## **TECHNICAL DESCRIPTION**



# MICRO PCM TELEMETRY SYSTEM



## TECHNICAL DESCRIPTION

## MICRO PCM TELEMETRY SYSTEM

December 1965

F

PCM

### TABLE OF CONTENTS

1

| Section                                                      | Title                                                                                                                                                                                                       | Page                                                  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1.0                                                          |                                                                                                                                                                                                             | 1-1                                                   |
| 2.0                                                          |                                                                                                                                                                                                             | 2-1                                                   |
| 2.1<br>2.2<br>2.2.1<br>2.3<br>2.3.1<br>2.3.2<br>2.4<br>2.5   | System Operation<br>Analog Multiplexer<br>Multiplexer Switch Circuit<br>Analog-to-Digital Converter<br>Analog-to-Digital Converter Operation<br>ADC Circuit Description<br>Programmer<br>Power Supply       | 2-1<br>2-2<br>2-3<br>2-3<br>2-4<br>2-5<br>2-8<br>2-10 |
| 3.0                                                          | MECHANICAL DESCRIPTION                                                                                                                                                                                      | 3-1                                                   |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.4.1<br>3.4.2<br>3.4.3<br>3.4.4 | Physical Description<br>Housing Design<br>Compression Packaging<br>Electronics Packaging<br>Programmer Assembly<br>Analog Multiplexer Assembly.<br>Power Supply/ADC Assembly<br>Final Assembly Process.     | 3-1<br>3-2<br>3-3<br>3-3<br>3-3<br>3-3<br>3-4<br>3-4  |
| 4.0                                                          | SPECIFICATIONS AND PERFORMANCE                                                                                                                                                                              | 4-1                                                   |
| 4.1<br>4.2<br>4.3                                            | Significant Specifications                                                                                                                                                                                  | 4-1<br>4-2<br>4-4                                     |
| APPENDICES                                                   | 5                                                                                                                                                                                                           |                                                       |
| APPENDIX A<br>APPENDIX A<br>APPENDIX B<br>APPENDIX C         | <ul> <li>INTERFACE REQUIREMENTS BY CONNECTOR-<br/>PIN-FUNCTION</li> <li>INTERFACE REQUIREMENTS BY FUNCTION-<br/>CONNECTOR-PIN</li> <li>OUTPUT FORMAT</li> <li>THEORETICAL INPUT ANALOG TO OUTPUT</li> </ul> |                                                       |
|                                                              | CODE CONVERSION CHART                                                                                                                                                                                       |                                                       |

## SECTION 1.0

¢

9

-

1

INTRODUCTION

#### 1.0 INTRODUCTION

J

The Micro PCM Telemetry System was designed and produced by Radiation Incorporated for the National Aeronautics and Space Administration, Manned Spacecraft Center. The design was initiated in October 1964, and the system was qualified to the launch and flight environments of the Apollo mission, in July 1965.

The system samples, in sequence, 98 single-ended, high level (0 to +5 volts) analog channels and converts each sample to an eight bit binary coded word. These 98 analog data words are combined with 2 sync code words to form a serial non-return-to-zero PCM output at any one of seven programmable bit rates in the range from 800 to 51,200 bits per second. The power consumption is approximately 1.7 watts.

The system is packaged in a sealed aluminum housing with a volume of 33 cubic inches. The total weight of the system is 1.4 pounds.

A picture of the Micro PCM Telemetry System is shown in Figure 1.0.

Appendix A-1 and A-2 contain the pin assignments for the six connectors Appendix B provides the output format of the PCM system. Appendix C gives the theoretical analog voltage corresponding to the switching point for each of the 255 digital output codes of the PCM system.





Figure 1.0. Micro PCM Telemetry System

1

Ĵ

## SECTION 2.0

1

## ELECTRICAL DESCRIPTION

#### 2.0 ELECTRICAL DESCRIPTION

The Micro PCM Telemetry System represents the state-of-the-art with respect to size, weight, power, and performance. The design has been thoroughly proven by outstanding performance during a very stringent qualification test program. The unit is now flight qualified for any mission which does not exceed the severe environments (detailed in subsequent paragraphs) imposed during this series of tests.

The electrical performance of the PCM system was well within the specification limits during the qualification test program. In fact, results during the temperature tests show that the system qualified to an accuracy better than  $\pm 0.05\%$ . This performance is unsurpassed by conventional discrete component systems and certainly represents the state-of-the-art for micro PCM systems.

#### 2.1 System Operation

As shown in the system block diagram in Figure 2.1, analog data are received at the input to the analog multiplexer where the data are sequentially sampled. Ninety-eight single-ended, high-level analog inputs are processed by the analog multiplexer. The multiplexer utilizes P-channel metal oxide semiconductor (MOS) field effect transistors (FET) to perform the gating function.

The analog-to-digital converter (coder) effectively buffers the sampled analog voltage PAM wavetrain to provide a high input impedance. The coder converts the sampled analog voltage to a parallel 8-bit digital word with 255 possible levels.

The output register provides serial readout for 98 coded analog words as well as two 8-bit sync words for a total of 100 words per frame.

The programmer provides system timing by successive binary counters triggered from a crystal oscillator. Logic circuits decode the binary counter status to provide any required timing. The block diagram shows how the programmer controls all block functions. The bit rate may be externally selected in binary steps from 51,200 to 800 cycles per second. Any six of the seven possible rates may be wired to the patch connector for programming.

The PCM signal conditioner serves to provide the two electrically independent signal outputs at the proper voltage and impedance levels which are required for the serial output data. Data rate timing and frame rate timing are also provided externally. Two independent buffers for each digital signal out are used to provide a dual set of outputs with the required output characteristics.



#### Figure 2.1. Block Diagram. Micro PCM Telemetry System

The power supply converts the nominal 28 vdc power input to the various voltages required by the PCM system and also isolates the power and signal grounds.

#### 2.2 Analog Multiplexer

1

The analog multiplexer sequentially samples 98 signal inputs and provides a PAM wavetrain to the coder. The sample rate and sample period are controlled by the programmer. All gate drive circuitry is located in the multiplexer and it interfaces directly with the counter stages of the programmer.

The multiplexer was designed using four integrated circuit flat-pack building blocks. These are:

- 1. A monolithic MOS FET gate package which contains five separate gate circuits.
- 2. A monolithic high voltage NPN gate driver package which contains six independent gate driver circuits.
- 3. A monolithic high voltage NPN logic package, two circuit elements per flat-pack, which provides part of the multiplexer sequencer drive circuitry.
- 4. A high voltage PNP logic package, six circuit elements, which interfaces directly with the counter stages of the programmer.

The 98 analog channels are processed in 20 groups of five channels each. Each group of five channel gates, or first tier gates are processed by one MOS FET flat pack. Thus, 20 flat packs for the channel gates and four flat packs for the sequencer, or second tier gates are required for the analog gating function. These analog channel-flat pack allocations are illustrated by Figure 2.2-1.

A total of 22 command pulses are required to operate the multiplexer. These 22 command lines, which consist of 10 column drives, 10 row drives, and 2 sequencer drives, are shown in matrix form in Figure 2.2–2.





|                      |                  |      | $\overline{}$ | $7  \stackrel{4}{\searrow}$ | $\sim$ |       |       |       | 7 5   |       | 7      |
|----------------------|------------------|------|---------------|-----------------------------|--------|-------|-------|-------|-------|-------|--------|
| sequencer<br>drive A | $\geq$           | 1-5  | 11-15         | 21-25                       | 31-35  | 41-45 | 51-55 | 61-65 | 71-75 | 81-85 | 91-95  |
| ROW DRIVES           |                  | 1    | 11            | 21                          | 31     | 41    | 51    | 61    | 71    | 81    | 91     |
| ROW 1                |                  | 2    | 12            | 22                          | 32     | 42    | 52    | 62    | 72    | 82    | 92     |
| ROW 2                |                  | 2    | 12            |                             | 02     | 72    | 52    | 02    |       |       |        |
| ROW 3                |                  | 3    | 13            | 23                          | 33     | 43    | 53    | 63    | 73    | 83    | 93     |
| ROW 4                |                  | 4    | 14            | 24                          | 34     | 44    | 54    | 64    | 74    | 84    | 94     |
| ROW 5                | $\triangleright$ | 5    | 15            | 25                          | 35     | 45    | 55    | 65    | 75    | 85    | 95     |
| ROW 6                | $\triangleright$ | 6    | 16            | 26                          | 36     | 46    | 56    | 66    | 76    | 86    | 96     |
| ROW 7                |                  | 7    | 17            | 27                          | 37     | 47    | 57    | 67    | 77    | 87    | 97     |
| ROW 8                | $\triangleright$ | 8    | 18            | 28                          | 38     | 48    | 58    | 68    | 78    | 88    | 98     |
| ROW 9                | $\triangleright$ | 9    | 19            | 29                          | 39     | 49    | 59    | 69    | 79    | 89    | 99     |
| ROW 10               | $\succ$          | 10   | 20            | 30                          | 40     | 50    | 60    | 70    | 80    | 90    | 100    |
| SEQUENCER<br>DRIVE B | $\triangleright$ | 6-10 | 16-20         | 26-30                       | 36-40  | 46-50 | 56-60 | 66-70 | 76-80 | 86-90 | 96-100 |



#### 2.2.1 Multiplexer Switch Circuit

At any particular multiplexer sample time, one row, one column, and one sequencer logic input is driven by a saturated NPN transistor in the programmer logic. The switch circuit shown in Figure 2.2.1 only allows one (of 100) input gates and one (of 20) sequencer gates to conduct.

A description of conducting input and sequencer gates as shown in Figure 2.2.1 follows. If transistors Q1, Q2, and Q3 bases are at ground potential and the +4V duty cycle pulse is present, current determined by R1 will flow into each resistor R2. The column drive current causes transistor Q4 to saturate which clamps the common column drive line with the emitters of transistors Q5 and Q6 to -20V. The row drive current can now flow into the common row drive line and will then flow into the base of transistor Q5 since its emitter is at -20V. When transistor Q5 saturates the gate of the input P-channel enhancement mode MOS FET is driven to -20V which causes it to conduct. The sequencer driver current into the base of transistor Q6, similarly causes conduction of the sequencer gate. Without the row or column drive the gate could not conduct. Resistor R3 connected to -15V prevents emitter base breakdown of Q5 when Q4 is not conducting. Resistors R4, R5, and R6 provide failure isolation short circuit protection to the remainder of the system and the input transducer in case of any catastrophic failure (short circuit) in any input tier MOS FET.

When system power is off the most positive input sample voltage in any tier of five channels will flow through R5 from the source body diode of the input MOS FET to bias the now common five MOS FET gates off to prevent the input from conducting. D1 allows this circuit to be biased positive since the +20V line is now near ground potential.

#### 2.3 Analog-to-Digital Converter

The analog-to-digital converter (ADC or coder) provides the highest accuracy possible commensurate with minimum size and power consumption. The A/D converter utilizes integrated circuits for all active circuit devices and discrete components for the resistance ladder and bias networks. A feedback correction loop compensates for offset and drift produced by the tolerances and temperature coefficients and integrated circuit resistors. The gain control circuitry utilizing discrete components combined with a precision resistance ladder network acts to stabilize performance for temperature changes.



Figure 2.2.1. Analog Gating Circuitry

The A/D converter design performed with a total error of less than  $\pm 0.05\%$  (2.5 mv) over the temperature range of  $-35^{\circ}$ C to  $+71^{\circ}$ C and a temperature transient to  $+100^{\circ}$ C during the Qualification Test Program. The A/D converter consumes 550 milliwatts of power and is packaged in a module less than two cubic inches in volume.

Five basic microelectric building blocks are used in the A/D converter. The primary unit is a general purpose single-ended operational type amplifier. Six of these amplifiers are used in the design. The remaining microelectronic units are: dual analog type PNP transistors with various collector and emitter resistances available for each transistor, the complement with NPN transistors, PNP choppers, and NPN choppers. Four dual PNP flat packs and seven dual NPN flat packs are used in the A/D converter. These are to be used primarily for constructing differential amplifiers and for MOS gate drivers. Two flat packs each containing four NPN and PNP chopper transistors are used. These units switch the reference voltage across the precision resistance ladder.

#### 2.3.1 Analog-to-Digital Converter Operation

The A/D converter consists of five functional circuits as shown in Figure 2.3.1. These circuits are: input, error amplifier and clamp, output amplifier and clamp, precision reference generator and ladder and switches circuitry.

The operating cycle is divided into three intervals. They are: the clamp interval, the multiplexer settling interval, and the coding interval. During the clamp interval, the input is shorted to -19.6 mv, allowing the feedback correction loop to null to this voltage. During the settling interval, the desired analog channel voltage is switched to the input and allowed to rise to its full value. This voltage is converted to an 8-bit binary code during the coding interval.

Regardless of the selected bit rate, the first two bit periods of each word are used for the clamp interval. At the start of "bit 1", switch S1 closes and connects the input to -19.6 millivolts. Five microseconds later, switch S2 closes and connects the error amplifier output to the clamp amplifier input starting the action of nulling offset. This state is held until microseconds before the end of "bit 2" (30 microseconds at the 51.2 kc bit rate), then switch S2 opens followed 5 microseconds later by switch S1.

The desired channel gate is closed applying an input voltage and half scale current to the summing bus. This current is held for 25 microseconds allowing the analog input to rise and the summing bus to reach its proper net current. At the end of the 25 microsecond period, the current on the bus equals the converted analog current minus half scale current. The polarity of this converted current determines



Figure 2.3.1. Analog-To-Digital Converter. Block Diagram

the polarity of the error amplifier output voltage depending upon whether the input voltage is greater or less than half scale. In addition, the polarity of the converted current determines the state of the steer inputs to the error amplifier flip-flop.

At the end of settling time, a coder clock transition occurs setting the error amplifier flip-flop to the previously determined state. If the analog input is greater than half scale, the flip-flop output goes negative. Two and one-half microseconds later, the programmer removes the half-scale current from the bus if it is greater than the converted analog current or leaves it on if it is less. Simultaneously, the quarter-scale current is commanded onto the bus. The error amplifier is then allowed 7.5 microseconds to decide the polarity of the new net current on the summing bus before another coder clock transition occurs. Again, 2.5 microseconds later, the programmer acts upon the decision either removing or leaving the quarter scale current and commanding the 1/8 scale current onto the bus. The decision-action cycle is repeated at 10 microsecond intervals for the 1/16, 1/32, 1/64, 1/128, and 1/256 scale currents. The time between the 1/2 scale current decision and the 1/256 scale current decision is 70 microseconds. At the end of this 70 microsecond period, by observing which currents were retained on the bus and which were rejected, the value of the applied analog signal is determined to within the accuracy limits of the system.

Seven and one-half microseconds after the last decision is made, the channel gate opens removing the analog input. During the last half of "bit 8", the code representing the channel voltage is read into the output register. Five micro-seconds later, switch S1 is closed starting the cycle for another channel.

As the bit rate is reduced from 51.2 kilocycles, the settling period and coding period remain constant at 25 microseconds and 70 microseconds, respectively. The clamp period and period between the final decision and coder read out expands to cover the longer word times. Concurrently, the clamp interval is maintained at 25% of the word length.

#### 2.3.2 ADC Circuit Description

#### 2.3.2.1 Input Circuitry

Referring again to Figure 2.3.1, the input circuitry consists of two amplifiers, A1 and A2, and the gain adjust resistor. A1 and A2 are general purpose amplifiers (GPA) connected for unity voltage gain. The input circuitry presents a high input impedance to the analog signal and converts the input analog voltage to a precision analog current. The high input impedance is accomplished through use of a constant current source in the emitter circuit and boot strapping the collector of the input transistor. As shown in Figure 2.3.2.1, the voltage-to-current conversion is accomplished as follows:

- a. A voltage present between the input terminals (analog PAM and analog signal ground) is impressed directly across the gain resistor resulting in a current flow through the resistor.
- b. This current flows plus to minus into the output terminal of A2. There is a 1-milliampere current sink at the output terminal of A2.
- c. Therefore, the current flowing through the gain resitor (11) and the collector current of Q1 and Q2 (12) totals 1 milliampere.

Note that any incremental increase in 11 results in the same increment of decrease in 12 and that this change in 12 is a direct function of the analog input voltage. Current 12 is the analog input current to the summing bus.

#### 2.3.2.2 Error Amplifier

The error amplifier is composed of amplifiers A3 and A4 and associated feedback circuitry. The clamp circuitry consists of amplifier A7, switches S1 and S2 and the capacitor and two resistors associated with amplifier A7. General purpose amplifier, A3, and associated feedback circuitry forms an inverting current-to-volt-age converter with a transfer function of  $-10^4$  volts per ampere. Amplifier A4 is connected as an inverting voltage gain amplifier with a gain of -10. These amplifiers measure any net current on the summing bus and transfer it to a proportional voltage at the output of amplifier A4. The diodes in the feedback circuits of the two amplifiers limit the output voltage swing to  $\pm 0.6$  volts and provide a path for excess input current preventing the amplifiers from saturating, therefore, maintaining high switching speed.

General purpose amplifier A7, in conjunction with the input resistor and feedback capacitor, forms an integrator. Switches S1 and S2 are analog MOS gate switches. Their drivers are built with the dual NPN and dual PNP units. With switches S1 and S2 closed, amplifier A7 senses the output of amplifier A4 and feeds a current back to the summing bus until the difference between amplifier A4 output voltage and Analog Common (+10V) is zero, thereby nulling the net current on the



Figure 2.3.2.1. Voltage to Current Conversion

summing bus to zero. When switches S1 and S2 open, the null current is retained by the memory capability of A7 and the feedback capacitor. This operation essentially nulls out any voltage offset in the input buffers and the error amplifier. Offsets beyond this point are desensitized by the gain factor of the error amplifier.

#### 2.3.2.3 Output Amplifiers and Clamp

The output amplifier and clamp consists of amplifiers A5, A6 and the error amplifier flip-flop. Amplifiers A5 and A6 are differential voltage amplifiers with gains of 150 and 50 respectively. They are formed with the dual PNP micro-electronic unit.

Amplifiers A5 and A6 amplify a differential voltage between the output of amplifier A4 and Analog Common (+10V) to a sufficient level to effectively steer the flip-flop. Upon receipt of a clock pulse, the flip-flop assumes the output dictated by the steers and supplies this output to the programmer for use in the digital feedback loop.

#### 2.3.2.4 Precision Reference Generator

This block is composed of the reference voltage generator and amplifier A8. The primary reference voltage element is a 6.4 volts zener diode temperature compensated to 0.0005% change per  $^{\circ}$ C. The purpose of the other circuitry involved in the generation is to maintain a precision current of 500 microamps through the diode. General purpose amplifier A8 is connected for unity voltage gain and buffers the reference voltage, effectively reducing the output impedance to a point where the bit currents supplied from this source have no effect on gain. The resulting reference voltage is a nominal +3.6 volts.

#### 2.3.2.5 Ladder and Switches

The ladder and switches circuitry consists of the eight ladder switches and the 17 resistor ladder network. The switches contain a digital driver and two complementary NPN and PNP chopper transistors. Upon command, a switch connects its ladder resistor to the reference voltage or to Analog Common. Low resistance, low offset choppers transistors are used to make the connection. The ladder resistors are .01%, 5 parts per million bulk film types. They are arranged so that connecting the resistor controlled by the 128 command to the reference voltage generates a current change on the summing bus equal to half scale (approximately 320 microamperes), and the resistor controlled by the 64 command generates a current change equal to one-quarter scale, etc. The offset adjust resistors connected to switch S1 are used to set the "zero" level of the coders so that the first bit switches in at zero volts input. This is done by setting the junction of the resistors to -19.6 millivolts and allowing the clamp to null to this value.

#### 2.4 Programmer

The programmer timing, as illustrated by Figure 2.4, is generated by two counter systems. The first counter system provides a fixed timing sequence for the coder operation. The second system provides a timing sequence for the analog multiplexer and output register at programmed bit rates from 51,200 to 800 cps. The prime timing reference is a crystal-controlled oscillator operating at 409.6 kilocycles per second. An eight stage binary counter divides the oscillator frequency to provide timing for the external bit rate program. In addition, these counters provide a fixed timing sequence for the analog-to-digital conversion; thus, the signal sample period is independent of the programmed bit rate.

The programmed bit rate timing is divided by a one stage buffer counter which provides the data rate timing; followed by a three stage 8-to-1 counter which generates the eight bit timing for each word. Three operations are performed during each eight bit word:

- 1. The coder correction cycle is performed during the first two bits of each word.
- The correction cycle is followed by an analog-to-digital conversion fixed time period of approximately 100 microseconds (30 microseconds MSD settle time and 70 microseconds for the eight conversion decisions).
- 3. The coder word is read into the output register by the digital multiplexer gates during the last half of bit eight.

Since the conversion period is constant, independent of bit rate, the eight stage counters providing this sequence are synchronized with the bit counters to begin a conversion cycle with the beginning of bit three of each word.

After the last conversion decision, all half-split weighted currents are gated OFF to reduce power while the digital code remains stored until the required parallel readout during bit eight. Since power is dissipated in the coder weighted currents and analog gates only during the fixed time conversion cycle, system power

![](_page_21_Figure_0.jpeg)

Figure 2.4. Programmer. Block Diagram

is actually reduced as bit rate is reduced. The one hundred word frame is generated by two ten stage shift registers which have feedback from output to input. These registers actually perform the functions of frequency division and a decoding matrix, thus, the analog gate row and column drivers may be driven directly from the register outputs. Each analog gate is energized by the coincidence of:

- 1. Row drive
- 2. Column drive
- 3. Analog gate duty cycle

The analog gate duty cycle energizes each gate for the required conversion time only.

The digital multiplexer gates the 8-bit encoded word into the output register by parallel read-in for each of the 98 analog words, and gates the preset sync code during the first two words of each data frame for frame synchronization.

The output register provides the parallel-to-serial conversion of each 8-bit encoded word and the frame sync code words. The NRZ serial output is shifted out of the register one-half bit delayed from all bit counter and word counter transitions. This allows accurate phasing of output transitions of data rate timing, NRZ serial data, and frame sync without introducing the delay of the word counters. The total delay between a data sample period and the serial output representing this data (including the time required to shift the word out of the register) is eight and one-half bits.

Output buffers provide independent outputs with low driving impedance and small propagation delay. These complementary output circuits provide low driving impedance in both the high and low states.

As mentioned previously, the bit rate may be externally programmed in the range from 800 to 51,200 cps. Any six of the following seven rates may be selected for wiring to the seven pin patch connector.

| 800 cps   | 12,800 cps |
|-----------|------------|
| 1,600 cps | 25,600 cps |
| 3,200 cps | 51,200 cps |
| 6,400 cps |            |

As the bit rate is changed from 800 to 51,200 cps, the sampling rates for the individual analog channels changes from 1 to 64 sps.

#### 2.5 Power Supply

The block diagram for the power supply is shown in Figure 2.5. The input LC filter provides filtering to minimize the input current ripple and to provide attenuation for conducted electromagnetic interference. The series switch is alternately opened and closed to the output LC filter. When the switch is not conducting, a diode provides a path for continuous current through the inductor. Thus, the input voltage is transformed to a continuous 16-volt output to the dc-to-dc converter input without the resulting losses of a series regulator. Higher efficiency and lower power dissipation within the power supply are obtained for the 24- to 32-volt input range. A preregulator consisting of a half-shot (RC circuit) controlled by the sampled input voltage controls the input series switch. Additional feedback is provided from the 16-volt output. This 16-volt output is compared to a reference diode and then amplified to control a free running multivibrator. The multivibrator provides an input to the half-shot circuit. Additional circuitry assures a 16-volt output within 5 milliseconds from power turn on to provide system power by enabling the multivibrator.

A dc-to-dc converter provides constant power to the output rectifiers. The dc-to-dc converter is synchronized with the basic 160-microsecond high-speed word rate to ensure noise-free operation during the analog-to-digital conversion process.

The output rectifiers provide system power to filter capacitors. A transistor rectifier is used on the 3.2-volt line to increase efficiency.

The power consumed by the PCM system is typically 1.7 volts at 28 vdc. The high efficiency of the sampling type preregulator maintains the power consumption essentially constant over the +24 to +32 vdc voltage range. As the bit rate is reduced from 51,200 to 800 cps the power consumption reduces from 1.7 to 1.4 watts.

![](_page_24_Figure_0.jpeg)

#### Figure 2.5. Power Supply. Block Diagram

## SECTION 3.0

## MECHANICAL DESCRIPTION

#### 3.0 MECHANICAL DESCRIPTION

The design approach for the packaging of the Micro PCM Telemetry System was developed giving careful consideration to the following criteria:

1. Maximum protection for the electronics during dynamic environments of vibration, shock, acoustic noise, etc.

2. Packaging techniques compatible with both discrete components and integrated circuits.

3. Efficient solution to the internal wiring problem normally present in this type equipment.

4. Minimum size and weight structure.

The selected design approach, which provided excellent performance during the extensive qualification test program, utilizes the compression packaging technique to achieve maximum protection for the electronics with a minimum size and weight housing. The integrated circuits in the system are mounted in a planar configuration to multilayer printed circuits for the multiplexer and programmer junctions, and in a cordwood configuration for the analog-to-digital-converter function. An epoxy molding process, which was developed and proved on a previous program, was used to encapsulate the integrated circuit flat packs for the cordwood configuration. This provides subassemblies with handling and fabrication characteristics equivalent to discrete components. In addition, a card-to-card interconnection technique was developed to efficiently fulfill the internal wiring function.

#### 3.1 Physical Description

Refereing again to Figure 1.0, the electronics of the PCM system are packaged in an aluminum-polyurethane foam housing. The physical details are shown in Figure 3.1, PCM Envelope dimensions. The volume of the system is 33 cubic inches and the weight is slightly less than 1.4 pounds.

The external finish of the box is a black, wrinkle finish, baked enamel. This finish was chosen for its high emissivity characteristics and for its excellent durability.

All external connectors are Cannon Micro-K series. Two 55-pin and four seven-pin connectors are used. The connectors are discretely keyed by the selective blocking and/or removal of pins and sockets. Electromagnetic interference

shielding is accomplished by modification of the clamping barrel nuts of the mating connectors of the cable harness. The barrel nuts are lengthened in both directions in order to provide wiping action against the PCM housing on one end and to permit the attachment of a metallic braid termination on the other.

The system is mounted from underneath by inserting four 6-32 screws through a mounting plate into the inserts provided for this purpose (see figure 3.1).

#### 3.2 Housing Design

The basic mechanical housing for the PCM Telemetry System consists of a thin-walled, one piece reinforced aluminum machining. The entire housing is machined from solid stock in order to eliminate the tolerance and sealing problems normally associated with minimum weight structures.

The top and bottom panels are filled with polyurethane foam to provide both structural and thermal advantages. Structurally, the area moments of inertia of each panel are increased without increasing the weight of aluminum. This raises the fundamental resonant frequency of the panels and consequently lowers the displacement amplitude of the panels at resonance. Thermally, the insulating qualities of the polyurethane foam help protect the circuitry from rapid temperature transients as experienced during the specification requirement of a ten minute excursion to 230°F.

Sealing of the package for humidity protection is accomplished by use of the cover gasket and by the application of RTV silastic around each connector and connector screw at assembly. The package is not hermetically sealed but has a leak rate of approximately 1 pound per square inch per hour at a pressure differential of 5 pounds per square inch.

Electromagnetic interference radiation is also reduced by a metal-tometal contact at the housing-cover interface of the package.

#### 3.3 Compression Packaging

The successful use of the compression packaging technique on many Radiation PCM systems including Nimbus, OAO, Telstar, Titan III Airframe, Apollo, LEM and Lunar Orbiter contributed strongly to the decision to use this basic packaging technique for the Micro PCM Telemetry System.

A key feature of this technique is that the entire module stack is placed under a compressive load of 8 to 10 psi at the final system assembly. This compression yields a semi-rigit, "solid-mass" structure which possess excellent shock and vibration attenuation characteristics. Resonant amplifications of input vibrations NOTES:

1. ALL TOL TO BE  $\pm$ .005.

#### CONNECTOR ALLOCATION

![](_page_28_Figure_3.jpeg)

5|54|

![](_page_28_Figure_5.jpeg)

as low as 4 or 5 can be expected in a properly designed "compression package". This compares most favorably with amplifications of twenty or more usually encountered with more standard packaging methods.

The compressive force is applied by the top and bottom panels which, as discussed previously, are designed to provide this compression loading.

#### 3.4 Electronics Packaging

The system's electronics consists of three PC card subassemblies: a programmer assembly, an analog multiplexer assembly and a power supply/ analog-to-digital converter (ADC) assembly.

#### 3.4.1 Programmer Assembly

The programmer assembly, shown in Figure 3.4.1 installed in a checkfixture, consists of a multilayer board (6 layers), integrated circuit flat packs, bit rate connector and the card-mounted individual connector sockets. The multilayer card, designed and produced by Radiation Incorporated contains the complex wiring pattern required to interconnect the logic elements. The 98 monolithic integrated circuit flat packs attached to the PC card by the resistance soldering technique. Individual AMP connector sockets are attached to the card at its perimeter and the bit rate connector is hard wired to solder pads located at the front edge of the card.

This assembly provides the complete programming function for the PCM system with the exception of the crystal oscillator and six output buffer circuits.

#### 3.4.2 Analog Multiplexer Assembly

The analog multiplexer assembly shown in its completed form in Figure 3.4.2 is similar in design and construction to the programmer assembly. Sixty integrated circuit flat packs are attached to a six layer PC card. Two 55 pin connectors supply the analog input signals and the AMP connector sockets provide the necessary card-to-card connections.

This assembly provides the complete analog multiplexing function including the row and column drivers and MOS gate drivers.

![](_page_30_Picture_0.jpeg)

1064-8

![](_page_30_Figure_2.jpeg)

![](_page_31_Picture_0.jpeg)

I

1

ł

ŧ

1

1

1064-9

![](_page_31_Figure_2.jpeg)

#### 3.4.3 Power Supply/ADC Assembly

The power supply/ADC assembly is shown in Figure 3.4.3. Four welded modules are attached to a two-sided PC card. Three 7 pin connectors, one for the 28 volt power input and two for the PCM system outputs, are hard wired to the PC card. The individual connector sockets provide the necessary card-to-card connections.

The welded modules are fabricated by arranging electronic components in a cordwood fashion between thin Mylar sheets. Interconnections are made by welding nickel ribbon between component leads according to the ribbon routing paths printed on the Mylar sheets. The welded assembly is then encapsulated in a semirigid polyurethane foam.

The power supply comprises two of the four welded modules. These two modules were designed using conventional components

A buffer and oscillator module, using conventional components, provides a stable crystal-controlled clock to the programmer and six special buffer circuits for the PCM and timing outputs.

The last module, the analog-to-digital converter (ADC) consists of both integrated circuits and discrete components. Twenty-four integrated circuit flat packs, which includes all active circuits of the ADC, and 54 discrete components are packaged in the module. As discussed previously, all flat packs have nickel wires attached and special interconnections made on each device by the welding process. The units are then encapsulated in a hard epoxy to provide a subassembly which is more suitable for the cordwood packaging technique. The encapsulated subassemblies are then installed in the welded modules.

#### 3.4.4 Final Assembly Process

As shown in Figure 3.4.4 the three card assemblies are properly aligned and then interconected by installing the solid conductor feed-through wires in the individual card-mounted connectors. In addition to providing an efficient internal wiring function, these feed-through interconnection wires may be readily removed to expedite maintenance or troubleshooting, should this be necessary.

In order to provide access to as many electrical terminations as possible after the three cards are assembled, the bottom card (power supply/ADC) is oriented with the module solder pads on the outside facing down. The top card (programmer) has its planar flat packaged integrated circuits on the outside facing up. The center card (analog multiplexer) contains the analog gates and the gate driver functions

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

1064-12

![](_page_34_Figure_2.jpeg)

which are available at the solder point wiring entries to the center card. Therefore, rapid and accurate isolation of malfunctions is possible during check-out prior to installation of the card stack within the housing.

The final assembly process is completed by installing this electronic card stack assembly in the housing and applying the compression loading by attaching the top cover.

## SECTION 4.0

## SPECIFICATIONS AND PERFORMANCE

#### 4.0 SPECIFICATIONS AND PERFORMANCE

The significant specifications which were used as the basis for the design of the MICRO PCM Telemetry System are listed in paragraph 4.1. As discussed previously, the performance of the system meets, and in most, cases exceeds all specifications. Typical performance data are presented in paragraph 4.2. Of particular importance are the size, weight, power consumption, accuracy and dynamic environment characteristics.

#### 4.1 Significant Specifications Number of Analog Input Channels 98 Signal Source 0 to 5 volts full scale 10,000 ohms or less Source Impedance Sampling Rate (Programmable) 1 to 64 samples per second Encoding 8-bit binary word **Output Format** NRZ type "C" 8-bits per word 100 words per frame Output Bit Rate Programmable at 800, 1600, 3200, 6400, 12,800,25,600 and 51,200 bits per second Output Impedance 100 ohms maximum Binary "1" = +5 volts +0.0 -0.5<sup>volts</sup> **Output Levels** Binary "0" = 0 volts +0.5 -0.0<sup>volts</sup> Accuracy $\pm 0.6\%$ , three sigma limits Weight 3.1 pounds Size 52 cubic inches Power Consumption 2.5 watts @ 28 VDC

4-1

| Reliability               | P <sub>s</sub> = 0.999 for 10-hour mission                                        |
|---------------------------|-----------------------------------------------------------------------------------|
| Service Life              | 2000 hours with no maintenance or adjustments                                     |
| Storage Life              | 36 months                                                                         |
| Environmental             |                                                                                   |
| Temperature               | -30 <sup>o</sup> F to 230 <sup>o</sup> F                                          |
| Altitude                  | 10 <sup>-5</sup> mm Hg.                                                           |
| Acceleration              | 20 g's                                                                            |
| Shock                     | 50 g's for 11 milliseconds, half sine                                             |
| Acoustic Noise            | 165 db random noise referenced to<br>.0002 dynes/cm <sup>2</sup>                  |
| Vibration                 | 15 g's RMS                                                                        |
| O <sub>2</sub> Atmosphere | 100% at 7 psia for 1 hour                                                         |
| Salt Spray                | 5% for 24 hours per MIL-STD-810                                                   |
| Humidity                  | 97.5% <u>+</u> 2.5% RH at 80 <sup>0</sup> F to 160 <sup>0</sup> F<br>for 24 hours |
|                           |                                                                                   |

#### 4.2 Typical Performance Including Environmental Conditions

Output Bit Rate

Frequency Stability

Duty Cycle

Programmable at 800, 1600, 3200, 6400, 12,800, 25,600, 51,200 bits per second

+ 10 CPS @ 51.2 KC

50% + ,5%

No effect upon format, performance, or accuracy

#### Digital Outputs

Digital Output Impedance

70 ohms

Digital Output Levels

Binary One Binary Zero

Amplitude Stability

Rise Time Fall Time < 0.1 volt + 1%

+ 0.2%

4.8 volts

0.2 microsecond 0.1 microsecond

Analog Characteristics

Accuracy

Imput Impedance

During Sampling Non-Sampling System "OFF" > 3 Meg ohms > 600 Meg ohms > 600 Meg ohms

Fault Voltage with No Effect on Performance

Weight

Size

Power

Reliability

Service Life

Storage Life

Environmental

-1.0 volt to +16 volts

1.4 pounds

33 cubic inches

1.7 watts @28 VDC

P<sub>c</sub> = 0,999 for 10 hour missions (predicted)

No periodic maintenance or adjustments required

36 months (predicted)

The Micro PCM Telemetry System was qualified to the environments of paragraph 4.1 during a formal – customer approved Qualification Test Program

#### 4.3 Electromagnetic Interference Characteristics

The Micro PCM Telemetry System was designed to meet the requirements of MIL-I-26600, MIL-I-6181 and the 50 volt power source transient requirement of the MSC-ASPO-EMI-10A addendum to MIL-I-26600. During the Qualification Test Program the system was tested to the above requirements and met or exceeded all specifications. After the completion of the Qualification Test Program the system was tested to all the requirements of the MSC-ASPO-EMI-10A Addendum to MIL-I-26600. The unit met or exceeded all requirements of this specification. Detailed electromagnetic interference performance characteristics are available in a separate report.

4-4

## APPENDIX A-1

-

-

### INTERFACE REQUIREMENTS

BY

## CONNECTOR - PIN - FUNCTION

| Power | Connector |  |
|-------|-----------|--|
|       |           |  |

Brown Color Dot

| Pin | Function            |
|-----|---------------------|
| 1   | NC – Keying Pin     |
| 2   | Power Ground        |
| 3   | Signal Ground Point |
| 4   | Power Ground        |
| 5   | +28V Input          |
| 6   | Chassis Ground      |
| 7   | NC                  |

JI

1

-

-

-

-

-

-

-1

-

-

-

\_

-

-

-

-

-

#### Analog Input Connector

Red Color Dot

| Pin | Function        | Pin | Function      |
|-----|-----------------|-----|---------------|
|     | NC - Keying Pin | 29  | Channel 73    |
| 2   | Analog Ground   | 30  | Channel 31    |
| 3   | Analog Ground   | 31  | Channel 33    |
| 4   | Channel 75      | 32  | Channel 65    |
| 5   | Channel 91      | 33  | Channel 85    |
| 6   | Channel 93      | 34  | Channel 82    |
| 7   | Channel 94      | 35  | Channel 34    |
| 8   | Analog Ground   | 36  | Channel 95    |
| 9   | Analog Ground   | 37  | Channel 54    |
| 10  | Channel 22      | 38  | Channel 52    |
| 11  | Channel 21      | 39  | Analog Ground |
| 12  | Channel 5       | 40  | Channel 63    |
| 13  | Channel 4       | 41  | Channel 61    |
| 14  | Channel 72      | 42  | Channel 43    |
| 15  | Channel 14      | 43  | Channel 41    |
| 16  | Channel 74      | 44  | Channel 3     |
| 17  | Channel 45      | 45  | Channel 71    |
| 18  | Channel 25      | 46  | Channel 11    |
| 19  | Channel 24      | 47  | Channel 13    |
| 20  | Channel 23      | 48  | Channel 15    |
| 21  | Channel 81      | 49  | Channel 32    |
| 22  | Channel 83      | 50  | Channel 92    |
| 23  | Channel 84      | 51  | Channel 35    |
| 24  | Channel 64      | 52  | Channel 55    |
| 25  | Channel 62      | 53  | Channel 53    |
| 26  | Channel 44      | 54  | Channel 51    |
| 27  | Channel 42      | 55  | Channel 49    |
| 28  | Channel 12      |     |               |

J2

--

-1

-

--

-

-

-

-

-

-0

-

-

-

-

-

-

## Data Rate Select

Orange Color Dot

| Pin | Function                |
|-----|-------------------------|
| 1   | Data Rate Select Return |
| 2   | 800 cps                 |
| 3   | 1.6 KC                  |
| 4   | 3.2 KC                  |
| 5   | 6.4 KC                  |
| 6   | 12.8 KC                 |
| 7   | 25.6 KC                 |

J3

[

ŧ

| J4  | Analog I      | nput Connector | Yellow Color D |
|-----|---------------|----------------|----------------|
| Pin | Function      | Pin            | Function       |
|     | Channel 48    | 29             | Channel 46     |
| 2   | Analog Ground | 30             | Channel 17     |
| 3   | Analog Ground | 31             | Channel 19     |
| 4   | Keying Pin NC | 37             | Channel 79     |
| 5   | Channel 67    | 33             | Channel 59     |
| 6   | Channel 68    | 34             | Channel 100    |
| 7   | Analog Ground | 35             | Channel 98     |
| 8   | Analog Ground | 36             | Channel 96     |
| 9   | Channel 66    | 32             | Channel 36     |
| 10  | Channel 86    | 38             | Channel 77     |
| 11  | Channel 57    | 39             | Channel 76     |
| 12  | Channel 56    | 40             | Channel 37     |
| 13  | Channel 40    | 41             | Channel 60     |
| 14  | Channel 39    | 42             | Channel 58     |
| 15  | Channel 38    | 43             | Channel 99     |
| 16  | Analog Ground | 44             | Channel 97     |
| 17  | Channel 29    | 45             | Channel 80     |
| 18  | Channel 50    | 46             | Channel 78     |
| 19  | Channel 69    | 47             | Channel 9      |
| 20  | Channel 70    | 48             | Channel 7      |
| 21  | Channel 90    | 49             | Channel 47     |
| 22  | Channel 89    | 50             | Channel 16     |
| 23  | Channel 88    | 51             | Channel 18     |
| 24  | Channel 87    | 52             | Channel 20     |
| 25  | Channel 27    | 53             | Channel 30     |
| 26  | Channel 10    | 54             | Channel 28     |
| 27  | Channel 8     | 55             | Channel 26     |
| 28  | Channel 6     |                |                |

\_

Dot

| 15  | #1 Digita | l Outputs Green Color Dot      |
|-----|-----------|--------------------------------|
| Pin |           | Function                       |
| 1   |           | NC                             |
| 2   |           | NC - Keying Pin                |
| 3   |           | Serial Data No. 1 Output       |
| 4   |           | Frame Rate Timing No. 1 Output |
| 5   |           | Data Rate Timing No. 1 Output  |
| 6   |           | PCM Grd. No. 1                 |
| 7   |           | NC                             |

A1-5

| J6  | #2 Dig | ital Outputs     | Blue Color Do  |
|-----|--------|------------------|----------------|
| Pin |        | Function         |                |
| 1   |        | NC               |                |
| 2   |        | NC               |                |
| 3   |        | Serial Data No.  | 2 Output       |
| 4   |        | Frame Rate Timin | g No. 2 Output |
| 5   |        | Data Rate Timing | No. 2 Output   |
| 6   |        | PCM Grd. No. 2   | 2              |
| 7   |        | NC - Keying Pir  | 1              |

## APPENDIX A-2

]

J

#### INTERFACE REQUIREMENTS

BY

## FUNCTION - CONNECTOR - PIN

## POWER

Function

+ 28V Input

J

] ] ]

J

| Connector | Pin |
|-----------|-----|
|           |     |
| JI        | 5   |

## GROUNDS

]

J

| Function        | Connector | Pin |
|-----------------|-----------|-----|
| Power Grd.      | JI        | 2   |
| Signal Grd. Pt. | JI        | 3   |
| Power Grd       | ٦١        | 4   |
| Chassis Grd     | JI        | 6   |
| Data Grd        | J2        | 2   |
| Data Grd        | J2        | 3   |
| Data Grd        | J2        | 8   |
| Data Grd        | J2        | 9   |
| Data Grd        | J2        | 39  |
| Data Grd        | J4        | 2   |
| Data Grd        | J4        | 3   |
| Data Grd        | J4        | 7   |
| Data Grd        | J4        | 8   |
| Data Grd        | J4        | 16  |
| PCM Grd #1      | J5        | 6   |
| PCM Grd #2      | J6        | 6   |
|                 |           |     |

## DIGITAL SIGNALS

| Function                       | Connector | Pin |
|--------------------------------|-----------|-----|
| Serial Data No. 1 Output       | J5        | 3   |
| Frame Rate Timing No. 1 Output | J5        | 4   |
| Data Rate Timing No. 1 Output  | J5        | 5   |
| Serial Data No. 2 Output       | J6        | 3   |
| Frame Rate Timing No. 2 Output | J6        | 4   |
| Data Rate Timing No. 2 Output  | J6        | 5   |
| Data Rate Select Ret.          | J3        | 1   |
| 800 cps                        | J3        | 2   |
| 1.6 KC                         | J3        | 3   |
| 3.2 KC                         | J3        | 4   |
| 6.4 KC                         | J3        | 5   |
| 12.8 KC                        | J3        | 6   |
| 25.6 KC                        | J3        | 7   |

J

## ANALOG INPUTS

| Function   | Connector | Pin |
|------------|-----------|-----|
| Channel 3  | J2        | 44  |
| Channel 4  | J2        | 13  |
| Channel 5  | J2        | 12  |
| Channel 6  | J4        | 28  |
| Channel 7  | J4        | 48  |
| Channel 8  | J4        | 27  |
| Channel 9  | 14        | 47  |
| Channel 10 | 14        | 26  |
| Channel 11 | .12       | 46  |
| Channel 12 | J2        | 28  |
| Channel 13 | J2        | 47  |
| Channel 14 | J2        | 15  |
| Channel 15 | J2        | 48  |
| Channel 16 | J4        | 50  |
| Channel 17 | J4        | 30  |
| Channel 18 | J4        | 51  |
| Channel 19 | J4        | 31  |
| Channel 20 | J4        | 52  |
| Channel 21 | J2        | 11  |
| Channel 22 | J2        | 10  |
| Channel 23 | J2        | 20  |
| Channel 24 | J2        | 19  |
| Channel 25 | J2        | 18  |
| Channel 26 | J4        | 55  |
| Channel 27 | J4        | 25  |
| Channel 28 | 14        | 54  |
| Channel 29 | J4        | 17  |
| Channel 30 | J4        | 53  |
| Channel 31 | J2        | 30  |
| Channel 32 | J2        | 49  |
| Channel 33 | J2        | 31  |
| Channel 34 | J2        | 35  |
| Channel 35 | J2        | 51  |
| Channel 36 | J4        | 32  |
| Channel 37 | J4        | 40  |
| Channel 38 | J4        | 15  |
| Channel 39 | J4        | 14  |
| Channel 40 | J4        | 13  |
| Channel 41 | J2        | 43  |
| Channel 42 | J2        | 27  |
| Channel 43 | J2        | 42  |
| Channel 44 | J2        | 26  |
| Channel 45 | J2        | 17  |
|            |           |     |

## ANALOG INPUTS (Continued)

| Function   | Connector | Pin |
|------------|-----------|-----|
| Channel 46 | J4        | 29  |
| Channel 47 | 4ر        | 49  |
| Channel 48 | 4ل        | 1   |
| Channel 49 | J2        | 55  |
| Channel 50 | 4ل        | 18  |
| Channel 51 | J2        | 54  |
| Channel 52 | J2        | 38  |
| Channel 53 | J2        | 53  |
| Channel 54 | J2        | 37  |
| Channel 55 | J2        | 52  |
| Channel 56 | J4        | 12  |
| Channel 57 | 4ل        | 11  |
| Channel 58 | ٦4        | 42  |
| Channel 59 | 4ل        | 33  |
| Channel 60 | 4ل        | 41  |
| Channel 61 | J2        | 41  |
| Channel 62 | J2        | 25  |
| Channel 63 | J2        | 40  |
| Channel 64 | J2        | 24  |
| Channel 65 | J2        | 32  |
| Channel 66 | 4ل        | 9   |
| Channel 67 | J4        | 5   |
| Channel 68 | 4ل        | 6   |
| Channel 69 | 4ل        | 19  |
| Channel 70 | 4ل        | 20  |
| Channel 71 | J2        | 45  |
| Channel 72 | J2        | 14  |
| Channel 73 | J2        | 29  |
| Channel 74 | J2        | 16  |
| Channel 75 | J2        | 4   |
| Channel 76 | J4        | 39  |
| Channel 77 | J4        | 38  |
| Channel 78 | J4        | 46  |
| Channel /9 | J4        | 37  |
| Channel 80 | J4        | 45  |
|            | JZ        | 21  |
| Channel 82 | JZ        | 34  |
| Channel 83 | JZ        | 22  |
| Channel 84 | JZ        | 23  |
| Channel 83 | JZ        | 33  |
| Channel 80 | J4        | 10  |
| Ungnnel 0/ | 4         | 24  |

## ANALOG INPUTS (Continued)

 $\hat{}$ 

| Function    | Connector | Pi | n  |
|-------------|-----------|----|----|
| Channel 88  | J4        |    | 23 |
| Channel 89  | J4        |    | 22 |
| Channel 90  | J4        |    | 21 |
| Channel 91  | J2        |    | 5  |
| Channel 92  | J2        |    | 50 |
| Channel 93  | J2        |    | 6  |
| Channel 94  | J2        |    | 7  |
| Channel 95  | J2        |    | 36 |
| Channel 96  | J4        |    | 36 |
| Channel 97  | J4        |    | 44 |
| Channel 98  | J4        |    | 35 |
| Channel 99  | J4        |    | 43 |
| Channel 100 | J4        |    | 34 |

## NO CONNECTIONS

ſ

| Function   | Connector | Pin |
|------------|-----------|-----|
| Keying Pin | JI        | 1   |
| NĆ         | J         | 7   |
| Keying Pin | J2        | 1   |
| Keying Pin | J4        | 4   |
| NC         | J5        | 1   |
| Keying Pin | J5        | 2   |
| NC         | J5        | 7   |
| NC         | J6        | 1   |
| NC         | J6        | 2   |
| Keying Pin | JG        | 7   |

OUTPUT FORMAT

APPENDIX B

1

## APPENDIX B

-

\_

1

.

\_

\_

## OUTPUT FORMAT

| Word No. | Input          |    | Word No. | Input          |    |
|----------|----------------|----|----------|----------------|----|
| 1        | Sync Code      |    | 42       | Analog Channel | 42 |
| 2        | Sync Code      |    | 43       | Analog Channel | 43 |
| 3        | Analog Channel | 3  | 44       | Analog Channel | 44 |
| 4        | Analog Channel | 4  | 45       | Analog Channel | 45 |
| 5        | Analog Channel | 5  | 46       | Analog Channel | 46 |
| 6        | Analog Channel | 6  | 47       | Analog Channel | 47 |
| 7        | Analog Channel | 7  | 48       | Analog Channel | 48 |
| 8        | Analog Channel | 8  | 49       | Analog Channel | 49 |
| 9        | Analog Channel | 9  | 50       | Analog Channel | 50 |
| 10       | Analog Channel | 10 | 51       | Analog Channel | 51 |
| 11       | Analog Channel | 11 | 52       | Analog Channel | 52 |
| 12       | Analog Channel | 12 | 53       | Analog Channel | 53 |
| 13       | Analog Channel | 13 | 54       | Analog Channel | 54 |
| 14       | Analog Channel | 14 | 55       | Analog Channel | 55 |
| 15       | Analog Channel | 15 | 56       | Analog Channel | 56 |
| 16       | Analog Channel | 16 | 57       | Analog Channel | 57 |
| 17       | Analog Channel | 17 | 58       | Analog Channel | 58 |
| 18       | Analog Channel | 18 | 59       | Analog Channel | 59 |
| 19       | Analog Channel | 19 | 60       | Analog Channel | 60 |
| 20       | Analog Channel | 20 | 61       | Analog Channel | 61 |
| 21       | Analog Channel | 21 | 62       | Analog Channel | 62 |
| 22       | Analog Channel | 22 | 63       | Analog Channel | 63 |
| 23       | Analog Channel | 23 | 64       | Analog Channel | 64 |
| 24       | Analog Channel | 24 | 65       | Analog Channel | 65 |
| 25       | Analog Channel | 25 | 66       | Analog Channel | 66 |
| 26       | Analog Channel | 26 | 67       | Analog Channel | 67 |
| 27       | Analog Channel | 27 | 68       | Analog Channel | 68 |
| 28       | Analog Channel | 28 | 69       | Analog Channel | 69 |
| 29       | Analog Channel | 29 | 70       | Analog Channel | 70 |
| 30       | Analog Channel | 30 | 71       | Analog Channel | 71 |
| 31       | Analog Channel | 31 | 72       | Analog Channel | 72 |
| 32       | Analog Channel | 32 | 73       | Analog Channel | 73 |
| 33       | Analog Channel | 33 | 74       | Analog Channel | 74 |
| 34       | Analog Channel | 34 | 75       | Analog Channel | 75 |
| 35       | Analog Channel | 35 | 76       | Analog Channel | 76 |
| 36       | Analog Channel | 36 | 77       | Analog Channel | 77 |
| 3/       | Analog Channel | 37 | 78       | Analog Channel | 78 |
| 38       | Analog Channel | 38 | 79       | Analog Channel | 79 |
| 39       | Analog Channel | 39 | 80       | Analog Channel | 80 |
| 40       | Analog Channel | 40 | 81       | Analog Channel | 81 |
| 41       | Analog Channel | 41 | 82       | Analog Channel | 82 |

B-1

## APPENDIX B

-

1

1

1

•

## OUTPUT FORMAT (Continued)

| Word No. | Input          |    | Word No. | Input          |     |
|----------|----------------|----|----------|----------------|-----|
| 83       | Analoa Channel | 83 | 92       | Analog Channel | 92  |
| 84       | Analog Channel | 84 | 93       | Analog Channel | 93  |
| 85       | Analog Channel | 85 | 94       | Analog Channel | 94  |
| 86       | Analog Channel | 86 | 95       | Analog Channel | 95  |
| 87       | Analog Channel | 87 | 96       | Analog Channel | 96  |
| 88       | Analog Channel | 88 | 97       | Analog Channel | 97  |
| 89       | Analog Channel | 89 | 98       | Analog Channel | 98  |
| 90       | Analog Channel | 90 | 99       | Analog Channel | 99  |
| 91       | Analog Channel | 91 | 100      | Analog Channel | 100 |

-

1

1

-

-

-

-

L

#### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART

#### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART

INPUT ANALOG (MV)

#### LOWER SWITCHING POINT OF DIGITAL CODE

٠.

|         | Decimal | Binary   |
|---------|---------|----------|
| 0.000   | 1       | 0000001  |
| 19.685  | 2       | 00000010 |
| 39.370  | 3       | 00000011 |
| 59.055  | 4       | 00000100 |
| 78.740  | 5       | 00000101 |
| 98.425  | 6       | 00000110 |
| 118.110 | 7       | 00000111 |
| 137.795 | 8       | 00001000 |
| 157.480 | 9       | 00001001 |
| 177.165 | 10      | 00001010 |
| 196.850 | 11      | 00001011 |
| 216.535 | 12      | 00001100 |
| 236.220 | 13      | 00001101 |
| 255.905 | 14      | 00001110 |
| 275.590 | 15      | 00001111 |
| 295.275 | 16      | 00010000 |
| 314,960 | 17      | 00010001 |
| 334,645 | 18      | 00010010 |
| 354,330 | 19      | 00010011 |
| 374.015 | 20      | 00010100 |
| 393.700 | 21      | 00010101 |
| 413.385 | 22      | 00010110 |
| 433.070 | 23      | 00010111 |
| 452.755 | 24      | 00011000 |
| 472.440 | 25      | 00011001 |
| 492.125 | 26      | 00011010 |
| 511.810 | 27      | 00011011 |
| 531.495 | 28      | 00011100 |
| 551,180 | 29      | 00011101 |
| 5/0.865 | 30      | 00011110 |
| 370,550 | 31      | 00011111 |
| 010.233 | 32      | 0010000  |
| 029,920 | 33      | 00100001 |
| 047.005 | 34      | 00100010 |

## THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

| INPUT ANALOG (MV) | LOWER SWITCHING POINT | OF DIGITAL CODE |
|-------------------|-----------------------|-----------------|
|                   | Decimal               | Binary          |
| 669.291           | 35                    | 00100011        |
| 688.976           | 36                    | 00100100        |
| 708.661           | 37                    | 00100101        |
| 728.346           | 38                    | 00100110        |
| 748.031           | 39                    | 00100111        |
| 767.716           | <sup>*</sup> 40       | 00101000        |
| 787.401           | 41                    | 00101001        |
| 807.086           | 42                    | 00101010        |
| 826.771           | 43                    | 00101011        |
| 846.456           | 44                    | 00101100        |
| 866.141           | 45                    | 00101101        |
| 885.826           | 46                    | 00101110        |
| 905.511           | 47                    | 00101111        |
| 925.196           | 48                    | 00110000        |
| 944.881           | 49 -                  | 00110001        |
| 964.566           | 50                    | 00110010        |
| 984.251           | 51                    | 00110011        |
| 1003.936          | 52                    | 00110100        |
| 1023.621          | 53                    | 00110101        |
| 1043.306          | 54                    | 00110110        |
| 1062.991          | 55                    | 00110111        |
| 1082.676          | 56                    | 00111000        |
| 1102.361          | 57                    | 00111001        |
| 1122.046          | 58                    | 00111010        |
| 1141.731          | 59                    | 00111011        |
| 1161.416          | 60                    | 00111100        |
| 1181.101          | 61                    | 00111101        |
| 1200.786          | 62                    | 00111110        |
| 1220.471          | 63                    | 00111111        |
| 1240.156          | 64                    | 0100000         |
| 1259.841          | 65                    | 0100001         |
| 1279.526          | 66                    | 01000010        |
| 1299.211          | 67                    | 01000011        |
| 1318.897          | 68                    | 01000100        |
| 1338.582          | 69                    | 01000101        |
| 1358.267          | 70                    | 01000110        |

## THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

Ì

| INPUT ANALOG (MV) | LOWER SWITCHIN | NG POINT OF DIGITAL CODE |
|-------------------|----------------|--------------------------|
|                   | Decimal        | Binary                   |
| 1377.952          | 71             | 01000111                 |
| 1397.637          | 72             | 01001000                 |
| 1417.322          | 73             | 01001001                 |
| 1437.007          | 74             | 01001010                 |
| 1456.692          | 75             | 01001011                 |
| 1476.377          | 76             | 01001100                 |
| 1496.062          | 77             | 01001101                 |
| 1515.747          | 78             | 01001110                 |
| 1535.432          | 79             | 01001111                 |
| 1555.117          | 80             | 01010000                 |
| 1574.802          | 81             | 01010001                 |
| 1594.487          | 82             | 01010010                 |
| 1614.172          | 83             | 01010011                 |
| 1633.857          | 84             | 01010100                 |
| 1653.542          | 85             | 01010101                 |
| 1673.227          | 86             | 01010110                 |
| <b>16</b> 92.912  | 87             | 01010111                 |
| 1712.597          | 88             | 01011000                 |
| 1732.282          | 89             | 01011001                 |
| 1751.967          | 90             | 01011010                 |
| 1771.652          | 91             | 01011011                 |
| 1791.337          | 92             | 01011100                 |
| 1811.022          | 93             | 01011101                 |
| 1830.707          | 94             | 01011110                 |
| 1850.392          | 95             | 01011111                 |
| 1870.077          | 96             | 01100000                 |
| 1889.762          | 97             | 01100001                 |
| 1909.447          | 98             | 01100010                 |
| 1929.132          | 99             | 01100011                 |
| 1948.817          | 100            | 01100100                 |
| 1968.503          | 101            | 01100101                 |
| 1 <b>98</b> 8.188 | 102            | 01100110                 |
| 2007.873          | 103            | 01100111                 |
| 2027.558          | 104            | 01101000                 |
| 2047.243          | 105            | 01101001                 |

## THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

| INPUT ANALOG (MV) | LOWER SWITCHING | LOWER SWITCHING POINT OF DIGITAL CODE |  |  |
|-------------------|-----------------|---------------------------------------|--|--|
|                   | Decimal         | Binary                                |  |  |
| 2066.928          | 106             | 01101010                              |  |  |
| 2086.613          | 107             | 01101011                              |  |  |
| 2106.298          | 108             | 01101100                              |  |  |
| 2125.983          | 109             | 01101101                              |  |  |
| 2145.668          | 110             | 01101110                              |  |  |
| 2165.353          | 111             | 01101111                              |  |  |
| 2185.038          | 112             | 01110000                              |  |  |
| 2204.723          | 113             | 01110001                              |  |  |
| 2224.408          | 114             | 01110010                              |  |  |
| 2244.093          | 115             | 01110011                              |  |  |
| 2263.778          | 116             | 01110100                              |  |  |
| 2283.463          | 117             | 01110101                              |  |  |
| 2303.148          | 118             | 01110110                              |  |  |
| 2322.833          | 119             | 01110111                              |  |  |
| 2342.518          | 120             | 01111000                              |  |  |
| 2362.203          | 121             | 01111001                              |  |  |
| 2381.888          | 122             | 01111010                              |  |  |
| 2401.573          | 123             | 01111011                              |  |  |
| 2421.258          | 124             | 01111100                              |  |  |
| 2440.943          | 125             | 01111101                              |  |  |
| 2460.628          | 126             | 0111110                               |  |  |
| 2480.313          | 127             | 0111111                               |  |  |
| 2499.998          | 128             | 1000000                               |  |  |
| 2519.683          | 129             | 1000001                               |  |  |
| 2539.368          | 130             | 10000010                              |  |  |
| 2559.053          | 131             | 10000011                              |  |  |
| 2578.738          | 132             | 10000100                              |  |  |
| 2598.423          | 133             | 10000101                              |  |  |
| 2618.108          | 134             | 10000110                              |  |  |
| 2637.794          | 135             | 10000111                              |  |  |
| 2657.479          | 136             | 10001000                              |  |  |
| 2677.164          | 137             | 10001001                              |  |  |
| 2696.849          | 138             | 10001010                              |  |  |
| 2716.534          | 139             | 10001011                              |  |  |
| 2736.219          | 140             | 10001100                              |  |  |

#### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

INPUT ANALOG (MV)

#### LOWER SWITCHING POINT OF DIGITAL CODE

|          | Decimal | Binary   |
|----------|---------|----------|
| 2755.904 | 141     | 10001101 |
| 2775.589 | 142     | 10001110 |
| 2795.274 | 143     | 10001111 |
| 2814.959 | 144     | 10010000 |
| 2834.644 | 145     | 10010001 |
| 2854.329 | 146     | 10010010 |
| 2874.014 | 147     | 10010011 |
| 2893.699 | 148     | 10010100 |
| 2913.384 | 149     | 10010101 |
| 2933.069 | 150     | 10010110 |
| 2952.754 | 151     | 10010111 |
| 2972.439 | 152     | 10011000 |
| 2992.124 | 153     | 10011001 |
| 3011.809 | 154     | 10011010 |
| 3031.494 | 155     | 10011011 |
| 3051.179 | 156     | 10011100 |
| 3070.864 | 157     | 10011101 |
| 3090.549 | 158     | 10011110 |
| 3110.234 | 159     | 10011111 |
| 3129.919 | 160     | 10100000 |
| 3149.604 | 161     | 10100001 |
| 3169.289 | 162     | 10100010 |
| 3188.974 | 163 =   | 10100011 |
| 3208.659 | 164     | 10100100 |
| 3228.344 | 165     | 10100101 |
| 3248.029 | 166     | 10100110 |
| 3267.714 | 167     | 10100111 |
| 3287.400 | 168     | 10101000 |
| 3307.085 | 169     | 10101001 |
| 3326.770 | 170     | 10101010 |
| 3346.455 | 171     | 10101011 |
| 3366.140 | 172     | 10101100 |
| 3385.825 | 173     | 10101101 |
| 3405.510 | 174     | 10101110 |
| 3425.195 | 175     | 10101111 |
| 3444.880 | 176     | 10110000 |

#### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

| INPUT ANALOG (MV) | LOWER SWITCHING POIN | T OF DIGITAL CODE |
|-------------------|----------------------|-------------------|
|                   | Decimal              | Binary            |
| 3464, 565         | 177                  | 10110001          |
| 3484, 250         | 178                  | 10110010          |
| 3503,935          | 179                  | 10110011          |
| 3523,620          | 180                  | 10110100          |
| 3543, 305         | 181                  | 10110101          |
| 3562,990          | 182                  | 10110110          |
| 3582,675          | 183                  | 10110111          |
| 3602, 360         | 184                  | 10111000          |
| 3622,045          | 185                  | 10111001          |
| 3641,730          | 186                  | 10111010          |
| 3661.415          | 187                  | 10111011          |
| 3681,100          | 188                  | 10111100          |
| 3700, 785         | 189                  | 10111101          |
| 3720.470          | 190                  | 10111110          |
| 3740.155          | 191                  | 10111111          |
| 3759.840          | 192                  | 11000000          |
| 3779.525          | 193                  | 11000001          |
| 3799.210          | 194                  | 11000010          |
| 3818.895          | 195                  | 11000011          |
| 3838.580          | 196                  | 11000100          |
| 3858.265          | 197                  | 11000101          |
| 3877.950          | 198                  | 11000110          |
| 3897.635          | 199                  | 11000111          |
| 3917.320          | 200                  | 11001000          |
| 3937.006          | 201                  | 11001001          |
| 3956.691          | 202                  | 11001010          |
| 3976.376          | 203                  | 11001011          |
| 3996.061          | 204                  | 11001100          |
| 4015.746          | 205                  | 11001101          |
| 4035.431          | 206                  | 11001110          |
| 4055.116          | 207                  | 11001111          |
| 4074.801          | 208                  | 11010000          |
| 4094.486          | 209                  | 11010001          |
| 4114.171          | 210                  | 11010010          |
| 4133.856          | 211                  | 11010011          |
| 4153 541          | 212                  | 11010100          |

### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

| INPUT ANALOG (MV) | LOWER SWITCHIN | IG POINT OF DIGITAL CODE |
|-------------------|----------------|--------------------------|
|                   | Decimal        | Binary                   |
| 4173.226          | 213            | 11010101                 |
| 4192.911          | 214            | 11010110                 |
| 4212.596          | 215            | 11010111                 |
| 4232.281          | 216            | 11011000                 |
| 4251.966          | 217            | 11011001                 |
| 4271.651          | 218            | 11011010                 |
| 4291.336          | 219            | 11011111                 |
| 4311.021          | 220            | 11011100                 |
| 4330.706          | 221            | 11011101                 |
| 4350.391          | 222            | 11011110                 |
| 4370.076          | 223            | 11011011                 |
| 4389.761          | 224            | 11100000                 |
| 4409.446          | 225            | 11100001                 |
| 4429.131          | 226            | 11100010                 |
| 4448.816          | 227            | 11100011                 |
| 4468.501          | 228            | 11100100                 |
| 4488.186          | 229            | 11100101                 |
| 4507.871          | 230            | 11100110                 |
| 4527.556          | 231            | 11100111                 |
| 4547.241          | 232            | 11101000                 |
| 4566.926          | 233            | 11101001                 |
| 4586.611          | 234            | 11101010                 |
| 4606.296          | 235            | 11101011                 |
| 4625.982          | 236            | 11101100                 |
| 4645.667          | 237            | 11101101                 |
| 4665.352          | 238            | 11101110                 |
| 4685.037          | 239            | 11101111                 |
| 4704.722          | 240            | 11110000                 |
| 4724.407          | 241            | 11110001                 |
| 4744.092          | 242            | 11110010                 |
| 4763.777          | 243            | 11110011                 |
| 4783.462          | 244            | 11110100                 |
| 4803.147          | 245            | 11110101                 |
| 4822.832          | 246            | 11110110                 |

#### THEORETICAL INPUT ANALOG TO OUTPUT CODE CONVERSION CHART (Continued)

| INPUT ANALOG (MC) | LOWER SWITCHING POINT OF DIGITAL CODE |          |  |
|-------------------|---------------------------------------|----------|--|
|                   | Decimal                               | Binary   |  |
| 4842.517          | 247                                   | 11110111 |  |
| 4862.202          | 248                                   | 11111000 |  |
| 4881.887          | 249                                   | 11111001 |  |
| 4901.572          | 250                                   | 11111010 |  |
| 4921.257          | 251                                   | 11111011 |  |
| 4940.942          | 252                                   | 11111100 |  |
| 4960.627          | 253                                   | 11111101 |  |
| 4980.312          | 254                                   | 1111110  |  |
| 4999.997          | 255                                   | 1111111  |  |
|                   |                                       |          |  |

![](_page_68_Picture_0.jpeg)