

Lunar Communications Relay Unit(LCRU)
Preliminary Design Review Report
NASA/MSC, Houston, Texas
June 3,4, and 5, 1970

Volume I

LUNAR COMMUNICATIONS RELAY UNIT (LCRU)

PRELIMINARY DESIGN REVIEW REPORT

NASA/MSC HOUSTON, TEXAS

JUNE 3, 4 and 5, 1970

VOLUME I

- Summary of Action Items
- Minutes and Action Items
- Introduction
- Management Overview
- Subcontracts
- Operations
- System Design

LUNAR COMMUNICATIONS RELAY UNIT • PROGRAM MANAGEMENT OFFICE RCA • DEFENSE COMMUNICATIONS SYSTEMS, CAMDEN, N. J.

LUNAR COMMUNICATIONS RELAY UNIT (LCRU) PRELIMINARY DESIGN REVIEW HOUSTON, TEXAS

JUNE 3, 4, 5, 1970

NASA

SPETER

NASA

. SINDERSON

RCK

H. J. HAMLIN

TABLE OF CONTENTS

VOLUME I

Agenda Item		Page
	SUMMARY OF ACTION ITEMS	v
	ATTENDEES	xii
	MINUTES AND ACTION ITEMS	1
1.0	Introduction	1-1
2.0	Management Overview	2-1
3.0	Subcontracts	3-1
4.0	Operations	4-1
5.0	Systems Design	5-1
	VOLUME II	
6.0	Electrical Interfaces	6-1
7.0	LCRU Electrical Design	7-1
	VOLUME III	
8.0	LCRU Mechanical Interfaces	8-1
9.0	LCRU Mechanical Design	9-1
10.0	Thermal Design	10-1
11.0	Test Programs	11-1
12.0	Test Equipment Design	12-1
13.0	Program Support	13-1

SUMMARY OF ACTION ITEMS

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-1	MSC to advise RCA if and what spares will be required to support training and compatibility testing of the LCRU engineering model and DVT at TI-3.	MSC	TI-3	2.0
PDR-2	RCA to coordinate with Conic Executive management to resolve problems pertaining to propriatory items.	RCA	-	3.0
PDR-3	RCA to investigate the need or desirability of including bonding verification on the sub-assemblies and the need to perform bonding tests via a Shallcross bridge per MIL-D-5087-D and advise MSC by CDR.	RCA	CDR	6.0
PDR-4	RCA to provide source impedance and shunt capacities of DC-DC converter and battery by 6/17.	RCA	6/17	6.0
PDR-5	MSC to provide TV-ICD via CCA subject to discussion with MSC/RCA Contracts.	MSC	-	6.0
PDR-6	RCA to review TV-ICD and advise MSC of total impact of implementation by 6/17.	RCA	6/17	6.0
PDR-7	RCA to provide calibration curves for battery and temperature - 6/19.	RCA	6/19	6.0
PDR-8	RCA to evaluate the impact of disabling manually or via ground command the VHF Transmitter during TV standby. 6/25	RCA	6/25	6.0
PDR-9	RCA to provide flight adapter connector (or cable) with diode protection built in to provide reverse polarity protection during all earth test operations. Preliminary at TI-3, final at CDR.	RCA	Prel. TI-3 Final CDR	7 2 1

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-10	RCA to evaluate failure potential of CR-1 of DC-DC converter and assure adequate protection. Advise MSC of final approach by 7/7.	RCA	7/9	7.2.1
PDR-11	RCA to review and advise MSC on the voltage ratings of the input capacitors with respect to operation in EMI test environment. 6/15	RCA	6/15	7.2.1
PDR -1 2	RCA to provide dual temperature monitoring capabilities by CDR.	RCA	CDR	7.2.4
PDR-13	RCA to advise MSC if band edge limiting is incorporated in the 14.5 KHz VCO by 6/15.	RCA	6/15	7.2.4
PDR - 14	RCA to replace VR reverse polarity diodes with fuses 7/7/70.	RCA	7/7	7.2.6
PDR-15	RCA to develop techniques for assuring that fused VR's can be checked to assure that neither fuse is blown. Measurement must be from the outside of the LCRU during test 7/7/70.	RCA	7/7	7.2.6
PDR-16	RCA to determine and advise MSC of noise output levels of 70 KHz command line in the absence of uplink signal. 7/7/70	RCA	7/7	7.3.1
PDR-17	RCA to verify effect on vox of audio noise during lack of uplink subcarrier and, if required, implement subcarrier squelch. 7/7/70.	RCA	7/7	7.3.1
PDR-18	RCA to specify to Motorola .8 ± 10% radians for modulation and intermod on 70 and 124 KHz subcarrier. 6/15	RCA	6/15	7.3.1
PDR-19	MSC to provide latest information on potting for VHF antenna. 6/15	MSC	6/15	7.3.4

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-20	MSC to advise RCA of need to change low gain antenna connector 6/12	MSC	6/12	7.3.5
PDR-21	RCA to provide MSC with drawing for RF cabling. 7/7	RCA	7/7	7.4
PDR-22	MSC to provide procedures for repair of circuit breakers. 7/7	MSC	7/7	7.4
PDR-23	RCA to evaluate the battery door design for need for grounding strap and advise MSC of action. 7/7	RCA	7/7	8.1
PDR-24	MSC to redefine the LRV-low gain antenna interface and provide design information to RCA by 6/8.	MSC	6/8	8.1
PDR-25	MSC to provide drawings for LRV tubes and front bumper design. 6/12	MSC	6/12	8.2
PDR-26	MSC to evaluate need for load values in the LRV-ICD and either remove from ICD or update ICD values based upon RCA analysis. 7/15	MSC	7/15	8.2
PDR-27	MSC to reevaluate the LRV vibration requirements in terms of actual or practical values and RCA test level requirements and provide to RCA. 6/8	MSC	6/8	8.2
PDR-28	RCA to provide vibration test level recommendations to MSC. 7/7	RCA	7/7	8.2
PDR-29	MSC to provide LRV-ICD with required thermal interface data as requested in the RCA proposed changes presented at the PDR. 5/13	MSC	5/13	8.3
PDR-30	RCA shall immediately proceed to design the low gain antenna and assembly to interface with the MSC mast and present design at TI-3.	RCA	TI-3	9.0
PDR-31	RCA to provide cost-schedule- design-facilitation impact for pressurizing. 6/26 a. 100% Nitrogen b. 90% Nitrogen 10 Helium c. 100% Nitrogen-double pinch-off with helium filler	RCA	6/26	9.0

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-32	RCA to advise MSC of impact of incorporating recommended changes. 6/19	RCA	6/19	9.0
PDR-33	MSC to provide RCA information on the mechanical and thermal design of electrical cables for use on the lunar surface. Particularly as applicable to the LCRU TV and power cable the week of 6/15.	MSC	6/15	9.0
PDR-34	RCA will conduct a design thermal analysis of the LCRU with LRV battery covers hinged at the front of the LRV. These analyses will be done with the sun into the front of the LRV. These analyses will be done with the sun into the front and also the back of the LRV. The effects of cover position will be assessed by assuming cover closure at 2 hours and 13 hours after EVA. Results will be available June 22.	RCA	6/22	10.0
PDR-35	NASA is determining the impact of the movement of cover hinges to the rear of the battery and should also evaluate the effect of sun incidence from the back of the LRV. 6/22	NASA	6/22	10.0
PDR-36	Upon resolution of the preferred system orientation RCA will complete a detailed multinode transient analysis of LCRU assembly. 7/7	RCA	7/7	10.0
PDR-37	As a result of the required additional analysis RCA will delay delivery of the thermal analysis until two weeks following determination of system orientation (Item 3). 7/21	RCA	7/21	10.0
PDR-38	RCA to assure that the meter face is black and control panel plate should be gray, radio luminescent lettering by TI-3.	RCA	-	10.0

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-39	RCA should utilize an iridite finish for all metal surfaces for which anodize is presently planned. If the use of this finish is not practical, then other electrically conductive finishes should be considered. 7/7	RCA	7/7	10.0
PDR-40	RCA to assure that thermal blanket is vented. 7/7	RCA	7/7	10.0
PDR-41	RCA to have top thermal blanket with butt joints. 7/7	RCA	7/7	10.0
PDR-42	RCA to provide thermal blanket flap to cover RF connectors and provide a method for assuring the RF connectors do not become interchanged. For example by color coding and color keying. 7/7	RCA	7/7	10.0
PDR-43	RCA to assure that all control panel items will have an α/ϵ ratio of less than unity and without bright finish. 7/7	RCA	7/7	10.0
PDR-44	MSC to provide LRV battery cover deployment mechanism for SR-TV tests. 6/15	MSC	6/15	10.0
PDR-45	RCA to submit revised thermal test plan to reduce thermal test program to minimum engineering needs. 6/12	RCA	6/12	10.0
PDR-46	MSC to reserve solar thermal chamber for last two weeks in August.	MSC	-	10.0
PDR-47	RCA to have thermal model (with wax) by August 15 for test start in MSC. 2/15	RCA	2/15	10.0
PDR-48	RCA to provide detailed thermal test plan for thermal test of thermal model (with wax). 7/21	RCA	7/21	10.0
PDR-49	RCA to provide simulated LRV battery covers to support thermal mockup tests at MSC. 6/15	RCA	6/15	10.0
PDR-50	RCA to evaluate EM utilization and advise MSC as to availability of EM to support MSC needs. TI-3	RCA	-	11.0

	ACTION ITEMS	RESP.	DATE	AGENDA ITEM
PDR-51	MSC provide CCA for LM, LRV, TV interface requirements. 6/22	MSC	6/22	11.0
PDR-52	RCA to revise battery thermal and wet stand thermal/vacuum DVT test requirements to be consistent with CCA-5. TI-3	RCA	-	11.0
PDR-53	RCA to add thermal test to battery qualification. TI-3	RCA	-	11.0
PDR-54	RCA modify EMI control plan for audio power line conducted susceptibility tests in accordance with LRV ripple requirements of LRV meeting May 14, 1970. These tests will be included in the EMI DVT and Qualification Test Program. 6/19	RCA	6/19	11.0
PDR-55	RCA to provide to MSC data which specifies which specified performance parameters will be measured during ATP, the tolerances to be imposed as acceptance criteria, and the accuracy of test equipment measurement capability. Prel. TI-3, 8/22/70	RCA	8/22	12.0
PDR-56	MSC to review requirements for test points and/or control circuit access that may be required per MSFN or PIA testing for: 6/22 1. Engineering Models 2. DVT Models 3. Production Models	MSC	6/22	12.0
PRD-57	RCA to evaluate the possibility of utilizing Cutler-Hammer switches as alternate and coordinate with MSC. 6/19	RCA	6/19	13.1
PDR-58	MSC to provide screening and acceptance criteria for TI toggle switch. 6/12	MSC	6/12	13.1
PDR-59	MSC to determine why the NAR toggle switch spec is marked inactive for use and advise RCA. 6/22	MSC	6/22	13.1

	ACTION ITEM	RESP.	DATE	AGENDA ITEM
PDR-60	RCA should change cable lengths as follows:	RCA	-	14.0
	TV - 42"			
	Low Gain 8 feet			
	High Gain 6.5'			

Bellcom

W. J. Benden MAS

J. McClanahan MA/MO

J. T. Ralgith MA/MO

J. T. Raleigh

B. Storey MA/MO

Boeing

R. C. Buckley

Roy H. Forsander MSC

GE

N. Bates MSC/REL

M. Ellinor MSC/REL

C. T. Kessell HP

E. E. Vezey MSC/REL

GAC

J. O. Sayler

R. F. York KSC, Mail Stop 300-12

LEC

A. Bockman

R. J. Elbert

B. Frustro MSC

Philco

R. L. Lutes

NASA

J. M. Allman MAT

J. D. Alter MSFC/RM-SAT-LRV

D. R. Brooks CF24

T. N. Bruce FC6

G. P. Carr CB

E. T. Chimenti ES55

John J. Cunningham JC73

J. H. Dabbs EE7

Rocky Duncan

N. Farmer EE16

E. I. Fendell FC2

J. J. Fitzgerald

W. B. Goekler PD9

C. M. Haddick

J. Halcomb MSF/MAO

M. Hamilton

L. J. Hastings MSFC

Roger Hicks PE

A. W. Joslyn PD9

J. S. Kelley EE

C. Klubosh CF72

H. S. Kobayashi EE2

NASA (Continued)

H. C. Kyle EE

R. Langley ES12

Jack Lousma CB

M. M. Lusk EL3

C. E. McCullough, Jr. NB5

J. McKenzie MSC/PD9

J. D. Miller MSC/EE18

John W. Orsag ES55

D. B. Pendley PA

G. A. Pennington FC2

W. Perry TCSD EE2

C. Rittenhouse EE16

Ralph Sawyer MSC/EE

H. Schultz EE19

H. Scott PD5

R. Sinderson EE16

W. Speier MSC/PD9

C. V. Spencer

A. D. Travis

K. Thomas MSC/PD

Douglas Wood

RCA

M. E. Adams

J. P. Anderson

W. S. Babcock

A. M. Burke

W. L. Carlino

J. Connelly

Mark D'Andrea

E. H. Debaecke

G. R. Floyd

G. Grube

H. J. Hamlin

H. S. Farcus

RCA (Continued)

R. E. Holston

S. B. Holt

G. A. Houck

S. F. Martorano

F. J. Nangle

D. A. Orendac

O. Ramanis

H. Rosenthal

Ralph P. Scott

B. Shelpuk

B. Trachtenberg

R. Virostek

MINUTES AND ACTION ITEMS

MINUTES AND ACTION ITEMS

DATE 6-3-70	$\underline{\qquad}$ MEETING NUMBER $\underline{\underline{\mathbf{I}}}$	CRU-PDR AGENDA ITEM	1.0
SUBJECT	Introduction		
SUMMARY OF	DISCUSSION:		

The meeting was opened and introduced by Mr. Holt and Mr. Hamlin. No action items developed during this agenda item.

DATE 6-3-7	70 MEETING NUMBER LCRU-PDR AGENDA ITEM 2.0
SUBJECT _	Management Review
SUMMARY	OF DISCUSSION:
	that spares may be required to support LCRU engineering model ng training operations.
	•
ACTION ITE	EMS:
	ISC to advise RCA if and what spares will be required to support training and compatibility testing of the LCRU engineering model and DVT at TI-3

DATE <u>6-3-70</u> M	ETING NUMBER LCRU-PDR AGENDA ITEM 3.0
SUBJECT S	beontracts
SUMMARY OF DISCUS	BION:
RCA provided copies of in the meeting as follo	f specification control drawings for RCA subcontract items ws:
8555262 S-Band High 8151102 S-Band Dipl	Receiver LCRU Motorola, Inc. 35-25933K - Antenna PLSS
In response to MSC qu RCA stated the followi	estion on the effect of changing downlink from 2272.5 to 2250.5 ng:
Low gain antenna	1 db reduction without design change
High gain antenna	1 db reduction or reduced error angle- without design change
Diplexer	- Retunable - reduction of RX/TX isolation by approx. 5 db.
Transmitters	- New crystals and component changes.
included in above is ef	and flight hardware authorization is required by June 15. Not fect on test equipment and work-around requirements on the ost would be less than 50 K not including cost of additional sub-

ACTION ITEMS:

PDR-2 RCA to coordinate with Conic Executive management to resolve problems pertaining to propriatory items.

assemblies to support engineering model work-around.

DATE 6-3-70	MEETING NUMBER	LCRU-PDR	AGENDA	ITEM _	4.0
SUBJECT	Operations			~~~	
SUMMARY OF DISC	USSION:				

MSC indicated that operational routines will undergo many changes and will be finalized during training exercises. RCA provided handout LCRU 1104 entitled "LCRU operation and timeline".

ACTION ITEMS:

DATE	MEETING NUMBER LCRU-PDR AGENDA ITEM	5.0					
SUBJECT	System Design	•					

ALIMANA BIL OR DIGGINGION							

SUMMARY OF DISCUSSION:

 ${ t MSC}$ requested RCA to format link analyses differently but after some discussion it was determined that this was not necessary.

ACTION ITEMS:

DATE 6-3	-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 6.0
SUBJECT	Electrical Interfaces
SUMMARY	OF DISCUSSION:
_	tioned the suitability of chassis to chassis hard mount and bolt down rly on iridite surfaces) for bonding purposes.
MSC state	d that LCRU power source impedance to TV is required by June 17th.
letter of to would be a the TV 1 v	rd the TV-ICD conflicts MSC stated that the ICD was mailed on 5/28 with echnical direction. RCA stated that based upon that direction an amplifier added and the -5 volt regulator would be modified to enable interface with volt video interface. In addition, the changes would not now be made to the ng model-to be cut in later, and the change will be cut in on the first DVT.
	d that PRN ranging may trip vox causing interference with VHF ranging. vestigating and will advise RCA.
ACTION I	TEMS:
PDR-3	RCA to investigate the need or desirability of including bonding verification on the sub-assemblies and the need to perform bonding tests via a Shall-cross Bridge per MIL-D-5087-D and advise MSC by CDR.
PDR-4	RCA to provide source impedance and shunt capacities of DC-DC converter and battery by $6/17$.
PDR-5	MSC to provide TV-ICD via CCA subject to discussion with $\operatorname{MSC}/\operatorname{RCA}$ contracts.

NOTE: These Minutes do not constitute contract change authorization. Changes to contract or schedule must be negotiated.

the VHF Transmitter during TV standby, 6/25

RCA to review TV-ICD and advise MSC of total impact of implementation

RCA to provide calibration curves for battery and temperature by 6/19.

RCA to evaluate the impact of disabling manually or via ground command

PDR-6

PDR-7

PDR-8

by 6/17.

DATE 6-	3-70	MEETING NUMBER	LCRU-PDR	AGENDA	ITEM _	7.0
SUBJECT	LCRU	Electrical Design				•
		,				
-						

SUMMARY OF DISCUSSION:

The minutes and action items from this agenda item are presented with the sub-agenda item with which they are associated as follows:

7.2.1	DC-DC Converters
7.2.4	Downlink Signal Processor
7.2.6	Voltage Regulator
7.3.1	S-Band Receiver
7.3.2	S-Band Transmitter
7.3.4	VHF Antenna
7.3.5	Low Gain Antenna
7.3.6	Battery
7.3.7	High Gain Antenna
7.4	LCRU Assembly

DATE 6-	3.70 MEETING NUMBER LCRU-PDR AGENDA ITEM 7.2.1
SUBJECT	DC-DC Converter
SUMMAR	Y OF DISCUSSION:
and for s some cir	stioned the function of CR-1. RCA stated it is for reverse polarity protection urge protection and its purpose is to trip circuit breakers. MSC stated that cuit breaker (on test equipment) may be quite large possibly resulting in ling, resulting in a DC-DC converter failed mode.
ACTION	ITEMS:
PDR-9	RCA to provide flight adapter connector (or cable) with diode protection built in to provide reverse polarity protection during all earth test operations. Preliminary at T1-3, final at CDR.
PDR-10	RCA to evaluate failure potential of CR-1 of DC-DC converter and assure adequate protection. Advise MSC of final approach by 7/7.
PDR -11	RCA to review and advise MSC on the voltage ratings of the input capacitors with respect to operation in EMI test environment. 6/15

DATE	6-3-70	MEETING NUMBER	LCRU-PDR	AGENDA ITEM	7.2.4
SUBJE	CT Downlink	Signal Processor			•
	Claybourstantonius				,

SUMMARY OF DISCUSSION:

RCA stated that there was a potential single point failure in the event that the temperature sensor, or zeners, or FET failed and the voltage FET failed. RCA recommended separate temperature sensor (for meter and telemetry) but not to change the voltage measurement.

MSC questioned whether the 14.5 KHz VCO has band edge limiting.

ACTION ITEMS:

PDR-12 RCA to provide dual temperature monitoring capabilities by CDR.

PDR-13 RCA to advise MSC if band edge limiting is incorporated in the 14.5 KHz VCO by 6/15.

DATE6-3-	-70 MEETING NUMBER	LCRU-PDR	AGENDA ITEM	7.2.6
SUBJECT	Voltage Regulator			

SUMMARY OF DISCUSSION:

RCA stated that the VR has a single point failure mode at the input filter capacitor and recommended that fuses be inserted in place of the reverse polarity protection diodes thereby improving also the efficiency of the VR. MSC stated that this must be accompanied with techniques to assure that either fuse is not blown - determined externally.

ACTION ITEMS:

PDR-14 RCA to replace VR reverse polarity diodes with fuses 7/7/70.

PDR-15 RCA to develop techniques for assuring that fused VR's can be checked to assure that neither fuse is blown. Measurement must be from the outside of the LCRU during test 7/7/70.

DATE 6-3	3-70	MEETING	NUMBER	LCRU-PDR	AGENDA	ITEM_	7.3.1
SUBJECT	S-Band	Receiver				***	•

SUMMARY OF DISCUSSION:

MSC questioned the output level of the 70 KHz command line in the S-band receiver when there is no uplink signal.

MSC questioned the amount of noise output during strong uplink carrier but without 124 KHz subcarrier. MSC stated that (on LM) such a situation opened the vox making communication between astronauts impossible. RCA stated that a subcarrier squelch system would resolve this situation and that Motorola currently is evaluating this and other techniques as a result of a Motorola PDR action item.

RCA indicated that Motorola is presently spec'd for .7 radians on 70 and 124 KHz subcarriers and .9 radians for intermod. MSC stated that it should be .8 $\pm 10\%$ radians.

RCA indicated that in implementing the TV-ICD the Motorola spec will be revised to pickup the effects of 30 KHz subcarriers and the change to 1.1 radians, including effects of PRN in the 70 KHz subcarrier.

ACTION ITEMS:

- PDR-16 RCA to determine and advise MSC of noise output levels of 70 KHz command line in the absence of uplink signal. 7/7/70
- PDR-17 RCA to verify effect on vox of audio noise during lack of uplink subcarrier and, if required, implement subcarrier squelch. 7/7/70
- PDR-18 RCA to specify to Motorola $.8 \pm 10\%$ radians for modulation and intermod on 70 and 124 KHz subcarrier. 6/15

DATE 6-3	3-70	MEETING NUMBER	LCRU-PDR	AGENDA ITEM	7.3.2
SUBJECT	S-Band	Transmitter			
			-	*	

SUMMARY OF DISCUSSION:

RCA stated that a limit of Tj on the 2N5921 of 150°C is being utilized as compared to normal derated temperature of 100°C . The transistor supplier normally guarantees 12° C/W (DC), and will guarantee $10^{\circ}\text{C/W}(DC)$ for LCRU applications. Conic screens the 2N5921 using RF measurement techniques. If screening results of 5 or 6° C/W(RF) can be achieved then Tj of 150°C can probably be met. Conic indicates that their screening will do this.

With respect to Action Item TI-2-24, RCA stated that the 2N5921 has a rated Vcbo of 50 volts and removal of the S-band transmitter voltage regulator can cause exceedance of rated Vcbo and potential failure. RCA thus recommends that the voltage regulator not be removed. AI TI-2-24 is closed.

ACTION ITEMS:

DATE -	6-3-70	_ MEETING	NUMBER	LCRU-PDR	AGENDA ITEM	7,3,4
SUBJEC	CT VHF	Antenna				
SUMMA	RY OF DIS	SCUSSION:				
MSC sta	ated that th	e PLSS anter	nna has ex	perienced bre	akage at the base	e and

requires tuning. MSC provided procedure MSC/SESD Test Procedure No. EE33/68-37 which was used to tune the PLSS antenna.

ACTION ITEMS:

PDR-19 MSC to provide latest information on potting for VHF antenna. 6/15

DATE 6-3	-70	MEETING NU	MBER LCRU	-PDR A	GENDA I	TEM _	7.3.5
SUBJECT	Low G	ain Antenna					•
							-
SUMMARY	OF DISC	USSION:		,	•		
	•	right angle co t connector in					
					y*		
				٠			
ACTION I	TEMS:						
PDR-20	MSC to a	dvise RCA of r	need to change	low gair	antenna	connect	or. 6/12

DATE .	6-3-70	MEETING NUMBE	R LCRU-PDR	AGENDA ITEM	7.3.6
SUBJE	CTBatte	ry			
SUMMA	ARY OF DISC	CUSSION:		•	
_	rovided a tec ature profile	hnical report (prepa at 6 hours.	red by Yardne	y) on LCRU Batte	ry
					(w)
ACTIO	N ITEMS:				

DATE 6-3-70	MEETING	NUMBER	LCRU-PDR	AGENDA	ITEM _	7.3.7
curp we can . It's also	Osia Antonna					•
SUBJECT High	Gain Antenna					

SUMMARY OF DISCUSSION:

In response to an MSC question, RCA stated that the high gain antenna will not have a TNC connector in the center shaft as indicated but will instead have a pigtail lead and connector approximately 9-inches long.

RCA stated that the rear mounted sight might have an impact on the storage container requiring an increase of storage container diameter to accommodate the antenna rear mounted sight. The mesh has no significant effect thermally, mechanically, optically on the rear sight provided a 7 nettle mesh is used instead of 14 presented in the PDR and the plating will be left off in the area of the sight.

RCA provided a handout entitled "High Gain Antenna Structural Analysis."

ACTION ITEMS:

DATE 6-3-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 7.4					
SUBJECT LCRU Assembly					
SUMMARY OF DISCUSSION:					
MSC questioned the manufacturing and test methods for RF cable.					
MSC stated that the circuit breaker proposed is repairable without removing the circuit breaker from the panel.					
ACTION ITEMS:					

MSC to provide procedures for repair of circuit breakers. 7/7

PDR-21 RCA to provide MSC with drawing for RF cabling. 7/7

PDR-22

DATE 6-4-70	MEETING NUMBER LCRU-PDR AGENDA ITEM _	8.0
SUBJECT	LCRU Mechanical Interfaces	

SUMMARY OF DISCUSSION:

The minutes and action items from this Agenda Item are presented with the subagenda item with which they are associated as follows:

- 8.1 Mechanical Interface
- 8.2 Vibration Analysis
- 8.3 Thermal Interface.

DATE 6-4-	70 MEE?	ring number	LCRU-PDR	AGENDA	ITEM _	8.1
SUBJECT _	Mechanical	Interface				
				-		

SUMMARY OF DISCUSSION:

RCA stated that the LCRU/LRV interface fixture was shipped to Boeing on 6/1/70.
RCA stated that the LRV-ICD should not have loads specified - but limit it to the environment.

RCA provided the following handouts:

- 1. LCRU/LRV Mechanical Interface
 Case 1 Loose tolerances on LRV.
- 2. LCRU/LRV Mechanical Interface
 Case II Tight tolerances on LRV.

ACTION ITEMS:

- PDR-23 RCA to evaluate the battery door design for need for grounding strap and advise MSC of action. 7/7
- PDR-24 MSC to redefine the LRV-low gain antenna interface and provide design information to RCA by 6/8.

DATE 6	-4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 8.2
SUBJECT	Vibration Analysis
SUMMAR	Y OF DISCUSSION:
RCA prov	ided a handout entitled
	LCRU Antenna System - Design Study-Nodal Dynamic Model Dynamic Response to Sinusoidal Vibration
	ed that details on LRV design are required to enable accurate mechanical n and vibration test results.
MSC prov	rided the following vibration requirements for LRV.
,	Fore, Aft, Lateral .25g 0-peak 2-20 hz
	Vertical .65g 0-peak 2-10 hz 1.0g 0-peak 10-20 hz 8-12 hz ramp acceptable
	3 octaves/min
	total 30 min/axis (90 minutes total)
	Hard mount to shaker
ACTION 1	TEMS:
PDR-25	MSC to provide drawings for LRV tubes and front bumper design. 6/12
PDR-26	MSC to evaluate need for load values in the LRV-ICD and either remove

- from ICD or update ICD values based upon RCA analysis. 7/15
- PDR-27 MSC to reevaluate the LRV vibration requirements in terms of actual or practical values and RCA test level requirements and provide to RCA. 6/8
- PDR-28 RCA to provide vibration test level recommendations to MSC. 7/7

DATE 6-4	4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM	8.3
SUBJECT _	Thermal Interface	

SUMMARY OF DISCUSSION:

RCA stated that the thermal analysis to be presented is based upon LRV rear hinged blankets and that forward hinges add too much heat to the LCRU. MSFC stated that the blankets cannot be hinged at the rear for design reasons. This aspect is discussed further in item 10.

ACTION ITEMS:

PDR-29 MSC to provide LRV-ICD with required thermal interface data as requested in the RCA proposed changes presented at the PDR. 5/13

RECOMMENDED CHANGES:

- 1. Provide alignment marks for HGA Mount (To Ball Joint)
- 2. Locking Handle Position for HGA mast should be straight down.
- 3. Make HGA deployment drum longer.
- 4. Remove or reduce size of HGA deployment drum ridge.
- 5. Put tabs on all blanket flaps (1-inch wide, 1-1/2" long).
- 6. Reduce spring tension on battery door.
- 7. Provide some method for keeping dust off radiator while changing battery (possibly separate flap for battery).
- 8. Provide PLSS type of VHF antenna stowage.
- 9. Hinge RF connector blanket flap down.
- 10. Provide rigid handle for hand carry mode.
- *11. Reduce HGA deployment drum diameter.

^{*} Contingent on further evaluation at Rover/LCRU crew station review.

DATE 6-4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 9.0
SUBJECTLCRU Mechanical Design
SUMMARY OF DISCUSSION:
MSC stated that the low gain antenna will be mounted on the MSC designed mast.
MSC questioned the utilization of Argon gas for pressurization and the likelihood for corona occurring during lunar operations - damage leaks, etc. RCA stated that

sheets.

RCA indicated that the high gain and low gain antenna mockups will be left at MSC

RCA provided design drawings in support of the PDR as indicated in the attached

MSC stated that the design safety factor against limit loads should be 1.5 instead of 1.4.

RCA indicated that the high gain and low gain antenna mockups will be left at MSC to support the LRV meeting in Huntsville during w/o June 8. MSC indicated they will return them to RCA about

.

RCA provided 45 photographs taken of the mechanical components provided in the PDR. These will not be included in the PDR Report unless presented in viewgraph.

MSC provided comments to the mockups provided at the PDR as indicated in the attached "Recommended Changes".

ACTION ITEMS:

- PDR-30 RCA shall immediately proceed to design the low gain antenna and assembly to interface with the MSC mast and present design at TI-3.
- PDR-31 RCA to provide cost-schedule-design-facilitation impact for pressurizing. 6/26
 - a. 100% Nitrogen
 - b. 90% Nitrogen 10 Helium
 - c. 100% Nitrogen-double pinch-off with helium filler
- PDR-32 RCA to advise MSC of impact of incorporating recommended changes. 6/19
- PDR-33 MSC to provide RCA information on the mechanical and thermal design of electrical cables for use on the lunar surface. Particularly as applicable to the LCRU TV and power cable the week of 6/15.
- NOTE: These Minutes do not constitute contract change authorization. Changes to contract or schedule must be negotiated.

SUBJECT Thermal Design	

SUMMARY OF DISCUSSION:

RCA presented the results of the thermal analysis stating that it was based upon the LRV battery covers being hinged at the rear. MSFC stated that this is not the LRV design. RCA stated that forward hinged blankets caused an added 40-60 watts heat impingement into the LCRU. After some discussion it was determined that MSFC should evaluate the possibility of parking the LRV away from the sun and that RCA would have to perform additional thermal analysis reflecting actual LRV design and orientation. RCA stated that this will result in a delay in submittal of thermal analysis report.

MSC stated that the control panel should be gray, the meter face black. RCA stated that themeter may not be able to handle the heat developed through the black face. MSC questioned the use of anodize since it is an insulator.

RCA stated that the various battery heat sink methods (none - side, sides, bottom) show that the worst case cell temp would be 180° (for no heat sink) and approx. 135° for best case (bottom). Yardney maintains that operation at 180° F is satisfactory. SE-C-0043A states 145° F max.

RCA therefore proposes to heat sink on two sides but may not be able to achieve 3 BTU/hr/ $^{\circ}$ F. - under which circumstance battery temperature may go above 145 $^{\circ}$.

A separate splinter meeting on the LCRU thermal mockup was held on 6/4. Minutes of that meeting are included with these minutes.

DATE _	6-4-70	MEETING NUMI	BER LCRU-PDR	AGENDA ITEM	10. (cont'd
SUBJEC	Them	mal Design			

SUMMARY OF DISCUSSION:

RCA stated that there is the intent to run additional thermal testing on the thermal mockup after installation of the wax packets - presently estimated for August 15. Details of test have not yet been formulated. As part of these tests and the present thermal tests attempts will be made to evaluate thermal and electrical characteristics of thermal conducting materials. MSC stated that LRV battery cover simulation is required for thermal mockup testing.

With regard the charts presented entitled "Temperatures of highest power dissipating components", RCA stated that this was simply to illustrate these parts that are "standing high" on the basis of part application. The analysis is preliminary and worst case. It is based upon 160°F on subassembly baseplate, for example, which RCA's revised overall thermal analysis indicates won't happen and in fact won't even reach 145°F except under very worst lunar conditions and then only if permitted-since the Astronaut and earth monitors temperature and has means for controlling temperature. The analysis is further based upon probable worst case gradients to the components, and further are based upon component supplier guaranteed heat dissipation characteristics. Conic Corp. for example screens 2N5921 in the actual circuit application and indicates an actual transistor junction temperature rise of 5-6°C/W. In summary RCA stated that final designs and analyses will show component applications within derated requirements in most if not all cases and this chart is simply to indicate the components that are closest to being a problem.

In any event any component that is ultimately shown to exceed deratings is handled through to MSC as a deviation and substantiation on an individual part basis is supplied at that time.

For additional clarification a modified version of this chart reflecting latest LCRU thermal analysis data and latest estimates of transistor heat dissipation data was provided and discussed via marked up viewgraph.

DATE	6-4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 10, (cont'd)			
SUBJECT	THERMAL ANALYSIS ACTION ITEMS			
SUMMAR	Y OF DISCUSSION:			
THERMA	L ANALYSIS ACTION ITEMS:			
PDR-34	RCA will conduct a design thermal analysis of the LCRU with LRV battery covers hinged at the front of the LRV. These analyses will be done with the sun into the front and also the back of the LRV. The affects of cover position will be assessed by assuming cover closure at 2 hours and 13 hours after EVA. Results will be available June 22.			
PDR-35	NASA is determining the impact of the movement of cover hinges to the rear of the battery and should also evaluate the effect of sun incidence from the back of the LRV. $6/22$			
PDR-36	Upon resolution of the preferred system orientation RCA will complete a detailed multinode transient analysis of LCRU assembly. 7/7			
PDR-37	As a result of the required additional analysis RCA will delay delivery of the thermal analysis until two weeks following determination of system orientation (Item 36). 7/21			
PDR-38	RCA to assure that the meter face is black and control panel plate should be gray, radio luminescent lettering by TI-3.			

DATE _6	-4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 10. (cont'd)
SUBJECT	
SUMMAR	Y OF DISCUSSION:
ACTION	ITEMS:
PDR-39	RCA should utilize an irridite finish for all metal surfaces for which anodize is presently planned. If the use of this finish is not practical, then other electrically conductive finishes should be considered. 7/7
PDR-40	RCA to assure that thermal blanket is vented. 7/7
PDR-41	RCA to have top thermal blanket with butt joints. 7/7
PDR-42	RCA to provide thermal blanket flap to cover RF connectors and provide a method for assuring the RF connectors do not become interchanged. For example by color coding and color keying. 7/7
PDR-43	RCA to assure that all control panel items will have an ratio of less than unity and without bright finish. 7/7
PDR - 44	MSC to provide LRV battery cover deployment mechanism for SR-TV tests. $6/15$
PDR-45	RCA to submit revised thermal test plan to reduce thermal test program to minimum engineering needs. $6/12$
PDR-46	MSC to reserve solar thermal chamber for last two weeks in August.
PDR-47	RCA to have thermal model (with wax) by August 15 for test start in MSC. $8/15$
PDR-48	RCA to provide detailed thermal test plan for thermal test of thermal model (with wax). $7/21$
PDR - 49	RCA to provide simulated LRV battery covers to support thermal mockup tests at MSC. 6/15

MINUTES OF JCRU THERMAL MOCKUP SOLAR SIMULATION/THERMAL VACUUM MEETING

Held on June 4, 1970

at MSC

ATTENDEES

Name	Orig.	Phone
M. M. Lusk G. A. Udvardy A. Bockman B. Fraustro R. Redman L. E. Birdsong W. W. Killingsworth E. T. Chimenti Ralph Scott John Miller R. F. Virostek A. W. Joslyn	EE18	4866 5324 3761 3761 3888 4226 4226 3676 609-448-3400-x2493 4507 609-W03-8000 XPC-3840 3441

The test plan/procedure of the LCRU Thermal mockup was reviewed. The following comments are referenced to the document paragraphs:

- 1. Section 3.2a, and 4.4.5 MSC-SETD are to run a Johnson curve and distribution on June 8, 1970. This data will be made available to RCA for their test log.
- 2. Section 4.5.1. c & d MSC-SETD to provide a distribution plot of the levels to an accuracy of +5%.
- 3. Section 4.5.le MSC-SETD can provide data to an accuracy of $\pm 5\%$.
 - 4. Section 5.2. 9 & 10 MSC-TCSD to provide this support.
- 5. Section 6.1.1. b The local pointing vectors data is not available but the information is part of 6.1.1.a.
 - 6. Section 6.1.4 RCA to install externally mounted thermocouples.

- 7. MSC to present temperature data in °F.
- 8. Temperature data to be presented on computer printout. All stabilization temperature data will be hand plotted.
- 9. <u>Section 6.2.2</u> MSC-SETD will arrange for a portable reflectometer.
 - 10. Appendix A RCA to define Lurain Angle equivalent temperatures.
- 11. RCA's estimated operating time is 8 hours per test with 30 tests being planned Total 240 hours.

MSC-SETD estimates a chamber recycle time of 36 hours for each pump down and repressurize. A total of 3 recycles is planned.

- 12. RCA is required to provide a list of material (type of material only) of the components going into the test chamber.
 - 13. RCA expects to have the thermal mockup at MSC on June 15, 1970.
- 14. MSC will have the test chamber available on June 15, 1970. The chamber will be in use through June 12, 1970, supporting another test.

R Virostek - RCA

Miller - MSC-TCSD

M. Lusk - MSC-SESL / Toll

DATE <u>6-4</u>	-70	MEETING	NUMBER	LCRU-PDR	AGENDA	ITEM .	11.0	_
SUBJECT	Test Pr	ogram				***************************************		

SUMMARY OF DISCUSSION:

MSC stated that the engineering model is scheduled at MSC during November 15 to December 1, based upon RCA's presented utilization, and periodic utilization after that period. It is desired during September 15 - October 1 for combined LRV-EMI. EMI should include the TV changes.

RCA stated that adequate contractual direction on the LM, LRV, TV interface and/or environmental requirements thereon is still required.

MSC questioned the 3 day, 95% humidity test - i.e., it is contrary to specification. RCA explained it was agreed to in the December 17, 1969 meeting, and shortens test time. MSC concurred with the change. MSC questioned the battery thermal and wet stand/thermal-vacuum tests during DVT.

The LCRU-EMI Control Plan, LRPL-EMI-1, dated May 26, 1970, was reviewed and discussed in a splinter meeting. MSC suggested that the specification method of bonding subassemblies to the LCRU chassis should be listed in the RCA manufacturing drawings/processes.

A separate splinter meeting on Dust, mechanical and vibration was held - minutes of which are enclosed herein.

ACTION ITEMS:

- PDR-50 RCA to evaluate EM utilization and advise MSC as to availability of EM to support MSC needs. TI-3
- PDR-51 MSC provide CCA for LM, LRV, TV interface requirements. 6/22
- PDR-52 RCA to revise battery thermal and wet stand thermal/vacuum DVT test requirements to be consistent with CCA-5. TI-3
- PDR-53 RCA to add thermal test to battery qualification. TI-3
- PDR-54 RCA modify EMI control plan for audio power line conducted susceptibility tests in accordance with LRV ripple requirements of LRV meeting May 14, 1970. These tests will be included in the EMI DVT and Qualification Test Program. 6/19
- NOTE: These Minutes do not constitute contract change authorization. Changes to contract or schedule must be negotiated.

MINUTES OF LCRU DUST TESTING (MECHANICAL) AND VIBRATION MEETING

Held

June 5, 1970

ATTENDEES

J. Miller TCSD
L. Williams ASPO
H. Schultz TCSD
W. Speier ASPO
R. Virostek RCA - Camden

- 1. MSC can supply simulated lunar dust suitable for mechanical testing of LCRU Ancillary items upon RCA request. (up to 5 lbs)
- 2. MSC recommended that the ancillary items be baked (preferably in thermal vacuum chamber for 4 hours minimum and +100°F) prior to dusting. Also, bake dust prior to use.
- 3. Dust should be sprinkled via a coarse (less than 0.1 inch) screening mechanism.
- 4. For the high gain antenna, MSC recommended 10 dustings with about 10 flexing cycles between dusting. Force limits should be established and measured with torque wrenches for accept/reject criteria.
- 5. For the low gain antenna mechanism, dust the upper hinge joint once and operate 10 times. For the bottom insert, apply dust and rotate the shaft approximately ± 180° from nominal rearward projection 10 times between dustings. Total number of dustings to be ten. Force limits should be established as accept/reject criteria. Simulated LRV socket is required. Recommend dust cap on LRV low gain antenna shaft and through hole on LRV low gain antenna socket.
- 6. For the battery, sprinkle with dust, brush with the virgin (soft) nylon bristle brush and insert into LCRU.
- 7. For LCRU assembly, sprinkle dust on all control panel switches, cycle through each switch position and check torque. Repeat 10 times.

- 8. For the LCRU legs, dust the legs, insert into LCRU and torque. Sprinkle additional dust and check torque required to remove legs.
- 9. RCA will prepare a plan for dust testing and present plan at next at next T.I. meeting.

LRV SUBSTITUTE VIBRATION

MSC indicated that an acceptable substitute sinusoidal vibration test for the LRV vibration DVT and ualification tests are:

Fore/Aft/Lateral

2 to 20 Hz at 0.25 g peak

Vertical -

2 to 8 Hz at 0.65 g peak

8 to 12 Hz 0.65 to 1.0g

12 to 20 Hz 1.0 g

Sweep rate to be 3 octaves/minutes for 30 minutes per axis for a total of 90 minutes.

The above levels assume a hard mount to vibration table. These limits are acceptable substitutes for the LRV ICD requirements.

RCA will review and advise MSC of impact, if any.

R, Virostek - RCA

W. Speier /- MSC ASPO

DATE $\underline{}$	-4-70 MEETING NUMBER LCRU-PDR AGENDA ITEM 12.0	
SUBJECT	Test Equipment Design	
SUMMAR	Y OF DISCUSSION:	
_	te splinter meeting was held on LCRU testing at KSC. Minutes of that are included herein.	
ACTION	ITEMS:	
PDR-55	OR-55 RCA to provide to MSC data which specifies which specified performance parameters will be measured during ATP, the tolerances to be imposed as acceptance criteria, and the accuracy of test equipment measurement capability. Prel. TI-3, 8/22/70	
PDR-56	MSC to review requirements for test points and/or control circuit access that may be required per MSFN or PIA testing for: 6/22	
	1. Engineering Models	
	2. DVT Models	
	3. Production Models	

ON

LCRU KSC - TESTING

June 4, 1970

ATTENDEES

Ed	DeBaecke	RCA
R.	Whitson	KEC
R.	Virostek	RCA
В.	Fraustro	LEC
R.	York	GAC
J.	Miller	MSC

- 1. KSC need stands to mount LCRU for lab test and pad test.
- 2. KSC should consider cooling of LCRU during test. Requirements to be defined by RCA.
- 3. It was agreed that the thermal radiator surface shall be cleaned prior to flight.
 - 4. GAC gave RCA Vol #1 CTS support manual.
- 5. Based on design and test information from PDR, KSC will develop test information for PIA procedure.
- 6. RCA to investigate use of dummy battery with diode protection and GSE interface test connector.

. Miller - MSC-TCSD

R WASteon - KAC

R. Virostek - RCA

DATE _	6-3-70	MEETING NUMBER LCRU-PDR AGENDA ITEM 13.0		
SUBJECT	r Progr	ram Support		
SUMMAR	Y OF DISC	USSION:		
The minutes and action items from this agenda item are presented with the sub-agenda item with which they are associated as follows:				
	13.1	Reliability		
	13.3	Quality Assurance		

DATE _0	-4-70 MEETING NUMBER LURU-PDR AGENDA ITEM 13.1
SUBJECT	Reliability
SUMMAR	Y OF DISCUSSION:
high failu makes an RCA mus product, using the The char	ed that the toggle switches made by TI (and qualified for Apollo) have a re history primarily of a manufacturing process type. Cutler-Hammer environmentally sealed switch may be applicable for LCRU. Otherwise t exercise careful QC surveillance on TI to assure the quality of the It was agreed that RCA/MSC would jointly evaluate the possibility of Cutler-Hammer switch in place of the TI switch. t on part applications was revised to reflect the latest LCRU thermal results and latest estimates of 2N5921 dissipation.
ACTION	TTEMS:
PDR-57	RCA to evaluate the possibility of utilizing Cutler-Hammer switches as alternate and coordinate with MSC. $6/19$
PDR-58	MSC to provide screening and acceptance criteria for TI toggle

NOTE: These Minutes do not constitute contract change authorization. Changes to contract or schedule must be negotiated.

PDR-59 MSC to determine why the NAR toggle switch spec is marked inactive

for use and advise RCA. 6/22

DATE _	6-5-70	MEETING	NUMBER	LCRU-PDR	AGENDA	ITEM _	13.3
SUBJE	CT Quality	Assurance	Э				•

SUMMARY OF DISCUSSION:

RCA stated that DCAS has injected mandatory inspections (presently indicated as temporary) into the manufacturing process which is contrary to MSC/RCA discussions from the December 17, 1969 meeting and the conditions of RCA's proposal. MSC stated that the mandatory inspections were injected by DCAS on the basis of start-up process and would affect the first ten percent of product. RCA stated that accept-reject criteria has not been specified by DCAS. RCA further stated that they understand the position of DCAS on this subject but nevertheless it provides some additional concern in terms of schedule commitments and special provisions must be made to assure adequate DCAS support when needed-including support during RCA multishift and overtime operations. MSC stated they intend to, and will, maintain close surveillance in this area and assure RCA gets all the DCAS support they need.

RCA stated that subcontractor subassembly engineering models will have test parameter concurrence and review by RCA before test and shipment to RCA and test data will be provided with the subassemblies.

DATE _	6-5-70	MEETING NUMBI	ER LCRU-PDR	AGENDA ITEM_	14.0
SUBJEC	TMinute	s and Action Item	Review		
			and the first of the second se		

SUMMARY OF DISCUSSION:

MSC stated that a meeting at MSFC will be held on

June 10 - Pre- CDR - Electrical and EMI

June 11-12 - Crew Station Review

RCA stated they would support the meeting.

MSC/RCA agreed to support a TI on 7/7/70 in Camden.

RCA stated that RCA is presently on strike (as of June 2) and impact on the LCRU program is not yet determinable.

ACTION ITEMS:

PDR-60 RCA should change cable lengths as follows:

TV - 42"

Low gain 8 feet

High gain 6.5'

LCRU PRELIMINARY DESIGN REVIEW 6/3/70, 6/4/70, 6/5/70

DRAWING PACKAGE/LIST OF DRAWINGS

	DRAWING NO.	NAME
	8670924	Family Tree LCRU
PL	8151108	Parts List Res. Bd. Assy.
	8151 1 08	Res. Bd. Assy.
	8151109	Spacer
PL	8151113	Parts List Bracket
	8151113	Bracket
PL	8151114	Parts List Bracket, Bd. MTG.
	8151114	Bracket, Bd. MTG
PL	8151115	Parts List, Bracket, Test Point
	8151115	Bracket, Test Point
PL	8151117	Parts List, Bracket
	8151117	Bracket
	8151119	Nut, Special
	8151121	Bushing
	8151122	Slug
	8151123	Ball Post
	8151124	Ring
	8151125	Ring Assembly
	8151126	Ball Post, Hi Gain Antenna
	8151127	Slug
	8151128	Plate Locking
	8151129	Pin Locking
	8151 1 30	Pin Mtg. LCRU
	8151131	Cap, Tube
	8151132	Stop
	8151133	Ring
	8151134	Cap, Handle
	8151135	Clamp
	8151136	Bushing
	8151137	Tube, Lower
	8151138	Bushing
	8151139	Handle

	DRAWING NO.	NAME
	8151140	Tube, Extending
	8151141	Washer, Bearing
	8151142	Pin, Retaining
	8151143	Pin, Guide
	8151144	Sleeve, High Gain Antenna
	8151145	Sleeve
	8151146	Washer
	81 51147	Pin, Hi Gain Antenna
	8151148	Post
	815 1149	Shaft, Mounting, H.G. Antenna
	8151150	Plug, Ant., H.G.
	8151151	Rod, Center
	8151152	Center, Shaft Handle
	8151153	Handle
	8151154	Ring, Retaining
	8151156	CAM
	8151159	Pin, Lever Stop
$_{ m PL}$	8370850	Receiver, AM 259-7 MHz Parts List
	8370850	Assy. Dwg., RCVR. AM 259.7 MHz
PL	8370851	Parts List, Transmitter, AM 296.8 MHz
	83 70851	Assy. Dwg., Transmitter, AM 296.8 MHz
$_{ m PL}$	8370852	Pts. List, Sig. Processor (UP-LINK)
$_{ m PL}$	8370853	Pts. List, Sig. Processor (DN-LINK)
PL	8370858	Chassis Rivited, XMTR AM
	8370858	Assy. Dwg. Chassis Rivited, XMTR AM
	8370859	Assy. Dwg. Chassis XMTR, (2 pages)
\mathbf{PL}	8370860	Pts. List, Chassis Sig. Proc. (UP-LINK)
\mathbf{PL}	8370861	Pts. List, AMP., RF-Mixer (259.7 MHz)
	8370861	Assy. Dwg., AMP. RF-Mixer (259.7 MHz)
PL	8370862	Pts. List, Chassis, Rivited, AMP., IF/Audio (AM)
	8370862	Chass., Rivited, AMP., IF/Audio (AM) (Assy. Duty)
	8370863	(O&M) Chass., Rivited, AMP. IF/Audio (AM)

DRA	WING NO.	NAME
PL	8370864 8370864	Pts. List, AMP., IF Audio (259.7 MHz) Ass. Dwg. AMP., IF Audio (259.7 MHz)
$_{ m PL}$	8370865	Chass., Rivited, Amp., RF Mixer AM (Parts List)
	8370865	Chass., Rivited, Amp., RF Mixer AM (Ass. Dwg)
	8370866	Chass., Rivited, Amp., RF Mixer AM (O&M Dwg)
PL	8370867	Pts. List, Cordwood Assy., Amp., Audio Squelch (259.7 MHz RCVR)
	8370867	Assy. Dwg.
PL	8370868	Parts List, Bd. Assy., Baseband Cond., (DN.LINK)
	8370868	Assy. Dwg., Bd. Assy., Baseband Cond., (DN.LINK)
$_{ m PL}$	8370869	Pts. List, Chassis Sig. Processor (DN. LINK)
	8370869	Assy. Dwg., Chassis Sig. Processor (DN.LINK)
$_{ m PL}$	8370870	Pts. List, Chass. Volt. Reg.
	8370870	O&M, Chass. Volt. Reg.
	8370871	O&M, Chass. Rivited, Volt. Reg.
PL	8370872	Pts. List, Volt. Reg.
	8370872	Assy. Dwg., Volt. Reg.
	8370874	O&M Cover, LCRU Pressurized
	8370879	Cover, Volt. Reg. Chassis
	8370882	Stowage, Body
	8370883	Cover, Support
PL	8670597	Cable Assy., LCRU/LRV/TV (Parts List)
	8670677	Battery, Special
	8670900	Cover, Transmitter Chassis
	8670901	Cover, Chassis
	8670902	Cover, Chassis, Sig. Processor (DN. LINK)
	8670903	Schematic Wiring Dwg., Amp. Audio Squelch (259.7 MHz RCVR)
	8670904	Sch. Wir. Diag. Baseband Cond. DN.LINK
	8670905	*Swd Amp., IF/Audio (259.7 MHz RCVR)
	8670906	Bd. Printed Wiring, Amp. Audio Sq. (AM RCVR) Top Bd.
	8670907	Bd. Printed Wiring, Amp. Audio Sq. (AM RCVR) Bottom Bd.
	8670908	Bd. Printed Wiring, Baseband Cond., (DN LINK) Top Bd.
	8670909	Bd. Printed Wiring, Baseband Cond., (DN LINK) Bottom Bd.

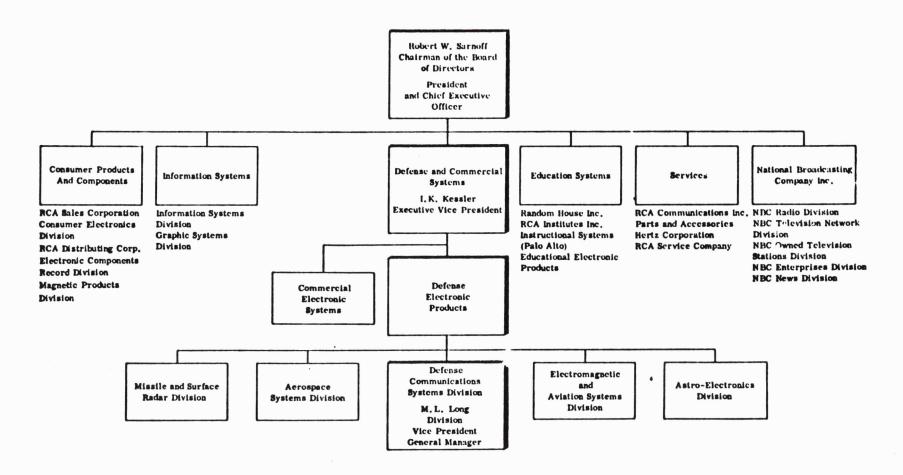
DRA	WING NO.	NAME
	8670912	Cover, LCRU
	8670913	*SWD, DN. LINK Shape Filter
${f PL}$	8670914	Bd. Assy Shape Filter, (Parts List)
	8670914	Bd. Assy., Shape Filter, Down Link
	8670916	Bd., Printed Wiring, Shape Filter, DN.LINK
	8670917	*SWD, Time Share Sensor SW., LCRU
PL	8670918	Pts. List, Time Share Sensor Sw., LCRU
	8670918	Bd. Assy., Time Share Sensor SW., LCRU
	8670920	Bd. Pr. Wiring, Time Share Sensor Sw., LCRU
	8670921	Cover
	8670922	*SWD, Reg. Volt., Redundant
	8670923	Interconnection Diag., Sig. Process (Uplink)
1	8670924	Family Tree LCRU
	8670925	*SWD Sig. Processor (Downlink)
	8670928	*SWD Amp., RF Mixer (259.7 MHz)
	8670929	*SWD XMTR AM (296.8 MHz)
	8670931	Grommet Strain Relief
	8670934	Cover, Chassis RF Mixer
	8670935	Cover, Chassis IF Audio
PL	8670937	Pts. List, Cordwood Assy., Sig. Processor, VOX-AGC
	8670937	Assy. Dwg., Cordwood Assy., Sig. Processor, VOX-AGC
PL	8670938	Pts. List, Cordwood Assy., Sig. Processor, Sig Audio XFMR/Filter
	8670938	Assy Dwg., Cordwood Assy., Sig. Processor, Sig. Audio XFMR/Filter
	8670940	Outline Mtg. (O&M) Receiver, AM (259.7 MHz)
${f PL}$	8670944	Pts. List, Plate Mtg.
	8670944	Assy. Dwgs., Plate Mtg.
${f PL}$	8670945	Pts. List, Control Panel Assy.
	8670947	Cover, XMTR Chassis

^{*}Schematic Wiring Diagram

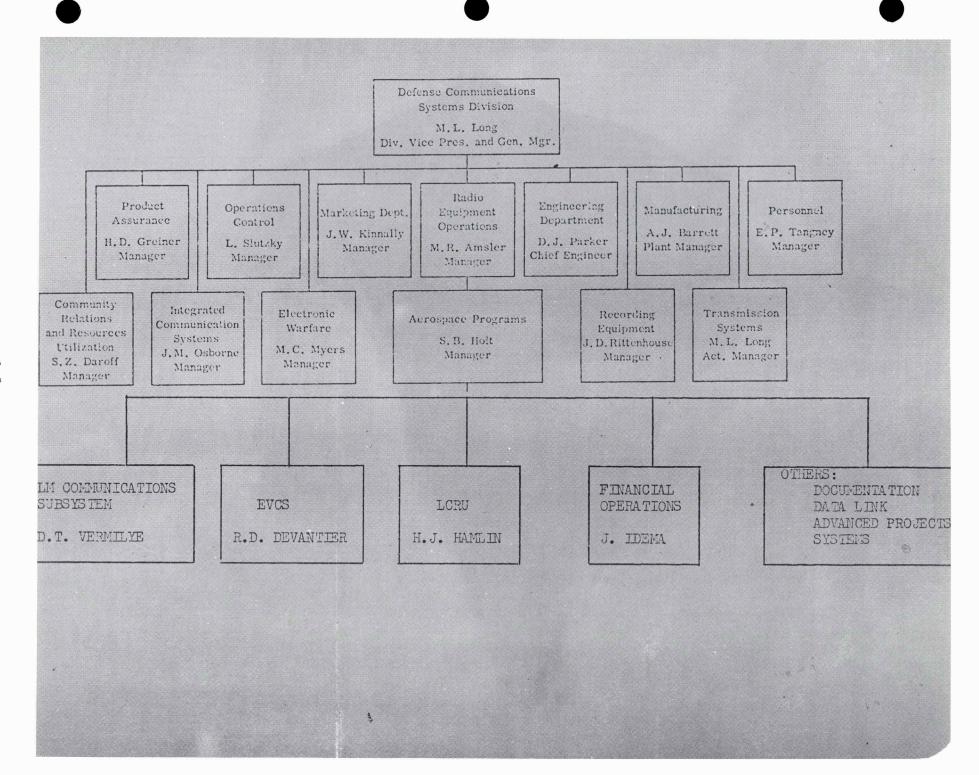
DRA	WING NO.	NAME
	8670950	Door, Battery Access
	8670953	Screw, Assembly
	8670954	Handle Assy.
	8670956	Support-Tube
	8670964	Handle
	8670965	Cap, End, Outboard
	8670966	Cap, End, Inboard
PL	8670967	Pts. List, Cable Assy., Ant., S-Band, Hi&Lo Gain
$_{ m PL}$	8779301	Pts. List, Bd. Assy (Component Mtg.)
	8779301	Assy Dwg., Bd. Assy (Component Mtg.)
	8779302	Cover, Chassis Sig. Processor Up Link
$_{ m PL}$	8779303	Pts. List, Support OSC. Mtg.
	8779305	*SWD, RCVR., AM (259.7 MHz)
$_{ m PL}$	8779306	Pts. List, Shield Chassis
	8779306	Assy Dwg., Shield Chassis
$_{ m PL}$	8779307	Pts. List, Cable Assy, St. Angle Conn., Mixer RF
		(259.7 MHz)
	8779307	Assy Dwg., Cable Assy, St. Angle Conn., Mixer RF (259.7 MHz)
$_{ m PL}$	8779308	Pts. List, Board Assy.
	8779308	Assy. Dwg., Board, Terminal
	8779309	Cover Chassis, Sig. Processor (DN LINK)
$_{ m PL}$	8779310	Pts. List, KNOB
	8779310	Assy. Dwg., KNOB
	8779311	Bracket
	8779312	Housing, Connector
	8779313	Cover, Terminal Connector
	8779314	Guide, Positioning Battery
	8779315	Guide, Positioning Battery
	8779316	Guide, Positioning Battery
	8779317	Bracket, Support, Battery
	8779318	Slug
	8779319	Bracket

DRA	WING NO.	NAME
	8779320	Housing, Ball
	8779321	Post
	8779322	Housing, Hi Gain Antenna
	8779323	Bushing, Hi Gain Antenna
	8779324	Housing, Cable
	8779325	Stop Assembly, Lower
	8779326	Stop Housing, Lower
	8779329	Shaft Assembly
	8779330	Shaft
	8779331	Arm
	8779332	Fitting, LCRU Mast
	8779333	Housing
PL	8779336	Pts. List, Latching Device
PL	8779337	Cover Assy., Connector
	8 555251	Transistor Field Effect, N-Channel

1.0 INTRODUCTION


Lunar Communications Relay Unit

PRELIMINARY DESIGN REVIEW


RCA

CORPORATE STRUCTURE

1-2

AGENDA

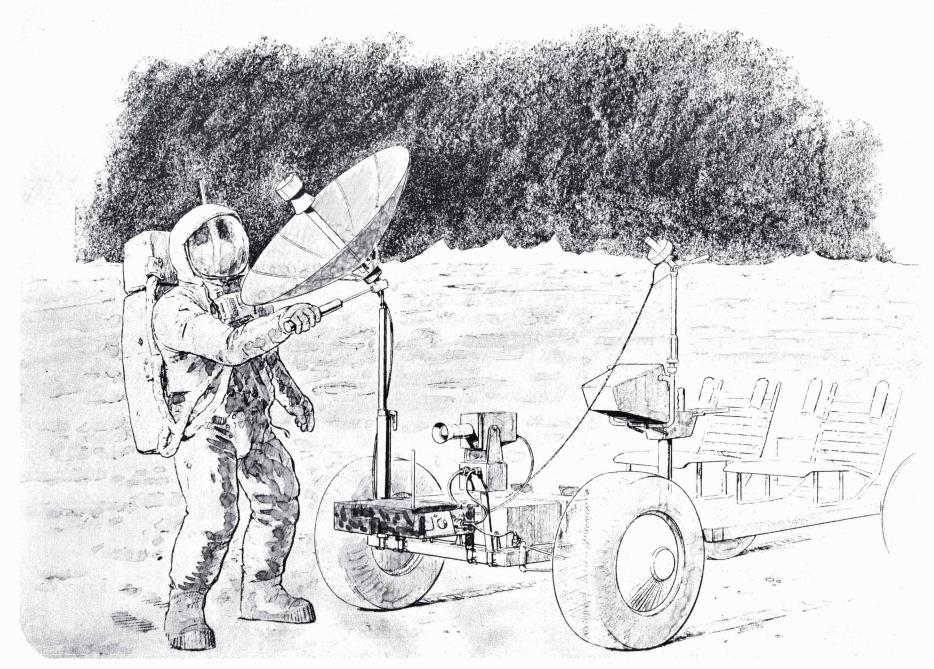
LUNAR COMMUNICATIONS RELAY UNIT

PRELIMINARY DESIGN REVIEW

JUNE 3, 4, 5 - 1970

			5 CNE 5, 4, 5 1570	
9 AM	1.0	INTROD	OUCTION	H.J. Hamlin
6-3-70		1.1 1.2 1.3	Purpose What we were to do What you will see	
	2.0	MANAG	EMENT OVERVIEW	H.J. Hamlin
		2.1 2.2 2.3 2.4 2.5	Organization Schedule Problems Weight Budget Power Budget	
	3.0	SUBCO	NTRACTS	D.A. Orendac
	4.0	OPERA	TIONS	A.M. Burke
		4.1 4.2 4.3	Operations Sequence and Mission Timelines Mode Switching Circuit Margin Summary	
1 PM	5.0	SYSTEM	M DESIGN	B.M. Trachtenberg
6-3-70		5.1	Signal Design	
			EVCS/LCRU/MSFN TV/LCRU/MSFN MSFN/LCRU/EVCS MSFN/LCRU/TV	
		5.2	Link Analysis	
			EVCS/LCRU LCRU/EVCS LCRU/MSFN Primary Secondary TV Voice MSFN/LCRU Voice TV Standby MSFN/LM MSFN/LCRU	
		5.3	Sub System Configuration (th	rough CCA-6)

	6.0	ELECT	ELECTRICAL INTERFACES						
		6.1	Electric	eal	J.J. Connelly				
			EMI &	ncl. Cables) Grounding	J.J. Connelly/G. Houck				
		6.2	TV		B.M. Trachtenberg				
	7.0	LCRU	LCRU ELECTRICAL DESIGN						
		7.1 7.2		cal Design (Overall) uild Assembly	J.J. Connelly				
			7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7	Down-Link Signal Processor (Include 14.5 & 1.25 VCO) VHF Transmitter	J.J. Connelly E. DeBaecke E. DeBaecke E. DeBaecke E. DeBaecke C. DeBaecke E. DeBaecke				
		7.3		ract Assemblies	01 14				
			7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7	S-Band Diplexer	O. Ramanis O. Ramanis E. DeBaecke E. DeBaecke E. DeBaecke M. Adams F. Nangle				
		7.4	LCRU	Assembly	, and the second				
			7.4.1 7.4.2 7.4.3 7.4.4 7.4.5	RF losses budget Case electrical including signal flow and grounding Control Panel Cabling LCRU Power Utilization	O. Ramanis J.J. Connelly J.J. Connelly J.J. Connelly J.J. Connelly				
		7.5	FMEA		H. Farcus				
9 AM 6-4-70	8.0	LCRU 8.1 8.2 8.3	Mechan Vibrati	TICAL INTERFACES tical, LM, LRV on Analysis al, LM, LRV, TV	R. Holston R. Holston G. Grube				
	9.0	LCRU	MECHAN	TICAL DESIGN	R. Holston				
		9.1 9.2		embly Arrangement Weight Analysis					


		9.3	Subasser	mblies	R.	Holston
			9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9	S-Band Receiver S-Band Transmitters FM/PM PM/PM		
				Diplexer VHF Antenna		
			9.3.12 9.3.13	Low Gain Antenna Antenna Connectors DC-DC Converter		
		9.4 9.5 9.6 9.7				
			9.7.1 9.7.2 9.7.3	Radiator Wax Package Front Wax Package Internal Wax Package		
		9.8 9.9 9.10 9.11 9.12 9.13	Case De LCRU M High Ga Antenna Stowage	Panel Design esign Modifications founting Post in Antenna Mast Positioning Mechanisms Container	w.	Babcock
				Weight Analysis Structural Design		
1 PM	10.0	THERM	AL DESI	GN		
6/4/70		10.1	System 10.1.1 10.1.2	Analysis Preliminary Multinode Temperature Gradients	∕R. В. В.	Scott 5 Shelpuk Shelpuk
		10.2	Therma	l Design	В.	Shelpuk
			10.2.1 10.2.2 10.2.3 10.2.4 10.2.5	Phase Change Package Radiator Thermal Blanket Thermal Finishes Component Temperatures	B. G. G.	Shelpuk Shelpuk Grube Grube Grube

3 PM 6/4/70	11.0	TEST PROGRAM	R. Virostek
		11.1 Thermal 11.2 Engineering Model 11.3 DVT 11.4 QT 11.5 ATP 11.6 EMI Control Plan	
	12.0	TEST EQUIPMENT DESIGN	R. Virostek
9 AM	13.0	PROGRAM SUPPORT	W.L. Carlino
6/5/70		13.1 Reliability 13.1.1 Organization 13.1.2 Program Status 13.1.3 Subcontractor Reliability Status 13.1.4 Parts Qual Status 13.1.5 Parts Application 13.2 Configuration Control 13.2.1 Program Control & Status 13.3 Quality Assurance 13.3.1 RCA Quality Plan and Program Status 13.3.2 Subcontractors Controls and Status 13.3.3 Parts-Approved Vendors 13.3.4 Equipment Flow Charts Inspection Instructions Environmental Control	H. Farcus H. Farcus W.L. Carlino G. Floyd
1 PM 6/5/70	14.0	MINUTES AND ACTION ITEM REVIEW	

1-1

LCRU/LRV INTERFACE

RGA

PURPOSE OF THE PDR -

- TO PRESENT THE PRELIMINARY DESIGN AND PROVE ITS FEASIBILITY
- TO PROVIDE CURRENT PROGRAM STATUS
- TO REVIEW CURRENT PROBLEMS AND ASSIGN ACTION ITEMS WITH RESPONSIBILITY DESIGNATED
- TO RECEIVE CONCURRENCE IN THE DESIGN APPROACH OR DIRECTION IN CASE OF DIFFERENCES

RGA

WHAT WE WERE TO DO -

BUILD MECHANICAL MOCKUP

PLACE ALL SUBCONTRACTS

RESOLVE LM INTERFACE

RESOLVE LRV INTERFACE

RESOLVE TV INTERFACE

RELEASE AND START BUILD OF EM

RELEASE DVT MATERIAL

CONDUCT VENDOR PDR'S

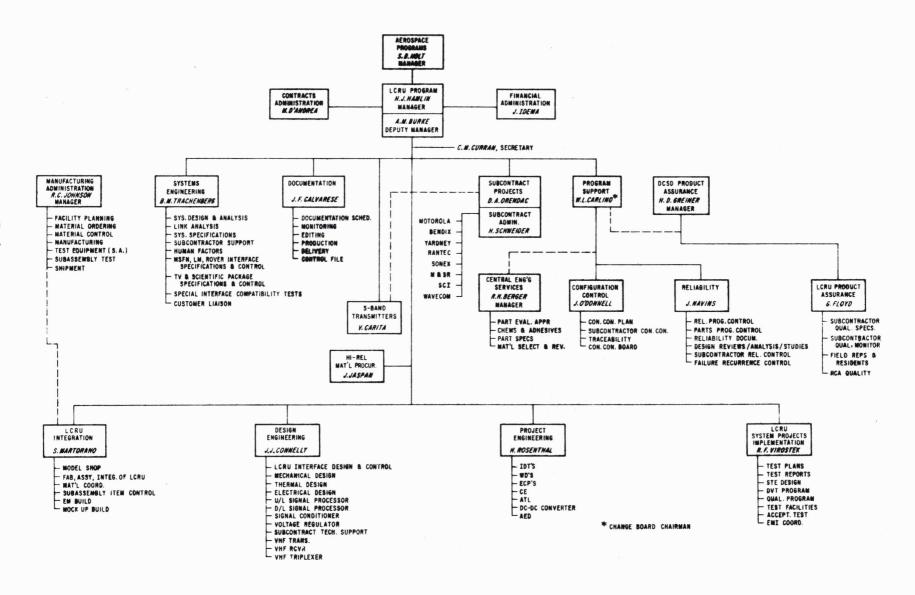
PROVIDE VENDOR SCD'S

CONDUCT RELIABILITY EVALUATION

BREADBOARD AND TEST RCA BUILD ITEMS

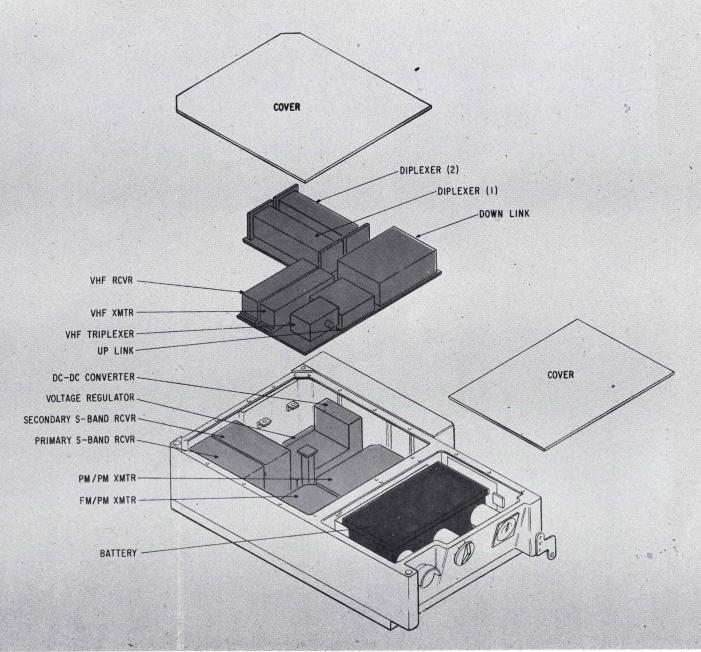
THERMAL DESIGN MODIFICATION

RGЛ

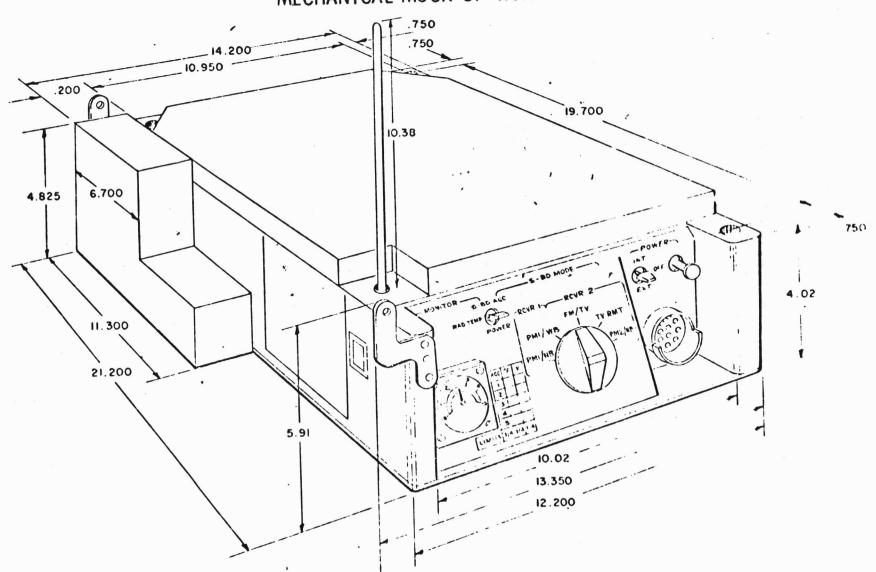

WHAT YOU WILL SEE -

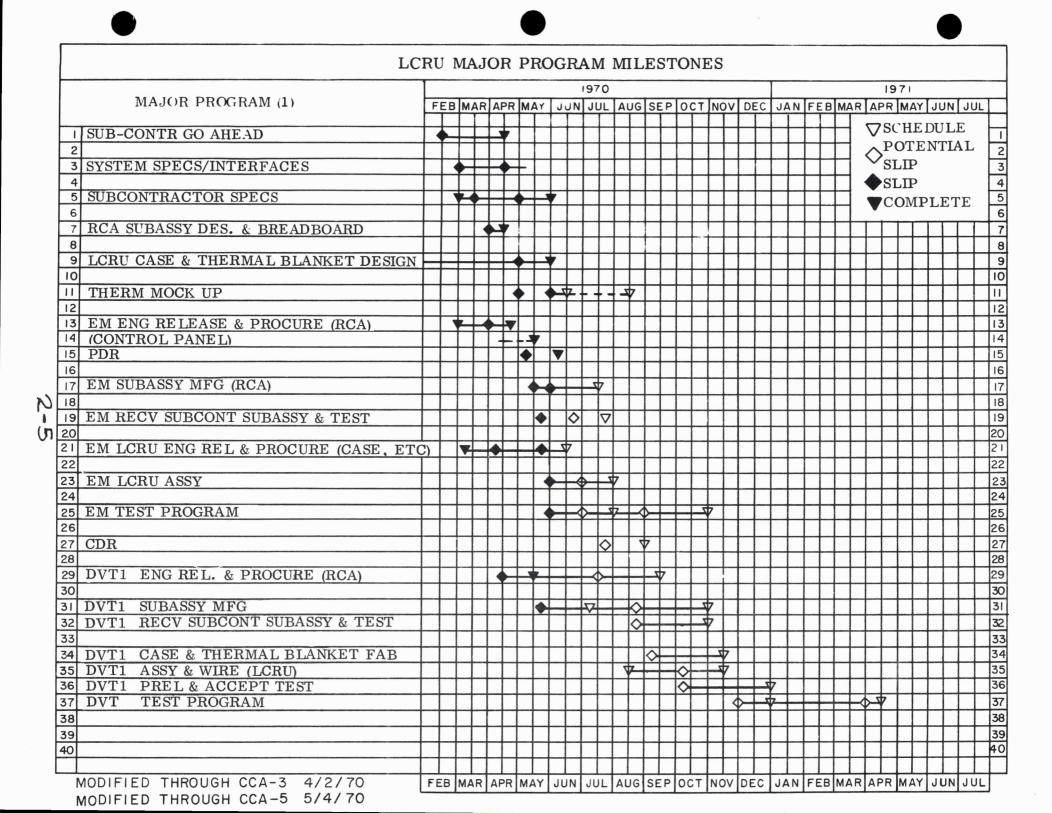
- PROGRAM OVERVIEW
- INTERFACE DESIGN STATUS
- LCRU MECHANICAL MOCK-UP INCLUDING ANTENNAS
- STOWAGE CONTAINER MECHANICAL MOCK-UP
- ANTENNA POSITIONING MECHANISMS MOCK-UPS
- MOCK-UP OF HI-GAIN ANTENNA POSITIONING MECHANISM
- LCRU MOON WEIGHT MOCK-UP
- STOWAGE CONTAINER MOON WEIGHT MOCK-UP
- LRV BUMPER ASSEMBLY MOCK-UP
- TV CAMERA MOCK-UP
- LCRU DESIGN DRAWINGS
- LCRU DESIGN DATA AND ANALYSIS
- EMI DESIGN
- SUBCONTRACTOR SOURCE CONTROL DRAWINGS
- FMEA & RELIABILITY STATUS

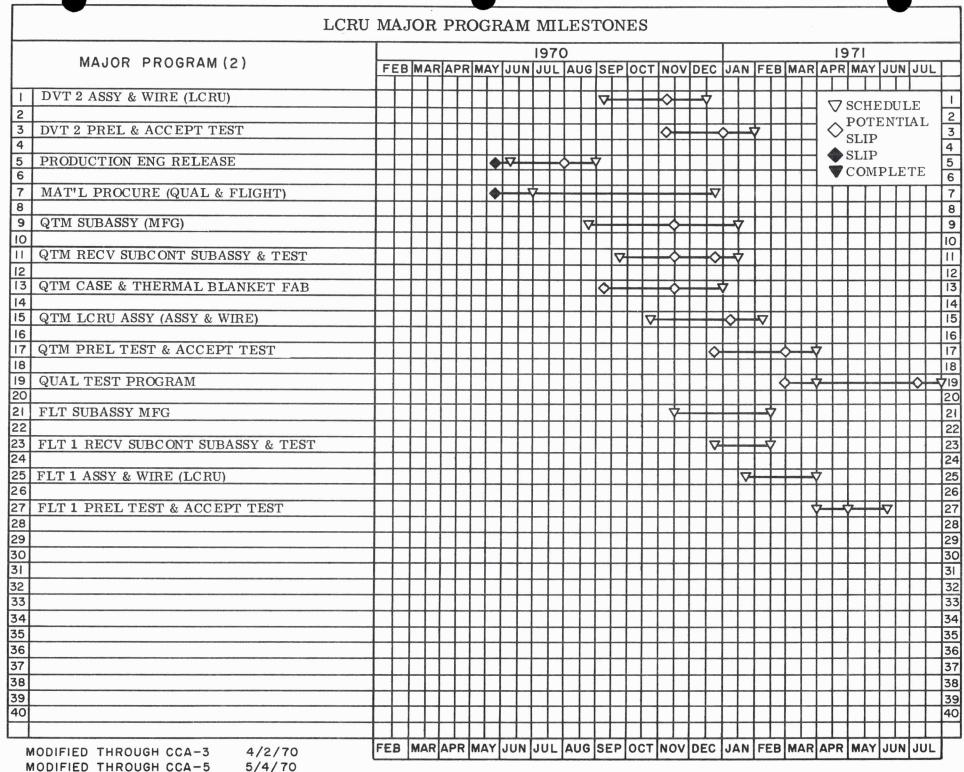
2.0 MANAGEMENT OVERVIEW

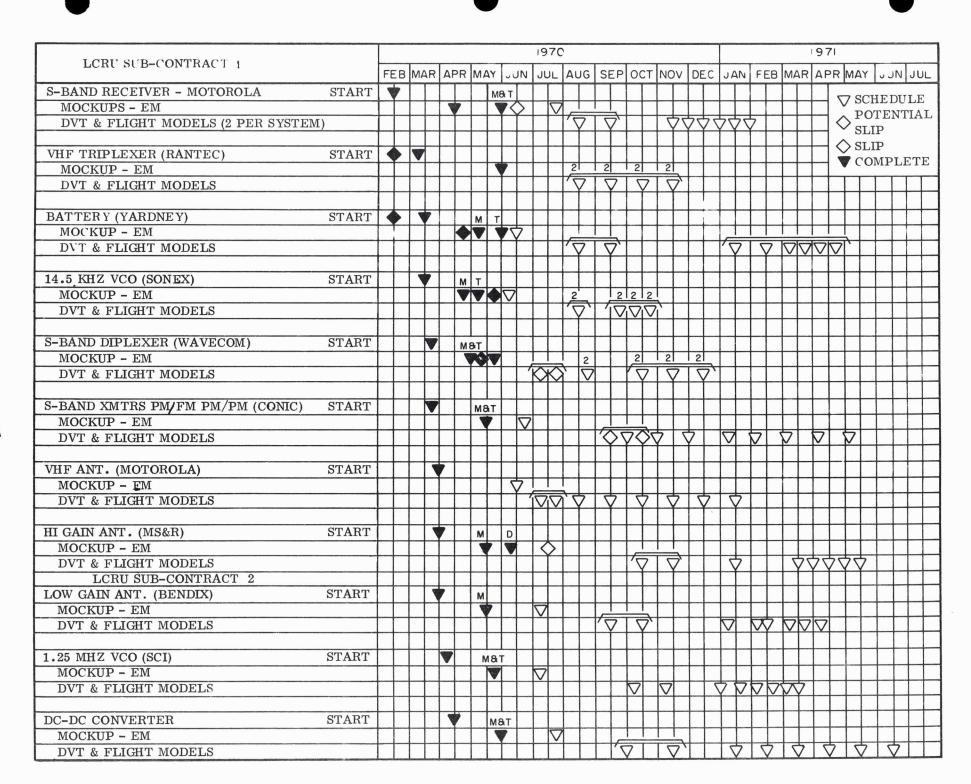


LCRU PROGRAM ORGANIZATION


LCRU SUBASSEMBLY ARRANGEMENT




LCRU UNIT


MECHANICAL MOCK UP WITHOUT BLANKET

MODIFIED THROUGH CCA-5 5/4/70

LCRU DOCUMENTATION SCHEDULE

Δ 2 TVO

EQUIP	MENT DELIVERY																-		— FA	ΑΔ	Δ	Δ	Δ	Δ
						PDF	' 7		CD	R										ı	2	3	4	5
		Ţ	Π					197	0						Γ				19	71				
REF.	ITEM	PE	1	F	M	A	M	J	J	A	s	o	N	D	J	F	М	A	M	J	J	A	s	o
EXHIB.															_	_				_				
A																								
5. 1	MONTHLY LETTER PROGRESS REPORT					A	A	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	2
5.2	DESIGN DOCUMENTATION																							
а	CONFIGURATION CONTROL PLAN	1					4											Δ	NAS	A)ELI	VER	Y	
b	SUBASSEMBLY SPECIFICATIONS (SUBCONTRACT ITEMS)	I					4		Δ										SHII	PPE	D			
С	THERMAL ANALYSIS REPORT	I						4	1]&	REV	/UF	PDAT	E		
d	EMI CONTROL PLAN	п																0	IN-F	100	SE C	ELI	VEF	Y
е	FAILURE MODE AND EFFECT ANALYSIS	п					A			4														
* f	DESIGN DRAWINGS	п					A			Δ					Å	П	T	T						
5.3	TEST DOCUMENTATION													•										
а	DESIGN VERIFICATION TEST PLAN/PROCEDURE	I								PI	LAN	ΙΔ		A P	RO	C.	T	T	T		1			
а	DESIGN VERIFICATION TEST REPORT	I													Π	T	T	T		V.				
b	QUALIFICATION TEST PLAN/PROCEDURE	I											P	LAP	ΔV		ΔP	ROC						
b	QUALIFICATION TEST REPORT	I												T	T		1	P	ARTI	AL /	Δ	ΔF	IN/	ī
c	PRE-DELIVERY ACCEPTANCE TEST PLAN/PROCED.	I								P	LAI	ΝΔ		∆ PI	ROC			\top	T	Г				_
d		I													Y	Г		Т						
* e	TRAINING MANUAL	I											1	4				T						
5.4	QUALITY ASSURANCE DOCUMENTATION																							
a		I		A			K								Π	Г	T	T	T					
b	MATERIAI & PROCESS SPECIFICATIONS	ш	ON	RE	QUE	ST-			-															
c		п											D	VT (0.	Δ.		0_	FI	МΔ	. Δ.	Δ_	Δ.	7
5.5	RELIABILITY ASSURANCE DOCUMENTATION	+-										-			- 1-	-2-		- QTI	4		1 – 2	- 3	- 4	-
a		I		A		K								T		T	T	T	T	T				
b	ELECTRICAL PARTS LIST (QPL/APL)	п		_			lack			1														
c		m					_		100	0												\Box		
d		m						\Box		0														
е		п	AS	RE	OUIF	RED			•								\vdash				1			
e		† -	-	RE		-			•	\vdash					+	+	_	+	+	1				
* f		Î	1	1				Δ			_		_	1	1	1	1	+	1			\vdash		_
* g		Ī	AS	RE	DUIR	FD-			•									\top				Γ 1		
6	SPECIAL STUDY REPORTS	+-	1		THE										1		+							
APPEN.		+	1				_							-	_		_	_		-				
2. 1. g. 1	QUALIFICATION STATUS LIST	п													Т	T	T	Y		T				
2. 1. g. 2		п						\vdash							1	1	1	T	1			\Box		Г
B. m		1						1	-	A	6	0	N	P	1	F	1 34	TA	M	1.1	J	Α	s	0
*REFLECTS DAN 1654 & THROUGH CCA-5					IM	10	10	Λ	3															
					1970																			

LCRU DESIGN STATUS -

- LCRU MECHANICAL MOCK-UP COMPLETE.
- ENGINEERING MODEL IN-HOUSE SUBASSEMBLIES IN PRELIMINARY TEST. ALL DATA TAKEN TO DATE IS WITHIN DESIGN LIMITS.
- DESIGN APPROACH FOR LCRU AND HIGH GAIN ANTENNA MAST MOUNTING MECHANISM HAS BEEN FINALIZED.
- ENGINEERING MODEL DRAWINGS APPROXIMATELY 80% COMPLETE.
- IN-HOUSE DVT SUBASSEMBLY PARTS RELEASED-COMPLETE. CONTROL PANEL AND CASE DVT PARTS RELEASE SCHEDULED FOR 6/8/70.
- THERMAL MOCK-UP COMPLETION SCHEDULED FOR 6/8/70.
- DC/DC CONVERTER BREADBOARD DATA ALL WITHIN SPECIFICATION LIMITS.
- PRELIMINARY LCRU VIBRATION ANALYSIS AND TEST DATA COMPLETE.
- PRELIMINARY THERMAL DESIGN ANALYSIS COMPLETE.

ENGINEERING MODEL- STATUS SUMMARY

RCA MAKE ITEMS -% COMPLETION

	VHF TRANSMITTER	VHF RECEIVER	UP LINK SIGNAL PROCESSOR	DOWN LINK SIGNAL PROCESSOR	VOLTAGE REGULATOR	CASE	CONTROL PANEL
SKETCHES	95	95	95	90	95	80	90
FABRICATION	COMPLETE	COMPLETE	COMPLETE	COMPLETE	COMPLETE	55	55
WIRING	COMPLETE	80	60	40	70	NOT STARTED	NOT STARTED
MODULE TEST	70	30	80	30	60	NOT STARTED	NOT STARTED

MECHANICAL MOCKUP COMPLETE
THERMAL MOCKUP 75% COMPLETE

DVT MODEL STATUS SUMMARY

DRAWINGS

70% COMPLETE

PARTS RELEASES

A. CASE

6/1/70

B. SUBASSEMBLIES

90% COMPLETE

FABRICATION RELEASE

6/15/70

ASSEMBLY RELEASE

7/15/70

2-1

•	ACTION ITEM	RESP.	DATE	AGENDA	ITEM
TI-2-1	RCA to determine and/or correct VHF antenna insert to assure S-Band reradiation does not occur.	RCA	PDR	2.0	1
TI-2-2	RCA to support LM-NESA-CCSR on 5/14 with a storage container mock-up, and LCRU and battery if possible. Provide Velcro provision with container - including Work Table Straps.	RCA . clus 12 1098-10 5/20	5/14/70	2.0	2
TI-2-3	RCA to provide battery handle retention for battery storage in LM-NESA.	RCA	PDR -	2.0	3
TI-2-4	BCA/MASA to jointly review potential damage to LCRW during insertion and withdrawal in the MESA at COSR on 5/14/70 to assure damage cannot occur.	RCA/NASA clos=2 109=100 5/20		2.0	и
TI-2-5	MSC/GAC to define stowage container handling requirements as function of MESA.	MSC/GAC clus-cà 1094 -		2.0	5
TI-2-6	MSC/GAC to define stowage container handle and dimensional requirements.	HSC/GAC clus-		2.0	6
TI-2-7	MSC to determine feasibility of moving Lo Gain antenna closer to Astronaut-rearward.	MSC	5/13/70	3.1	1
TI-2-8	RCA to provide impact of implementing Low Gain Antenna Pointing #3 design concept.	RCA	5/23/70 PDR 1096- 11	3.1	2
TI-2-9	RCA to provide double locking LCRU/LRV mountir legs preferably with lever action. Protrusion below LRV mount is not permitted.	RCA	PDR	3.1	3
TI-2-10	RCA to provide leg (LRV) forces data to MSC to enable LRV mounting structual analysis and design.	RCA	PDR	3.1	lı
TI-2-11	RCA to implement straight through mounting interface for high gain antenna/ERV Interface (lever or equiv. 1/4 turn-locking). No protrusion below ERV chassis permitted	RCA	PDR	3.1	5

	ACTION ITEM	RE	SP DATE	AGENI	DA ITEN
TI-2-12	MSC to advise on 10 ⁴ force acceptance for high gain antenna deployment.	clos 2 d	5/12	70 3.1	6
T I-2-13	RCA to evaluate optical sight and assure that minimum 100 earth field of view is obtained and that image observation is possible three feet from sight and accurate pointing can occur at 1200 from optical centine.	n	PDR CPEN NC. 11	46 3.1	7
TI-2-14	RCA to evaluate effect on image (pointing capability and bright ness effects) when sun is 10° and further from earth.		PDR	3.1	8
TI-2-15	MSC to determine amount of LRV deflection and effect on antenn pointing of LRV operations: such as rock loading, payload activicamera removal, etc.	ch	sc 5/13/ 0re	770 3.1	9
TI-2-16	MSC to advise RCA of estimated Astronaut hand loading effects high gain antenna pointing (effon LRV chassis and deflection changes when Astronaut removes hand).		5/13/ ê ^{FE}		
TI-2-17	MSC to specify DC-DC/IRV source impedance and/or relaxation of EMI requirements to enable the DC-DC converter to work to a higher source impedance.	closa	مده ۲	p-2	1
TI-2-18	MSC to take action to assure the ICD provides adequate thermal if face definitions.		5/13/ CPEN	/70 4.0	1
TI-2-19	RCA to provide to MSC a detaile LRV interface-mechanically and thermally for subsequent MSFC r and action at LRV CDR		clos=1 1098-10.1 5/30		2
TI-2- 20	MSC to provide TV-ICD which income thermal interface characteristic		5/18/ ο ρε i J	/70 4.0	3

	ACTION ITEM	RESP.	DATE	AGENDA	ITE
(I-2-21	MSC to review APEX/Band pass filter design in connection with frequency stability of 1.25 MHZ VCO and advise RCA of adequacy/inadequacy. */off-	closed	5/12/70	5.1	ı
fI-2-22	3:1 ratio.	RCA 105 e 2 5/ 108 & - 7.1	•	5.1	2
rI-2-23	RCA to evaluate S-Band TX 28 Volt lines for feacible means of eliminating single point failure.	RCA 0 5 4 2 10 9 & -10.1 5/20	5/8/70	5.1	3
rI-2-24	RCA to perform evaluation of Conic Transmitter to determine advantages/ disadvantages of deletion of high power regulator and make recommenda- tions to MSC.	RCA	PDR	5.1	և
ri-2-25	MSC to evaluate the LCRU pressure/ gas recommendations of RCA and advise of acceptability by PDR.	MSC	PDR	5.2	1
TI-2-26		MSC 5 2 2 5/12 06 6 - 3 · 1	5/8/70	6.0	1
TI-2-27	FSC to advise RCA of Dust (mechanical) test requirements.		PDR	6.0	2
TI-2-28	MSC to supply IM-CTS data to support PIA test Proc.	MSC	8/13/70	6.0	3
TI-2-29	RCA to review the MSC GSE block dia- gram to verify that the MSC equip- ment is adequate to support the RCA DVT and qualification testing of solar- simulation/thermal vacuum in the MSC chamber facility.	RCA clus- 3119- 5/2	५ -।	7.0	1
PI-2-30	RCA to review grounding scheme (including TV/EXT Power Interface) and present at PDR.		PDR	8.0	1
FI-2-31	RCA to evaluate effect of changing TV cable from 22 inches to 5 feet.	RCA closed 1098-10.1 5/20	5/11/70	8.0	2

	ACTION ITEM	RFSP.	DATE	AGENDA	ITE"
TI-2-32	MSC to specify in TV ICD the DC voltage from the Camera which represents center frequency (e.g., center of camera signal excursion).	115C Closud TV-1CU 5/20	5/18/70	8.0	3
TI-2-33	RCA to provide by the PDR an analysis of all deviations and "hardware buildup" tolerances for the PM and FM transmission modes.	RCA	PDR	8.0	Į,
TI-2-34	RCA to submit "parts for qualification" list at PDR	RCA	PDR .	10	1
11-2-35	MSC to advise RCA of decision with regard VHF failure mode.	clusal par Talain Risi	ASAP /H.J.H 5/12	10	2
TI-2-36	MSC to determine the need for Apollo Operations Handbook type of document for LCRM.	MSC	PDR	12	1
TI-2-37	MSC to advise RCA when Z G connectors can be provided.	KSC	PDR	14	1
TI-2-38	RCA shall work around on all connectors on assumption that MSC cannot supply the Z G connect	RCA clos-2 ors. 1095-10	5/7/70 .i	14	2
TI-2-39	MSC to advise RCA of isolated vs non-isolated DC-DC converter	150 close 1895-10 5/20	5/13/70 · (5.1	1

RGA

PROBLEMS -

CASE PRESSURIZATION

DOWN LINK FREQUENCY

TV INTERFACE

S-BAND TRANSMITTERS

INTERFACE CABLES (LONGER)

LRV BATTERY COVERS

LGA MOUNTING MAST

ZERO-G CONNECTOR

HGA SIGHT

CONTROL PANEL SWITCHES (DVT)

LRV VIBRATION (& FACILITATION)

THERMAL INTERFACES (TV & LRV)

LM VIBRATION (GAC TESTS & AMPLIFICATION)

STOWAGE CONTAINER DESIGN

BATTERY (CAPACITY & THERMAL)

DUST TESTING

LCRU EMERGENCY MODE

HAND CARRY WEIGHT

LCRU	54.790
LOW GAIN ANTENNA	. 820
LOW GAIN ANTENNA POSITIONING MECHANISM AND ARM	. 440
CABLE	.756
TOTAL	56.806

9.5 LB MOON WEIGHT

LCRU UNIT WEIGHT ANALYSIS

SUBASSEMBLY	WEIGHT, LB.	SUBASSEMBLY	WEIGHT, LB.
VHF TRIPLEXER VHF TRANSMITTER VHF RECEIVER SEC S BAND RECEIVER PRI S-BAND RECEIVER	0.300 0.500 0.500 1.500	DC DC CONVERTER VOLTAGE REGULATION BATTERY WAX PACKAGE 1 WAX PACKAGE 2	2.500 0.250 9.400 10.50*
FM/PM TRANSMITTER PM/PM TRANSMITTER	2.620 2.620	WAX PACKAGE 3 J VHF ANTENNA	.250
DIPLEXER (1) DIPLEXER (2)	1.000 1.000	CASE, COVERS AND PANEL CONTROL PANEL PARTS	14.000 1.750
UPLINK DOWN LINK	0.500 1.000	THERMAL BAG INTERNAL CABLING	2.100 1.000
			54.795
		ESTIMATED WEIGHT:	

*ORIGNAL DESIGN CRITERIA WAS 11.0 LB - FINAL DESIGN WEIGHT ESTIMATE IS LESS THAN 10.0 LB

NOTE: PRESENT MECHANICAL MOCK UP IS 51.0 LB

LRV INTERFACE

LCRU/LRV STOWED WEIGHT, LB

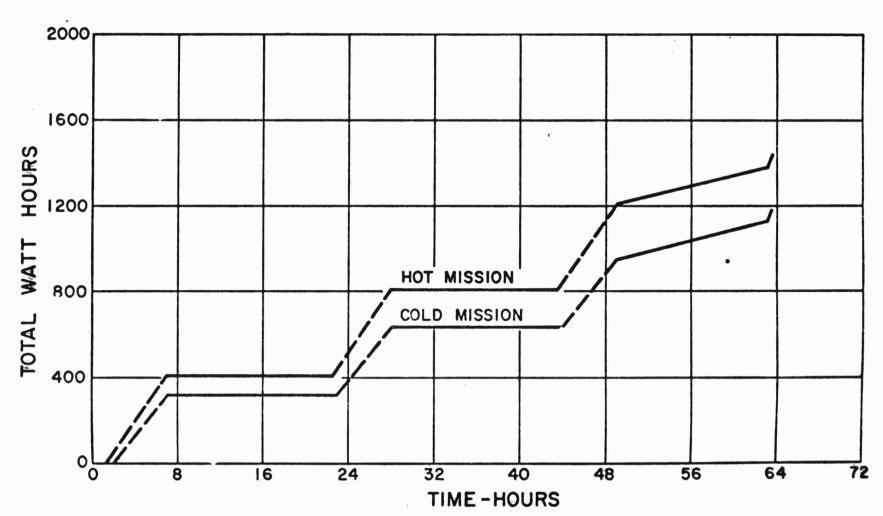
•	LCRU UNIT	54.790
•	LCRU UNIT MOUNTING LEGS	1.200
•	HIGH GAIN ANTENNA	3.510
•	HIGH GAIN ANTENNA POSITIONING MECHANISM	.600
•	HIGH GAIN ANTENNA MAST	2.400
•	LOW GAIN ANTENNA	.820
•	LOW GAIN ANTENNA POSITIONING MECHANISM AND ARM	.440
•	CABLES HIGH GAIN ANTENNA LOW GAIN ANTENNA POWER/TV INTERFACE	. 680 .756 1.000
	TOTAL	66.196

LM INTERFACE

STOWED WEIGHT

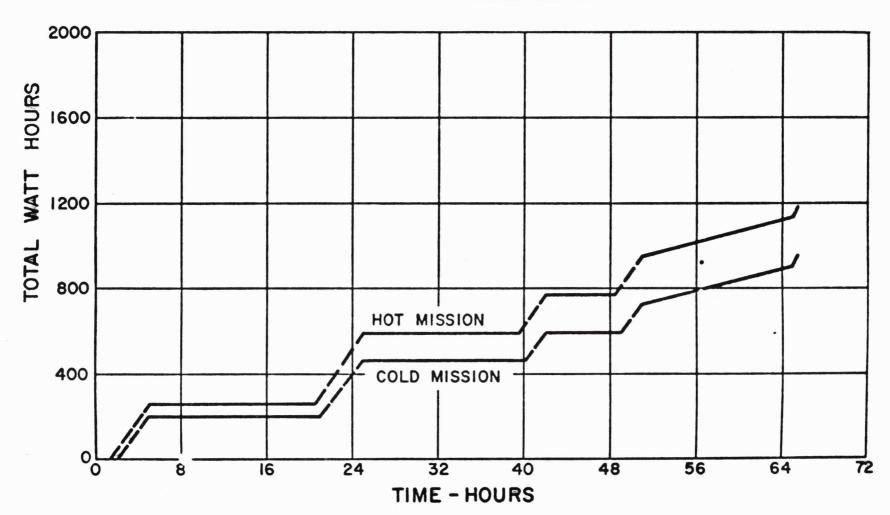
		WI. LBS.	ICD
•	LCRU UNIT	54.790	55.0
•	STOWAGE CONTAINER	17.106	18.0
		71.896	

NOTE: REPLACABLE BATTERIES NOT INCLUDED



STOWAGE TUBE WEIGHT ANALYSIS

		LB
•	LCRU UNIT MOUNTING LEGS (2)	1.200
•	HIGH GAIN ANTENNA	3.510
•	HIGH GAIN ANTENNA POSITIONING MECHANISM	0.600
•	HIGH GAIN ANTENNA MAST	2.400
•	LOW GAIN ANTENNA	0.820
•	LOW GAIN ANTENNA POSITIONING MECHANISM AND ARM	0.440
•	CABLES	
	HIGH GAIN ANTENNA	0.680
	LOW GAIN ANTENNA	0.756
	POWER TV INTERFACE	1.000
•	STOWAGE TUBE	5.700
	TOTAL STOWAGE TUBE W/CONTENTS	17.106
	ICD WT =	18.000



WATT HOURS VS TIME TIMELINE I

RGA

WATT HOURS VS TIME TIMELINE 2

LCRU POWER REQUIREMENTS - WATTS

SUBASSEMBLY	MODE 1 PM1/NB	MODE 2 PM1/WB	MODE 3 FM/TV	MODE 4 TV RMT (STANDBY)	MODE 5 PM2/NB
VHF_RECEIVER	1.17	1.17	. 1.17	1.17	1.17
VHF TRANSMITTER	4.10	4.10	4.10	. 35	4, 10
S-BAND RECEIVER	1.00	1.00	1.00	1.00	1.00
PM/PM TRANSMITTER	47.8	47.8	0.29	0.29	0.29
FM/PM TRANSMITTER	0.29	0.29	53.7	0.29	53.7
UP LINK SIGNAL PROCESSOR	0.15	0.15	0.15	0.15	0.15
DOWN~LINK " "	0.76	1.46	1.46	1.46	0.76
VOLTAGE REGULATOR	2.20	2.35	2.35	2.35	2.20
CAMERA ASSEMBLY (STILL)	-	÷ -	21.0	6.00	-
CAMERA ASSEMBLY (IN MOTION	1) -	-	21.0+2.0		•
TOTAL					
WATTS AT NOMINAL BATTERY VOLTAGE	57.5	58.4	87.2	13.1	63.4
Р	OWER REQUI	REMENTS US	ING EXTERNAL	POWER	
LCRU	57.5	58,4	87.2	13.1	63.4
DC-DC CONVERTER	11.5	11.7	17.5	2.6	12.7
TOTAL WATTS	69.0	70.1	104.7	15.7	76.1

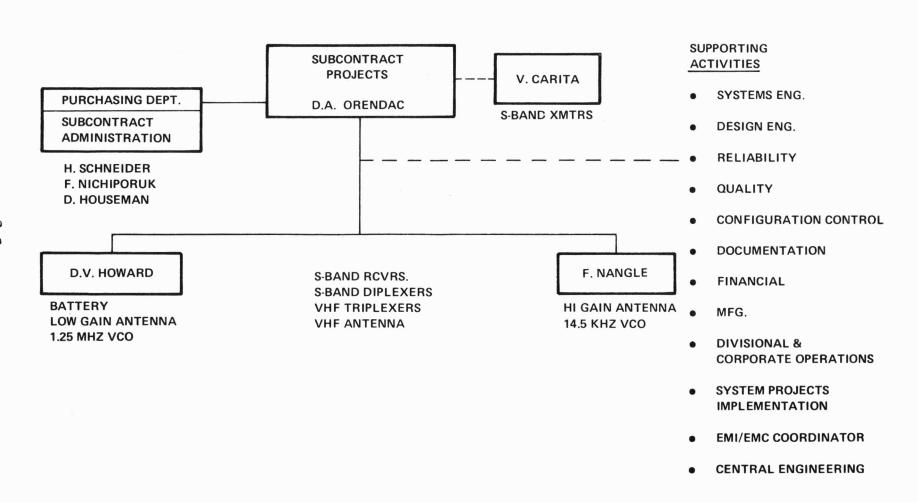
LCRU HEAT DISSIPATION - WATTS - INTERNAL BATTERY

RGA

WORST CASE - MAXIMUM VOLTAGE SUPPLY

SUBA SSEMBLY	MODE 1 PM1/NB	MODE 2 PM1/WB	MODE 3 FM/TV	MODE 4 TV RMT (STANDBY)	MODE 5 PM2/NB
VHF RECEIVER	1.17	1.17	1.17	1.17	1.17
VHF TRANSMITTER	3.45	3.45	3.45	0.35	3.45
S-BAND RECEIVER	1.00	1.00	1.60	1.00	1.00
PM TRANSMITTER	46.6	46.6	0.29	0.29	0.29
FM/PM TRANSMITTER	0.29	0.29	52.0	0.29	5 2.0
UP-LINK SIGNAL PROCESSOR	0.15	0.15	0.15	0.15	0.15
DOWN-LINK " "	0.76	1.46	1.46	1.46	0.76
VOLTAGE REGULATOR	3.45	3.45	3.70	3.70	3.45
DC-DC CONVERTER IDLER	3.00	3.00	3.00	3.00	3.00
TOTAL	59.9	50.6	66.2	11.4	65.3
	NOMIN	AL VOLTAGE SU	IPPLY		
VHF RECEIVER	1.17	1.17	1.17	1.17	1.17
VHF TRANSMITTER	3.45	3.45	3.45	0.35	3.45
S-BAND RECEIVER	1.00	1.00	1.00	1.00	1.00
PM TRANSMITTER	41.0	41.0	0.29	0.29	0.29
FM/PM TRANSMITTER	0.29	0.29	45.7	0.29	45.7
UP LINK SIGNAL PROCESSOR	0. 15	0.15	0.15	0.15	0.15
DOWN LINK " "	0.76	1.46	1.46	1.46	0.76
VOLTAGE REGULATOR	2.20	2.35	2.35	2.35	2.35
DC DC CONVERTER IDLER	3.00	3.00	3.00	3.00	3.00

3.0 SUBCONTRACTS


SUBCONTRACT PROJECTS

PROVIDES MANAGEMENT AND TECHNICAL DIRECTION OF
SUBCONTRACTOR CONSISTENT WITH LCRU PMO AND OVERALL NASA REQUIREMENTS
AND FUNCTIONS AS AN INTEGRAL PART OF THE LCRU PMO.

LCRU SUBCONTRACT PROJECT ORGANIZATION

ReA

LCRU SUBCONTRACT CONTROL DOCUMENTATION

1.	PURCHASE ORDER	RCA PO G9-8290001-80-D71
2.	EXHIBIT "A" (TO THE P.O.)	LRPO1
3.	EQUIPMENT SPECIFICATION (SOURCE CONTROL DRAWING)	
4.	SUBCONTRACTOR RELIABILITY CONTROL SPECIFICATION	LRSP - SB/RL-1
	La. SUBCONTRACTOR RELIABILITY CONTROL REQUIREMENTS SUPPLEMENT	LRSS/RL-1
5.	SUBCONTRACTOR QUALITY CONTROL SPECIFICATION	LRSP_SB/QA-1
	5a. SUBCONTRACTOR QUALITY CONTROL REQUIREMENTS SUPPLEMENT	IRSS/QA-1
6.	SUBCONTRACTOR CONFIGURATION CONTROL SPECIFICATION	LRSP_SB/CC-1
	6a. SUBCONTRACTOR CONFIGURATION CONTROL SUPPLEMENT	LRSS/CC-1

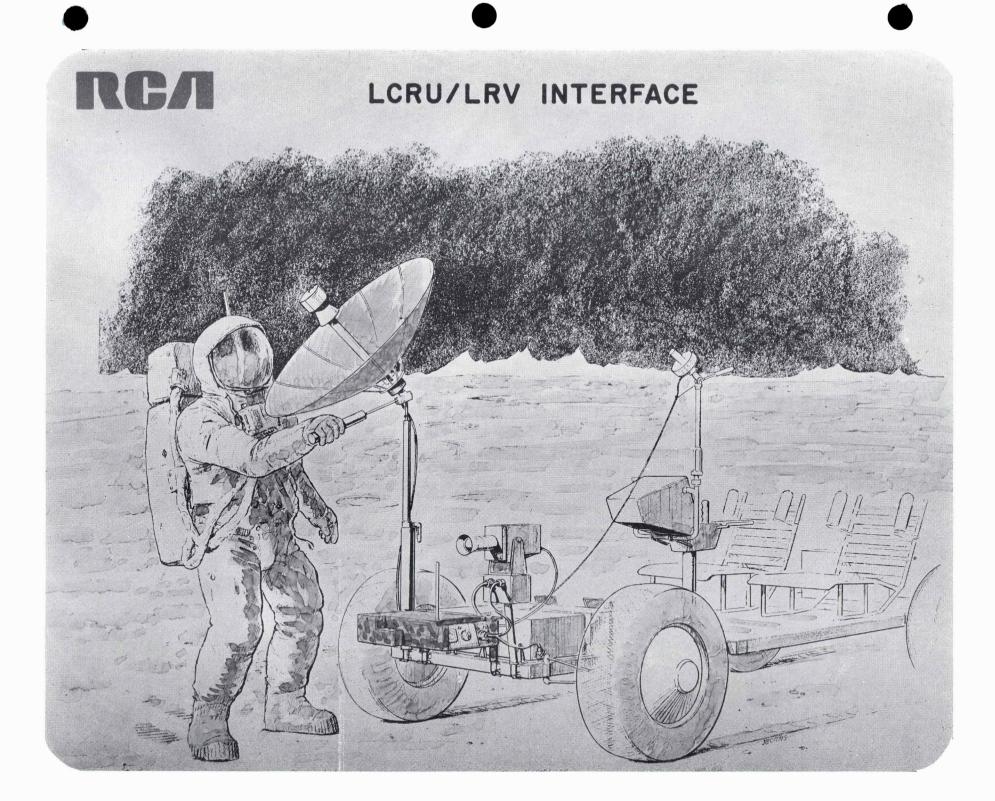
RСЛ

LCRU SUBCONTRACT STATUS

May 28, 1970

ITEM	VENDOR	GO AHEAD	PDR COMPLETION	CDR DATES
S-BAND RCVR	MOTOROLA	2/17/70	5/18,19	8/3,4
VHF TRIPLEXER	RANTEC	3/13/70	NA	NA
BATTERY	YARDNEY	3/19/70	5/8	7/28
14.5 KHZ VCO	SONEX	3/19/70	11/55	7/16
HIGH GAIN ANTENNA	RCA MS&R	4/1/70	5/8	7/23
S-BAND XMTRS	CONIC	3/30/70	4/30, 5/1	8/7
VHF ANTENNA	MOTOROLA	3/24/70	NA	NA
S-BAND DIPLEXERS	WAVECOM	3/23/70	5/4	6/29
LOW GAIN ANTENNA	BENDIX	կ/6/70	5/27,28	7/15
1.25 MHZ VCO	. sci	L/3/70	5/13,14	8/24

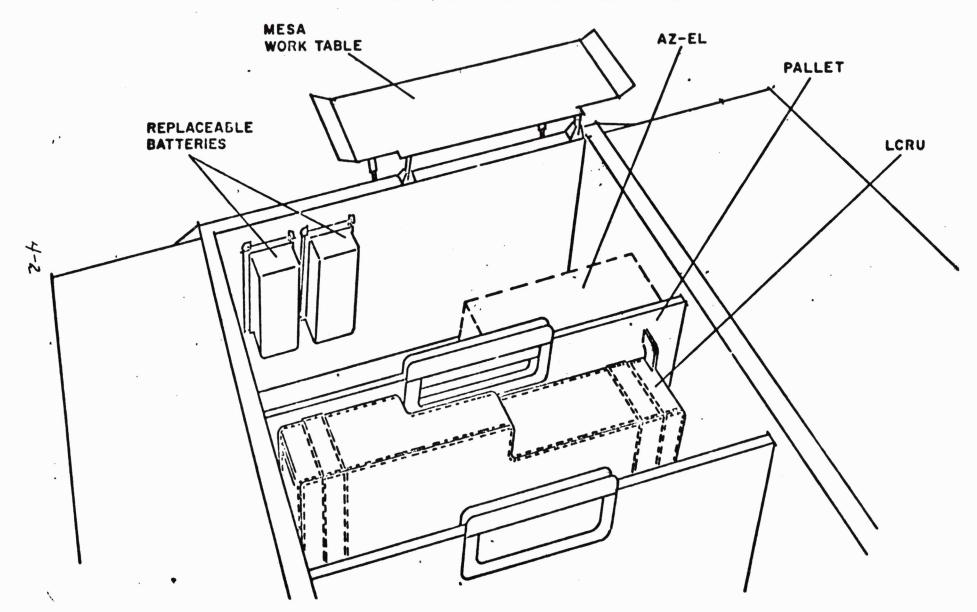
3-4

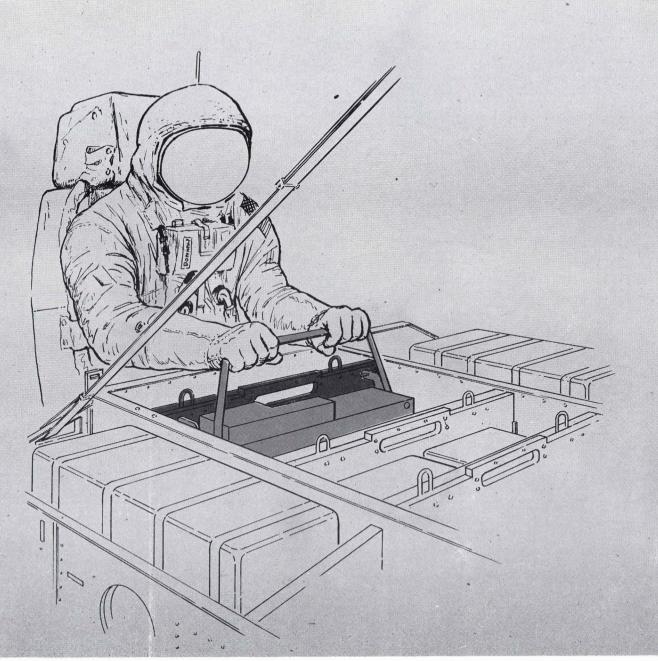

LCRU SUBCONTRACT DELIVERY SCHEDULE

5/28/70

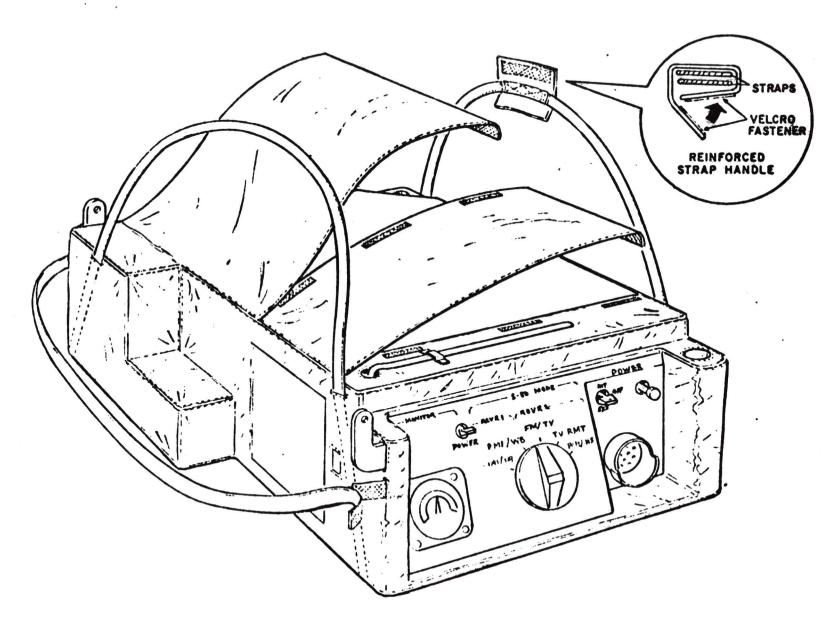
	-	The state of the s					0)10
SUBASSEMBLY	QTY/ LCRU	MECH MOCKUP	THERMAL MOCKUP	ENG MODE L	DVT MODE L	FM 1 (QUAL)	FM 2
S-BAND RECEIVER (ALSEP)	- 2	RCVD-4-15- 6-1 NEW UNIT	RCVD-4-15 6-15 NEW UNIT	7 -17/724	815	11⊕15	11 30
VHF TRIPLEXER	1	-		5⊴30	8-17	9. 17	9 - 17
BATTERY	1	RCVD -5-4-	6-1	6-15	8-14	9 15	14
14.5 KHZ VCO	1	RCVD	RCVD-5-4	5~18	8-17	9-21	9 -21
S-BAND DIPLEXER	2	RCVD-5-1	RCVD 5-1	5-12	8-24	10-19	10-19
S-BAND XMTR (FM/PM)	1	RCVD-6-11	RCVD-5-11	6~22	9-21	12~6	1~6
S-BAND XMTR (PM/FM)	1	RCVD 5 -11	RCVD- 5-11 -	6 -22	9-21	12 ~6	1 6
VHF ANT.	1	, -	-	6-15	7 -5	8~15	9-15
HI GAIN ANTENNA	1	RCVD 45-29	-	7~15	10~15	1-15	3~15
LOW GAIN ANTENNA	1	RCVD-5-15	-	710	9-15	1-4	2 1
1.25 MHZ VCO	2	RCVD-5-26-	RCVD- 5 -26 -	7~9*	10 -5*	12 24	1-7

2-5

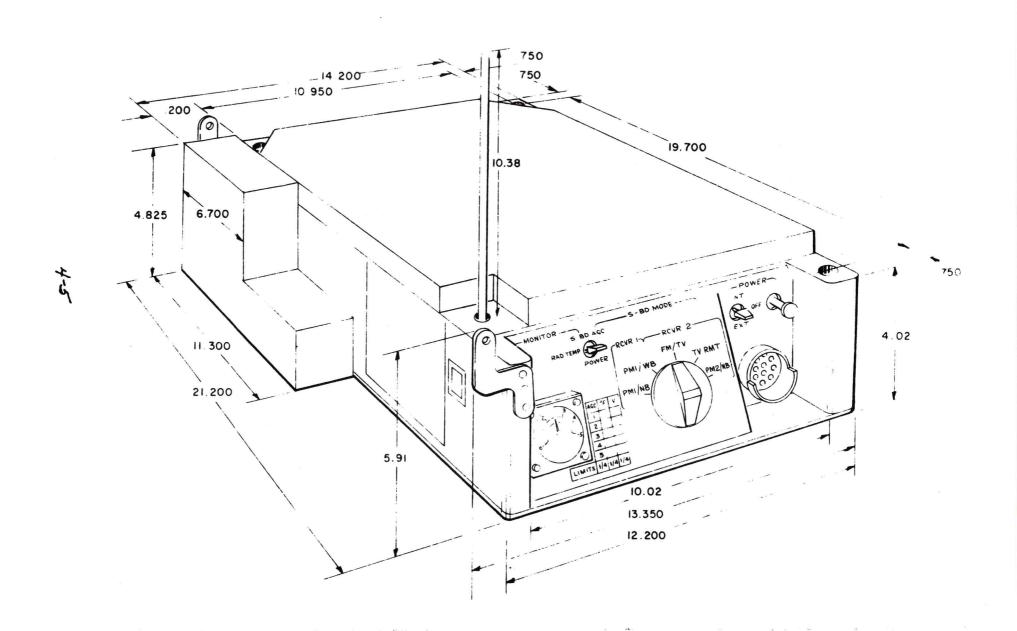

4.0 OPERATIONS


AZ-EL STORAGE ON PALLET & BATTERY

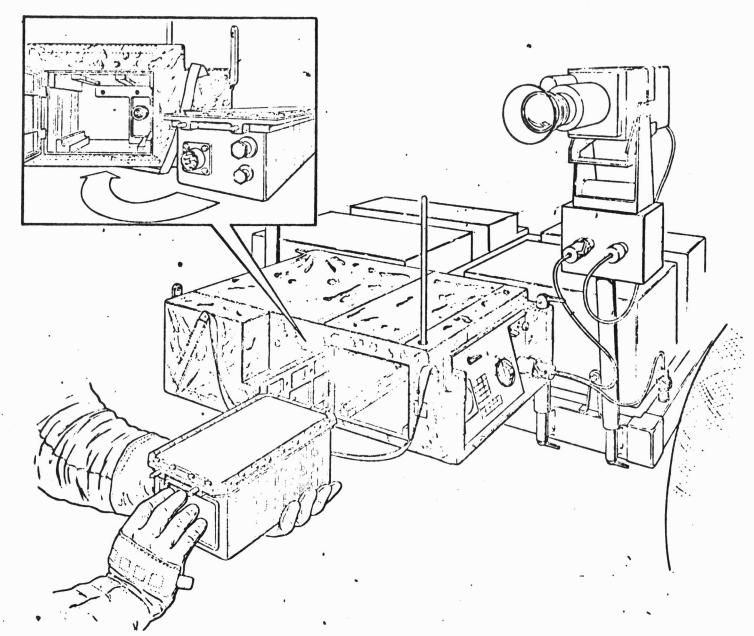
ATTACHMENT TO INSIDE WALL OF MESA



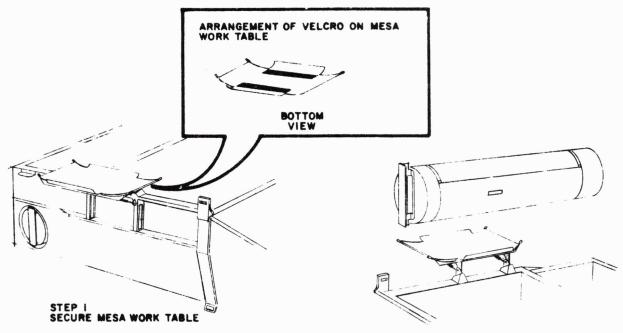
LCRU CASE REMOVAL WITHOUT PALLET



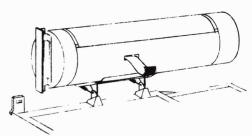
RCT LCRU THERMAL BLANKET

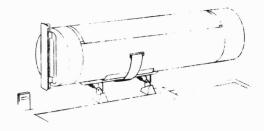


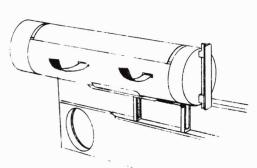
LCRU UNIT

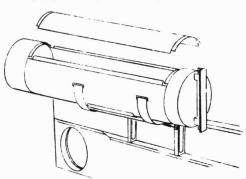


REPLACEMENT BATTERY CONCEPT

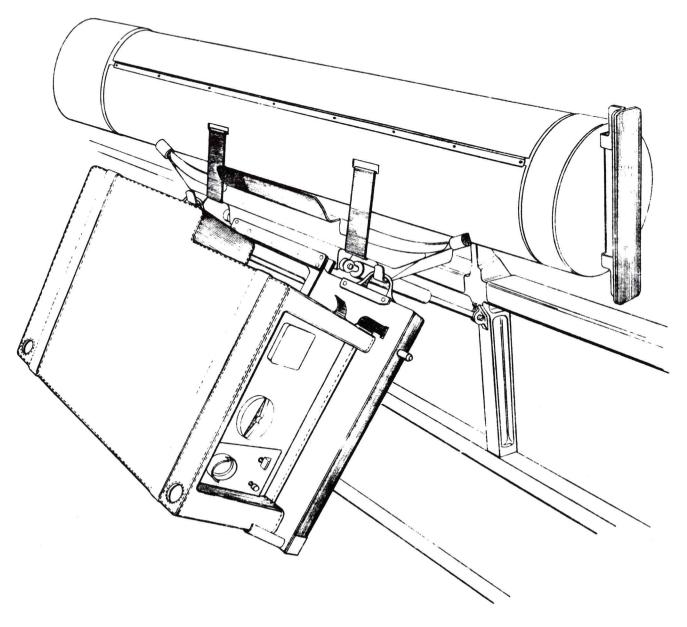



STORAGE CONTAINER/WORK TABLE INTERFACE

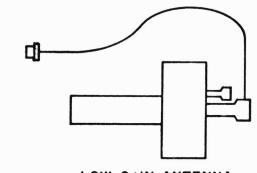

STEP 2 (REAR VIEW)
LAY CONTAINER ON MESA WORK TABLE


STEP 3 (REAR VIEW)
PULL OUT REAR VELCRO FASTENER

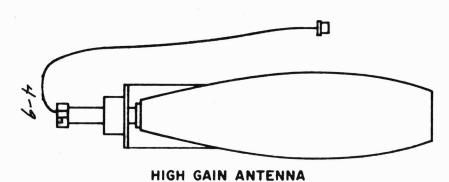
STEP 4 (REAR VIEW) ENGAGE REAR VELCRO FASTENER TO UNDERSIDE OF MESA WORK TABLE

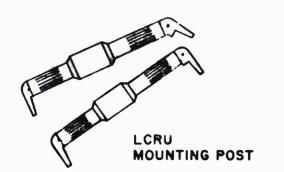

STEP 5
PULL OUT 2 FRONT VELCRO FASTENERS

STEP 6
ENGAGE 2 FRONT VELCRO FASTENERS TO UNDERSIDE OF MESA WORK TABLE
OPEN CONTAINER

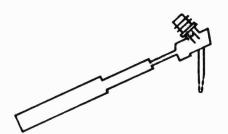


LCRU PALLET & STOWAGE CONTAINER ON WORK TABLE




REA

LCRU STOWAGE ANCILLARY ITEMS





MOUNTING ARM & BALL JOINT FOR LOW GAIN ANTENNA

HIGH GAIN ANTE INA ARM & BALL JOINT POSITIONING MECHANISM

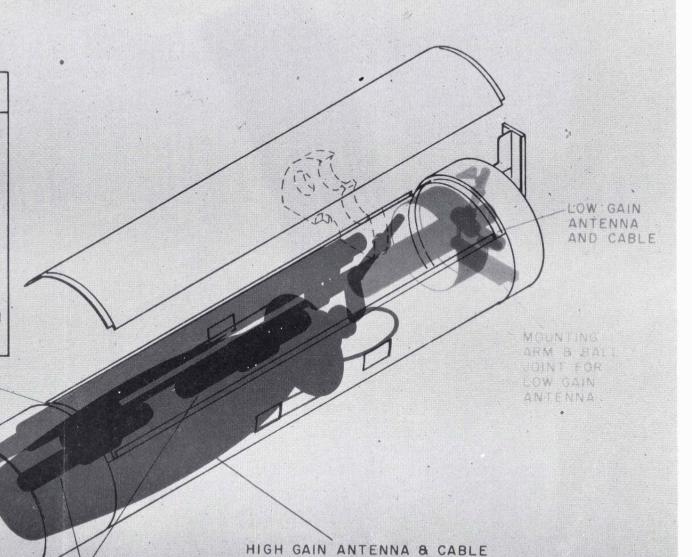
STOWAGE CONTAINER UNSTOWING SEQUENCE

LCRU MOUNTING LEGS

REMOVAL SEQUENCE

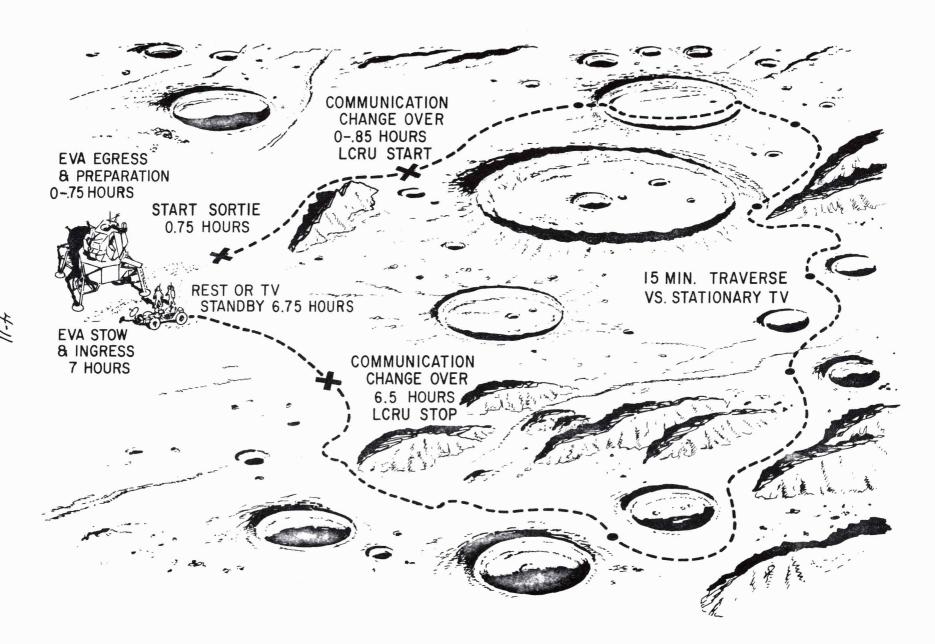
COVER

LEGS


HIGH GAIN ANTENNA MAST AND POINTING MECHANISM

HICH GAIN ANTENNA

LOW GAIN ANTENNA


LOW GAIN ANTENNA POINTING MECHANISM AND ARM

MOUNTING POST & BALL JOINT FOR HIGH GAIN ANTENNA

TYPICAL SORTIE

POSTULATED EVA PROFILE WITH LCRU 7-HOUR

ELAPSED TIME	O PREP	1	2	3	1	5 (5	2	21 2	1.5	
EGRESS	18										
REMOVE EQUIP. FROM MESA											
ASSEMBLE EQUIP. FOR SORTIE											
SORTIE											
COMM EVA/LM											
LCRU MODE (VOICE DATA)		62 8	-								
LCRU TV			8 8								
COMM EVA/LM							•				
STOW EQUIP							8				
SETUP FOR TV STANDBY							1				
TV-STANDBY											
TV - OPERATE									olitica in		
INGRESS											
LIFT-OFF									4		

RCA

LCRU ASSEMBLY TIME FOR ROVER MISSION

	·	TIME SEC.
1.	START WITH MESA AND WORK TABLE DEPLOYED.	-
2.	REMOVE STOWAGE CONTAINER CLEVIS PINS,	
	REMOVE STOWAGE CONTAINER FROM MESA AND STAND AGAINST MESA.	15
3.	REMOVE LCRU PALLET AND HANG ON WORK TABLE HOOKS.	15
4.	PLACE STOWAGE CONTAINER ON MESA WORK TABLE.	10
5.	DEPLOY VELCRO STRAPS FROM CONTAINER AND SECURE TO WORK	10
	TABLE.	
6.	REMOVE CONTAINER COVER AND DISCARD.	10
7.	REMOVE LCRU MOUNTING LEGS FROM CONTAINER AND PLACE IN	20
	TUBES ON LRV.	
8.	REMOVE LCRU/PALLET CLEVIS PINS.	05
9.	LIFT LCRU FROM PALLET USING THE EMERGENCY MODE CARRYING	25
	STRAPS AND PLACE ON LCRU MOUNTING LEGS ON LRV.	
0.	OPERATE CLAMP ON TOP OF LEGS TO SECURE LCRU TO LRV.	10
1.	REMOVE HIGH GAIN ANTENNA MAST FROM CONTAINER AND ATTACH	20
	TO LRV TUPE, OPERATE LATCH.	

4-13

RCA

LCRU ASSEMBLY TIME FOR ROVER MISSION (CONT'D)

12.	REMOVE HIGH GAIN ANTENNA POINTING MECH AND ATTACH TO	20
	MAST.	
13.	REMOVE HIGH GAIN ANTENNA AND ATTACH TO POINTING MECHANISM.	20
	(ANTENNA RIBS STOWED)	
14.	REMOVE PROTECTIVE CAP FROM HIGH GAIN ANTENNA CABLE CONNECTOR	05
	AND MATE CONNECTOR TO LCRU.	
15.	REMOVE LOW GAIN ANTENNA AND POINTING MECHANISM AND ARM FROM	20
	CONTAINER AND ASSEMBLE TOGETHER AT WORK TABLE.	
16.	DEPLOY LOW GAIN ANTENNA ASSEMBLY ON LRV CONSOLE AND POINT.	25
17.	DEPLOY LOW GAIN ANTENNA CABLE BETWEEN LRV BATTERIES TO	15
	LCRU.	
18.	REMOVE PROTECTIVE CONNECTOR COVERS AND CONNECT LOW GAIN	05
	ANTENNA CABLE TO LCRU.	
19.	REMOVE TV/POWER CABLE FROM CONTAINER AND CONNECT BETWEEN	40
	LRV/LCRU/TV AZ-EL.	
20.	POSITION THERMAL BLANKET FOR START OF MISSION.	05
21.	SET CONTROLS FOR LOW GAIN VOICE PRIMARY MODE OPERATION.	05
	TOTAL	295

LCRU START OPERATIONS (WHILE MOVING)

1.	Pre-sortie setup for moving start		5	seconds
2.	Point low gain antenna		5	seconds
3.	Energize LCRU Circuit Breaker on LRV Console		•••	
4.	Verify down link/up link		15	seconds
5.	Continue Sortie to first stop			
	5.a Astronaut walks to LCRU	15 seconds		
6.	Check temp., battery, signal and verify down			
	link/up link		15	seconds
7.	Switch to LCRU battery			
8.	Verify down link/up link		10	seconds

LCRU START OPERATIONS (WHILE HALTED)

1.	Adjust low gain antenna toward earth			5	seconds
	1.a Astronaut walks to LCRU	15	seconds		
2.	Switch LCRU to desired mode and turn LCRU on			5	seconds
3.	Check temp., battery, signal level and verify down link/up link			15	seconds
4.	Adjust Thermal Blanket if required	5	seconds		
5.	Return to LRV and continue traverse	15	seconds		•

RСЛ

LCRU START OPERATION (TV)

1.	ASTRONAUT WALK TO LCRU	15 SECONDS	
2.	CHECK TEMP., SIGNAL, BATTERY		10 SECONDS
3.	ADJUST THERMAL BLANKET IF NECESSARY	5 SECONDS	
4.	ASTRONAUT WALKS TO HIGH GAIN ANTENNA	5 SECONDS	
5.	HIGH GAIN ANTENNA DEPLOYMENT		10 SECONDS
6.	POINT HIGH GAIN ANTENNA AND OPTICS		20 SECONDS
7.	FINE POINT HIGH GAIN ANTENNA		20 SECONDS
8.	ASTRONAUT WALKS TO LCRU	5 SECONDS	
9.	SWITCH TO TV OPERATION		
10.	CHECK TEMP., SIGNAL, BATTERY AND VERIFY DOWN LINK-UP LINK		15 SECONDS
11.	EARTH VERIFIES TV COMMAND AND OPERATION	15 SECONDS	

LCRU CONTINUE TRAVERSE (TV TO NORMAL TRAVERSE)

1.	Check temp., power, battery		10 seconds
2.	Adjust thermal blanket if required	5 seconds	
3.	Adjust low gain antenna to earth		5 seconds
4.	Switch to PMI/WB mode		
5.	Check temp., signal, power and verify up link- down link		15 seconds
	GOVA THE		10 Seconds
6.	Astronaut walks to Hi-Gain Antenna	5 seconds	
7.	Adjusts Hi-Gain Antenna for traverse		55 seconds
8.	Astronauts walk to LRV and remount	15 seconds each	

RСЛ

LCRU CHANGEOVER AFTER SORTIE

1.	ASTRONAUT DISMOUNTS FROM LRV	15 SECONDS	
2.	CHECK TEMP., POWER, SIGNAL		10 SECONDS
3.	ADJUST THERMAL BLANKET - IF REQUIRED	5 SECONDS	
4.	TURN LCRU OFF		5 SECONDS
5.	VERIFY UP-LINK/DOWN LINK (LM)		15 SECONDS
6.	ASTRONAUT RETURNS TO L.RV	15 SECONDS	

LCRU SECURE AFTER SORTIE

1.	CHECK TEMP. AND TURN LCRU OFF	5 SECONDS
2.	OPEN THERMAL BLANKET, REMOVE BATTERY, REPLACE BLANKET	20 SECONDS
3.	ADJUST THERMAL BLANKET IF REQUIRED	5 SECONDS
4.	WALK TO HIGH GAIN ANTENNA	5 SECONDS
5.	ADJUST ANTENNA FROM SUN	5 SECONDS

LCRU OPERATION --- TV STANDBY

1.	ASSURE LRV CIRCUIT BREAKER IS ON		**********
2.	WALK TO HIGH GAIN ANTENNA	5 SECONDS	
3.	POINT HIGH GAIN ANTENNA AND OPTICS		20 SECONDS
4.	FINE POINT HIGH GAIN ANTENNA		20 SECONDS
5.	WALK TO LCRU CONTROL PANEL	5 SECONDS	
6.	ADJUST TV CAMERA IF REQUIRED	5 SECONDS	
7.	SWITCH MODE SWITCH TO TV REMOTE AND POWER TO EXT		5 SECONDS
8.	VERIFY TV REMOTE OPERATION		15 SECONDS

LCRU OPERATIONS AND TIMELINE

The purpose of this memorandum is to describe the assembly and operational routines for LCRU set-up and operation on the Moon. The operations as described are divided into three major periods consisting of:

- A. Initial Assembly MESA operation
- B. Normal Lunar Operation LCRU operation
- C. Post Lunar Operation Preparation for Liftoff

A. INITIAL ASSEMBLY - MESA OPERATIONS

The following sequence of events describes the basic actions and operations required to be performed by the astronaut to deploy the LCRU system on the LRV. The starting point is with the LM MESA and work table in the deployed position.

Remove the two clevis pins that connect the stowage container handle to the LM MESA, grasp the handle of the stowage container in one hand and withdraw axiality from the MESA. With the handle at the top, lean the stowage container against the front of the MESA with the lower end of the container in contact with the lunar surface.

Grasp the pallet handle of the out-board pallet in the MESA. Squeeze the handle (thereby releasing the pallet mounting pins) and withdraw the pallet and its contents vertically out of the MESA. Hang the pallet on the work table hooks with the LCRU outboard. Grasp stowage container in one hand and support the CG with the other Place the stowage container on the work table with the container cover up, and the handle to the crewmens right. Make sure the container is approximately centrally located on the work table. Steady the container with one hand. Reach over the container to the rear and withdraw fully the velcro strap at the approximate midpoint of the container. Pass the strap down under the work table and secure it to the velcro material that is permanently fixed under the rear of the work table. Withdraw (using both hands) the two velcro straps along the opposite edge of the container. Pull these two straps down simultaneously, apply slight tension and pass them over the front edge of the table making contact with the velcro material that is permanently attached to the work table forward edge. The stowage container is now attached to the work table and ready to have the contents removed.

Pull velcro tabs that secure cover latch strip lanyards. Pull lanyards approximately 1/4" to release cover latch strips. The latch strips fall free of the container. Lift cover free of container (vertically) by engaging fingers in centrally located slot in

cover. The cover is no longer required and may be appropriately discarded. Pull velcro retaining straps that hold LCRU mounting legs in place. Place the legs in the two center mounting tubes on the LRV.

Using the LCRU carrying straps to pick up the weight of the LCRU in one hand, pull the lanyards that release the pins that secure the LCRU to the pallet. Lift the LCRU vertically off the lower pallet pins and carry it via the emergency mode strap to the LRV. Lower the LCRU down over the legs that are on the LRV. Rotate the top and bottom clamps on both legs 90° to secure the LCRU to the LRV.

Remove the velcro strap that secures the high gain antenna mast in the container. Carry the mast to the LRV, place the bottom end in the appropriate LRV mounting tube. Operate the lever on the bottom of the mast to secure the mast to the LRV.

Pull velcro retaining strap and remove the high gain antenna pointing assembly. Place pointing assembly on top of LRV mast by inserting in tapered hole at end of mast.

Release velcro strap securing high gain antenna. Remove high gain antenna from mast, (cable is attached). Attach the high gain antenna to the pointing assembly by holding the high gain antenna vertically. Dress the cable through the slot in the pointing mechanism collar then insert the bottom of the antenna into the collar and rotate the tightening knot approximately two turns until secure. Wrap the cable once around the mast, remove protective cover from mating face of connector and mate into LCRU. To raise and lower the high gain antenna mast, grasp the mast in one hand at the base of the pointing mechanism and rotate the locking lever at the midpoint of the mast with the other hand. Slide the telescoping section of the mast up or down as desired. Lock the mast by counter rotating the locking lever.

Release velcro strap in the stowage container securing the low gain antenna in its nest. Place the low gain antenna approximately in the center of the container. Discard pillow block. Release velcro strap and withdraw pointing mechanism and arm assembly from its nest. Assemble antenna to pointing mechanism by pinching tilt lock flange and sliding the units together. Transport the low gain antenna and its

positioning arm to the LRV console and place in the mounting tube on the console. Slide square tube of arm to full extension and insert into hole in LRV console. With arm pointing laterally, tighten T-nut to lock. Rotate the locking lever on the top of the pointing mechanism supporting arm to secure the low gain antenna to the LRV. Dress the cable on the low gain antenna between the LRV batteries and to the right side of the LRV between the LCRU and the LRV battery. Remove protective cap from cable connector and mate with connector on the side of the LCRU adjacent to the high gain antenna connector.

Remove velcro strip in the stowage container securing the TV/Power cable. Engage the common connector of this cable to its mate on the LCRU control panel. Engage the power leg of the cable to the LRV power connector. Engage the TV leg of the cable to the appropriate connector on the TV AZEL unit. Position thermal blanket for start of mission. Set controls on control panel for low gain voice primary mode operation.

B. NORMAL LUNAR OPERATION - LCRU OPERATIONS

The following sequence of events involve the operation of the LCRU on the LRV. Prior to the sequences presented herein both astronauts have egressed from the LM, opened the MESA and removed and installed all LCRU components on the LRV.

1. LCRU Start Operations (while moving)

This sequence of events is intended to demonstrate the steps involved in switching to LCRU operations while in motion or without the necessity of the astronaut disembarking from the LRV. As a prelude it is assumed that pre-sortic checkout of the LCRU has been accomplished satisfactorily.

- 1. Astronaut assures LCRU power circuit breaker on LRV control panel is OFF.
- 2. Astronaut places LCRU mode switch in desired mode (Primary mode PMI/WB)
- 3. Astronaut places LCRU Power switch to EXT.
- 4. Astronaut assures LCRU circuit breaker is ON.
- 5. Astronauts mount LRV and start traverese.

NOTE: Upon reaching reduced communication limit from LM the astronaut will request or be requested to prepare for communication to LCRU operation.

- 6. LCRU starboard astronaut aligns low gain antenna to best pointing toward earth. LRV may be stopped or remain in motion.
- 7. Upon earth command astronaut energizes LCRU circuit breaker on LRV control panel.
- 8. Astronaut awaits verification from earth that LCRU down-link communications are established and responds with verification that up-link communication is . established.
- 9. Astronauts continue sortie until desired stop point, maintaining low gain antenna pointed toward earth.

- 10. Astronauts orient LRV from sun, stop and set navigational gyros.
- 11. Astronauts dismount from LRV and walk to front of LRV and observe LCRU control panel.
- 12. Astronaut energizes monitor switches to check temperature, battery and signal level transmitting such data to earth. Upon command from earth or based upon operating procedures thermal blanket is adjusted to desired position.
- 13. Upon earth command, to utilize LCRU battery, astronaut switches LCRU power switch to INT and awaits verification from earth that LCRU down-link communication is re-established and responds with verification that up-link communication is re-established.
- 14. Astronaut energizes monitor switches to check temperature, battery and signal level transmitting such data to earth.

2. LCRU Start Operations (While halted)

This sequence of events is intended to demonstrate the steps involved in switching to LCRU operations while the LRV is halted. As a prelude it is assumed that presortie checkout of the LCRU has been accomplished satisfactorally, that astronaut requested or was requested by earth to prepare for conversion to LCRU operation; and that appropriate navigational gyro resetting has been accomplished.

- 1. Starboard astronaut adjusts low gain antenna to best pointing toward earth.
- 2. Port astronaut dismounts from the LRV and walks to front of LRV and observes LCRU control panel.
- 3. Astronaut places LCRU mode switch in desired mode (Primary mode PMI/WB) and assures that circuit breaker is ON.
- 4. Astronaut advises earth that he is ready to switch to LCRU operation.
- 5. Upon earth command astronaut switches LCRU power switch to INT.

- 6. Earth advises astronaut that down-link communication is established.
- 7. Astronaut operates monitor switch and advises earth of signal strength, temperature and power readings.
- 8. Upon command from earth, or per operating procedure, thermal blanket is adjusted.
- 9. Upon command astronaut mounts LRV and continues on Transverse.
- 10. Astronaut maintains low gain antenna pointing in direction of earth.

3. LCRU Start Operation (TV)

This sequence of events is intended to demonstrate the steps involved in switching to LCRU TV operations. As a prelude it is assumed that pre-sortic checkout of the LCRU has been accomplished satisfactorally, that astronaut requested or was requested by earth to prepare for fixed site operations (TV), that the astronauts were previously on LCRU operations utilizing the low gain antenna, the LRV is stopped, and that appropriate navigational gyro resetting has been accomplished.

- 1. Astronauts assure: that the low gain antenna is best pointing toward earth.
- 2. Astronauts dismount from the LRV.
- 3. Astronaut walks to front of LRV and observes LCRU control panel.
- 4. Astronaut operates monitor switch to check signal strength, temperature and power.
- 5. Upon command from earth, or per operating procedures, thermal blanket is adjusted.
- 6. Either Astronaut walks to location of high gain antenna.
- 7. Astronaut grasps antenna deployment ring with one hand and antenna ball joint handle near base with the other hand.

- 8. Astronaut turns antenna deployment ring thirty degrees and slides ring approximately two inches to snap lock position and turns ring thirty degrees back to lock thereby fully deploying antenna.
- 9. Astronaut grasps high gain antenna handle and twists to unlock pointing mechanism.
- Astronaut roughly points antenna in direction of earth should be within
 negrees.
- 11. Astronaut turns antenna optical sight to point in direction most comfortable for viewing and final pointing. Earth will appear in optical sight.
- 12. Astronaut moves high gain antenna handle while viewing optical sight until earth image is in reticle center.
- 13. Astronaut twists high gain antenna handle to lock antenna such that earth image is in center of reticle.
- 14. Upon command from earth TV camera may be oriented as required.
- 15. Astronaut advises earth that preparations are complete for TV operations and walks to LCRU control panel.
- 16. Upon command from earth astronaut switches LCRU mode switch to FM/TV.
- 17. Earth verifies to astronaut that TV down-link operation is established.
- 18. Astronaut operates monitor switch and observes signal strength, temperature, and power and advises earth that up-link communications is established.
- 19. Earth exercises TV command for TV Azimuth, elevation, zoom, IRIS operation and advises astronauts that fixed site operations can proceed.

4. LCRU Continue Traverse Operation (TV to normal Traverse)

This sequence of events is intended to demonstrate the steps involved in switching from LCRU operation (TV) to LCRU operation normal traverse. As a prelude it is assumed that the LCRU has been operating in the LCRU TV operational mode and the astronauts have requested or have been requested to return to traverse.

- 1. Astronauts return to LRV and observe LCRU Control panel.
- 2. Astronaut operates monitor switch to check signal strength, temperature and power.
- 3. Upon command from earth, or per operating procedure, thermal blanket is adjusted.
- 4. Astronaut assures that low gain antenna is best pointing toward earth.
- 5. Upon command astronaut switches LCRU mode switch to Primary Mode (PMI/WB)
- 6. Earth verifies that down-link communication is established.
- 7. Astronaut verifies that up-link communication is established.
- 8. Astronaut operates monitor switch to check signal strength, temperature, and power.
- 9. Upon command from earth Astronaut secures TV and high gain antenna for normal traverse operation.
- 10. Upon command from earth astronauts return to the LRV.
- 11. Astronauts check that low gain antenna is best pointing toward earth and proceed with traverse.

5. LCRU Changeover After Sortie

This sequence of events is intended to demonstrate the steps involved in changeover to EVCS/LM operation upon return from sortie. As a prelude it is assumed that the LCRU has been operating in the PMI/WB low gain mode.

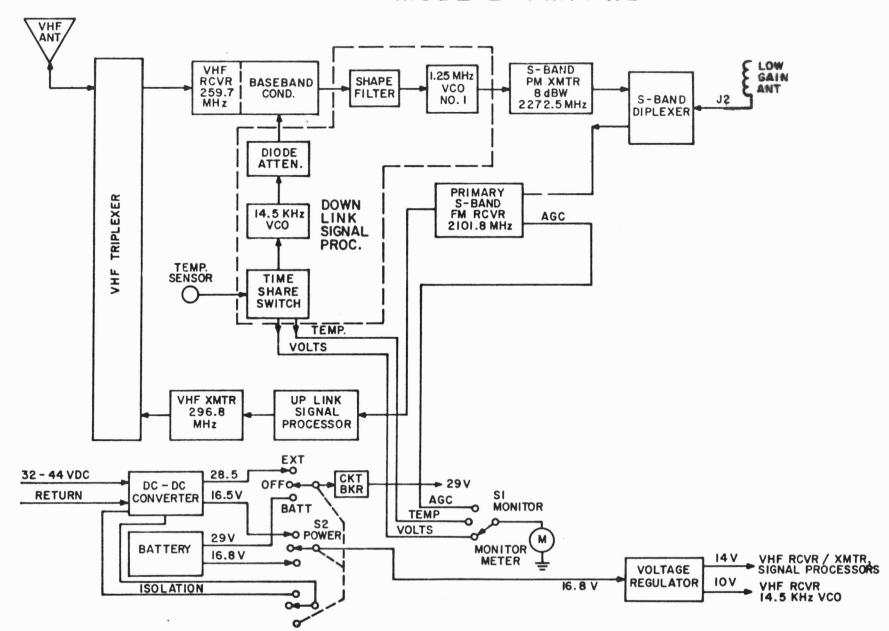
1. Upon approach to the LM earth determines that changeover from LCRU operation to LM operation should be accomplished.

- 2. Upon command from earth the LRV is stopped.
- NOTE: Since a single 4-6 hour sortie effectively exhausts the LCRU battery so that it cannot be safely used for other sorties the astronaut/earth has the option of returning directly to LM without LCRU shut down or stopping for LM changeover when LM/EVCS communication range is established.
- 3. Port astronaut dismounts from the LRV and walks to front of LRV.
- 4. Astronaut observes LCRU control panel and operates monitor switch to observe signal strength, temperature and power.
- 5. Upon command from earth, or per operating procedure, thermal blanket is adjusted.
- 6. Upon command from earth LCRU Power-switch is turned to OFF.
- 7. Earth verifies EVCS/LM down-link communication is established.
- 8. Astronaut verifies that MSFN-LM up-link communication is established.
- 9. Astronaut mounts LRV and upon earth command returns to LM.

6. LCRU Secure After Sortie

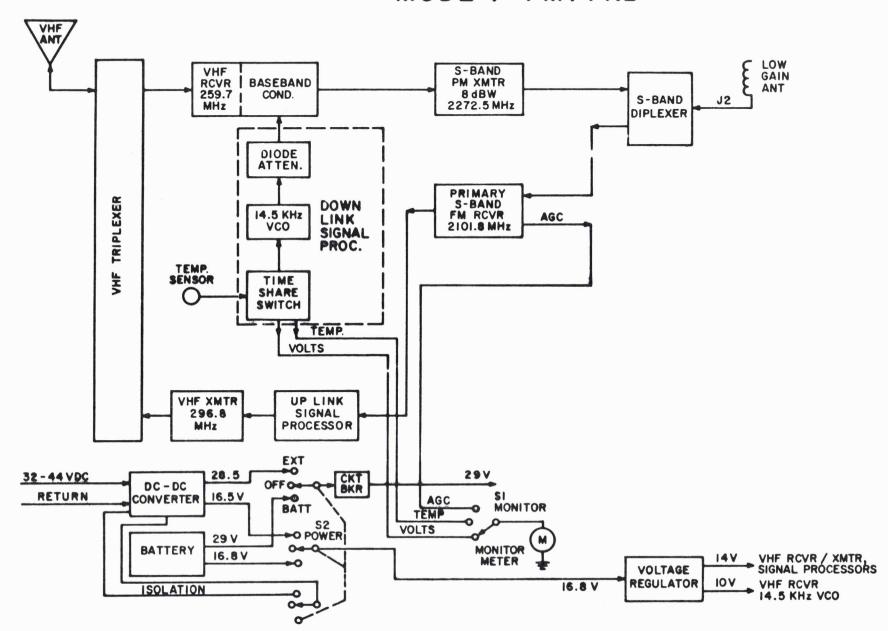
This sequence of events is intended to demonstrate the steps involved in securing the LCRU between sorties. It is assumed that the LCRU has been turned off after the sortie and that the LRV is oriented for between-sortie park.

- 1. Astronaut walks to front of LRV and observes control panel.
- 2. Astronaut switches lower to INT and observes LCRU temperatures and advises earth of temperature reading.
- 3. Upon earth command, or per operational procedure, astronaut adjusts thermal blanket for between-sortie park.

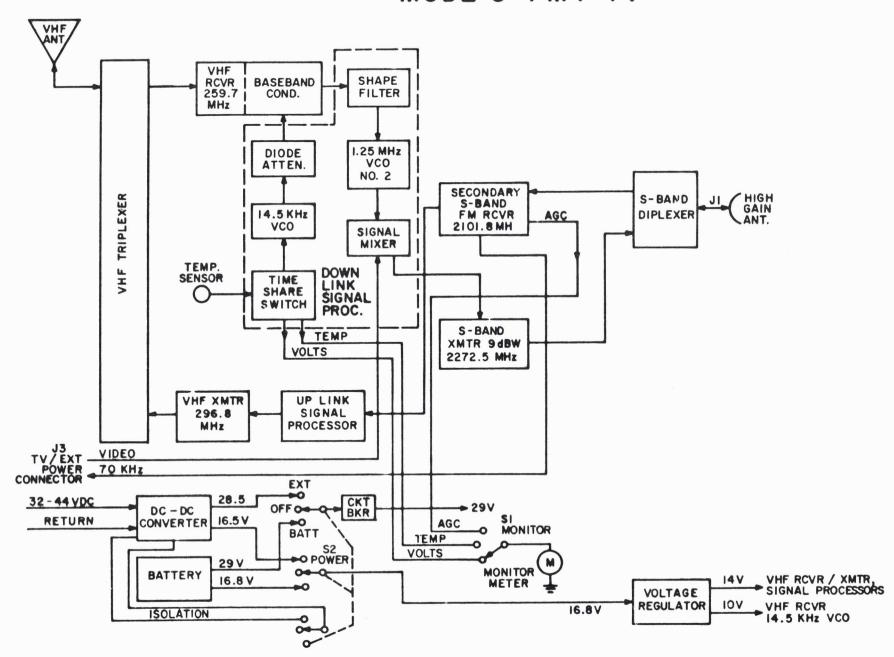

- 4. Astronaut turns power-switch to OFF.
- 5. Astronaut depresses battery cover release button. Cover swings open.
- 6. Astronaut grasps battery handle, removes battery, and closes battery cover.
- 7. Astronaut disposes of battery. LCRU is secure.
- 8. Astronaut grasps high gain antenna handle and twists to unlock pointing mechanism.
- 9. Astronaut points antenna away from sun and twists antenna to lock pointing mechanism.
- 10. LCRU is secure.

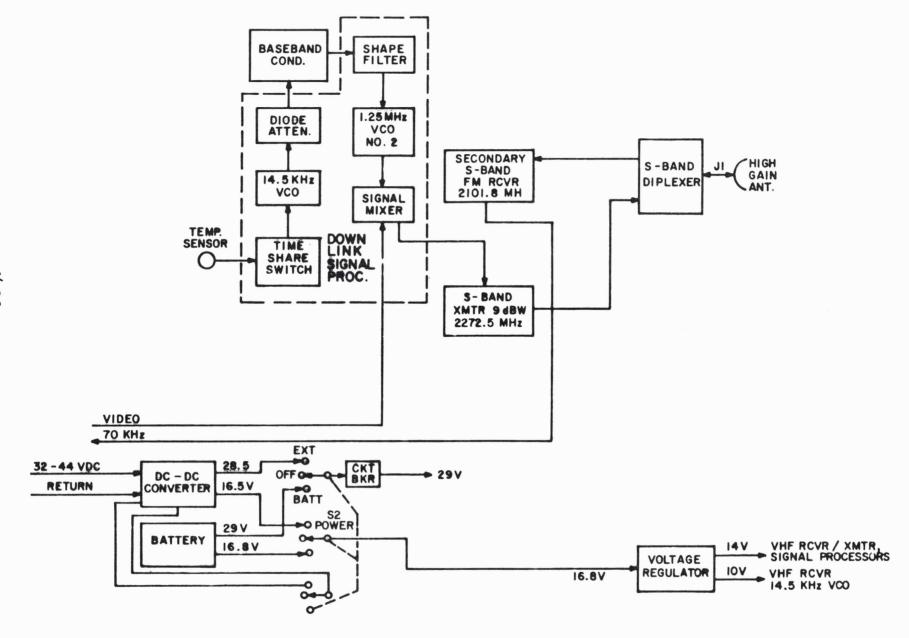
- C. POST LUNAR OPERATION PREPARATION FOR LIFTOFF TV STANDBY
 This sequence of events is intended to demonstrate the steps involved in preparing
 the LCRU for TV standby and remote control operation. As a prelude, it is assumed
 that the LCRU batteries will not be utilized for this mode of operation, the LCRU power
 switch is OFF, that the LRV has been located a safe distance from the LM in a
 direction capable of observing LM liftoff and ascent, and Astronaut
 communications are through the LM.
 - 1. Astronaut assures that the LCRU power circuit breaker on the LRV control panel is on.
 - 2. Astronaut dismounts from the LRV and walks to the front of the LRV.
 - 3. Astronaut grasps high gain antenna handle and twists to unlock pointing mechanism.
 - 4. Astronaut roughly points antenna in direction of earth should be within 10 degrees.
 - 5. Astronaut turns antenna optical sight to point in direction most comfortable for viewing and final pointing. Earth will appear in optical sight.
 - 6. Astronaut moves high gain antenna handle while viewing optical sight until earth image is in reticle center.
 - 7. Astronaut twists high gain antenna handle to lock antenna such that earth image is in center of reticle.
 - 8. Astronaut returns to LCRU control panel location.
 - 9. Astronaut adjusts TV Camera to desired pointing angle if required
 - 10. Astronaut places mode switch in TV-RMT position.
 - 11. Astronaut advises earth that LCRU is ready for TV remote standby.

- 12. Upon command from earth Astronaut starts TV Remote operation by placing Power Switch in EXT position.
- 13. Astronaut operates power switch and observes signal strength, temperature and power and provides data to Earth.
- 14. Astronaut adjust thermal blanket upon command from earth or per operating procedures.
- 15. Astronaut waits while Earth verifies TV remote capability and TV AZ-EL-IRIS-Zoom Operation.
- 16. Astronaut returns to LM.

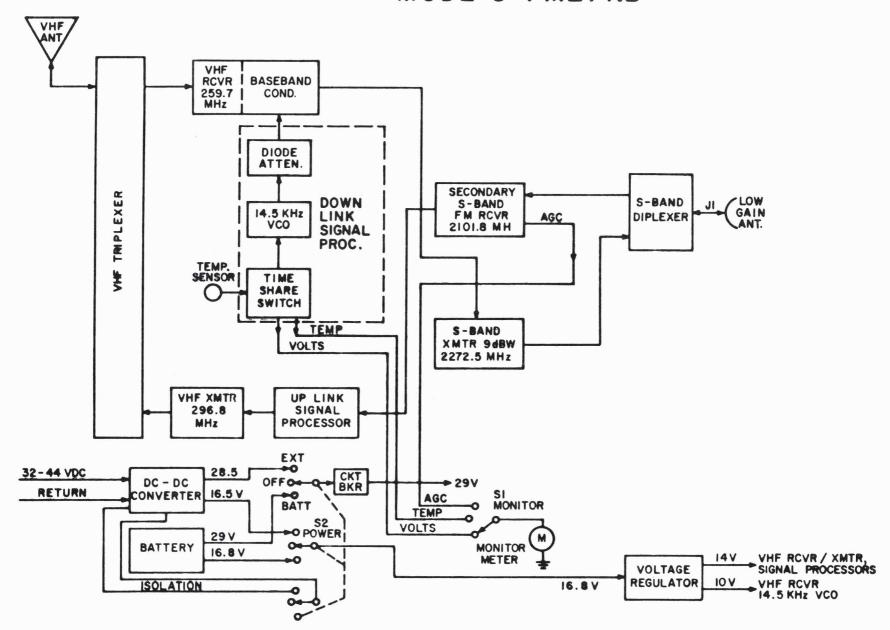

RGA

LCRU BLOCK DIAGRAM MODE 2 PMI/WB




LCRU BLOCK DIAGRAM MODE I PMI/NB

LCRU BLOCK DIAGRAM MODE 3 FM / TV



LCRU BLOCK DIAGRAM MODE 4 TV RMT (STANDBY)

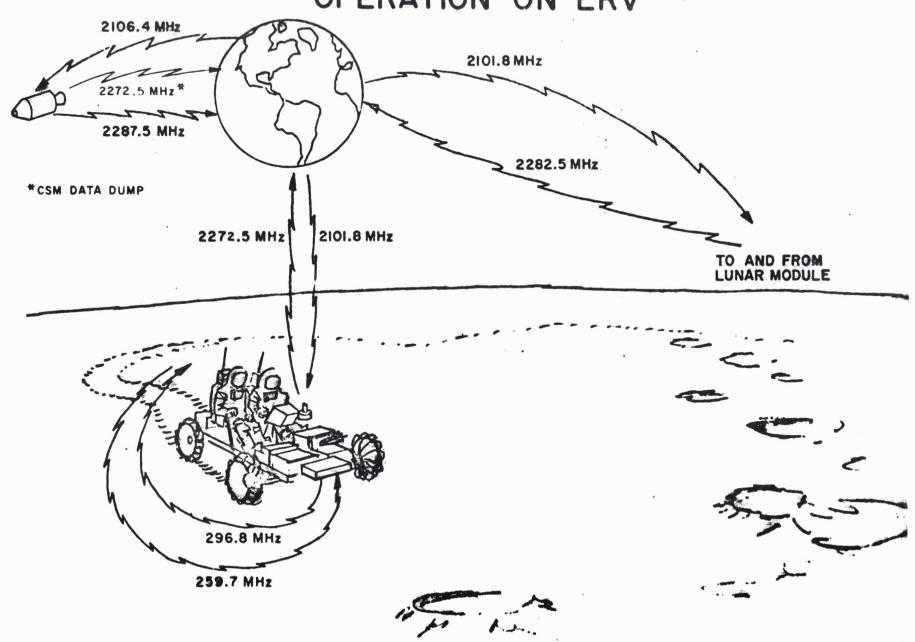
7-3

LCRU BLOCK DIAGRAM MODE 5 PM2/NB

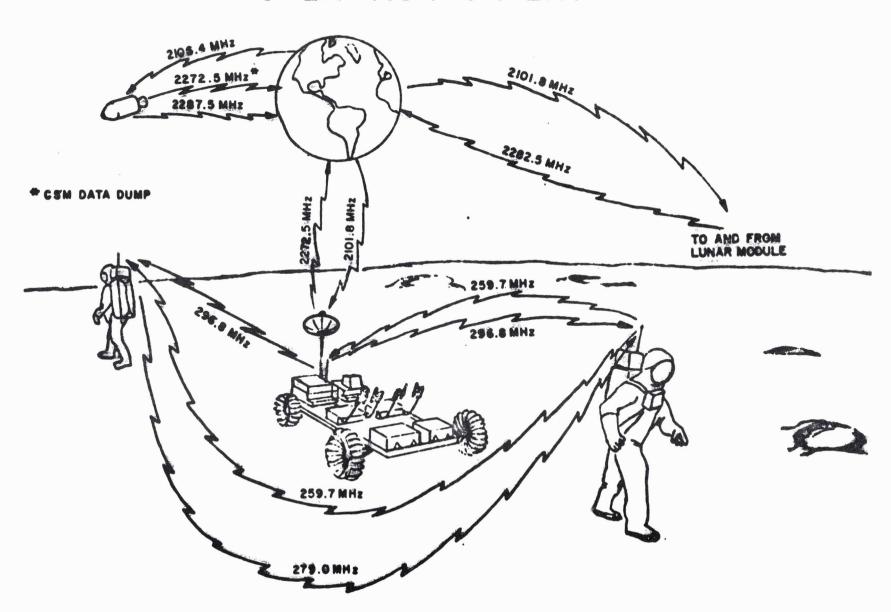
4-40

RСЛ

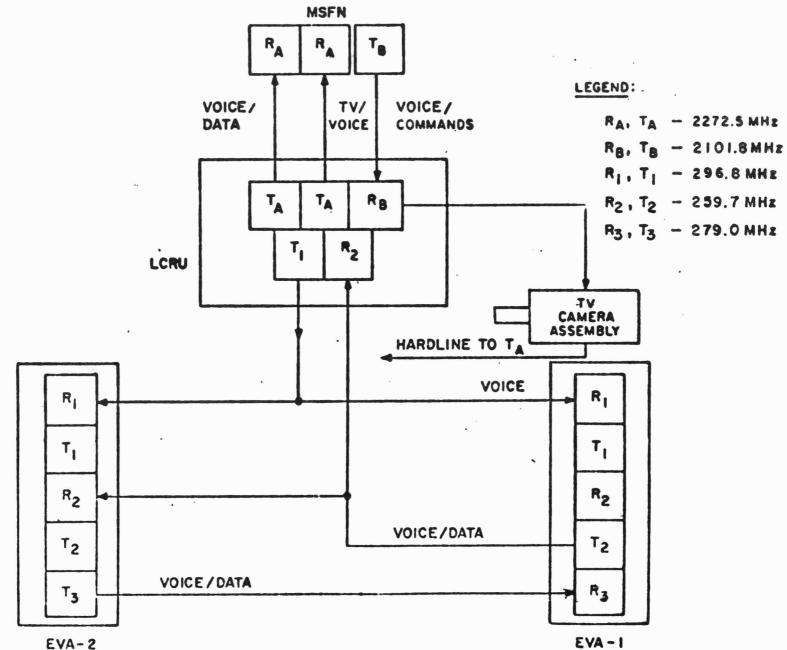
LINK MARGIN SUMMARY


LINK PARAMETER	PMI/WB	PMI/NB*	FM/TV	UPLINK
TRANSMITTER POWER:	6.7w	6.7w	8.3w	10kw
EFFECTIVE ANT. GAIN:	6.5db	6.5db	23.0db	50.5db
EFFECTIVE RAD NATED POWER (EIRP INCL. ALL CKT LOSSES)	12.5dbw .	12.5dbw	30.2dbw	90.5dbw
TOTAL RECEIVED POWER: (INCL ALL CKT. LOSSES)				
85 Ft. DISH (52.5 db)	-146.6dbw	-146.6dbw	-128.9dbw	-
210 Ft. DISH (60.0db)	-	-	-121.4dbw	-
LCRU L.G. (-5db)	-	-	-	-128.0dbw
LCRU H.G. (18.5db)	-	-	-	-101.5dbw
MARGINS (db):				
CARRIER	+15.8	+25.7	+8.8/+1.3	+27.6/+1.3
1.25 MHZ SUBCARRIER	+ 0.2	-	+2.3	-
124 KHZ SUBCARRIER	-	-	-	+39.6/+13.4
70 KHZ SUBCARRIER	-	-	-	+34.0
VOICE CHANNEL	+ 8.5	- 0.4	+10.6	>20
3.9 KHZ SUBCARRIER	+11.2	+ 0.7	+13.3	-
5.4 KHZ SUBCARRIER	+ 7.9	+ 0.2	+10.0	-
7.35 KHZ SUBCARRIER	+ 6.2	+ 1.0	+ 8.3	-
10.5 KHZ SUBCARRIER	+ 2.9	+ 0.9	+ 5.0	-
14.5 KHZ SUBCARRIER	+ 2.8	- 0.1	+ 4.9	-
VIDEO CHANNEL	-	-	+3.8/-3.7	-
* PM2/NB ALL MARGINS 1.0db greater	than PMI/NB			

5.0 SYSTEM DESIGN


5

LCRU IN MOBILE OPERATION ON LRV

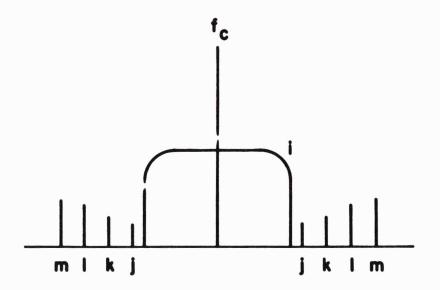


LCRU IN FIXED BASE OPERATION ON LRV

SYSTEM COMMUNICATIONS LINKS

SIGNAL DESIGN MODULATION PARAMETERS, DOWN LINK

Α.	1.25~MHz SUBCARRIER DEVIATIONS VOICE 3.9-kHz SUBCARRIER 5.4-kHz SUBCARRIER 7.35-kHz SUBCARRIER 10.5-kHz SUBCARRIER 14.5-kHz SUBCARRIER	6.6 kHz 2.7 kHz 3.0 kHz 5.2 kHz 6.1 kHz 7.6 kHz	±15% EACH CHANNEL FOR LCRU, ±25% EACH CHANNEL FOR EVCS/LCRU OVERALL TOLERANCE
В.	CARRIER DEVIATIONS - PRIMARY	*	
	PM MODE 1.25-MHz SUBCARRIER	1.85 RAD	±10%
C.	CARRIER DEVIATIONS - SECONDARY PM VOICE MODE		
	VOICE 3.9-kHz SUBCARRIER 5.4-kHz SUBCARRIER 7.35-kHz SUBCARRIER 10.5-kHz SUBCARRIER 14.5-kHz SUBCARRIER	0.98 RAD 0.23 RAD 0.25 RAD 0.43 RAD 0.51 RAD 0.40 RAD	±15% EACH CHANNEL FOR LCRU, ±25% EACH CHANNEL FOR EVCS/LCRU OVERALL TOLERANCE
D.	CARRIER DEVIATIONS - TV MODE (COLOR) TELEVISION 1.25-MHz SUBCARRIER	1.7 MHz 275 kHz	±4% (±9% TV/LCRU) ±10%


SIGNAL DESIGN MODULATION PARAMETERS, UP LINK

A. CARRIER DEVIATIONS

	70-kHz COMMAND SUBCARRIER	.8	RAD	±10%
	124-kHz VOICE SUBCARRIER	.8	RAD	±10%
В.	124-kHz SUBCARRIER DEVIATION	±7.5	kHz	±10%
С.	70-kHz SUBCARRIER DEVIATION	±5.0	kHz	±10%

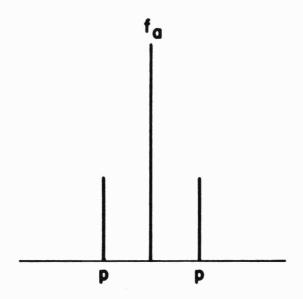
DOWN LINK VHF SPECTRUM

f_C = 259.7 MHz CARRIER EVC-1 TO LCRU

i - BASEBAND VOICE, EVA-1 OR EVA-2

j = 3.9 KHz SUBCARRIER, EVA-2 EKG DATA

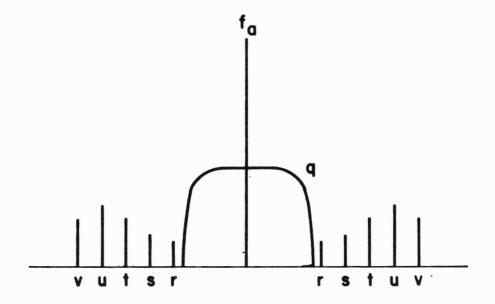
k = 5.4 KHz SUBCARRIER, EVA-1 EKG DATA


1 - 7.35 KHz SUBCARRIER, EVA-2 PLSS STATUS DATA (PAM)

m - 10.5 KHz SUBCARRIER, EVA-1 PLSS STATUS DATA (PAM)

DOWN LINK S-BAND SPECTRUM

PRIMARY MODE (FM/PM)



- fa = 2272.5 MHz CARRIER LCRU TO MSFN)
- p = 1.25 MHz SUBCARRIER EVA-1 OR EVA-2 VOICE, AND EMU/LCRU DATA BASEBAND, FREQUENCY MODULATED ONTO SUBCARRIER

RCA

DOWN LINK S-BAND SPECTRUM

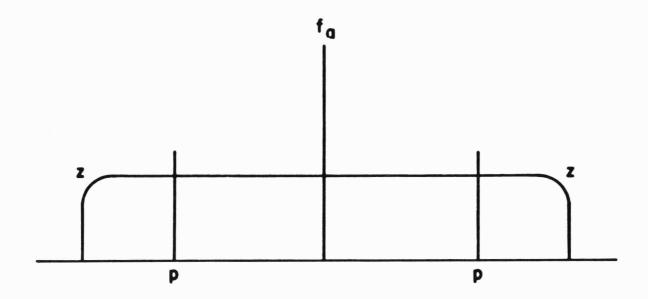
SECONDARY MODE (PM)

f_a = 2272.5 MHz CARRIER (LCRU TO MSFN)

q * BASEBAND VOICE, EVA-1 OR EVA-2

r : 3.9 KHz SUBCARRIER, EVA-2 EKG DATA

s = 5.4 KHz SUBCARRIER, EV A-1 DKG DATA

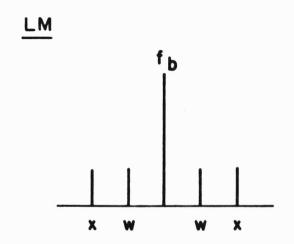

t = 7.35 KHz SUBCARRIER, EVA-2 PLSS STATUS DATA (PAM)

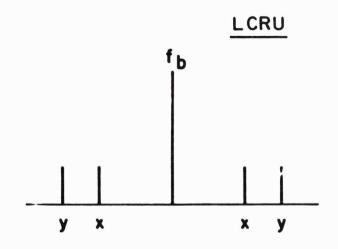
u ~ 10.5 KHz SUBCARRIER, EVA-1 PLSS STATUS DATA (PAM)

v ≈ 14.5 KHz SUBCARRIER, LCRU STATUS DATA (TIME SHARED)

DOWN LINK S-BAND SPECTRUM

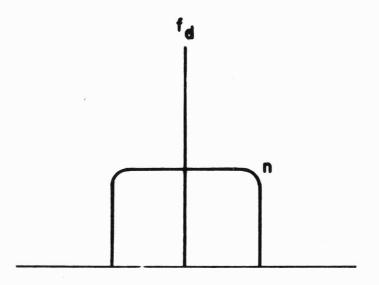
TV/VOICE MODE (FM/FM)


- f₂ = 2272.5 MHz CARRIER (LCRU TO MSFN)
- p = 1.25 MHz SUBCARRIER EVA-1 OR EVA-2 VOICE, AND EMU/LCRU DATA BASEBAND, FREQUENCY MODULATED ONTO SUBCARRIER
- z COLOR TELEVISION VIDEO BASEBAND


54

UPLINK S-BAND SPECTRUM

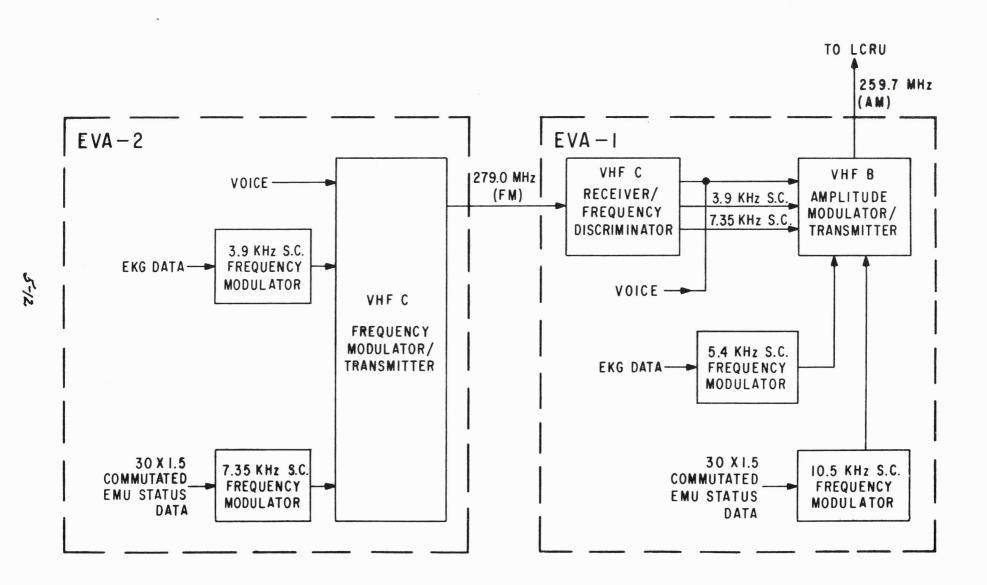
(FM/PM)



- f_b * 2101.8 MHz CARRIER, MSFN TO LCRU OR MSFN TO LM AND LCRU
- w = 30 KHz SUBCARRIER, UPINK VOICE TO LM
- x 70 KHz SUBCARRIER, UPLINK COMMAND DATA TO LCRU AND/OR LM
- y ~ 124 KHz SUBCARRIER, UPLINK VOICE TO LCRU

RGA

UPLINK VHF SPECTRUM



f_d = 296.8 MHz CARRIER, LCRU TO EVC-1 AND EVC-2

n - BASEBAND VOICE, FROM MSFN

EVA PORTION OF DOWN-LINK EVA-2/EVA-1/LCRU/MSFN COMMUNICATIONS SYSTEMS

SYSTEM COMMUNICATIONS LINKS (EVCS BACK UP)

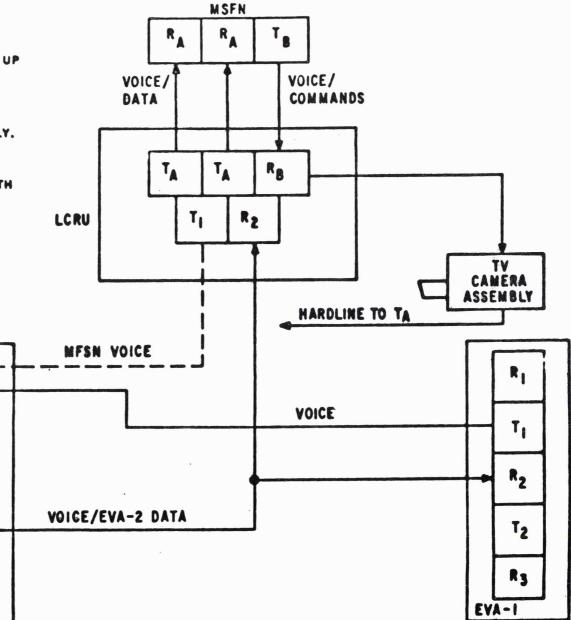
OPERATIONAL NOTE:

- .I CONFIGURATION SHOWS EVA-I IN BACK UP MODE AND EVA-2 IN PRIMARY MODE
- .2 296.8 MHz CHANNEL TIME SHARED BETWEEN EVA-I AND LGRU
- .3 MSFN VOICE AVAILABLE TO EVA-2 ONLY. EVA-2 MUST INFORM EVA-1 OF MFSN MESSAGES.
- .4 BACK UP CONFIGURATION AVAILABLE WITH EVA-2 AND EVA-I STATUS REVERSED.

R₂

T2

FREQUENCY ASSIGNMENT:


RA. TA - 2272.5 MHz

Rm, Tm - 2101.6 MHz

R1, T1 - 296.8 MHz

R2.T2 - 259.7 MHz

R3, T3 - 279.0 MHz

5-

SYSTEM CONFIGURATION DOWN LINK

EVCS/LCRU/MSFN

EVCS/LCRU VHF LINK

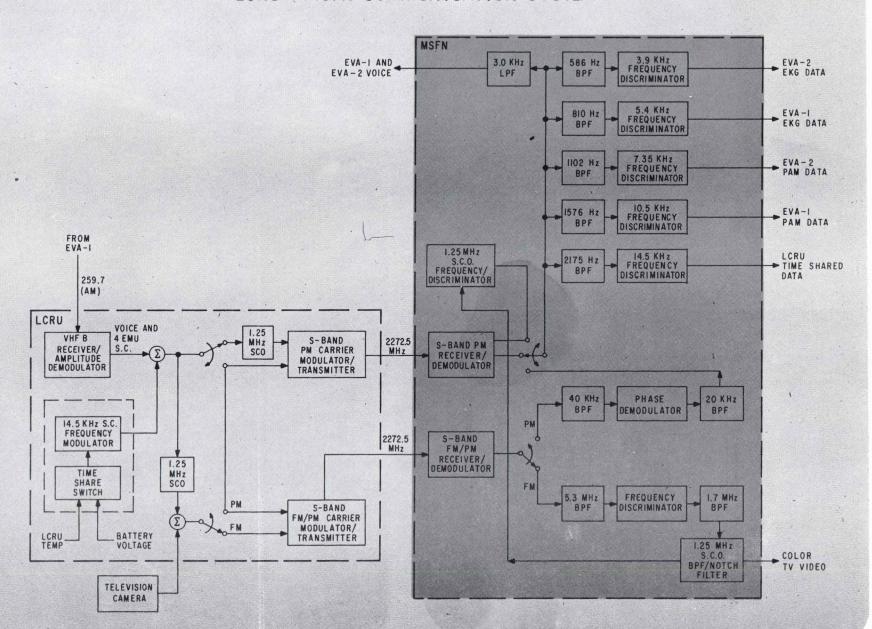
- LCRU VHF TERMINAL DESIGN BASED ON COMPATIBILITY WITH EVCS DUAL MODE DUPLEX; EVA-2 AT 279

 MHz TO EVA-1; 259.7 MHz TO LCRU; AND 296.8 MHz LCRU TO EVA-1 AND EVA-2.
- LCRU VHF TERMINAL DESIGN COMPATIBLE WITH (EVCS BACKUP SIMPLEX MODE: EVC-1 TO EVC-2)

 TRANSMIT 296.8 MHz AND RECEIVE 259.7 MHz (OR EVC-2 TO EVC-1 SAME FREQUENCIES); IN

 EITHER CASE, LCRU TRANSMIT CHANNEL 296.8 MHz IS DISABLED, VOXED OFF IN ABSENCE OF MSFN

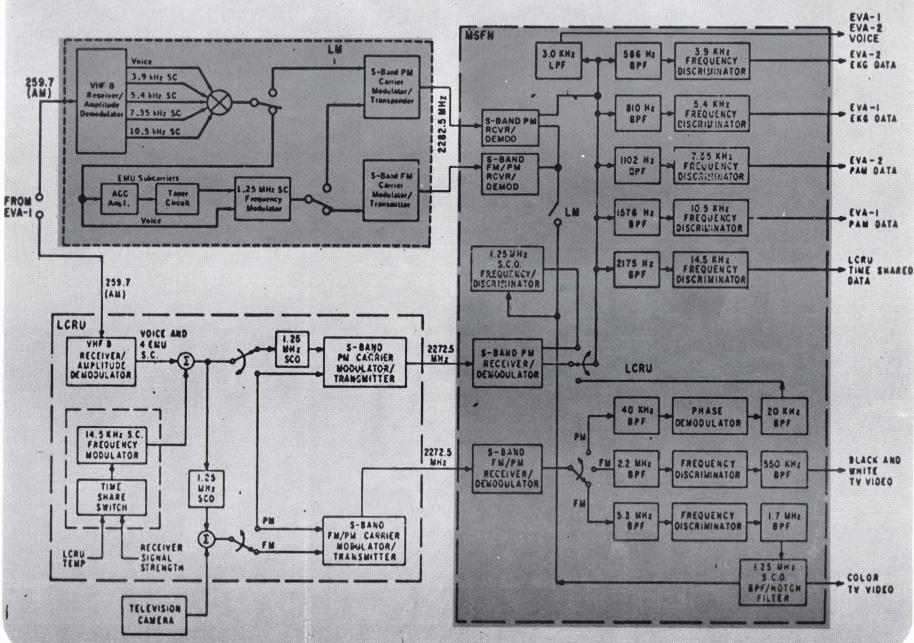
 VOICE.
- LINK DESIGN BASED ON EVCS/LM VHF AM LINK, BUT MODIFIED FOR PATH LOSS-EVCS/LM 119 db;


 EVCS/LCRU 105 db. THIS PROVIDES COMPATIBILITY WITH RF AND SNR INTERFACES SPELLED OUT

 FOR EVCS/LM IN ICD LID-380 11381
- BASEBAND BANDWIDTH LCRU EMPLOYS EVCS 259.7 MHz RECEIVER (FROM EVC-2) MODIFIED FROM

 3 KHz BANDWIDTH TO 20 KHz BANDWIDTH TO ACCEPT BOTH VOICE AND EMU DATA SUBCARRIERS.

LCRU / MSFN PORTION OF DOWNLINK EVA-2/EVA-1 LCRU / MSFN COMMUNICATION SYSTEM


SYSTEM CONFIGURATION DOWN LINK EVCS/LCRU/MSFN

LCRU/MSFN S-BAND LINK

- •. SIGNAL DESIGN BASED ON COMPATIBILITY WITH MSFN BASEBAND COMPLEX FOR VOICE, THE FIRE DATA SUBCARRIERS AND COLOR TELEVISION.
- LINK DESIGN BASED ON COMPATIBILITY WITH TIME-SHARED USAGE OF CSM HIGH SPEED DATA CHANNEL, 2272.5 MHz.
- VOICE/DATA LINK EMPLOYS A HELICAL ANTENNA ADJUSTABLE FOR AZIMUTH AND ELEVATION OVER A NOMINAL 60° CONE. ANTENNA GAIN 6.5 DB MINIMUM OVER PATTERN ± 30° OFF BORESIGHT ALL VOICE/DATA LINKS VIN LCRU HELICAL ANTENNA AND MSFN 85 FOOT DISH.
- TV-VOICE/DATA LINK EMPLOYS 23 DB DEPLOYABLE DISH ANTENNA.
- THE TV LINK CAPABILITY IS PROVIDED FROM FIXED BASE OPERATIONS BETWEEN THE LCRU DISH AND THE MSFN 210 FOOT DISH.
- FM/PM VOICE/DATA VIA 1,25 MHz SUBCARRIER
- PM VOICE/DATA VIA BASEBAND
- FM/FM TV AND VOICE/DATA FREQUENCY MULTIPLEXED (V/D ON 1.25 MHz S.C.)

RGЛ

DOWN-LINK COMMUNICATION SYSTEM EVCS/LCRU/MSFN AND LM/LCRU/MSFN

UP-LINK MSFN/LCRU/EVA-I/EVA-2 COMMUNICATIONS SYSTEM

SYSTEM CONFIGURATION UPLINK

MSFN/LCRU/EVA-1, EVA-2

- SIGNAL DESIGN BASED ON COMPATIBILITY WITH MSFN BASEBAND COMPLEX AND FULL TIME SHARING OF LM UPLINK CARRIER OF 2101.8 MHz.
- LCRU VOICE/DATA LINK EMPLOYS HELICAL ANTENNA TO ACCEPT SIGNALS FROM MSFN 85 FT. DISH. LCRU HELICAL ANTENNA PROVIDES MINIMUM GAIN OF -5 db ±52° OFF BORESIGHT AND AT LEAST -9 db ±66° OFF BORESIGHT.
- FM/PM LCRU UPLINK VOICE ON 124 KHz SUBCARRIER AND COMMAND DATA ON 70 KHz SUBCARRIER. 70 KHz SUBCARRIER SHARED BETWEEN LM AND LCRU.
- UPLINK VOICE FROM LCRU TO EVA-1 AND EVA-2 PROVIDED VIA VOX. TRANSMISSION OVER VHF LINK LIMITED TO MSFN VOICE "ON" AND "OFF" DUTY CYCLE.
- AUTOMATIC SQUELCH PROVISION EMPLOYED ON S-BAND LINK, 2 db BELOW THRESHOLD.
- STANDBY OPERATION PROVISION FOR REMOTE LCRU TV OPERATION VIA UPLINK COMMAND ON 70 KHz SUBCARRIER.
- SYSTEM HANDOVER FROM LM TO LCRU OR LCRU TO LM PERFORMED BY MSFN VIA SUBCARRIER SWITCHING

PRIMARY VOICE MODE (FM/PM)

Α.	RF POWER	VA LUE	SOURCE
	TRANSMITTER POWER OUTPUT	8,2 dbW	RCA SPEC
	TRANSMIT CIRCUIT LOSSES (CABLE LOSS, VSWR, DIPLEXER, CONNECTORS)	2.2 db	CALCULATED
	TRANSMIT ANTENNA GAIN (BORESIGHT)	9.5 db	VENDOR DATA
	ANTENNA POINTING LOSS (±30° OFF AXIS)	3.0 db	VENDOR DATA
	EFFECTIVE ANTENNA GAIN	6.5 db	RCA SPEC
	EFFECTIVE ISOTROPIC RADIATED POWER (EIRP) (REQUIRED MINIMUM = 12.0 dbW)	12.5 dbW	CALCULATED
	SPACE LOSS (215, 000 N. ML. AND f * 2272.5 MHz)	211.6 db	CALCULATED
	MSFN 85-FT ANTENNA GAIN (INCLUDES CIRCUIT AND POLARIZATION LOSSES)	52.5 db	P&I SPEC
	TOTAL RECEIVED POWER	-146.6 dbW	CALCULATED
B.	CARRIER PERFORMANCE:		
	MODULATION LOSS (2,04 RADIANS PEAK)	14.0 db	CALCULATED
	CARRIER POWER	-160.6 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (50 Hz)	*17.0 db Hz	P&I SPEC
	NOISE POWER	-188.4 dbW	CALCULATED
	ACTUAL CNR	+27, 8 db	CALCULATED
	REQUIRED CNR	12.0 db	P&I SPEC
	CARRIER MARGIN	+15,8 db	CALCULATED

PRIMARY VOICE MODE (FM/PM) (CONT'd.)

C.	1.25 ·MHz SUBCARRIER PERFORMANCE:	VALUE	SOURCE
	MODULATION LOSS (1.67 RAD)	1.8 db	CALCULATED
	SUBCARRIER POWER	-148,4 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (48 kHz)	46.8 db Hz	P&I SPEC
	NOISE POWER	-158.6 dbW	CALCULATED
	ACTUAL SNR	10.2 db	CALCULATED
	REQUIRED SNR	+10.0 db	P&I SPEC
	SUBCARRIER MARGIN	+0.2 db	CALCULATED
D.	VOICE CHANNEL PERFORMANCE (DEVIATION · 4.95 kHz)		
	1.25 MHz SUBCARRIER POWER	-148.4 dbW	CALCULATED
	FM IMPROVEMENT $(3\beta^2)$	9.1 db	CALCULATED
	PEAK/RMS CORRECTION $(1/2 \rho^2)$	-8.8 db	CALCULATED
	VOICE POWER	-148.1 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (3 kHz)	34.8 db Hz	P&I SPEC
	NOISE POWER	-170,6 dbW	CALCULATED
	ACTUAL VOICE SNR	22.5 db	CALCULATED
	REQUIRED SNR	14.0 db	P&I SPEC
	VOICE MARGIN	+8,5 db	CALCULATED

PRIMARY VOICE MODE (FM/PM) (CONT'D.)

Ε.	3.9 kHz SUBCARRIER CHANNEL PERFORMANCE (DEVIATION 2.02 kHz)	VA LUE	SOURCE
	1.25 MHz SUBCARRIER POWER	-148, 4 dbW	CALCULATED
	FM IMPROVEMENT (β^2)	-5.7 db	CALCULATED
	PEAK/RMS CORRECTION (1/2)	-3.0 db	CALCULATED
	3.9 kHz SUBCARRIER POWER	-157,1 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (720 Hz)	28.6 db Hz	P&I SPEC
	NOISE POWER	-176.8 dbW	CALCULATED
	ACTUAL SNR	19.7 db	CALCULATED
	REQUIRED SNR	8.5 db	P&I SPEC
	3.9 kHz SUBCARRIER MARGIN	+11.2 db	CALCULATED
F.	5.4 kHz SUBCARRIER CHANNEL PERFORMANCE (DEVIATION 2.25 kHz)		
	1.25 MHz SUBCARRIER POWER	~148.4 dbW	CALCULATED
	FM IMPROVEMENT (β^2)	-7.6 db	CALCULATED
	PEAK/RMS CORRECTION (1/2)	-3.0 db	CALCULATED
	5.4 kHz SUBCARRIER POWER	-159,0 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (995 Hz)	30 db Hz	P&I SPEC
	NOISE POWER	~175.4 dbW	CALCULATED
	ACTUAL SNR	16.4 db	CALCULATED
	REQUIRED SNR	8,5 db	P&I SPEC
	5.4 kHz SUBCARRIER MARGIN	+ 7.9 db	CALCULATED

PRIMARY VOICE MODE (FM/PM) (CONT'D.)

G.	7.35 kHz SUBCARRIER CHANNEL PERFORMANCE (DEVIATION = 3.9 kHz)	VA LUE	SOURCE
	1, 25 MHz SUBCARRIER POWER	-148.4 dbW	CALCULATED
	FM IMPROVEMENT ($\boldsymbol{\beta}^2$)	-5.5 db	CALCULATED
	PEAK/RMS CORRECTION (1/2)	-3.0 db	CALCULATED
	7.35 kHz SUBCARRIER POWER	-156.9 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (1355 Hz)	31.3 db Hz	P&I SPEC
	NOISE POWER	174.1 dbW	CALCULATED
	ACTUAL SNR	17.2 db	CALCULATED
	REQUIRED SNR	11.0 db	P&I SPEC
	7.35 kHz SUBCARRIER MARGIN	+6.2 db	CALCULATED
H.	10.5 kHz SUBCARRIER CHANNEL PERFORMANCE (DEVLATION = 4.57 kHz)		
	1.25 MHz SUBCARRIER POWER	-148.4 dbW	CALCULATED
	FM IMPROVEMENT (β^2)	-7.2 db	CALCULATED
	PEAK/RMS CORRECTION (1/2)	-3.0 db	CALCULATED
	10.5 kHz SUBCARRIER POWER	-158.6 dbW	CAICULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (1939 Hz)	32.9 db Hz	P&I SPEC
	NOISE POWER	-172.5 dbW	CALCULATED
	ACTUAL SNR	13.9 db	CALCULATED
	REQUIRED SNR	11.0 db	P&I SPEC
	10.5 kHz SUBCARRIER MARGIN	+ 2.9 db	CALCULATED

PRIMARY VOICE MODE (FM/PM) (CONT'D.)

		VALUE	SOURCE
I.	14.5 SUBCARRIER CHANNEL PERFORMANCE (DEVIATION = 5.7 kHz)		
	1.25 MHz SUBCARRIER POWFR	-148.4 dbW	CALCULATED
	FM IMPROVEMENT (g^2)	-8.4 db	CALCULATED
	PEAK/RMS CORRECTION (1/2)	-3.0 db	CALCULATED
	14.5 SUBCARRIER POWER	-159.8 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (2680 Hz)	34.3 db Hz	P&I SPEC
	NOISE POWER	-171.1 dbW	CALCULATED
	ACTUAL SNR	11.3 db	CALCULATED
	REQUIRED SNR	8.5 db	P&I SPEC
	14.5 SUBCARRIER MARGIN	+2.8 db	CALCULATED

RСЛ

LINK ANALYSIS

SECONDARY VOICE MODE (BASEBAND PM)

Α.	R. F. POWER	VA LUE	SOURCE
	TRANSMITTER POWER OUTPUT	8.2 dbW	RCA SPEC.
	TRANSMIT CIRCUIT LOSSES (CABLE LOSS, VSWR, DIPLEXER, CONNECTORS)	2.2 db	CALCULATED
	TRANSMIT ANTENNA GAIN (BORESIGHT)	9.5 db	VENDOR DATA
	ANTENNA POINTING LOSS (±30° OFF AXIS)	3.0 dh	VENDOR DATA
	EFFECTIVE ANTENNA GAIN	6.5 db	RCA SPEC
	EFFECTIVE ISOTROPIC RADIATED POWER (EIRP) (REQUIRED MINIMUM 12.0 dbW)	12.5 dbW	CALCULATED
	SPACE LOSS (215,000 N, MI AND f = 2272.5 MHz)	211.6 db	CALCULATED
	MSFN 85 FT. ANTENNA GAIN (INCLUDES CIRCUIT AND POLARIZATION LOSSES)	52.5 db	P&I SPEC
	TOTAL RECEIVED POWER	-146.6 dbW	CALCULATED
B.	CARRIER PERFORMANCE		
	MODULATION LOSS (WORST CASE)	-4.1 db	CALCULATED
	CARRIER POWER	-150.7 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 db W/Hz	P&I SPEC
	NOISE BANDWIDTH (50 Hz)	17.0 db Hz	P&I SPEC
	NOISE POWER	-188.4 dbW	CALCULATED
	ACTUAL CNR	37.7 db	CALCULATED
	REQUIRED CNR	12.0 db	P&I SPEC
	CARRIER MARGIN	25.7 db	CALCULATED

SECONDARY VOICE MODE (BASEBAND PM) (CONT'D.)

C.	VOICE PERFORMANCE	VA LUE	SOURCE
	MODULATION LOSS $\rho = 1.95$ and $\beta = .73$ RAD)	-10,4 db	CALCULATED
	VOICE POWER	-157.0 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (3 kHz)	34.8 db Hz	P&I SPEC
	NOISE POWER	-170.6 dbW	CALCULATED
	ACTUAL SNR	13.6 db	CALCULATED
	REQUIRED SNR	14.0 db	P&I SPEC
	VOICE MARGIN	-0.4 db	CALCULATED
D.	3.9-kHz SUBCARRIER PERFORMANCE		
	MODULATION LOSS (0.17 RAD)	-21.0 db	CALCULATED
	3.9-kHz SUBCARRIER POWER	-167.6 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 db/Hz	P&I SPEC
	NOISE BANDWIDTH (720 Hz)	28.6 db Hz	P&I SPEC
	NOISE POWER	-176,8 dbW	CALCULATED
	ACTUAL SNR	9.2 db	CALCULATED
	REQUIRED SNR	8.5 db	P&I SPEC
	3.9-kHz SUBCARRIER MARGIN	+0.7 db	CALCULATED

SECONDARY VOICE MODE (BASEBAND PM) (CONT'D.)

E.	5.4-kHz SUBCARRIER PERFORMANCE	VA LUE	SOURCE
	MODULATION LOSS (0.19 RAD)	-20.1 db	CALCULATED
	5.4-kHz SUBCARRIER POWER	-166.7 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (995 Hz)	30.0 db Hz	P&I SPEC
	NOISE POWER	-175.4 dbW	CALCULATED
	ACTUAL SNR	8.7 db	CALCULATED
	REQUIRED SNR	8.5 db	P&I SPEC
	5.4-kHz SUBCARRIER MARGIN	+0.2 db	CALCULATED
F.	7.35-kHz SUBCARRIER PERFORMANCE		
	MODULATION LOSS (0, 32 RAD)	-15.5 db	CALCULATED
	7.35-kHz SUBCARRIER POWER	-162.1 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (1355 Hz)	31,3 db Hz	Pal SPEC
	NOISE POWER	-174.1 dbW	CALCULATED
	ACTUAL SNR	12.0 db	CALCULATED
	REQUIRED SNR	11.0 db	P&I SPEC
	7.35-kHz SUBCARRIER MARGIN	+1.0 db	CALCULATED

SECONDARY VOICE MODE (BASEBAND PM) (CONT'D.)

		VALUE	SOURCE
G.	10.5-kHz SUBCARRIER PERFORMANCE		
	MODULATION LOSS (0.38 RAD)	-14.0 db	CALCULATED
	10.5-kHz SUBCARRIER POWER	-160.6 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (1939 Hz)	32.9 db Hz	P&I SPEC
	NOISE POWER	-172.5 dbW	CALCULATED
	ACTUAL SNR	11.9 db	CALCULATED
	REQUIRED SNR	11.0 db	P&I SPEC
	10.5-kHz SUBCARRIER MARGIN	+0.9 db	CALCULATED
H.	14.5-kHz SUBCARRIER PERFORMANCE		
	MODULATION LOSS (0.30 RAD)	-16.1 db	CALCULATED
	14.5-kHz SUBCARRIER POWER	-162.7 dbW	CALCULATED
	NOISE SPECTRAL DENSITY	-205.4 dbW/Hz	P&I SPEC
	NOISE BANDWIDTH (2680 Hz)	34.3 db Hz	P&I SPEC
	NOISE POWER	-171.1 dbW	CALCULATED
	ACTUAL SNR	8.4 db	CALCULATED
	REQUIRED SNR	8.5 db	P&I SPEC
	14.5-kHz SUBCARRIER MARGIN	-0.1 db	CALCULATED

LINK ANALYSIS TV/VOICE MODE (TV FM; VOICE FM/FM)

A. RF Power

	Value	Source
Transmitter Power Output	9.2 dBw	RCA Spec
Transmit Circuit Losses (Cable loss, VSWR, diplexer, connectors)	2.0 dB	Calculated
Transmit Antenna Gain (Boresight)	23.5 dB	Vendor data
Antenna Pointing Loss (±2.2° off axis)	0.5 dB	Vendor data
Effective Antenna Gain	23.0 dB	RCA Spec
Effective Isotropic Radiated Power (EIRP) (Required minimum = 30.0 dBw)	30.2 dBw /	Calculated
Space Loss (215,000 n.mi. and $f = 2272.5 \text{ MHz}$)	211.6 dB	Calculated
MSFN Antenna Gain (Includes Circuit and Polarization Losses): 85-ft 210-ft	52.5 dB 60.0 dB	P&I Spec. EB69-2004(U)
Total Received Power:		
85-ft 210-ft	-128.9 dBw / -121.4 dBw /	Calculated Calculated
Noise Spectral Density Predetection Noise Bandwidth (5.3 MHz) Noise Power	-205.4 dBw/Hz 67.2 dB Hz -138.2 dBw /	P&I Spec. P&I Spec. Calculated.
Received Predetection CNR: 85-ft (required 8.0 dB) 210-ft (required 8.0 dB)	9.3 dB 16.8 dB	Calculated Calculated

LINK ANALYSIS TV/VOICE MODE

(TV FM; VOICE FM/FM) (Continued)

		<u>Value</u>	Source
D.	Color TV Performance (210-ft):		
	Received Predetection S/N	16.8 dB	Calculated
	Required Predetection (Threshold) S/N	8.0 dB	LCRU Spec.
	Predetection Circuit Margin	8.8 dB	Calculated
	FM Improvement ($\Delta f = 1.6 \text{ MHz}$)	6.0 dB	Calculated
	Received Postdetection S/N (1.7 MHz NBW)	25.8 dB (P/R)	Calculated
	Required Postdetection S/N (peak/rms)	22.0 dB	LCRU Spec.
	Postdetection Circuit Margin	+ 3.8 dB	Calculated
c.	Color TV Performance (85-ft):		
	Received Predetection S/N	9.3 dB	Calculated
	Required Predetection (Threshold) S/N	8.0 dB	LCRU Spec.
	Predetection Circuit Margin	1.3 dB	Calculated
	FM Improvement ($\Delta f = 1.6 \text{ MHz}$)	6.0 dB	Calculated
	Received Postdetection SNR (1.7 MHz NPW)	18.3 dB (P/R)	Calculated
	Required Postdetection SNR (peak/rms)	22.0 dB	NASA Desired
	Postdetection Circuit Margin	- 3.7 dB	Calculated

Note: Video baseband SNR based on pre-emphasis supplied in camera such that LCRU sees flat video out to 2.0 MHz. MSFN to provide de-emphasis for video reconstitution.

P/R denotes peak/rms

16.

9.3

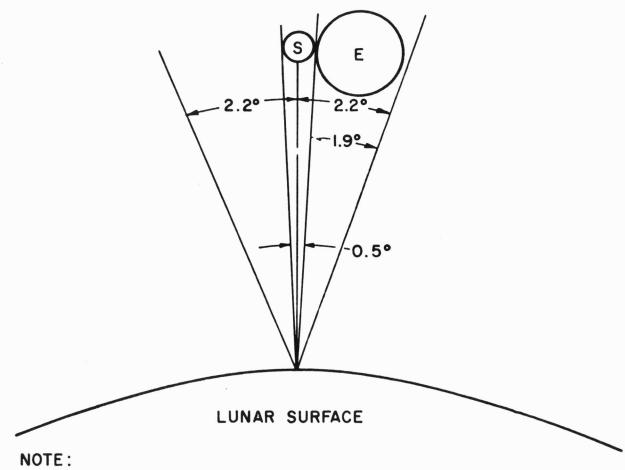
TV/VOICE MODE (TV FM; VOICE FM/FM) (Continued)

	Value	Source
D. 1.25 MHz Subcarrier Performance (85 Ft).		
Received Predetection CNR	9.3 dB	Calculated
Required Predetection (Threshold) CNR	8.0 dB	LCRU Spec.
Predetection Circuit Margin	+1.3 dB	Calculated
FM Improvement	3.0 dB	Calculated
Received Postdetection SNR (48 kHz)	12.3 dB	Calculated
Required Postdetection SNR	10.0 dB	P&I Spec.
Postdetection Circuit Margin	+2,3 dB	Calculated
E. Baseband Performance*		
Voice Channel Margin	+ 10.6 dB	Calculated
3.9 kHz Subcarrier Margin	+ 13.3 dB	Calculated
5.4 kHz Subcarrier Margin	+ 10.0 dB	Calculated
7.35 kHz Subcarrier Margin	+ 8.3 dB	Calculated
10.5 kHz Subcarrier Margin	+ 5.0 dB	Calculated
14.5 kHz Subcarrier Margin	+ 4,9 dB	Calculated

^{*}Note: Since the 1.25 MHz subcarrier postdetection circuit margin in this mode is 2.1 dB better than for the primary voice mode the baseband margins result as shown.

LINK ANALYSIS UPLINK VOICE MODE (FM/PM)

		<u>v</u>	alue	Source	
A.	RF Power				
	Transmitter Power (10 KW)	40	dBw	P&I Spec.	
	Transmit Antenna Gain (Includes Circuit Losses)	50	.5 dB	P&I Spec.	
	Effective Radiated Power	+90	.5 dBw	Calculated	
	Space Loss (215,000 n. mi. and $f = 2101.8 \text{ MHz}$)	211	.0 dB	Calculated	
		High-Gain	Low-Gain		
	Received Antenna Gain (Boresight)	21.5 dB	9.5 dB	RCA	
	Antenna Pointing Loss	3.0 dB	14.5 dB	RCA	
	Resultant Antenna Gain	18.5 dB	-5.0 dB (+52°)	RCA Spec.	
	Receive Circuit Loss	-2.3	-2.5 dB	Calculated	
	Total Received Power	-101.5	-128.0 dBw	Calculated	
	Receiver Noise Temp. (incl. ant noise)	1602°K	1537°K	RCA	
	Noise Spectral Density	-196.4 dBw/Hz	-196.6 dBw/H	RCA	
	Carrier Predection Signal-to-Noise:				
	Predetection Noise Bandwidth (530 kHz)	57.3	57.3 dB Hz	RCA Spec.	
	Noise Power	-139.1	-139.3 dBw	Calculated	
	Predetection SNR	37.6	11.3 dB	Calculated	
	Required Predetection SNR	10.0	10.0 dB	RCA	
	Circuit Margin	27.6	+1.3 dB	Calculated	



UPLINK VOICE MODE (FM/PM) (Continued)

Value

		High-Gain	Low-Gain	Source
B.	124 kHz Subcarrier Performance			
	124-kHz Subcarrier Predetection Signal-to-Noise			
	FM Improvement ($\Delta f = 87 \text{ kHz}$)	5.7	5.7 dB	Calculated
	Predetection SNR	43,2	17.0 dB	Calculated
	Required Predetection SNR (35 kHz)	16.0	10.0 dB	RCA
	Predetection Circuit Margin	33.2	+7.0 dB	Calculated
	124-kHz Subcarrier Postdetection SNR			
	FM Improvement ($\Delta f = 7.5 \text{ kHz}$)	10.4 dB	10.4 dB	Calculated
	Postdetection SNR (3 kHz)	53.6	27.4 dB	Calculated
	Required Postdetection SNR (3 kHz)	14.0	14.0 dB	P&I Spec.
	Postdetection Circuit Margin	39,6	13.4 dB	Calculated
			Value	Source
C.	70 kHz Subcarrier Performance			
	70-kHz Subcarrier Predetection SNR			
	FM Improvement ($\Delta f = 50 \text{ kHz}$		3.4 dB	Calculated
	Predetection SNR (24 kHz)	44	1.0 dB	Calculated
	Required Predctection SNR	10	0.0 dB	LCRU Spec.
	Predetection Circuit Margin	+34	4,0 dB	Calculated

LCRU HIGH GAIN ANTENNA EARTH/SUN VIEW ANGLES

- I. CASE SHOWN IS PRE EARTH/SOLAR ECLIPSE WITH MAXIMUM SOLAR ENERGY VIEWED BY ANTENNA.
- 2. VIEW ANGLES DENOTE CONES

LCRU SYSTEM NOISE TEMPERATURES (SUN CASE)

	ANTEN	ANTENNA GAIN	
	20 dB	34 dB	23 dB
	(1)	(2)	(3)
NOISE SOURCE CONTRIBUTIONS			
Sun (100,000°K at S-Band)	54	1340	112
Earth (290°K at S-Band)	4	120	11
Moon (Back Spillover, 24°K)	35	35	35
Space (4 ^o K)	4	4	_4_
Te, total effective noise temperature:	97	1499	162

- (1) No change to system temperature; negligible
- (2) Adds 1150°K to system temperature of 1537°K; reduces margin by approximately 2.5 dB
- (3) No change to system temperature; negligible

RGЛ

SUN CASE T

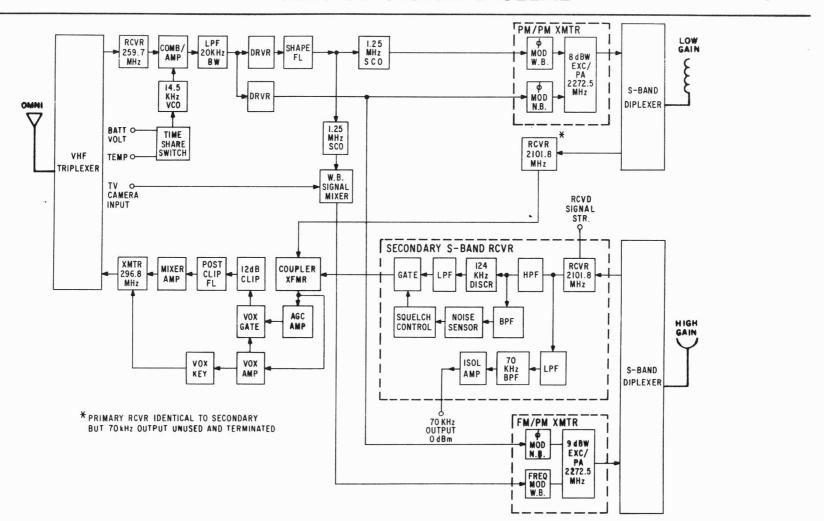
For h/R > 3, and G > 3,

$$T_e = \frac{GT}{4 \left[(h/R) + 1 \right]^2}$$

h = Distance from antenna to the surface of the planet $(1.50 \text{ x}10^8 \text{ km})$

 $R = planet radius (6.96 \times 10^5 km, sun)$

C = Antenna Gain


T = Planetary temperature

 T_e = Effective Noise Temperature

Reference: "Reference Data for Radio Engineers", ITT, Fifth Edition; p. 34-2, equ. (5).

RGA

LCRU SUBSYSTEM BASELINE

RCA

LCRU SUBSYSTEM BASELINE DESIGN

Primary Down-Link FM/PM

- VHF signal from EVC-1 received over Omni Antenna
- VHF Receiver EVCS output combined with LCRU status data
- LCRU status data baseplate temperature and battery voltage time shares 14.5 KHz VCO
- Baseband signal levels from EVCS dependent on VHF AM receiver AGC. Voice and data channel ratios maintain track
- Baseband filtered to 20 KHz bandwidth
- FM Mode Voice and data baseband shaped to required FM indices, voice channel level reduced 5 db relative to 700 Hz.
- Baseband voice and data signals frequency modulated on 1.25 MHz subcarrier. Baseband level set to indices requirements of subcarrier oscillator.
- 1.25 MHz subcarrier phase modulated on S-Band 2272.5 MHz carrier
- Separate 1.25 MHz subcarrier oscillators employed to simplify signal switching and minimize single point failure
- Signal switching provided via DC lines to individual modulators and to 1.25 MHz subcarrier oscillators
- S-Band modules and antennas hardlined to separate diplexers to avoid coaxial switching.
- VHF modules and VHF omni antenna hardlined to VHF diplexer to avoid coaxial switching

RC/I

LCRU SUBSYSTEM BASELINE DESIGN

Secondary Down-Link PM Baseband

- VHF signal from EVC-1 received over omni antenna
- VHF Receiver EVCS output combined with LCRU status data
- LCRU status data baseplate temperature and battery voltage time shares 14.5 KHz VCO
- Baseband signal levels from EVCS dependent on VHF AM receiver
 AGC. Voice and data channel ratios maintain track
- Baseband filtered to 20 KHz bandwidth
- Baseband (voice-data) signal level set to required indices for PM modulation sensitivity for S-Band Carrier
- Baseband phase modulated on S-Band 2272.5 MHz carrier
- Back-up mode (PM modulator of FM/PM transmitter, same modulation configuration as secondary mode

LCRU SUBSYSTEM BASELINE DESIGN

TV/Data Down-Link FM/FM

- VHF signal from EVC-1 received over omni antenna
- VHF receiver EVCS output combined with LCRU status data
- LCRU status data baseplate temperature and battery voltage time shares
 14.5 KHz VCO
- Baseband signal levels from EVCS dependent on VHF AM receiver AGC.

 Voice and data channel ratios maintain track
- Baseband filtered to 20 KHz bandwidth
- FM mode voice and data baseband shaped to required FM indices, voice channel level reduced 5 db relative to 700 Hz
- Baseband voice and data signals frequency modulated on 1.25 MHz subcarrier.
 Baseband level set to indices requirement of 1.23 MHz subcarrier escillator
- Baseband frequency modulated on second 1.25 MHz subcarrier escillator
- Television baseband and 1.25 MHz subcarrier combined in premodulation mixer
- Composite TV and subcarrier frequency modulated on 2272.5 MHz carrier
- FM/FM mode transmission hardlined to high gain antenna

LCRU SUBSISTEM BASELINE DESIGN

UPLINK

- S-Band 2101.8 MHz carrier from MSFN received via low gain or high gain antenna
- S-Band receiver output divided into two subcarriers, 124 KHz and 70 KHz via high pass and low pass filters
- 124 KHz subcarrier demodulated by second discriminator
- e Baseband voice filtered to 3 KHz, output signal gated
- Squeich controls baseband signal gate, as a function of out of band subcarrier noise
- 70 KHz subcarrier hardlined to ground controlled television assembly
- e Voice baseband shares voice coupling transformer with other S-Band receiver
- Voice baseband is AGC'd and level gated by VOX
- o Voice clipped 12 db
- o Clipping noise filtered
- VHF transmission operation controlled by VOX key
- 8 Voice amplitude modulated 70% AM for compatibility with EVCS
- e VHF transmitter hardlined to triplexer to avoid coaxial switching
- Paceived signal strength hardlined to LCRU control panel indicator
- Transmitted to EVA-1 and EVA-2 to via VHF Antenna