings assigned to their individual bits. These words have their sign bits set separately from the rest of the word, 'and hence are not subject to the same conversion process as other "negative" quantities.

Scaling, units, and definition references for each parameter are contained in the tables.

The downlink program has the capability to sample a selected set of erasable locations essentially at the same time with the contents of these locations stored in a set of unshared erasable to be downlinked when individual telemetry interrupts are received. By this means a time-homogeneous set of downlink information can be obtained provided the program loading the cells involved observes proper restrictions. These selected buffered areas are commonly called "snapshots". The LUMINARY downlists have the following snapshots:

| Coast and Align List | Words 2-8, 52-58 |
| :--- | :--- |
| AGS Initialization and Update List | Words 52-58 |
| Rendezvous and Prethrust List | Words 2-8, 9-13, 52-58 |
| Orbital Maneuvers List | Words 2-8, 52-58 |
| Descent and Ascent List | Words 2-13, 52-58 |
| Lunar Surface Align List | Words 2-8, 9-13, 52-58 |

Downlink Sequences

There are six different 100 -word lists which can be sent by the program during the flight (plus the special erasable memory dump). For convenience, these lists have been assigned serial numbers, \#0 through \#5 (listed in order of increasing identification words). During a given program, a certain list is transmitted as defined below:

List \#0 The Coast and Align List is transmitted during:
POO LGC Idling
P51 IMU Orientation Determination
P52 IMU Realignment
P06 IGC Power Down
List \#l The AGS Initialization and Update List is transmitted during:

P27 IGC Update.
R47 AGS Initialization
List \#2 The Rendezvous and Prethrust List is transmitted during:
P2O Rendezvous Navigation
P21 Ground Track Determination
P25 Preferred Tracking Attitude
P30 External Delta V Maneuver Guidance
P32 Coelliptic Sequence Initiation (CSI)
P33 Constant Differential Altitude (CDH)
P34 Transfer Phase Initiation (TPI)
P35 Transfer Phase Midcourse (TPM)
P72 CSM CSI Targeting
P73 CSM CDH Targeting
P74 CSM TPI Targeting

TELE-12
P75 CSM IPM Targeting
P76 Target DELTA V
List \#3 The Orbital Maneuvers List is transmitted during:
P40 DPS Thrust
P41 RCS Thrust
P42 APS Thrust
P47 Thrust Monitor
List \#4 The Descent and Ascent List is transmitted during:
Pl2 Powered Ascent Guidance
P63 Braking Phase Guidance
P64` Approach Phase Guidance
P66 Rate of Descent (ROD) Landing Phase Guidance
P68 Confirm Lunar Landing
P70 DPS Abort Guidance
P71 APS Abort Guidance
List \#5 The Lunar Surface Align List is transmitted during:
P22 RR Lunar Surface Navigation
P57 Lunar Surface Alignment
Several cells are identified as "Spare": by program assembly technique, the word on the downlink has the first half as 000008 and the second half as a quantity of negligible usefulness for post-flight processing (the contents of the computer accumulator register, cell 0000 , when the telemetry interrupt was recognized).
Words marked with an asterisk in the list were transmitted as a result of a double precision pickup in the downlink program and have no known importance.

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 1 | LIST ID (777778) | SYNC PATTERN (773408) | 1717-1724 |
| 2 | R-OTHER (X comp.) | R-OTHER ${ }_{1}$ (X comp.) | |
| 3 | R-OTHER ${ }_{2}$ (Y comp.) | R-OTHER ${ }_{3}$ (Y comp.) | |
| 4 | R-OTHER 4 (Z comp.) | R-OTHER (Z comp.) | |
| 5 | V -OTHER ${ }^{\text {(}}$ (comp.) | V-OTHER ${ }_{1}$ (X comp.) | 1725-1732 |
| 6 | V -OTHER ${ }_{2}$ (Y comp.) | V -OTHER ${ }_{3}$ (Y comp.) | |
| 7 | V-OTHER (Z comp.) | V-OTHER (Z comp.) | |
| 8 | TETCSM (T-OTHER) | TETCSM (T-OTHER) | 1570-1 |
| 9 | AGSK (K-FACTOR) | AGSK (K-FACTOR) | 2020-1 |
| 10 | TALIGN | TALIGN | 2774-5 |
| 11 | DOWNTORK ${ }_{2}$ (POSTORKU) | DOWNTORK ${ }_{3}$ (${ }^{\text {NEGTORKU) }}$ | 3115, 3116 |
| 12 | DOWNTORK $_{4}$ (POSTORKV) | DOWNTORK ${ }_{5}$ (NEGTORKV) | 3117, 3120 |
| 13 | DNRADATA ${ }_{1}$ (DNRRANGE) | $\mathrm{DNRADATA}_{2}$ (DNRRDOT) | 1330, 1331 |
| 14 | TEVENT | TEVENT | 1341-2 |
| 15 | $\mathrm{REFSMMAT}_{0}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)$ | $\mathrm{FEFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)$ | $\left\{\begin{array}{l} 1733-174 \end{array}\right.$ |
| 16 | $\mathrm{REFSMMAT}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)$ | REFSMMAT ${ }_{3}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)$ | |
| 17 | $\mathrm{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)$ | REFSMMAT ${ }_{5}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)$ | |
| 18 | REFSMMAT $6\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)$ | $\mathrm{REFSSMAT}_{7}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)$ | |
| 19 | $\mathrm{REFSMMAT}_{8}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$ | $\mathrm{REFSMMAT}_{9}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$ | |
| 20 | REFSMMAT ${ }_{10}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)$ | FEFSMMAT ${ }_{11}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)$ | |
| 21 | AOTCODE | *SINIGA | .0734, 0735 |
| 22 | $\mathrm{RLS}_{\mathrm{O}}$ (X -comp) | RLS_{1} (X-comp) | 2022-2027 |
| 23 | RLS_{2} (Y-comp) | RLS_{3} ($\mathrm{Y}_{\text {-comp) }}$ | |
| 24 | RLS_{4} (Z-comp) TELE | RLS_{5} (Z -comp) | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 25 | DNRADATA/4 (DNLRVELX) | DNRADATA ${ }_{5}$ (DNLRVELY) | 1333, 1334 |
| 26 | DNRADATA6 (DNLRVELZ) | DNRADATAY (DNLRALT) | 1335, 1336 |
| 27 | VGPREV $_{0}$ (VGTIG-X comp) | VGPREV_{1} (VGTIG-X comp)) | |
| 28 | VGPREV 2 (VGTIG-Y comp) | VGPREV_{3} (VGTIG-Y comp) | $3700-3705$ |
| 29 | VGPREV_{4} (VGTIG-Z comp) | $\mathrm{VGPREV}_{5}(\mathrm{VGTIG-Z}$ comp) $)$ | |
| 30 | REDOCTR | THETAD (X-ANGLE) | 0320, 0321 |
| 31 | THETAD_{1} (Y-ANGLE) | THETAD 2 (Z-ANGLE) | 0322, 0323 |
| 32 | RSBBQ | RSBBQ +1 | 1432, 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | * DELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRD1 | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLAGWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | 0074-0107 |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRD10 | FLGWRDI1 | |
| 45 | DSPTAB 0 | DSPTAB_{1}) | |
| 46 | DSPTAB_{2} | DSPTAB_{3} | |
| 47 | DSPTAB_{4} | DSPTAB_{5} | 1022-1035 |
| 48 | DSPTAB6 | DSPTAB_{7} | 1022-1035 |
| 49 | $\mathrm{DSPT}^{\text {A }} 8$ | DSPTAB9 | |
| 50 | DSPTAB_{10} | $\mathrm{DSPTAB}_{11} \quad \int$ | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 51 | TIMENOW (TIME2) | TIMENOW (TIMEI) | 0024-5 |
| 52 | RN_{O} (X comp.) | RN_{1} (X comp.) | |
| 53 | RN_{2} (Y comp.) | RN_{3} (Y comp.) | 1217-1224 |
| 54 | RN_{4} (Z comp.) | RN_{5} (Z comp.) | |
| 55 | VN O_{O} (X comp.) | VN_{1} (X comp.) | |
| 56 | VN_{2} (Y comp.) | VN_{3} (Y comp.) | 1225-1232 |
| 57 | VN_{4} (Z comp.) | VN_{5} (Z comp.) | |
| 58 | PIPTIME | PIPTIME | 1233-4 |
| 59 | OMEGAPD | OMEGAQD | 3242, 3243 |
| 60 | OMEGARD | ${ }^{*}$ ECDUW | 3244, 3245 |
| 61 | CADRFLSH 0 | $\mathrm{CADRFLSH}_{2}$ | 0372, 0373 |
| 62 | $\mathrm{CADRFLSH}_{2}$ | FAIL REG 0_{0} | 0374, 0375 |
| 63 | $\mathrm{FAILPEG}_{1}$ | FAIL REG_{2} | 0376, 0377 |
| 64 | RADMODES | DAPBOOLS | 0110, 0111 |
| 65 | OGC | OGC | 2737-2740 |
| 66 | IGC | IGC | 2741-2 |
| 67 | MGC | MGC | 2743-4 |
| 68 | BESTI (STAR ID 1) | BESTJ (STAR ID 2) | 2755, 2756 |
| 69 | STARSAV10 (X comp.) | STARSAV1 ${ }_{1}$ (X comp.) | |
| 70 | STARSAVI $_{2}$ (Y comp.) | $\mathrm{STARSAVI}_{3}$ (Y comp.) | 2760-2765 |
| 71 | $\mathrm{STARSAVI}_{4}$ (Z comp.) | STARSAV1 ${ }_{5}$ (Z comp.) | |
| 72 | STARSAV20 (X comp.) | STARSAV2 $_{1}$ (X comp.) | |
| 73 | STARSAVZ2 (Y comp.) | STARSAV2 $_{3}$ (Y comp.) | -2766-2773 |
| 74 | STARSAV24 (Z comp.) | STARSAV2 $_{5}$ (Z comp.) | |
| 75 | $\mathrm{DNRADATA}_{4}$ (DNLRVELX) | $\mathrm{DNRADATA}_{5}$ (DNLRVELY) | 1333, 1334 |
| 76 | DNRADATA6 (DNLRVELZ) | DNRADATA7 (${ }^{\text {dNLRALT }}$) | 1335, 1336 |

| WJRD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRES |
| :---: | :---: | :---: | :---: |
| 77 | CDUS | PIPA (X) | 0036, 0037 |
| 78 | PIPA (Y) | PIPA (Z) | 0040, 0041 |
| 79 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112, 0113 |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES30 | IMODES 33 | 1277, 1300 |
| 82 | TIG | TIG | $3441-\overline{2}^{2}$ |
| 83 | OMEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZD | * DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032, 0033 |
| 88 | CDJZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK ${ }^{\text {(POSTORKP) }}$ | DOWNTORK ${ }_{1}$ (NEGTORKP) | 3113, 3114 |
| 91 | CHANNELII | CHANNELI2 | |
| 92 | CHANNELI 3 | CHANNEL14 | |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL32 | CHANNEL33 | |
| 95 | DSPTAB 0 | DSPTAB_{1} | |
| 96 | DSPTAB_{2} | $\mathrm{DSPT} \mathrm{AB}_{3}$ | |
| 97 | DSPTAB_{4} | DSPTAB_{5} | 1022-1035 |
| 98 | DSPTAB_{6} | DSPT AB7 | 1022-1035 |
| 99 | $\mathrm{DSPT} \mathrm{AB}_{8}$ | DSPT AB9 | . |
| 100 | DSPTAB_{10} | DSPTAB_{11} | |

| WORD \# | FIRST REGISTER | SECOND REGISTER E | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 1 | LIST ID (77776_{8}) | SYNC PATTERN (77340_{8}) | |
| 2 | AGSBUFFF (LM X POS) | ${ }^{*}$ AGSBUFF $_{1}$ (not used by AGS) | 2200, 2201 |
| 3 | $\mathrm{AGSBUFF}_{2}(L M Y$ POS $)$ | ${ }^{\text {* }} \mathrm{AGSBUFF}_{3}$ (not used by AGS) | 2202, 2203 |
| 4 | $\mathrm{AGSBUFF}_{4}$ (LM Z POS) | * AGSBUFF 5 (not used by AGS) | 2204, 2205 |
| 5 | $\begin{aligned} & \text { AGSBUFF }_{12} \text { (Vector time } \\ & \mathrm{MSB} \text {) } \end{aligned}$ | * $_{\text {AGSBUFF }}^{13}$ (not used by $A G S$) |) 2214,2215 |
| 6 | AGSBUFF $_{1}$ (LM X VEL) | ${ }^{*} \mathrm{AGSBUFF}_{2}$ (not used by AGS) | 2201, 2202 |
| 7 | $\mathrm{AGSUBFF}_{3}$ (LM Y VEL) | ${ }^{*} \mathrm{AGSBUFF}_{4}$ (not used by AGS) | 2203, 2204 |
| 8 | AGSBUFF $_{5}$ (LM Z VEL) | ${ }^{*}$ AGSBUFF $_{6}$ (not used by AGS) | 2205; 2206 |
| 9 | $\begin{aligned} & \text { AGSBUFF } 13 \text {. (Vector time } \\ & \text { LSB) } \end{aligned}$ | ${ }^{*} \mathrm{VONE}_{2}$ (not used by AGS) | 2215, 2216 |
| 10 | $\mathrm{AGSBUFF}_{6}$ (CSM X POS) | * AGSBUFF 7 (not used by AGS) | 2206, 2207 |
| 11 | $\mathrm{AGSBUFF}_{8}$ (CSM Y POS) | ${ }^{*}$ AGSBUFFF $_{9}$ (not used by AGS) | 2210, 2211 |
| 12 | AGSBUFF $_{10}$ (CSM Z POS) | AGSBUFF $_{11}$ (not used by AGS) |) 2212,2213 |
| 13 | AGSBUFF $_{12}$ (Vector time MSB) | * AGSBUFF $_{13}$ (not used by AGS) |) 2214, 2215 |
| 14 | AGSBUFF $_{7}$ (CSM X VEL) | ${ }^{*}$ AGSBUFF $_{8}$ (not used by AGS) | 2207, 2210 |
| 15 | AGSBUFF9 (CSM Y VEL) | ${ }^{*}$ AGSBUFF $_{10}$ (not used by AGS) |) 2211, 2212 |
| 16 | $\mathrm{AGSBUFF}_{11}$ (CSM Z VEL) | ${ }^{*}$ AGSBUFF $_{12}$ (not used by AGS) |) 2213,2214 |
| 17 | AGSBUFF $_{\text {I. }}$ (Vector time LSB) | ${ }^{*} \mathrm{VONE}_{2}$ (not used by AGS) | 2215, 2216 |
| 18 | COMPNUMB | UPOLDMOD | 1167, 1170 |
| 19 | UPVERB | UPCOUNT | 1171, 1172 |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 20 | UPBUFFO | UPBUFF_{1} | |
| 21 | UPBUFF_{2} | UPBUFF_{3} | |
| 22 | UPBUFF_{4} | UPBUFF ${ }_{5}$ | |
| 23 | UPBUFF6 | UPBUFF ${ }_{7}$ | |
| 24 | UPBUFF_{8} | UPBUFF_{9} | |
| 25 | UPBUFF_{10} | UPBUFF_{11} | |
| 26 | UPBUFF_{12} | UPBUFF_{13} | |
| 27 | UPBJFF_{14} | UPBUFF_{15} | |
| 28 | UPBUFF_{16} | UPBUFF 17 | |
| 29 | UPBUFF18 | UPBUF^{19} | |
| 30 | REDOCTR | THETAD ${ }_{0}$ (X-angle) | 0320, 0321 |
| 31 | THETAD ${ }_{l}$ (Y-angle) | THETAD 2 (Z -angle) | 0322, 0323 |
| 32 | RSBBQ | RSBBQ +1 | 1432, 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | * DELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRD1 | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLASWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | - |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRD10 | FLGWRD11 | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 45 | DSPTAB 0 | DSPTAB_{1} | |
| 46 | DSPTAB_{2} | DSPTAB_{3} | |
| 47 | DSPTAB_{4} | DSPTAB_{5} | 1022-1035 |
| 48 | DSPTAB_{6} | DSPTAB7 | |
| 49 | DSPTAB_{8} | DSPTAB_{9} | |
| 50 | DSPTAB_{10} | DSPTAB_{11} | |
| 51 | TIMENOW (TIME2) | TIMENOW (TIMEI) | 0024-5 |
| 52 | RN_{0} (X comp.) | RN_{1} (X comp.) | |
| 53 | RN_{2} (Y comp.) | RN_{3} (Y comp.) | 1217-1224 |
| 54 | RN_{4} (Z comp.) | RN_{5} (Z comp.) | |
| 55 | VN_{O} (X comp.) | VN_{1} (X comp.) | |
| 56 | VN_{2} (Y comp.) | VN_{3} (Y comp.) | 1225-1232 |
| 57 | VN_{4} (Z comp.) | VN_{5} (Z comp.) | |
| 58 | - PIPTIME | PIPTIME | 1233-4 |
| 59 | OMEGAPD | OMEGAQD | 3242, 3243 |
| 60 | OMEGARD | *ECDUW | 3244, 3245 |
| 61 | CADRFLSH 0 | $\mathrm{CADRFLSH}_{1}$ | 0372, 0373 |
| 62 | $\mathrm{CADRFLSH}_{2}$ | FAILREG $_{0}$ | 0374, 0375 |
| 63 | $\mathrm{FAILREG}_{1}$ | $\mathrm{FAILREG}_{2}$ | 0376, 0377 |
| 64 | RADMODES | DAPBOOLS | 0110, 0111 |
| 65 | DOWNTORK $_{2}$ (POSTORKU) | $\mathrm{DOWNTORK}_{3}$ (NEGTORKU) | 3115, 3116 |
| 66 | $\mathrm{DOWNTORK}_{4}$ (POSTORKV) | $\mathrm{DOWNTORK}_{5}$ (NEGTORKV) | 3117,3120 |
| 67 | SPARE | SPARE | |
| 68 | SPARE | SPARE | |
| 69 | AGSK (K-FACTOR) | AGSK (K-FACTOR) | 2020-1 |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 70 | UPBUFF 0 | UPBUFF_{1} | |
| 71 | UPBUFF_{2} | UPBUFF_{3} | |
| 72 | UPBUFF_{4} | UPBUFF_{5} | |
| 73 | UPBUFF_{6} | UPBUFF7 | |
| 74 | UPBUFF_{8} | UPBUFF9 | 1173-1216 |
| 75 | UPBUFF ${ }_{10}$ | UPBUFF11 | |
| 76 | UPBUFF12 | UPBUFF13 | |
| 77 | UPBUFF14 | UPBUFF_{15} | |
| 78 | UPBUFF16 | UPBUFF_{17} | |
| 79 | UPBUFF18 | UPBUFF'19 | |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES30 | IMODES 33 | 1277, 1300 |
| 82 | SPARE | SPARE | |
| 83 | OIVEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZD | * DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032, 0033 |
| 88 | CDUZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK ${ }_{\text {O }}$ (POSTORKP) | DOWNTORK, (NEGTORKP) | 3113, 3114 |
| 91 | CHANNELII | CHANNELI2 | |
| 92 | CHANNELI3 | CHANNELI4 | - |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL32 | CHANNEL33 | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 95 | DSPTAB0 | DSPTAB_{1} | |
| 96 | DSPTAB_{2} | DSPTAB_{3} | |
| 97 | DSPTAB_{4} | DSPTAB5 | 1022-1035 |
| 98 | DSPTAB6 | DSPT AB7 | |
| 99 | DSPTAB8 | DSPTAB9 | |
| 100 | DSPTAB_{10} | DSPTAB_{11} | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 1 | LIST ID (777758) | SYNC PATTERN (773408) | |
| 2 | R-OTHERO (X comp.) | $\mathrm{R}-O T H E R 1^{\text {(}}$ (comp.) | |
| 3 | R-OTHER ${ }_{2}$ (Y comp.) | R-OTHER3 (Y comp.) | 1717-1724 |
| 4 | R-OTHER ${ }_{4}$ (Z comp.) | R-OTHER5 (Z comp.) | |
| 5 | V-OTHERO (X comp.) | V-OTHER (X comp.) | |
| 6 | V-OTHER2 (Y comp.) | V-OTHER3 (Y comp.) | 1725-1732 |
| 7 | V-OTHER4 (Z comp.) | V-OTHER5 (Z comp.) | |
| 8 | TETCSM (T-OTHER) | TETCSM (T-OTHER) | 1570-1 |
| 9 | RANGRDOT I DNRFAMLET | RANGRDOT+1 .-- | 3760, 3761 |
| 10 | ATG | AMG | 3457, 3460 |
| 11 | AOG | TRKMKCNT | 3461, 3462 |
| 12 | TANGNB (RR trunnion) | . TANGNB_{1} (RR shaft) | 3752, 3753 |
| 13 | MKTIME | MKTIME | 3754-5 |
| 14 | DELLT4 (T_{F} Lambert) | DELLT4 (T_{F} Lambert) | 3451-2 |
| 15 | RTARG (X comp.) | RTARG $_{1}$ (X comp.) | . |
| 16 | RTIARG_{2} (Y comp.) | RTARG_{3} (Y comp.) | $3443-3450$ |
| 17 | RTARG_{4} (Z comp.) | RTARG_{5} (Z comp.) | |
| 18 | DELVLVC $_{0}$ (DELVSLV-X) | DELVLVC $_{1}$ (DELVSLV-X) | |
| 19 | $\mathrm{DELVLVC}_{2}$ (DELVSLV-Y) | $\mathrm{DELVLVC}_{3}$ (DELVSLV-Y) | $3433-3440$ |
| 20 | DELVLVC $_{4}$ (DELVSLV-Z) | $\mathrm{DELVLVG}_{5}$ (DELVSLV-Z) | |
| 21 | TCSI (CSI time) | TCSI (CSI time) | 3633-4 |
| 22 | DELVEETI 0 (X comp.) | DELVEET $_{1}$ (X comp.) | |
| 23 | $\mathrm{DELVEET}_{2}$ (Y comp.) | DELVEET $_{3}$ (Y comp.) | 2266-2273 |
| 24 | DELVEETI $_{4}$ (Z comp.) | DELVEETl $_{5}$ (Z comp.) | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 25 | SPARE | SPARE | |
| 26 | TPASS4 (TPF time) | TPASS4 (TPF time) | 3630-1 |
| 27 | X789x (RR shaft bias) | K789x (RR shaft bias) | 1700-1 |
| 28 | X789y (RR trunnion bias) | X789y (RR trunnion bias) | 1702-3 |
| 29 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112-0113 |
| 30 | REDOCTR | THETAD ${ }_{0}$ (X-angle) | 0320, 0321 |
| 31 | THETAD_{1} (Y-angle) | THETAD ${ }_{2}$ (- -angle) | 0322, 0323 |
| 32 | RSBBQ | RSBBQ+1 | 1432, 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | * DELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRD1 | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLAGWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | 0074-0107 |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRD10 | FLGWRDII | |
| 45 | DSPTAB 0 | DSPTAB_{1}) | |
| 46 | DSPTAB_{2} | DSPTAB_{3} | |
| 47 | DSPTAB_{4} | DSPTAB_{5} | . 1022 - 1035 |
| 48 | DSPTAB6 | DSPTAB7 | |
| 49 | DSPTAB8 | DSPTAB9 | |
| 50 | DSPTAB10 | DSPTAB_{11} | |

| WORD \# | FIRST REGISTER |
| :---: | :---: |
| 51 | TIMENOW (TIME2) |
| 52 | RN_{O} (X comp.) |
| 53 | RN_{2} (Y comp.) |
| 54 | RN_{4} (Z comp.) |
| 55 | VN ${ }_{\text {O }}$ (X comp.) |
| 56 | VN_{2} (Y comp.) |
| 57 | VN_{4} (Z comp.) |
| 58 | PIPTIME |
| 59 | OMEGAPD |
| 60 | OMEGARD |
| 61 | CADRFLSH0 |
| 62 | $\mathrm{CADRFLSH}_{2}$ |
| 63 | $\mathrm{FAILREG}_{1}$ |
| 64 | RADMODES |
| 65 | DOWNTORK2 ${ }^{\text {(POSTORKU) }}$ |
| 66 | DOWNTORK $_{4}$ (POSTORKV) |
| 67 | SPARE |
| 68 | TCDH |
| 69 | DELVEET2 ${ }^{\text {(}} \mathrm{X}$ comp.) |
| 70 | DELVEET2 2 (Y comp.) |
| 71 | DELVEET2 ${ }_{4}$ (Z comp.) |
| 72 | TTPI |
| 73 | DELVEET30 |
| 74 | DELVEET32 |
| 75 | DELVEET3 ${ }_{4}$ |
| 76 | ELEV |

| TIMENOW (TIME1) | 0024-5 |
| :---: | :---: |
| $\mathrm{RN}_{1} \text { (X comp.) }$ | |
| RN_{3} (Y comp.) | 1217-1224 |
| RN_{5} (Z comp.) | |
| VN_{1} (X comp.) | |
| VN_{3} (Y comp.) | 1225-1232 |
| VN_{5} (Z comp.) | |
| PIPTIME | 1233-4 |
| OMEG AQD | 3242, 3243 |
| $*_{* \text { ECDUW }}$ | $3244 ; 3245$ |
| $\mathrm{CADRFLSH}_{1}$ | 0372, 0373 |
| FAILPEG ${ }_{0}$ | 0374, 0375 |
| FAILPEG $_{2}$ | 0376, 0377 |
| DAPBOOLS | 0110, 0111 |
| DOWNTORK3 (${ }^{\text {NEGTORKU) }}$ | 3115, 3116 |
| DOWNTORK ${ }_{5}$ (${ }^{\text {NEGTORKV) }}$ | 3117, 3120 |
| SPARE | |
| TCDH | 1776-7 |
| DELVEET2 $_{1}$ (X comp.) | |
| DELVEET2 $_{3}$ (Y comp.) | 2274-2301 |
| DELVEET2 $_{5}$ (z comp.) | |
| TTPI | 3635-6 |
| DELVEET31 | |
| DELVEET3 3 | 2365-2372 |
| DELVEET35 | |
| ELEV | 2256-7 |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRE |
| :---: | :---: | :---: | :---: |
| 77 | CDUS | PIPA (X) | 0036, 0037 |
| 78 | PIPA (Y) | PIPA (Z) | 0040, 0041 |
| 79 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112, 0113 |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES30 | IMODES33 | 1277, 1300 |
| 82 | TIG | TIG | 3441-2 |
| 83 | OMEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZD | '*DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032, 0033 |
| 88 | CDUZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK (POSTORKP) | $\mathrm{DOWNTORK}_{1}$ (NEGTORKP) | 3113, 3114 |
| -91 | CHANNELII | CHANNELL2 | |
| 92 | CHANNELI3 | CHANNEL14 | |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL32 | CHANNEL33 | |
| 95 | SPARE | SPARE | |
| 96 | CENTANG | CENTANG | 3620-1 |
| 97 | NN | NN | 3466-7 |
| 98 | DIFFALT | DIFFALT | 3577-3600 |
| 99 | DELVTPF | DELVTPF | . 2347 - 2350 |
| 100 | SPARE | SPARE | |

| WORD \# | FIRST REGISTER |
| :---: | :---: |
| 1 | LIST ID (777748) |
| 2 | R-OTHERO (X comp.) |
| 3 | R-OTHER ${ }_{2}$ (Y comp.) |
| 4 | R -OTHER $_{4}$ (Z comp.) |
| 5 | V-OTHER (X comp.) |
| 6 | V -OTHER 2 (Y comp.) |
| 7 | V-OTHER ${ }_{4}$ (Z comp.) |
| 8 | TETCSM (T-OTHER) |
| 9 | DELLT4 |
| 10 | $\mathrm{RTARG}_{\mathrm{O}}$ (X comp.) |
| 11 | RTARG_{2} (Y comp.) |
| 12 | RTARG_{4} (Z comp.) |
| 13 | ELEV |
| 14 | TEVENT |
| 15 | $\mathrm{REFSMMAT}_{0}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)$ |
| 16 | $\mathrm{REFSMMAT}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)$ |
| 17 | $\mathrm{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)$ |
| 18 | REFSMMAT6 $^{\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)}$ |
| 19 | REFSMMAT8 $\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$ |
| 20 | REFSMMAT $10\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)$ |
| 21 | TCSI |
| 22 | DELVEETl ${ }_{0}$ (X comp.) |
| 23 | DELVEETl $_{2}$ (Y comp.) |
| 24 | $\mathrm{DELVEETl}_{4}$ (Z comp.) |

SECOND REGISTER
SYNC PATTERN ($7734 \mathrm{O}_{8}$)
$\mathrm{R}^{\mathrm{OTHER}} \mathrm{I}_{1}$ (X comp.)
$\mathrm{R}^{-O T H E R} 3$ (Y comp.)
R-OTHER ${ }_{5}$ (Z comp.)
V-OTHER ${ }_{I}$ (X comp.)
V-OTHER 3 (Y comp.)
V-OTHER ${ }_{5}$ (Z comp.)
TĖTCSM (T-OTHER) 1570-1
DELLT4 3451-2
RTARG $_{1}$ (X comp.)
RrARG_{3} (Y comp.)
RTARG $_{5}$ (Z comp.)
ELEV
TEVENT
$\left.\left.\begin{array}{l}\operatorname{REFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right) \\ \operatorname{REFSMMAT}_{3}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right) \\ \text { REFSMMAT }_{5}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right) \\ \operatorname{REFSMMAT}_{7}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right) \\ \operatorname{REFSMMAT}_{9}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right) \\ \text { REFPSMMAT }_{11}\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)\end{array}\right\} \begin{array}{l}1733-1746 .\end{array}\right\}$.
TCSI
$3633-4$
$2266-2273$
$\left.\begin{array}{l}\text { DELVEET }_{1} \text { (X comp.) } \\ \text { DELVEET }_{3} \text { (Y comp.) }\end{array}\right\} \quad 2266-2273$
ERASABLE ADDRESS

1717-1724

1725-1732
$3443-3450$

2256-7
1341-2
DELVEETl $_{5}$ (Z comp.))

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 25 | VGPREV ${ }_{\text {(}}$ (VGTIG-X comp.) | VGPREV_{1} (VGTIG-X comp.)) | |
| 26 | VGPREV_{2} (VGTIG-Y comp.) | VGPREV_{3} (VGTIG-Y comp.) | 3700-3705 |
| 27 | VGPREV ${ }_{4}$ (VGTIG-Z comp.) | VGPREV_{5} (VGTIG-Z comp.)) | |
| 28 | DNRADATA6 (DNLRVELZ) | DNRADATA\% (DNLRALT) | 1335, 1336 |
| 29 | TPASS4 (TPF time) | TPASS4. (TPF time) | 3630-1 |
| 30 | REDOCTR | THETAD (X -angle) | 0320, 0321 |
| 31 | THETAD_{1} (Y-angle) | THETAD_{2} (z-angle) | 0322, 0323 |
| 32 | RSBBQ | PSBBQ+1 | 1432, 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | ${ }^{*}$ * DELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRDI | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLAGWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRDIO | FLGWRDII | |
| 45 | DSPTAB ${ }_{0}$ | DSPTAB_{1} (| |
| 46 | $\mathrm{DSPT} \mathrm{AB}_{2}$ | DSPTAB_{3} | |
| 47 | DSPTAB_{4} | DSPTAB_{5}, | 1022-1035 |
| 48 | $\mathrm{DSPT} \mathrm{AB}_{6}$ | DSPTAB_{7} | |
| 49 | DSPTAB_{8} | DSPTAB ${ }_{9}$ | |
| 50 | DSPTAB $_{10}$ | $\mathrm{DSPTAB}_{11}{ }^{11}$ | |
| TELE-28 | | | |

SECOND REGISTER
TIMENOW (TIME1)
RN_{1} (X comp.)
RN_{2} (Y comp.)
RN_{4} (Z comp.)
VN_{O} (X comp.)
VN_{2} (Y comp.)
VN_{4} (Z comp.)
PIPTIME
OMEGAPD
OMEGARD
CADRFLSH 0
$\mathrm{CADRFLSH}_{2}$
FAILREG $_{1}$
RADMODES
DOWNTORK $_{2}$ (POSTORKU)
DOWNTORK $_{4}$ (POSTORKV)
SPARE
TCDH
DELVEET20 (X comp.)
DELVEET22 (Y comp.)
DELVEET24 (Z comp.)
TTPI
DELVEET30 (X comp.)
DELVEET32 (Y comp.)
DELVEET $_{4} 4$ (Z comp.)
$\mathrm{DNRADATA}_{1}$ (DNRRANGE)

| SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: |
| TIMENON (TIME1) | |
| | 0024-5 |
| RN_{1} (X comp.) | |
| RN_{3} (Y comp.) | 1217-1224 |
| RN_{5} (Z comp.) | |
| VN_{1} (X comp.) | |
| VN_{3} (Y comp.) | 1225-1232 |
| VN_{5} (Z comp.) | |
| PIPTIME | $1233-4$ |
| OMEGAQD | 3242, 32433 |
| * ECDUW | 3244; 3245 |
| $\mathrm{CADRFLSH}_{1}$ | 0372, 0373 |
| FAILREGO | 0374, 0375 |
| FAILREG $_{2}$ | 0376, 0377 |
| DAPBOOLS | 0110, 0111 |
| $\mathrm{DOWNTORK}_{3}$ (NEGTORKU) | 3115, 3116 |
| $\mathrm{DOWNTORK}_{5}$ (NEGTORKV) | 3117,3120 |
| SPARE | |
| TCDH | 1776-7 |
| DELVEET21 (X comp.) | |
| DELVEET23 (Y comp.) | 2274 - 2301 |
| DELVEET25 (Z comp.) | |
| TTPI | 3635-6 |
| DELVEET3 ${ }_{1}$ (X comp.) | |
| DELVEET33 (Y comp.) | 2365-2372 |
| DELVEET35 (Z comp.) | |
| $\mathrm{DNRADATA}_{2}$ (DNRRDOT) | 1330, 1331 |

| WORD \# | FIRST REGISTER | SECOND FEGISTER | ERASABLE ADDRES |
| :---: | :---: | :---: | :---: |
| 77 | $\mathrm{DNRADATA}_{4}$ (DNLRVELX) | DNRADATA $_{5}$ (DNLRVELY) | 1333, 1334 |
| 78 | DNRADATA6 (DNLRVELZ) | DNRADATA7 (DNLRALT) | 1335, 1336 |
| 79 | DIFFALT | DIFFALT | 3577-3600 |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES30 | IMODES 33 | 1277, 1300 |
| 82 | TIG | TIG | 3441-2 |
| 83 | OMEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZD | * DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032, 0033 |
| 88 | CDUZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK ${ }_{\text {O }}$ (POSTORKP) | $\mathrm{DOWNTORK}_{1}$ (NEGTORKP) | 3113, 3114 |
| 91 | CHANNELII | CHANNELI2 | |
| 92 | CHANNELI3 | CHANNEL14 | |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL32 | CHANNEL33 | |
| 95 | PIPTIME1 | PIPTIME1 | 3560-1 |
| 96 | DELV_{0} (X comp.) | DELV_{1} (X comp.) | |
| 97 | DELV_{2} (Y comp.) | DELV_{3} (Y comp.) | 0324-0331 |
| 98 | DELV_{4} (Z comp.) | DELV_{5} (Z comp.) | |
| 99 | SPARE | SPARE | , |
| 100 | TGO | TGO | 3516-7 |

WORD \#

FIRST REGISTER
LIST ID (777738)
LRCDUDL $_{0}$ (LRXCDUDL)
LRCDUDL $_{2}$ (LRZCDUDL)
VSELECT
LRVTIMDI
VMEAS (LR Velocity)
MKTIME
HMEAS (LR Range)
RM (RR Range)
AIG (Y-angle)
AOG (X-angle)
TANGNB $_{0}$ (RR Trunnion)
MKTIME
TEVENT
UNFC_{0} (X comp.)
UNFC_{2} (Y comp.)
UNFC_{4} (Z comp.)
$\operatorname{VGVECT}_{0}$ (X comp.)
$\operatorname{VGVECT}_{2}$ (Y comp.)
$\operatorname{VGVECT}_{4}$ (Z comp.)
TTF
DELTAH

SECOND REGISTER
SYNC PATTERN (773408)
LRCDUDL $_{1}$ (LRYCDUDL) 2334, 2335
LRVTIMDL (MSB)

* VMEAS (MSB)

LKVTIMDL
VMEAS (LR Velocity)
MKTIME
HMEAS (LR Range)
RM_{1} (RR Range rate)
AMG (Z-angle)
TRKMKCNT
TANGNB_{1} (RR Shaft)
MKTIME
TEVENT
$\left.\left.\begin{array}{l}\mathrm{UNFC}_{1} \text { (X comp.) } \\ \mathrm{UNFC}_{3} \text { (Y comp.) } \\ \mathrm{UNFC}_{5} \text { (} \mathrm{Z} \text { comp.) } \\ \mathrm{VGVECT}_{1} \text { (X comp.) } \\ \mathrm{VGVECT}_{3} \text { (Y comp.) } \\ \mathrm{VGVECT}_{5} \text { (Z comp.) }\end{array}\right\} \begin{array}{l} \\ \\ \end{array}\right\}$
TTF
DELTAH

ERASABLE ADDRESS

2336, 2337
3651, 3652
2337-2340
3652-3
3754-5
3654-5
3756, 3757
3457, 3460
3461, 3462
3752, 3753
3754-5
1341-2

3642-3
3664-5

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 23 | RLSO (X comp.) | RLS_{1} (X comp.) | |
| 24 | RLS_{2} (Y comp.) | RLS_{3} (Y comp.) $\}$ | 2022-2027 |
| 25 | RLS_{4} (Z comp.) | RLS_{5} (Z comp.) | |
| 26 | ZDOTD | ZDOTD | 2276-7 |
| 27 | X789x (RR Shaft bias) | X789x (RR Shaft bias) | 1700-1 |
| 28 | X789y (RR Trunnion bias) | X789y (RR. Trunnion bias) | 1702-3 |
| 29 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112, 0113 |
| 30 | REDOCTR | THETAD ${ }_{0}$ (X-angle) | 0320, 0321 |
| 31 | THETAD_{1} (Y-angle) | THETAD 2 (Z -angle) | 0322, 0323 |
| 32 | RSBBQ | RSBBQ +1 | 1432; 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | * DELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRD1 | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLAGWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRDIO | FLGWRDII | |
| 45 | DSPTAB | DSPTAB_{1} | , |
| 46 | DSPTAB | DSPTAB_{3} | 1022-1035 |
| 47 | DSPTAB $_{4}$! | DSPTAB_{5}.) | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 48 | DSPTAB6 | DSPTAB7 | |
| 49 | DSPTAB8 | DSPT AB9 | 1022-1035 |
| 50 | DSPTAB10 | DSPTAB11 | |
| 51 | TIMENOW (TIME2) | TIMENOW (TIME1) | 0024-5 |
| 52 | RN_{0} (X comp.) | RN_{1} (X comp.) | |
| 53 | RN_{2} (Y comp.) | RN_{3} (Y comp.) | 1217-1224 |
| 54 | RN_{4} (Z comp.) | RN_{5} (Z comp.) | |
| 55 | VN_{O} (X comp.) | VN_{1} (X comp.) | |
| 56 | VN_{2} (Y comp.) | VN_{3} (Y comp.) | 1225-1232 |
| 57 | VN_{4} (Z comp.) | VN_{5} (Z comp.) | |
| 58 | PIPTIME | PIPTIME | 1233-4 |
| 59 | OMEGAPD | OMEGAQD | 3242, 3243 |
| 60 | OMEGARD | * ECDUW | 3244, 3245 |
| 61 | CADRFLSH0 | CADRFLSH 1 | 0372, 0373 |
| 62 | $\mathrm{CADRFLSH}_{2}$ | FAILREGO | 0374, 0375 |
| 63 | $\mathrm{FAILREG}_{1}$ | $\mathrm{FAILREG}_{2}$ | 0376, 0377 |
| 64 | RADMODES | DAPBOOLS | 0110, 0111 |
| 65 | $\mathrm{DOWNTORK}_{2}$ (POSTORKU) | $\mathrm{DOWNTORK}_{3}$ (NEGTORKU) | 3115, 3116 |
| 66 | $\mathrm{DOWNTORK}_{4}$ (POSTORKV) | DOWNTORK $_{5}$ (NEGTORKV) | 3117, 3120 |
| 67 | RGG_{0} (X comp.) | $\mathrm{RG}_{\mathrm{H}}^{1}$ (X comp.) | |
| 68 | RGU_{2} (Y comp.) | RGU_{3} (Y comp.) | $2626-2633$ |
| 69 | RGU_{4} (Z comp.) | RGU_{5} (Z comp.) | |
| 70 | VGU ${ }_{0}$ (X comp.) | VGUI (X comp.) | |
| 71 | VGU U_{2} (Y comp.) | VGU3 (Y comp.) | 3626-3633 |
| 72 | VGU_{4} (Z comp.) | VGU ${ }_{5}$ (Z comp.) | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 73 | LAND ${ }_{0}$ (X comp.) | LAND_{1} (X comp.) | |
| 74 | LAND_{2} (Y comp.) | LAND_{3} (Y comp.) | 3634-3641 |
| 75 | LAND_{4} (Z comp.) | LAND_{5} (Z comp.) | |
| 76 | AT | AT | 2262-3 |
| 77 | TLAND | TLAND | 2400-1 |
| 78 | FC | ${ }_{*}^{*}$ RDOTV | 3615, 3616 |
| 79 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 01.12, 0113 |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES 30 | IMODES33 | 1277, 1300 |
| 82 | TIG | TIG | 3441-2 |
| 83 | OMEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZD | * DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032, 0033 |
| 88 | CDUZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK $_{0}$ (POSTORKP) | DOWNTORK 1 (NECGORKP) | 3113, 3114 |
| 91 | CHANNELII | CHANNELI2 | |
| 92 | CHANNELI3 | CHANNEL14 | |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL 32 | CHANNEL33 | |
| 95 | PIPTIME1 | PIPTIME1 | 3560-1 |
| 96 | DELV_{0} (X comp.) | DELV_{1} (X comp.) | |
| 97 | DELV_{2} (Y comp.) | DELV_{3} (Y comp.) | 0324-0331 |
| 98 | DELV_{4} (Z comp.) | DELV_{5} (Z comp.) | |

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 99 | PSEUD055 | FC | 3614, 3615 |
| 100 | tTOGO | TTOGO | 3453-4 |

WORD \#

| 1 | LIST ID (777728) |
| :---: | :---: |
| 2 | R-OTHER (X comp.) |
| 3 | R-OTHER ${ }_{2}$ (Y comp.) |
| 4 | R-OTHER ${ }_{4}$ (Z comp.) |
| 5 | V-OTHER ${ }_{\text {(}} \mathrm{X}$ comp.) |
| 6 | V-OTHER ${ }_{2}$ (Y comp.) |
| 7 | V -OTHER $_{4}$ (Z comp.) |
| 8 | TETCSM (T-OTHER) |
| 9 | RANGRDOT |
| 10 | AIG |
| 11 | AOG |
| 12 | TANGNB_{0} (RR trunnion) |
| 13 | MKTIME |
| 14 | TALIGN |
| 15 | REFSMMAT ${ }_{0}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)$ |
| 16 | $\mathrm{REFSMMAT}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)$ |
| 17 | $\mathrm{REFSMMAT}_{4}\left(\mathrm{R}_{1} \mathrm{C}_{3}\right)$ |
| 18 | $\mathrm{REFSMMAT}_{6}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)$ |
| 19 | RFFSMMAT $_{8}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$ |
| 20 | REFSMMAT $10\left(\mathrm{R}_{2} \mathrm{C}_{3}\right)$ |
| 21 | YNBSAV_{0} (X comp.) |
| 22 | YNBSAV_{2} (Y comp.) |
| 23 | YNBSAV $_{4}$ (Z comp.) |

SECOND REGISTER
SYNC PATTERN (773408)
$\mathrm{Rm}_{\mathrm{OTHER}}^{1}$ (X comp.)
R-OTHER $_{3}$ (Y comp.)
R-OTHER ${ }_{5}$ (Z comp.)
V-OTHER ${ }_{1}$ (X comp.)
$\mathrm{V}^{\mathrm{OTHER}} 3$ (Y comp.)
V-OTHER $_{5}$ (Z comp.)
TETCSM (T-OTHER)
RAMGRDOT+1
AMG
TRKMKCNT
TANGNB $_{1}$ (RR shaft)
MKTIME 3754-5
TALIGN
$\operatorname{REFSMMAT}_{1}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)$
$\operatorname{REFSMMAT}_{3}\left(\mathrm{R}_{1} \mathrm{C}_{2}\right)$
REFSMMAT $_{5}\left(R_{1} C_{3}\right)$
$\operatorname{REFSMMAT}_{7}\left(\mathrm{R}_{2} \mathrm{C}_{1}\right)$
REFSMMAT $_{9}\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$
REFSMMAT $_{11}\left(R_{2} C_{3}\right)_{7}$
YNBSAV_{1} (X comp.)
YNBSAV $_{3}$ (Y comp.)
YNBSAV $_{5}$ (Z comp.)

1570-1
3760, 3761
3457, 3460

2774-5
ERASABLE ADDRESS

1717-1724.

1725-1732

3461, 3462
3752, 3753

TELE-36

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 24 | ZNBSAV ${ }_{0}$ (X comp.) | ZNBSAV_{1} (X comp.) | |
| 25 | ZNBSAV_{2} (Y comp.) | ZNBSAV_{3} (Y comp.). $\}$. | 2244-2251 |
| 26 | ZNBSAV 4 (Z comp.) | ZNBSAV_{5} (Z comp.) | |
| 27 | X $789{ }_{\text {x }}$ (RR shaft bias) | X789 ${ }_{\text {x }}$ (RR shaft bias) | 1700-1 |
| 23 | X789y (RR trunnion bias) | X 7899_{y} (RR trunnion bias) | 1702-3 |
| 29 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112, 0113 |
| 30 | REDOCTR | THETAD ${ }_{0}$ (X-angle) | 0320, 0321 |
| 31 | THETAD_{1} (Y-angle) | THETAD 2 (Z -angle) | 0322, 0323 |
| 32 | RSBBQ | RSBBQ +1 | 1432, 1433 |
| 33 | OMEGAP | OMEGAQ | 3021, 3022 |
| 34 | OMEGAR | ALPHAQ | 3023, 3024 |
| 35 | CDUXD | CDUYD | 3234, 3235 |
| 36 | CDUZD | * ${ }^{\text {d }}$ (ELCDUX | 3236, 3237 |
| 37 | CDUX | CDUY | 0032, 0033 |
| 38 | CDUZ | CDUT | 0034, 0035 |
| 39 | FLAGWRDO | FLAGWRD1 | |
| 40 | FLAGWRD2 | FLAGWRD3 | |
| 41 | FLAGWRD4 | FLAGWRD5 | 0074-0107 |
| 42 | FLAGWRD6 | FLAGWRD7 | 0074-0107 |
| 43 | FLAGWRD8 | FLAGWRD9 | |
| 44 | FLGWRD10 | FLGWRDII , | |
| 45 | DSPTAB 0 | DSPTAB_{1} | |
| 46 | DSPTAB_{2} | DSPTAB_{3} | , |
| 47 | DSPTAB_{4} | DSPTAB_{5} | 1022 - 1035 |
| 48 | DSPTAB6 | DSPTAB7 | 1022-1035 |
| 49 | DSPTAB_{8} | DSPTAB_{9} | |
| 50 | DSPTAB10 | DSPTAB11 | |

| WORD \# | FIRST REGISTER |
| :---: | :---: |
| 51 | TIMANON (TIME2) |
| 52 | RN_{0} (X comp.) |
| 53 | RN_{2} (Y comp.) |
| 54 | RN_{4} (Z comp.) |
| 55 | VNO (X comp.) |
| 56 | VN_{2} (Y comp.) |
| 57 | VN_{4} (Z comp.) |
| 58 | PIPTIME |
| 59 | OMEGAPD |
| 60 | OMEGARD |
| 61 | CADRFLSH 0 |
| 62 | $\mathrm{CADFFLSH}_{2}$ |
| 63 | FAILREG $_{1}$ |
| 64 | RADMODES |
| 65 | OGC |
| 66 | IGC |
| 67 | MGC |
| 68 | BESTI (STAR IDI) |
| 69 | STARSAV10 (X comp.) |
| 70 | $\mathrm{STARSAV1}_{2}$ (Y comp.) |
| 71 | $\mathrm{STARSAVI}_{4}$ (Z comp.) |
| 72 | STARSAV20 (X comp.) |
| 73 | STARSAV22 (Y comp.) |
| 74 | $\mathrm{STARSAV}_{4}$ (Z comp.) |
| 75 | GSAV_{0} (X comp.) |
| 76 | GSAV_{2} (Y comp.) |
| 77 | GSAV_{4} (Z comp.) |

SECOND REGISTER
TIMENON (TIME1)
RN_{1} (X comp.)
RN_{3} (Y comp.)
RN_{5} (Z comp.)
VN_{1} (X comp.)
VN_{3} (Y comp.)
VN_{5} (Z comp.)
PIPTIME
OMEGAQD
*ECDUW
$\mathrm{CADRFLSH}_{1}$
FAILREG ${ }_{0}$
FAILREG $_{2}$
DAPBOOLS
OGC
IGC
MGC
BESTJ (STAR ID2)
STARSAV1 $_{1}$ (X comp.)
STARSAV1 $_{3}$ (Y comp.)
STARSAV1 $_{5}$ (Z comp.)
STARSAV2 ${ }_{1}$ (X comp.)
STARSAV2 $_{3}$ (Y comp.)
STARSAV2 ${ }_{5}$ (Z comp.)
GSAV $_{1}$ (X comp.)
GSAV $_{3}$ (Y comp.)
GSAV $_{5}$ (Z comp.)

ERASABLE ADDRESS
0024-5
$1217-1224$

1225-1232

1233-4
3242, 3243
3244, 3245
0372, 0373
0374, 0375
0376, 0377
0110, 0111
2737-2740
2741-2
2743-4
2755, 2756
$2760-2765^{\circ}$
$.2766-2773$
$2230-2235$

| WORD \# | FIRST REGISTER | SECOND REGISTER | ERASABLE ADDRESS |
| :---: | :---: | :---: | :---: |
| 78 | AGSK (K-FACTOR) | AGSK (K-FACTOR) | 2020-1 |
| 79 | LASTTCMD (LASTYCMD) | LASTSCMD (LASTXCMD) | 0112, 0113 |
| 80 | LEMMASS | CSMMASS | 1326, 1327 |
| 81 | IMODES30 | IMODES33 | 1277, 1300 |
| 82 | TIG | TIG | 3441-2 |
| 83 | OMEGAP | OMEGAQ | 3021, 3022 |
| 84 | OMEGAR | ALPHAQ | 3023, 3024 |
| 85 | CDUXD | CDUYD | 3234, 3235 |
| 86 | CDUZE | * DELCDUX | 3236, 3237 |
| 87 | CDUX | CDUY | 0032; 0033 |
| 88 | CDUZ | CDUT | 0034, 0035 |
| 89 | ALPHAQ | ALPHAR | 3024, 3025 |
| 90 | DOWNTORK $_{0}$ (POSTORKP) | $\mathrm{DOWNTORK}_{1}$ (NEGTORKP) | 3113, 3114 |
| 91 | CHANNELII | CHANNELI2 | |
| 92 | CHANNELI3 | CHANNELI4 | |
| 93 | CHANNEL30 | CHANNEL31 | |
| 94 | CHANNEL32 | CHANNEL33 | |
| 95 | PIPTIME1 | PIPTIME1 | 3560-1 |
| 96 | DELV_{0} (X comp.) | DELV_{1} (X comp.) | |
| 97 | DELV_{2} (Y comp.) | DELV_{3} (Y comp.) | 0324-0331 |
| 98 | DELV_{4} (Z comp.) | DELV_{5} (Z comp.) | |
| 99 | SPARE | SPARE | |
| 100 | SPARE | SPARE | . |

The following table gives the downlink parameters, basic scale factors, units, and sections referenced for definitions. The pages following this table contain a list of definitions compiled from the listed references.

| Mnemonic | Scale Factor | Units | Definition Reference |
| :---: | :---: | :---: | :---: |
| CDUZ (SP) | B-1 (2^{\prime} s comp) | revolutions | IMUC COOR DAPA |
| CDUXD (SP) | B-1 (2^{\prime} s comp) | revolutions | DAPA |
| CDUYD (SP) | B-1 (2 's comp) | revolutions | DAPA |
| CDUZD (SP) | B-1 (2^{\prime} s comp) | revolutions | DAPA |
| CHANNELS (see CHANNEL tables) | | | |
| CENTANG (DP) | BO | revolutions | TRGL |
| COMPNUMB (SP) | B14 | counts | EXVB |
| CSMMASS (SP) | B16 | kilograms | DAPB |
| DAPBOOLS (see FLAGWORD tables or DAPA) | | | |
| DELCDUX (SP) | B-1 (2's comp) | revolutions | DAPA |
| DELLT4 (DP) | B28 | centiseconds | TRGL |
| DELTAH (DP) | B24 | meters | SERV |
| DELV (3DP) | B14 | centimeters/second | SERV |
| DELVEETI (3DP) | B7 | meters/centisecond | TRGX |
| DELVEET2 (3DP) | B7 | meters/centisecond | TRGX |
| DELVEET3 (3DP) | B7 | meters/centisecond | TRGL |
| DELVLVC (3DP) | B7 | meters/centisecond | TRGX |
| DELVTPF (DP) | B7 | meters/centisecond | TRGL |
| DIFFALT (DP) | B29 | meters | TRGX |
| DNRADATA ${ }^{-}{ }^{-}$(SP) | B14 | counts | RADR |
| DNRADATA $_{2}$ (SP) | B14 | counts | RADR |
| DNRADATA $_{4}$ (SP) | B14 | counts | RADR |

| Mnemonic | Scale Factor | Units | Definition Reference |
| :---: | :---: | :---: | :---: |
| DNRADATA $_{5}$ (SP) | B14 | counts | RADR |
| DNRADATA6 (SP) | B14 | counts | RADR |
| DNRADATA7 (SP) | B14 | counts | RADR |
| $\begin{array}{ll} \text { DOWNTORK }_{0-5} & \text { (6SP) } \\ \text { DSPTABO-11 } & \text { (see DSKY) } \end{array}$ | B5 | jet-seconds | DAPB |
| ELEV (DP) ${ }^{\text {r }}$ | BO | revolutions | TRGL TRGX |
| FAILREG $_{0-2}$ (3SP) | OCTAL | alarm code | PGSR |
| FC (SP) | B14 | throttle pulses | DESC |
| FLAGWRD $_{0-11}$ (see FLAGWORD tables) | | | |
| GSAV (3DP) | Bl | unit vector | ALIN |
| HMEAS (DP) | B28 | counts | SERV |
| IMODES 30,33 (see IMUC and INIR Sections) | | | |
| LAND (3DP) | B24 | meters | DESC |
| LASTSCMD (SP) | B14 | pulses | RADR. |
| LASTTCMD (SP) | B14 | pulses | RADR |
| LEMMASS (SP) | B16 | kilograms | DAPB |
| IRVCDUDL (3DP) | B-1 (2's comp) | revolutions: | SERV |
| LRVTIMDL (DP) | B28 | centiseconds | SERV |
| MKTIME (DP) | B28 | centiseconds | SERV RNAV |
| NN (DP) | B14 | counts | TRGX |
| OGC, IGC, MGC (3DP) | B0 | revolutions | COOR |
| OMEGAP (SP) | B-3 | revolutions/sec | DAPA |
| OMEGAQ (SP) | B-3 | revolutions/sec | DAPA |
| OMEGAR (SP) | B-3 | revolutions/sec | DAPA |

| Mnemonic | Scale Factor | Units | Definition Reference |
| :---: | :---: | :---: | :---: |
| OMEGAPD (SP) | B-3 | revolutions/sec | DAPA |
| OMEGAQD (SP) | B-3 | revolutions/.sec | DAPA |
| OMEGARD (SP) | B-3 | revolutions/sec | DAPA |
| PIPA. (3SP) | B14 | counts | SERV |
| PIPTIME (DP.) | B28 | centiseconds | SERV |
| PIPTIME1 (DP) | B28 | centiseconds | SERV |
| PSEUDO55 (SP) | B14 | throttle pulses | DESC |
| $\begin{aligned} & \text { RADMODES (see FLAGWOI } \\ & \text { RANGRDOT (2SP) (Same } \end{aligned}$ | ables or RADR) DNRADATA1,2) | | |
| R-OTHER (3DP) | B29 | meters | TELE |
| REDOCTR (SP) | B14 | counts | PGSR |
| [REFSMMAT ${ }_{0-11}$] (6DP) | Bl | unit vector | COOR |
| RGU (3DP) | B24 | meters | DESC |
| RLS (3DP) | B27 | meters | DESC |
| RM (DP) | B29 | meters | RNAV |
| RN (3DP) | B29 | meters | SERV |
| RSBBQ (2SP) | OCTAL | address | PGSR |
| RTARG (3DP) | B29 | meters | TRGL |
| STARSAVI (3DP) | Bl | unit vector | ALIN |
| STARSAV2 (3DP) | Bl | unit vector | ALIN |
| TALIGN (DP) | B28 | centiseconds | ALIN |
| TANGNB ${ }_{0}$ (SP) | B-1 | revolutions | RADR |
| TANGNB_{1} (SP) | B-1 | revolutions | RADR |

| Mnemonic | Scale Factor | Units | Definition Reference |
| :---: | :---: | :---: | :---: |
| TCDH (DP) | B28 | centiseconds | TRGX |
| TCSI (DP) | B28 | centiseconds | TRGX |
| TEVENT (DP) | B28 | centiseconds | BURN |
| TETCSM (DP) | B28 | centiseconds | ORBI |
| TGO (DE) | B28 | centiseconds | BURN |
| THETAD (3SP) | B-1 (2's comp) | revolutions | ATTM IMUC |
| TIG (DP) | B28 | centiseconds | BURN |
| TTMENOW (DP) | B28 | centiseconds | EXVB |
| TLAND (DP) | B28 | centiseconds | DESC |
| TPASS4 (DP) | B28 | centiseconds | TRGL |
| TRKMKCNT (SP) | B14 | counts | RNAV |
| TTF \& (DP) | B17 | centiseconds | DESC |
| TTOGO (DP) | B28 | centiseconds | BURN |
| TTPI (DP) | B28 | centiseconds | TRGL |
| UNFC (3DP) | variable | variable | BURN DESC |
| $\text { UPBUFF }_{0-19}(20 S P)$ | OCTAL | variable | EXVB |
| UPCOUNT (SP) | B14 | counts | EXVB |
| UPOLDMOD (SP) | B14 | program number | EXVB |
| UPVERB (SP) | B14 | last digit of verb | EXVB |
| V-OTHER (3DP) | B7 | meters/centisecond | TELE |
| VGPREV (3DP) | B7 | meters/centisecond | BURN |
| VGU (3DP) | B10 | meters/centisecond | DESC |
| VGVECT (3DP) | B7 | meters/centisecond | ASCT |

| Mnemonic | Scale Factor | Units | Definition Reference |
| :---: | :---: | :---: | :---: |
| VMEAS (DP) | B28 | counts | SERV |
| VN (3DP) | B7 | meters/centisecond | SERV |
| VSELECT (SP) | B14 | LR velocity code | SERV |
| X7890-1 (DP) | $\begin{aligned} & \text { B5 (EARTH) } \\ & \text { B3 (MOON) } \end{aligned}$ | radians | RNAV |
| $\mathrm{X}^{789}{ }_{2-3}$ (DP) | $\begin{aligned} & \text { B5 (EARTH) } \\ & \text { B3 (MOON) } \end{aligned}$ | radians | RNAV |
| YNBSAV (3DP) | B1 | unit vector | ALIN |
| ZDOTD (DP) | B7 | meters/centisecond | ASCT |
| ZNBSAV (3DP) | B1 | unit vector | ALIN |

AGSBUFFO,2,4: Single precision X, Y, and Z components of the LM position vector, scaled B25 (earth) and B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF $_{1,3,5}$: Single precision X, Y, and Z components of the LM velocity vector, scaled Bl3 (moon) or Bl5 (earth) in units of feet/second and in stable member coordinates.

AGSBUFF $6,8,10^{\circ}$, Single precision X, Y, and Z components of the CSM position vector, scaled B25 (earth) or B23 (moon) in units of feet and in stable member coordinates.

AGSBUFF $_{7,9,11}:$ Single precision X, Y, and Z components of the CSM velocity vector, scaled B15 (earth) or Bl3 (moon) in units of feet/second and in stable member coordinates.

AGSBUFF $_{12,13}$: Double precision difference between the timetag of the state
vectors in AGSBUFF $_{0-11}$ and the time stored in AGSK, scaled B18 in units of seconds.

AGSK: Double precision time of AGS initialization, scaled B28 in units of centiseconds.

ALPHAQ, ALPHAR: Single precision storage for the most significant halves of $A O S Q$ and $A O S R$ for down telemetry, scaled $B-2$ in units of revolutions per second squared.
AOSQ, AOSR: Double precision disturbing acceleration due to thrust vector/ c.g. offset or other external torques, scaled B-2 in units of revolutions per second squared.

AOG, AIG, AMG: Single precision storage for ICDU angles, scaled B-1 in units of revolutions and stored in two's complement form.

AOTCODE: A single precision scalar containing the star selection code in bits 6-1 (an octal number from 1 to 45 g for stars, 0 for a planet, and 468-508 for sun, earth, and moon), and the AOT detent code in bits 9-7 ($1,2,3,4,5$ or 6 for AOT detents; 0 for COAS calibration; 7 for COAS position to be specified.)

AT: Double precision LM thrust acceleration magnitude, scaled B-9 in units of meters per centisecond squared.

BESTI: Single precision value, scaled B14, of the index parameter for star \#l of the "best" star pair as determined by "R56." It is the star farthest from the AOT center detent position and will be zero if no star pairs are found that are satisfactory. In "R59". it is the value of the index parameter of the first celestial body used for marking (if two bodies are to be
used). It is equal to six times the decimal equivalent of the "star selection code." $\quad \therefore$ ith sūi.

BESTJ: See BESTI. In "R56" it is the index parameter for star \#2 which is the closest star to the AOT center detent position. In "R59" it is the index parameter of the second celestial body used for marking (if two are to be used) or the index parameter of the single body being used (Technique 3 alignment).
$\mathrm{CADRFLSH}_{i}(i=0,1,2)$: Three single precision cells for storage of return address information required by priority, mark and normal display requests. In the program CADRFLSH is used for storage of the $\quad \therefore$: address of the step after that at which the display interface routine is called.

CDUT, CDUS: LGC input counters incremented directly from the Coupling Data Unit to maintain LGC knowledge of the $R R$ trunnion and shaft angles, respectively. Single precision angles stored in two's complement form and scaled B-1 in units of revolutions.
$\operatorname{CDU}\left(\operatorname{CDU}_{\mathrm{x}}, C D U_{\mathrm{y}}, \operatorname{CDU}_{\mathrm{z}}\right)$: Single precision vector containing the measured values of the IMU gimbal angles (outer, inner, and middle gimbal in X, Y , and Z components, respectively), scaled $B-1$ in units of revolutions and stored in two's complement form. Each component is an LGC input counter incremented directly from the Coupling Data Unit in response to changes in the IMU gimbal angles.

CDUD: Single precision vector interface with steering and attitude maneuver
routines containing the desired values for the IMU gimbal angles (outer, inner, and middle gimbal angles in X, Y, and Z components, respectively), scaled B-I in units of revolutions and stored in two's complement form. CENTANG: Double precision central angle between the passive vehicle's position at TIG and at intercept, scaled BO in units of revolutions. COMPNUMB: Single precision number of components (each single precision octal) in a program 27 update, scaled B14 and unitless.

CSMMASS: Single precision astronaut input of the mass of the CSM, scaled BI6 in units of kilograms.

DELCDU: Interface with steering and attitude maneuver routines, minus desired change in gimbal angles per 100 millisecond period, scaled B-l in units of revolutions, stored in two's complement form.

DELLT4: Double precision maneuver transfer time, scaled B28 in units of centiseconds.

DELTAH: Double precision difference between the calculated altitude and that measured by the Landing Radar, scaled B24 in units of meters. DELV: Double precision sensed-change-in-velocity vector, scaled Bl4 in units of centimeters per second (one PIPA pulse represents one centimeter per second on the LM) and expressed in Platform coordinates. DELVEETl: Double precision vector corresponding to the velocity-to-begained vector for the CSI burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle and perpendicular to the active vehicle position vector at TCSI.

DELVEET2: Double precision vector corresponding to the velocity-to-be-gained
vector for the CDH burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle.

DELVEET3: Double precision velocity to be gained vector, scaled B7 in units of meters per centisecond. Calculated by the "INITVEL" routine.

DELVLVCr: Double precision velocity vector expressed in local vertical coordinates, scaled B7 in units of meters per centisecond. In the local vertical coordinate system, X is along the horizontal component of velocity, Z points toward the center of attraction, and Y completes a right-handed, orthogonal system.

DELVTPF: Double precision magnitude of the velocity to be gained in the final rendezvous maneuvers of the terminal phase, scaled B7 in units of meters per centisecond.

DIFFALT: Double precision difference of passive and active vehicle altitudes at the time of CDH , scaled B29 in units of meters; negative if the passive vehicle is below the active vehicle at CDH , and displayed to the astronaut during P32-72 and P33-73.
$\operatorname{DNRADATA}_{i}$: Special storage for downlink of radar data. $i=1,2,4,5,6$, and 7 to index six single precision cells (consecutive except between $i=2$ and 4) alternately labeled DNRRANGE, DNRRDOT, DNLRVELX, DNLRVELY, DNLRVELZ, and DNLRALT, respectively. RNRAD is a single precision LGC counter advanced directly by whichever radar circuit is enabled for sampling, scaled B14 in units of counts.

Sample Type

* DNRRDOT

Value of 1 count

-0.19135344 meters/second $\quad-0.6278 \mathrm{fps}$

DNRRANGE

| Low scale | 2.859024 meters | 9.38 feet |
| :--- | :--- | ---: |
| High scale | 22.872192 meters | 75.04 feet |
| ** DNLRVELX | -0.1962912 meters/second | -0.6440 fps |
| ** DNLRVELY | 0.3694176 meters/second | 1.212 fps |
| ** DNLRVELZ | 0.2642006 meters/second | 0.8668 fps |

DNLRALT

| Low scale | 0.3288792 meters | 1.0790 feet |
| :--- | :--- | :--- |
| High scale | 1.644796 meters | 5.3950 feet |

* DNRRDOT has a bias to be subtracted from the raw counts.

in units of radar counts (same as RNRAD). Equation value: 17000.
** DNLRVEL $_{s}$: These have a bias to be added to the raw counts.
- K:LVELBIAS: ; Single precision constant stored as -12288×2^{-14}, scaled B14 in units like those of RNRAD. Equation value: -12288.

DOWNTORK $_{1}(i=0-5)$: Single precision table of quantities for downlink which give cumulative jet on times for the various axes; the correspondence is ($0,+\mathrm{P} ; 1,-\mathrm{P} ; 2,+\mathrm{U} ; 3,-\mathrm{U} ; 4,+\mathrm{V} ; 5,-\mathrm{V}$); Scaled B5 in units of seconds.

ELEV: Double precision elevation angle of the line-of-sight to the passive vehicle; measured from the vector which is perpendicular to the active vehicle position vector, perpendicular to RACT * RPASS, and whose dot product with the active vehicle velocity vector is positive. An angle
between 0 and 1 (0 and 360 degrees) scaled $B O$ in units of revolutions. ELEV is greater than $\frac{1}{2}$ (180 degrees) if the passive vehicle is below the active vehicle's local horizontal. ELEV is an astronaut input in P32-72 and an optional input in P34-74.

FAILREG $_{i}(i=0,1,2)$: Three single precision registers used for storage of the alarm code information, FAILREGO,1 are zeroed via an "ERROR RESET", FAILREG $_{2}$ is unaltered. All three registers are zeroed by a Verb 36. FAILREG $_{O}$ contains the first alarm after the "ERROR RESET"; FAILREG 1 contains the second; and FAILREG 2 always contains the most recent.

FC: Single precision storage for the magnitude of desired thrust, scaled B14 in units of DPS throttle pulses.

K:SCALEFAC: Double precision constant stored as $797.959872 \times 2^{-16}$, scaled B16 in units of DPS throttle pulses/kilogram meter per centisecond squared. Equation value: 797.959872. (Equivalent to 12.532 newtons or 2.8173 pounds force per pulse.)

GSAV: Double precision storage for unit gravity vector determined in previous pass through "P57," scaled Bl and expressed in navigation base coordinates.

HMEAS: Double precision Landing Radar measurement of altitude, scaled B28 in units of low scale landing radar altitude bits.

K: HSCAL: Double precision constant stored as -0.3288792 , scaled BO in units of meters per bit. Equation value: -0.3288792. (Equivalent to 1.0790 feet per bit.)

LAND:
Double precision position vector of the landing site, scaled B24 in units of meters, measured from the center of the moon and expressed in the Platform coordinate system.

LASTSCMD, IASTTCMD: Storage for the previous value of total RR shaft and trunnion CDU error counters; scaled B14 in units of RR drive pulses. Used to convert present position deviation into a desired rate command to be inserted into CDUSCMD or CDUTCMD.
K:RDESGAIN: Single precision constant stored as 0.53624 , scaled B12 in units of RR drive pulses per radian of error. Equation value 2196.5. (Equivalent to $0.5 \times 2 \mathrm{sec}^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}$ pulses per degree per second. The first two terms null 0.5 of the error in $\frac{1}{2}$ second, and the fourth is derived from the fact that a saturated error counter causes a drive rate of 10 degrees per second.)
K:RRSPGAIN: Single precision constant stored as 0.59062 , scaled B15 in units of RR drive pulses per revolution of error. Equation value: 19353. (Equivalent to $0.7 \times 2 \sec ^{-1} \times 360 \mathrm{deg} / \mathrm{rev} \times(10 / 384)^{-1}$ pulses per degree per second. The first two terms "null 0.7 of the error in $\frac{1}{2}$ second,n and the fourth is derived from the fact that a saturated error counter causes a drive rate of 10 degrees per second.)
LEMMASS: Single precision astronaut input of the mass of the LM, scaled B16 in units of kilograms.
LRCDUDL: Single precision vector storage for the value of the three ICDU angles at the estimated midpoint of an $L R$ velocity reading, scaled B-1 in units of revolutions and stored in two's complement form.
LRVTIMDL: Double precision time at the estimated midpoint of the LR velocity sample, scaled B28 in units of centiseconds.
MKTIME: Double precision time of PIPA readings which are associated with the LR altitude measurement for downlink purposes, scaled B28 in units of centiseconds. Also the time of RR range rate measurement, considered to be RR time of mark.
NN: Double precision number designating the apsidal crossing after CSI at which the CDH burn will be executed, scaled B14 and unitless. (NN = 1 indicates that the CDH burn will be executed at the first apsidal crossing after CSI.) NN is used in P34, 35, 74 and 75 as a flag to specify precision or conic integration. In "S3435.2," it is used to" set VTARGTAG.

OGC, IGC, MGC: Double precision commanded gimbal angles scaled BO in units of revolutions or (equivalently) scaled B21 in units of gyro torque pulses of 2^{-21} revolutions each.

OMEGAP, OMEGAQ, OMFGAR: Single precision estimated vehicle rate, calculated using commanded accelerations and times, scaled B-3 in units of revolutions per second. Limited to ± 0.12499 (± 44.997 degrees $/$ second) by overflow checks.

OMEGAPD, OMEGAQD, OMEGARD: Single precision rate biases generated in the attitude maneuver and steering routines, scaled B-3 in units of revolutions per second.

PIPA: Single precision-sensed-change-in-velocity vector, scaled Bl4 in units of centimeters per second and expressed in the Platform coordinate system. The three components are incremented directly from the Pulse-Integrating, Pendulous Accelerometers on the stable member of the Inertial Measurement Unit.

PIPTIME: Double precision time of the most recent PIPA read cycle, scaled B28 in units of centiseconds; time at which the average-g and free-flight state vector is valid.

PIPTIME1: Temporary storage for PIPTIME to avoid changing the downlink state vector until it is updated homogeneously.

PSEUDO55: Single precision storage for telemetry of the throttle command sent to the descent engine, scaled B14 in units of throttle pulses. R-OTHER: Double precision navigation position vector of the CSM, scaled B29
in units of meters. See RCSM in SERV section.
REDOCTR: Single precision counter set to zero in a fresh start and incremented whenever a hardware restart occurs; scaled B14 and unitless. [REFSMMAT]: Double precision, 3×3 transformation matrix, scaled B1 and unitless. Defined such that Asm $=$ [REFSMMAT] Arf where A is a vector expressed in stable member and reference coordinates, respectively.

RGU: Double precision position vector of the LM, scaled B24 in units of meters, measured from the landing site on the moon's surface and expressed in the Descent Guidance coordinate system.

RLS: Double precision vector position of the landing site relative to the center of the moon, scaled B27 in units of meters and expressed in the Selenographic (moon-fixed) coordinate system; part of the erasable load.

RM: Double precision magnitude of measured range, scaled B29 in units of meters. Also used in routine 29 as two single precision storage cells ($R M_{0}$ and $R M_{1}$) for downlink. They are identical to DNRADATA A_{1}, and DNRADATA $_{2}$, respectively.

RN: Double precision vector position of the LM measured from the center of the earth or moon, scaled B29 in units of meters and expressed in the Reference coordinate system.

RSBBQ: Storage for the value of the address where a hardware restart occurred. The most significant part contains the BBANK and SUPERBNK information; the least significant part contains the Q-register information.

RTARG: Target position vector input to "INITVEL". Scaled B29 in units of meters. Upon exit, "INITVEL" loads RTARG with the biased target position
vector, if such a biased vector is calculated.
STARSAV1, STARSAV2: Double precision vectors scaled Bl and unitless. Used to store the two "measurement" vectors for comparison with two "reference" vectors to determine IMU alignment. Expressed in stable member coordinates.

TETCSM: Double precision state vector time for CSM scaled B28 in units of centiseconds.

TALIGN: Double precision time for determination of IMU alignment, scaled B28 in units of centiseconds.

TANGNB $_{0}$, TANGNB ${ }_{1}$: Temporary two's complement storage (astronaut desired or radar marked) radar position angles (trunnion and shaft, respectively), scaled B-1 in unit of revolutions.

TCDH: Double precision time of ignition of the CDH burn, scaled B28 in units of centiseconds; an astronaut input in P33-P73.

TCSI: Double precision time of ignition of the CSI burn, scaled B28 in. units of centiseconds: It may be either an astronaut input or computed by the program.

TEVENT: Double precision time-of-event for downlink information, scaled B28 in units of centiseconds.

TGO: Double precision predicted length of burn, scaled B28 in units of centiseconds.

THETAD: Single precision vector containing the gimbal angles that define the desired orientation to which the attitude maneuver routines are to maneuver; scaled B-l in units of revolutions and stored in two's complement
form. Also called CPHI in program.
TIG: Double precision predicted time of ignition input to the burn routines, or predicted cutoff time, scaled B28 in units of centiseconds.

TIMENOW: Double precision computer clock, incremented every centisecond (one hundredth of a second) by the LGC oscillator; scaled B28 in units of centiseconds.

TLAND: Double precision nominal time of lunar landing, scaled B28 in units of centiseconds; part of the erasable load.

TPASS4: Double precision scheduled time of target intercept, scaled B28 in units of centiseconds.

TRKMKCNT: Single precision count of number of navigation updates made during P2O or P22, scaled B14 and unitless. Cell also used in R29 to indicate data storage for downlink; 1 - data stored, 0 - data not stored. TTF:

Double precision negative time from now until achiement of target conditions of the present quidance phase, scaled B17 in units of centiseconds. TTOGO: Double precision time until engine ignition (or cutoff), scaled B28 in units of centiseconds.

TTPI: Double precision time of terminal phase initiation, scaled B28 in units of centiseconds; an astronaut input in P32-P72 and P34-P74.

UNFC :
Double precision desired thrust acceleration vector, with variable scaling in units of meters per centisecond squared and expressed in the Platform coordinate system. During the pre-ignition phase computations for the powered descent maneuver (P63), UNFC represents the Delta-V vector for the pre-full throttle thrust, scaled B7 in units of
meters per centisecond.
UPBUFF $_{0-19}$: Single precision buffer cells for P27 updates.
UPCOUNT: Single precision number of components received in a P27 update, scaled Bl 4 and unitless.

UPOLDMOD: Single precision storage for the value of MODREG at the initialization of a P27 update, scaled B14.

UPVERB:
Single precision indication of the verb that initiated a P27 update, scaled B14 and unitless.

V-OTHER: Double precisions navigation velocity vector of the CSM scaled B7 in units of meters/centisecond.

VGPREV: Double precision previous value of $\underline{V G}$, program notation also VGTIG, scaled B7 in units of meters per centisecond and expressed in the reference coordinate system.

VGU: Double precision velocity vector of the LM relative to the rotating moon, scaled B10 in units of meters per centisecond and expressed in. the Descent Guidance coordinate system.

VGVECT: Double precision velocity-to-be-gained vector in Platform coordinates, scaled B7 in units of meters per centisecond.

VMEAS: Double precision velocity measurement (sum of 5 samples) from the LR sampling, scaled B28 in units of Landing Radar velocity bits. K:VSCAL ${ }_{0}$: Double precision constant stored as 0.5410829105 , program notation VZSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: 0.002642006/5. (Equivalent to 0.8668 fps per bit; the "5" averages the sum of five samples.)

K:VSCAL ${ }_{2}$: Double precision constant stored as 0.7565672446 , program notation VYSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: $0.003694176 / 5$. (Equivalent to 1.212 fps per bit; the " 5 " averages the sum of five samples.)

K:VSCAL 4 : Double precision constant_stared asi-0.4020043770, program notation VXSCAL, scaled B-10 in units of meters per centisecond per bit. Equation value: $-0.001962912 / 5$. (Equivalent to -0.644 fps per bit; the "5" averages the sum of five samples.)

VN: Double precision inertial velocity vector of the LM, scaled B7 in units of meters per centisecond and expressed in the Reference coordinate system.

VSELECT: Single precision index used to distinguish among the $Z(0)$, Y (I) and X (2) axes of the Landing Radar coordinate system, scaled Bl4 and unitless.

X789: Double precision vector containing the best estimate of bias necessary to offset $R R$ position error, scaled B5 (earth) or B3 (moon) in units of radians.

YNBSAV, ZNBSAV: Double precision unit vectors in the directions of the Y and Z navigation base axes, scaled Bl and expressed in moon-fixed coordinates.

ZDOTD: Double precision desired downrange velocity scaled B7 in units of meters/centisecond.

If MODREG $\neq 0$, proceed to "ALM/END"

$$
\text { Switch bit } 1 \text { of IMODES } 33 \text { to } 1 \text { (indicate lamp test in progress) }
$$

Switch bits 7, 6, 5, 4, 3 and 1 of channel 11 to 1
(Illuminate operator error lamp; initiate verb-noun flash; illuminate key release, temperature caution, uplink activity, and ISS warning lamps)

> Switch DSPTAB 11 to $100000110111{ }_{100}$
> (Signal "T4RUPT" to light the program alarm, tracker fail, gimbal lock warning, no attitude, and $I R$ fail lamps)

Perform "Cl3STALL"

NOUT $=11$
Release interrupt inhibit
Call "TSTLTS 2 . in 5 seconds
End job
TSTLTS2 Establish "TSTLTS3"
End task
TSTLTS 3 Inhibit interrupts
Switch bits 7, 4, 3 and 1 of channel 11 to 0
(Leave verb-noun and key release flashing)
Perform "Cl3stall"
Switch bit 10 of channel 13 to 0
$\mathrm{TS}=$ bit 4 of channel 12
Switch DSPTAB $_{11}$ to ${40000_{8}+T S}$
(leave no attitude lamp lit if in coarse align)

Switch bit 1 of IMODES 33 to 0

```
    Switch bits 13, 12 and 11 of IMODES33 to 1
        (Reset PIPA fail, Downlink fail and Uplink fail bits)
    Switch bits 13, 12 and 10 of IMODES3O to 1
        (Reset IMU fail, ICDU fail` ănd PIPA fail bits)
    Switch bit }15\mathrm{ of IMODES3O to 0 (Reset.IMU temperature bit)
    Switch RADMODES bit 7 (RCDUFAIL) to l
    Switch RADMODES bits 8 (LRVELFLG), 5 (LRALTFLG) and 4 (RRDATAFL) to 0
    Release interrupt inhibit
    Establish "DSPMMJOB" . (pr30)
    MONSAVE1 }=400008
    Switch bit 6 of channel 11 to 0 . (verb-noun flash off)
    Perform "RELDSP"
    If CADRSTOR }\not=+0,\mathrm{ proceed to "PINBRNCH"
    End job
SHOWSUM2 Perform "PRIOCHNG" with A = 070008 (change priority to 078)
    SKEEP6 = 1
    SMODE = +O
    SELFRET = "SELFCHK"
    Proceed to "STSHOSUM"
SDISPLAY SKEEP3 = SKEEP2
    SKEEP2 = TSbank
    MPAC}2= "SKEREP1"
    Proceed to "GOXDSPF" with TS = K:VO5NO1 (SKEEP1, SKEEP2, SKFEP3)
        (If terminate, continue at next step; if proceed, proceed
        to "NXTBNK"; if other response, repeat at previous step.)
SKEEP1 = "SELFCHK"
Proceed to "ENDEXT"
```

SELFCHK SKEEPP1 = "ERRASCHK".
Perform "CHECKNJ",
If $\mathrm{SMODE}=+0$:
Proceed to second step of "SEHFCHK" (idle loop)
If $\mathrm{SMODE}=-0$:
SCOUNT $=$ SCOUNT +1
Proceed to address specified in SKBMP1
If \mid SMODE $\mid>10_{8}$:
SMODE $=+0$
Proceed to "SELFCHK"
SCOUNT $=$ SCOUNT +1
If $|S M O D E|=1,2,3,6,7$ or 10_{8} :
Proceed to address specified in SKEAPP1
If $|S M O D E|=4$, proceed to "ERASCHK"
If $|S M O D E|=5$, proceed to "ROPECHK"
CHECKNJ SELFRET = return address
Proceed to "ADVAN"
(Returns to caller of "CHECKNJ" via SELFRET if or when no jobs require processing.)

ERASCHK SKEEP2 $=1$
EBANK $=0$
SKEEEP $=01461_{8} \quad$ (address of first non-special cell in bank 0$)$

SKEEP3 $=0$ 1777 $_{8} \quad$ (last address in bank 0$)$

```
ERASLOOP Inhibit interrupts
SKEEP4 \(=\) EBANK
SKEEP5 \(=\) E SKEEP7
\(\mathrm{i}=\mathrm{SKEEP} 7+1\)
SKEEP6 \(=E_{i}\)
ERESTORE = SKEEP7
\(\mathrm{E}_{\text {SKEEP7 }}=\) SKEEP7
\(\mathrm{E}_{\mathrm{i}}=\) SKEEP7 +1
\(T S=E_{S K E E P 7}-E_{i}\)
If TS \(\neq-1\), perform "PRERRORS"
If ERESTORE \(\neq+0\) : (did not perform "PRERRORS")
\(\mathrm{E}_{\text {SKEEP7 }}=-\mathrm{E}_{\text {SKEEP7 }}\)
\(E_{i}=-E_{i}\)
\(T S=E_{i}-E_{\text {SKEEP7 }}\)
If TS \(\neq-1\), perform "PRERRORS"
If ERESTORE \(\neq+0\) :
```

$\mathrm{E}_{\text {SKEEP7 }}=$ SKEEP5
$\mathrm{E}_{\mathrm{i}}=$ SKEEP6
ERESTORE $=+0$
Release interrupt inhibit
Perform "CHECKNJ"
EBANK $=$ SKEEP4 \quad (in case it was changed by another job)
SKEEP7 $=$ SKEEP7 +1
If SKEEP7 \neq SKEEP3, proceed to "ERASLOOP"

```
    If SKEEP2 > 0:
    SKEFP2 = SKEEPP2 - 1
    SKEEP7 = 000618 (first non-special cell in unswitched
                                    erasable)
    SKFEP3 = 013738
    Proceed to "ERASLOOP"
(Otherwise SKEEP2 = 0)
SKEEP2 = 1
EBANK = EBANK + 1
If EBANK =: 2:
    SKEEP7 = 014008
    SKEEP3 = 017738
    Proceed to "ERASLOOP"
If EBANK < 108:
    SKFFPP7 = 014008
    SKEEP3 = 01777%
    Proceed to "ERASLOOP"
    EBANK = 3
    SKEEP2 = 508
CNTRLOOP TS = - contents of cell specified by (SKEEP2 + 10 %)
If SKEERP2 > 0:
    SKEEP2 = SKFEP2 - 1
    Proceed to "CNTRLOOP"
CYR =252528 (should cycle right and become 125258)
CYL = 252528 (should cycle left and become 5252488)
SR = 25252g

EDOP \(=25252\) g (should shift right 7 and become \(00125_{8}\) )
\(T S=25252_{8}+C Y R+C Y L+S R+E D O P+52400_{8}\)
If TS \(\neq-1\), perform "PRERRORS"
\(T S=C Y R+C Y L+S R+E D O P+1\)
If TS \(\neq-1\), perform "PRERRORS"
\(\operatorname{SCOUNT}_{1}=\operatorname{SCOUNT}_{1}+1\)
SKEEP1 = "ROPECHK"
Proceed to second step of "SELFCHK"
PRERRORS If ERESTORE \(\neq+0\) :
\[
\mathrm{E}_{\mathrm{SKEEP}}=\mathrm{SKEEP} 5
\]
\(\mathrm{E}_{\mathrm{i}}=\) SKEEP6
ERESTORE \(=+0\)
Inhibit interrupts
SFAIL \(=\) return address
\(\mathrm{ALMCADR}_{0}=\) SFAIL
ERCOUNT \(=\) ERCOUNT +1
\(T S=01102_{8}\)
Perform "ALARM2"
If SMODE \(\geq+0:\)
SMODE \(=+\infty\)
Proceed to "SELFCHK"
If SMODE < O, proceed to "SELFCHK"
Return via SFAIL
```

ROPECHK SKEEP6 = -0
STSHOSUM SKEEP4 = 0
SKEEP7 = 1
SKEEPP1 =0
SKEEP3 = 0000008
SKEEP5 = 1
COMADRS L = SKEEEP4
FCADR = bits 15-11 of SKEEP4 + SKEEP3
Perform "SUPDACAL"
SKEEP2 = A (contents.of fixed memory cell specified by
FCADR and L)
SKEEP1 = SKEEP1 + SKEFPP2 with end around carry of }\pm\mathrm{ overflow
TS = 02000
Proceed to "ADRSCHK"
FXADRS SKEEP2 = contents of cell specified in SKEEP3 (fixed-fixed
banks 2,3)
SKEEP1 = SKEEP1 + SKEEP2 with end around carry of \pm overflow
TS = SKEEP3 - SKEEP2
ADRSCHK TSadr = bits 10-1 of SKEEP3
If TSadr = 017778, proceed to "SOPTION" (end of bank)
If SKEEP5 < 0, proceed to "SOPTION" (2 consecutive TC SELF
instructions have been encountered, indicating that the
rest of the bank is unused)
If TS = -0: (contents of cell equals its address)
If SKEEP5 = 0, SKEEP5 = -1 (2nd consecutive TC SELF)
If SKEEP5 > 0, SKEFPP5 = SKEEP5 - 1 (1st TC SELF)
If TS }\not=-0, SKEEP5 = 1

```
```

(SKEEP6 = 1 or -0)
If SKEEPG > O and NEWJOB > 0:
Proceed to "CHANG1"
When jobs of higher priority are finished (if any),
"CHANG1" will return here
Proceed to "ADRS+1"
If SKBEP6 = -0, perform "CHECKNJ"
ADRS+1 SKEEP3 = SKEEP3 + 1 (increment address)
If SKEEP7 \geq+0, proceed to "COMADRS"
Proceed to "FXADRS"
SOPTION TSbank = integral part of SKHEP4 (rescaled from B4 to B14)
TS = 8 (fractional part of SKEEP4) (rescaled from B4 to B14)
If TS }\not=0:\quad(equals 30 % or 40 %)
TSbank == TS + TSbank - 30
If SKEEP6 }=0\mathrm{ 0, proceed to "SDISPLAY"
SKEEP1 = |SKEEP1
If SKERP1 f TSbank, perform "PRERRORS"
NXTBNK If SKEEEP4 = 33.04g
If SKEEP6 }=0\mathrm{ , proceed to "STSHOSUM"
Proceed to "SELFCHK"
SKEEP4 = SKEEP4 + 1
If SKEEP4 = 308, SKEEP4 = SKEEP4 + 0.038 (011 % in bits 7-5
If SKEEPL \ 40 8, SKEFP4 = 30.04 % (100 % in bits 7-5
(Only difference between address in banks 308
is the SUPERBNK setting.)

```
```

 SKEFPP7 = SKEFPP7 - 1 (+O if 0)
 SKEEP1 = 0
 SKEEP3 = 000008
 SKEERP5 = 1
 Proceed to "COMADRS"
 If SKEEP7 = +0:
SKEFEP7 =- -1
SKEEP3 }=040008
SKEEP1 = 0
SKEREP5 = 1
Proceed to "FXADRS"
If SKEEP\7 = -1:
(bank 3)
SKEEP7. == -0
SKEEP3 = 060008
SKEEP1 % 0
SKEEPP5 = 1
Proceed to "FXADRS"
SKEEP7 = 64
SKERP1 = 0
SKEEP3 = 0000008
SKEEP5 = 1
Proceed to "COMADRS"

```
MODREG = 07
```

```
Establish "DSPMMJOB"
(pr30)
Perform "IMUZERO"
Perform "IMUSTALL"
If ISSGOOD = 0, proceed to "SOMERR2"
NDXCTR = 0
TORQNDX = 0
OVFLOWCK = 0
Set matrix [XNB]=0
DSPTEMI +1 dp LATITUDE rescaled B-2 revs
DSPTEML = AZIMUTH twos complement, B-1 in revs
Proceed to "GOFLASH" with TS = K:VO6N41
    (If terminate, proceed to "ENDTESTl"; If proceed, continue
    below; if other response, repeat this step)
AZIMUTH = DSPTEMI ones complement, BO revs
LATITUDE = DSPTEML +1 rescaled to BO revs
WANGI = -cos(LATITUDE)
WANGO = sin(LATITUDE)
[XNB] =[ llll
Perform "CALCGA"
Perform "IMUCOARS"
If FLAGWRD3 bit 14 (GLOKFAIL) = 1:
    NDXCTR = NDXCTR + 1
Switch FLAGWRD3 bit 14 (GLOKFAIL) to 0
```

```
    Perform "IMUSTALL"
    If ISSGOOD = 0, proceed to"SOMERR2"
    If NDXCTR > 0:
        Proceed to "PIPACHK"
    Perform "IMUFINE"
    Perform "IMUSTALL"
    If ISSGOOD = 0, proceed to "SOMERR2"
    Call "GOESTIMS" in PERFDLAY }\mp@subsup{\textrm{dp}}{}{\mathrm{ centi-seconds}
    A = "ESTIMS"
    Proceed to "JOBSLEEP"
GOESTIMS Awaken.job with starting address "ESTIMS"
    End task
ESTIMS Inhibit interrupts
Call "ALLOOP" in 1SECXT Centi-seconds
PIPA = O
Release interrupt inhibit
Zero 77 erasable memory cells starting at location "ALXIS -1"
GCOMPSW = 0
ALXIS = 144
CMPX1 = -1
ALK = K:soupyO
ALK
\ELV = \underline{0}
GCOMP = O
```

```
    If TORQNDX S 0:
    ERVECTOR = K:omegms (sinLATITUDE, -cosLATITUDE, 0)
    TStmark = TIMENOW
    ERCOMP = \underline{0}
    Proceed to "SLEEPIE"
SLEEPIE If TORQNDX > 0, perform "EARTHR*"
    End job
TORQUE DSPTEM2 = 0
    DSPTEM2 +1 = DRIFTI 
    TS = POSITON - }
    SOUTHDR 
    Perform "SHOW"
    Proceed to "PIPACHK"
PIPACHK If NDXCTR = 0, perform "EARTHR*"
    DATAPL +4 = 17
    LENGTHOT = 58
    RESULTCT = 1
    PIPA PIPINDEX }=
    DATAPL
    Perform "CHECKG"
    Call "PIPATASK" in . 02 seconds
    End job
PIPATASK LENGTHOT = LENGTHOT - 1
    If LENGTHOT > O:
        Call "PIPATASK" in }5.12\mathrm{ seconds
    Establish "PIPJOBB" . (pr20)
    End task
```

 TEST - 12
 PIPJOBB If NDXCTR $=0$, perform "EARTHR*"

$$
\text { If LENGTHOT }>0 \text {, end job. }
$$

RESULTCT $=5$
Perform "CHECKG"
If DATAPL $^{+1}{ }_{d p}<0$, DATAPL $_{4}{ }_{d p}=-$ DATAPL $^{4} 4_{d p}$
If DATAPL+1 ${ }_{d p}=0$, perform "CCSHOLE"
DATAPL $+4_{d p}=$ DATAPL $^{2} 4_{d p}-$ DATAPL $+0_{d p}$
$T S=$ DATAPL $^{2} 6_{d p}-$ DATAPL $^{2} 2_{d p}$
If $\mathrm{TS}<0$:
$\mathrm{TS}=\mathrm{TS}+2^{28} \quad$ (the 2^{28} corresponds to 2^{23} centiseconds DSPTEM2 $_{\mathrm{dp}}=\mathrm{K}: \mathrm{dc} 585$ DATAPL $+_{\mathrm{dp}} / \mathrm{TS}$ (with forced sign agreament)
If NDXXCTR > 0 :
THETAD $=0$
Perform "IMUCOARS"
Perform "IMUSTALL"
If ISSGOOD $=0$, proceed to "SOMERR2"
Perform "SHOW"
LENGTHOT $=3990$
$T S=$ POSITON -2
DRIFTT $_{\text {sp }}=-$ SOUTHDR $_{\text {TS }}$
If PIPINDEX >0:
$\operatorname{ERCOMP}_{\mathbf{x}}=\operatorname{ERCOMP}_{\mathrm{x}}+\mathrm{K}: \mathrm{bt} 5$
$\operatorname{ERCOMP}_{\mathrm{y}}=\mathrm{ERCOMP}_{\mathrm{y}}-\mathrm{K}: \mathrm{bt} 5$
If PIPINDEX = 0:
$\operatorname{ERCOMP}_{\mathrm{y}}=\operatorname{ERCOMP}_{\mathrm{y}}-\mathrm{K}: \mathrm{bt} 5$
$\operatorname{ERCOMP}_{z}=\operatorname{ERCOMP}_{z}+\mathrm{K}: \mathrm{bt} 5$

```
    Perform "EARTHR*"
    ERVECTOR 
    TORQNDX = (1- 2-28)
    LOSVEC = CDU 
    Proceed to "ESTIMS"
VALMIS DSPTEM2 +1 = DRIFTO
    DSPTEM2 = 0
    Perform "SHOW"
ENDTEST1 Switch FLAGWRDO bit }8\mathrm{ (IMUSE) to 0
    MODREG = -0
    Establish "DSPMMJOB"
        (pr30)
    Proceed to "ENDEXT"
CHECKG QPLACE = return address
Inhibit interrupts
ZERONDX = - PIPAPIPINDEX
If PIPA PIPINDEX + ZERONDX = 0:
    Release interrupt inhibit
    Check for new job and perform it if required; if a new job
    is performed, proceed to 2nd line of "CHECKG"
    If a new job is not performed:
        Inhibit interrupts
            Proceed to 4th line of "CHECKG"
DATAPL
DATAPL RESULTCT + = (Channel 3, Channel 4) (sample with
special precaution to assure that the two halves are consistent)
Release interrupt inhibit
Proceed to address specified by QPLACE
                                    TEST - 14
```

 Proceed to "CDFLASH" with TS = K:VO6N98
 (if terminate, proceed to "ENDTESTI"; if proceed,
 proceed below; if other response, proceed to "SHOW")

Return

EARTHR* TSt = TIMENOW
TSt1 = TSt - TStmark
If TSt1 < O:
TSt1 $=$ TSt1 $+2^{28}$ centi-seconds
ERCOMP $=$ ERCOMP $+[\mathrm{XSM}]$ TSt1 ERVECTOR
TStmark $=$ TSt
$T S=$ "ERCOMP"
Perform "IMUPULSE"
Perform "IMUSTALL"
If ISSGOOD = 0, proceed to "SOMERR2"
Return
ALLOOP If OVFLOWCK > 0, end task
$\mathrm{TS}=\mathrm{ALTIM}$
If $T S=+0:$
ALTIMS $=+0$
ALTIM $=-0$
If $T S=-0:$
ALTIM $=+0$
If $T S$ 0: (should not be positive)
ALTIM $=-(|\operatorname{ALTIM}|-1)$
If GEOCOMPS - $1=0$ or LENGTHOT >0 :
Call "ALíLOOP" in dSECXT centi-seconds.

```
DELV = PIPA . (most significant half only)
PIPA = 的
Establish "ALFLT"
(pr20)
End task
ALFLT If GEOCOMPS > 0, perform "1/PIPA"
TS = [XSM] T
DPIPAY = - TS y
DPIPAZ = TS 
If GEOCOMPS > 0, proceed to "PERFERAS"
If ALTIMS \geq 0:
    TS = 144. - ALXIS
    ALTIM = ALFDKK
    ALTIMS = ALFDK
    ALDK = ALFDK}:TS + 2
    ALDK}2=ALFDK_TS + 4
    ALDK
    ALDK
    ALDK
    ALXIS = ALXIS - }1
INTY = INTY - K:pipasc DPIPAY
DELM y = K:vesc VLAUN
INTZ = INTZ - K:pipasc DPIPAZ
DELM 
ALK = ALDK ALK
ALK}2=\mp@subsup{\textrm{ALDK}}{2}{}\mp@subsup{\textrm{ALK}}{2}{
TEST - 16
```

$$
\begin{aligned}
& \text { INTY }=\text { INTY }+ \text { ALK DELM }{ }_{y} \\
& \mathrm{ALK}_{4}=\mathrm{ALK}_{4}+\mathrm{ALDK}_{4} \\
& \operatorname{ANGX}=\mathrm{ANGX}^{+} 4 \mathrm{ALK}_{4} \mathrm{DELM}_{\mathrm{y}} \\
& \text { VLAUN }_{\mathrm{y}}=\text { VLAUN }_{\mathrm{y}}+\mathrm{K}: a s k 0 \text { DELM }_{\mathrm{y}} \\
& \mathrm{ANGZ}=\mathrm{ANGZ}+\mathrm{ALK}_{2} \text { DELM }_{\mathrm{y}} \\
& \mathrm{ALK}_{6}=\mathrm{ALK}_{6}+\mathrm{ALDK}_{6} \\
& \text { DRIFTO }=\text { DRIFTO }^{+} 4 \text { ALK }_{6} \text { DELM }_{y} \\
& \operatorname{ACCWD}_{y}=\text { ACCWD }_{y}+K: a s{ }^{2} \operatorname{DELM}_{y} \\
& \text { INTZ }=\text { INTZ }+\operatorname{ALK} \text { DELM }_{z} \\
& \mathrm{ALK}_{8}=\mathrm{ALK}_{8}+\mathrm{ALDK}_{8} \\
& \text { DRIFTI }=\text { DRIFTI }+4 \text { ALK }_{8} \text { DELM }_{z} \\
& \operatorname{VLAUN}_{z}=\operatorname{VLAUN}_{z}+\mathrm{K}: a s k O \operatorname{DELM}_{z} \\
& \text { ANGY }=\mathrm{ANGY}+\mathrm{ALK}_{2} \mathrm{DELM}_{z} \\
& \operatorname{ACCWD}_{z}=\text { ACCWD }_{z}+K: a s k 2 \operatorname{DELM}_{z} \\
& \text { TS } \left.=\text { [TRANSM1] (POSNV }{ }_{y}, \text { VLAUN }_{y}, \text { ACCWD }_{y}\right) \\
& \text { (POSNV }_{y}, \text { VLAUN }_{y}, \text { ACCWD }_{y}{ }_{y}^{\prime} \text {) }=\underline{T S} \\
& \underline{T} S=\left[\text { TRANSM1] (POSNV }{ }_{z}, \text { VLAUN }_{z}, \text { ACCWD }_{z}\right) \\
& \text { (POSNV }_{z}, \operatorname{VLAUN}_{z}, \operatorname{ACCWD}_{z} \text {) }=\underline{T} S \\
& \text { SNANGi }=\sin (\mathrm{K}: \mathrm{georgj} \text { ANGi }) \quad(i=x, y, z) \\
& \text { CSANGi }=\cos (K: g e o r g j \text { ANGi }) \quad(i=x, y, z)
\end{aligned}
$$

PERFERAS Proceed to erasable memory cell 3400 (E7, 1400)

This is the point where the program apparently returns from erasable memory.

If LENGTHOT > 0 :
LENGTHOT = LENGTHOT - 1
Proceed to "SLEEPIE"
If TORQNDX >0, LOSVEC $_{1}=\mathrm{CDU}_{x}$

```
    OGC=[XSM] (-K:georgj)(ANGX, ANGY, ANGZ)
    TS = "OGC"
    Perform "IMUPULSE"
    Perform "IMUSTALL"
    If ISSGOOD = 0, proceed to "SOMERR2"
    If TORQNDX > 0, proceed to "VALMIS"
    ERVECTOR = K:omegms (sinLATITUDE, -cosLATITUDE, 0)
    TStmark = TIMENOW
    ERCOMP = 0
    Proceed to "TORQUE"
SOMEERRR OVFLOWCK = 1
    Perform "ALARM" with TS = 016008
    Proceed to "ENDTEST1"
SOMERR2 Perform "ALARM" with TS = 01601g
    Switch FLAGWRDO bit }8\mathrm{ (IMUSE) to 0
    End job
```

 TEST - 18
 1SECXT: Single precision quantity, scale factor B14, units centi-seconds, giving required period of computations for "ALLOOP".
A: See MATX section.
$A^{\prime} C W D_{y}, A C C W D_{z}$: Double precision value of horizontal acceleration of launch vehicle (due to sway) in north-south and east-west directions respectively, scale factor $B 9$, units $\mathrm{cm} / \mathrm{sec}^{2}$.
ALDK, $A_{2 L D K}^{2}$: Set of double precision buffer cells used to contain the values of the time constants for the erection angles (PIPA outputs and east axis leveling angle), scale factor BO, as read from the ALFDK table set.
ALDK_{4}, ALDK $_{6}$, ALDK $_{8}$: Set of double precision buffer cells used to contain the values of the slopes of the gains for azimuth angle, vertical drift, and north-south drift respectively; scale factor BO, read from ALFDK table set.
ALFDK : Table of erasable memory quantities used in "ALFLT" to update vafues of parameters to be used for filtering in gyro drift computations. The table consists of five double precision constants, one single precision constant (the setting for ALTIM), and a reset value of ALTIMS (which could be e.g. -1 for all tables). Values must be initialized by an erasable memory load (with the first value at "ALFDK", with settings for ALTIM, ALTIMS, ALDK, ALDK ${ }_{2}, A_{4} A_{1}, A L D K_{6}$, and $A^{2 L D K}$ stored in that order (first two single precision, reftainder double precision). Scale factor of first two assumed B14, and the remainder assumed BO, in this writeup.

ALK, $\mathrm{ALK}_{2}, \mathrm{ALK}_{4}, \mathrm{ALK}_{6}, \mathrm{ALK}_{8}$: Values of gains updated each cycle in gyro drift determination computations. ALK and ALK 2 are initialized to non-zero values in "ESTIMS" and multiplied by time constants for PIPA outputs and erection angles respectively, with scale factors due to initialization of BO (ALK) and B2. The others ($\mathrm{ALK}_{4}, \mathrm{ALK}_{6}$, and ALK_{8}) are initialized to 0 values in "ESTIMS", and are incremented each cycle to achieve varying gains for azimuth angle, vertical drift, and north-south drift respectively: all are considered to have scale factor BO (see ALFDK).

ALMCADR: See PGSR section.
ALTIM: Single precision value of time remaining prior to change in filter constants for drift measurements, scale factor B14, units seconds. To cause a set of gains to be used for T seconds, ALTIM is set to-(T - 2).

ALTIMS: Single precision flag cell set to 0 when a gain change should be made (see ALTIM), and then reset (e.g. to -1) when the gain change has been done, scale factor B14.
ALXIS: Single precision cell, scale factor B14, used to control selection of values from ALFDK i_{i} erasable memory table (set to 144 in "ESTIMS").

ANGX, ANGY, ANGZ: Values of determined angle changes about vertical, south, and east axes respectively, scale factor BO, units revolutionss they are azimuth alignment angle, south axds leveling angle, and east axis leveling angle respectively.

AZIMUTH: Double precision erasable memory constant, scale factor BO, units revolutions. It gives the azimuth of the vehicle Z-axis east of north.

CADRSTOR: See DINT section.
CDU: See COOR section.
CMPX1: Single precision cell, scale factor B14, used to set proper contents of index register X1 to permit use of an index loop (X1 is set sucessively to ± 1) to perform calculations in "ALFLT".

CSANG $_{i}(i=X, Y, Z)$ Values of cosine of ANGX, ANGY, and ANGZ, scale factor B1, stored in push-down list locations 16D, 18D, and 20D respectively.

CYR, CYL, SR, EDOP: Cycle right, cycle left, shift right and shift right 7 registers.

DATAPL: Set of cells used to retain "prelaunch data", loaded in "CHECKG" with sampled accelerometer value and corresponding value of time information in (channel 3, channel 4) scaling (B23 cs).
$\operatorname{DELM}_{y} ; \operatorname{DELM}_{z}$: Value of measurement quantity in south and easterly directions used in drift test, scale factor B-2, units radians.

DELV: See SERV section.
DPIPAY, DPIPAZ: Value of accelerometer output modified for use in gyro parameter calculations. The y axis of this system is south and and the z axis is east (from [XSM]). Scale factor is B14, units accelerometer counts.

DRIFTI: Value of gyro drift measurement output displayed in "TORQUE", scale factor (assumed) BO, units radians, giving the south gyro drift.

DRIFTO: Value of gyro drift measurement output displayed in "VALMIS", scale factor (assumed) BO, units radians, giving the vertical gyro drift.

DRIFTT: Input drift to gyro drift determination routine (to separate east gyro drift from azimuth error), scale factor BO, units radians. It has only its most significant half loaded by calling routines, with the least significant half set to 0 .
$\mathrm{DSPTAB}_{i}(i=0-10)$: See DSKY section.
DSPTAB $_{11}$: See INTR section.
DSPTEM1, etc: See DATA section.
$E_{A D R}$: Contents of single precision erasable memory register whose address is ADR.

EBANK: See MATX section.
ERCOMP: Value of gyro compensation to be sent to gyros, scale factor B21, units pulses (or scale factor BO, units revolutions, since one pulse is 2^{-21} revolution).

ERCOUNT: Single precision count of errors encountered in the erasable memory self-check, scale factor B14, initialized at 0 by a fresh start.

ERESTORE: Single precision storage for the address of the first of two erasable memory cells currently being tested by the "ERASCHK" routine. Set to to when the "ERASCHK" is complete or not functioning.

ERVECTOR: Earth rotation vector initialized in "ESTIMS", scale factor B1, units gyro puilses / centi-second.

FCADR: See MATX section.
GCOMP: Value of required gyro compensation command, computed with a scale factor B14, but used in "IMUPULSE" with a scale factor B21. (or, alternatively, with a scale factor $B O$ revolutions rather than B21 gyro pulses, since there are 2^{21} gyro pulses / revolution).

GCOMPSW: Single precision control cell used to bypass the performance of "1/PIPA" and "NBDONLY" if it is negative.

GEOCOMPS: Single precision control cell which when positive will cause the cal culations performed in "ALFLT" to be skipped and control transferred to the erasable memory programs. Normally set to 0 .

IMODES30: See IMUC section.
IMODES33: See INTR section.
INTY, INTZ: Value of filtered accelerometer output (corrected for vehicle sway etc.) used in gyro drift test, scale factor B-2, units radians. Could also be considered to be "south" and "east" velocity increments expressed in units of g's (see K:pipasc).

ISSGOOD: See IMUC section.
K:askO: Constant, program notation "ALSK", scale factor B12, stored as 05427 12577g, equation value 709.833965. Value corresponds to $0.72402338 \times 980.402 \times 2^{-12}$ where first term is wind-induced sway velocity gain, second converts DELM to units of $\mathrm{cm} / \mathrm{sec}$ (i.e: units of VLAUN), and third term is scale factor.

K:ask2: Constant, program notation "ALSK +2", scale factor B12, stored as 7756744202 , equation value -734.2167470 . Value corresponds to $0.03490074 \times(-1) \times 980.402 \times 2^{-12}$, where first term is wind-induced accelerometer gain, second is an equation factor, third converts to units of $\mathrm{cm} / \mathrm{sec}^{2}$, and fourth term is scale factor.

K:bt5: Constant, program notation "BIT5", scale factor BO, units revolutions, stored as 00020_{8}, equation value 0.00098 . Value is 2^{-10} revolution corresponding' to about $360 / 1024=0.35^{\circ}$, serving to offset platform to account for accelerometer dead zones. Could also be considered to have value of 2^{11} gyro torquing pulses; there are 2^{21} pulses/rev.

K:dc585: Constant, program notation !DEC585", scale fáctor B9, stored as 06200_{8}, equation value 100.0. The 100 corresponds to 1.0×100, where first term is accelerometer nominal scale factor ($\mathrm{cm} / \mathrm{sec}$ per count) and second converts denominator in "PIPJOBB" from units of centi-seconds to seconds. Result has scale factir B14, units $\mathrm{cm} / \mathrm{sec}^{2}$ (measured gravity, with integral part in R1 of N98 and fractional part in R2).

K:georgj: Constant, program notation "GEORGEJ", scale factor B-2, stored as 2427614066 , equation value 0.159154942 . Value corresponds to $(1 / 2 \pi) \times 2^{2}$, to convert between radians and revolutions (the interpretive language trig functions require angle measurements in revs).

K:omegms: Constant, program notation "OMEG/MS", scale factor BO, units gyro pulses/centi-second, stored as 0762326552 , equation value 0.243390478 . Value corresponds approximately to (1/86164.0932) $\times 10^{-2} \mathrm{x}$ 2^{21}, where first term is earth rotation period in seconds (used to derive constant), second converts to centi-seconds, and third is number of gyro torquing pulses in one revolution.

K:pipasc: Constant, program notation "PIPASC", scale factor B-7, stored as 0413302265 , equation value 0.001019989 . Value corresponds to $1.0 \times(1 / 980.402) \times 2^{7}$ where first term is nominal accelerometer scale factor ($\mathrm{cm} / \mathrm{sec}$ per count), second is normalization factor (acceleration due to gravity), and third is scale factor. For convenience in description, a fourth factor of " $1 /$ second" has been assumed reflected in this constant, giving for units of result (in INTY etc.) radians.

K:soupyO: Constant, program notation "SOUPLY", scale factor BO, stored as 3573000035_{8}, equation value 0.935058704 . Used in "ESTIMS" to initialize ALK.

K:soupy2: Constant, program notation "SOUPLY +2", scale factor B2, stored as 1031717550^{g}, equation value 1.05065691 . Used in "ESTIMS" to initialize ALK_{2}.

K:VO6N98: See list of major variables.
K:vesc: Constant, program notation "VELSC", scale factor B-9, stored as 5722366451 , equation value -0.001019989 . Value corresponds to $(-1) \times(1 / 980.402) \times 2^{9}$, where first term is an equation factor, second converts for acceleration due to gravity, and third is scale factor.

L: See MATX section.
LATITUDE: Erasable memory (double precision) constant, with scale factor BO, units revolutions. It gives the local vertical astronomical latitude of the pad.

LENGTHOT: Single precision cell, scale factor B14, used to contain time duration information. It is loaded in "PIPACHK" and "PIPJOBB" and decremented in "PIPATASK" and "PERFERAS".

LOSVEC, LOSVEC $_{1}$: Single precision cells, scale factor B-1, units revolutions, used to contain the val ue of CDU x in "PIPJOBB" and when the program returns from erasable memory, for use in DSKY monitoring of performance (by an address-to-be-specified noun).

MODREG: See DATA section.
MONSAVE1: See DATA section.
MPAC_{2} : See DINT section.
NDXCTR: Single precision cell, scale factor B14, initialized to 0 in "REDO" and incremented to 1 for a "gimbal lock" return from "CALCGA" (angle of 60 degrees or more).

NEWJOB: See MATX section.
NOUT: See INTR section.
OCC: See COOR section.
OVFLOWCK: Single precision flag which will terminate the IMU performance test if set. It is initialized to zero in "REDO" and set in "SOMEERRR" to indicate overflow has occurred somewhere in the erasable memory program calculations.

PERFDLAY: Communication cell with routine calling "GOESTIMS", apparently not loaded by program control. Scale factor B28, units centi-seconds. (the "LONGCALL" entrance to the waitlist system is used).

PIPA: See IMUC section.
PIPINDEX: Single precision cell, scale factor B.14, used to select accelerometer axis under test (0,1 , and 2 for X, Y, Z respectively). Must be loaded manually.

POSITON: Single precision cell, scale factor B14, used for indexing and display purposes (used in previous programs to select desired stable member orientation from fixed memory information). Must be loaded manually (inputs in "SHOW" do not change it.).
$\operatorname{POSNV}_{y}, \operatorname{POSNV}_{z}$: Values of horizontal displacement of launch vehicle in south and east directions respectively, assumed scale factor B9, units cm (assumed since scaling of [TRANSM1] elements not known, but treated as B1)

QPLÃCE: Single precision cell used to retain return address information.
RADMODES: See RADR section.
RESULTCT: Single precision cell, scale factor B14, used to select the proper storage locations in "CHECKG"; it is set to 1 at the start of the accelerometer sampling interval and to 5 at its end, to cause storage in appropriate DATAPL locations.

SCOUNT, SCOUNT 1 : Single precision counters, scale factor B14, used to count cycles through the self-check and erasable memory test routines, respectively.

SELFRET: Single precision storage for the address of the current position in the self-check routine, for return after other jobs are completed.

SFAIL: Single precision address in the self-check routine where an error was detected.

SKEEP1: Single precision storage for the branching address in the self-test routine, or for an octal bank sum (the sum of the contents of all the cells in a bank of fixed memory), accumulated with end around carry of a + or - overflow (+1 for + overflow; -1 for - overflow). (Example of end around carry of overflow: $25701_{8}+32405_{8}=20307_{8}$)
SKEEP2: Single precision cell used in the bank sum display as temporary storage for the bank number. Used in the erasable-memory self-check to indicate whether the bank being checked is a normal bank or the unswitched bank. Used in the fixed-memory self-check as temporary storage for the value in the cell being checked.

SKEEP3: Single precision cell used as temporary storage for the "bugger word" during a bank sum display. (The bugger word is the last word in a fixed memory bank which adjusts the sum to make it equivalent to the bank number.) Used in the erasable-memory self-check as storage for the last address in the bank to be checked. Used in the fixed-memory self-check as storage for the address of the next fixed-memory cell whose contents are to be added to the bank sum.

SKEEP4: Single precision storage for the value of the EBANK in the erasable-memory self-test routines, scaled B6 and expressed as an octal number. Single precision storage for the value of the FBANK number in the fixed-memory self-test routines, scaled B4 and expressed as an octal number with the SUPERBNK setting in bits 7-5, the 64ths octal digit.

SKEEP5: Single precision storage for the contents of the first of two consecutive E-memory cells being checked; or single precision index indication (by being set to to and then to -1) that two consecutive fixed-memory cells contain their own addresses (TC SELF), thus signifying that the remainder of a bank contains no information.

SKEEP6: Single precision storage for the contents of the second of two consecutive E-memory cells being checked; or a single precision flag set to -0 to indicate a standard fixed-memory check or 1 to indicate a verb 91 bank sum display.

SKEEP7: Single precision address of the first of two consecutive E-memory cells being checked; or a single precision index counted down to signal banks 2 and 3 so that they may be addressed directly instead of through the FBANK setting.

SMODE: Single precision index set equal to to to stop the LGC self-test; set to $-0, \pm 1, \pm 2, \pm 3, \pm 6, \pm 7$, or $\pm 10_{8}$ to cause the self-test routine to alternate between "ERASCHK" and "ROPECHK"; set to ± 4 to cause the self-test routine to perform only "ERASCHK"; and set ± 5 to cause the self-test routine to perform only "ROPECHK". If an error is encountered, the self-test routine will return to idle unless SMODE is negative.

SNANG: ($i=X, Y, Z)$, value of sine of ANGX, ANGY, and ANGZ, scale factor B-2, stored in push-down list locations 10D, 12 D , and 14 D respectively.

SOUTHDR ${ }_{i}$: Indexed cell used in "TORQUE" to retain the value of DRIFTI for subsequent initialization of DRIFTT in "PIPJOBB", for proper initialization (e.g. to 1) and subsequent incrementing (e.g. to 2) of POSITON.

THETAD: See ATTM section.
TIMENOW: See EXVB section.

TORQNDX: Quantity set to 0 if no torquing is done and to 1 (scale factor BO) if torquing is to be done via "EARTHR*" at the start of "SLEEPIE".
[TRANSM]: Transformation matrix used as a sway transition matrix, contained in erasable memory (must be initialized to values as part of an erasable memory load before running test). Assumed scaling in this writeup for all elements is B. 1 (after being used to perform multiplication, a left shift of 1 is done).

TStmark: Value of time when previous earth-rate compensation was made, scale factor B28, units centi-seconds.

VLAUN, VLAUN : Value of horizontal velocity of launch vehicle (due to y^{\prime} sway) in north-south and east-west directions respectively, scale factor $B 9$, units $\mathrm{cm} / \mathrm{sec}$.

WANGI: Value of (-cos LATITUDE) loaded in "REDO", scale factor BO.
WANGO: Value of (sin LATITUDE) loaded in "REDO", scale factor BO.
[XNB] : See COOR section.
[XSM] : See COOR section.
ZERONDX: Single precision cell, used as an input parameter to an erasable memory zeroing routine, (not shown in this writeup). It is loaded in "CHECKG" with accelerometer information whenever checks for accelerometer output are made after an interruption.

Targeting - Lambert

```
P34 Switch FLAGWRD2 bit 5 (AVFLAG) to 1
    Skip next step
P74 Switch FLAGWRD2 bit 5 (AVFLAG) to 0
    Switch FLAGWRDI bits }5\mathrm{ (TRACKFLG) and 7 (UPDATFLG) to l
    Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
        (If terminate, proceed to "GOTOPOOH"; if proceed,
        continue at next step; other response, repeat.this
        step.)
    CENTANG = K:I30DEG
    NN = 0 (most significant half only)
    Perform "DISPLAYE"
    Switch FLAGWRD2 bit 7 (ETPIFLAG) to 0
    TIG = TTPI
    If ELEV }\not=0\mathrm{ , switch FLAGWRD2 bit 7 (ETPIFLAG) to l
    Perform "SELECTMU"
    Perform "VN1645"
P34/P74C Switch FLAGWRD7 bit 15 (ITSWICH) to l
    If FLAGWRD2 bit 7 (ETPIFLAG) = 0:
    Switch FLAGWRD7 bit 15 (ITSWICH) to 0
    NOMTPI = 0
INTLOOP TDECI = TTPI + NOMTPI
    Perform "PRECSET" (get RACT3, VACT3, RPASS3, VPASS3)
    Perform "S33/34.1" (get ELEV or TPI time)
    If TSnosol f0: (no solution)
        TRGL - l
```

Perform "ALARM" with $T S=00611_{8}$
Proceed to "GOFLASH" with TS = K:V05N09
(If terminate, proceed to "GOTOPOOH"; if proceed, proceed to the second step of "P74"; other response, proceed to previous step.)

If FLAGWRD7 bit 15 (ITSWICH) $=1$:
Switch FLAGWRD7 bit 15 (ITSWICH) to 0
Proceed to "INTLOOP"
If FLAGWRD2 bit 7 (ETPIFLAG) = 0, perform "DISPLAYE"
If FLAGWRD2 bit 7 (ETPIFLAG) $=1$:
Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

CSTH $=\cos$ CENTANG
SNTH = sinCENTANG
RVEC $=$ RPASS 3 (both shifted left two if necessary to
$\underline{\text { VVEC }}=$ VPASS3 \quad or B27 and B5)
Switch FLAGWRD7 bit 9 (RVSW) to 1
Perform "TIMETHET"
INTIME $=$ TTPI
TPASS4 $=\mathrm{TTPI} \dot{\mathrm{r}} \mathrm{T}$
Perform "S34/35.2" (get DELVEET3 and DELVLVC)
DELVTPI = |DELVEET3|
DELVTPF $=|\underline{V P A S S 4} 4-\underline{V T P R I M E}|$
$\underline{\mathrm{RVEC}}=\underline{\mathrm{RA} A C T} 3$
VVEC = VIPRIME
Perform "PERIAPO"

POSTTPI = TShp
$T I G=T T P I$
Proceed to "GOFLASH" with TS = K:VO6N58 (POSTTPI, DELVTPI, DELVTPF)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

Perform "S34/35.5" (get DELVSIN)
Perform "VN1645" (astronaut recycle or finalize options)
Proceed to "P34/P74C"
DISPLAYE NORMEX = return address
Proceed to "GOFLASH" with TS = K:VO6N55 (NN, ELEV, and CENTANG)
(If terminate, proceed to "GOYOPOOH"; if proceed, return via NORMEX; other response, repeat this step.)

S34/35.5 SUBEXIT $=$ return address
If FLAGWRD2 bit 6 (FINALFLG) $=0$:
Switch FLAGWRDI bit 7 (UPDATFLG) to 1
Perform "S34/35.4"
Proceed to "GOFLASH" with TS = K:VO6N59 (DVLOS)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

Return via SUBEXIT
Switch FLAGWRD6 bit 3 (NTARGFLG) to 0
GDTd2 = DELVLVC
Proceed to "GOFLASH" with TS = K:VO6N81 (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)

```
    TSsum = 0
    i = 5
NTARGCHK TS = GDTd2 i - DELVLVC i (check for astronaut overwrite
    TSsum = TSsum +TS
    If i> 0:
        i=i-l
        Proceed to "NTARGCHK"
    If TSsum }\not=0\mathrm{ :
    Switch FLAGWRD6 bit 3 (NTARGFLG) to l
    Perform "S34/35.3"
    DELVSIN = DELVEET3
    Perform "S34/35.4"
    Proceed to "GOFLASH" with TS = K:VO6N59 (DVLOS)
    (If terminate, proceed to "GOTOPOOH"; if proceed,
    continue at next step; other response, repeat this
    step.)
    Return via SUBEXIT
P35 Switch FLAGWRD2 bit 5 (AVFLAG) to l
    TK = ATIGINC
    Skip next two steps
P75 Switch FLAGWRD2 bit 5 (AVFLAG) to 0
    TK = PTIGINC
    Switch FLAGWRDl bits 5 (TRACKFLG) and 7 (UPDATFLG) to l
    Perform "SELECTMU"
    Perform "VN1645"
    P35/P75B TSTRT = TIMENOW
```

```
    TIG = TSTRT + TK
    INTIME = TIG
    TDECL = TIG
    Perform "PRECSET"
    ULOS = unit(\underline{RPASS3 - \underline{RACT3)}}\mathbf{~}=\mp@code{N}
    UNRM = unit(R⿴囗⿱一𫝀口T
Perform＂S34／35．2＂
Perform＂S34／35．5＂
Perform＂VN1645＂
Proceed to＂P35／P75B＂
S33／34．1 NORMEX＝return address
TITER＝－K：posmaxsp
SECMAX \(=\mathrm{K}:\) MAX250
RAPREC＝RACT3
VAPREC－VACT3
RPPREC－RPASS 3
VPPREC－VPASS3
ELCALC ULOS \(=\) unit（́RPASS3 \(-\underline{R A C T 3) ~}\)
UNRM \(=\) unit（ RACT3 \(^{*}\)＊VACT3）
\(\underline{U P}=\) unit（ULOS－（ULOS • unitRACT3）unitRACT3）
TSelev \(=\arccos (\underline{U P} \cdot \underline{U} O S \operatorname{sign}(\underline{U} N R M *\) RACT3 \(\cdot \underline{U P}))\)
（TSelev is positive，between 0 and 180 degrees－ 0 and \(\frac{1}{2}\) rev）
If ULOS－RACT3＜ 0 ：
TSelev = K:posmaxdp - TSelev
```

```
If FLAANWRD7 bit 15 (ITSWICH) = 0:
    TTPI = TTPI + NOMTPI
    If FLAGWRD2 bit 7 (ETPIFLAG) = 0
    ELEV = TSelev
    TSnosol = 0
    Roturn via NORMEX
DELELO = DELEL
DELEL = TSelev - ELEV
If |DELEL| < K:ELEPS:
    TSnosol = 0
    Return via NORMEX
If TITER = l:
    TSnosol = 1
    Return via NORMEX
TITER = TITER - l
TSrdif = |\underline{RPASS3 }|-|\underline{RACT 3 }|
TS = (\frac{1}{2}}-\textrm{ELEV}) signTSrdif
If TS < O: (desired ELEV impossible)
    TSnosol = TS (
    Return via NORMEX
TScsd = - cos(\frac{1}{2}- ELEV) |\underline{RACT 3 | / |EPASS3 |}
TS = 1 - |TScsd 
If TS<0:
    TSnosol = TS
    Return via NORMEX
```

 TRGL - 6
    ```
TS16 = |\underline{RPASS3| unit(UNRM * unitRACT3) - VACT3}
TS = unitRPASS3 * VPASS3
TS16 = TS16 - |RACT3| unit(IS * unitRPASS3) - VPASS3
TSs = unitRACT3 * unitRPASS3 - UNRM
TSc = arccos(unitRACT3 - unitRPASS3) signTSs
TSca = (\frac{1}{2}-arccosTScsd) signTSrdif + ELEV - \frac{1}{2}+TSc
TSt = K:TWOPI TSca |\underline{RACT3||\underline{PASS3| / TSl6}}\mathbf{|}|
If }|\mathrm{ TSt | \ SECMAX, TSt = SECMAX signTSt
If TITER< 0: (first pass)
    TITER = 14
    DELTEEO = TSt
    DELTEE = TSt
    Proceed to "ADTIME"
If DELEL DELELO < 0: (solution is surrounded)
    SECMAX = SECMAX / 3
    DALTEEO = - |TSt | signDELTEEO / 2
    DELTEE = DELTEEO
    Proceed to "ADTIME"
If |DELELO| < |DELEL|:
    DELTEEO = -DELTEEO / 2
    DILTEE = 3 DELTEEO
    Proceed to "ADTIME"
DELTEEO = |TSt | signDELTEEO
DELTEE = DELTEEO
```

ADTIME NOMTPI $=$ NOMTPI + DELTEE

> Perform "INTINT" with $\underline{T} S v=$ VAPREC, $\underline{T} S r=\underline{R A P R E C, ~} T S O=0$, TSt $=$ NOMTPI, and TSintyp $=$ NOMTPI
$\underline{\mathrm{RACT}} 3=\underline{\mathrm{RA}} \mathbf{A T T}$
$\underline{\text { VACT3 }}=\underline{\text { VATT }}$
Perform "INTINT" with $\mathbb{T} S v=\underline{\text { VPPREC }}, \underline{T} S r=\underline{R P P R E C, ~} T S o=0$, TSt $=$ NOMTPI, and TSintyp $=$ NOMTPI
$\underline{\text { RPASS3 }}=\underline{\text { RATT }}$
$\underline{\text { VPASS }} 3=\underline{\text { VATT }}$
Proceed to "ELCALC"
S34/35.2 SUBEXIT = return address

```
TSv = \underline{VPASS3, TSr = RPASS3, TSo = INTIME, and TSt = TPASS4}
If most significant half of NN = 0:
    TSintyp = K:TWOPI
    Perform "INTINT"
If most significant half of NN }\not=0\mathrm{ :
    TSintyp = 0
    Perform "INTINT"
RTARG = RATT
VPASS4 = VATT
ACTCENT = arccos(unitRACT3 * unitRTARG) sign(unitRACT3 *
    unitRTARG - UNRM).
If ACTCENT < 0, ACTCENT = K:posmaxdp + ACTCENT
DELLT4 = TPASS4 - INTIME
VTARGTAG = NN
CNANGL = K:EPSFOUR
RINIT = RACT3
VINIT = VACT3
Perform "INITVEL"
```

TRGL - 8

Return via SUBEXIT
S34/35.3 NORMEX = return address
DELVEET3 $=$ DELVLVC $\left[\begin{array}{l}- \text { UnitiRACT3 } \\ - \text { UNRM } \\ - \text { UnitRACT3 }\end{array}\right]$
Perform "INTTNT" with $\underline{T S v}=$ DELVEET3 + VACT3, TSr $=$ RACT3, TSo $=$ TIG, TSt $=$ TPASSZ, and ${ }^{\text {TSIntyp }}=\overline{\mathrm{K}}:$ posmaxdp
$\underline{R T A R G}=\underline{R} A T T$

Return via NORMEX
S34/35.4 NORMEX = return address

Return via NORMEX
INITVEL Switch FLAGWRDI bit 2 (GUESSW) to 1
HAVEGUES NORMEX = return address
$\underline{\text { RTARG1 }}=\underline{\text { RTARG }}$
If MUDEX $\neq 0$, rescale RINIT, VINIT, and RTARG1
RTMAG $=\mid$ - ${ }^{\text {TARGI }} \mid$
ITCTR $=-1$
COZY4 $=$ cosCNANGL
RIVEC = RINTT
R2VEC $=$ RTARG1
TDESIRED $=$ DELLT 4
$\underline{U} N=u n i t(u n i t \underline{R} I N I T *$ VINIT)
$\mathrm{COZY}_{4}=($ unitRTARGI \cdot unitRINIT $)+\mathrm{COZY} 4$

Switch FLAGWRD7 bit 10 (NORMSW) to 1
$\underline{R 2 V E C}=|\underline{R 2 V E C}|$ unit (́R2VEC $-(\underline{R} 2 V E C \cdot \underline{U N}) \underline{U N})$
If ITCTR < O, RTARGI = R2VEC
$\mathrm{XI}=-\mathrm{MUDEX}-2 \quad$ (-2 for earth sphere, -10 for lunar sphere)
$\underline{T} S=$ unitRIVEC * unitR2VEC
$\mathrm{TSz}=\mathrm{Z}$ component of TS
If $\mathrm{TSz}>0, \mathrm{Xl}=\mathrm{Xl}+10$
If $\mathrm{TSz} \leq 0, \mathrm{Xl}=\mathrm{Xl}+2$
If $\mathrm{Xl}=0, \underline{T S}=-\underline{T} S$
TS = (TS * unitRlVEC) • unit R2VEC
If $T S \geq 0$, GEOMSGN $=K: M U \quad$ (only most significant half of
If $T S<0$, GEOMSGN $=-K: M U \quad K: M U O$ is used for setting GEOMSGN)
ITERCTR $=20$
Perform "LAMBERT"
Switch FLAGWRDI bit 2 (GUESSW) to 0

VIPRIME = VVEC
If VTARGTAG $=0$, proceed to "INITVEL7"
Perform "INTSTALL"
Switch FLAGWRDO bit 12 (MOONFLAG) to 0
If MUDEX $\neq 0$, switch FLAGWRDO bit 12 (MOONFLAG) to 1
$\underline{\mathrm{R}} \mathrm{VEC}=\underline{\mathrm{RINIT}}$
$\underline{R} C V=\underline{R I N I T}$
$\underline{V C V}=\underline{V I P R I M E}$
TET = INTMME
TDECI $=$ INTIME + DELLT4
Switch FLAGWRD3 bit 4 (INTYPFLG) to 0

```
    Perform "INTEGRVS"
    VTARGET = VATT
    ITCTR = ITCTR + I
    If ITCTR }=\mathrm{ VTARGTAG:
    R2VEC = \underline{R2VEC + RTARGI - RATT (bias target vector)}
    Proceed to "INITVEL2"
RTARGI = R2VEC
INITVEL7 DELVEET3 = VIPRIME - VINIT
VTPRIME = VTARGET
    If MUDEX }\not=0\mathrm{ , rescale VTPRIME, VIPRIME, DELVEET3, and RTARGI
    MUE = K:MUTABLE 
MUdA = (MUE) (RdA) /RI
Rescale MUE
MUASTEER = MUE
RTARG = RTARGI
Switch FLAGWRD2 bit 8 (XDELVFLG) to 0
Return via NORMEX
```

ACTCENT: Double precision central angle between active and passive vehicles, scaled BO in units of revolutions.

ATIGINC: Double precision time between midcourse burn targeting by the active vehicle and TIG, scaled B28 in units of centiseconds. Part of the erasable load.

CENTANG: Double precision central angle between the passive vehicle's position at TIG and at intercept, scaled BO in units of revolutions.

CNANGL: Double precision central angle of a cone around -RINIT, scaled BO in units of revolutions. Target vectors within this cone are projected into the orbital plane of the active vehicle because of the sensitivity of the transfer plane orientation to a change in RTARG when RTARG is close to -RINIT.

COZY4: Value used by "INITVEL" to determine if the original target position vector falls within the cone specified by CNANGL. Scaled B2 and unitless.

CSTH: See CONC section.
DELEL, DELELO: Double precision present and previous increments to ELEV during the TPI-time/elevation-angle iteration, scaled BO in units of revolutions.

DELLT4: Double precision maneuver transfer time, scaled B28 in units of centiseconds.

DELTEE, DELTEEO: Double precision increment to NOMTPI during the TPI-time/elevation-angle iteration, scaled B28 in units of centiseconds.

DELVEET3: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond. Calculated by the "INITVEL" routine.

DELVLVC: See TRGX section.
DELVSIN: See TRGX section.
DELVTPF: Double precision magnitude of the velocity to be gained in the final rendezvous maneuvers of the terminal phase, scaled B7 in units of meters per centisecond.

DELVTPI: Double precision magnitude of velocity to be gained, as calculated by P34P74. Scaled B7 in units of meters per centisecond.

DVLOS: Double precision velocity-to-be-gained vector, scaled B7 in units of meters per centisecond and expressed in "line-of-sight" cóordinates. (See "S34/35.3" for definition of "line-of-sight" coordinates.)

ELEV: Double precision elevation angle of the line-of-sight to the passive vehicle; measured from the vector which is perpendicular to the active vehicle position vector, perpendicular to RACT * RPASS, and whose dot product with the active vehicle velocity vector is positive. An angle between 0 and 1 (0 and 360 degrees) scaled BO in units of revolutions. ELEV is greater than $\frac{1}{2}$ (180 degrees) if the passive vehicle is below the active vehicle's local horizontal. ELEV is an astronaut input in P32-72 and an optional input in P34-74.

GDTd2: A temporary storage location for DELVLVC. If DELVLVC is overwritten by the astronaut, the previous value of DELVLVC will still be in GDTd2, thus making possible a program comparison of the two values, and detection of the astronaut overwrite.

GEOMSGN: Single precision flag to assure that a unit normal vector computed in "GEOM" will have the same relation to the orbital plane of the active vehicle as $\underline{\mathbb{N}}$ will have when computed in "INITVEL".

INTIME: Double precision time-tag associated with RINIT and VINIT, scaled B28 in units of centiseconds.

ITCTR: Single precision counter measuring the number of iterations through the loop which biased a Lambert target vector to achieve a more accurate estimate of velocity required, based on precision integration of the biased conic solution.

ITERCTR: See CONC section.
K:130DEG: Double precision constant stored as 0.361111111 , scaled BO in units of revolutions. Equation value: 0.3611111111 .

K:ELEPS: Double precision constant stored as $0.27777777 \times 10^{-3}$, scaled BO in units of revolutions. Equation value: 0.00027777777. (Equivalent to 0.1 degrees.)

K:EPSFOUR: Double precision constant stored as 0.041666666 , scaled BO in units of revolutions. Equation value: 0.0416666666 . (Equivalent to 15 degrees.)
K:MAX250: Double precision constant stored as 25000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 25000.

K:MU ${ }_{0}$: See ORBI section.
K:MUTABLE: See CONC section.

K:TWOPI: Double precision constant stored as $6.283185307 \times 2^{-4}$, scaled B4 and unitless. Equation value: 6.283185307.

MUASTEER: Equal to MUE, but rescaled to B42 (earth) or B36 (moon).
MUdA: Ratio of gravitational constant (MUE) to semi-major axis. Scaled Bl4 (earth) or B10 (moon).

MUDEX: See CONC section.
MUE: See TRGX section.
NN: See TRGX section.
NOMTPI: Double precision iterative addition to TTPI, scaled B28: in units of centiseconds.

NORMEX: Single precision octal return address storage.
POSTTPI: Double precision perigee altitude, calculated in P34-74; scaled B29 in units of meters.

PTIGINC: Double precision time between midcourse burn targeting by the passive vehicle and TIG, scaled B28 in units of centiseconds. Part of the erasable load.

Rl: See CONC section.
RIVEC, R2VEC: See CONC section.
RACT3, VACT3: Double precision position and velocity vectors of the active vehicle prior to a particular burn, scaled B29 and B7 respectively in units of meters and meters per centisecond. Both vectors are also used as temporary storage for intermediate active vehicle position and velocity vectors.

RAPREC, VAPREC, RPPREC, VPPREC: Double precision vector storage for RACT3, VACT3. and RPASS3, VPASS3 as they were at entry to "S33734.1".

RATT, VATT: See ORBI section.
RCV, VCV: See CONC section.
RdA: See CONC section.
RINIT, VINIT: Double preeision active vehicle position and velocity vectors, scaled B29 and B7 respectively in units of meters and meters per centisecond. Rescaled at the beginning of "INITVEL" to B27 and B5 respectively if the CSM is within the moon's sphere of influence.

RPASS3, VPASS3 : Double precision position and velocity vectors of the passive vehicle prior to a particular burn, scaled B29 and B7 in units of meters and meters per centisecond respectively. Both vectors are also used as temporary storage for intermediate passive vehicle position and velocity vectors.

RTARG: Target position vector input to "INITVEL". Scaled B29 in units of meters. Upon exit, "INITVEL" loads RTARG with the biased target position vector, if such a biased vector is calculated.

RTARGI: Value of RTARG used within "INITVEL", scaled B29 (earth) or B27 (moon), in units of meters.

RTMAG: Magnitude of RTARG1, scaled B29 (earth) or B27 (moon), in units of meters.

RVEC, VVEC: See CONC section.
SECMAX: Double precision maximum limit on changes to NOMTPI, scaled B28 in units of centiseconds.

SNTH: See CONC section.
SUBEXIT: Single'precision octal return address storage.
T: See CONC section.
TDECl: See ORBI section.
TDESIRED: See CONC section.
TET: See ORBI section.
TIG: See BURN section.
TIMENOW: See EXVB section.
TITER: Single precision iteration counter.
TK: Double precision time between the initiation of P35-75 and the ignition of a midcourse correction burn, scaled B28 in units of centiseconds. Program notation is "KT".

TPASS4: Double precision scheduled time of target intercept, scaled B28 in units of centiseconds.

TSTRT: Double precision time of initiation of P35-75, scaled B28 in units of centiseconds.

TTPI: Double precision time of terminal phase initiation, scaled B28 in units of centiseconds; an astronaut input in P.32-72 and P34-74.

ULOS: Double precision unit vector along the line-of-sight vector, scaled B1 and unitless.

UN: Double precision unit vector perpendicular to the active vehicle orbital plane, scaled Bl and unitless.

UNRM: Double precision unit vector perpendicular to the active vehicle orbital plane, scaled B1 and unitless.

UP: A unit vector perpendicular to RACT3 and perpendicular to RACT3 * ULOS, whose dot product with ULOS is positive, scaled $\overline{\mathrm{B}} 1$ and unitless.

VIPRIME: Double precision velocity vector computed by the Lambert routine at the time INTIME. Scaled B7 in units of meters per centisecond.

VPASS4: Double precision velocity vector of the passive vehicle at the time of target intercept. Scaled B7 in units of meters per centisecond.

VTARGET: See CONC section.
VTARGTAG: Single procision cell, scaled B14, which specifies the number of iterations through the LAMBERT/INTEGRVS routines. If VTARGTAG $=0$, "LAMBERT" is performed to obtain initial and final velocity vectors, and "INTEGRVS" is not entered. If VTARGTAG >0, "INTEGRVS" output is used to bias the target position vector in order to obtain a more accurate "LAMBERT" solution.

VTPRIME: Double precision velocity vector, equal to VTARGET, which is calculated in the "INITVEL" routine. Scaled B7 in units of meters per centisecond.

Xl: Index register 1.

Switch FLAGWRD2 bit 5 (AVFLAG) to 0
CENTANG $=0$
Switch FLAGWRDI bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
$N N=0 \quad$ (least significant half only)
TCSI $=0$
VN0611 Proceed to "GOFLASH" with TS = K:VO6N11 (TCSI)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)


```
    TDECl = TETLEM
    Perform "PRECSET"
    RVEC = RACT3
    VVEC = VACT3
    Switch FLAGWRD7 bit 9 (RVSW) to l
    RDESIRED = K:posmaxdp
    Perform "TIMERAD" (compute time to apogee)
    TCSI = T + TDEC2
    Proceed to "VN0611"
VN0655
    Proceed to "GOFLASH" with TS = K:VO6N55 (NN, ELEV, CENTANG)
    (If terminate, proceed to "GOTOPOOH"; if proceed,
        continue at next`step; other response, repeat this
        step.)
    Proceed to "GOFLASH" with TS = K:VO6N37 (TTPI)
        (If terminate, proceed to "GOTOPOOH"; if proceed,
        continue at next step; other response, repeat this
        step.)
TIG = TCSI
    Perform "SELECTMU". (switches FINALFLG to 0)
    Perform "VN1645" (switches UPDATFLG to 0)
P32/P72B Perform "ADVANCE" (advances LM and CSM vectors to TIG,
    sets XDELVFLG)
Perform "INTINT" with TSv = VPASSI, TSr = RPASSI, TSo = TCSI,
    TSt = TTPI, and. TS\overline{Sintyp = K :TWO\overline{PI}}\mathbf{I}=\overline{T}
RPASS3 = RATT
VPASS3 = VATT
Proceed to "CSI/A"
P32/P72C If FLAGWRD2 bit 6 (FINALFLG) = 0:
    Switch FLAGWRD1 bit }7\mathrm{ (UPDATFLG) to l
Proceed to "P32/P72E"
```

T1:TOT2 $=$ T1TOT2 $-\mathrm{K}: 60 \mathrm{MIN}$
Proceed to "P32/P72E"
P32/P72F If T2TOT3 $\geq \mathrm{K}: 60 \mathrm{MLN}:$
T2TOT3 $=$ T2TOT3 $-\mathrm{K}: 60 \mathrm{NIN}$
Proceed to "P32/P72F"
Proceed to "GOFLASH" with TS $=\mathrm{K}:$ VO6N 75 (DIFFALT, T1TOT2, T2TOT3)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)
$[$ IVCMAT] $]=\left[\begin{array}{l}- \text { unitracti * UPI } \\ -\frac{\text { UPI }}{- \text { UnitRACT1 }}\end{array}\right]$
DEIVLVC $=$ [IVCMAT] DELVEETI
Proceed to "GOFLASH" with TS = K:VO6N81 (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)
DELVSIN $=[\text { LVCMAT }]^{T}$ DELVLVC
DELVSAB $=\mid$ DELVSIN \mid
DELVEET1 = DELVSIN
$[$ IVCMAT $]=\left[\begin{array}{l}- \text { unitRACT2 } \\ - \text { UPI } \\ - \text { UPI } \\ - \text { unitracT2 }\end{array}\right]$
(RACT1 set equal to RACTR)
DELVLVC $=[$ LVCMAT] DELVEET2
Proceed to "GOFLASH" with TS = K:VO6N82 (DELVLVC)
(If terminate, proceed to "GOTOPOOH"; if proceed, continue at next step; other response, repeat this step.)
$\mathrm{T} T$ PIO $=\mathrm{TTPI}$
Perform "VN1645" (astronaut recycle or finalize)
Proceed to "P32/P72B"

```
P33 Switch FLAGWRD2 bit 5 (AVFLAG) to 1
    Skip next step
P73 Switch FLAGWRD2 bit 5 (AVFLAG) to 0
    Switch FLAGWRD1 bits 5 (TRACKFLG) and 7 (UPDATFLG) to 1
    Proceed to "GOFLASH" with TS = K:VO6N13 (TCDH)
    (If terminate, proceed to "GOTOPOOH"; if proceed, continue
        at next step; other response, repeat this step.)
    TTPI = TTPIO
    TIG = TCDH
    Perform "SELECTMU" (switches FINALFLG to 0)
    Perform "VN1645" (switches UPDATFLG to 0)
P33/P73B Perform "ADVANCE" (LM and CSM vectors to TIG, set XDELVFLG)
Perform "CDHMVR"
Perform "INTINT" with \underline{TSv = VACT3, ISr = RACT2, TSo = TCDH,}
        TSt = TTPI, and TSintyp =0
RACT3 = RATT
VACT3 = VATT
Perform "INTINT" with ISv = VPASS2, TSSr }\doteq\underline{RPASS2, TSo = TCDH,
        TSt == TTPI,and TSintyp = 0
RPASS3 =- RATT
VPASS3 = VATT
Switch FLAGWRD7 bit 15.(ITSWIC:I) to l
NOMTPI = O
Perform "S33/34.1" (get transfer time to TPI)
If TSnosol }\not=0: (no solution
    Perform "ALARM" with TS = 00611.8
```

```
    (If no solution)
    Proceed to "GOFLASH" with TS = K:VO5NO9
    (If terminate, proceed to "GOTOPOOH"; if proceed,
        continue at next step; other response, proceed to
        second step of "P73".)
    NOMTPI = O
    If FLAGWRD2 bit 6 (FINALFLG) = 0:
    Switch FLAGWRDI bit 7 (UPDATFLG) to l
    T'IPI = TTPI + NOMTPI
    T1TOT2 = TTPI - TCDH
P33/P73E If TlTOT2 \geq K:60MIN:
    T1TOT2 = TlTOT2 - K:60MIN
    Proceed to "P33/P73E"
    T2TOT3 = TTPI - TTPIO
P33/P73F If |T2TOT3| \geq K:60MIN:
    T2TOT3 = T2TOT3 - K:60MIN signT2TOT3
    Proceed to "P33/P73F"
Proceed to "GOFLASH" with TS = K:VO6N75 (DIFFALT, T1TOT2, T2TOT3)
    (If terminate, proceed to "GOTOPOOH"; if proceed, continue
    at next step; other response, repeat this step.)
[LVCMAT] =[ [-unitRACTI * UPI 
DELVLVC = [LVCMAT」\_DELVEET2
Proceed to "GOFLASH" with TS = K:VO6N81 (DELVLVC)
    (If terminate, proceed to "GOTOPOOH"; if proceed, continue
    at next step; other response, repeat this step.)
DELVSIN = [LVCMAT] }\mp@subsup{}{}{T}\mathrm{ DELVLVC
DELVSAB = |DELVSIN |
DELVEET2 = DELVSIN
```

```
    Perform "VN1645" : (astronaut recycle or finalize)
    Proceed to "P33/P73B"
SELECTMU MUDEX = O
    If FLAGWRD8 bit 12 (CMOONFLG) = 1, MUDEX = 8
    i = MUDEX + 6
    RTldMU = K:MUTABLE E
    MJE = K:MUTABLE MUDEX
    If FLAGWRD8 bit 12 (CMOJNFLG) = 1, rescale MUE (sr6)
    Switch FLAGWRD2 bit 6 (FINALFLG) to 0
    Return
VN1645 SUBEXIT = return address
    pMGA = K:DPmpOl
    If FLAGWRD2 bit 6 (FINALFLG) = 1:
    pMGA = 2 K:DPmpOl
    If FLAGWRD3 bit 13 (REFSMFLG) = 1 and MODREG < 64:
        Perform "GET+MGA" with TS = DELVSIN
    Perform "COMPTGO"
    Delay l second (via "DELAYJOB")
    Proceed to "GOFLASH" with TS = K:Vl6N45 (TRKMKCNT, TTOGO, pMGA)
        (If terminate, contine at next step; if proceed, proceed. to
    "N45PROC"; other response, proceed to "CLUPDATE".)
    DISPDEX = Z (to stop computation of TTOGO)
    Proceed to "{OTOPOOH"
N45PROC If FLAGWRD2 bit 6 (FINALFLG) = 1:
    DISPDEX = Z
    Proceed to "GOTOPOOH"
```

 TRGX - 6
    ```
    Switch FLAGWRD2 bit 6 (FINALFLG) to l
CLUPDATE DISPDEX = Z
    Switch FLAGWRDI bit 7 (UPDATFLG) to 0
    Return via SUBEXIT
S30.1 QTEMP = return address
    TDECI = TIG
    Perform "LEMPREC"
    RTIG = RATT
    VTIG = VATT
    [LVCMAT] =[ [-unit(VTIG * RTIG) * unitRIIG]
    DELVSIN = DELVLVC [LVCMAT]
    DELVSAB = |\underline{DELVSIN}|
    TSr = RTIG
    TSv = VTIG + \underline{DELVSIN}
    Perform "PERIAPO1"
    HPER = TShp (pericenter altitude)
    If HPER \geq K:MAXNM:
        HPER = K:MAXNM
    HAPO = TShe (apocenter altitude)
    If HAPO \geq K:MAXNM:
        HAPO = K:MAXNM
    Return via QTEMP
ADVANCE SUBEXIT = return address
    TDEGI = TIG
```

```
    Perform "PRECSET"
    Switch FLAGWRD2 bit 8 (XDELVFLG) to 1
    VPASS2 = VPASS3
    VPASSI = VPASS3
    RPASS2 = RPASS3
    RPASSI = RPASS3
    UPl = unit (unitRPASSI * VPASSI)
    RTIG = RACT3
    RACT2 = |\underline{RACT}3| unit(\underline{RACT}3-(\underline{RACT3 - UPI) UPI)}
    RACT1 = RACT2
    VTIG = VACT3
```



```
    VACTI = VACT2
    Return via SUBEXIT
PRECSET NORMEX = return address
    TDEC2 = TDECI
    Perform "LEMPREC"
    If FLAGWRD2 bit 5 (AVFLAG) = 1:
    RACT3 = RATT
    VACT3 = VATT .
    If FLAGWRD2 bit 5 (AVFLAG) = 0:
    RPASS3 = \underline{RATT}
    VPASS3 = VATT
TDECI = TDEC2
Perform "CSMPREO"
```

TRiX - 8

```
    If FLAGWRD2 bit 5 (AVFLAG) = 1:
    RPASS3 = RATT
    VPASS3 = VATT
    If FLAGWRD2 bit 5 (AVFLAG) = 0:
    RACT3 = RATT
    VACT3 = VATT
    Return via NORMEX
INTINT RTRN = return address
    Perform "INTSTALL"
    Switch FLAGWRD3 bit 4 (INTYPFLG) to 0
    If TSintyp }\not=0\mathrm{ 0, Switch FLAGWRD3 bit 4 to 1 (conic integration)
    TDECI = TSt
    Switch FLAGWRDO bit 12 (MOONFLAG) to I
    If FLAGWRD8 bit 12 (CMOONFLG) = 0, Switch FLAGWRDO bit 12 to 0
    TET = TSo
    RCV = TSr
    VCV = TSv
    Perform "INTE{RVS"
    Return via RTRN
CDHMVR SUBEXIT = return address
UNVEC = unitRACT2
CSTH = unitRPASS2 - UNVEC
TS = - \underline{RACT2 * RPASS2 - UPI}
SNTH = \sqrt{}{1-\mp@subsup{\operatorname{CSTH}}{}{2}}\mathrm{ signTS}
VVEC = VPASS2
```

```
    RVEC = RPASS2
    Switch FLAGWRD7 bit 9 (KNSW) to 0
    Perform "TIMETHET"
    DIFFALT = |\underline{TSr}| - |\underline{RACT2 }|
SMALLA = RI / RdA
TSa =(\underline{TSv}\cdot\underline{UNVEC)}[\frac{SMALLA}{SMALLA - DIFFALT}}
TSb = \sqrt{}{\frac{2 MUE }{\mathrm{ RACT2 }}-\frac{MME}{\mathrm{ SMALLA - DIFFALT }}-\textrm{TSa}}\mp@subsup{}{}{2}
VACT3 = TSa \underline{UNVEC + TSb anit(\underline{UPI * UNNEC)}}\mathbf{~}=\underline{T}
DELVEET2 = VACT3 - VACT2
Return via SUBEXIT
CSI/A Switch FLAGWRD6 bits 12 (S32.IF3B) and 14 (S32.1F2) to l
Switch FLAGWRD6 bits 13 (S32.IF3A) and 15 (S32.1FI) to 0
LDOPGT = O
CSIALRM = O
CSI/B}\quadTS=|\underline{RACT1}|(1+|\underline{RACTl}|/|\underline{RPASS3|}
TS = \sqrt{}{2 MUE/TS}
DELVCSI = TS - unit(\underline{UPI * unitRACTI) • VACTI}
DELDV = K:INITST
CSI/B1 LOOPCT = LOOPOT + 1
If LOOPCT \geq K:LOOPMX, proceed to "SCNDSOL" with TSsp = 6
CSI/B2 If |DELVCSI| \geq K:DVMAXI:
If. FLAGWRD6 bit 15 (S32.1FI) = l or if FLAGWRD6 bits
12 (S32.1F3B) and 13 (S32.1F3A) both equal 1, proceed
to "SCNDSOL" with TSsp = 7
Switch FLAGWRD6 bit 15 (S32.1FI) to l
```

```
(If |DELVCSI| \geq K:DVMAXI)
    DELVCSI = K:DVMAX2 signDELVCSI
DELVEETI = DELVCSI unit(\underline{P1 * unitRACT1)}
VACT4 = VACTI + DELVEETl (ignoring overflow if any)
VVEC = VACT4
RVEC = RACTI
Switch FLAGWRD7 bit 9 (RVSW) to 1
SNTH = K:SN359+
CSTH = K:CS359+
Perform "TIMETHET"
HAFPAI =.T/ 2
Perform "PERIAPO"
POSTCSI = TShp
If CENTANG . = 0, proceed to "CIRCL"
If ECC < K:ONETHTH, proceed to "CIRCL"
If (|\underline{RACTI - VACT4| / RI) < K:NICKELDP, proceed to "CIRCL"}
TScs = P - 1
TS = \sqrt{}{P RI RIldMU / Rl}
If FLAGWRD8 bit 12 (CMOONFLG) = 1, rascale TS
RDOTV = RACTI - VACT4
TSsn = |RDOTV | TS
TSden = \sqrt{}{TScs}\mp@subsup{}{}{2}+\mp@subsup{\textrm{TSsn}}{}{2}
SNTH = TSsn / TSden
CSTH = TScs / TSden
VVEC = -VACT4 signRDOTV
RVEC = RACTI
```

```
    Switch FLAGWRD7 bit 9 (RVSW) to I
    Perform "TIMETHET"
    If ROJTV < O; TCDH = NN HAFPAI - HAFPAl + T + TCSI
    If RDOTV \geq 0, TCDH = TCSI + NN HAFPAI - T
    Skip next step
CIROL TCDH = TCSI + NN HAFPAI
    If TTPI < TCDH, proceed to "SCNDSOL" with TS 
    Perform "INTINT" with \underline{TSv = VACT4, TSSr = RACTl, TSo = TCSI,}
        TSt = TCDH, and TSintyp = K:TWOPI
RACT2 = RATT
VACT2 = VATT
Perform "INTINT" with TSV = VPASSI, TSr = RPASSI, TSo = TCSI,
        TSt = TCDH, and TSintyp = K:TWOPI
RPASS2 = RATT
VPASS2 = VATT.
Perform "CDHMVR"
\underline{TSr}= \underline{RACT2}
TSv = VACT3
Perform "PERTAPOI"
POSTCDH = TShp
Perform "INTINT" with \underline{TSv = VACT3, \underline{TSr = RACT2, TSo = TCDH,}}\mathbf{T}\mathrm{ ,}
    TSt = TTPI, and TSintyp = K:TWOPI
RACP3 = RATT
VACT3 = VATT
TSu = cosELEV unit(UPI * unit\underline{RACT3) + sinELEV unitRACT3}
TSrsin = TSu - RACT3
TS = RPASS3 - RPASS3 - RACT3 - RACT3 + TSrsin}\mp@subsup{}{}{2
TRGX - 12
```

If $T S<0:$
If LOOPCT = 1:
CSIALRM $=1$
Proceed to "ALMXIT"
(If TS <0)
DALDV $=$ DELDV $/ 2$
DELVCSI = DVPREV - DELDV
Proceed to "CSI/B1"
TSk2 $=-$ TSrsin $-\sqrt{T S}$
TSkI $=-$ TSrsin $+\sqrt{\text { TS }}$
$T S=T S k 2$
If $|T S k 2| \geq|T S k I|, T S=T S k l$
URPESTIM $=$ unit $(\underline{R A C T} 3+T S$ TSu $)$
$T S=($ unitRPASS3 * URPESTIM) $\cdot($ unitVPASS3 * unitRPASS3)
GAMP32 $=\arccos (\underline{U R P E S T I M} \cdot$ unitRPASS3) signTS
If FLAGWRD6 bit 14 (S32.1F2) $=1$, proceed to "FRSTPAS"
TSslope $=($ GAMP32 - GAMPREV $) /($ DELVCSI - DVPREV $)$
DVPREV $=$ DELVCSI
If FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) are both 1:
$T S=$ GAMPREV (GAMP32 - GAMPREV)
If TS ≥ 0, proceed to "FIFTYFPS"
DELDV = K:INITST sign DELİV
Switch FLAGWRD6 bit 13 (S32.1F3A) to 1
Switch FLAGWRD6 bit 12 (S32.1F3B) to 0
Proceed to "FRSTPAS"

```
    If FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) are both
    0, proceed to "FIFTYFPS"
    DELDV = GAMP32 / TSslope
    GAMPREV = GAMP32
    If |DELDV| < K:EPSILNI, proceed to "CSI/SOL"
    If |DELDV| \geq K:DELMAXI, DELDV = K:DELMAXI signDELDV
    DELVCSI = DEEVCSI - DELDV
    Proceed to "CSI/Bl"
FRSTPAS GAMPREV = GAMP32
    DVPREV = DELVCSI
    DELVCSI = DELVCSI - DELDV
    Switch FLAGWRD6 bit 14 (S32.1F2) to 0
    Proceed to."CSI/Bl"
FIFTYFPS DELDV = K:FIFPSDP signTSslope signGAMPREV
    DFLVCSI = DELVCSI - DELDV
    GAMPREV = GAMP32
    Switch FLAGWRD6 bits 12 (S32.1F3B) and 13 (S32.1F3A) to l
    Proceed to "CSI/B2"
SiNDSOL If FLAGWRD6 bit 12 (S32.1F3B) = 0 or bit 13 (S32.1F3A) = l:
        Proceed to "ALMXIT"
CSIALRM = TSsp
Switch FLA:WWR6 bits 12 (S32.1F3B), 13 (S32.1F3A), and 15 (S32.1F1)
to 0
Switch FLAGWRD6 bit 14 (S32.1F2) to 1
LOOPCP = 0
Proceed to "CSI/B"
```

```
ALMXIP TS = 03600g + CSIALFM - 1 (i.e., 00605g if CSIALRM = 6)
    Perform "VARALARM"
    Proceed to "GOFLASH" with TS = K:V05NO7
    (If terminate, proceed to "GOTOPOOH"; if proceed, repeat
    this step; other response, continue at next step.)
    Proceed to third step of "P72"
CSI/SOL i = MUDEX
    If POSTCSI < K:PMIN ; proceed to "SCNDSOL" with TSsp = 2
    If POSTCDH < K:PMIN;, proceed to "SCNDSOL" with TSsp = 3
    T1TOT2 = TCDH - TCSI
    If T1TOT2 < K:TMIN, proceed to "SCNDSOL" with TSsp = 4
    T2TOT3 = TTPI - TCDH
    If T2TOT3 < K:TMIN, proceed to "SCNDSOL" wlth TSsp = 5
    Proceed to "P32/P72C"
GET.LVC DELVLVC = [l_ lunit((RINIT * VINIT) * RINIT)
Switch FLAGWRD5 bit 2(MGLVFLAG) to 1
Return
GET+MGA IGAX = (REFSMMAT 2I, RNFSMMAT 22, REFSMMAT 23)
pMGA = arcsin(unitTS \cdot IGAX)
If pMGA< < , pMGA = 1 + pMGA
Switch FLAGWRD5 bit 2(MGLVFLAG) to 0
Return
```


CENTANG: See TRGL section.

CSIALRM: Single precision decimal number that is converted to octal and added to 005778 to be displayed to indicate any failure in the CSI targeting iteration.
CSTH: See CONC section.
DEIDV: Double precision increment to DELVCSI in one CSI iteration, scaled B7 in units of meters per centisecond.
DELVCSI: Double precision magnitude of velocity to be gained during the CSI burn, scaled B7 in units of meters per centisecond.
DELVEET1: Double precision vector corresponding to the velocity-to-begained vector for the CSI burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle and perpendicular to the active vehicle position vector at TCSI.
DELVEET2: Double precision vector corresponding to the velocity-to-begained vector for the CDH burn, scaled B7 in units of meters per centisecond. Parallel to the orbital plane of the passive vehicle.
DELVLVC: Double precision velocity vector expressed in local vertical coordinates, scaled B7 in units of meters per centisecond. In the local vertical coordinate system, X is along the horizontal component of velocity, Z points toward the center of attraction, and Y completes a right-handed, orthogonal system.
DELVSAB: Double precision magnitude of velocity to be gained for input to the thrusting programs, scaled B7 in units of meters per centisecond.
DELVSIN: Double precision velocity vector for input to the thrusting programs, scaled B7 in units of meters per centisecond and expressed in reference coordinates.
DIFFALT: Double precision difference of passive and active vehicle altitudes at the time of CDH, scaled B29 in units of meters; negative if the passive vehicle is below the active vehicle at CDH , and displayed to the astronaut during P32-72 and P33-73.
DISPDEX: See BURN section.
DVPREV: Previous value of DELVCSI.
ECC: Double precision eccentricity, scaled B3 and unitless.
ELEV: See TRGL section.
GAMP32, GAMPREV: Double precision error angle (and previous value of that angle) between projected rendezvous point and desired rendezvous point, scaled BO in units of revolutions.

HAFPA1: Double precision time corresponding to half of a period in the post-CSI, pre-CDH orbit, scaled B28 in units of centiseconds.
HAPO, HPER: Double precision heights above the earth or moon at apogee and at perigee respectively, scaled B29 in units of meters.

IGAX: Double precisian unit vector along the inner gimbal axis, scaled B1 and expressed in reference coordinates.

K: 60 MIN : Double precision constant stored as 360000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 360000.
K:CS359+: Double precision constant st.ored as 0.499999992 , scaled B1 and unitless. Equation value: 0.999999984.
K:DELMAX1: Double precision constant stored as 0.6096000×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.6096 . (Equivalent to 200 feet per second.)
K:DPmp01: Double precision constant stored as 77777 , 61337 , scaled BO in units of revolutions. Equation value: $-0.455878125 \times 2^{-14}$. (Equivalent to - 0.01 degrees.)
K:DVMAX1: Double precision constant stored as 3.0480×2^{-7}, scaled B? in units of meters per centisecond. Equation value: 3.0480 . (Equivalent to 1000 fps .)
K:DVMAX2: Double precision constant stored as 3.014472×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 3.014472. (Equivalent to 989 fps.$)$
K:EPSILN1: Double precision constant stored as 0.0003048×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.0003048 . (Equivalent to 0.1 fps .)
K:FIFPSDP: Double precision constant stored as -0.152400×2^{-7}, scaled $B 7$ in units of meters per centisecond. Equation value: -0.1524. (Equivalent to - 50 fps .)
K:INITST: Double precision constant stored as 0.03048×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.03048. (Equivalent to 10 fps.$)$
K:LOOPMX: Double precision constant stored as 16×2^{-28}, scaled B28 and unitless. Equation value: 16.
K:MAXNM: See EXVB section.
K:MUTABLE MUDEX: See CONC section.
K:NICKELDP: Double precision constant stored as 0.021336×2^{-7}, scaled B7 in units of meters per centisecond. Equation value: 0.021336 . (Equivalent to 7.0 fps)

K:ONETHTH: Double precision constant stored as 0.0001×2^{-3}, scaled B3 and unitless. Equation value: 0.0001.

K:PMIN ${ }_{0}$: Double precision constant stored as 157420×2^{-29}, scaled B29 in units of meters; program notation PMINE. Equation value: 157420.
K:PMIN 8 : Double precision constant stored as 10668×2^{-29}, scaled B29 ${ }^{\circ}$ in units of meters; program notation PMINM. Equation value: 10668.
K:SN359+: Double precision constant stored as -0.000086601 , scaled Bl and unitless. Equation value: -0.000173202.
K:TMIN: Double precision constant stored as 60000×2^{-28}, scaled B28 in units of centiseconds. Equation value: 60000 .
K:TWOPI: Double precision constant stored as $6.283185307 \times 2^{-4}$, scaled B4 and unitless. Equation value: 6.283185307.
LOOPCT: Double precision iteration counter, scaled B28 and unitless.
[LVCMAT]: Double precision, 3×3 transformation matrix defined such that Alv = [LVCMAT] Aref, where A is a vector expressed in local vertical and reference coordinates respectively.
MODREG: See DATA section.
MUDEX: See CONC section.
MUE: Double precision gravitational constant, scaled B36 in units of meters cubed per centisecond squared.
NN: Double precision number designating the apsidal crossing after CSI at which the CDH burn will be executed, scaled Bl4 and unitless. ($N N=1$ indicates that the CDH burn will be executed at the first apsidal crossing after CSI.) NN is used in P34-74 and P35 -75 as a flag to specify precision or conic integration. In "S34/35.2", it is used to set VTARGTAG.
NOMTPI: See TRGL section.
NORMEX: Single precision octal return address storage.
P: See CONC section.
pMGA: Double precision middle gimbal associated with a desired thrust direction, scaled BO in units of revolutions.

POSTCDH: Double precision height above the earth or the moon at the perigee of the orbit of the active vehicle after the CDH burn, scaled B29 in units of meters.

POSTCSI: Double precision height above the earth or the moon at the perigee of the orbit of the active vehicle after the CSI burn, scaled B29 in units of meters.

QTEMP: Single precision octal return address storage.

RI: See CONC section.
RACTI, VACTI: Double precision position and velocity vectors of the active vehicle at TCSI, prior to. the CSI burn, scaled B29 and B^{7} in units of meters and meters per centisecond respectively; rotated into the orbital plane of the passive vehicle.

RACT2, VACT2: Double precision position and velocity vectors of the active vehicle at TCDH, prior to the CDH burn, scaled B29 and B7 in units of meters and meters per centisecond respectively; rotated into the orbital plane of the passive yehicle.

RACT3, VACT3: See TRGL section.
RATT, VATT: See ORBI section.
RCV, VCV: See CONC section.
RdA: See CONC section.
RDESIRED: See CONC section.
RDOTV: Double precision dot product (RACTl - VACT4) scaled B36 in units of meters squared per centisecond.
[REFSMMAT] : See COOR section.
RINIT, VINIT: See TRGL section.
RPASSI, VPASSI: Double precision position and velocity vectors of the passive vehicle at TCSI, scaled B29 and B7 in units of meters and meters per centisecond respectively.

RPASS2, VPASS2: Double precision position and velocity vectors of the passive vehicle at TCDH s scaled B 29 and B 7 in units of meters and meters per centisecond respectively.

RPASS3, VPASS3: See TRGL section.
RTldMU: Double precision storage for the inverse of the square root of MUE, scaled B-17 (earth) or B-14 (moon) in units of centiseconds/meters to the three-halves power.

RTIG, VTIG: Double precision position and velocity vectors for input to the thrusting programs, scaled B29 and B7 in units of meters and meters per centisecond.

RTRN: Single precision octal return address storage.
RVEC, VVEC: See CONC section.

SMALLA: Double precision semi-major axis, in units of meters.
SNTH: See CONC section.
SUBEXIT: Single precision octal return address storage.
T: See CONC section.
T1TOT2: Double precision transfer time between CSI and CDH, scaled B28 in units of centiseconds; displayed to the astronaut in P32-P72. Transfer time between CDH and TPI when displayed to the astronaut in P33-P73.

T2TOT3: Double precision transfer time between CDH and TPI (P32-P72) or time difference between TTPI in P33 and TTPI used in P32 (displayed in P33-P73); scaled B28 in units of centiseconds.

TCDH: Double precision time of ignition of the CDH burn, scaled B28 in units of centiseconds; an astronaut input in $\mathbb{P 3 3 - P 7 3 .}$

TCSI: Double precision time of ignition of the CSI burn, scaled B28 in units of centiseconds. It may be either an astronaut input or computed by the program.

TDECI: See ORBI section.
TDEC2: Temporary storage for TDECI to assure that both active and passive states are advanced to the same time.

TET: See ORBI section.
TETLEM: "Permanent" time value for the LM state vector, scaled B28 in units of centiseconds.

TIG: See BURN section.
TRKMKCNT: See RNAV section.
TTOGO: See BURN section.
TTPI: See TRGL section.
TTPIO: Double precision storage for TPI time used in P32-72 for information in P33-73, scaled B28 in units of centiseconds.

UPI: Double precision unit vector perpendicular to the orbital plane of the passive vehicle, scaled Bl and unitless.

UNVEC: Double precision unit vector along RACT2, scaled Bl and unitless.
URPESTIM: A unit vector in the direction of the passive vehicle position vector that would satisfy the required TPI conditions, derived from the estimate of DELVCSI.

VACT4: Double precision velocity vector of the active vehicle at TCSI after the addition of the velocity gained in the CSI burn, scaled B^{7} in units of meters per centisecond.

Z: Z register, or program counter. Contains address of the next step.

TABLES
-

Programe

| Number | Title in |
| :--- | :--- |
| (GSOP) | this document |

| 00 | POOH |
| :--- | :--- |
| 06 | PO6 |
| 07 | SYSTEST |
| 12 | P12LM |

| Page | $\begin{aligned} & \text { Number } \\ & \text { (GSOP) } \end{aligned}$ | Title in this document | Page |
| :---: | :---: | :---: | :---: |
| PGSR-6 | 00 | GOTOPOOH | PGSR-11 |
| PGSR-13 | 01 | ABCLOAD | DATA-19 |
| EXVB-10 | 02 | R02BOTH | IMUC-19 |
| ASCT-1 | 03 | DAPDATAI | DAPB-19 |
| RNAV-1 | 04 | R04 | EXVB-7 |
| RNAV-6 | 05 | SBANDANT | EXVB-27 |
| RNAV-1 | 09 | R10,R11 | SERV-14 |
| RNAV-7 | 10 | LANDISP | SERV-15 |
| EXVB-8 | 11 | R10,R11 | SERV-14 |
| TRGX-1 | 12 | MUNRETRN | SERV-7 |
| TRGX-1 | 13 | LUNLAND | - DESC-4 |
| TRGX-4 | 20 | RADAREAD | RADR-19 |
| TRGL-1 | 21 | R2ILEM | RNAV-13 |
| TRGL-4 | 22 | R22LEM | RNAV-17 |
| BURN-1 | 23 | R23LEM | RNAV-19 |
| BURN-2 | 24 | R24LEM | RNAV-20 |
| BURN-1 | 25 | RRAUTCHK | RADR-1 |
| BURN-13 | 26 | R2ILEM4 | RNAV-14 |
| ALIN-1 | 29 | R29 | RNAV-31 |
| ALIN-14 | 30 | V82CAL | EXVB-17 |
| ALIN-25 | 31 | V83CALL | EXVB-24 |
| DESC-1 | 33 | ALINTIME | EXVB-6 |
| DESC-4 | 36 | R36 | EXVB-26 |
| - DESC-5 | 40 | DVMON | SERV-3 |
| DESC-11 | 41 | MIDTOAVI | ORBI-19 |
| DESC-18 | 47 | AGSINIT | EXVB-12 |
| ASCT-3 | 50 | CAL53A | ALIN-18 |
| ASCT-3 | 51 | R51 | ALIN-19 |
| TRGX-1 | 52 | R52 | ALIN-21 |
| TRGX-4 | 53 | AOTMARK | ALIN-3 |
| TRGL-1 | 54 | CHKSDATA | ALIN-13 |
| TRGI-4 | 55 | R55 | ALIN-22 |
| ORBI-23 | 56 | TRMTRACK | EXVB-6 |
| | 57 | MARKRUPT | ALIN-6 |
| | 58 | PLANET | ALIN-12 |
| | 59 | R59 | ALIN-30 |
| | 60 | R60LEM | ATTM-1 |
| | 61 | R61LEM | RNAV-10 |
| | 62 | R62DISP | ATTM-11 |
| | 63 | V89CALL | ATTM-11 |
| | 65 | R65LEM | RNAV-10 |
| | 76 | TESTXACT | EXVB-2 |
| | 77 | R77 | EXVB-9 |

Noun List

The following is an interpretation of the list of nouns that are used or defined in the LTMINARY progran (See DATA section). Other nouns are either illegal or meaningless when used with the LUMINARY program. The list includes the tag asaigned to the components of each noun (in this document); the number of components in each noun; the magnitude and units used in a decimal display of each noun; the section in which each component of each noun is defined; and an indication if the noun is a "no-load" or "decimal only" noun. Routines making use of a noun are listed in parentheses under the above information.

Special Considerations:

1. The $X, Y_{\text {a }}$ and Z components of a vector quantity are displayed in R1-R3 respectively with the same scaling and units for each component.
2. Single component nouns appear in R1 only.

| Noun | Tag | Compe | Def | Decimal Display | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | spare | | | | |
| 01 | (OHWELL1, | 3
 OHWELI | | . XxXXXX without regard to scaling or units LAY) | Address supplied |
| 02 | (UPVERIFY) | $\begin{aligned} & 3 \\ & Y) \end{aligned}$ | --- | XXXXXX. without regard to scaling or units | Address supplied |
| 03 | (none) | 3 | - | XXX. XX degrees | Address supplied |
| 04 | DSPTEMM1
 (GVDETER) | 1 | DATA | IXX. XX degrees | |
| 05 | DSPTEMM
 (R22LEMM, | $\begin{aligned} & 1 \\ & \text { CHKSDAT } \end{aligned}$ | DATA | XXX. XX degrees | |
| 06 | OPTION1
 OPTION2
 OPTION3
 (DSPOPTN, | 3 | $\begin{aligned} & \text { DATA } \\ & \text { DATA } \\ & \text { DATA } \\ & \text { GOPEI } \end{aligned}$ | Octal only
 Octal only
 Octal only
 4R) GOPFP P | |

| Noun | Tag | Compe | Dofe | Decimal Diaplay |
| :---: | :---: | :---: | :---: | :---: |
| 15 | (none) | 1 | --- | Octal only |
| 16 | DSPTEMX ${ }_{\text {dp }}$ | 3 | DATA | $00 \times 8 x$. hours 000XX. minutes OXX. XX seconds |
| | (AGSDISPK, R36, ACSVCALC) | | | |
| 17 | spare | | | |
| 18 | FDAI $\stackrel{3}{3}$ ATMM XXX. XX degrees(V89RECL,TOBALLA, REDOMANC) | | | |
| 19 | spars | | | |
| 20 | $\begin{aligned} & \text { CDU } \\ & \text { (GYCOARS, } \end{aligned}$ | 3 | IMUC | EXX.XX degrees |
| | | VBZERO | , VBCO | |
| 21 | $\begin{aligned} & \text { PIPA } \\ & \text { (none) } \end{aligned}$ | 3 | IMUC | modx. pulses for each |
| 22 | $\begin{aligned} & \text { THETAD } \\ & \text { (VBCOARK, } \end{aligned}$ | $\begin{aligned} & 3 \\ & \text { IMOATTCK, } \\ & \text { IMUC } \\ & \hline \end{aligned}$ | | XXX. XX degrees R62DISP, P52D, INITBY) |
| 23 | spare | | | |
| 24 | DSPTEMX ${ }_{\text {dp }}$ | | DATA | 00XXX. hours 000XX. minutes OXX. XX seconds |
| | (ALINTIME) | | | |
| 25 | $\begin{aligned} & \text { DSPTEMM } \\ & \text { DSPTEMM1 } \\ & \text { DSPTTMM1 } \\ & \text { (GOPRRTY, } \end{aligned}$ | 3 | $\begin{aligned} & \text { DATA } \\ & \text { DATA } \end{aligned}$ | XXXXXX. without regard
 XXXXX. to scaling
 XXXXX. or unita |
| | | | DATA | |
| | | | 1R, RO | |
| 26 | $\begin{aligned} & \text { DSPTEMT10 } \\ & \text { DSPTEMM1 } \\ & \text { DSPTEM1 } \\ & \text { (none) } \end{aligned}$ | 3 | DATA | Octal only Octal only Octal only |
| | | | DATA | |
| | | | DATA | |
| 27 | SMODE (none) | 1 | TEST | XxXXX. unitless |
| 28 | spare | | | |

Comment

Increment machine address

Decimial only - three components must be supplied

Deoimal only- three components must be supplied

Used to load address, bank and priority or delay information before a verb 30 or verb 31

$$
\text { W - } 7
$$

| Noun | Tag | Comp. | Def. | Decimal Display | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | spare | | | | |
| 30 | spare | | | | |
| 31 | spare | | | | |
| 32 | mTPER (none) | 3 | EXVB | 00XXX. hours 000XX. minutes OXX.XX seconds | Decimal only- three components must be supplied |
| 33 | TIG (P76, P30, | 3
 ORBCH | BURN | 00XXX. hours 000XX. minutes OXX.XX seconds
 M) $\cap \mathrm{P}$ | Decimal only - three components must be supplied |
| 34 | $\begin{aligned} & \text { DSPTEM1 dp } \\ & \text { (PREG2P;TA } \end{aligned}$ | $\begin{gathered} 3 \\ \text { P5 } 28, P \text { P } \end{gathered}$ | DATA
 70Ps | 00XXX. hours 000XX. minutes OXX.XX seconds了59 | (=TALIGN) Decimal only three components must be supplied |
| 35 | TTOGO (none) | 3 | BURN | 00xXX. hours 000XX. minutes OXX.XX seconds | Decimal only - three components must be supplied |
| 36 | TIMENOW
 (none) | 3 | EXVB | 00xXX. hours 000XX. minutes OXX.XX seconds | Decimal only - three components must be supplied |
| 37 | TTPI (VNO655, | 3 P34, | TRGL P74, | 00XXX. hours 000XX. minutes OXX. XX seconds LOOP) | Decimal only - three components must be supplied |
| 38 | $\begin{aligned} & \text { TET } \\ & \text { (none) } \end{aligned}$ | 3 | ORBI | 00XXX. hours 000XX. minutes OXX. XX seconds | Decimal only - three components must be supplied |
| 39 | spare | | | | |

| Noun | Tag | Comp. | Def. | Decimal Display | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | PITCHANG
 YAWANG
 (SBANDEX) | 2 | $\begin{aligned} & \text { EXVB } \\ & \text { EXVB } \end{aligned}$ | XXX.XX degrees
 XXX.XX degrees | Decimal only |
| 52 | ACTCENT
 (none) | 1 | TRGL | XXX. XX degrees | |
| 53 | spare | | | | |
| 54 | RANGE
 RRATE
 RTHETA
 (DISPN5X) | 3 | $\begin{aligned} & \text { EXVB } \\ & \text { EXVB } \\ & \text { EXVB } \end{aligned}$ | XXX.XX nautical miles XXXX.X fps XXX. XX degrees | Decimal only |
| 55 | NN
 ELEV
 CENT ANG
 (DISPLAYE, | 3
 VN065 | TRGX
 TRGL
 TRGL
 5) | XXXXX. unitless XXX.XX degrees XXX. $X X$ degrees | Decimal only |
| 56 | $\begin{aligned} & \text { RR-AZ } \\ & \text { RR-ELEV } \\ & \text { (DSPRRLOS) } \end{aligned}$ | 2 | $\begin{aligned} & \text { RNAV } \\ & \text { RNAV } \end{aligned}$ | XXX.XX degrees
 XXX. XX degrees | |
| 57 | spare. | | 9r\% | L. | - |
| 58 | POSTTPI
 DELVTPI
 DELVTPF
 (INTLOOP) | 3 | TRGL
 TRGL
 TRGL | XXXX.X nautical miles XXXX. $\mathbf{X f}$ f XXXX.X fps | Decimal only |
| 59 | $\begin{aligned} & \text { DVLOS } \\ & \text { (S34/35.5, } \end{aligned}$ | 3
 NTARG | $\begin{aligned} & \text { TRGL } \\ & \text { CHK }) \end{aligned}$ | XXXX.X fps | Decimal only |
| 60 | FORVEL
 HDOTDISP
 HCALC1
 (VERTDISP) | 3 | SERV
 SERV
 DESC | XXXX.X fps XXXX.X fps XXXXX. feet | Decimal only |
| 61 | TTFDISP
 TTOGO OUTOFPLN
 (CLOKJOB) | 3 | DESC BURN DESC | XX XX min-sec
 $X X X X \min -s e c$
 XXXX.X nautical miles | ```No load - Decimal only``` |

| Noun | Tag Compe | Def. | Decimal Display | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 62 | ABVEL 3 TTOGO DVTOTAL (CLORJOB, | SERV
 BURN SERV
 YC) | E0xX.I fps
 XX XX min-sec
 XXXX.X fps | ```No load - decimal only``` |
| 63 | ABVEL 3 HDOTDISP HCALC1 (CLOKJOB, P63DISP | $\begin{aligned} & \text { SERV } \\ & \text { SERV } \\ & \text { DERSC } \\ & \text { SPS, Ct } \end{aligned}$ | XXXX. I fps
 XXXX. If fos
 2XXXX. feet
 FF, V99RECYC , ASGTERMI) | Decimal only |
| 64 | $\begin{aligned} & \text { FUNNYDSP } 3 \\ & \text { HDOTDISP } \\ & \text { HCALC } \\ & \text { (P64DISPS) } \end{aligned}$ | DESC SERV SERV | $\begin{aligned} & X X X X \\ & X X X X . X \text { fps } \\ & X X X X X . \text { feet } \end{aligned}$ | No load - decimal only |
| 65 | SAMPTIME 3 (none) | DSKY | 00XXX. hours 000XX. minutes OXX. XX seconds | Decimal only - three components must be supplied |
| 66 | ```RSTACK Bits 7-6. of Channel 33 (R04X)``` | RADR | XXXXX. feet
 0000X. unitless | No load - decimal only |
| 67 | $\begin{aligned} & \text { RSTACK }_{0} \\ & \text { RSTACK }_{2} \\ & \text { RSTACK }_{4} \\ & \left(\text { ROAX }^{4}\right. \end{aligned}$ | RADR RADR RADR | XXXXX. fps
 XXXXX. fps
 20xxx. fps | |
| 68 | $\begin{aligned} & \text { RANGEDSP } 3 \\ & \text { TTFDISP } \\ & \text { DELTAH } \\ & \text { (DSP68, WAIT68) } \end{aligned}$ | DESC DESC SERV | XXXX.X nautical miles XX XX min - sec XXXXX. feet | No load - decimal only |
| 69 -0 | $\frac{\text { DFarla }}{(\text { none })}$ 3 $=3$ | Desc
 ATIS | Rexpe feet | ```Decimal only. Components in z,y,x order. Note that noun 70 is``` |
| 70 | $\begin{aligned} & \text { AOTCODE } \\ & \text { AOTCODE } \\ & \text { AOTCODE } \\ & (\text { R52, R59 }) \end{aligned}$ | ALIN | Octal ouly Octal only Octal only | Mateq thrath nouth mals dinspleared with verbo 01. Thompeecortd asued mbthirdig dersponents are meaningless. |

| Houn | Tag | Comp. | Def. | Decimal Diaplay | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 82 | $\begin{aligned} & \text { DELVLVC } \\ & (\text { P32/P72F) } \end{aligned}$ | | TRGX | IXX. ${ }^{\text {fps }}$ | Decimal only |
| 83 | $\begin{aligned} & \text { DELVIMU } \\ & \text { (P4TBODY) } \end{aligned}$ | 3 | BURN | X00X. X fps | Decimal only |
| 84 | $\frac{\text { DELVOV }}{(\text { P76 })}$ | 3 | ORBI | XXXX. ${ }^{\text {f }} \mathrm{ps}$ | Decimal only |
| 85 | $\begin{aligned} & \text { VGBODY } \\ & \text { (TIGNOW, } \end{aligned}$ | $\stackrel{3}{\text { CUTOFF, }}$ | $\begin{aligned} & \text { BURN } \\ & \text { P41IM, } \end{aligned}$ | $\begin{aligned} & \text { XXXX.X fps } \\ & \text { TIG-30A) } \end{aligned}$ | Decimal only |
| 86 | DELVLVC
 (none) | 3 | TRGX | XXXX.X fps | Decimal only |
| 87 | AZ
 EL
 (GETDAT, | 2
 GETAZEL | $\begin{aligned} & \text { ALIN } \\ & \text { ALIN } \end{aligned}$ | XXX. XI degrees XXX.DX degrees | |
| 88 | STARAD (PLANEP) | 3 | ALIN | . XXXX unitless | Decimal only |
| 89 | LaNDLAT
 LaNDLONG
 LANDALT
 (N 89 DISP) | 3 | $\begin{aligned} & \text { ALIN } \\ & \text { ALIN } \\ & \text { ALIN } \end{aligned}$ | XX.XXX degrees
 XX. XXX degrees
 XXZ.IX nautical miles | Decimal only |
| 90 | RANGE
 RRATE
 RTHETA
 (R36) | 3 | $\begin{aligned} & \text { EXVB } \\ & \text { EIVB } \\ & \text { EXVB } \end{aligned}$ | XXX. XX nautical miles XXXX.X fps XXX. XX degrees | Decimal only |
| 91 | $\begin{aligned} & \text { P21ALT } \\ & \text { P21VEL } \\ & \text { P21GAM } \end{aligned}$ | 3 | $\begin{aligned} & \text { RNAV } \\ & \text { RNAV } \\ & \text { RNAV } \end{aligned}$ | XXXXXXB. nautical miles XXXXX. ft/sec
 DXX.XI degrees | |
| 92 | (none)
 THRDISP.
 HDOTDISP
 HCALC1
 (none) | 3 | DESC SERV DESC | coxxX. percent
 DKXX.X fps
 XXXXX. feet | |
| 93 | $\begin{aligned} & \text { OGC } \\ & \text { IGC } \\ & \text { MGC } \\ & \text { (IMUFTNEK, } \end{aligned}$ | $\begin{gathered} 3 \\ \mathrm{x}, \mathrm{R} 55 \end{gathered}$ | $\begin{aligned} & \text { COOR } \\ & \text { COOR } \\ & \text { COOR } \\ & \text { INITBY }) \end{aligned}$ | XX. XXX degrees XX. XXX degrees XX. XXX degrees | - |
| 94 | spare | | | | |
| 95 | spare | | | | |
| 96 | spare | | | | |

| Noun | Tag | Comp. | Def. | Decimal Display | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 97 | DSPTEM10 | 3 | DATA | CoxXX. unitless | |
| | DSPTEM1 1 | | DATA | XXXXX. unitless | |
| | $\begin{aligned} & \text { DSPTEM1 } \\ & \text { (none) } 2 \end{aligned}$ | | DATA | XXXXX. unitless | |
| 98 | DSPIEM2 0 | 3 | DATA | XXXXX. unitless | |
| | TSPTHM2 | | DATA | . XXXXX unitless | |
| | $\begin{aligned} & \text { DSPIEMR } \\ & (\text { SHOW }) \end{aligned}$ | | DATA | XXXXX. unitless | |
| 99 | WWPOS | 3 | RNAV | XXXXX. feet | Decimal |
| | WWVEL | | RNAV | XXXX. X fps | |
| | WWBIAS | | RNAV | XX. XXX radians | |
| | (V67CALL, | GOTOPO | H - i | $G O T O P O O H$, the noun | |

Alarm Codes

All alarm codes are listed in octal. The names of the "Routines" where each code is generated refer to the titles as they appear in this document.

| Alarm | Routines | |
| :---: | :---: | :---: |
| 00107 | L | YMKRUPT |
| | L | SURFAGAN |
| 00111 | L | MARKCHEX |
| 00112 | L | MARKRUPT |
| 00113 | L | SOMEKEY |
| 00114 | L | YMKRUPT |
| 00115 | L | MARKRUPT |
| 00206 | L | IMUZERO |
| 00207 | L | IMUMON |
| 00210 | L | IMUCHK |
| | L | RO2BOTH |
| | L | IMUZERO |
| 00211 | L | COARS2 |
| 00212 | L | PIPFREE |
| | L | C33TEST |
| 00213 | L | TNONTEST |
| 00214 | L | IMIMMON |
| 00217 | L | CURTAINS |
| 00220 | L | AGSINIT |
| | L | RO2BOTH |
| 00401 | L | KaLCMan3 |
| | L | CALCGA |
| | L | DCMCL |
| 00402 | L | NOATTCNT |
| 00404 | D | R59ALM |
| 00405 | D | R51 |
| 00421 | L | WMATEND |
| 00501 | P | R23LEM |
| 00502 | L | RRDESNB |
| 00503 | L | RRDESK2 |
| | P | R21LEM |
| | P | R2ILEMI |
| 00510 | L | RRZERO |
| 00511 | L | MUNRETRN |
| 00514 | P | P20LEMB7 |
| 00515 | L | RRCDUCHK |
| 00520 | L | RADAREAD |

| Alarm | Routines | | Simificance |
| :---: | :---: | :---: | :---: |
| 00521 | L | RADAREAD | No data good while reading radar |
| | L | RESAMPLE | |
| 00522 | L | DORSAMP | LR position change during LR reading |
| 00523 | L | LRP2COMM | LR position 2 not achieved in 23 seconds |
| | P | POSALARM | |
| 00525 | P | R22LEM | Actual RR LOS differs from computed LOS by more than 3° |
| 00526 | P | P20LEM | Range greater than 400 nautical miles |
| | P | CSMINT | |
| 00527 | L | LRS24.1 | LOS not in mode limits |
| 00530 | P | 60T IMES | LOS not in coverage (P22) less than 10 minutes from now |
| 00600 | D | CIRCL | Imaginary roots on first iteration of CSI solution |
| 00601 | D | CSI/SOL | Projected perigee altitude after CSI less than minimum |
| 00602 | D | CSI/SOL | Projected perigee altitude after CDH less than minimum |
| 03603 | D | CSI/SOL | Time between CSI and CDH less than minimum |
| 00.504 | D | CSI/SOL | Time between CDH and TPI less than minimum |
| | D | CIREL | |
| 00605 | D | CSI/Bl | Too many iterations |
| 03606 | D | CSI/B2 | Projected DELVCSI exceeds maximum |
| 00611 | D | INTLOOP | No TPI ignition time solution for given elevation |
| | D | P33/P73B | angle |
| 00701 | D | DSPOPTN | Illegal option code was selected |
| 00777 | L | SETISSN | ISS warning caused by PIPA fail |
| 01102 | L | PRERRORS | AGC self test error |
| 01105 | L | DNTMFAST | Downlink too fast |
| 01106 | L | UPTMFAST | Uplink too fast |
| 01107 | L | GOPROG3 | Phase table discrepancy; restart failure; causes fresh start. |
| 01301 | L | ARCSUB | Arcsin or arccosine input too large |
| 01406 | L | 1406ALM | Bad return from ROOTPSRS routine during descent guidance |
| 01407 | L | VGAIN* | VG increasing |
| 01410 | L | EXVERT | Unintentional overflow in descent (P63 or P64) guidance |
| 01412 | L | EXGSUB | Calculation of descent ignition time not converging |
| 01520 | L | V37 | Verb 37 not permitted at this time |
| 01600 | L | SOMEERRR | Overflow in drift test |
| 01601 | L | SOMERR2 | Bad IMU torque |
| 01703 | L | MIDTOAVI | Insufficient time remaining before scheduled |
| | L | CKMID2 | ignition |
| 01706 | D | P40ALM | Incorrect program requested for vehicle configuration |
| 02001 | L | TRYUORV | Jet failures have disabled Y-Z translation |
| 02002 | L | +XORULGE | Jet failures have disabled X translation |
| 02003 | L | SELECTP | Jet failures have disabled P rotation |
| 02004 | L | FAILOOP | Jet failures have disabled U-V rotation |
| 03777 | L | SETISSW | ISS warning caused by ICDU fail |
| 04777 | L | SETISSW | ISS warning caused by ICDU and PIPA fail |
| 07777 | L | SETISSW | ISS warning caused by IMU fail |

L Alarm lights "Program Caution" light and the code is stored in noun 09 (which is on telemetry)

D Alarm does all of "L" plus the alarm code is displayed as part of program logic

P Alarm does all of "D" functions except with a priority display.
If the first number is a 3 in the code, the alarm does all of "L" functions plus a "BAILOUT" or software restart.

If the first number is a 2 in the code, the alarm does all of "L" functions plus a "POODOO" which terminates all program activity.

| Checklist | | |
| :---: | :---: | :---: |
| Code | Routine | Meaning |
| 13 | P52D | Key in Normal Coarse Align or Gyro Torque Coarse Align
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Do Normal Coarse Align; "REGCOARS"
 Enter or Resequence: Do Gyro Torque Coarse Align |
| | | |
| | | |
| 14 | P57P0ST | Key in Fine Alignment Option
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Align LM based on keyed in option ("ATTCHK") |
| | | |
| | | |
| | | Enter or Resequence: Determine LM's position from gravity vector if option 2 alignment |
| | R 51 K | Key in Fine Alignment Option
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Check alignment by recycling through Routine 51 |
| | | |
| | | |
| | | Enter or Resequence: Exit Routine 51 |
| | ASTNRET | Key in Fine Alignment Option
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Check alignment by performing Routine 51 and continuing
 Enter or Resequence: Continue without check |
| | | |
| | | |
| | | |
| 15 | P51D | Perform Celestial Body Acquisition; Key in Proceed Option
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Continue to marking proceed
 Enter or Resequence: Perform Coarse Aligh to zero IMU; Then redisplay code 15 |
| | | |
| | | |
| | | |
| | R51 | Perform Celestial Body Acquisition; Key in Proceed Option
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Continue with"R51"
 Enter or Resequence: Proceed to "R51E"
 (maneuver LM and mark) |
| | | |
| | | |
| | | |
| 62 | P06 | Switch AGC Power down; Enter standby mode |

| Checklist | | |
| :---: | :---: | :---: |
| Code | Routine | Meaning |
| 201 | R04X | Switch RR to automatic tracking mode
 Terminate: Exit Routine 04
 Proceed: Continue with Routine 04 (after checking that RR is switched to auto mode)
 Enter or Resequence: Repeat checklist request |
| | P20LEMB7 | Switch RR to automatic tracking mode
 Terminate: Exit Program 20 or 22
 Proceed: Continue Program 20 or 22
 Enter or Resequence: Perform "R23LEM" (manual acquisition monitor) if not on lunar surface; then continue Program 20 |
| 203 | PLOAUTO | Switch Control to PGNCS; switch DAP to AUTO; switch Throttle Control to Auto (if descent)
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Continue present program if switches are properly set
 Enter or Resequence: Continue present program regardless of switch setting |
| 205 | R23LEM | Perform Manual Acquisition of CSM with RR
 Terminate: Exit Program 20
 Proceed: Continue in Routine 23
 Enter or Resequence: Perform Automatic Maneuver; then continue in Routine 23 |
| 500 | ASTNRET | Switch LR antenna to position 1
 Terminate: Proceed to "GOTOPOOH"
 Proceed: Initialize Landing Radar Control ("SETPOS1"), if LR is in position 1 and continue
 Enter or Resequence: Initialize Landing Radar Control ("SETPOS1") and continue regardless of Landing Radar Position |

$$
\text { W - } 20
$$

This is a list of the option codes displayed in R1 in conjunction with a VO4NO6 (OPTION1) or VO4N12 (OPTIONX ${ }_{0}$) to request the astronaut to load into R2 the option he desires for program LUMINARY (OPTION2 or OPTIONX, respectively). In the case of option code 10 in R1, an OPTION3 is also defined as a flagword indicator which is set by the program and loaded into R3. VO5 is used in this case.

| Option Code R1 | Purpose | Input of R2 | Routine | Option
 Code
 Types |
| :---: | :---: | :---: | :---: | :---: |
| 00001 | Specify IMU | 1- Preferred Attitude | P52B | R1-OPTION1 |
| | Orientation | 2- Nominal Attitude
 3- Attitude specified by present REFSMMAT
 4- Landing Site Attitude | P570PT | R2-OPTION2 |
| 00002 | Specify Vehicle | $\begin{aligned} & \text { 1- This Vehicle (LM) } \\ & \text { 2- Other Vehicle (CSM) } \end{aligned}$ | PROG21 | R1-OPTION1 R2-OPTION2 |
| | | | V82CALL | $\begin{aligned} & \text { R1-OPTIONX } \\ & \text { R2-OPTIONX }_{1} \end{aligned}$ |
| 00003 | Specify
 Tracking
 Attitude | ```1- Point. Z-axis (preferred) 2- Point X-axis``` | V89CALL | $\begin{aligned} & \mathrm{R}_{1-O P T I O N X}^{0} \\ & \text { R2-OPTIONX } \end{aligned}$ |
| 00004 | Specify Radar | $\begin{aligned} & \text { 1- RR (Rendezvous Radar) } \\ & \text { 2- LR (Landing Radar) } \end{aligned}$ | B042 | R1-OPTIONX R2-OPTIONX |
| 00006 | Specify RRDoasse Align Option | 1- Lockton
 2- Gentiauous Designate | VBCOARK: | R1-OPTIIONX
 R2-OPTIONX |
| , | ANecriy fr Cuarse hiign Fitur | - Luk-or
 2- Cun:1nu. us Designate | 1 $\quad 1 / \mathrm{AFH}$ | $K_{2}=$ |

| Priority | Job | Routine Where Priority Established (or changed) |
| :---: | :---: | :---: |
| 35 | NBDONLY | SVCT3 |
| 33 | MAKEPLAY | MAKEPLAY (change) |
| 32 | HIGATJOB | MINRETRN |
| it ${ }^{\text {c }}$ | JAMTERM | NVDSP |
| | LRVJOB | VALTCHK |
| | LRHJOB | R10,R11 |
| 31 | TTFINCR | TTF INCR (change) |
| . 30 | TSTLTS 3 | TSTLTS2 |
| | MONDO | MONREQ |
| | CHARIN | KEYRUUPT1 UPRUPT |
| | UPJOB | UPSTORE |
| | PROCKEY | PROCEEDE |
| | DSPMMJOB | TSTLTS 3 REDO UPUPDATE UPOUT4 V37XEQ GOPROG3 ENDTEST1 P65START STARTP66 STARTP64 |
| 27 | 1/ACCSET | DAP IDLER |
| | 1/ACCJOB | VOPENED RCSMONIT SETMINDB SETMAXDB PFLITEDB |
| | N49DSP | R22LEM96 |
| | CLOKJOB | CLOKTASK |
| 26 | DODES | MOREDES |
| | PROG20 | PROG20 (chasi. |
| | P20LEMB | P20LEMB (change) |
| | P20LEMC3 | P20LEMD1 |
| | R22LEM42 | P20LEMC1 |
| | PROG25 | PROG25 (chan $=$ =, |
| | R61C+L01 | R61C+L06 |
| | R29RDJ0B | R29PEAD |
| | NEWDELHI | UPDTCALU |
| | R21LEM10 | R21LEM9 |
| | RELINUS | RELINUS (change) |
| 25 | CNDEx | TICKTEST |
| | DORSAMP | RADSAMP |
| | DATGDCHK | CALLDGCH |
| | COMFAII | DVMON |
| 23 | POSGOOD | POSGOOD (change) |
| 22 | REDO | SYSTEST |
| | NORMLIZE | PREREAD |
| | GETRVN | GETRVN (change) |
| | RODCOMP | RODTASK |

[^0]| Priority | Job | Routine Where Priority Established | (or changed) |
| :---: | :---: | :---: | :---: |
| 21 | R29REMOJ | R29 | |
| | R29D0DES | BEGDES29 | |
| | 1/GYRO | 1/PIPA | |
| | LASTBIAS | PREREAD | |
| 20 | ALFLT | ALLOOP | |
| | PIPJOBB | PIPATASK | |
| | RRDESK2 | VBCOARK | |
| | S40.13 | PLOSJUNK | |
| | P47B0DY | STARTP47 | |
| | SERVICER | READACCS | |
| | TTF INCR | TTF INCR (change) | |
| | POSTAND | P06 | |
| 17 | CUTOFF | GOCUTOFF ENGOFFI | |
| | P41BLANK | TIG-35 | |
| | TIG-30A | TIG-30.1 | |
| | UPTHROT | UPTHROT (change) | |
| | | -ッ, | |
| 16 | TIGNOW | TIGTASK | |
| 15 | PLAYJUM1 | NORMRET | |
| | CHANGEVB | REMARK | |
| | GETDAT | ADTMARK | |
| 14 | P25LEM 1 | RELINUS P25LEM1 V37RET | |
| 13 | ADDGRAV | GRABGRAV | |
| | ASTNRET | CLOKJOB | |
| | P76 | V37XEQ | |
| | P75 | V37XEQ | |
| | P74 | V37XEQ | |
| | P73 | V37XEQ | |
| | P72 | V37XEQ | |
| | P35 | V37XEQ | |
| | P34 | V37XEQ | |
| | P33. | V37XEQ | |
| | P32 | V37XEQ | |
| | P30 | V37XEQ | |
| | LANDJUNK | V37XEQ | |
| | P63LM | V37XEQ | |
| | P57 | V37XEQ | |
| | PROG52 | V37XEQ | |
| | P51 | V37XEQ | |

W-24

Inder of Routings

This index includes, in addition to the list of all routines described and their locations in this document, ailist of each place the routine is "referenced." This includes any reference to a routine by name, for example, by means of "Porform", "Proceed to", Mistablish", checking of routine address, etc. It does not inclide, as a reference, routines that flow into (are followed directly by) another routine.
+ON DSKI-10 INTOUT DSPSIGN
+XORULGR DAPA-19 RCS
-ON DSKI-10 DSPSIGN
*MATER . BURN-10 V99RECYC
*PROCESD BURN-5 V99RECYC

1/ACCJOB DAPB-1 PFLITEDB RCSMONIT SETMAXDB SETMINDB VOPFINED
$1 /$ ACCONT DAPB-4 1/ACCS
1/ACCRET DAPB-11 DOCKTEST
1/ACCS DAPB-1 1/ACCJOB SERVOUT
1/ACCSET DAPB-1 DAPIDLER
1/GYRO IMOC-1 1/PIPA NBD2
1/PIPA IMUC-2 ADDGRAV ALPLT SERVICER
1/WLOOP CONC-II 1/WLOOP
IIDSPIN DSKE-13 -ON DSP2DEC SGACOM +ON
1406ALM DESC-17 TTF/8CL
1406P00 DESC-17, TTF/8CL
1STAR ALIN-30 ASTAR P570PT3
1STO2S MATX-8 INCAZ

| 1 TO2SUB | MATX-8 | 1ST02S 2T1ST02S V1ST02S |
| :---: | :---: | :---: |
| 2BLANK | DSKY-13 | 5BLANK DSPMMJOB MMCHANG NOUN REQMM |
| 2INTOUT | DATA-14 | DECDSP3 |
| 2STARS | ALIN-30 | P570PT2 |
| 2V1ST02S | MATX-8 | |
| 360-CDUO | DATA-14 | DECDSP3 |
| 5BLANK | DSKY-12 | 2INTOUT BLANKSUB CLEAR REQDATZ |
| 60TIMES | RNAV-15 | 60TIMES |
| 79DISP | ALIN-32 | INCAZ |
| 8192AUG | IMUC-12 | 8192AUG STRIGYR2 |
| A-PCHK | ORBI-16 | CKMID2 TESTLOOP |
| ABCLOAD | DATA-19 | VERBFAN |
| ABLOAD | DATA-19 | VERBFAN |
| ABORT | PGSR-13 | |
| ABORTALM | ASCT-7 | P70 P71 |
| ABRTIGN | BURN-5 | IGNITION |
| ABRTJASK | ASCT-3 | P71A |
| ACCOMP | ORBI-8 | NBRANCH NEXTCOL |
| ACCTHERE | DAPB-7 | BOTHAXES |
| ACDT+C12 | DAPA-31 | DONEYET2 PAXFILT |
| ADDGRAV | ALIN-35 | GRABGRAV |
| ADRS+1 | TEST-8 | ADRSCHK |
| ADRSCHK | TEST-7 | COMADRS |

| ADTIME | TRGL-8 | ELCALC |
| :---: | :---: | :---: |
| advan | MATX-10 | checems |
| ADTANCE | TRGX-7 | P32/P72B P33/P73B |
| AFCCALC1 | DESC-7 | VERTGUID |
| AFTERTJ | DAPA-24 | BACEHAND MINRTN TJLAW4 |
| AGSDISPK | EXVB-12 | LGSDISPR |
| AGSINIT | EXVB-12 | V47txact |
| agsvealc | EXVB-12 | AGSDISPK |
| ALARM | PGSR-11 | INTLOOP P33/P73B CALCGA WMATEND MIDTOAV1 CEMID2 UPTMFAST DNTMFAST PRIOLARM RRDESK2
 LRP2COMM \quad V37 GOPROG3 RADAREAD LRS24. 1 RRCDOCHI RRDESNB RRZERO RESAMPLE SOMEKEY IMKRUPT MARKCHEX R51 DSPOPTN R59ALM SETTSSW IMUZERO COARS2 IMUCHK MARKRUPT KAICMAN3 AGSINIT PIPFREE IMOMON TNONTEST C33TEST RO2BOTH VGAIN* 1406ALM MUNRETRN PLOALM DCMCL NOATTCNT EXGSUB STEER? TRYUORV SELECTP +XORULGE P66 FALLOOP SOMEERRR SOMERR2 SURFAGAN DORSAMP |
| ALARM1 | PGSR-14 | arcsub |
| ALIARM2 | PGSR-11 | BAILOOT BAILOUTY CURTAINS POODOO POODOO1 VARALARM ALARM1 PRERRORS |
| ALFLT | TEST-16 | athoop |
| algortim | DAPA-28. | NEGOSDM |
| SLINTIME | EXVB-6 | GOEXTVB |
| ALLCOAST | DAPA-32 | SEUDOPOO COASTSET GOPOST GOCUTOFF |
| ALLTOOP | TEST-15 | ESTIMS ALLOOP |
| ALM/END | EXVB-2 | GOEXIVB TESTACT VBZERO IMUFINEK IMUATTCK CREWMANU R77 V89PERF GOSHOSUM VBCOARK SISTEST RDRUSECK ATTACHED VBTSTLIS |

X-3

| ALMCYCLE | DATA-17 | TESTNN ABLOAD ABCLOAD PUTCOM PUTNORM PUTDCSF2 BINROUND DPINSF+2 DEGINSF HMSIN MMCHANG |
| :---: | :---: | :---: |
| ALMXIT | TRGX-15 | CIRCL SCNDSOL |
| ALOAD | DATA-18 | VERBFAN |
| ALOADED | ORBI-4 | INTEGRV |
| ALTDSPLY | DAPA-3 | CFARBITS |
| ALTOUT1 | SERV-18 | LANDISP |
| ALTROUT1 | SERV-17 | LANDISP |
| AOTMARK | ALIN-3 | P51C R51E R590UT |
| AOTSTALL | ALIN-3 | P51C R51E R590UT |
| APSIDES | CONC-2 | PERIAPO |
| ARCCOS | MATX-3 | |
| ARCSIN | MATX-3 | |
| ARCSUB | MATX-3 | ARCCOS ARCSIN |
| ARCTAN | COOR-5 | LAT-LONG RANGEBQ BALLANGS |
| ARCTRGSP | BURN-24 | NB2CDUSP |
| ARCTRIG | COOR-6 | CALCGA CALCGTA RRANGLES RRLOSDSP |
| AROUTISF | DATA-27 | DECDSP3 |
| ARTOUTSF | DATA-10 | DECDSP3 LRPOSOUT |
| ASCENT | ASCT-7 | ATMAG P12LM |
| ASCTERM | ASCT-11 | CMPONENT |
| ASCTERM1 | ASCT-11 | ATMAG |
| ASTAR | ALIN-33 | R59RET |
| AStNRET | DESC-3 | CLOKJOB |
| ASTOK | RNAV-37 | R22LEM96 |
| ATMAG | ASCT-7 | UPTHROT ABRTIGN |
| | | - 4 |

| BINROUND | DATA-24 | PUTDCSF2 |
| :---: | :---: | :---: |
| BITSOFF1 | DATA-21 | CHANBITS |
| BITSOFF2 | DATA-21 | CHANBITS |
| BLANKDSP | DATA-2 | NVSUB |
| BLANKET | DINT-6 | CHKIINUS RO42 ISPRRLOS R21DISP VBCOARK SBANDEX DAPDATA1 DAPDATA2 TRIMDONE |
| BLANKSUB | DSKY-11 | PASTEVB NV50DSP |
| BLOAD | DATA-18 | VERBFAN |
| BOTHAXES | DAPB-5 | STMIN- |
| BOTHPAD | EXVB-18 | V82G0FF1 |
| BOTHSGN | DSKI-5 | NEGSGN POSGN |
| BRNCHCTR | CONC-5 | KEPLOOP |
| BURNBABY | BURN-3 | P12RET P40IN P41LM ASTNRET |
| BYLMATT | ALIN-26 | DSPOPTN |
| Cl3STALL | RADR-25 | WOZERO T6JOBCHK JTLST ZEROENBL STARTP64 ERROR DODOWNTM REDESMON Cl3STALL' TSTLTS 3 VBTSTLTS |
| C33TEST | IMUC-7 | TNONTEST |
| CA+ECE | IMUC-9 | GLOCKMON |
| CAGESUB | IMUC-8 | TNONTEST |
| CAGESUB1 | IMUC-8 | IMUMON |
| CAGESUB2 | IMUC-8 | TNONTEST |
| CAL53A | ALIN-18 | REGCOARS |
| CALCGA | COOR-6 | REDO S52.2 INITBY GVDETER |
| CALCGRAV | SERV-6 | NORMLIZE CALCRVG |
| CALCGTA | COOR-7 | GYCOARS R55 INITBY |
| CALCN83 | BURN-13 | STARTP47 |

| CALCN85 | BURN-12 | ULLGNOT POSTBURN |
| :---: | :---: | :---: |
| CALCPERR | DAPA-16 | MOREIDLE PURGENCT |
| CALCRGVG | DESC-6 | EXGSUB TIFINCR |
| CALCRVG | SERV-5 | AVERAGEG |
| CALCSMSC | COOR-1 | INITBY P570PTO P570PT1 R56 REFMF S52.2 |
| CALCTPF | ETVB-22 | SR30. 1 |
| CALCTPER | ExVB-22 | SR30.1 |
| CALLDGCH | RNAV-30 | R24END R24LEM3 LRS24.1 |
| CANV37 | PGSR-5 | V37 V37RET |
| CCSHOLE | PGSR-15 | EJSCAN SPECTEST TGJOBCEK PIPJOBB |
| $C D * T R * G S$ | COOR-1 | RANGEBQ READRDOT AVESTAR INITBY JUSTOA BALLAANGS SETPOS |
| CDEMMR | TRGX-9 | P33/P73B CIRCL |
| CDULOGIC | MaTX-7 | |
| CDUTODCM | ATIM-9 | KALCMAN3 VECPOINT |
| CDUTRIG | COOR-1 | COMPDISP DODES R61C+ID2 RRDESSM SBANDANT INITBY ADDGRAV P570PTO P570PT1 R56 R59 S52.2 S41. 1 REFMF P57POST RODCOMP P570PT3 |
| cGCalc | DESC-8 | AFCCALCT Bevenic |
| CHANBITS | DATA-20 | ABCLOAD |
| CHaNGI | MATX-13 | DORROUT ADRSCHK V82GON |
| CHANG2 | MATX-14 | |
| CHANGEVB | ALIN-9 | REMMARK |
| CHANJOB4 | MAIX-14 | ADVAN CHANGT EJSCAN |
| CHARALRM | DSKI-2 | CHARIN PROCKEY |
| CHARIN | DSKY-1 | KEYRUPT1 UPRUPT |
| Chiceza | [1535-14 | PIPICEE PIPJORB CEECEA |

$$
x-7
$$

| CHECKNJ | TEST-3 | SELFCHK ERASLOOP ADRSCHK |
| :---: | :---: | :---: |
| CHEKBITS | DAPA-3 | DAPIDLER PAXIS |
| CHEKSTIK | DAPA-21 | TSNEXTS |
| CHKLINUS | ATTM-12 | TOBALLA REDOMANC |
| CHKSDATA | ALIN-13 | P51C R51E SURFLINE |
| CHKVISFZ | DAPA-11 | SUPERJOB |
| CIRCL | TRGX-12 | CSI/B2 |
| CKMID2 | ORBI-2.1 | ENDSTATE. |
| CLEAR | DSKY-6 | CHARIN |
| CLEANDSP | DINT-3 | P41BLANK V99RECYC |
| CLOAD | DATA-18 | VERBFAN |
| CLOCPLAY | DINT-18 | CLOKJOB V99RECYC |
| CLOKJOB | BURN-9 | CLOKTASK |
| CLOKTASK | BURN-9 | CLOKTASK COMPTGO STCLOK3 |
| CLOSEOUT | DAPA-30 | BACKHAND TJLAW4 FEEDBACK XTRANS FAILOOP DOROTAT |
| CLUPDATE | TRGX-7 | VN1645 |
| CMPONENT | ASCT-9 | MAINENG |
| CNTRLOOP | TEST-5 | CNTRLOOP |
| COARS | IMUC-15 | IMUCOARS |
| COARS2 | IMUC-15 | COARS2 |
| COARSE | ALIN-2 | CAL53A INITBY LUNG P51 COARSE |
| COASTSET | BURN-8 | ENGINOF2 |
| COMADRS | TEST-7 | ADRS+1 NXTBNK |
| COMFAIL | BURN-11 | DVMON |
| COMFAIL2 | BURN-12 | CLOKJOB |

$$
x-8
$$

| COMFAIL 3 | BURE-12 | CLOKJOB | |
| :---: | :---: | :---: | :---: |
| COMFAILL | BURN-12 | CLOKJOB | |
| COMMEQS | DAPB-22 | 1/ACCS | |
| COMMINIT | ASCT-6 | GOABORT | |
| COMMNOUT | CONC-2 | TIMERAD | |
| COMPDISP | ExvB-25 | GETRVN | |
| COMPTGO | BURN-9 | VN1645 | |
| CONST | _SCT-9 | MAINENG | |
| CONTMANU | ATTM-7 | NEWANGL | |
| CONTSERV | SERV-11 | UPDATCHK VALTCEK MUNRETRN | |
| COPYCYC | SERV-4 | NORMLIZE AVERAGEG | |
| COPYCYC1 | SERV-11 | MUNRETRN | |
| CORFOUND | MATX-12 | NOVAC3 | |
| COSINE | MATX-1 | | |
| CREWMANU | EXVB-6 | GOEXITVB | |
| CSI/A | TRGX-10 | P32/P72B | |
| CSI/B | TRGE-10 | SCNDSOL | |
| CSI/B1 | TRGX-10 | CIRCL FRSTPAS | |
| CSI/B2 | TRGX-10 | FIFTYFPS | |
| CSI/SOL | TRGX-15 | CIRCL | |
| CSMCONIC | QRBI-3 | V89RECL LRS24.1 CSMINT | |
| CSMINT | RNAV-8 | LPS20. 1 | |
| CSMPREC | ORBI-2 | P41SPOT P76 | DOCMBASE R36 |
| CSMVEC | EXVB-10 | GOEXTVB | |

$$
x-9
$$

| CTRCHECK | DAPB-18 | POSTHRST |
| :--- | :--- | :--- |
| CURTAINS | PGSR-12 | P51C COARSE GYCOARS R51E INITBY R590UT R55 |
| CUTOFF | ASCT-12 | ENGOFF1 GOCUTOFF |

DAPATIER EXVB-7 GOEXIVB
DAPDATA1 DAPB-19 DAPDATA1 DAPDISP
DAPDATA2 DAPB-20 DAPDATAZ
DAPDISP EXVB-6 GOEXTVB
DAPIDLER DAPA-3 STARTSBI MOREIDIE
DAPT4S DAPA-32 PROCEEDE
DATGDCHK RNAV-30 CALLDGCH
DCMCL BURN-21 FINDCDUW
DCMTOCDU ATTM-9 FINDGIMB NEWANGL
DECDSP DATA-9 VERBFAN
DECDSP3 DATA-10
DECEND DSKY-3 NOM
DEGINSF DATA-24 PUTDCSF2
DEGOUTSF DATA-11 DECDSP3 360-CDUO
DELAYJOB MATX-18
DELCOMP ATTM-9 VECPOINT WCALC
DELLOOP MATX-18 DELLOOP
DELTIME CONG-12 COMMNOUT KEPLOOP LAMBLOOP
DERCLOOP DESC-17 DERCLOOP
DESCBITS DESC-17 SOMEKEY
DESRETRN RADR-7 LUNDESCH RRDESSM

$$
x-10
$$

| DETENTCK | DAPA-13 | TSNEXTP |
| :---: | :---: | :---: |
| DGCHECK | RUDR-21 | LRHEIGHT RMDAREAD RENDRAD |
| DIFEQ +2 | ORBI-12 | NBRANCH |
| DISPCHNG | BURN-5 | TIG-5 PLOSJUNK |
| DISPEXIT | DESC-9 | P66 P66Hz , STEER? 1406ALM RODCOMP LUNLAND |
| DISPLAYE | TRGL-3 | P34 P74 INTU00P |
| DISPN5X | EXVB-24 | R31CALL |
| DISPRSET | SERV-18 | LANDISP SPEEDRUN |
| DLY2 | MATX-20 | DELLOOP WAITLIST VARDELAY |
| DNDUMP | TELT- 5 | DNDUMP1 |
| DNDUMP1 | TKLE-5 | DNDUMPI3 |
| DNDUMP2 | TELE- | DNDUMP1 DNDUMP |
| DNDUMPI | THLE-5 | DNDUMP DNEDUMP |
| DNDUMPI3 | TELE-5 | DNTDUNPI |
| DNEDUMP | EXVB-9 | GORITVB |
| DNPHASE1 | TELE-2 | STARTSUB DNDUMP DNPHASE2 |
| DNPHASE2 | THLE-2 | DNPHASE1 |
| DNTMFAST | TKLE-1 | C33TEST |
| DOCKED | DAPB-2 | 1/ACCS |
| DOCKTEST | DAPB-4 | SPSCONT |
| DOCMBASE | EXVB-24 | V83CALL |
| DODES | RADR-10 | MOREDES |
| DODNCHAN | TETE-2 | NEXTINSL DNPHASE2 |
| DODNPTR | TELE-3 | NEXTINSL DNPHASE2 |

$$
\text { X - } 11
$$

| DODOWNTM | TIILT-1 | Called via progran interrupt \#8 |
| :---: | :---: | :---: |
| DOFSTART | PGSR-1 | LIGHTSET |
| DOFSTRT1 | PGSR-1 | GOPROG3 GOPROG |
| DOIT | DESC-15 | THROTTLE |
| DONEYET2 | DAPA-32 | TIMQGMBL |
| DOROTAT | DAPA-24 | AFTERTJ |
| DORREPOS | RADR-3 | RRGIMON |
| DORROUT | RADR-12 | DODES |
| DORSAMP | RADR-16 | RADSAMP |
| DOT6RUPT | DAPA-1 | Called via program interrupt \#l |
| DOW. . | ORBI-14 | INTGRATE NBRANCH |
| DPDAT1 | DAPB-19 | DAPDATAI |
| DPINSF+2 | DATA-24 | PUTDCSF2 |
| DPOUT | DATA-11 | DECDSP3 |
| DSP2DEC | DSKY-11 | DSPDPDEC |
| DSP68 | ETVB-30 | WAIT68 LRON |
| DSPA | DATA-7 | DSPAB VERBFAN |
| DSPAB | DATA-8 | VERBFAN DSPABC |

DSPABC DATA-8 VERBFAN

DSPALARM DATA-5 ENTER NVSUB TESTNN MIXNOUN DSPA DSPB DSPC DSPAB DSPABC DECDSP3 DSPDPDEC BLOAD ABLOAD abcload putdcsfz verbfan cload

DSPB DATA-7 VERBFAN
DSPC DATA-7 VERBFAN
DSPCOM2 DATA-8 DSPA DSPC DSPB
DSPDC2NR DSKY-11 M/SOUT

| DSPDCEND | DATA-14 | DECDSP3 ARTOUTSF DEGOUTSF M/SOUT 2INTOUT |
| :---: | :---: | :---: |
| | | RRANGOUT RRDOTOUT AROUTISF |
| DSPDCPUT | DATA-9 | DSPDCEND |
| DSPDCWD1 | DSKY-9 | DSPDCWD1 DSPDC2NR DSPDECVN DSP2DEC |
| DSPDECVN | DSKY-11 | 2INTOUT UPDATNN UPDAIVB DSPMMJOB |
| DSPDECWD | DSKY-9 | HMSOUT DSPDCEND |
| DSPDPDEC | DATA-15 | VERBFAN |
| DSPFMEM | DATA-26 | VERBFAN |
| DSPIN | DSKY-13 | NUM WDAGAIN DSPDCWD1 5BLANK M/SOUT |
| DSPIN1 | DSKY-13 | 11DSPIN DSPIN |
| DSPMMJOB | DATA-17 | STARTP66 UPOUT4 STARTP64 P65START REDO TSTLTS 3 ENDTEST1 UPUPDATE V37XEQ GOPROG3 |
| DSPOCTWD | DSKY-9 | TESTNN DSPCOM2 DSPFMEM |
| DSPOPTN | ALIN-26 | DSPOPTN |
| DSPRRLLOS | RNAV-43 | VERB85 |
| DSPSCAN | INTR-4 | T4RUPT QUIKDSP DSPSCAN |
| DSPSIGN | DSKY-10 | DSPDECWD DSPDC2NR DSP2DEC |
| DSPV6N79 | ALIN-11 | YMKRUPT CHANGEVB DSPV6N79 SURFAGAN |
| DUMMYJB2 | MATX-10 | DOFSTRT1 ENDRSTRT EJSCAN |
| DVMON | SERV-3 | AVERAGEG |
| DXCOMP | CONC-4 | PERIODCH |
| DYNMDISP | BURN-12 | P41LM DYNMDISP |

$$
x-13
$$

| EARTHMX | COOR-2 | LAT-LONG LALOTORV |
| :---: | :---: | :---: |
| EARTHR* | TEST-15 | PIPACHK PIPJOBB SLEEPIE |
| EJSCAN | MATX-16 | PRIOCHNG JOBSLEEP EJSCAN |
| ELCALC | TRGL-5 | ADTIME |
| ENDEXT | DINT-17 | R62DISP V89CALL V89RECL AVEIT RO4END V67CALL RRLOSDSP VBCOARK IMUFINEK IMUATTCK ALINTIME V73UPDAT AGSINIT AGSDISPK AGSVCALC UPOUT4 COMPDISP DAPDATA2 DAPDATA1 TRIMDONE SDISPLAY WAIT68 SBANDEX ENDTEST1 ENDR03 V82CALL TICKTEST V82GON2 R36 |
| ENDIMU | IMUC-18 | IMUZERO2 COARS2 IMUFINED |
| ENDINT | ORBI-2 | Statint1 |
| ENDLRV | SERV-13 | LRVJOB |
| ENDMANU1 | ATTM-2 | TOBALLA R61TEST |
| ENDMANUV | ATTM-2 | |
| ENDOFJOB | MATX-16 | DORROUT LRS24.1 OMEGCALC DATGDCHK
 TESTNN DSPCOM2 HMSOUT DSPDPDEC MONITOR
 ALMCYCLE OKTOPLAY MAKEMARK OKTOCOPY XCHSLEEP NOUN ENTER R6IC+LO6 DSPDCEND |
| ENDP76 | ORBI-25 | P76 |
| ENDPRCHG | MATX-15 | EJSSCAN |
| ENDRADAR | RADR-18 | STDESIG RRZ2 |
| ENDRET | DINT-16 | NORMWAKE MARKWAKE |
| ENDR29RD | RNAV-33 | R29RDJ0B |
| ENDRRD29 | RNAV-33 | R29RDJJOB R29RaNGE |
| ENDRO3 | DAPB-21 | DAPDATA2 |
| ENDRSTRT | PGSR-11 | GOPROG3 |
| ENDSTATE | ORBI-13 | DIFEQ+2 |

| ENDTEST1 | TEST-14 | REDO SHOW SOMEERRR |
| :---: | :---: | :---: |
| ENDTFF | EIVB-23 | CALCTFF |
| ENDTNON | IMUC-10 | TNONTEST ENDTNON |
| ENEMA | PGSR-10 | WHIMPER ABRTJASK |
| ENGINOF1 | BURN-8 | SEUDOPOO |
| ENGINOF2 | BURN-8 | ENGOFF1 |
| ENGINOF3 | BURN-8 | BURNBABY |
| ENGINOF4 | BURN-8 | COMFALL2 |
| ENGINOFF | BURN-7 | ENGOFTSK |
| ENGOFF1 | ASCT-11 | MAINENG |
| ENGOFTSK | BURN-7 | P42IGN STEERING |
| ENTER | DSKY-6 | CHARIN |
| ENTERUV | DAPA-22 | RHCACTIV |
| ENTPASO | DATA-3 | ENTER NVSUB ALMCYCLE |
| ERASCHK | TEST-3 | SELFCHK |
| ERASLOOP | TEST-4 | ERASLOOP |
| ERROR | DSKY-7 | CHARIN |
| ESTIMS | TEST-11 | PIPJOBB GOESTIMS REDO |
| EXBRAK | DESC-8 | CGCALC |
| EXDSPRET | DINT-4 | VBCOARK IMUFINEK IMUATTCK AGSVCALC |
| EXGSUB | DESC-2 | CGCALC |
| EXNORM | DESC-8 | CGCALC |

$$
x-15
$$

| FAILOOP | DAPA-27 | SELCTSUB FAILOOP |
| :--- | :--- | :--- |
| FAZAB3 | RNAV-40 | FAZC |
| FAZC | RNAV-39 | INCORP2 |
| FEEDBACK | DAPA-26 | DOROTAT |
| FETCH2WD | TELE-3 | ENPHASE2 NEXTINSL |
| FIFTYFPS | TRGX-14 | CIRCL |
| FINDCDUW | BURN-20 | ASCTERM STEER? VGAIN* P66HZ |
| FINDGIMB | ATTM-4 | VECPOINT |
| FINDVAC | MATX-11 | |
| FINDVAC2 | MATX-11 | SPVAC |
| FIRSTTME | BURN-18 | RASTEER1 |
| FIXDELAY | MATX-24 | |
| FLASHSUB | DINT-13 | NVDSP NV50DSP |
| FLATOUT | DESC-15 | P63Z00M |
| FRSTPAS | TRGX-14 | CIRCL |
| FXADRS | TEST-7 | ADRS+1 NXTBNK |
| GAMCOMP | ORBI-10 | ACCOMP |
| GEOM | CONC-9 | LAMBERT PARAM |
| GET.LVC | TRGX-15 | S40.1 S40.1B |

$$
x-16
$$

| GET+MGA | TRGX-15 | VN1645 |
| :---: | :---: | :---: |
| GETAZEL | ALIN-21 | R52 |
| GETCADR | MATX-24 | LONGCYCL |
| GETCOMP | DATA-21 | BLOAD CLOAD ABLOAD ABCLOAD PUTNORM PUTCOM |
| GETDAT | ALIN-4 | AOTMARK GETDAT PASTIT |
| GETI | DATA-22 | PUTCOM DEGINSF |
| GETINREL | DSKY-4 | 5BLANK NUM POSGN CLEAR +ON -ON NEGSGN |
| GETLMATT | ALIN-26 | DSPOPTN |
| GETMKS | ALIN-6 | MARKCHEX SURFAGAN OPTAXIS |
| GETRANS | BURN-14 | UPDATEVG |
| GETRVN | HXVB-26 | V83CALL REV83 |
| GETX | CONC-10 | TIMERAD TIMETHET LAMBLOOP |
| GLOCKMON | IMUC-8 | PROCEEDE |
| GOABORT | ASCT-4 | ABRTJASK |
| GOBAQUE | ORBI-12 | GAMCOMP OBLATE ENDSTATE |
| GOCUTOFF | BURN-11 | *ENTER |
| GODSP | DINT-1 | ASCTERM1 |
| GODSPR | DINT-1 | REDOMANC GYCOARS |
| GODSPRET | DINT-1 | P51 P41LM |
| GODSPRS1 | DINT-5 | GODSPR, GOFLASHR GOPERF1R GOPERF2R GOPERF4R REGODSPR REFIASHR GOXDSPR GOXDSPFR GOMARK2R PRIODSPR |
| GOESTIMS | TEST-11 | REDO |
| GOEXTVB | EXVB-1 | VERBFAN |

$$
\mathrm{X}-17
$$

| GOFLASH | DINT-1 | R62DISP V89CALL V89RECL PLANET CHKSDATA DISPLAYE P52B R59 GVDETER R59ALM 79DISP INITBI DSPOPTN VN0611 P34 R55 R52 P52D REDO SHOW ORBCHGO PROG21 REP4OALM P12LM CUTOFF LANDJUNK GOTOPOOH P76 N89DISP GETAZEL P74 INTLOOP S34/35.5 R51 P21VSAVE
 P30 VN0611
 P32/P72F P33 P73 P33/P73B
 P33/P73F VN1 645 ALMXIT NTARGCHK VNO655 |
| :---: | :---: | :---: |
| GOFLASH2 | DINT-5 | GODSP GODSPRET GOFLASH GOPERF1 GOPERF2 GOPERF4 REGODSP REFLASH CLEANDSP GOXDSP EXDSPRET GOXDSPF GOMARK2 GOMARK3 GOMARK4 KLEENEX PRIODSP CLOCPLAY |
| GOFLASHR | DINT-1 | POSTBURN P47BODY |
| GOLOADV | EXVB-6 | GOEXTVB |
| GOMANUR | ATTM-1 | REDOMANC |
| GOMARK2 | DINT-4 | |
| GOMARK2R | DINT-4 | |
| GOMARK3 | DINT-4 | AGSVCALC |
| GOMARK3R | DINT-4 | TRIMDONE WAIT68 |
| GOMARK4 | DINT-5 | PASTIT RO4X |
| GOODMANU | ATTM-8 | NOGO |
| GOODRAD | RADR-22 | LRHEIGHT RADAREAD RENDRAD |
| GOPERF1 | DINT-1 | P51 P52D R51 R51K P57POST P20LEMB7 R23LEM P4OAUTO ASTNRET PO6 |
| GOPERF1R | DINT-2 | |
| GOPERF2 | DINT-2 | |
| GOPERF2R | DINT-2 | TOBALLA R21DSP |
| GOPERF4 | DINT-2 | ORBCHGO PROG21 |
| GOPERF4R | DINT-2 | P52B P570PT |

| GOPOST | BURN-11 | * ENTER |
| :---: | :---: | :---: |
| GOPROG | PGSR-9 | Called via program interrupt \#ll VERB69 |
| GOPROG2 | PGSR-10 | TRMTRACK SEUDOPOO V37RET RESET22 |
| GOBROG2A | PGSR-10 | |
| GOPROG3 | PGSR-10 | GOPROG |
| GOSHOSUM | EXVB-10 | GOEXTVB |
| GOTOPOOH | PGSR-11 | TERMASC P12LM TERMLO STOPCLOK PLOAUTO P21VSAVE P47BODY SERVIDLE ASTNRET P64DISPS LANDJUNK N89DISP ENDP76. P34 P74 INTLOOP DISPLAYE S34/35.5 GETAZEL VERTDISP P30 P570PT KILLAOT P32/P72F P33 P73 P33/P73B P33/P73F VN1645 VN0611 N45PROC ALMXIT NTARGCHK GOPROG3 POSTAND ORBCHGO PROG21 GVDETER DSPOPTN INITBY REPLOALM P57P0ST 79DISP R59ALM R59 R55 R52 R51K R51 REGCOARS P52D P52B CHKSDATA vN0655 R61TEST RO2BOTH P51 P51C IMUCHK |
| GOXDSP | DINT-3 | |
| GOXDSPF | DINT-4 | SDISPLAY VBCOARK IMUFINEK IMUATTCK AGSDISPK OHWELL1 OHWELL2 UPVERIFY V82CALL V82GOFLP V82GON DISPN5X R36 ALINTIME RO4X DSPV6N79 GETDAT V67CALL |
| GOXDSPFR | DINT-4 | - DAPDATA1 DAPDATA2 VBCOARK SBANDEX DSPRRLOS R042 DSP68 |
| GOXDSPR | DINT-3 | |
| GRABGRAV | ALIN-35 | GREED |
| GREED | ALIN-35 | ADDGRAV |
| GTS | DAPA-28 | QRAXIS TRYGTS |
| GTSQRT | DAPA-34 | RSTOFGTS |
| GUILDRET | DESC-4 | IGNALOOP |
| GVDETER | ALIN-33 | BYLMATT GVDETER |
| GYCOARS | ALIN-17 | P52D |
| GYROEXIT | IMUC-13 | STRTGYR2 8192AUG |

HIENERGY CONC-8 LAMBLOOP
HIGATJOB SERV-7 MUNRETRN
HMSIN DATA-25 PUTDCSF2
HMSOUT DATA-11 DECDSP3

| IDLERET3 | DINT-15 | RECALTST |
| :--- | :--- | :--- |
| IFAILOK | IMUC-17 | IMUFINE |
| IGNALOOP | DESC-2 | EXGSUB |
| IGNITION | BURN-5 | *PROCEED TIG-0 |
| IMUATTCK | EXVB-5 | GOEXTVB |
| IMUBAD | IMUC-18 | ENDTNON STRTGYRO 8192AUG COARS COARS2 IMUZERO2 |
| | | ENDIMU IMUFINED |
| IMUCHK | ALIN-36 | P51 P57 |
| IMUCOARS | IMUC-14 | REDO PIPJOBB VBCOARK COARSE |
| IMUFINE | IMUC-17 | REDO IMUFINEK COARSE |
| IMUFINED | IMUC-17 | STRTGYR2 IMUFINE |
| IMUFINEK | EXVB-4 | GOEXTVB |
| IMUGOOD | IMUC-18 | |
| IMUMON | IMUC-4 | PROCEEDE |
| IMUPULSE | IMUC-10 | EARTHR* PERFERAS IMUFINEK 1/GYRO STRTGYR2
 GYCOARS R55 INITBY |
| IMUSTALL | IMUC-17 | REDO PIPJOBB
 AGSVCALC VBZERO 1/GYRO COARSE R55
 INITBY GYCOARS EARTHR* |

| IMUZERO | IMUC-13 | REDO AGSVCALC VBZERO |
| :---: | :---: | :---: |
| IMUTERO2 | IMOC-14 | IMUZERO |
| 1 INCAZ | ALIN-31 | INCAZ |
| INCOR2-3 | RNAV-37 | NEWZCOMP |
| INCORP1 | RNAV-37 | LGCUPDTE |
| INCORP2 | RNAV-38 | ASTOK |
| INFINITY | CONC-12 | WLOOP 1/WLOOP POLYCOEF |
| INITBY | ALIN-28. | SURFLINE |
| INITCDUW | BURN-20 | GOABORT P41SPOT |
| INITREAD | RADR-17 | LRALT LRVELX LRVELY LRVELZ RRRDOT RRRANGE |
| INITV | CONC-8 | LAMBLOOP SUFFCHEK |
| INITVEL | TRGL-9. | S40.1B S34/35.2 |
| INITVEL2 | TRGL-10 | INITVEL2 |
| INITVELA 7 | TRGL - 717 | INITVEL2 |
| INJTARG | $\triangle S C T-5$ | GOABORT |
| INTEGR | ORBI-3 | STATINTY CSMPREC LEMPREC CSMCONIC LEMCONIC DIFEQ+2 AVETOMID MIDTOAV2 LSR22. 3 LSR22. 4 ORBCHGO UPPSV PROG21 UPPSV 4 |
| ! INTEGRVS | ORBI- | EXGSUB P76 INITVEL2 INTINT P21CONT OTHINT REV83 |
| INTEXIT | ORBI-5 | TESTLOOP |
| INTGRATE | ORBI-8 | TIMESTEP LUNSPH |
| INTINT | TRGX-9 | ADTIME S34/35.2 S34/35.3 P32/P72B P33/P73B CIRCL |
| INTLOOP | TRGL-1 | INTLOOP |
| INTLZE | SERV-15 | LANDISP |
| INTSTALL | ORBI-21 | EXGSUB STATINT1 CSMPREC LEMPREC CSMCONIC LEMCONIC AVETOMID MIDTOAV2 P76 INITVEL2 INTINT UPJOB GETRWN OTHCONIC ATTACHIT CANV37 INCORP2 LSR22.3 LSR22.4 UPPSV V67CALL ORBCHGO INTSTALL TRMERACK REV83 PROG21 |

| INTWAKE | ORBI-21 | INTEXIT AVETOMID ATTACHIT FAZAB3 |
| :--- | :--- | :--- |
| V67CALL | | |
| INTWAKE1 | ORBI-22 | INTWAKEU P76 |
| INTWAKEU | ORBI-22 | UPEND70 UPEND71 UPEND72 UPERROUT |
| INVRSEQN | CONC-11 | GETX •WLOOP |
| ISSZERO | IMUC-7 | IMUMON TNONTEST |
| ITERATOR | CONC-12 | LAMBLOOP |
| ITURNON2 | IMUC-10 | IMUMON |
| | | |
| JAMTERM | DINT-18 | NVDSP |
| JETSOFF | DAPA-17 | TSNEXTP DETENTCK PURGENCY PJETSLEC SELECTP |
| JOBSLEEP | MATX-15 | REDO TCGETCAD |
| JOBWAKE | MATX-17 | WAKER |
| JOBWAKE4 | MATX-17 | JOBWAKE4 |
| JOBXCHS | DINT-9 | MAKEMARK MAKEPRIO |
| JTLST | DAPA-2 | PJETSLEC DOROTAT |
| JUSTOA | ALIN-12 | SURFSTAR |

$$
x-22
$$

| KALCMAN3 | ATTM-4 | GOMANUR |
| :---: | :---: | :---: |
| KEPCONVG | CONC-5 | KEPLOOP BRNCHCTR |
| KEPLERN | CONC-3 | KFPPREP ? |
| KEPLOOP | CONG-4 | BRNCHCTR |
| KEPPREP | ORBI-15 | RVCON GOBAQUE NBRANCH |
| KEYRUPT1. | DSKI-1 | Called via program intorrupt \#5 |
| KILIAOT | ALIN-36 | GETDAT PASTIT DSPV6NT9 |
| KLEENEX | DINT-5 | |
| LALOTORV | COOR-4 | N89DISP |
| LAMBERT | CONC-6 | IN ITVEL2 |
| LAMBLOOP | CONC-7 | HIENERGY LAMBLOOP |
| LAMENTER | CONC-12 | INITV |
| LANDISP | SERV-15 | R10,R11 |
| LANDJUNK | DESC-18 | |
| LASTBIAS | IMOC-3 | PREREAD |
| LAT-LONG | COOR-3 | LANDJJNK N89DISP P2IVSAVE |
| LEMCONIC | ORBI-3 | S52.3 V89RECL LPS20.1 LRS24.1 SBANDANT |
| LEMPREC | ORBI-2 | LOCSAM P57D
 REV83 R36 RGSVCALC V82GOFF1 V83CALL
 PRECSET P12LM
 S40.1B P63LM \ddots |
| LEMVEC | EXVB-9 | GOEXIVB |
| LGCUPDTE | RNAV-36 | RANGEBQ |
| LIGHTSET | PGSR-10 | GOPROG GOPROG2A |

| LITIT | RADR-25 | ORLITES |
| :---: | :---: | :---: |
| LOADLV | DINT-14 | ALOAD BLOAD CLOAD ABLOAD ABCLOAD PUTNORM HMSIN GOLOADLV BITSOFF2 |
| LOCSAM | ALIN-13 | PLANET R51 |
| LODNNTAB | DATA-4 | testinn aload bload cload abload abcload UPDATNN |
| LOENERGY | CONC-8 | LAMBLOOP |
| LOGSUB | MATX-6 | |
| LONGCALL | MATX-23 | |
| LONGGYCL | MATX-23 | LONGCALL LONGCYCL |
| LPS20. 1 | RNAV-8 | P20LEM1 R21LEM1 R61C+I02 READRDOT 60TIMES |
| LRALT | RADR-17. | DORSAMP LRHJOB |
| LRHEIGHT | RADR-20 | RADAREAD |
| LRHJOB | SERV-12 | R10, R11 |
| LROFF | EXVB-7 | GOEXIVB |
| LRON | EXVB-7 | GOEXIVB |
| LRP2COMM | EXVB-30 | LRPOS2K1 |
| LRPOS2 | RADR-23 | LRP2COMM HIGATJOB |
| LRPOS2K | EXVB-7 | GOEXIVB |
| LRPOS2KI | EXVB-7 | LRPOS2K |
| LRPOSGAN | RADR-23 | LRPOS2 LRPOSCAN |
| LRPOSOUT | Data-11 | DECDSP3 |
| LRS22. 1 | RNAV-21 | R22LIEM |
| LRS24.1 | RNAV-28 | DATGDCHK R24LEM |

$$
x-24
$$

| LRVELX | RUDR-17 | DORSAMP LRVJOB |
| :---: | :---: | :---: |
| LRVELY | RIDR-17 | DORSAMP LRVJOB |
| LRVELZ | RADR-17 | DORSAMP LRVJOB |
| LRVJOB | SERV-12 | VALTCHK |
| LSORIENT | ALIN-18 | P52LS P57D |
| LSPOS | COOR-7 | LOCSAM SBANDANT TIMESTEP LUNSPH ACCOMP |
| LSR22. 3 | RNAV-23 | R22LIEM |
| LSR22. 4 | RNAV-24 | LSR22. 3 |
| LUNDESCH | RADR-24 | RRANGLES |
| LUNG | ALIN-34 | GVDETER |
| LUNLAND | DESC-4 | P63IGN |
| LUNSPH | ORBI-7 | TIMESTEP |
| | | ... |
| M/SOUT | DATA-13 | DECDSP3 |
| MLINENG | ASCT-8 | |
| | ? | |
| MARECADR | MATX-26 | |
| MAKEMARK | DINT-7 | MAKEPLAY |
| MAKEPLAY | DINT-6 | GOFLASH2 GODSPRS1 BLANKET |
| MAKEPRIO | DINT-8 | MAKEPLAY |
| MANUSTOP | ATTM-8 | NEWANGL |

$$
\mathbf{x}-25
$$

| MARKCHEX | ALIN-9 | PASTIT SURFAGAN |
| :---: | :---: | :---: |
| MARKPLAY | DINT-8 | MAKEMARK JOBXCHS XCHSLEEP NV5ODSP MARKWAKE PINBRNCH |
| MARKRET | DINT-16 | TERMATE |
| MARKRUPT | ALIN-6 | Called via program interrupt \#6 |
| MARKWAKE | DINT-17 | NORMRET |
| MFREF | COOR-8 | SAMETYP P570PT3 |
| MIDTOAV1 | ORBI-19 | P41SPOT |
| MIDTOAV2 | ORBI-20 | P47LM |
| MINIMP | EXVB-9 | GOEXTVB |
| MINQR | DAPA-21 | TSNEXTS |
| MINRTN | DAPA-21 | FAILOOP FEEDBACK DOROTAT TJLAW4 |
| MIXNOUN | DATA-5 | TESTNN |
| MKRELEAS | ALIN-4 | AVEIT |
| MMCHANG | DATA-26 | ENTER VERBFAN |
| MODE2CHK | RADR-7 | RRLIMNB |
| MONDO | DaTA-16 | MONREQ |
| MONITOR | DATA-15 | VERBFAN |
| MONREQ | DATA-15 | MONITOR MONREQ |
| MOONMX | COOR-3 | P12LM P63LM LaNDJUNK OBLATE USEPIOS LAT-LONG LALOTORV MFREF REFMF P52LS P57POST |
| MOREDES | RADR-10 | STDESIG |
| MOREIDLE | DAPA-3 | DAPIDLER PAXIS CHEKBITS |
| MOVEACSM | ORBI-17 | ENDSTATE A-PCHK INTWAKEU P76 ORBGHGO FAZAB3 |
| MOVEALEM | ORBI-18 | ENDSTATE A-PCHK AVETOMID INTWAKEU FAZAB3 |

$$
x-26
$$

| MOVEPCSM | OBPI-16 | IMTERRV PARC |
| :---: | :---: | :---: |
| MOVEPLEMM | ORBI-17 | INTEGRV FAZC ATTACHIT |
| MUNGRAV | SERV-7 | P12LM P41SPOT NORMLIZE RVBOTH NOREASON IGNALOOP |
| MUNRETRN | SERV-7 | RVBOTH |
| N45PROC | TRGX-6 | VN1645 |
| N49DSP | RNAV-19 | R22LEM96 |
| N89DISP | ALIN-16 | P52LS P57POST |
| NB2CDUSP | BURN-23 | DCMCL |
| NBD2 | IMUC-2 | LASTBIAS |
| NBDONLY | IMOC-1 | SVCT3 |
| NBRANCH | ORBI-12 | ACCOMP DOW.. |
| NBTOSM | COOR-1 | VMEASCHK COMPDISP DODES RANGEBQ AVESTAR JUSTOA P570PT1 P570PT3 INITBI GVDETER P57POST RODCOMP |
| NEEDLER | DAPA-4 | ALITSPLT |
| NEEDLES | DAPA-5 | |
| NEGPROD | BURN-18 | RASTEER1 |
| NEGSGN | DSKY-4 | CHLRIT |
| NEGUSUM | DAPA-29 | GTS ALGORTHM NEGUSUM |
| NEWANGL | ATTM-6 | NEWDELHI |
| NEWDELHI | ATTM-8 | UPDTCALL |
| NEWSTATE | CONC-12 | COMMNOUT |
| NEWZZCOMP | RNAV-38 | INCORP1 |
| NEXTCOL | ORBI-14 | DIFEQ+2 |

| NEXTINSL | TELE- 3 | DNPHASE2 |
| :---: | :---: | :---: |
| NOATTCNT | BURN-23 | FINDCDUW DCMCL |
| NOGO | ATMM-8 | KALCMAN3 NEWDELHI |
| NOMINIMP | EXVB-9 | GOEXIVB |
| NOR29NOW | SERV-11 | COPYCYC1 R29 R29.LOS |
| NOREASON | SERV-9 | UPDATCHK |
| - NORMBNCH | DINT-18 | PINBRNCH |
| NORMLIZE | SERV-2 | PREREAD |
| NORMRET | DINT-16 | TERMATE ENDEXT |
| NORMWAKE | DINT-17 | NORMRET |
| NORRGMON | RADR-i2 | RRCDUCHK RRGIMON RRAUTCHK |
| NOTMUCH | DAPB-6 | BOTHAXES |
| NOUN | DSKY-2 | CHARIN |
| NOVAC | MATX-12 | |
| NOVAC2 | MATX-12 | FINDVAC2 |
| NOVAC3 | MATX-12 | NOVAC3 |
| NTARGCHK | TRGL-4 | NTARGCHK |
| NUM | DSKY-2 | CHARIN |
| NV50DSP | DINT-11 | NV50DSP |
| NVDSP | DINT-11 | NV50DSP TERMATE NORMBNCH PLAYJUM1 MARKPLAY REDOPRIO |
| NVSUB | DATA-1 | NV50DSP ENDRET PINBRNCH TESTXACT |
| NVSUBEND | DATA-2 | NVSUB DSPALARM |
| NXTBNK | TEST-8 | SDISPLAY |

$$
x-28
$$

| \| OANB | ALIN-5 | AZEL INGAZ OPTAXIS |
| :--- | :--- | :--- |
| OBLATE | ORBI-10 | ACCOMP |
| OCCULT | ALIN-24 | PIC3 |
| OHWELL1 | EXVB-14 | UPUPDATE OHWELL1 |
| OHWELL2 | EXVB-14 | UPUPDATE OHWELL2 UPVERIFY |
| OKTOCOPI | DINT-9 | JOBXCHS |
| OKTOPLAI | DINT-6 | MAKEPLAY |
| OMEGCALC | RNAV-30 | |
| ONLITES | RADR-25 | RADLITES |
| OPTAXIS | ALIN-5 | GETDAT |
| ORBCHGO | RNAV-1 | |
| ORIGCHNG | ORBI-7 | TIMESTEP LUNSPH |
| OTHCONIC | EXVB-25 | REV83 |
| OTHINT | EXVB-25 | GETRVN |
| OUTSNUFF | EXVB-9 | GOEXTVB |

| P33 | TRGX-4 | |
| :--- | :---: | :---: |
| P33/P73B | TRGX-4 | P33/P73F |
| P33/P73E | TRGX-5 | P33/P73E |
| P33/P73F | TRGX-5 | P33/P73F |
| P34 | TRGL-1 | |
| P34/P74C | TRGL-1 | INTL00P |
| P35 | TRGL-4 | |
| P35/P75B | TRGL-4 | P35/P75B |

PLOALM BURN-2 P4OLM P42LM
PLOAUTO BURN-13 UPTHROT BURNBABY PLOAUTO
PLOIGN BURN-6 IGNITION
P4OIN BURN-1 P4OLM
PLOIM BURN-1
P4OSJUNK BURN-4 TIG-5
PLOSPOT BURN-3 BURNBABY
1 P4OZ00M BURN-7
P4IBLANK . BURN-4 TIG-35
P4ILM BURN-2
P4ISPOT BURN-3 BURNBABY
P42IGN BURN-6 PG2IGN ABRTIGN IGNITION
PL2LM BURN-1
PL2STAGE BURN-1 REP4OALMX - 31

$$
x-32
$$

| P70 | ASCT-3 | V37 |
| :--- | :--- | :--- |
| P70A | ASCT-3 | R10, R11 |
| P71 | ASCT-3 | V37 |
| P71A | ASCT-3 | P70A R10, R10 |
| P72 | TRGX-2 | |
| P73 | TRGX-4 | |
| P74 | TRGL-1 | |
| P75 | TRGL-4 | |
| P76 | | |

| PACKOPTN | ALIN-26 | P57OPT |
| :--- | :--- | :--- |
| PARAM | CONC-9 | TIMERAD APSIDES TIMETHET |
| PASTEVB | DATA-16 | MONDO DSPALARM |
| PASTIT | ALIN-6 | CHANGEVB |
| PAXFILT | DAPA-10 | PAXIS |
| PAXIS | DAPA-6 | STARTDAP SPSCONT |
| PERFERAS | TEST-17 | ALFLT |
| PEGI | DAPA-15 | RATERROR |
| PERIAPO | CONC-13 | INTLOOP CSI/B2 |
| PERIAPO1 | CONC-13 | |
| PERIODCH | CONC-3 | PERIODCH |
| PFAILOK | IMOC-10 | UNZ2 |
| PFLITEDB | DAPB-18 | P.12RET P4OIN ASTNRET |

| PICl | ALIN-22 | PICI PIC3 |
| :--- | :--- | :--- |
| PIC3 | ALIN-22 | PIC3 |
| PICEND | ALIN-24 | PICI |
| PINBRNCH | DINT-17 | TSTLTS3 ABORTALM VBRELDSP IDLERET3 ALM/END |
| | | VBZERO RRDESEND TRMTRACK
 DAPATTER TOTATTER SNUFFOUT CSMREG LRP2COMM |
| | | OUTSNUFF MINIMP NOMINIMP R77END WMATRXNG UPDATOFF |
| | | ATTACHIT V37BAD RO4Z RATEDSP V59GP63 |

```
POSTBURN
    BURN-8 ENGINOFF GOPOST POSTBURN
POSTHRST DAPB-17 SPSRCS SPSSTART
POSTJUMP MATX-25
PRECSET TRGX-8 INTLOOP P35/P75B ADVANGE VNO6II
PREPOS29 RNAK_32 R29
PREREAD SERV-1 BTARTP4S:WETBNOT
PRERRORS TEST-6 ERASLOOP CNTRLOOP SOPTION
PRIOCHNG MATX-15 RELINUS SHOWSUM2
PRIODSP DINT-5 R22LEM N49DSP
PRIODSPR DINT-5 PRIOLARM R24LEM
PRIOLARM DINT-18 POSALARM P2OLEMI R2ILEMI R22LEM R23LEM P2OLEMB7
    R2TLEM CSMINT 6OTIMES
PROCEED DINT-15 RECALTST
PROCEEDE INTR-3 T4RUPT
PROCKEY INTR-3 PROCEEDE
PROG2O RNAV-I
PROG2OA RNAV-3 PROG2O ORBCHGO
PROG2I RNAV-6 P21VSAVE
PROG22 RNAV-I
PROG25 RNAV-7
PROG52 ALIN-14
PROGLARM PGSR-11 ALARM2
PURGENCY DAPA-16 TSNEXTP DETENTCK RATBRROR
pUTCOM TATA-2I ALOAD BLOAD CLOAD ABLOAD ABCLOAD
PUTGOM2 DITA-25 PUTGOM PUTNORM BINROUND DPINSF+2 DEGINSF
```

$\mathbf{x}-35$

```
PUTDCSF2 DATA-23 PUTCOM PUTNORM
PUTNORM DATA-22 PUTCOM
QERRCALC DAPA-18 MOREIDLE QRAXIS
QRAXIS DAPA-18 SKIPPAXS PJETSLEC JETSOFF
QRTIME DAPA-23 ENTERUV
QUADGUID DESC-7
QUICTRIG BURN-23 FINDCDUW-SERVICER VMEASCHK R29DODES
QUIKDSP INTR-4 T4RUPT
R02BOTH IMUC-19 V89CALL PROG52 P12LM P40LM P47LM P63LMP42STAGE P4ILM • PROG2OA PROG25
R04. EXVB-7 GOEXTVB
RO4END RADR-15 RO4Z RO4X
RO4X RADR-13 RO4X
R04Z RADR-13 R04 R77
R10,R11 SERV-14 R10,R11 READACCS ABRTJASK
R21DISP RNAV-16 R2ILEMI
R21LEM RNAV-13 P2OLEMF
R21LEM1 RNAV-13
R21LEM2 RNAV-13 DORROUT
R21LEM4 RNAV-14 R21IEM1
R21LEM8 RNAV-16 60TIMES
R21LEM9 RNAV-16 R21IEM8
R21LEM10 RNAV-13 R21LEM R21LEM9
R22LEM RNAV-17 R22LEM96 R22RSTRT R22LEM R22LEM42
R22LEM42 RNAV-16 P2OLEMC1 R22LEM
R22LEM96 RNAV-18 LGCUPDTE
R22RSTRT RNAV-19
R22WAIT RNAV-18 R22IEM
X - 36
```

```
f R23LEM RNAV -19 P2OLEMB1 R23LEM3
    R23LPM2 RNAV-20 R23LFM
    R23LPM3 RNAD-TEO R23LEM
    R2LEND RNAV I60 R24LEM
    R24LEMM RNAV-I60 R24LEM3 R21LEM R21LBMM
    R24LEM3 RNAV -60 R24LEM
    R29 RNAV-336 COPYCYC1
    R29.LOS RNAV.236 R29
    R29DODES RNAV-234 BEGDES29 R29DODES
    R29DPAS2 RNAV-305 R29DODES
    R29RANGE RNAV-2333 R29RANGE
    R29RDJOB RNAV-23R R29READ
    R29READ RNAV-2$2 R29DPAS2 R29READ
R29REMOJ RNAV-25R R29
R31CALL EXVB-23 V83PERF R31CALL
R36 EXVB-26 V90PERF R36
R51 ALIN-19 P52B REGCOARS R51 R51K ASTNRET
R51E ALIN-19 R51 R51E
R51K ALIN-20 GYCOARS
R52 ALIN-21 R51E AZEL
R55 ALIN-22 R51E
R56 ALIN-22 R51
R59 ALIN-30 79DISP R59ALM R59
| R59ALM ALIN-33 SHODEOS
R590UT ALIN-33 R59 R59ALM
X - 37
```

| R59RET | ALIN-33 | R590UT | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R601EM | ATTM-1 | $\begin{aligned} & \text { R62DISP } \\ & \text { ASTNRET } \end{aligned}$ | $\begin{aligned} & \text { V89RECL } \\ & \text { AZEL } \end{aligned}$ | R61C+L02 | P4OIN | P41 LM |
| R61 C+L01 | RNAV-10 | R61 $\mathrm{C}+\mathrm{L} 06$ | | | | |
| R61C+L02 | RNAV-11 | R61C+L01 R61LEM | | | | |
| R61C+L06 | RNAV-12 | R61 C+L02 | | | | |
| R61LEM | RNAV-10 | P20IEMA | R24LEM3 | R22LEM R | R23LEM3 | |
| \| R61TEST | ATTM-2 | toballa | | | | |
| R62DISP | ATTM-11 | CREWMANU | | | | |
| R65IEM | RNAV-10 | P25LEM1 | R22IEM | R22IEM42 | RANGEBQ | |
| R77 | EXVB-9 | GOEXTVB | | | | |
| R 77 CHECK | RADR-24 | RADAREAD | | | | |
| R77END | EXVB-9 | GOEXTVB | | | | |
| RADAREAD | RADR-19 | Called via program interrupt \#9 | | | | |
| RADLITES | RADR-25 | GOODRAD RESAMPLE | | | | |
| RADSAMP | RADR-15 | RO4X RO4Z RADSAMP | | | | |
| RADSTALL | RADR-18 | R29RDJOB DORSAMP R29RANGE R22RSTRT R21LEM
 R29REMOJ READRDOT R21LEM VBZERO RRDESK2
 LRP2COMM HIGATJOB LRHJOB LRVJOB R61C+LO1 | | | | |
| RADSTART | RADR-24 | INITREAD RESAMPLE RADSTART | | | | |
| RANGEBQ | RNAV-26 | LSR22.3 ISR22. 4 | | | | |
| RASTEER1 | BURN-17 | S40.8 | | | | |
| RATEDAMP | DAPA-15 | DETENTCK | | | | |
| RATEDISP | EXVB-7 | GOEXTVB | | | | |
| RATELOOP | DAPA-6 | RATELOOP SUPERJOB | | | | |
| RATERROR | DAPA-14 | DETENTCK RATEDAMP | | | | |
| RCS. | DAPA-18 | QRAXIS TRYGTS | | | | |
| RCSMONIT | DAPA-33 | PROCEEDE | | | | |
| RDBADEND | RADR-19 | BADRAD ENDRADAR LRPOSCAN STDESIG | | | | |
| RDGIMS | SERV-13 | LRVJOB | | | | |
| 1 RDRUSECK | EXVB-29 | vBZERO V | VBCOARK L | LRPOS2KI R | R04 R77 | |

READACCS SERV-1 READACCS
READRDOT RNAV-2, READRDOT

| RECALTST | DINT-15 | VBRESEQ LOADLV |
| :--- | :--- | :--- |
| RECTEST | ORBI-8 | TIMESTEP LUNSPH |

RECTIFI ORBI-5 INTEGRVS RVCON RECTOUT ORIGCHNG RECTEST GOBAQUE FAZC

RECTOUT ORBI-4 A-PCHK
REDESIG DESC - 6 TTFINCR

REDESMON DESC- 76 PITFALL REDESMON
REDO TEST-10 SYSTEST
REDOMANC ATTM-1 TOBALLA
REDOPRIO DINT-9 NV50DSP
REFLASH DINT-3 CLOKJOB P64DISPS VERTDISP
REFLLASHR DINT-3 TIGNOW
REFMF COOR-8 LANDJUNK GETLMATT SURFDISP
REGCOARS ALIN-BB P52D
REGODSP DINT-2 TIG-30A CLOKJOB P63DISPS P64DISPS
REGODSPR DINT-3
REJECT ALIN-9 MARKRUPT
RELDSP DINT-13 TSTLTS 3 ABORTALM VBRELDSP VERBFAN VBRESEQ VBRQEXEC LOADLV RECALTST V37BAD POOH V37XEQ VBRQNAIT

RELDSP1 . DINT-13 VBRELDSP MONITOR
RELINUS ATTM-12 . CHKLINUS
REMARK ALIN-9 VACSTOR
REMODE RADR-9 R29REMOJ

| RENDRAD | RADR-21 | RADAREAD | | |
| :---: | :---: | :---: | :---: | :---: |
| REP 40ALM | BURN-2 | REP40ALM | | |
| REQDATX | DSKY-5 | ALOAD ABLOAD ABCLOAD | | |
| REQDATY | DSKY-5 | BLOAD ABLOAD ABCLOAD | | |
| REQDATZ | DSKY-5 | TESTNN CLOAD ABCLOAD | | |
| REQMM | DSKY-5 | MMCHANG | | |
| RESAMPLE | RADR-22 | RADAREAD | | |
| RESET22 | PGSR-7 | RESET22 | | |
| RESET 57 | EXVB-30 | WAIT68 | | |
| | | -~. ${ }^{\text {- }}$ - | | |
| RESTORDB | DAPB-18 | ALLCOAST DAPDATAZ ENDRO3 TERMASC TRMTRACK R23LEM R61C+LO2 | TERM40 | |
| RETURNTJ | DAPB-16 | ZONE2 ZONE3 ZONE4 | RUFLAW2 | |
| REV83 | EXVB-24 | COMPDISP | | |
| RGOODEND | RADR-18 | GOODRAD LRPOS2 LRPOSCAN R77CHECK | REMODE | RRZERO |
| RGVGCALC | DESC-6 | TTFINCR REDESIG | | |
| RHCACTIV | DAPA-22 | CHEKSTIK | | |
| RMODINV | RADR-8 | LUNDESCH REMODE RRDESNB RRDESSM | | |
| RNDREFDR | IMUC-15 | P06 IMUMON | | |
| RODCOMP | DESC-12 | P66VERT RODTASK | | |
| RODTASK | DESC-12 | P66VERT | | |
| ROOTLOOP | DESC-17 | ROOTLOOP | | |
| ROOTPSRS | DESC-17 | TTF/8CL | | |
| ROPECHK | TEST-7 | SELFCHK CNTRLOOP | | |
| RPCOMP2 | ASCT-12 | ASCENT CMPONENT | | |
| RR1AX2 | RADR-4 | RR1AX2 RRTONLY | | |
| RRANGLES | RADR-7 | RRDESSM | | |
| RRANGOUT | DATA-26 | DECDSP3 | | |
| RRAUTCHK | RADR-1 | PROCEEDE | | |
| RRCDUCHK | RADR-1 | RRAUTCHK | | |
| RRDESDUN | RADR-11 | DODES | | |
| RRDESEND | EXVB-5 | GOEXTVB | | |
| RRDESK2 | EXVB-5 | VBCOARK | | |
| RRDESNB | RADR-6 | RRDESK2 R21LEM R21LEM8 | | |

$$
x-40
$$

| RRDESSM | RADR-5 | LRS24.1 R21LEMI 60TIMES |
| :--- | :--- | :--- |
| RRDOTOUT | DATA-27 | DECDSP3 |
| RRGIMON | RADR-1 | RRCDOCHK |
| RRLIMCHK | RADR-7 | RRGIMON RRDESSM R23LEM |
| RRLIMNB | RADR-23 | RRDESNB |
| RRLOSDSP | RNAV-43 | DSPRRLOS RRLOSDSP |
| RRNB | RADR-8 | RRDESNB OMEGCALC READRDOT |
| RRNBMPAC | RADR-8 | RRLOSDSP |
| RROUT | RADR-4 | DORROUT RR1AX2 R29DPAS2 |
| RRRANEE | RADR-16 | DORSAMP R29RANGE READRDOT R61C+LO1 |
| RRRDOT | RADR-17 | DORSAMP R22RSTRT R29RDJOB READRDOT R61C+LO1 |
| RRSONLY | RADR-4 | DORREPOS REMODE |
| RRTONLY | RADR-3 | DORREPOS REMODE PREPOS29 |
| RRTUFNON | RADR-2 | RRAUTCHK |
| RRZ2 | RADR-12 | RRZERO |
| RRZERO | RADR-12 | VBZERO |
| RRZEROSB | RADR-2 | RRTURNON RRZ2 |
| RSTOFGTS | DAPA-29 | |
| RUFLAW1 | DAPB-15 | TJETLAW |
| RUFLAW12 | DAPB-16 | RUFLAW1 |
| RUFLAW2 | DAPB-15 | TJETLAW |
| RUFLAW3 | DAPB-16 | TJETLAW |
| RVBOTH | SERV-6 | AVERAGEG |
| RVCON | ORBI-4 | |
| S30.1 | TRGX-7 | P30 |
| S33/34.1 | TRGL-5 | INTLOOP P33/P73B |
| S34/35.2 | TRGL-8 | INTLOOP P35/P75B |
| | | X - 41 |

| S34/35.3 | TRGL-9 | NTARGCHK |
| :---: | :---: | :---: |
| S34/35.4 | TRGL-9 | S34/35.5 NTARGCHK |
| S34/35.5 | TRGL-3 | INTLOOP P35/P75B |
| S40.1 | BURN-15 | P4OIN P4ILM |
| S40.1B | BURN-16 | S40.1 |
| S40.2,3 | BURN-16 | PLOIN P4ILM |
| S40.8 | BURN- 14 | UPDATEVG |
| S40.9 | BURN-17 | UPDATEVG |
| S40.13 | BIJRN-18 | PLOSJUNK |
| S40.132 | BJRN-19 | S40.13 S40.13D |
| S40.13D | BURN-19 | S40.13 |
| S41.1 | BURN-12 | P4ILM DYNMDISP CALCN83 CALCN85 |
| S52.2 | ALIN-18 | P52D CAL53A |
| S52.3 | ALIN-18 | P52B |
| SAMETYP | ALIN-27 | P570PTI |
| SBANDANT | EXVB-27 | SBANDEX VB64 |
| SBANDEX | EXVB-28 | SBANDANT |
| SCALCHNG | RADR-22 | LRHEIGHT RENDRAD |
| SCALLOOP | DAPA-34 | SCALLOOP |
| SCNDSOL | TRGX-14 | CSI/B1 CSI/B2 CIRCL CSI/SOL |
| SDISPLAY | TEST-2 | SOPTION |
| SELCTSUB | DAPA-27 | +XORULGE DOROTAT |
| SELECTMU | TRGX-6 | P34 P74 P35 P75 P33 P73 VN0655 |
| SELECTP | DAPA-17 | TRYUORV PJETSLEC SELECTP |
| | | $x-42$ |

| SELFCHK | TEST-3 | SHOWSUM2 SELFCHK CNTRLOOP PRERRORS NXTBNK STARTSB2 SDISPLAY |
| :---: | :---: | :---: |
| SERVEXIT | SERV-4 | TERMSC STEERING CALCN85 CALCN83 SERVIDLE ABRTJASK ULLONOT |
| SERVICER | SERV-2 | READACCS ABRTJASK |
| SERVIDLE | SERV-5 | POODOO |
| Survour | SENT-4 | AVERAGEG DVMON |
| SET57 | EXB-30 | DSP68 |
| SETCOARS | IMUC-15 | GLOCKMON IMUCOARS |
| SETGLOCX | IMUC-9 | GLOCKMON |
| SETIFLES | OBPI-2 | STATDIT AVEOMID LSR22.3 SSR22.4 UPPSV UPPSV4 |
| SETISSW | IMOC-8 | PIPUSE PIPFREX IMOMON C33TEST UK\%2 PFAILOK IFAILOK |
| SEPLOC | Matx-13 | CORFOUTD SPECTEST JOBWAKE4 4 MUUZRR02 |
| SETMAXDB | DAPB-18 | RESTORDB I |
| SETMINDB | DAPB-18 | CUTOFF P4ILM TIGNOW R61C+L02 R23LEM RESTORDB |
| SETPOS | SERV-19 | SETPOS1 SETPOS2 |
| SETPOS1 | SERV-19 | ASTNRET |
| SETPPOS2 | SERV-19 | POSGOOD |
| SETRRECR | RADR-3 | STARTDES R29 DORREPOS |
| SETTRKF | RADR-2 | RRCDUCHK RADLITES RRZEROSB |
| SEUDOPOO | PGSR-6 | CANV 37 |
| SGNCOM | DSKY-4 | POSGN NEGSGN |
| SHOW | TEST-15 | TORQUE PIPJOBB VALMIS SHOW |
| SHOWSUM2 | TEST-2 | GOSHOSUM |
| SIGNTEST | DSKY-5 | POSGN NEGSGN |
| SINE | MATX-1 | |

$$
x-43
$$

| SKIPPAXS | DAPA-Il | |
| :---: | :---: | :---: |
| SLAP1 | PGSR-I | VERBFAN |
| SLEEPIE | TEST-12 | ESTIMS PERFERAS |
| SMTONB | COOR-2 | SBANDANT S47.I FINDCDUW SETPOS R59 ADDGRAV DODES RRDESSM R29DODES R6IC+LO2 READRDOT |
| SNAPLOOP | TELE-4 | SNAPLOOP DODNPTR |
| SNUFFOUT | EXVB-8 | GOEXTVB |
| SOMEERRR | TEST-18 | |
| SOMEKEY | ALIN-7 | MARKRUPT |
| SOMERR2 | TEST-18 | REDO PIPJOBB EARTHR* PERFERAS |
| SOPTION | TEST-8 | ADRSCHK |
| SPARCSIN | MATX-9 | |
| SPCOS | MATX-2 | |
| SPECTEST | MATX-13 | JOBWAKE/4 |
| SPEEDRUN | SERV-15 | LANDISP |
| SPSCONT | DAPB-3 | 1/ACCS |
| SPSIN | MATX-2 | |
| SPSRCS | DAPB-17 | PURGENCY TJLAW4 |
| SPSSTART | DAPB-17 | SPSRCS |
| SPVAC | MATX-11 | |
| SQRT | MATX-5 | |
| SR30.1 | EXVB-20 | - BOTHPAD V82GON2 |
| STARTDAP | DAPA-5 | DAPIDLER |
| STARTDES | RADR-7 | RRDESSM |
| STARTP47 | BURN-13 | P47LM |
| STARTP64 | DESC-4 | GUILDRET |
| STARTP66 | DESC-11 | LUNLAND GUILDRET |

$$
x-44
$$

X -45

| SURFSTAR | ALIN - 11 | AVESTAR |
| :---: | :---: | :---: |
| SURFSTOR | ALIN-8 | YMKRUPT |
| SVCT 3 | IMUC-1 | SVCT3 T3RUPT STARTSB2 DLY2 WTLST5 |
| SVDWN1 | TELE-6 | ENDSTATE A-PCHK INTWAKEU P76 ATTACHIT ORBCHGO FAZAB3 |
| SVDWN2 | TELE-6 | ENDSTATE A-PCHK INTWAKEU FAZAB3 |
| SWCALL | MATX-25 | |
| SWRETURN | MATX-25 | |
| SYNCT4 | INTR-5 | QUIKDSP SYNCT4 |
| SYSTEST | EXYB-10 | GOEXIVB |
| T3RUPT | MATX-22 | TASKOVER Called via program interrupt \#3 |
| T4RUPT | INTR-2 | QUIKDSP SYNCT4 T4RUPT Called via program interrupt \#4 |
| T5RUPT | DAPA-1 | Called via program interrupt \#2 |
| T6JOBCHK | DAPA-1 | DOT6RUPT |
| TASKOVER | MATX-22 | WAKER LONGCYCL VARDELAY |
| TCGETCAD | MATX-19 | DELLOOP |
| TDISPSET | DESC-10 | TTFINCR TTF/8CL |
| TERMASC | ASCT-12 | CUTOFF |
| TERMATE | DINT-15 | RECALTST |
| TERM40 | BURN-9 | POSTBURN TIGNOW |
| TESTLOOP | ORBI-5 | ALOADED GOBAQUE ENDSTATE WMATEND CKMID2 |
| TESTNN | DATA-3 | MONDO |
| TESTXACT | EXVB-2 | VBCOARK IMUATTCK V47XACT DAPDISP CREWMANU ALINTIME R04 VB64 V67 V73UPDAT V82PERF V83PERF VERB85 V90PERF GOSHOSUM SYSTEST IMUFINEK LRON V89PERF |
| | | x-46 |

| TFFEL 1 | EXVB-23 | CALCTFF |
| :---: | :---: | :---: |
| THROTTLE | DESC-14 | STEEE? RODCOMP |
| THROTUP | ASCT-6 | UPTHROT |
| TIC KTEST | EXVB-19 | V82CALL TICKTEST |
| TIG-0 | BURN-5 | TIG-5 |
| TIG-5 | BURN-4 | TIG-30 COMFAIL2 |
| TIG-30 | BURN-4 | TIG-35 |
| TIG-30.1 | BURN-4 | TIG-35. |
| TIG-30A | BURN-4 | TIG-30.1 |
| TIG-35 | BURN-3 | P4ISPOT |
| TIGNOW | BURN-8 | THGTESK POSTYURN |
| TIGTASK | BURN-5 | TIG-0 |
| TIMEDIDL: | E3B-15 | UPEND73 UPEND70 |
| TIMEGMBL | DAPA-31 | TRYGTS SPSCONT |
| TIMERAD | CONC-1 | VN0611 |
| TIMESTEP | ORBI-6 | |
| TMMETHET | CONC-2 | INTLOOP CDHMVR CSI/B2 ORBCHGO |
| TIMQGMBL | DAPA-31 | TIMEGMBL |
| TJETLAW | DAPB-12 | PURGENCY TJLAW4 |
| TJLAW | DAPA-24 | |
| TJLAW4 | DAPA-24 | TJLAW |
| TNONTEST | IMOC-6 | IMUMON |
| TOBALLA | ATTM-1 | REDOMANC ENDMANUV |
| TOPSEUDO | DAPA-23 | ENTERUV |
| TORQUE | TEST-12 | PERFERAS |
| TOTATTER | EXVB-7 | GOEXTVB |
| | | $x-47$ |

| TRIMDONE | DAPB-21 | PITCHOFF |
| :---: | :---: | :---: |
| TRIMGIMB | DAPB-21: | DAPDATA2 |
| TRMTRACK | EXVB-6 | R61TEST GOEXTVB R22LEM R23LEM2 P20LEMI 60TIMES P20LEMB7 CSMINT R21LEM R21LEM1 R24LEM R21DISP |
| TRYGTS | DAPA-27 | QRAXIS |
| TRYUORV | DAPA-11 | TRYUORV |
| TSNEXTP | DAPA-12 | CHKVISFZ TRYUORV |
| TSNEXTS | DAPA-20 | RCS +XORULGE |
| TSTLTS2 | TEST-1 | VBTSTLTS |
| TSTLTS 3 | TEST-1 | TSTLTS2 |
| TTFINCR | DESC-5 | GiJILDRET STARTP64 |
| TTF/8CL | DESC-6 | RGVGCALC |
| TWIDDLE | MATX-19 | |
| ULIGNOT | BURN-4 | TIG-30 |
| ULLGTASK | BURE-4 | TIG-30 STOPCLOK GOPOST GOCUTOFF |
| UNZ2 | IMUC-9 | ISSZERO ENDTNON |
| UPDATCHK | SERV-8 | MUNRETRN |
| UPDATEVG | BURN-14 | STEERING CALCN85 |
| UPDATOFF | EXVB-11 | GOEXTVB |
| UPDATNN | DATA-17 | MONDO NVSUB |
| UPDATVB | DATA-17 | CLEAR NVSUB PASTEVB ALMCYCLE ABLOAD ABCLOAD |
| UPDTCALL | ATTM-8 | CONTMANU |
| UPEND70 | EXVB-16 | UPJOB |
| UPEND71 | EXVB-16 | UPJOB |
| UPEND72 | EXVB-17 | UPJOB |
| UPEND73 | EXVB-15 | UPSTORE |

8

| UPERROUT | EXVB-17 | UPEND71 O\%-IDT2 |
| :---: | :---: | :---: |
| UPJOB | ExvB-16 | UPSTORE |
| UPOUT4 | EXVB-17 | OHWELLI OHWELL2 UPVERIFY UPEND73 UPEND70 UPEND71 UPERROUT |
| UPPSV | PIAT-9 | P20LPMC3 R21LEM8 |
| UPPSV4 | RNAV-10 | UPPSV |
| UPRUPT | TELE-1 | Called via program interrupt \#7 |
| UPSTORE | EXVB-15 | UPVERIFY |
| UPTHRO' | ASCT- 6 | GOABORT |
| UPTMFAST | TELE-1 | C33TEST |
| UPUPDATE | EXVB-14 | V73UPDAT |
| UPVERIFY | EXVB-15 | OHWELL2 UPVERIFY |
| USEPIOS | ORBI-15 | INTEGRV ATTACHIT |
| V1ST02S | MATX-8 | |
| V37 | PGSR-5 | MMCHANG VERB96 |
| V37BAD | PGSR- 5 | V37 |
| V37RET | PGSR-14 | AVGEND |
| V $37 \times \mathrm{XEQ}$ | PGSR-8 | RESET22 |
| V 47 TXACT | ExvB-6 | COEXTVB |
| V59GP63 | EXVB-30 | LRPOS 2 K |
| V67 | EXVB-8 | GOEXTVB |
| V67CALL | RNAV- 8 - 0 | V67 |
| V70UPDAT | EXVB-8 | GOEXTVB |
| V7IUPDAT | EXVB-8 | GOEXIVB |
| V72UPDAT | EXVB-8 | GOEXIVB |
| V73UPDAT | EXVB-8 | GOEXTVB |
| -82CALL | EXVB-17 | V82PERF |

| V82GOFFl | EXVB-18 | V82G0FLP |
| :---: | :---: | :---: |
| V82G0FLP | EXVB-17 | V82GOFLP |
| V82GON | EXVB-19 | V82CALL |
| V82GON1 | EXVB-19 | V82GON V82GON2 |
| V82GON2 | EXVB-20 | V82GON1 |
| V82PERF | EXVB-10 | GOEXTVB |
| V83CALL | EXVB-24 | R31CALL |
| V33PERF | EXVB-10 | GOEXIVB |
| V89CALL | ATTM-11 | V89PERF |
| V89PERF | EXVB-10 | GOEXTVB |
| V89RECL | ATTM-11 | V89RECL |
| V90PERF | EXVB-10 | GOEXTVB |
| V99RECYC | BURN-10 | * ENTER |
| VACSTOR | ALIN-8 | YMKRUPT |
| VALMIS | TEST-14 | PERFERAS |
| VALTCHK | SERV-19. | VMEASCHK WSTOR |
| VARALARM | PGSR-14 | ALMXIT |
| VARDELAY | MATX-24 | |
| VB64 | EXVB-8 | GOEXTVB |
| VBCOARK | EXVB-3 | - GOEXTVB |
| VBPROC | DINT-14 | PROCKEY VERBFAN |
| VBRELDSP | DSKY-8 | CHARIN |
| VBRESEQ | DINT-14 | VERBFAN |
| VBRQEXEC | PGSR-8 | VERBFAN |
| VBRQWAIT | PGSR-8 | VERBFAN |

| | VBTERM | DINT-14 | VERBFAN JAMTERM |
| :---: | :---: | :---: | :---: |
| | VBTSTLTS | TEST-1 | VERBFAN |
| | VBZERO | EXVB-3 | GOEXTVB |
| | VECPNT1 | ATTM-3 | R61C+L02 |
| | VECPOINT | ATTM-3 | R6OLEM REDOMANC V89RECL |
| | VERB | DSKY-2 | CHARIN |
| | VERB69 | EXVB-8 | GOHEXIVB |
| | VERB85 | EXVB-10 | GOEXTVB |
| | VERB96 | EXVB-11 | GOEXIVB |
| | VERBFAN | DATA-5 | ENTPASO TESTNN MIXNOUN |
| | VERTDISP | DESC-10 | DISPEXIT |
| 1 | " - | | |
| | VGAIN* | BURN-14 | FIRSTIME |
| \square | VMEASCHK | SERN-9 | UPDATCHK NOREASON |
| | VN0611 | T RGX-1 | VN0611 |
| | VN0655 | TRGX-2 | VN0611 |
| | VN1645 | TRGX-6 | P34 P74 INTLOOP P35 P75 P35/P75B P30 VNO655 P32/P72F P33 P73 P33/P73F |
| | VOPENED | DAPA-33 | RCSMONIT |
| | \because | Γ - | - |
| | WAIT68 | EXVB-30 | WAIT68 |
| | WAITLIST | MATX-19 | |
| | WAKER | MATX-19 | DELLOOP |
| | WANT APS | BURN-4 | TIG-30 |
| | WCALC | ATTM-6 | KALCMAN3 |
| | WDAGAIN | DSKY-9 | WDAGAIN |
| | WHIMPER | PGSR-12 | SERVIDLE POODOO BAILOUTI ABORT |
| | WITCHONE | DINT-10 | OKTOPLAY OKTOCOPY JOBXCHS |

| WLINIT | RNAV-36 | LSR22.3 LSR22.4 |
| :---: | :---: | :---: |
| WLOOP | CONC-10 | WLOOP |
| WMATEND | ORBI-15 | DIFEQ+2 |
| WMAT RXNG | EXVB-10 | GOEXTVB |
| WOZERO | TELE-6 | DNPHASE1 DNPHASE2 DNDUMPI |
| WRITEP | DAPA-17 | TÓJOBCHK PJETSLEC JETSOFF |
| WRITEU | DAPA-26 | TGJOBCHK DOROTAT XTRANS FAILOOP |
| WRITEV | DAPA-26 | TGJOBCHK DOROTAT XTRANS FAILOOP |
| WSTOR | SERV-10 | VMEASCHK |
| WTLST5 | MATX-21 | DLY2 WTLST5 |
| XCHSLEEP | DINT-10 | JOBXCHS |
| XMKRUPT | ALIN-7 | MARKRUPT |
| XTRANS | DAPA-26 | TSNEXTS AFTERTJ |
| YMKRUPT | ALIN-7 | MARKRUPT |
| Z.123C0MP | DAPB-13 | TJETLAW ZONE/4 |
| ZATTEROR | DAPA-32 | NEWDELHI R61C+LO2 NOMINIMP CUTOFF P41LM TIGNOW LANDJUNK STARTDAP DETENTCK TSNEXTS ENTERUV PFLITEDB VERTDISP |
| ZDOTDCMP | ASCT-12 | ASCENT |
| ZEROENBL | DAPA-13 | DETENTCK RATERROR |
| ZONE1 | DAPB-13 | TJETLAW ZONE4 |
| ZONE2 | DAPB-14 | TJETLAW ZONE4 |
| ZONE3 | DAPB-14 | TJETLAW ZONE4 |
| ZONE4 | DAPB-14 | TJETLAW |
| ZONE5 | DAPB-14 | TJETLAW |
| ZOOM | BURN-7 | P4OIGN TIG-O COMFAILT2 |

[^0]: W-23

