\square

SUPPORT MANUAL

for the
Apollo Block II Special Test Equipment
PM RECEIVER
\qquad

This manual was prepared in accordance with Collins specification 514-0001-001E, Appendix D.
approved by: \qquad Op Eishen
M. Asher

Project Leader

F. D. Kemmeries Engineering Team Member

SUPPORT MANUAL
for the
Apollo Block II Special Test Equipment
PM RECEIVER

MOTOROLA INC.
Military Electronics Division WESTERN CENTER

TABLE OF CONTENTS

SectionTitlePage
I DESCRIPTION 1-1
l-l. Introduction 1-1
1-4. Purpose of Equipment 1-1
1-6. Equipment Characteristics. 1-1
l-16. Controls, Displays, and Electrical Con- 1 nections 1-10
1-20. Test Equipment 1-11
II INSTALLATION AND OPERATION. 2-1
2-1. Introduction 2-1
2-3. Unpacking, Inspection and Packing 2-1
2-10. Equipment Installation 2-3
2-15. Operation 2-4
III THEORY OF OPERATION 3-1
3-1. Introduction 3-1
3-4. RF Front End 3-1
3-10. 50 MC Mixer and 10 MC AGC Amplifier, 1A2A3 3-2
3-17. 10 MC Distribution Amplifier, 1A2A4. 3-3
3-19. 10 MC IF Amplifier, 1A2A5. 3-3
3-21. Loop Phase Detector and Loop Filter, 1A2A6. 3-4
3-23. 23 MC VCO and X96 Multiplier, 1 A 2 Al , and Coaxial Isolator 3-4
3-33. 20 MC Reference Oscillator and X3 Multiplier, lA2A7. 3-5
3-36. Xl/2 Multiplier and 10 MC Reference Distribution Amplifier, lA2A8. 3-6
3-44. Coherent Amplitude Detector, AGC Am- plifier, and Relay Driver, 1A2A9 3-7
3-54. 10 MC Narrow-band Discriminator, 1A2A10 3-8
Section Title Page
3-57. 10 MC Wideband Phase Detector, 1A2A10, and Video Distribution Amplifier, 1A2A11 3-9
IV PROGRAMMING DATA 4-1(Not Applicable)
V MAINTENANCE 5-1
5-1. Introduction 5-1
5-5. Drawer Operational Checkout 5-1
5-7. Drawer Performance Checkout. 5-6
5-22. Manual Frequency Range 5-21
5-27. Calibration of Subassemblies 5-27
5-31. S-Band Mixer and 50 MC Preamplifier 1A2A2. 5-29
5-37. 10 MC IF Amplifier 1A2A5 5-32
VI PARTS LISTS AND DRAWINGS. 6-1
6-1. General. 6-1
Figure No. Title Page
1-1. PM Receiver - Front View. 1-2
1-2. PM Receiver - Rear View 1-3
1-3. PM Receiver/STE/USBE System Relationship. 1-4
1-4. Subassemblies Extended and Raised 1-6
1-5. Subassembly with Cover Open 1-7
1-6. PM Receiver Front Panel 1-12
1-7. PM Receiver Rear Panel 1-13
1-8. Bias Box Test Fixture 1-19
l-9. AGC Amplifier Test Fixture. 1-21
l-10. $50 \mathrm{Mc} / 60 \mathrm{Mc}, 10 \mathrm{Mc}$ Mixer Test Fixture 1-22
2-1. PM Receiver Packaging 2-2
2-2. PM Receiver Installation, Block Diagram 2-4
2-3. PM Receiver Operational Setup, Block Diagram. 2-5
5-1. Input VSWR Test Setup 5-8
5-2. Input Variable Attenuator Linearity/50 Mc IF Bandwidth/10 Mc IF Bandwidth, Test Setup. 5-8
5-3. MGC Range/AGC Range, Test Setup 5-11
5-4. Loop Gain Test Setup. 5-12
5-5. Loop Bandwidth Test Setup 5-14
5-6. 400 CPS Loop Bandwidth Response Curve 5-15
5-7. 21.2 CPS Loop Bandwidth Response Curve 5-17
5-8. AGC Bandwidth Test Setup. 5-18
5-9. Phase Noise Test Setup. 5-20
5-10. Oscillator Stability/Manual Frequency Range Test Setup 5-20
5-11. Acquisition Range Test Setup. 5-22
5-12. 10 Mc Predetection Output and 10 Mc Reference Output Test Setup 5-23
5-13. PM Demodulation Test Setup 5-25
5-14. FM Demodulation Test Setup. 5-26
5-15. Test Setup for Calibration of 23 Mc VCO and X96 Multiplier 1 A 2 Al 5-28
5-16. Test Setup for Calibration of S -Band Mixer and 50 Mc Preamplifier 1A2A2. 5-30
5-17. Test Setup for Calibration of 50 Mc Mixer and 10 Mc AGC Amplifier 1A2A3 5-31
5-18. Test Setup for Calibration of 10 Mc IF Amplifier 1A2A5 5-33
5-19. Test Setup for Calibration Loop Phase Detector and Loop Filter 1A2A6 5-35
5-20. AGC Amplifier (Part of lA2A9) Test Setup. 5-40
5-21. Subassembly P52 Electrical Connections 5-46
6-1. PM Receiver, Assembly lA2, Block Diagram. 6-7
6-2. PM Receiver, Assembly lA2, Interconnection Diagram 6-96-3. Subassembly Al, 23 Mc VCO and X96 MultiplierSchematic Diagram 6-176-17
6-4. Subassembly A2, S-Band Mixer and 50 Mc Preampli- fier Schematic Diagram. 6-21
6-5. Subassembly A3, 50 Mc Mixer and 10 Mc AGC Ampli- fier Schematic Diagram. 6-27

LIST OF ILLUSTRATIONS (Cont)

Figure No. Title Page
6-6, Subassembly A4, 10 Mc Distribution Amplifier Schematic Diagram 6-31
6-7. Subassembly A5, 10 Mc IF Amplifier Schematic Diagram 6-37
6-8. Subassembly A6, Loop Phase Detector and LoopFilter Schematic Diagram6-43
6-9. Subassembly A7, 20 Mc Reference Oscillator and X3 Multiplier Schematic Diagram 6-49
6-10. Subassembly A7, Xl/2 Multiplier and 10 Mc Ref- erence Distribution Amplifier Schematic Diagram 6-55
6-11. Subassembly A9, Coherent Amplitude Detector, AGC Amplifier, and Relay Driver Schematic Diagram 6-61
6-12. Subassembly Al0, 10 Mc Wideband Phase Detector and 10 Mc Narrowband Discriminator Schematic Diagram 6-71
6-13. Subassembly All, Video Distribution AmplifierSchematic Diagram6-77
6-14. Subassembly P51, ± 15 VDC Power Supply Schematic Diagram 6-79
LIST OF TABLES
Table No. Title Page
1-1. PM Receiver Subassemblies 1-5
l-2. PM Receiver Electrical Characteristics 1-8
1-3. PM Receiver Controls 1-11
1-4. PM Receiver Displays. 1-14
1-5. PM Receiver Electrical Connections 1-14
1-6. Commercial Test Equipment 1-15
I-7. 23 Mc VCO Bias Box Test Fixture Parts List. 1-18
1-8. AGC Amplifier Test Fixture Parts List 1-20
1-9. $50 \mathrm{Mc} / 60 \mathrm{Mc}, 10 \mathrm{Mc}$ Mixer Test Fixture Parts List. 1-23
5-1. Drawer Operational Checkout 5-2
6-1. Related Parts Lists and Drawings. 6-1

SECTION I. DESCRIPTION

1-1. INTRODUCTION

1-2. The PM Receiver, Motorola Part No. 01-22981G01, is manufactured for Collins Radio Company under Contract No. NASA 9-150, by Motorola Inc., Military Electronics Division, Scottsdale, Arizona. This assembly, shown in figures $1-1$ and $1-2$, is supplied as a part of the Special Test Equipment (STE) used in testing the Apollo Block II Unified S-Band Equipment (USBE). 1-3. This manual contains information that will enable an experienced technician to operate, test, calibrate, and repair the PM Receiver.

1-4. PURPOSE OF EQUIPMENT

1-5. The PM Receiver converts an S-band input signal of 2287.5 mc from the USBE to a l0-mc intermediate frequency for use in ranging test equipment, and provides four information outputs for monitoring and testing the Unified S-Band Equipment. A simplified block diagram showing the relationship of the PM Receiver to the USBE, and to other STE is shown in figure 1-3.

1-6. EQUIPMENT CHARACTERISTICS
1-7. PHYSICAL CHARACTERISTICS
1-8. The PM Receiver is completely self contained in a standard 19-inch wide electronic equipment drawer. The drawer is provided with slides for mounting in a standard commercial electronic equipment cabinet with an Electronic Industries Association (EIA) mounting pattern. Overall dimensions of the drawer are 21 x $16-1 / 2 \times 8$ inches. The front panel is $19 \times 8-3 / 4$ inches.

1-9. The PM Receiver requires no special cooling, and may be bench operated in addition to its normal equipment cabinet operation. No special mounts are required for bench operation.

Figure 1-1. PM Receiver, Front View

Figure 1-2. PM Receiver, Rear View

Figure 1-3. PM Receiver/STE/USBE System Relationship

1-10. All frequently-used controls, displays, and electrical connections are located on the drawer front panel. The primary power input jack, fuse holder, and ranging output jacks are located on the drawer rear panel and need not be disturbed during normal operation.

1-11. The PM Receiver contains 13 subassemblies, as listed in Table l-1. All subassembly replacements can be accomplished with the drawer mounted in the cabinet. Checkout, troubleshooting, and calibration can be performed on most subassemblies without removing the subassemblies from the drawer. Barrier strips are conveniently located for testing and removal of subassembly interconnect wiring. Adjustments and test points are listed in the checkout and calibration procedures in section V.

1-12. Access may be gained to most subassemblies and their components by raising the subassemblies to an extended position and sliding the subassembly cover open. Figures 1-4 and 1-5 illustrate typical subassembly position for checkout, troubleshooting, or calibration operations.

1-13. Table 1-1 lists the subassembly reference designators used throughout this manual. Subassembly input jacks, test points, and output jacks are prefixed with the subassembly reference designator. For example, jack J2 of subassembly A5 is referred to as A5J2. Assembly input jacks, test points, and output jacks are not prefixed with reference designators.

TABLE 1-1. PM RECEIVER SUBASSEMBLIES

Ref Desig.	Name	Motorola Part No.
1A2	PM Receiver A1 Mc VCO and X96 Multiplier A2	23 M-Band Mixer and 50 Mc Pre-Amplifier 50 Mc Mixer and 10 Mc AGC Amplifier

Figure 1-4. Subassembly Extended and Raised

Figure 1-5. Subassembly with Cover Open

TABLE 1-1. (cont)

Ref. Desig.	Name	Motorola Part No.
A 4	10 Mc Distribution Amplifier	01-22806G01
A5	10 Mc IF Amplifier	01-22811G01
A6	Loop Phase Detector/Loop Filter	01-22816G01
A 7	20 Mc Oscillator and X3 Multiplier	01-22821G01
A8	X $1 / 2$ Multiplier and 10 Mc Reference Distribution Amplifier	01-22826G01
A9	Coherent Amplitude Detector, AGC Amplifier, and Relay Driver	01-22831G01
A10	10 Mc Wideband Phase Detector and 10 Mc Narrow-Band Discriminator	01-22836G01
All	Video Amplifier	01-22841G01
PS2	-12 VDC Power Supply	01-29938B22
PSI	± 15 VDC Power Supply	01-28091G01

1-14. ELECTRICAL CHARACTERISTICS
1-15. The PM Receiver is a phase lock loop, double conversion superheterodyne employing solid-state circuitry. The electrical characteristics of the PM Receiver are listed in Table 1-2.

TABLE 1-2. PM RECEIVER ELECTRICAL CHARACTERISTICS

INPUTS	
Frequency	$2287.5 \mathrm{mc} \pm 100 \mathrm{kc}$
Signal Level	0 to -50 dbm
VSWR	1.3:1 maximum with respect to 50 ohms at $\pm 20 \mathrm{mc}$ of f_{o}.
Noise Figure	14 db maximum with attenuator set at minimum.
Attenuation Range	30 db
First IF Frequency	50 mc

TABLE 1-2. (cont)

INPUTS (cont)

Second IF Frequency

Tracking Bandwidth

Phase Stability

Transfer Function

AGC Loop

Bandwidth
Gain
Range (AGC/MGC)

Transfer Function

Oscillator Stability

23 mc VCO
20 mc reference

Manual Acquisition Range at S-Band

Time Delay Variation OUTPUTS

Information Outputs

Emergency Voice (J5)
(Discriminator Output)
10 kc Subcarrier (J4)

10 mc
$21.2 \mathrm{cps}=\beta_{\mathrm{L}}$
$400 \mathrm{cps}=\beta_{\mathrm{L}}$
3.0° maximum in 21.2 cps bandwidth
H (S) $\frac{1+T_{2} S}{1+T_{2} S+\frac{T_{1}}{G} S^{2}}$ for $\frac{1}{G}<T_{2}$

0 db open loop at 5 cps maximum 40 db (minimum)

20 db
H (S) $\frac{1}{1+\frac{T_{S}}{G}}$ for $G<1$
$1 \times 10^{-6} / 3$ hour long term
$2.5 \times 10^{-6} / 3$ hour long term.
$\pm 100 \mathrm{kc}$ in 400 cps Bandwidth $\pm 40 \mathrm{kc}$ in 21.2 cps Bandwidth
1 nanosecond (10^{-9}) maximum
. $1 \mathrm{v} / \mathrm{kc}$ Sensitivity
$\mathrm{BW}(3 \mathrm{db})=300 \mathrm{cps}$ to 2 kc
$0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega$
BW (3 db) $=\mathrm{f}_{\mathrm{o}} \pm 1 \mathrm{kc}$ nominal

TABLE 1-2. (cont)

OUTPUTS (cont)	
100 kc Subcarrier (J4)	$\begin{aligned} & 0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega \\ & \mathrm{BW}(3 \mathrm{db})=\mathrm{f}_{\mathrm{o}} \pm 5 \mathrm{kc} \text { nominal } \end{aligned}$
500 kc Subcarrier (J4)	$\begin{aligned} & 0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega \\ & \mathrm{BW}(3 \mathrm{db})=f_{0} \pm 12.5 \mathrm{kc} \text { nominal } \end{aligned}$
1.024 mc Subcarrier (J4)	$\begin{aligned} & 0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega \\ & \mathrm{BW}(3 \mathrm{db}) \stackrel{f_{0}}{=} \pm 10 \mathrm{kc} 10 \% \end{aligned}$
1.25 mc Subcarrier (J4)	$\begin{aligned} & 0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega \\ & \mathrm{BW}(3 \mathrm{db})=\mathrm{f}_{\mathrm{o}} \pm 10 \mathrm{kc} 10 \% \end{aligned}$
Ranging Outputs	
10 mc Predetection (J9)	$-10 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega$ with carrier only (i.e., no modulation)
10 mc Reference (J10)	$+10 \mathrm{dbm} \pm 2 \mathrm{db} / 50 \Omega$
Monitor Outputs	
AGC Voltmeter	0-10 vdc
Dynamic Phase Error	Front Panel BNC
Static Phase Error	Meter
23 mc VCO Test	Front Panel BNC $0 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega$
50 mc Spectrum	Front Panel BNC $-22 \mathrm{dbm} \pm 1 \mathrm{db} / 50 \Omega$
POWER SOURCE REQUIRED	115 vac $\pm 10 \%, 60 \mathrm{cps}$, single phase, 100 watt maximum power consumption

1-16. CONTROLS, DISPLAYS, AND ELECTRICAL CONNECTIONS
1-17. The PM Receiver controls are all located on the drawer front panel, and are illustrated in figure l-6. The description and function of each control is listed in Table 1-3.

TABLE 1-3. PM RECEIVER CONTROLS

Control	Description	Function
ATTENUATOR	Input Variable Attenuator Dial, 0-30 db	Attenuates Large Input Signals
VCO MANUAL CONTROL	10 Turn Potentiometer with Counting Dial	Manual Acquisition
MGC/AGC GAIN CONTROL	Illuminated Rectangular Pushbutton Switch	Selects AGC or MGC
MGC	Two Watt Potentiometer	Varies MGC Level
400 CPS / 21	Illuminated Rectangular	Selects 400 cps
CPS LOOP CONTROL	Pushbutton Switch	or 21.2 cps Bandwidth
OPEN/CLOSED	Illuminated Rectangular	Selects Open Loop
LOOP CONTROL	Pushbutton Switch	or Closed Loop Position
POWER	Illuminated Rectangular Pushbutton Switch	Turns Prime Power ON or OFF
VIDEO OUTPUT	Six Position Rotary Selector Switch	Selects Video Outputs of $10 \mathrm{kc}, 100 \mathrm{kc}$, $500 \mathrm{kc}, 1.024 \mathrm{mc}$, 1.25 mc , or Wideband Video at J4.

1-18. The PM Receiver displays are all located on the front panel, with the exception of the fuse indicator, which is located on the rear panel. The descriptions and functions of the displays are listed in Table 1-4.

1-19. Electrical connections of the PM Receiver are illustrated in figures 1-6 and 1-7. The descriptions and functions of the electrical connections are contained in Table 1-5.

1-20. TEST EQUIPMENT
1-21. The following test equipment shall be calibrated using standards traceable to the National Bureau of Standards, Boulder, Colorado.

Figure 1-6. PM Receiver Front Panel

$\stackrel{-}{\stackrel{1}{\omega}} \stackrel{+}{\omega}$
Figure 1-7. PM Receiver Rear Panel

TABLE 1-4. PM RECEIVER DISPLAYS

Display	Description	Function
FM TUNING	-50 to 0 to 50 vdc Null Meter, calibrated in KC	Aids in tuning VCO Manual Control for Acquisition
LOOP STATUS IN LOCK/OUT OF LOCK	Indicator Light	Indicates Status of Loop
SIGNAL STRENGTH	0 to -10 vdc Voltmeter	Indicates Input Signal Level
STATIC ϕ ERROR	-0.5 to 0 to 0.5 vdc Null Voltmeter	Indicates Phase Error
Fuse*	Three Amp Fuse Contained in Indicating Fuse Holder	Protects PM Receiver against Overload and Lights when Fuse is Blown

*Located on rear of drawer.

TABLE 1-5. PM RECEIVER ELECTRICAL CONNECTIONS

Electrical Connection	Description	Function
AC Power*, Jl Hubell male receptacle	115 vac, 60 cps , Single Phase	Prime Power Input
Ground*	Chassis Ground	Chassis Ground
DYNAMIC \varnothing ERROR, J3	BNC	Phase Error Output
50 MC SPECTRUM, J6	BNC	1st IF Spectrum Test Output
10 mc Predetection Output*, J9	BNC	Information Output to Ranging Receiver
10 mc Reference Output*, J10	BNC	```Reference Output to Ranging Receiver Drawer, 4A3J3```

TABLE 1-5. PM RECEIVER ELECTRICAL CONNECTIONS (cont)

Electrical Connection	Description	Function
20 MC OSC TEST, J7	BNC	Test 20 mc Oscillator Frequency
$23 \mathrm{MC} \mathrm{VCO} \mathrm{TEST}, \mathrm{J8}$	BNC	Test 23 mc VCO Frequency
VIDEO, J4	BNC	Information Output for USBE Test
VOICE, J5	BNC	Information Output for USBE Test
RF INPUT, J2	BNC	PM Receiver RF Input

*Located on rear of drawer.

1-22. COMMERCIAL EQUIPMENT REQUIRED.
1-23. The commercial equipment, or its equivalent, required for electrical checkout of the PM Receiver, is listed alphabetically in Table l-6. Where two or more pieces of identical equipment are used in the same test, the number required is listed in parentheses.

NOTE
Refer to individual equipment manuals for correct operating procedures, warmup times, and calibration intervals.

TABLE 1-6. COMMERCIAL TEST EQUIPMENT

Equipment Name	Manufacturer	Type
Attenuator, 6 db	Microlab	AB06N
Attenuator, 10 db	Microlab	AB10N
DC Power Supply (3)	Power Designs	5015 A

TABLE 1-6. COMMERCIAL TEST EQUIPMENT (cont)

Equipment Name	Manufacturer	Type
DC Null Voltmeter	Hewlett Packard	413A
DC Voltmeter (Electronic)	Hewlett Packard	410C
DC Voltmeter-OhmmeterAmmeter	Hewlett Packard	412A
Differential DC-AC Voltmeter	John Fluke	803B
Digital Recorder	Hewlett Packard	561B
Digital Voltmeter	Cimeron	7200A
Directional Coupler	Narda	$\begin{aligned} & 3003-10,-20 \\ & \text { (one each) } \end{aligned}$
Frequency Counter	Hewlett Packard	5245L
Frequency Converter Unit	Hewlett Packard	5251A
Frequency Converter Unit	Hewlett Packard	5254A
Frequency Meter	Hewlett Packard	536A
Isolator	E and M	S22N
Low Frequency Function Generator	Hewlett Packard	202A
Noise Figure Meter	Hewlett Packard	340B
Oscilloscope	Tektronix	543
Wide-Band Calibrated Preamp	Tektronix	B
PM Transmitter	Motorola	2 Al
Power Meter	Hewlett Packard	431B
Thermistor Mount	Hewlett Packard	478A
Recorder	Sanborn	7714A
RF Sweep Generator	Jerrold	602
RF Voltmeter	Boonton Electronics Corp.	91-CA
Adapter, 50 Ohm	Boonton Electronics Corp.	$91-8 \mathrm{~B}$
Adapter, Unterminated	Boonton Electronics Corp.	91-6B

TABLE 1-6. COMMERCIAL TEST EQUIPMENT (cont)

Equipment Name	Manufacturer	Type
RMS Voltmeter	Hewlett Packard	400 D
RMS Voltmeter	Hewlett Packard	3400 A
Signal Generator, FM-AM	Boonton Radio Co.	202 H
Signal Generator	Hewlett Packard	8614 A
Signal Generator, HF	Hewlett Packard	606 A
Sampling Oscilloscope	Hewlett Packard	185 B
Dual-Trace Amplifier	Hewlett Packard	187 C
Selektives Mikro-	Rohde and Schwarz	USVH
Voltmeter	Hewlett Packard	805 C
Slotted Line		
Spectrum Analyzer	Hewlett Packard	8551 A
RF Section	Hewlett Packard	851 A
Display Section	Hewlett Packard	415 D
SWR Meter	Microlab	TA5MN
Termination, 50 Ohm (4)	Motorola	2 A 2
Test Translator	Hewlett Packard	349
UHF Noise Source	Hewlett Packard	355 C
VHF Attenuator (step)	Triplet	630 A
(one each)	$200 C D$	
Volt-Ohm-Miliammeter	Hewlett Packard	
Wide-Range Oscillator		

1-24. SPECIAL TEST FIXTURES
1-25. The special test fixtures, not supplied with the PM Receiver, are necessary to check out and calibrate PM Receiver subassemblies Al, A9, and Al0. The following circuit descriptions, schematic diagrams, and parts lists will enable an experienced technician to construct and operate these test fixtures.

1-26. BIAS BOX TEST FIXTURE. The Bias Box Test Fixture provides a high resolution variable voltage from -7.5 to +7.5 vdc, used to
adjust the sensitivity and linearity of the 23 mc VCO in subassembly Al. The fixture circuitry consists of two 7-1/2 volt dry cell batteries connected in series with a l0-turn 10 K -ohm potentiometer. The wiper of the potentiometer is connected to an output voltage BNC.

1-27. A schematic diagram of the test fixture is shown in figure 1-8. Required parts are listed in Table 1-7.

TABLE 1-7. 23 MC VCO BIAS BOX TEST FIXTURE PARTS LIST

Part	Mil Part No. or Mfg. Part No.	Manufacturer	No. Required
$\begin{aligned} & \text { Connector, } \\ & \text { BNC } \end{aligned}$	UG 1094/U	Schweber Elect	1
$\begin{aligned} & \text { Banana, Jack, } \\ & \text { Nylon } \end{aligned}$	1508	H. H. Smith	2
Switch, Toggle DPDT	MS35059-23	Microswitch	1
$\begin{aligned} & \text { Battery, } \\ & 6-71 / 2 \mathrm{v} \end{aligned}$	773	Eveready	2
Potentiometer, Ww, 10-turn, 10 K Ohm	3500S-2-103	Bourns	1

1-28. AGC AMPLIFIER TEST FIXTURE. The AGC Amplifier Test Fixture aids in setting the input level to the AGC Amplifier and Relay Driver portion of subassembly A9, and in checkout of the d-c gain, module time constant, and relay switching functions.

1-29. The fixture circuitry consists of a resistive network (25 K-ohm, 1 K -ohm, 10 ohms, and 39 K -ohm) for setting the dc input level, and a switch, $S l$, for changing the input level; a resistive network ($2700 \mathrm{ohm}, 5 \mathrm{~K}$-ohm, and 560 ohm), and a switch,

Figure 1-8. Bias Box Test Fixture

S3, for adjusting the MGC level; and associated test points (TPI, $2,4,7$, and 8) for monitoring the dc output and relay output. 1-30. A schematic diagram of the fixture is shown in figure 1-9. Required parts are listed in Table 1-8.

1-31. $50 \mathrm{MC} / 60 \mathrm{MC}, 10 \mathrm{MC}$ MIXER TEST FIXTURE. The $50 \mathrm{Mc} / 60 \mathrm{Mc}$, 10 Mc Test Fixture is necessary as no commercial $10-\mathrm{Mc}$ fm signal generator is available. A $60-\mathrm{Mc}$ fm signal is mixed with a $50-\mathrm{Mc}$ cw signal in the test fixture, and the $10 \mathrm{mc} f \mathrm{~m}$ output is used in testing the 10-Mc Narrow-Band Discriminator and 10 Mc Wideband Phase Detector (subassembly Al0).

1-32. The $50 \mathrm{Mc} / 60 \mathrm{Mc}, 10 \mathrm{Mc}$ Mixer Test Fixture circuitry consists of a balanced set of diodes in a quadrature bridge

TABLE 1-8. AGC AMPLIFIER TEST FIXTURE PARTS LIST

Part	Mil Part No. or Mfg Part No.	Manufacturer	No. Required
Connector, 15 Pin	DAM-15S-C33	Cinch	1
Connector, BNC	UG 1094/U	Schweber Elect	3
Jack, Tip, Nylon (Test Points)	MS16108	Raytheon	5
Jack, Banana, Nylon	1508-102	H. H. Smith	$\begin{aligned} & \quad 4 \\ & \text { (one with grd } \\ & \text { strap) } \end{aligned}$
Switch Toggle, SPDT	MS35058-23	Microswitch	2
Potentiometer, 5 Kilohm, $\frac{1}{2}$ watt, 1 turn	RF6LAYSA 502A	CTS	1
Potentiometer, 25 Kilohm, $\frac{1}{2}$ watt, 1 turn	RV6LAYSA253A	CTS	1
Resistor, Fxd, Comp., $\frac{1}{4} \mathrm{~W}$, 560 Ohm, $\pm 5 \%$	RC07GF561J	Allen-Bradley	1
$\begin{aligned} & \text { Resistor, Fxd, } \\ & \text { Comp. } \frac{1}{4} \text {, } \\ & 270 \text { Ohm } \pm 5 \% \end{aligned}$	RC07GH271J	Allen-Bradley	1
$\begin{aligned} & \text { Resistor, Fxd, } \\ & \text { Comp., } \frac{1}{4} \text { W, } \\ & 10 \text { Ohm } \pm 5 \% \end{aligned}$	RC07GF100J	Allen-Bradley	1
Resistor, Fxd, Comp., $\frac{1}{4} \mathrm{~W}$, 39 Kilohm $\pm 5 \%$	RC07GF393J	Allen-Bradley	1
Resistor, Fxd, Comp., $\frac{1}{4} \mathrm{~W}$, 1 Kilohm $\pm 5 \%$	RC07GF102J	Allen-Bradley	1
Resistor, Fxd, Comp., 1 W , 150 Ohm $\pm 5 \%$	RC42GF151J	Allen-Bradley	1

Figure 1-9. AGC Amplifier Test Fixture
arrangement, two transformers for the $L O$ and $r-f$ input signals, and a transformer and filter for the i-f output signal.

1-33. A schematic diagram of the fixture is shown in figure l-10. Required parts are listed in Table 1-9.

Figure 1-10. $50 \mathrm{Mc} / 60 \mathrm{Mc}, 10 \mathrm{Mc}$ Mixer Test Fixture.

TABLE 1-9. $50 \mathrm{MC} / 60 \mathrm{MC}$, 10 MC MIXER TEST FIXTURE PARTS LIST

Part	Mil Part No. or Mfg Part No.	Manufacturer	No. Required
Capacitor, Fxd, Mica, 120 pf, $\pm 5 \%$	DM10-121J	E1 Menco	4
Choke, 6.8 uH	1537-32	Delevan	2
Connector, BNC	UG 1094/U	Schweber Elect	3
Diode Bridge	FA 4000	Fairchild	1
$\begin{aligned} & \text { Resistor, Fxd, } \\ & \text { Comp, } \frac{1}{4} \mathrm{~W} \text {, } \\ & \pm 5 \% \end{aligned}$	RC07 GF 560 J	Allen-Bradley	1
Transformer (T1 \& T2) 8: 12/12 Ratio Transformer Core 30 AWG Magnet Wire	CF 101-Q1	Indiana General	2
Transformer (T3) 20: 9 Ratio Transformer Core 30 AWG Magnet Wire	T 25-2	Micro Metals	1

SECTION II. INSTALLATION AND OPERATION

2-1. INTRODUCTION

2-2. This section contains instructions for unpacking, inspection, packing, installation, and operation of the PM Receiver.

2-3. UNPACKING, INSPECTION, AND PACKING
2-4. UNPACKING
2-5. The PM Receiver is packaged for shipment in a molded polyethylene foam container, a fiberboard carton, and a plywood box, as illustrated in figure 2-1. Unpacking is performed by removing the packing materials and equipment as follows:
a. Remove the 12 Klimp fasteners securing the cover of the plywood box and remove the cover.
b. Remove the latex hair mats from the top and sides of the fiberboard carton.
c. Remove and open the fiberboard carton.
d. Remove the barrier bag enclosed polyethylene container from the fiberboard carton.
e. Remove the barrier bag and banding from the polyethylene container.
f. Remove the top of the polyethylene container.
g. Remove the polyethylene inserts and the desiccant from around the PM Receiver.
h. Remove the PM Receiver from the bottom half of the polyethylene container.

2-6. INSPECTION
2-7. After the equipment has been unpacked, check the package contents against the packing list to ensure that the shipment is complete. Visually inspect the equipment for damage incurred during shipment.

1. BOX TOP
2. HANDBOOKS
3. WATERPROOF ENVELOPE, SIZE 13×11
4. BANDING, AVISTRAP, AMERICAN VISCOSE CO. OR EQUIVALENT
5. PLASTIC WRAP, 4 MIL
6. END ITEM
7. HUMIDITY INDICATOR
8. KLIMP FA STENERS, SIZE \#3, 12 EACH FOR TOP OF BOX
9. "DELICATE INSTRUMENT" LABEL
10. "FRAGILE" LABEL
11. PACKING LIST
12. "UP" LABEL
13. PLYWOOD BOX
14. HAIR, LATEX, FIRM, 4 INCHES THICK LOADED ON EDGE (2) SIDES, (2) END, TOP AND BOTTOM
15. FIBERBOARD CARTON,
16. BARRIER BAG, MIL SPEC MIL-B-131 CLASS 1, SIZE 52×42
17. POLYETHYLENE CONTAINER, (*) SEE NOTE 1
18. DESSICANT, 48 UNITS
19. POLYETHYLENE CONTAINER INSERTS, (*) SEE NOTE 2
20. POLYETHYLENE CONTAINER TOP, (*) SEE NOTE 1

NOTES

1. MOLDED POLYETHYLENE FOAM CONTAINER MODEL NUMBER RM-52417. SUPPLIER, W. D. ADAMS CO. , COSTA MESA, CALIF.
2. MOLDED POLYETHYIENE EXPAN-SERTS MODEL NUMBER R1-175-24

Figure 2-1. PM Receiver Packaging

2-8. PACKING

2-9. Packaging the PM Receiver for shipment or storage, when required, is performed in the reverse order of unpacking described in paragraph 2-4. The original packaging materials, if available and undamaged, should be used. If the original packaging materials are not available, packaging should conform to Specification MIL-P-116D, Method IIb. All containers should be marked in accordance with Specification MIL-STD-129C.

2-10. EQUIPMENT INSTALLATION
2-11. EQUIPMENT CABINET INSTALLATION.
2-12. Installation of the PM Receiver drawer in an electronic equipment cabinet is accomplished as follows:
a. Extend both cabinet equipment rack slides until they lock in their fully extended positions.
b. Lift the drawer and start the drawer rollers into the rack slides.
c. Push the drawer into the equipment cabinet until the drawer locking detents contact the rack slides.
d. Push the drawer locking detents in and push the drawer into the cabinet until the drawer locking detents lock into position in the rack slide. This is the fully extended position for the drawer when it is cabinet mounted.
e. Unlock the rack slide locking detents on the inside of the equipment cabinet.
f. Push in the drawer locking detents and push the drawer to its fully closed position in the cabinet.
g. Secure the drawer to the cabinet with the four screws on the drawer front panel.
h. Connect the PM Receiver as shown in figure 2-2.

2-13. EQUIPMENT BENCH SETUP
2-14. If the PM Receiver drawer is not to be mounted in an equipment cabinet, place the drawer on a stable base, and connect the PM Receiver as shown in figure 2-2.

2-15. OPERATION

NOTE

Before using the PM Receiver for any measurements of the Unified S-Band Equipment (USBE), perform the Drawer Checkout procedures given in paragraph 5-7.

2-16. NORMAL OPERATION
2-17. Procedures for operating the PM Receiver are as follows:
a. Connect the PM Receiver as shown in figure 2-3.
b. Push the POWER switch to the ON position.

Figure 2-2. PM Receiver Installation, Block Diagram

Figure 2-3. PM Receiver Operational Setup, Block Diagram NOTE

Allow two hours warmup before using the PM Receiver for any measurements of the USBE.
c. Push the LOOP CONTROL switches to the 400 CPS and OPEN positions.

NOTE
If the 21.2 CPS bandwidth is to be used, lock the PM Receiver to the input signal in the 400 CPS mode, and switch to the 21.2 CPS mode after lock-up.
d. Push the GAIN CONTROL switch to the AGC position.
e. Set the input variable ATTENUATOR dial to zero.
f. Set the VCO MANUAL CONTROL potentiometer dial to 5 (midrange). The LOOP STATUS indicator should indicate OUT OF LOCK.
g. Observe the FM TUNING meter and vary the VCO MANUAL CONTROL potentiometer dial from 5 to 10 or from 5 to 0 until the $F M$ TUNING meter nulls.
h. Observe the oscilloscope at J3; a low frequency beat note will appear. Adjust the VCO MANUAL CONTROL until the beat note on the oscilloscope decreases to a dc level.
i. Push the LOOP CONTROL switch to the CLOSED position. PM Receiver lock-up with the input signal will be indicated on the oscilloscope by a sweeping trace.
j. Adjust the input variable ATTENUATOR dial until the SIGNAL STRENGTH meter reads in the green area ($-51 / 2$ to $-61 / 2$ vdc). The LOOP STATUS indicator should indicate IN LOCK.
$2-18$. After lock-up of the PM Receiver to the USBE, ranging information is provided to the Ranging Receiver, 4A3. Other USBE test information is available at PM Receiver front panel outputs J3, J4, J5, and J6.

2-19. MGC OPERATION
2-20. Procedures for operating the PM Receiver when the AGC mode is disabled, are as follows:
a. Repeat steps (a) through (c) of paragraph 2-17.
b. Push the GAIN CONTROL switch to the MGC position.
c. Repeat steps (e) through (j) of paragraph 2-17.

NOTE

The IN LOCK/OUT OF LOCK indicator will light in the MGC mode, but it is not calibrated for an MGC threshold, making its indications erroneous.

d. Subtract the known input signal level at J2 from -30 dbm. Set the input variable ATTENUATOR dial to the difference in db . For example, if the input signal is -10 dbm , then
$-30 \mathrm{dbm}$
$-10 \mathrm{dbm}$
20 db , and -20 db is the ATTENUATOR dial setting.
e. Set the MGC control potentiometer such that the SIGNAL STRENGTH meter reads in the green area (-5 1/2 to -6 1/2 vdc).

SECTION III. THEORY OF OPERATION

3-1. INTRODUCTION

3-2. This section presents the theory of operation of the PM Receiver at the functional block level. Each subassembly is discussed separately. Where two or more functions are performed by a single subassembly, each function is presented individually. Where two or more subassemblies are required to perform a single function, the subassemblies are discussed in relation to that particular function.

3-3. Throughout this section, all references to subassembly input and output connections are preceded by the subassembly reference designator. For example, input jack J2 of subassembly A4 is referred to as A4J2. Assembly input and output connections are not preceded by a reference designator. A list of the 13 PM Receiver subassemblies and their reference designators is contained in Table 1-1. Figures 6-1, PM Receiver Block Diagram, and 6-2, PM Receiver Interconnection Diagram, are to be used in conjunction with the text of this section.

3-4. RF FRONT END (Figure 6-4)
3-5. The rf front end consists of an input variable attenuator, a coaxial isolator, and the S-Band Mixer and 50 Mc Preamplifier A2.

3-6. INPUT VARIABLE ATTENUATOR AND COAXIAL ISOLATOR
3-7. The PM Receiver is provided with an rf input signal of 2287.5 $\mathrm{mc} \pm 100 \mathrm{kc}$, at a level of 0 dbm to -50 dbm . The signal is applied through front panel jack J2, RF INPUT, to an S-band variable attenuator calibrated at 2287.5 mc . The attenuator has an attenuation range of 30 db , and a calibration accuracy of 0.1 db . The attenuator is adjusted manually for a -30 dbm output (an indication of 5.5 to 6.5 volts on the SIGNAL STRENGTH meter) into the coaxial isolator. The isolator has a nominal insertion loss of
0.6 db , a vswr of $1.1: 1$, and reverse isolation of 30 db to isolate the local oscillator signal from the RF INPUT jack. The rf input signal is applied through the isolator to the S-Band Mixer and 50 Mc Preamplifier, subassembly A2.

3-8. S-BAND MIXER AND 50 MC PREAMPLIFIER, 1A2A2
3-9. At subassembly A2 the $2287.5 \mathrm{mc},-30 \mathrm{dbm}$ signal input (through A2J2) is mixed with a $2237.5 \mathrm{mc}, 0 \mathrm{dbm}$ local oscillator signal (input A2J3), from subassembly Al (23 Mc VCO and X96 Multiplier). The 50 mc difference frequency from the balanced mixer is amplified in a wideband amplifier consisting of three stages with a 12 mc bandwidth and a nominal conversion gain of 10 db producing a $50 \mathrm{mc},-20 \mathrm{dbm}$ input to the 50 Mc Mixer and 10 Mc AGC Amplifier, subassembly A3.

3-10. 50 MC MIXER AND 10 MC AGC AMPLIFIER, 1A2A3 (Figure 6-5)
3-11. 50 MC Amplifier
3-12. The $50 \mathrm{mc},-20 \mathrm{dbm}$, input signal is inserted through A3J2 where it is isolated by an emitter follower circuit and applied to front panel jack J6, 50 MC SPECTRUM, through output A3J3. The signal is also fed into a 50 mc wideband amplifier with a gain of approximately 6 db .

3-13. 50 MC MIXER
3-i4. The amplifier output is then mixed with a $60 \mathrm{mc},+10 \mathrm{dbm}$ signal from subassembly A7 (20 Mc Reference Oscillator and X3 Multiplier) entering through A3J4. The 10 mc difference signal is then filtered to eliminate 50 and 60 mc components, and unwanted harmonics, and is fed into the 10 mc agc amplifier.

3-15. 10 MC AGC AMPLIFIER
3-16. The agc amplifier has a 4 mc bandwidth and an agc range of 20 db to hold the -40 to -20 dbm input to a constant -20 dbm output. The agc control voltage from subassembly A9 is injected through A3J6 into the amplifier. The agc voltage range is -1 to $-8 v$, with
-lv representing maximum gain, and $-8 v$ representing minimum gain. The output signal is then fed to the 10 Mc Distribution Amplifier, subassembly A4.

3-17. 10 MC DISTRIBUTION AMPLIFIER, IA2A4 (Figure 6-6)
3-18. Subassembly A4 receives the $10 \mathrm{mc},-20 \mathrm{dbm}$ signal from subassembly A3 and provides amplification, proper impedance matching, and distribution of four 10 mc signal outputs. The input at A4J2 is amplified by a wideband amplifier with a bandwidth of 10 $\mathrm{mc} \pm 2 \mathrm{mc}, f l a t$ within 0.05 db , and applied to an emitter follower. The output of the emitter follower is used to drive four circuits that provide the outputs at A4J3, A4J4, A4J5, and A4J6. The first circuit consists of an emitter follower, a wideband amplifier, and an output emitter follower stage that provides a $10 \mathrm{mc},-10 \mathrm{dbm}$ signal through A4J3 to the 10 Mc Predetection Output jack, J9, on the drawer rear panel. The second circuit consists of a wideband amplifier and an emitter follower output stage that provides a 10 mc, - 10 dbm signal through A4J4 to 10 Mc Narrow-band Discriminator, Al0. The third circuit is an emitter follower output stage that provides a $10 \mathrm{mc},-20 \mathrm{dbm}$ signal through A4J5 to the 10 Mc Wideband Phase Detector, subassembly Al0. The fourth circuit is an emitter follower output stage that provides a $10 \mathrm{mc},-20 \mathrm{dbm}$ signal through A4J6 to the 10 Mc IF. Amplifier, subassembly A5.

3-19. 10 MC IF AMPLIFIER, 1A2A5 (figure 6-7)
3-20. The $10 \mathrm{mc},-20 \mathrm{dbm}$ input signal from subassembly A4 is amplified and distributed to two functions. One function, the 10 mc , - 16 dbm linear output, is amplified by a second stage and is fed to the coherent amplitude detector (subassembly A9), by A5J3, to develop loop agc voltage. The other function of the signal is fed to a limiter such that a 10 db signal change on the input will cause an output change of less than 1 db . The limited signal is then amplified by two stages and its $10 \mathrm{mc},+6 \mathrm{dbm}$ output at A5J4 is fed to the loop phase detector (subassembly A6). This is for the phase lock loop portion of the receiver.

3-21. LOOP PHASE DETECTOR AND LOOP FILTER, 1A2A6 (Figure 6-8)

3-22. Subassembly A6 is divided into two functional portions. The first portion, the Loop Phase Detector, receives two input signals. The input through A6J2 is from subassembly A8, the $\mathrm{X} 1 / 2$ and 10 Mc Reference Distribution Amplifier, at a level of +10 dbm at 10 mc . This input is crystal controlled from subassembly A7, and is the reference input. The input signal through A6J3 is from subassembly A5, the 10 Mc IF. Amplifier, at a level of +6 dbm at 10 mc. These two signals are detected in a balanced bridge type phase detector. If the input signals are out of phase, a dc error voltage is generated. This error voltage is fed to the second portion of the subassembly, the loop filter. The filter translates the input error signal into a dc correction voltage, which is inserted through A6J6 to subassembly Al, and establishes the tracking bandwidths of the phase lock loop. The filter has two bandwidths, a 400 cps loop bandwidth, β_{L}, and a 40 radian loop bandwidth, β_{L}, equivalent to 21.2 cps . The 400 cps bandwidth is used for all tests, except phase noise for which the 21.2 cps mode is used. Selection of the different bandwidths is accomplished by relay selection of RC combinations which make up a passive loop filter. Output A6J4 is routed to the receiver front panel J3, DYNAMIC \varnothing ERROR. Output A6J5 is routed to the STATIC ϕ ERROR meter on the receiver front panel.

3-23. 23 MC VCO AND X96 MULTIPLIER, 1A2A1, AND COAXIAL ISOLATOR (Figures 6-1, 6-2, and 6-3)

3-24. The 23 Mc VCO and X96 Multiplier consists of four subassemblies: the 23 mc vco and two buffer amplifiers, X2 and X3 multipliers with three stages of power amplification, a Xl6 cavity multiplier, and a coaxial isolator.

3-25. 23 MC VCO
3-26. The 23 mc vco is crystal controlled with two back-biased capacitive diodes (Varicaps), in a series resonant loop. The Loop Phase Detector error voltage (input AlJ2), or front panel adjust

VCO MANUAL CONTROL voltage, (input AlJ3), is injected into the loop, changes the bias on the diodes, causing diode capacities to change, thus shifting the crystal frequency 600 cps per volt of bias (four volt range). The vco output signal is isolated by two buffer-amplifier stages and the 23 MC VCO TEST output is applied through AlJ4 to J8 on the drawer front panel. The vco output then enters the $\mathrm{X} 3, \mathrm{X} 2$, and power amplifiers.

3-27. X6 MULTIPLIER AND AMPLIFIER
$3-28$. In this subassembly the 23 mc signal is multiplied to 140 mc by the X 3 and X 2 multipliers, and amplified to approximately +20 dbm by three stages of power amplification.

3-29. X16 CAVITY MULTIPLIER
3-30. The filtered 140 mc signal is fed into a X16 cavity which uses a step recovery diode for harmonic generation. The multiplied signal is inserted into a three-pole filter, (tuned to 2237.5 mc) which attenuates the 15 th and 17 th harmonics 50 to 55 db down from the output.

3-31. COAXIAL ISOLATOR

3-32. The 2237.5 mc output signal (at AlJ7) is then sent to a coaxial isolator which holds the loading effect of the three-pole filter constant. The isolator has 30 db of reverse isolation, a forward insertion loss of 0.6 db , and a vswr of 1.1:1. The 2237.5 $\mathrm{mc}, 0 \mathrm{dbm}$, output signal is mixed with the 2287.5 mc rf input in the Mixer Preamplifier, which completes the phase lock loop portion of the receiver.

3-33. 20 MC REFERENCE OSCILLATOR AND X3 MULTIPLIER, 1A2A7 (Figure 6-9)

3-34. Subassembly A7 generates the reference frequency for the phase lock loop, and provides a monitor output to the drawer front panel. The signal is also multiplied and sent to the 50 mc mixer portion of subassembly A3, where it is used as the second local oscillator signal.

3-35. The 20 mc oscillator is a crystal controlled circuit with a crystal frequency of 20.000000 ± 5 percent. The oscillator output is amplified and performs several functions. The output is multiplied by a X3 multiplier, amplified, and a $60 \mathrm{mc}+10 \mathrm{dbm}$ output signal is sent to the 50 mc mixer (subassembly A3) through output A7J2. The 20 mc amplified oscillator output is also amplified to +10 dbm and sent to subassembly A8 through output A7J3, where it becomes the loop reference frequency. This signal is also divided by a 10 db voltage divider to 0 dbm and sent through output A7J4 to drawer front panel jack J7, 20 MC OSC TEST.

3-36. X1/2 MULTIPLIER AND 10 MC REFERENCE DISTRIBUTION AMPLIFIER, 1A2A8. (Figure 6-10)

3-37. Subassembly A8 receives the 20 mc reference frequency from subassembly A7, divides it by two, isolates, and distributes four 10 mc reference signals, two of which are phase shifted.

3-38. X1/2 MULTIPLIER
3-39. The Xl/2 multiplier is a parametric divider which uses two capacitive diodes (Varicaps). The multiplier output is isolated by a buffer amplifier and distributed to four amplifiers.

3-40. 10 MC REFERENCE DISTRIBUTION AMPLIFIER
3-41. The 10 mc reference signal is applied to two separate single stage isolation amplifiers. After leaving the isolation amplifiers, both signals are $10 \mathrm{mc},+10 \mathrm{dbm}$. Output A8J3 is fed directly into subassembly A6 and is the basic reference frequency for the phase lock loop. Output A8J4 is fed to J10 on the rear drawer panel, and is the 10 mc Reference Output to Ranging Receiver drawer 4A3 (input J3),

3-42. PHASE SHIFTER
3-43. The other two 10 mc signals are sent to single stage isolation amplifiers identical to those used for the reference outputs. From here each signal goes to a variable RL and C network
phase shifter, capable of shifting the signal phase 0 to 180 degrees. One signal is shifted 90 degrees from the phase lock loop signal, and sent to subassembly A9 through output A8J5, where the coherent amplitude detector (subassembly A9) operates in phase quadrature with the loop phase detector (subassembly A6). The second signal is phase shifted to compensate for cable lengths which introduce phase shifts, and to place the signal in phase with the loop phase detector, so that VIDEO information outputs will not be distorted. After being phase shifted, this $10 \mathrm{mc},+10$ dbm, output (A8J6) is sent to the 10 mc wideband phase detector (subassembly Al0).

3-44. COHERENT AMPLITUDE DETECTOR, AGC AMPLIFIER, AND RELAY DRIVER, 1A2A9. (Figure 6-11)

3-45. Subassembly A9 circuitry may be divided into four parts: the coherent amplitude detector, the agc amplifier, the relay driver, and MGC/AGC switching.

3-46. COHERENT AMPLITUDE DETECTOR

3-47. The coherent amplitude detector is a balanced bridge type detector, similar to the loop phase detector in subassembly A6. Two inputs are inserted in the detector. The reference input at A9J2 is a $10 \mathrm{mc},+10 \mathrm{dbm}$ output from subassembly A8. The signal input at A9J3 is a $10 \mathrm{mc},-16 \mathrm{dbm}$ output from subassembly A5. The signal input is compared with the reference input in the detector, and a dc error voltage proportional to the amplitude of the signal input is generated. The error voltage is then sent to the AGC amplifier.

3-48. AGC AMPLIFIER
3-49. The AGC amplifier is a dc amplifier which amplifies the error signal for use in the 10 mc AGC amplifier, subassembly A3, as the loop AGC voltage (output A9J5). At the same time the error voltage is sent to the SIGNAL STRENGTH meter through output A9J4.

3-50. RELAY DRIVER

3-51. The relay driver is a logic switching circuit which triggers relay K2. When the AGC voltage, as read on the SIGNAL STRENGTH meter, falls below -0.7 volt, the relay driver triggers the IN LOCK/ OUT OF LOCK indicator relay, causing the OUT OF LOCK indicator to light. When the OUT OF LOCK indicator is lit and the AGC voltage rises above -0.7 volt, the relay driver triggers the indicator relay, and the IN LOCK indicator lights.

3-52. MGC/AGC SWITCHING
3-53. MGC/AGC switching is accomplished on the drawer front panel by the GAIN CONTROL switch. Actuation of the switch triggers relay Kl, switching out the AGC circuitry at the AGC Amplifier output. The MGC voltage, controlled by the MGC potentiometer (R2) on the drawer front panel, is fed through outputs A9J4 and A9J5 as in the AGC mode. MGC voltage is then read on the SIGNAL STRENGTH meter. The IN LOCK/OUT OF LOCK indicator will light in the MGC mode, but is not calibrated for an MGC threshold, making its indications erroneous.

3-54. 10 MC NARROW-BAND DISCRIMINATOR, 1A2A10 (Figure 6-12)
3-55. The 10 Mc Narrow-Band Discriminator is a separate functional unit which shares Subassembly AlO with the 10 Mc Wideband Phase Detector.

3-56. The input signal at Al0J2 is $10 \mathrm{mc},-10 \mathrm{dbm}$, from subassembly A4. The signal is amplified in a two stage 10 mc limiting amplifier to prevent amplitude modulation from reaching the discriminator. The discriminator is a double-tuned type having nominal linearities of ± 0.5 percent for a $\pm 20 \mathrm{kc}$ range. Deviation output of the subassembly is 0.1 volt/1000 cps, nominal. One output of the discriminator is sent to the FM TUNING meter, on the drawer front panel, through Al0J4. Another output of the discriminator is fed into an audio amplifier that has a 3 db response from 300 cps to 2 kc . The audio output is then sent through AlOJ3 to drawer front panel output J5, VOICE.

3-57. 10 MC WIDEBAND PHASE DETECTOR, IA2A10, AND VIDEO DISTRIBUTION AMPLIFIER, IA2A11. (Figures 6-12 and 6-13)

3-58. The 10 Mc Wideband Phase Detector and the Video Distribution Amplifier operate together as a functional unit. However, the 10 Mc Wideband Phase Detector physically shares subassembly Al0 with the 10 Mc Narrow-Band Discriminator. The Video Distribution Amplifier is packaged separately in Subassembly All.

3-59. 10 MC WIDEBAND PHASE DETECTOR
3-60. The phase detector receives two 10 mc inputs: a signal input and a reference input. The -20 dbm signal input from subassembly A4 is fed through Al0J5 into a single stage amplifier and two emitter followers, which provide reverse isolation to prevent feedback of the 10 mc reference signal into subassembly A4, a condition which would cause the PM Receiver to acquire its own reference signal (false lock). The $10 \mathrm{mc},+10 \mathrm{dbm}$ reference input is a phase shifted output of subassembly A8. The reference input is fed directly through Al0J6 to the phase detector. The input phases are compared in a balanced quadrature ring type configuration consisting of four diodes. The output of the phase detector, when the reference input is properly phased, consists of 300 cps to 1.5 mc of modulated information which was imposed on the S-band carrier. The subcarriers are amplified to 0 dbm by a four stage amplifier whose bandwidth is flat within 0.05 db from 300 cps to 1.5 mc , and sent to subassembly All through AlOJ7.

3-61. VIDEO DISTRIBUTION AMPLIFIER

3-62. The input signals are received at subassembly All through AllJ2. One signal goes directly through this subassembly via AllJ3 to the VIDEO OUTPUT selector switch on the drawer front panel. This is the WB VIDEO output and consists of frequencies from 300 cps to 1.25 mc . The subcarrier frequencies of 10 kc , $100 \mathrm{kc}, 500 \mathrm{kc}, 1.024 \mathrm{mc}$, and 1.25 mc are individually amplified, filtered, amplified again, and sent to the VIDEO OUTPUT selector
switch through outputs J6, J5, J4, J8, and J7, respectively. The VIDEO OUTPUT selector switch selects one of the five subcarrier outputs or the wideband video output, which is then sent to VIDEO output J4, located on the drawer front panel.

SECTION IV. PROGRAMMING DATA

NOT APPLICABLE

SECTION V. MAINTENANCE

5-1. INTRODUCTION.

5-2. This maintenance section consists of drawer operational checkout, drawer performance checkout, and calibration and adjustment procedures. The checkout procedures will assist the experienced technician in localizing troubles to the subassembly level.

5-3. The drawer operational checkout is primarily confined to using a series of simple tests to determine the location of the catastrophic type of failure. The drawer performance checkout tests are more sophisticated and reveal the circuit design performance.

5-4. When it has been determined that a particular subassembly is contributing to failure in design performance, the calibration and/or adjustment procedure for that subassembly should be performed. If calibration does not restore performance, the defective subassembly must be returned to the factory for repair or troubleshooting carried out using the schematic diagram.

5-5. DRAWER OPERATIONAL CHECKOUT.
5-6. During these tests, terminate all drawer connectors, other than those being used for the particular test, in 50 ohms. Connect the 115 VAC INPUT connector Jl of the PM Receiver drawer to a 115 VAC 60-cycle single-phase power source capable of delivering 10 amperes. Perform the procedure of Table 5-1, in order, by item number.

TABLE 5-1. DRAWER OPERATIONAL CHECKOUT

Item	Action	Normal Indication
1	Turn on PM Receiver by pressing POWER switch Sl.	A-c power applied when -12 vdc output of power supply lights lamps DS1 and DS2 behind switch button.
2	```Check d-c output of -12 vdc and plus and minus l5 vdc supplies. -12 vdc supply (TB5-1 to TB5-4) +15 vdc supply (TB2-6 to TB1-7) -15 vdc supply (TB4-5 to TB1-4)```	```-12 vdc \pm volts at TB5-1. +15 vdc \pm volts at TB2-6. -15 vdc \pm volts at TB4-5.```
3	Position switches as follows: LOOP CONTROL S2 at 400 CPS LOOP CONTROL S3 at OPEN GAIN CONTROL S4 at MGC	
4	Adjust MGC knob	6 vdc as observed on SIGNAL STRENGTH meter.
5	Measure 23 Mc VCO subassembly Al frequency and power at the 23 MC VCO TEST jack J8 using a frequency counter and power meter.	$\begin{aligned} & 23.307292 \mathrm{mc} \pm 1050 \text { cycles } \\ & 0 \mathrm{dbm} \pm 2 \mathrm{dbm} \end{aligned}$
6	Disconnect the isolator AT3 from the LO input A2J3 of the mixer-preamplifier A2. Terminate the output side of AT3 in 50 ohms and measure frequency and power. Use HP 536A frequency meter and HP 431B power meter. Reconnect AT3 to A2J3.	$\begin{aligned} & 2237.5 \mathrm{mc} \pm 2 \mathrm{mc} \\ & 0 \mathrm{dbm} \pm 1 \mathrm{dbm} \end{aligned}$

TABLE 5-1. (cont)

Item	Action	Normal Indication
7	Apply a 2287.5 mc input signal at -30 dbm to RF INPUT jack J2. Set the ATTENUATOR AT1 to 0 db and measure frequency and power at J6.	50 mc -22 dbm nominal
8	Vary the ATTENUATOR ATI in 5 db steps over the dial. Leave ATTENUATOR dial at 0 db and signal input as in step (7) until directed otherwise.	Output power at J6 must change $5 \mathrm{db} \pm 1 \mathrm{db}$ for each step.
9	Terminate the 20 MC OSC TEST jack J7 in 50 ohms. Measure the 20 mc ref oscillator A7 output frequency and power.	$\begin{aligned} & 20.000000 \mathrm{mc} \pm 200 \mathrm{cps} \\ & 0 \mathrm{dbm} \pm 0.2 \mathrm{dbm} \end{aligned}$
10	Terminate the cable tied into subassembly jack A3J4 in 50 ohms and measure the frequency and power of the X 3 output of the 20 Mc Reference Oscillator and X3 subassembly A7. Restore circuit connections.	60.000000 mc +10 dbm nominal
11	Terminate output connector A3J5 of the 50 Mc Mixer and 10 MC AGC Amplifier A3 in 50 ohms. Check the output frequency and power at A3J5. Restore circuit connections.	10.000000 mc -20 dbm nominal

TABLE 5-1. (cont)

Item	Action	Normal Indication
12	Terminate the output connector A4J6 of the 10 Mc Distribution Amplifier A4 in 50 ohms. Measure the frequency and output power at A4J6. Restore circuit connections.	10.000000 mc -20 dbm nominal
13	Terminate the output connector J9 at the rear of the drawer in 50 ohms. (10 mc turn around code.) Measure the frequency and output power at J9.	$\begin{aligned} & 10.000000 \mathrm{mc} \\ & -10 \mathrm{dbm} \pm 1 \mathrm{db} \end{aligned}$
14	Disconnect the output cable from the 10 Mc IF. Amplifier at jack A9J3 of subassembly A9. Terminate the cable in 50 ohms. Check the output frequency and power at the terminnated cable end. Restore circuit connections.	10.000000 mc -16 dbm nominal
15	Check the frequency and power output of the 10 mc ref distribution amplifier (p / o subassembly A8) at the 10 mc ref connector Jl0 at the rear of the drawer.	10.000000 mc +10 dbm nominal
16	Check the 10 mc ref distribution amplifier output at A8J3 in the following manner:	

TABLE 5-1. (cont)

Item	Action	Normal Indication
16 cont	a. Remove the cable from connector J2 of subassembly A6. b. Terminate the open end of the cable in 50 ohms. Measure frequency. c. Remove the termination and measure power with the MV-28B (has 50-ohm probe). Check the 10 mc limited amplifier output at A5J4 (p/o subassembly A5) in the following manner: a. Disconnect the cable tied to A6J3. Terminate the open end of the cable in 50 ohms. Measure frequency at the terminated end. b. Remove the termination and measure power at the open cable end with an MV-28B power meter. c. Reconnect cable to A6J3. Check the A5J4 and A5J5 outputs from the 10 Mc Distribution Amplifier A4 as follows:	10.000000 mc +10 dbm nominal 10 mc +6 dbm nominal

TABLE 5-1. (cont)

Item	Action	Normal Indication
18	a. Disconnect cable tied to connector Al0J2. Termi- nate the cable in 50 ohms. Measure frequency at terminated end.	10 mc
	b. Remove termination and measure power at the open cable end with an MV-28B power meter. Reconnect cable.	-10 dbm nominal
c. Perform operation of (a)		
and (b) above at connec-		
tor Al0J5.		

5-7. DRAWER PERFORMANCE CHECKOUT

5-8. This test procedure contains information required to check out the PM Receiver. The procedures should be performed in the sequence presented.

5-9. Test equipment required for these procedures is listed in Table l-6. Test equipment required for the specific setups is given in text or in the test setup diagram.

5-10. INPUT VSWR
a. Connect the PM Receiver as shown in figure 5-1.
b. Set the UHF signal generator to 2287.5 mc at 0 dbm . Verify the frequency with the frequency meter and power meter.
. c. Modulate the signal generator with. 1000 cps by means of its internal square wave. Do not use the signal generator automatic level control during this test.
d. Tune the slotted line and measure the input vswr. The input vswr should be 1.3:1, or less, with respect to 50 ohms at $\pm 20 \mathrm{mc}$ of f_{o}.

NOTE
If the input vswr is not within limits, check all input cables and their connectors for tightness and continuity. If all input cables are satisfactory, the input attenuator may be defective.

5-11. INPUT VARIABLE ATTENUATOR LINEARITY
a. Connect the equipment as shown in figure 5-2.
b. Set the ATTENUATOR dial to zero.
c. Set the LOOP CONTROL switch to OPEN.
d. Adjust the VCO MANUAL CONTROL for a 50 mc output at J6.
e. Measure the power output level at J6 with the RF voltmeter. This is the reference level.
f. Vary the ATTENUATOR dial in 5 db steps over the dial. The output level for each succeeding setting must be $5 \mathrm{db} \pm 1 \mathrm{db}$ from the previous setting.

NOTE
If the linearity of the input variable attenuator is not within limits, the input attenuator is defective and must be replaced.

Figure 5-1. Input VSWR Test Setup.

Figure 5-2. Input Variable Attenuator Linearity/50 Mc IF Bandwidth/10 Mc IF Bandwidth, Test Setup

5-12. 23 MC VCO AND X96 MULTIPLIER IA2A1 OUTPUT
a. Disconnect the LO isolator from the Mixer Preamplifer, A2J3, and connect it to the Spectrum Analyzer (H-P 8551A/ 851A). The level of all spurious signals from 2000 to 2400 mc should be at least 50 db down from the reference level of 0 dbm at 2237.5 mc .
b. Reconnect the LO isolator to A2J3.

NOTE
If the power, frequency, or spurious outputs at the LO isolator are not within limits, subassembly Al must be checked out.

5-13. 50 MC IF. BANDWIDTH
a. Connect the equipment as shown in figure 5-2.
b. Set the LOOP CONTROL switch to the OPEN position.
c. Adjust the VCO MANUAL CONTROL for a 50 mc output at J6.
d. Vary the frequency on the signal generator plus and minus 2 mc from 2287.5 mc . Ensure that the input power level remains constant over the frequency range. The output power level at J6.should be within $\pm 0.05 \mathrm{db}$ of the reference power output at 2287.5 mc .

NOTE
If the power output levels at J6 are not within limits, subassembly A2 must be checked out.

5-14. 10 MC IF. BANDWIDTH
a. Connect the equipment as shown in figure 5-2 and connect the rf voltmeter and spectrum analyzer to A4J6.(10 mc Distribution Amplifier).
b. Set the LOOP CONTROL switch to the OPEN position and the GAIN CONTROL switch to the MGC position. Select an easily-read MGC voltage for reference.
c. Adjust the VCO MANUAL CONTROL for a 10 mc signal output at A4J5.
d. Vary the input frequency plus and minus 2 mc from 2287.5 mc. The power output deviation at A4J5 should be within $\pm 0.05 \mathrm{db}$ of the reference power output at 2287.5 mc .

NOTE
If the power output levels at the J6 are not within limits, subassembly A3, and, or, subassembly A4 must be checked out.

5-15. MGC RANGE
a. Connect the equipment as shown in figure 5-3.
b. Set the ATTENUATOR dial to zero.
c. Set the LOOP CONTROL switch to the OPEN position. Adjust the MGC control and the VCO MANUAL CONTROL for a $10 \mathrm{mc},-20$ dbm output at A $4 J 5$ with the ATTENUATOR dial set to zero.
d. Vary the ATTENUATOR dial in $5-\mathrm{db}$ steps from 0 to 20 db and readjust the MGC control for -20 dbm output at A4J5. The MGC voltage range should be sufficient to compensate for an input signal change of 20 db .

NOTE
If the MGC range is not sufficient to compensate for a $20-\mathrm{db}$ input signal change, subassembly A3 must be checked out.

5-16. AGC RANGE
a. Connect the equipment as shown in figure 5-3.
b. Set the LOOP CONTROL switches to the 400 CPS and CLOSED positions. Set the ATTENUATOR DIAL to zero.
c. Monitor the 10 mc output at A 4 J 5 .

Figure 5-3. MGC Range/AGC Range, Test Setup
d. Vary the ATTENUATOR dial in 5 db steps from 0 to 20 db . The agc voltage range should be sufficient to compensate for an input signal change of 20 db , while maintaining a constant output of $-20 \mathrm{dbm} \pm 0.1 \mathrm{db}$ at A4J5.

NOTE
If the agc range is not sufficient to compensate for a $20-\mathrm{db}$ input signal change, subassembly A3 must be checked out.

5-17. LOOP GAIN
a. Connect the equipment as shown in figure 5-4.
b. Set the LOOP CONTROL switches to the 400 CPS and CLOSED positions.
c. Adjust the VCO MANUAL CONTROL potentiometer for 0 volt error voltage on the dc null voltmeter. Note the frequency of the 23 mc vco (nominal frequency: 23.307292 mc).

Figure 5-4. Loop Gain Test Setup
d. Vary the PM Transmitter FREQ SET control for +1 volt error on the dc null voltmeter and note the frequency of the 23 mc vco. It should vary $600 \mathrm{cps} \pm 10 \%$ from the reference noted in step c.

NOTE
If the 23 mc vco frequency deviation at +1 v error is not within limits, subassembly Al must be checked out.
e. Repeat step (d) for -1 volt error. Note the 23 mc vco frequency. It should vary $600 \mathrm{cps} \pm 10 \%$ from the reference noted in step (c).

NOTE

If the 23 mc vco frequency deviation at -l v error is not within limits, subassembly Al must be checked out.
f. Determine the loop gain from the following formula:
$G=\left(K d \frac{\text { volts }}{\text { degree }}\right)\left(\operatorname{Kvco} \frac{\mathrm{cps}}{\text { volt }}\right) \cdot\left(A \frac{\text { volts }}{\text { volts }}\right)\left(M \frac{\mathrm{cps}}{\mathrm{cps}}\right)\left(\alpha \frac{\text { volt }}{\text { volt }}\right)$
$G=(.360 /$ degree $)\left(\Delta f \frac{\mathrm{cps}}{\text { volt }}\right): 553 \times 96 \times 1$
For an error voltage of 1.0 volt,
$G=360 \times 96 \times .360 \times f \times .553$,
where $\Delta f=$ vco frequency change.
Limit: $4.125 \times 10^{6} \pm 10$ percent
NOTE
If the loop gain is not within limits, subassemblies Al, and, or A6 must be checked out.

5-18. LOOP BANDWIDTH
a. Connect the equipment as shown in figure 5-5.
b. Set the LOOP CONTROL switches to the 400 CPS and CLOSED positions. Lock the PM Receiver to the PM Transmitter.
c. Apply 1 kc of modulation from the signal generator to the PM Transmitter. Adjust the signal generator input level until a convenient reference output level is read on the oscilloscope.
d. Vary the frequency of the signal generator from $\mathrm{l} k \mathrm{kc}$ to 10 cps, keeping its level constant, and plot several points on a graph showing relative response versus modulation frequency. The response curve should be within $\pm 10 \%$ of figure 5-6.

Figure 5-5. Loop Bandwidth Test Setup.

Figure 5-6. 400 CPS Loop Bandwidth Response Curve.

NOTE

If the loop bandwidth response curve is not within ± 10 percent of figure $5-6$, the Loop Filter A3 must be checked out.
e. Set the LOOP CONTROL switch to the 21 CPS position and repeat steps (c) and (d), except vary the frequency of the signal generator from 100 to $l \mathrm{cps}$. The response curve should be within $\pm 10 \%$ of figure 5-7.

NOTE
If the loop bandwidth response curve is not within ± 10 percent of figure 5-7, the Loop Filter A3 must be checked out.

5-19. AGC BANDWIDTH
a. Connect the equipment as shown in figure 5-8.
b. Set the LOOP CONTROL switches to CLOSED and 400 CPS, lock the loop, and set the GAIN CONTROL to AGC.
c. Set the function generator for a 40 cps sine wave signal.
d. Set the power supply (2005) to -2.4 volts.
e. Adjust the output level at the function generator until the 40 cps envelope or the oscilloscope is 20 mv peak-topeak.
f. Decrease the frequency of the function generator, maintaining the output level constant, until the presentation on the oscilloscope has fallen 3 db (0.707) of the original level. The frequency shall be 5 cps maximum.

NOTE
If the agc bandwidth is not within limits, subassembly A9 must be checked out.

Figure 5-7. 21.2 CPS Loop Bandwidth Response Curve.

Figure 5-8. AGC Bandwidth Test Setup

5-20. PHASE NOISE
a. Connect the equipment as shown in figure 5-9.
b. Place the LOOP CONTROL switches to CLOSED and 21 CPS positions and lock the loop.
c. Set the Function switch on the integrating voltmeter to Auto Range.
d. Set the Sample Period selector on the integrating voltmeter to 10 seconds.
e. The reading on the integrating voltmeter is percent of full scale of the rms voltmeter. Note the reading of the integrating voltmeter times full scale of the rms voltmeter.
f. Convert the voltage reading to rms degrees by using the relationship below. Maximum phase noise should be 2.5°. $\frac{\text { rms phase noise (volts) }}{K(v o l t / d e g r e e s)}=$ rms phase noise (degrees)
where $K=$ peak value of open loop beat note (volts/radian) 57.3 (degrees/radian)

NOTE
If the rms phase noise is not within limits, subassembly Al should be checked out.

5-21. 23 MC VCO AND 20 MC OSCILLATOR STABILITY
NOTE
Allow the PM Receiver two hours warm-up before performing this checkout procedure.
a. Connect the equipment as shown in figure 5-10.
b. Set the LOOP CONTROL switch to the OPEN position.
c. Adjust the VCO MANUAL CONTROL to midrange.
d. Measure and note the frequencies at the 20 MC OSC TEST jack and the 23 MC VCO TEST jack at the start and end of a three hour period.

Figure 5-9. Phase Noise Test Setup

Figure 5-10. Oscillator Stability and Manual Frequency Range Test Setup
e. Calculate the difference between the start and stop readings obtained at the 23 MC VCO TEST jack. Total drift for any three hour period should be 23 cps maximum.

NOTE
If the 23 mc vco stability is not within limits, subassembly Al must be checked out.
f. Calculate the difference between the start and stop readings obtained at the 20 MC OSC TEST jack. Total drift for any three hour period should be 50 cps maximum.

NOTE
If the 20 mc crystal oscillator is not within limits, subassembly A7 must be checked out.

5-22. MANUAL FREQUENCY RANGE
a. Connect the equipment as shown in figure 5-10, with the frequency counter connected to the 23 MC VCO TEST jack, and the 20 MC OSC TEST jack terminated.in 50 ohms.
b. Set the LOOP CONTROL switch to the OPEN position.
c. Set the VCO MANUAL CONTROL fully clockwise and note the frequency.
d. Set the VCO MANUAL CONTROL fully counter-clockwise and note the frequency.
e. Calculate the frequency range. The limits for frequency range are $\pm 1050 \mathrm{cps}$ minimum from 23.307292 mc . NOTE

If the manual frequency range is not within limits, subassembly Al must be checked out.

5-23. ACQUISITION RANGE

a. Connect the equipment as shown in figure 5-11.
b. Set the PM Transmitter to 2287.4 mc .
c. Set the LOOP CONTROL switches to the 400 CPS and CLOSED positions. Vary the VCO MANUAL CONTROL potentiometer until lockup with the PM Transmitter is accomplished.
d. Set the PM Transmitter to 2287.6 mc and repeat step (c).
e. Set the PM Transmitter to 2287.46 mc .
f. Set the LOOP CONTROL switch to the 21 CPS position. Vary the VCO MANUAL CONTROL potentiometer until lockup with the PM Transmitter is accomplished.
g. Set the PM Transmitter to 2287.54 mc and repeat step (f). NOTE

If the acquisition range of the VCO MANUAL CONTROL is not adequate to accomplish lockup with the PM Transmitter at the frequencies in steps b, d, e, and g, subassemblies Al and/or A6 must be checked out.

Figure 5-11. Acquisition Range Test Setup

5-24. 10 MC PREDETECTION OUTPUT AND 10 MC REFERENCE OUTPUT

a. Connect the equipment as shown in figure 5-12.
b. Measure the frequency and output levels at J9. The frequency at J9 should be 10 mc nominal. The output level should be $-10 \mathrm{dbm} \pm 1 \mathrm{db}$.

NOTE
If the frequency and power output levels at J9 are not within limits, subassembly A4 must be checked out.
c. Connect the rf voltmeter, spectrum analyzer, and frequency counter to JlO.

Figure 5-12. 10 MC Predetection Output and 10 MC Reference Output, Test Setup
d. Measure the frequency and power output levels at Jlo. The frequency at JlO should be $10 \mathrm{mc} \pm 100 \mathrm{cps}$. The power output level should be $+10 \mathrm{dbm} \pm 2 \mathrm{db}$.

NOTE
If the frequency and power output levels at Jl0 are not within limits, subassembly A8 must be checked out.

5-25. PM DEMODULATION
a. Connect the equipment as shown in figure 5-13.
b. Set the LOOP CONTROL switches to the 400 CPS and CLOSED positions. Set the VIDEO OUTPUT selector switch in the 10 KC position. Lock the PM Receiver to the PM Transmitter.
c. Modulate the PM Transmitter carrier with 10 kc at 1.0 radian from the signal generator.
d. Measure the output level at J4. Limit: $0 \mathrm{dbm} \pm 1 \mathrm{db}$.

NOTE
If the power output level at J4 is not within limits, subassemblies Al0, and/ or All must be checked out.
e. Modulate the PM Transmitter carrier successively with $100 \mathrm{kc}, 500 \mathrm{kc}, 1.024 \mathrm{mc}$, and 1.25 mc at 1.0 radian. Measure the output levels at each modulation frequency with the VIDEO OUTPUT selector switch set to the corresponding frequency. The output level for each modulation frequency, measured at $J 4$, should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$.

NOTE
If the power output levels at J4 are not within limits, subassemblies Al0, and/or All must be checked out.
f. Set the VIDEO OUTPUT selector switch to WB VIDEO.

Figure 5-13. PM Demodulation Test Setup
g. Modulate the PM Transmitter successively with $300 \mathrm{cps}, 1 \mathrm{kc}$, $10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{mc}$, and 1.5 mc at 1.0 radian. The power output level for each modulation frequency at $J 4$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$.

NOTE
If the output power levels at J4 are not within limits, subassembly Al0 must be checked out.

5-26. FM DEMODULATION
a. Connect the equipment as shown in figure 5-14.
b. Place the GAIN CONTROL switch in the MGC position. Place the LOOP CONTROL switch in the OPEN position. Null the FM TUNING meter using the VCO MANUAL CONTROL potentiometer.

Figure 5-14. FM Demodulation Test Setup
c. Modulate the PM Transmitter carrier with l kc at a modulation index of 1.0 radian.
d. Measure the power output level at J5 with the rf voltmeter. Limit: 100 mv nominal.
e. Repeat step (c) with deviations of $0.5,1.5$, and 2.0 radians.
f. Measure the power output levels at J5 with the rf voltmeter. Limits: ± 5 percent per radian.

NOTE
If the power output levels at J5 are not within limits, the Narrow-Band Discriminator Al0 must be checked out.

5-27. CALIBRATION OF SUBASSEMBLIES

5-28. 23 MC VCO AND X96 MULTIPLIER 1A2A1.
5-29. Calibration of subassembly Al is performed on the bench, due to limited access of electrical connections and components when in the drawer. Refer to paragraph 5-57 for module removal instructions.

5-30. Make the test connections shown in figure 5-15. Set the bias at J 2 to 0 vdc , and the acquisition voltage at J 3 to +9 vdc by means of the 10 k ohm potentiometer.
a. Connect the frequency counter to the 23 mc test connector J4.
b. Adjust L5 for an output of $23.307292 \mathrm{mc} \pm 100 \mathrm{cps}$ at J4.
c. Disconnect the frequency counter and connect the r-f voltmeter (Boonton 91CA) to J4.
d. Adjust C8, C16, and L8 for $0 \mathrm{dbm} \pm 2 \mathrm{db}$ output at J4.
e. Repeat steps (a) through (d) as required.
f. Disconnect cable Wl connecting J5 and J6. Connect the r-f voltmeter (91CA) to J5.
g. Adjust L10, Ll2, L14, L15, L18, L21, and L22 for maximum 140 ms output at J5.
h. Remove the $r-f$ voltmeter and connect the spectrum analyzer to J5. Check that the 2 nd harmonic is down 30 db and any other spurious down at least 40 db .
i. Connect the r-f voltmeter at J4.
j. Vary the bias input to J2 from -2 vdc to +2 vdc and adjust L4 for a VCO sensitivity of 600 cps per volt $\pm 5 \%$ at J4.
k. Disconnect thr r-f voltmeter and spectrum analyzer and reconnect J5 to J6 with cable W1. Connect the test equipment, shown within the dotted enclosure of figure 5-15 to J7.

1. Adjust the three tuned cavities and C56 of Al for maximum power output at 2237.5 mc at J7.
m. Repeat step (1) until the power output is greater than 0 dbm and all spurs are down at least 50 db .
n. Disconnect all test equipment and install subassembly Al in the PM Receiver.

5-31. S-BAND MIXER AND 50 MC PREAMPLIFIER 1A2A2
5-32. Calibration of subassembly lA2A2 can be performed only at the factory. The following calibration checks, however, should be performed at any time the subassembly is suspected of not meeting performance specifications.
a. Connect the equipment as shown in figure 5-16.
b. Set the LOOP CONTROL switch to the OPEN position.
c. Apply a 2287.5 mc input signal at -30 dbm to $R F$ INPUT jack J2.
d. Set the ATTENUATOR ATl dial to 0 db .
e. Measure the frequency at 50 MC SPECTRUM jack J6 and adjust the VCO MANUAL CONTROL for 50 mc output.
f. Measure the power output at J6. It should be -22 dbm nominal.
g. Vary the RF INPUT signal plus and minus 2 mc around 2287.5 mc . The power output should remain flat within 0.05 db .

5-33. 50 MC MIXER AND 10 MC AGC AMPLIFIER 1A2A3
5-34. The subassembly lA2A3 may be calibrated in the drawer assembly. Raise the subassembly to gain access to the connectors and adjustments. Refer to figure 5-17, and remove drawer connections to 1A2A3 at J1, J2, J3, J4, J5, and J6. Connect test equipment to the subassembly as shown in figure 5-17.
a. Set the agc voltage to J6 at -1 vdc.
b. Adjust the signal generator for a 60 mc input at +10 dbm to J4.

> Figure 5-16. Test Setup for Calibration Check of S-Band Mixer and 50 Mc Preamplifier 1A2A2
c. Adjust the signal generator for a 50 mc input at -40 dbm to J2.
d. Adjust R5l for -20 dbm as measured at J5 with the r-f voltmeter.
e. Vary the signal generator input to $J 2$ over the range of 48 to 52 mc , and adjust C6 for a frequency response of $\pm 0.5 \mathrm{db}$. Use the spectrum analyzer and/or microvoltmeter as required. Check that all spurs are at least 40 db down from the 10 mc output signal at J5.

Figure 5-17. Test Setup for Calibration of 50 Mc Mixer and 10 Mc AGC Amplifier 1 A 2 A 3

5-35. 10 MC DISTRIBUTION AMPLIFIER 1A2A4
5-36. There are no adjustments on subassembly lA2A4. In event of repair and replacement of parts, the subassembly should be checked out according to the following procedure. Failure to meet output level requirements may necessitate selection of new values for R4, R22, or R41 (see notes on schematic diagram fig.). Raise the subassembly to gain access to the connectors.
a. Disconnect cable W4 from connector J2 of subassembly lA2A4.
b. Connect a signal generator (H-P 606A) to J2 and adjust the generator output for 10 mc at $\mathbf{- 2 0} \mathrm{dbm}$.
c. Remove the cable connection at J3 and terminate J3 in 50 ohms.
d. Use an r-f voltmeter (Boonton 91CA/91-8B) and check the power level at J3.
e. Repeat steps (c) and (d) at connectors J4, J5, and J6.
f. If the power levels are not as listed in the following, refer to step (g).

J3	-10	dbm
J4	-10	dbm
J5	-20	dbm
J6	-20	dbm

g. If all outputs are off, select a different value for R4. If the J3 output is off, select a new value for R22. If the J4 output is off, select a new value for R4l.

5-37. 10 MC IF. AMPLIFIER 1A2A5
5-38. Calibration of subassembly 1A2A5 can be performed in the drawer. Refer to the test setup of figure 5-18, and make the connections shown.
a. Set the variable attenuator (H-P 355C \& D) for zero attenuation and adjust the signal generator for 10 mc at -20 dbm at J2.

Figure 5-18. Test Setup for Calibration of 10 Mc I.F. Amplifier 1A2A5.
b. Adjust C5 and C12 for maximum output (-16 dbm) at J3.
c. Observe the power level at J4 and insert attenuation at J2 until the power level at $J 4$ changes (limiting ceases).
d. Adjust C16, C24, and C31 for maximum output at J4.
e. Decrease the attenuation until the input to J2 is $\mathbf{- 2 0} \mathbf{d b m}$. The power output at $J 4$ should be $+6 \mathrm{dbm} \pm 2 \mathrm{db}$.
f. Reduce the input signal at J2 by 5 db . The J4 output should decrease no more than 1 db. If it exceeds this level, select a higher value for R16 and a lower value for R18.
g. If R17 and R18 are changed, repeat steps (c) through (f).

5-39. LOOP PHASE DETECTOR AND LOOP FILTER 1A2A6
5-40. Calibration of subassembly 1A2A6 may be performed in the equipment drawer. Make the test connections shown in figure 5-19.
a. Connect the d-c null voltmeter to A6El. Disconnect R2l from RI6, and connect a 1 k ohm resistor from R16 to ground.
b. Set the reference input signal generator at $J 2$ to 10 mc and -80 dbm . Set the signal input signal generator at J3 to 10 mc and +6 dbm .
c. Adjust C2l and C29 for maximum d-c voltage at test point E1 (approximately 15 vdc).
d. Set the reference input signal generator at $J 2$ to 10 mc and +10 dbm . Set the signal input signal generator at J3 to 10 mc and -80 dbm .
e. Adjust Cll and Cl5 for maximum d-c voltage at test point El (approximately 20 vdc).
f. Move the d-c null voltmeter to test point E2.
g. Adjust C18 for $0 \pm 5 \mathrm{mvdc}$ at E2.
h. Set the reference input signal generator at $J 2$ to 10 mc and -80 dbm . Set the signal input signal generator at J3 to 10 mc and +6 dbm .

Figure 5-19. Test Setup for Calibration of Loop Phase Detector and Loop Filter 1A2A6.
i. Adjust C 23 for $0 \pm 5 \mathrm{mvdc}$ at test point E2.
j. Repeat steps (a) through (i) until proper balance is achieved.
k . Set the reference input signal generator at J2 to 10 mc and +10 dbm . Set the signal input signal generator at J3 to 10 mc and -80 dbm .

1. Adjust C18 and/or C23 for best balance.
m. Set the signal input signal generator at J3 to +6 dbm.
n. Adjust C18 and/or C23 for 0 ± 100 mvdc.
o. Repeat steps m and n, above until the balance is within $\pm 100 \mathrm{mvdc}$ for both conditions.
p. Ground the free end of $R 21$ and adjust R25 for 0 vdc ± 10 mvdc at J4. Use the d-c null voltmeter at J4.
q. Free R21 from ground and, using the audio signal generator, apply $a+1$ volt peak of 1 kc to the free end of R2l.
r. Increase the input to +20 volts peak. The voltage at J4 should be 15 volts peak $\pm 20 \%$.
s. Remove the 1 k ohm resistor (step 2) and reconnect Rl 6 to R21.

5-41. 20 MC REFERENCE OSCILLATOR AND X3 MULTIPLIER 1A2A7
5-42. The calibration of subassembly lA2A7 may be performed in the drawer. Make the test connections as directed in the procedure following.
a. Adjust C6, C13, and Ll0, as required, for $10 \mathrm{dbm} \pm 2 \mathrm{db}$ output at J3, as measured with an r-f voltmeter (Boonton 91CA/91-8B).
b. Adjust C21 and C28 for $10 \mathrm{dbm} \pm 2 \mathrm{db}$ at J2, as measured with the $r-f$ voltmeter.

NOTE
Do not adjust C27 at this time.
c. Connect a frequency counter (H-P 5245L) to J3 and adjust L3 for $20 \mathrm{mc} \pm 200 \mathrm{cps}$.
d. Repeat steps (a), (b) and (c) as required.
e. Connect a spectrum analyzer (H-P 8551A/851A) to J2.
f. Adjust C27 so that all spurs are at least 40 db down from the 60 mc output at J2.

5-43. X $\frac{1}{2}$ MULTIPLIER AND 10 MC REF DISTRIBUTION AMPLIFIER 1A2A8
5-44. The subassembly 1 A2A 8 may be calibrated in the equipment drawer. Make the test connections as directed in the procedure following.
a. Connect a signal generator (H-P 606A) to J2. Adjust the generator for a $20 \mathrm{mc}+10 \mathrm{dbm}$ output.
b. Connect a d-c voltmeter (H-P 412A) to test point El. Adjust C5 for 0.32 vdc as measured at El.
c. Measure the power levels at J3, J4, J5, and J6, Use an r-f voltmeter (Boonton 91CA/91-8B). If the outputs are not as listed below, select a different value of resistance, approximately that listed on the schematic diagram, to adjust the power level.

Connector
Power Level
Change Value of
J3 $10 \mathrm{dbm} \pm 2 \mathrm{db}$ R33
J4
$10 \mathrm{dbm} \pm 2 \mathrm{db}$
R30
J5
J6
$10 \mathrm{dbm} \pm 2 \mathrm{db}$
R38
$10 \mathrm{dbm} \pm 2 \mathrm{db}$
R41
5-45. COHERENT AMPLITUDE DET, AGC AMPL AND RELAY DRIVER 1A2A9
5-46. Calibration of subassembly 1A2A9 can be performed in the equipment drawer.

5-47. DETECTOR BALANCE. Adjust the detector balance as directed, with subassembly IA2A9 in the drawer.
a. Disconnect R16 from the input 1 of the operational amplifier ARI. Ground R16 through alk ohm resistor. Adjust Cll, C15, C21, and C29 for mid-range.
b. Connect a signal generator (H-P 606A) to the ref input J2 of subassembly 1 A2A8. Adjust its output for 10 mc at -80 dbm .
c. Connect a signal generator (H-P 606A) to the signal input J3 of subassembly 1 A2A8. Adjust its output for 10 mc at $\pm 10 \mathrm{dbm}$.
d. Connect a d-c null voltmeter (H-P 413A) to test point El. Adjust C21 and C29 for maximum voltage (approx 15 vdc) as measured at El.
e. Set the input at J 2 to +10 dbm and the input at J 3 to -80 dbm .
f. Adjust Cll and C15 for maximum voltage (approx 20 vdc) as measured at El.
g. Connect the d-c null voltmeter to test point E2. Adjust C18 for $0 \pm 5 \mathrm{mv}$ as measured at E2.
h. Set the input at J 2 to -80 dbm and the input at J 3 to +10 dbm . Adjust C23 for $0 \pm 5 \mathrm{mv}$ as measured at test point E2.
i. Repeat steps (d) through (h) until the proper balance is achieved.
j. Set the input at J 2 to +10 dbm and the input at J3 to -80 dbm . Adjust C18 and/or C23 for best balance as measured at test point E2.
k. Increase the input at $J 3$ to 0 dbm and adjust C18 or C23 for best balance.

1. Alternately repeat steps (j) and (k) until balance is within $0 \pm 100 \mathrm{mvdc}$ for both steps (j) and (k).
m. If the repairs called only for recalibration of the balance circuits, remove the $l \mathrm{k}$ ohm resistor (step a) and reconnect R16 to terminal 1 of ARI.

5-48. AGC AMPLIFIER. Before making the test connections to subassembly lA2A9, disconnect pin 1 of the operational amplifier A9ARI from A9R16 and A9C32. Disconnect one end of capacitor A9C36.
a. Make the test connections shown in figure 5-20 and connect pin l of A9AR1 to Jl on the test fixture.
b. Connect the $d-c$ null voltmeter (H-P 413A) to TP1 on the test fixture.
c. Set Sl of the test fixture to position 2 and adjust RI (test fixture) for $3 v \pm 20 \mathrm{mvdc}$ as measured on the $\mathrm{d}-\mathrm{c}$ null voltmeter.
d. Set S3 (test fixture) to AGC and connect the d-c null voltmeter to TP2 on the test fixture.
e. Adjust A9R25 for -1 vdc as measured on the d-c null voltmeter.
f. Remove test equipment and restore connections within subassembly 1A2A9. Reconnect pin 1 of A9ARI to A9R16 and A9C32. Reconnect A9C36.

5-49. 10 MC NB DISCRIMINATOR AND 10 MC WB PHASE DET 1A2A10
5-50. Calibration of the subassembly lA2A10 can be performed in the equipment drawer.
a. Connect a signal generator (H-P 606A) to J2. Set the generator for 10.410 mc at -10 dbm .
b. Connect an $r-f$ voltmeter (Boonton $91 \mathrm{CA} W / 50$-ohm probe) to the high side of R7l.
c. Adjust C 8 for peak response as indicated on the $r-f$ voltmeter.
d. Set the signal generator output to 9.590 mc at -10 dbm .
e. Connect the r-f voltmeter to the high side of R72.
f. Adjust Cll for peak response as indicated on the r-f voltmeter.
g. Set the signal generator output at 10.000 mc at -10 dbm .

Figure 5-20. AGC Amplifier (part of 1A2A9), Test Setup.
h. Connect a d-c microvoltmeter (Rohde \& Schwarz USVH) to the detector output junction of RII and R60 (J4).
i. Adjust Cll for a null on the microvoltmeter.
j. Vary the 10.000 mc input $\pm 10 \mathrm{kc}$ and observe the d-c output voltage variation on the microvoltmeter. The variation should be 20 mv either side of zero (null) for a $2 \mathrm{mv} / \mathrm{kc}$ sensitivity.
k. Refer to the schematic for subassembly lA2Al0 and select a value of $R 7$ as required to give proper sensitivity.

5-51. VIDEO DISTRIBUTION AMPLIFIER 1A2A11
5-52. Calibration of the subassembly 1A2All may be performed in the equipment drawer. When checking one of the outputs $J 4$ through J8, lift the connecting cable and terminate the subassembly output connector in 50 ohms.
a. Adjust the J7 output as follows:
(1) Connect a signal generator (H-P 606A) to J2 and set its output to 1.25 mc at 0 dbm .
(2) Adjust L5 and L6 for maximum power and a 3-db bandwidth of $\pm 10 \mathrm{kc}$ at J7. Use an rms voltmeter (H-P 400D) and oscilloscope (TEK 543/B), as required at J 7 .
(3) The power output at $J 7$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$. If it is not, refer to the schematic diagram and select a value of $R 23$ that will satisfy this requirement.
b. Adjust J8 output as follows:
(1) Change the generator input at J2 to 1.024 mc at 0 dbm .
(2) Adjust L7 and L8 for maximum power and a 3-db bandwidth of $\pm 10 \mathrm{kc} \pm 10 \%$ at J8. Use the H-P 400 D and the TEK $543 / B$, as required, at $J 8$.
(3) The power output at $J 8$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$. If it is not, refer to the schematic diagram and select a value of $R 33$ that will satisfy this requirement.
c. Adjust the J4 output as follows:
(1) Change the generator input at J2 to 500 kc at 0 dbm .
(2) Adjust L1 and L2 for maximum power and a 3-db bandwidth of $\pm 12.5 \mathrm{kc} \pm 10 \%$ at J4. Use the H-P 400 D and TEK 543/B, as required at $J 4$.
(3) The power output at $J 4$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$. If it is not, refer to the schematic diagram and select a value of $R 3$ that will satisfy this requirement.
d. Adjust the output at J5 as follows:
(1) Change the generator input at J2 to 100 kc at 0 dbm .
(2) Adjust L3 and L4 for maximum power and a 3-db bandwidth of $\pm 5 \mathrm{kc} \pm 10 \%$ at J5. Use the H-P 400D and TEK 543/B, as required, at J5.
(3) The power output at $J 5$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$. If it is not, refer to the schematic diagram and select a value of $R 13$ that will satisfy this requirement.
e. Adjust the output at J6 as follows:
(1) Remove the generator $\mathrm{H}-\mathrm{P}$ 606A and connect an audio oscillator H-P 200CD to J2. Adjust its signal into J2 to 10 kc at 0 dbm .
(2) Adjust L9 and Ll0 for maximum power and a 3-db bandwidth of $\pm 1 \mathrm{kc} \pm 10 \%$ at J6. Use the H-P 400D and TEK 543/B, as required, at J6.
(3) The power output at $J 6$ should be $0 \mathrm{dbm} \pm 1 \mathrm{db}$. If it
, is not, refer to the schematic diagram and select a value of $R 43$ that will satisfy this requirement.

5-53. -12 VDC POWER SUPPLY 1A2PS2
5-54. The power supply may be adjusted in the equipment drawer.
a. Connect a digital voltmeter (Cimeron 7200A) of pin 1 of TB5 (-12 vdc) and pin 4 of TB-5 (-12 vdc return).
b. Adjust PS2 R1 for $-12 \mathrm{vdc} \pm 0.1 \mathrm{vdc}$.

5-55. ± 15 VDC POWER SUPPLY IA2PSI
5-56. The power supply may be adjusted in the equipment drawer.
a. Check that the input power to PS is 115 ± 10 vac at pins 1 and 5 of connector P13.
b. Connect a digital voltmeter (Cimeron 7200A) to TB2-6 (+15v) and any terminal on TB1 (+15 volt return). Adjust R19 for $+15 \mathrm{vdc} \pm 37 \mathrm{mv}$.
c. Connect the voltmeter to TB4-5 (-15 v) and any terminal on TB1 (-15 volt return). Adjust R20 for -15 vdc $\pm 37 \mathrm{mv}$.

5-57. SUBASSEMBLY REMOVAL
5-58. These procedures contain instructions which enable the removal and replacement of PM Receiver subassemblies (fig. l-4). 5-59. 23 MC VCO AND X96 MULTIPLIER IA2A1

5-60. Tools required to remove and replace subassembly Al are as follows: one medium Philips screwdriver and one small common screwdriver.
a. Extend and lock the equipment drawer.
b. Remove the equipment drawer dust cover.
c. Extend subassemblies A3 through A11 and stand them on end on the plastic barrier strip cover.
d. Remove all electrical connections to lA2Al (except cabling between AlJ5 and AlJ6).
e. Remove the four Philips-head screws, washers, and lock washers. Lift the subassembly from the equipment drawer.

5-61. S-BAND MIXER AND 50 MC PREAMPLIFIER IA2A2
5-62. Tools required to remove and replace subassembly A2 are as follows: one medium Philips screwdriver and one $5 / 16$ inch open-end wrench.
a. Extend and lock the equipment drawer.
b. Remove the equipment drawer dust cover.
c. Extend subassemblies A3 through All and stand then on end on the plastic barrier strip cover.
d. Remove all electrical connections.
e. Remove the four Philips-head screws, washers, lock washers, and $5 / 16$ inch nuts, which fasten the subassembly mounting brackets to the drawer support plate. Withdraw the subassembly from the equipment drawer.

5-63. SUBASSEMBLIES A3 THROUGH All
5-64. Removal and installation procedures for subassemblies A3 through All are identical. A small common screwdriver is the only tool required to remove and install subassemblies A3 through All.
a. Extend and lock the equipment drawer.
b. Remove the equipment drawer dust cover.
c. Extend the subassembly, which is to be replaced, on its wire tracks.
d. Slide the connector cover off the right-hand (facing the drawer front panel) end of the module.
e. Lift and turn the subassembly until it is 90 degrees from the extended position, and withdraw the subassembly from the equipment drawer.
f. Installation of subassemblies A3 through All is accomplished by reversing this procedure.

NOTE
Access to the circuitry of subassemblies A3 through All is obtained by removing the small Philips-head screw at the end of each module section and sliding the section cover open (see figure 1-4.)

5-65. -12 VDC POWER SUPPLY, 1A2PS2
5-66. Tools required to remove and replace subassembly PS2 are as follows: one medium Philips screwdriver; one $3 / 8$ inch spintight, and one 40 -watt soldering iron.
a. Extend and lock the equipment drawer.
b. Remove the equipment drawer dust cover.
c. Remove the eight Philips-head screws, washers, and lock washers fastening the plastic barrier strip cover to the equipment drawer. Remove the barrier strip cover.
d. Tag the following wires connected to the module for identification: the 115 vac inputs (black), the 115 vac returns (white), the -12 vdc output (green, connected to the -- terminals), and the -21 vdc return (black, connected to the ++ terminals) (fig. 5-21).
e. Unsolder the wires tagged in step d, above.
f. Support the subassembly and remove the four $3 / 8$ inch nuts, washers, and lock washers.
g. Remove the subassembly through the bottom of the equipment drawer.
h. Installation of subassembly A12 is accomplished by reversing this procedure.

5-67. -15 VDC POWER SUPPLY, 1A2PS1
5-68. Tools required to remove and replace subassembly PSI are as follows: one medium Philips screwdriver and one small common screwdriver.
a. Extend and lock the equipment drawer.
b. Remove the equipment drawer dust cover.
c. Remove the eight Philips-head screws, washers, and lock washers fastening the plastic barrier strip cover to the equipment drawer. Remove the barrier strip plastic cover.

SENSITIVITY
ADJUSTMENT
Figure 5-21. Subassembly P52 Electrical Connections

d. Remove all electrical connections.
e. Support the subassembly and remove the four Philips-head screws, washers, and lock washers.
f. Remove the subassembly through the bottom of the equipment drawer.
g. Installation of subassembly Al3 is accomplished by reversing this procedure.

SECTION VI. PARTS LISTS AND DRAWINGS

6-1. GENERAL
6-2. This section contains parts lists of electronic parts for the assembly and subassemblies of the PM Receiver. The associated drawings are included and follow the applicable parts lists as shown below.

TABLE 6-1. Related Parts Lists and Drawings

Title

PM Receiver, Block Diagram
PM Receiver, Interconnecting Diagram
23 MC VCO and X96 Multiplier Al, Schematic Diagram
S-Band Mixer and 50 MC Preamplifier A2, Schematic Diagram
50 MC Mixer and 10 MC AGC Amplifier A3, Schematic Diagram
10 MC Distribution Amplifier A4, Schematic Diagram

10 MC IF Amplifier A5, Schematic Diagram
Loop Phase Detector and Loop Filter A6, Schematic Diagram
20 MC Reference Oscillator and X3 Multiplier A7, Schematic Diagram
X $1 / 2$ Multiplier and 10 MC Reference Distribution Amplifier A8, Schematic Diagram 6-10 6-55
Coherent Amplitude Detector, AGC Amplifier, and Relay Driver A9, Schematic Diagram
10 MC Wideband Phase Detector, and 10 MC Narrowband Discriminator Al0, Schematic Diagram 6-12 6-71
Video Distribution Amplifier All, Schematic Diagram
± 15 VDC Power Supply PS1, Schematic Diagram
Figure No.
6-1
6-2

6-3

6-4

6-5

6-6
6-7

6-8

6-9

6-11
6-61

6-13
6-77
6-14 6-79

Page
6-76-27

6-43

6-49

ITEM	DESCRIPTION	PART NUMBER
PM RECEIVER ASSEMBLY		
AT1	ATTENUATOR: variable $0-30 \mathrm{db}$	58-29914B37
AT2	ISOLATOR: coax 2.1-2.3 Gc	58-29914B36
AT3	Same as AT2	
C 1	CAPACITOR: fixed mylar, $100 \mathrm{mf} \pm 3 \%$, 50 vdc	08-22551D
C2	Same as Cl	
DS1	INDICATOR: operator	01-29938B27
DS2	INDICATOR: operator	01-29938B23
DS3	INDICATOR: operator	01-29938B26
DS4, DS5	Same as DS3	
Fl	FUSE: 1.5 amp	65-15160A09
J1	CONNECTOR: recp, elec AC	28-29965F45
J2	CONNECTOR: recp, elec	28-29909F04
J3	CONNECTOR: recp, elec BNC	28-29965F42
thru		
J10		
M1	METER: volt null static \emptyset error	72-23023G01
M2	METER: milliampere fm tuning	72-29957A65
M3	METER: volt signal strength	72-29957A66
P1	CONNECTOR: recp, elec DEM-9S	28-14046A11
thru		
P13		
PS2	POWER SUPPLY: -12 vdc	01-29938B22
R1	RESISTOR: variable comp $5 \mathrm{~K} \pm 10 \%$ w	18-15090A55
R2	RESISTOR: variable ww, 10 k ohms, 10 turn (Bourns 3500S-2-103)	18-29925A98
R3	RESISTOR: fixed comp 2700 ohms $\pm 5 \%$, 1/4w	06-15021A64
R4	RESISTOR: fixed comp 560 ohms $\pm 5 \%$, 1/4w	06-15021A40
R5	RESISTOR: fixed comp 51 ohms $\pm 5 \%$, l/ 4 w	06-15021A03
R6	RESISTOR: fixed comp 220 ohms $\pm 5 \%$, 1/4w	06-15021A25
S1	SWITCH: pushbutton	40-29928B02
S2	SWITCH: pushbutton	40-29928B01
thru		
S4		
S5	SWITCH: selector	40-29928B03

ITEM	DESCRIPTION	PART NUMBER
PM RECEIVER ASSEMBLY (Cont)		
W 1 W2 W 3 W4 W 5 W6 W7 W 8 W9 W 10 Wll W 12 W13 W 14 W 15 W 16 W 17 W 18 W 19 W20 W 21 W22 W23 W24 W25 W26 W27 W28 W29 W 30 W31 W 32 W 33 W 34 W 35 W36		$\begin{aligned} & 30-22747 \mathrm{H} 01 \\ & 30-22747 \mathrm{H} 02 \\ & 30-22747 \mathrm{H} 03 \\ & 30-22747 \mathrm{H} 04 \\ & 30-22747 \mathrm{H} 05 \\ & 30-22747 \mathrm{H} 06 \\ & 30-22747 \mathrm{H} 07 \\ & 30-22747 \mathrm{H} 08 \\ & 30-22747 \mathrm{H} 09 \\ & 30-22747 \mathrm{H} 10 \\ & 30-22747 \mathrm{H} 11 \\ & 30-22747 \mathrm{H} 12 \\ & 30-22747 \mathrm{H} 13 \\ & 30-22747 \mathrm{H} 14 \\ & 30-22747 \mathrm{H} 15 \\ & 30-22747 \mathrm{H} 16 \\ & 30-22747 \mathrm{H} 17 \\ & 30-22747 \mathrm{H} 18 \\ & 30-22747 \mathrm{H} 19 \\ & 30-22747 \mathrm{H} 20 \\ & 30-22747 \mathrm{H} 21 \\ & 30-22747 \mathrm{H} 22 \\ & 30-22747 \mathrm{H} 23 \\ & 30-22747 \mathrm{H} 24 \\ & 30-22747 \mathrm{H} 25 \\ & 30-22747 \mathrm{H} 26 \\ & 30-22747 \mathrm{H} 27 \\ & 30-22747 \mathrm{H} 28 \\ & 30-22747 \mathrm{H} 29 \\ & 30-22747 \mathrm{H} 30 \\ & 30-22747 \mathrm{H} 31 \\ & 30-22747 \mathrm{H} 32 \\ & 30-22747 \mathrm{H} 33 \\ & 30-22747 \mathrm{H} 34 \\ & 30-22747 \mathrm{H} 35 \\ & 30-22747 \mathrm{H} 36 \end{aligned}$

| ITEM | DESCRIPTION | PART NUMBER |
| :--- | :--- | :--- | :--- |
| | PM RECEIVER ASSEMBLY (Cont) | |
| W37 | CABLE: assembly | |
| CABLE: assembly | $30-22747 \mathrm{H} 37$ | |

ITEM	DESCRIPTION	PART NUMBER
23 MC VCO \& X96 MULTIPLIER		
C1, C2	CAPACITOR: fixed cer diel, $1000 \mathrm{pf} \pm 20 \%$, 200 vdc	21-15144A17
C3	CAPACITOR: fixed elec, $47 \mathrm{mf} \pm 20 \%$, 20 vdc	23-14152D67
C4	CAPACITOR: fixed cer diel, . $01 \mathrm{mf} \pm 20 \%$, 200 vdc	21-15144A29
C5	CAPACITOR: fixed mica diel, $82 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G21
C6, C7	CAPACITOR: fixed cer diel, $4700 \mathrm{pf} \pm 20 \%$, 200 vdc	21-15144A25
C8	CAPACITOR: variable gl diel, 0.8-18.0	20-14020A04
C9	Same as C6	
C 10	Same as C1	,
C11	Same as C6	
C 12	Same as Cl	
Cl3	Same as C6	
C 14	CAPACITOR: fixed mica diel, $100 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G23
C 15	Same as C6	
C16	Same as C8	
C 17	Same as C6	
C18	Same as C6	
C19	Same as C6	
C20	Same as C6	
C21	Same as C6	
C22	CAPACITOR: fixed mica diel, $68 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G19
C23	CAPACITOR: fixed mica diel, $51 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G16
C24	Same as C6	
C25	CAPACITOR: fixed $10 \pm 0.5 \mathrm{pf}, 500 \mathrm{vdc}$	21-14032G02
C26	Same as Cl	
C27	Same as C6	
C28	CAPACITOR: fixed mica diel, $5 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G01
C29	Same as Cl	

ITEM	DESCRIPTION	PART NUMBER
	23 MC VCO \& X96 MULTIPLIER (Cont)	
C30	Same as Cl	
C31	CAPACITOR: fixed cer diel, tub, 1.0 ± 0.25 pf, 600 vdc	21-23422H01
C 32	CAPACITOR: fixed mica diel, $15 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G04
C33.	CAPACITOR: fixed mica diel, $27 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G09
C 34	CAPACITOR: fixed mica diel, $150 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G27
C35	Same as C25	
C36	Same as C1	
C37	Same as C28	
C38	CAPACITOR: fixed mica diel, $220 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G31
C 39	Same as C4	
C40	Same as C38	
C41	Same as C38	
C42	Same as C38	
C43	CAPACITOR: fixed cer diel, tub, 0.5 $\pm 0.25 \mathrm{pf}, 600 \mathrm{vdc}$	21-23421H01
C44	Same as C25	
C45	Same as C38	
C46	Same as C25	
C47	Same as C22	
C48	Same as C38	
C49	Same as C25	
C50	Same as C32	
C51	Same as C38	
C52	CAPACITOR: fixed mica diel, $22 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G07
C53	CAPACITOR: fixed mica diel, $39 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G13
C54	Same as C38	
C55	CAPACITOR: fixed mica diel, $56 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G17
C56	CAPACITOR: variable gl diel, $0.8-10 \mathrm{pf}$	19-20469D22

ITEM	DESCRIPTION	PART NUMBER
23 MC VCO \& X96 MULTIPLIER (Cont)		
C57	CAPACITOR: made from housing housing diode	$\begin{aligned} & 15-23047 \mathrm{G} 01 \\ & 15-23050 \mathrm{G} 01 \end{aligned}$
CR1	DIODE	PC 128
CR2	Same as CRl	
CR3	DIODE: step recovery	48-29900E75
J1	CONNECTOR: recp elec 9-pin (DEM-9P C-33)	28-14046A01
J2	CONNECTOR: recp elec (Selectro 51-027-	28-29965E21
thru	3196)	
J4		
J5	CONNECTOR: recp elec (GRFF 2019A)	28-29532A11
J6, J7	CONNECTOR: recp elec (GRFF 2088A)	28-29532A07
L1	COIL: rf fixed 4.7 uh (value selected in test)	24-14198A
L2, L3	COIL: rf fixed 3.3 uh	24-14198A13
L4, L5	COIL: rf tun-shld 3.2-8.3 uh	24-14204A04
L6, L7	Same as L2	
L8	COIL: rf variable 0.50-0.95 uh	24-22704H01
L9	Same as L2	
L10	COIL: rf variable 0.25-0.40 uh	24-27705H01
L11	Same as L2	
L12, L13	COIL: rf variable 0.15-0.20 uh	24-22706H01
L14	COIL: rf variable 0.08-0.12 uh	24-22707H01
L15	COIL: rf variable 0.10-0.12 uh	24-22708H01
L16	COIL: rf fixed 1.0 uh	24-14198A07
L17	Same as L2	
L18	COIL: rf variable 0.09-0.11	24-22709H01
L19	Same as L16	
L20	Same as L16	
L21	COIL: rf variable 0.10-0.12 uh	24-22710HO1
L22	COIL: rf variable 0.11-0.14 uh	24-22711H01
L23	COIL: rf fixed 0.1 uh	24-22718H01
L24	COIL: rf fixed 2.2 uh	24-14198Al1
L25	Same as L23	
L26	COIL: rf fixed 0.023 uh	24-22719H01

ITEM	DESCRIPTION	PART NUMBER
23 MC VCO \& X96 MULTIPLIER (Cont)		
Q1 thru Q6	TRANSISTOR: 2 N708	2N708
Q7, Q8	TRANSISTOR: 2N707	2N707
R1	RESISTOR: fixed comp, 18 k ohm $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A94
R2	RESISTOR: fixed comp 470 ohms $\pm 5 \%$, 1/4w	06-15021A37
R3	RESISTOR: fixed comp 5600 ohms $\pm 5 \%$, 1/4w	06-15021A76
R4	RESISTOR: fixed comp 100 k ohms $\pm 5 \%$, 1/4w	06-15021B22
R5.	RESISTOR: fixed comp 2700 ohms $\pm 5 \%$, 1/4w	06-15021A64
R6, R7	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, 1/4w	06-15021A61
R8	RESISTOR: fixed comp 220 ohms $\pm 5 \%$, 1/4w	06-15021A25
R9	RESISTOR: fixed comp 270 ohms $\pm 5 \%$, 1/4w	06-15021A28
R10	RESISTOR: fixed comp 100 ohms $\pm 5 \%$, 1/4w	06-15021A13
R11, R12	RESISTOR: fixed comp 1200 ohms $\pm 5 \%$, 1/4w	06-15021A52
R13	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R14	Same as R10	
R15	RESISTOR: fixed comp $15 \mathrm{ohms} \pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C15
R16	RESISTOR: fixed comp 56 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A04
R17	Same as R15	
R18, R19	RESISTOR: fixed comp 4700 ohms $\pm 5 \%$, 1/4w	06-15021A73
R20	RESISTOR: fixed comp 680 ohms $\pm 5 \%$, 1/4w	06-15021A43
R21	RESISTOR: fixed comp 22 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C21
R22, R23	RESISTOR: fixed comp 33 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	-06-15021C27

4.7
4.7
1.70

ITEM	DESCRIPTION	PART NUMBER
S-BAND MIXER AND 50 MC PREAMPLIFIER A2		
C 1 thru C 3 C4 th ru C6 C7, C8 C9 C 10 Cll C12, C13 C 14 C 15 C 16 C17 C 18 C19 C20 C21 C22 CR1 CR2 J1 J2, J3 J4 L1 th ru L8 L9 L10 thru L14 L15 Q1 Q2	CAPACITOR: fixed feed-thru, ceramic, 1000 pf CAPACITOR: fixed feed-thru, ceramic, 1000 pf CAPACITOR: fixed mica, 1500 pf Same as Cl Same as C4 Same as Cl Same as C4 CAPACITOR: fixed 0.022 mf Same as C4 Same as C7 Same as C7 Same as C14 Same as C4 Same as C7 Same as C14 Same as C4 DIODE: 1N416F Same as CR1 CONNECTOR: recp, elec (Integral with Crystal Mixer) CONNECTOR: recp, elec 9-pin CHOKE: rf, fixed 3 uh COIL: rf variable 0.35-0.70 uh Same as Ll COIL: rf variable TRANSISTOR: 2N2996 TRANSISTOR: 2 N1143	

ITEM	DESCRIPTION	PART NUMBER
S-BAND MIXER AND $50 \mathrm{MC} \mathrm{PREAMPLIFIER} \mathrm{A2} \mathrm{(Cont)}$		
Q3 R1, R2 R3, R4 R5 R6 R7 R8 R9 R10 R11 R12 F13 R14 R15 R16 T1 T2, T3 VR1, VR2 Z1	Same as Q2 RESISTOR: fixed comp 100 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 39 ohms $\pm 10 \%$, lw RESISTOR: fixed comp 6800 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 270 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 10 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 3000 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 2000 ohms $\pm 5 \%$, 1/4w RESISTOR: variable 1000 ohms RESISTOR: fixed comp 620 ohms $\pm 5 \%, 1 / 4 w$ Same as R7 RESISTOR: fixed comp 750 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ RESISTOR: fixed comp 220 ohms $\pm 5 \%, 1 / 4 w$ Same as R7 RESISTOR: fixed comp 62 ohms $\pm 5 \%, 1 / 4 w$ TRANSFORMER: 6:6 turns ratio TRANSFORMER: 6:6 turns ratio DIODE: zener 1N1594A CRYSTAL MIXER: (Includes CR1 and CR2)	

Notes:
 RAE SHOWN. FOR COMPLETE DESIG-
NATIONS PREF IX WTH for reference drawings refer to:

ITEM	DESCRIPTION	PART NUMBER
50 MC MIXER		
C 1 thru C 3 C4, C5 C6 C7 thru C9 C 10 Cll C 12 C13 th ru C26 C27, C28 C29 C 30 C 31 C 32 C 33 C34, C35 CR1 th ru CR4 CR5 th ru CR10 J1 J2 thru J6	CAPACITOR: fixed cer, $1000 \mathrm{pf} \pm 20 \%$, 200 vdc CAPACITOR: fixed cer, $4700 \mathrm{pf} \pm 20 \%$, 200 vdc CAPACITOR: variable air, 0.8-10.0 pf Same as C4 CAPACITOR: fixed mica $120 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$ CAPACITOR: fixed mica $240 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$ Same as Cl0 Same as C4 CAPACITOR: fixed cer $1200 \mathrm{pf}-\mathrm{AMV}-350$ CAPACITOR: fixed mica $180 \mathrm{pf} \pm 2 \%$, 500 vdc CAPACITOR: fixed mica $390 \mathrm{pf} \pm 2 \%$, 500 vdc Same as C29 Same as Cl CAPACITOR: fixed mica $33 \mathrm{pf} \pm 2 \%$, 500 vdc Same as C4 DIODE: switching lN3064 DIODE: FD700 CONNECTOR: recp elec 9-pin (DEM-9P C-33) CONNECTOR: recp elec (Sealectro 51-027-3196)	$\begin{aligned} & 21-15144 \mathrm{Al7} \\ & 21-15144 \mathrm{~A} 25 \\ & 19-20469 \mathrm{D} 22 \\ & 21-14032 \mathrm{G} 25 \\ & 21-14032 \mathrm{G} 32 \\ & 21-14071 \mathrm{~A} 14 \\ & 21-14032 \mathrm{G} 29 \\ & 21-14032 \mathrm{~A} 37 \\ & 21-14032 \mathrm{G} 11 \\ & 48-14189 \mathrm{~A} 03 \\ & 48-29900 \mathrm{D} 91 \\ & 28-14046 \mathrm{~A} 01 \\ & 28-29965 \mathrm{E} 21 \end{aligned}$

ITEM	DESCRIPTION	PART NUMBER
$50 \mathrm{MC} \mathrm{MIXER} \mathrm{(Cont)}$		
L1, L2	COIL: rf fixed 0.68 uh	24-14198A05
L3	COIL: rf fixed 6.8 uh	24-14198A17
thru		
L5		
L6, L7	Deleted	
L8	Same as L3	
L9, L10	COIL: rf fixed 1.0 uh	24-14198A07
Q1	TRANSISTOR: NPN sil 2N708	48-14319A01
Q2	TRANSISTOR: PNP sil 2N3304	48-14294A01
Q3	TRANSISTOR: NPN sil 2N918	48-14310A01
Q4	Same as Q2	
Q5	Same as Q3	
Q6	Same as Q2	
Q7	Same as Q3	
Q8, Q9	TRANSISTOR: NPN sil 2N930	48-14258A11
Q10	TRANSISTOR: PNP sil 2 N3799	48-29900E81
Q11, Q12	TRANSISTOR: PNP sil 2 N1132	48-14194A02
R1	RESISTOR: fixed comp 56 ohms $\pm 5 \%$, 1/4w	06-15021A04
R2, R3	RESISTOR: fixed comp 1500 ohms $\pm 5 \%$, 1/4w	06-15021A55
R4	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A01
R5	RESISTOR: fixed comp 1200 ohms $\pm 5 \%$, 1/4w	06-15021A52
R6	RESISTOR: fixed comp 2700 ohms $\pm 5 \%$, 1/4w	06-15021A64
R7	RESISTOR: fixed comp 5600 ohms $\pm 5 \%$, 1/4w	06-15021A76
R8	RESISTOR: fixed comp 820 ohms $\pm 5 \%$, 1/4w	06-15021A46
R9	RESISTOR: fixed comp 10 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C09
R10	RESISTOR: fixed comp 82 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A10
R11	RESISTOR: fixed comp 330 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A31
R12	RESISTOR: fixed comp 680 ohms $\pm 5 \%$, 1/4w	06-15021A43

ITEM	DESCRIPTION	PART NUMBER
$50 \mathrm{MC} \mathrm{MIXER} \mathrm{(Cont)}$		
R13	Same as Rll	
R14	Same as Rl	
R15	RESISTOR: fixed comp 27 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C24
R16	RESISTOR: fixed comp 270 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A28
R17	RESISTOR: fixed comp 18 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C18
R18	Same as R16	
R19	Same as Rl	
R20	Same as R6	
R21	Same as R7	
R22	Same as R9	
R23	Same as R6	
R24	Same as R11	
R25	Same as R8	
R26	Same as R1	
R27	Same as R1l	
R28	Same as R12	
R29	Same as R15	
R30	Same as R1	
R31	Same as R6	
R32	Same as R7	
R33	Same as R9	
R34	Same as R6	
R 35	Same as R8	
R36	Same as R1	
R37	Same as R11	
R38	Same as R1l	
R 39	Same as R12	
R40	Same as R15	
R41	Same as R7	
R42	RESISTOR: fixed comp 56 k ohms $\pm 5 \%$, l/4w	06-15021B13
R43	RESISTOR: fixed film 1000 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-14225
R44	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$, l/4w	06-15021A85
R45	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R46	RESISTOR: fixed comp 15 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A91

ITEM	DESCRIPTION	PART NUMBER
50 MC MIXER (Cont)		
R47	Same as Rl	
R48	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$, $\mathrm{l} / 4 \mathrm{w}$	06-15021A85
R49	Same as R12	
R50	Same as R6	
R51	$\begin{aligned} & \text { RESISTOR: variable comp } 2500 \text { ohms } \pm 10 \% \text {, } \\ & 1 / 2 \mathrm{w} \end{aligned}$	18-15089A21
R52	RESISTOR: fixed comp 3900 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A70
R53	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4w	$06-15021 \mathrm{~A} 49$
R54	RESISTOR: fixed comp 120 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A16
R55	Same as R54	
R56	RESISTOR: fixed comp 39 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C30
R57	RESISTOR: fixed comp 150 ohms $\pm 5 \%$, 1/4w	06-151021A19
R58	Same as R56	
R59	Same as R57	
R60	RESISTOR: fixed comp 10 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A85
T1	TRANSFORMER: $10: 10,10$ turns ratio	24-22889H01
T2	TRANSFORMER: 12:12, 8 turns ratio	24-22881H01
T3	TRANSFORMER: 22:10, turns ratio	24-22882H01
VR1	DIODE: zener sil l N936B	1 N 936 B
VR2	Same as VRI	

ITEM	DESCRIPTION	PART NUMBER
10 MC DISTRIBUTION AMPLIFIER		
C 1	CAPACITOR: fixed cer 1200 pf amv-350	21-14071A14
C2	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%$,	21-15144A29
thru	200 vdc	
C22		
J 1	CONNECTOR: recp elec 9-Pin (DEM-9P C-33)	28-14046A01
J2	CONNECTOR: recp elec (Sealectro 51-027-	28-29965E21
thru	3196)	
J6		
L1	COIL: rf fixed 10 uh	24-14198A19
Q1	TRANSMITTER: NPN sil 2N918	48-14310A01
Q2	TRANSMITTER: NPN sil 2N708	48-14319A01
Q3	Same as Q2	
Q4	Same as Q1	
Q5	Same as Q2	
thru		
Q8		
Q9	Same as Ql	
R1	RESISTOR: fixed comp 56 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A04
R2	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R3	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A61
R4	RESISTOR: fixed comp 120 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R5	RESISTOR: fixed comp 820 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A46
R6	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A01
R7	RESISTOR: fixed comp 470 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A37
R8	Same as R3	
R9	Same as R5	
R10	Same as R6	
R11	RESISTOR: fixed comp 100 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A13
R12	Same as Rll	
R13	Same as R6	
R14	Same as R5	

ITEM	DESCRIPTION	PART NUMBER
$10 \mathrm{MC} \mathrm{IF}$.		
C 1	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%$, 200 vdc	21-15144A29
C2	CAPACITOR: fixed mica $10 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G02
C 3	Same as Cl	
C4	Same as Cl	
C5	CAPACITOR: variable air $0.8-10 \mathrm{pf}$	19-20469D22
C6	Same as Cl	
C7	Same as Cl	
C8	CAPACITOR: fixed mica $51 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G16
C9	Same as Cl	
C10	Same as Cl	
Cll	Same as . 22	
C12	Same as C5	
C13	Same as Cl	
C 14	CAPACITOR: fixed cer 1200 pf amv 350 vdc	21-14071A14
C 15	Same as C'l	
C 16	Same as C5	
C17	Same as Cl	
C18	Same as Cl	
C19	Same as Cl	
C20	CAPACITOR: fixed cer $1000 \mathrm{pf} \pm 20 \%$, 200 vdc	21-15144A17
C21	Same as Cl	
C22	Same as C2	
C23	Same as Cl	
C24	Same as C5	
C25	Same as Cl	
C26	Same as Cl	
C27	CAPACITOR: fixed mica $220 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G31
C28	Same as Cl	
C29	Same as Cl	
C 30	Same as C2	
C31	Same as C5	

ITEM	DESCRIPTION	PART NUMBER
$10 \mathrm{MC} \mathrm{IF} .\mathrm{AMPLIFIER} \mathrm{(Cont)}$		
C32	Same as Cl	
C33	Same as Cl	
C34	Same as Cl	
CR1	DIODE: 1 N916	48-29900C66
CR2	Same as CRl	
J1	CONNECTOR: recp elec 9-pin (DEM-9P C-33)	28-14046A01
J2	CONNECTOR: recp elec (Sealectro 51-0273196)	28-29965E21
J3, J4	Same as J2	
L1, L2	COIL: rf fixed 10 uh	24-14198A19
L3	COIL: rf fixed 100 uh	24-14198A39
L4, L5	Same as Ll	
Q1, Q2	TRANSISTOR; NPN sil 2N708	48-14319A01
Q3, Q4	TRANSISTOR: NPN sil 2 N 2369	48-14268A01
Q5	Same as Ql	
R1	RESISTOR: fixed comp 1200 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A52
R2	RESISTOR: fixed comp 820 ohms $\pm 5 \%$, 1/4w	06-15021A46
R3	RESISTOR: fixed comp 270 ohms $\pm 5 \%$, 1/4w	06-15021A28
R4	Same as R2	
R5	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A01
R6	RESISTOR: fixed comp $56 \mathrm{ohms} \pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R7	RESISTOR: fixed comp 560 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A40
R8	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, 1/4w	06-15021A61
R9	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R10	RESISTOR: fixed comp 3900 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A70
R11	Same as R5	
R12	Deleted	
R13	Deleted	

ITEM	DESCRIPTION	PART NUMBER
$10 \mathrm{MC} \mathrm{IF} .\mathrm{AMPLIFIER} \mathrm{(Cont)}$		
R14	Deleted	
R15	Same as R1	
R16	Same as R5	
R17	Same as R2	
R18	RESISTOR: fixed comp 470 ohms $\pm 5 \%$, 1/4w	06-15021A37
R19	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4w	06-15021A49
R20	Same as R5	
R21	Same as Rl8	
R22	RESISTOR: fixed comp 56 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A04
R23	Same as R2	
R24	Same as R1	
R25	RESISTOR: fixed comp 1500 ohms $\pm 5 \%$, 1/4w	06-15021A55
R26	Same as R5	
R27	Same as R8	
R28	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$, 1/4w	06-15021A85
R29	RESISTOR: fixed comp 22 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021C22
R30	RESISTOR: fixed comp 33 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C27
R31	RESISTOR: fixed comp 120 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A16
R32	Same as R8	
R33	Same as R5	
R34	RESISTOR: fixed comp 100 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R35	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R36	RESISTOR: fixed comp 100 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R37	RESISTOR: fixed comp 220 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A25
R38	Same as Rl	
R39	RESISTOR: fixed comp 68 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A07
T1	TRANSFORMER: 65:10 turns ratio	24-22883H01
T2	TRANSFORMER: 65:9 turns ratio	24-22884H01
T3	Same as Tl	

Notes:

. For referknce drawings refer to:

4. value to be selected in test

ITEM	DESCRIPTION	PART NUMBER
LOOP PHASE DETEC TOR AND LOOP FILTER		
Cl	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%$, 200 vdc	21-15144A29
C2	CAPACITOR: fixed mica $120 \mathrm{pf} \pm 2 \%$, 500 vdc (Selected in test, nominal value only)	21-14032G
C3	Deleted	
C4	Deleted	
C5	Same as Cl	
thru		
C8		
C9	CAPACITOR: fixed mica $39 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$ (Selected in test, nominal value only)	21-14032G
C 10	Same as Cl	
C11	CAPACITOR: variable air 0.8-10 pf	19-20469D22
C12	Same as Cl	
C13	CAPACITOR: fixed mica $100 \mathrm{pf} \pm 2 \%$, 500 vdc (Selected in test, nominal value only)	21-14032G
C 14	Same as Cl	
C15	Same as Cll	
C16, C17	Same as Cl	
C18	Same as Cll	
C 19	CAPACITOR: fixed mica $130 \mathrm{pf} \pm 2 \%$, 500 vdc (Selected in test, nominal value only)	21-14032G
C20	CAPACITOR: fixed mica $130 \mathrm{pf} \pm 2 \%$, 500 vdc (Selected in test, nominal value only)	21-14032G
C21	Same as Cll	
$\mathrm{C} 22$	CAPACITOR: fixed mica $68 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G19
C23	Same as Cll	
C24	Same as Cl	
C25	Same as Cl	
C26	CAPACITOR: fixed mica $51 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G16
C27, C28	CAPACITOR: fixed mica $43 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G14
C29	Same as Cll	
C30, C31	CAPACITOR: fixed mica $240 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G32
C32	Deleted	
C33	CAPACITOR: fixed cer $100 \mathrm{pf} \pm 20 \%$, 200 vdc	21-15144A05

ITEM	DESCRIPTION	PART NUMBER
LOOP PHASE DETECTOR AND LOOP FILTER (Cont)		
C34	CAPACITOR: fixed cer 1200 pf amv-350	21-14071A14
C 35	Same as C34	
C36, C37	CAPACITOR: fixed elec $47 \mathrm{mf} \pm 20 \%$, 20 vdc	23-14152D67
C38	CAPACITOR: fixed elec $47 \mathrm{mf} \pm 20 \%, 35 \mathrm{vdc}$	23-14152D68
C39	Same as Cl	
C40	CAPACITOR: fixed elec $150 \mathrm{mf} \pm 20 \%$, 15 vdc	23-14152D81
CR1, CR2	DIODE: sil 1 N916 (Fairchild)	48-29900C66
CR3	DIODE: sil lN914	48-14309All
thru		
CR5		
J1	CONNECTOR: recp elec 15-pin	28-14046A02
J2	CONNECTOR: recp elec (Sealectro 51-0273196)	28-29965E21
J3	CONNECTOR: recp elec	28-29965E23
J4	Same as J2	
th ru		
J6		
K1, K2	RELAY: (HI-G Inc. $2 \mathrm{~K}-1 \mathrm{~B}-112$)	80-
L1	COIL: fixed rf 47 uh	24-14198A31
L2, L3	COIL: fixed rf 100 uh	24-14198A39
L4	Same as Ll	
thru		
L6		
Q1	TRANSISTOR: NPN sil 2N708	48-14319A01
Q2, Q3	TRANSISTOR: NPN sil 2N1613	48-14120A11
Q4	TRANSISTOR: PNP sil 2 N1132	48-14194A02
Q5	Same as Q2	
R1	RESISTOR: fixed comp 120 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R2	RESISTOR: fixed comp 18 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C18
R3	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A01.
R4	RESISTOR: fixed comp 1500 ohms $\pm 5 \%$, 1/4w	06-15021A55
R5	Same as R3	

ITEM	DESCRIPTION	PART NUMBER
LOOP PHASE DETECTOR AND LOOP FILTER (Cont)		
R6	RESISTOR: fixed comp 180 ohms $\pm 5 \%, 1 / 4 w$ (Selected in test, nominal value only)	06-15021A
R7	RESISTOR: fixed comp 18 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021C
R8	RESISTOR: fixed comp 330 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A31
R9	RESISTOR: fixed comp 1 meg ohm $\pm 5 \%$, 1/4w	06-15021B58
R10	RESISTOR: fixed comp 22 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021G
R11, R12	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R13, R14	RESISTOR: fixed film 31.6 k ohms $\pm 1 \%$, 1/4w	06-14098D39
R15	Same as R3	
R16, R17	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$, 1/4w	06-15021A85
R18	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4w	06-15021A49
R19	Same as R16	
R20	Deleted	
R21	RESISTOR: fixed comp 100 k ohms $\pm 5 \%$, 1/4w	06-15021B22
R22	RESISTOR: fixed comp 120 k ohms $\pm 5 \%$, 1/4w	06-15021B25
R23	RESISTOR: fixed comp 39 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021C30
R24	RESISTOR: fixed comp 12 k ohms $\pm 5 \%$, 1/4w	06-15021A88
R25	RESISTOR: variable comp 50 k ohms $\pm 10 \%$, 1/2w	18-15089A25
R26	Same as R23	
R27	RESISTOR: fixed comp 1800 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A58
R28	RESISTOR: fixed comp 39 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021B07
R29	RESISTOR: fixed comp 15 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	$06-15021 \mathrm{~A} 91$
R30	RESISTOR: fixed comp 22 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A97

notes:

2. for reference drawings refer to:

4. values to be selictred in trst.

6. CR1 and cr2 are a matched pair.

Figure 6-8. $\begin{gathered}\text { Loop phase petector and Loop } \\ \text { Filter A6, Scematic } \\ \text { Diagram }\end{gathered}$

ITEM	DESCRIPTION	PART NUMBER
20 MC REFERENCE OSCILLATOR AND X3 MULTIPLIER		
C 1	CAPACITOR: fixed cer 1200 pf ANV-350	21-14071A14
C2	CAPACITOR: fixed mica $200 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G30
C3, C4	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%$, 200 vdc	21-15144A29
C5	CAPACITOR: fixed cer $4700 \mathrm{pf} \pm 20 \%, 200 \mathrm{vdc}$	21-15144A25
C6	CAPACITOR: variable air $0.8-10 \mathrm{pf}$ (JMC-2954)	19-20469D22
C7	CAPACITOR: fixed mica $10 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G02
C8	CAPACITOR: fixed mica $20 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G06
C9	Same as C3	
C 10	CAPACITOR: fixed mica $75 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G20
C11	Same as C2	
C 12	Same as C3	
C13	Same as C6	
C 14	Same as C3	
$\text { C } 15$	CAPACITOR: fixed mica $68 \mathrm{pf} \pm 2 \%$, 500 vdc (Selected in test, nominal value only)	21-14032G
$\begin{aligned} & \mathrm{Cl} 6 \\ & \text { thru } \end{aligned}$	Same as C3	
C20		
C21	Same as C6	
C22	CAPACITOR: fixed mica $33 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G11
C23, C24	Same as C3	
C25	CAPACITOR: fixed cer $1000 \mathrm{pf} \pm 20 \%$, 200 vdc	21-15144A17
C26	CAPACITOR: fixed G1, 6.8 pf $\pm 5 \%$, 500 vdc	21-15087D26
C27, C28	Same as C6	
C29	Same as C3	
$\begin{aligned} & \text { C } 30, \text { C } 31 \\ & \text { C } 32 \end{aligned}$	CAPACITOR: fixed mica $27 \mathrm{pf} \pm 2 \%$, 500 vdc Same as C3	21-14032G09
C33	CAPACITOR: fixed mica $39 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G13
C34	CAPACITOR: fixed mica $110 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G24

ITEM	DESCRIPTION	PART NUMBER
20 MC REFERENCE OSCILLATOR AND X3 MULTIPLIER (Cont)		
R8	RESISTOR: fixed comp 1200 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A52
R9	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R10	RESISTOR: fixed comp 100 ohms $\pm 5 \%$, $1 / 4 w$	06-15021A13
R11	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R12	RESISTOR: fixed comp 180 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R13	Same as R4	
R14	RESISTOR: fixed comp 560 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A40
R15	RESISTOR: fixed comp 26 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C24
R16	Same as R6	
R17, R18	Same as R9	-
R19, R20	RESISTOR: fixed comp 47 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A01
R21	Same as R6	
R22	Same as R9	
R23	Same as R14	
R24	Same as R19	
R25	RESISTOR: fixed comp $15 \mathrm{ohms} \pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021C
R26	RESISTOR: fixed comp 100 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R27	RESISTOR: fixed comp 10 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C09
R28	RESISTOR: fixed comp 68 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A07
R29	RESISTOR: fixed comp 82 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A10
T1	TRANSFORMER: 16:6 turns ratio	24-22891 H01
T2	TRANSFORMER: 8:2 turns ratio	24-22892H01
VR1	DIODE: zener USN 1N757A	1N757A
Y 1	CRYSTAL: 20.000000 mc (Midland)	48-

UNLESS OTHERWISE SPECIFIED,
ALL RESISTORS ARE IN OHMS,
 ALL CAPACITORS ARE IN UUF.
AL INDCTRS ARE IN UH.
ALL VOUTAGES ARE DC.
4. values to be selected in test
 $\begin{array}{cr}\text { C15 } & 68 \\ \text { R71 } & 100 \\ \text { R11 } & 187 \\ \text { R12 } & 180 \\ \text { R25 } & 15 \\ \text { R26 } & 100\end{array}$
DC Voltages are measured under
NORMAL OPERATING CONDITIONS.

ITEM	DESCRIPTION	PART NUMBER
X 1/2 MULTIPLIER AND 10 MC REFERENCE DISTRIBUTION AMPLIFIER		
C 1	CAPACITOR: fixed mica $680 \mathrm{pf} \pm 2 \%, 300$ vdc	21-14032A43
C 2	CAPACITOR: fixed mica $180 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G29
C3	CAPACITOR: fixed mica $100 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G23
C4	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%, 200$ vdc	21-15144A29
C5	CAPACITOR: variable air 0.8-0 pf	19-20469D22
C6	Same as C4	
C7	CAPACITOR: fixed mica $15 \pm 0.05 \mathrm{pf}, 500$ vdc	21-14032G04
C8	Same as C3	
C9	CAPACITOR: fixed mica $5 \pm 0.05 \mathrm{pf}, 500 \mathrm{vdc}$	21-14032G01
C10	Same as C4	
thru		
C14		
C15	CAPACITOR: fixed mica $270 \mathrm{pf} \pm 2 \%, 300$ vdc	21-14032G33
C16	Same as C4	
thru		
C19		
C20	CAPACITOR: fixed cer $1000 \mathrm{pf} \pm 20 \%, 200$ vdc	21-15144A17
C21	Same as C20	
thru		
C23		
C24	Same as C4	
C25	CAPACITOR: fixed mica $68 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G19
C26	Same as C4	
C27	Same as C25	
C28	Same as C4	
thru		
C30		
C31	Same as C25	

ITEM	DESCRIPTION	PART NUMBER
X 1/2 MULTIPLIER AND 10 MC REFERENCE DISTRIBUTION AMPLIFIER (Cont)		
C32, C33	Same as C4	
C34	Same as C25	
C35	Same as C4	
C36	CAPACITOR: fixed mica $82 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$	21-14032G21
C37	Same as C36	
C38	Same as C4	
C39	Same as C20	
C40	Same as C4	
C41	Same as C20	
C42, C43	Same as C4	
C44	Same as C25	
C45, C46	Same as C4	
C47	Same as C25	
C48	Same as C4	
C49	CAPACITOR: fixed cer 1200 pf AMV-350vdc	21-14071A14
CR1	DIODE: sil 1N916	48-29900C66
CR2, CR3	DIODE: PC112	48-14175A07
J1	CONNECTOR: recp elec 9-pin (DEM-9P C-33)	28-14046A01
J2	CONNECTOR: recp elec (Selectro 51-027-	28-29965E21
thru	3196)	
J6		
L1	COIL: rf fixed 0.33 uh	24-14198A03
L2	COIL: rf fixed 15 uh	24-14198A21
L3	COIL: rf fixed 1.0 uh	24-14198A07
L4	Same as L2	
thru		
L7		
L8	COIL: rf fixed 3.3 uh	24-14198A13
thru		
Lll		
L12	COIL: rf fixed 0.85 uh	24-22717H01
thru		
L15		
L16, L17	Same as L8	
L18	COIL: rf fixed 100 uh	24-14198A39

ITEM	DESCRIPTION	PART NUMBER
X 1/2 MULTIPLIER AND 10 MC REFERENCE DISTRIBUTION AMPLIFIER (Cont)		
Q1, Q2	TRANSISTOR: NPN sil 2 N915	48-14257A01
Q3	TRANSISTOR: NPN sil 2 N918	48-14310A01
thru		
Q6		
Q7, Q8	TRANSISTOR: NPN sil 2 N708	48-14319A01
R1	RESISTOR: fixed comp 68 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ (Selected in test, nominal value only)	06-15021A
R2	RESISTOR: fixed comp $470 \pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A37
R3	RESISTOR: fixed comp 10 k ohms $\pm 5 \%, 1 / 4 \mathrm{w}$	06-15021A85
R4	RESISTOR: fixed comp 6800 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A79
R5, R6	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4w	06-15021A49
R7	RESISTOR: fixed comp 100 ohms $\pm 5 \%$, 1/4w	06-15021A13
R8	Same as R2	
R9	RESISTOR: fixed comp 1.0 meg ohm $\pm 5 \%$, 1/4w	06-15021B58
R10	Same as R4	
R11	RESISTOR: fixed comp 15 k ohms $\pm 5 \%$, 1/4w	06-15021A91
R12	RESISTOR: fixed comp 560 ohms $\pm 5 \%$, 1/4w	06-15021A40
R13	Same as R2	
thru		
R16		
R17	Same as R7	
thru		
R20		
R21	Same as R1l	
R22	Same as R4	
R23	Same as Rll	
R24, R25	Same as R4	
R26	Same as Rll	
R27	Same as R4	
R28.	Same as Rll	

ITEM	DESCRIPTION	PART NUMBER
X 1/2 MULTIPLIER AND 10 MC REFERENCE DISTRIBUTION AMPLIFIER (cont)		
R29 R30 R31 R 32 R 33 R 34 thru. R37 R38 R39 R40 R41 R42 R43, R44 R45, R46 R47 R48 R49 R50 R 51 R 52 R53 R 54 R 55 R56 R57, R58 Tl T2 T3, T4	RESISTOR: fixed comp 330 ohms $\pm 5 \%$ l/4w RESISTOR: fixed comp 12 ohms $\pm 5 \% 1 / 4 \mathrm{w}$ Same as R5 Same as R29 Same as R30 Same as R5 Same as R30 Same as R29 Same as R5 Same as R30 Same as R29 Same as R5 RESISTOR: variable comp 2500 ohms $\pm 10 \%$ 1/2w Same as R4 Same as R1l Same as R4 Same as R11 Same as R5 RESISTOR: fixed comp 22 ohms $\pm 5 \% 1 / 4$ w Same as R29 Same as R5 Same as R 52 Same as R29 Same as R5 TRANSFORMER: 30:7 turns ratio TRANSFORMER: 22, 22:2 turns ratio TRANSFORMER: 5:10 turns ratio	$\begin{aligned} & 06-15021 \mathrm{~A} 31 \\ & 06-15021 \mathrm{C} 12 \end{aligned}$ 18-15089A21 06-15021C21 24-22893HOL 24-22894HO1 24-22895HOI

[^0]3. UNLESS OTHERRTISE SpECIFIED: Asit

ITEM	DESCRIPTION	PART NUMBER
CAD		
AR 1	AMPLIFIER: DC (Burr-Brown 1507)	01-29938B08
Cl	CAPACITOR: fixed, ceramic $0.01 \mathrm{mf} \pm 20 \%$ 200 vdc	21-15144A29
C2	CAPACITOR: fixed mica, $120 \mathrm{pf} \pm 2 \%$ 500 vdc (selected in test, nominal value only)	21-14032G
C3	Deleted	
C4	Deleted	
C5	CAPACITOR: fixed mica $39 \mathrm{pf} \pm 2 \%, 500 \mathrm{vdc}$ (selected in test, nominal value only)	21-14032G
C6	Same as Cl	
thru		
C10		
C 11	CAPACITOR: variable air 0.8-10 pf (JMC 2954)	19-20469D22
C12	Same as Cl	
C 13	CAPACITOR: fixed mica $100 \mathrm{pf} \pm 2 \%$, 500 vdc (selected in test, nominal value only)	21-14032G
C14	Same as Cl	
C 15	Same as Cll	
C16, Cl7	Same as Cl	
C18	Same as Cll	
C 19	CAPACITOR: fixed mica $130 \mathrm{pf} \pm 2 \%$, 500 vdc (selected in test, nominal value only)	21-14032G
C20	Same as C 19	
C21	Same as Cll	
C22	CAPACITOR: fixed mica $68 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G19
C23	Same as Cll	
C24, C25	Same as Cl	
C26	CAPACITOR: fixed mica $51 \mathrm{pf} \pm 2 \%$ 500 vdc	21-14032G16
C27	CAPACITOR: fixed mica $43 \mathrm{pf} \pm 2 \%$ 500 vdc	21-14032G14
C28	Same as C27	
C29	Same as Cll	
C30	CAPACITOR: fixed mica $240 \mathrm{pf} \pm 2 \%$ 500 vdc	21-14032G32

ITEM	DESCRIPTION	PART NUMBER
CAD (Cont)		
C31	Same as C30	
C32	CAPACITOR: fixed mica $100 \mathrm{pf} \pm 2 \%$ 500 vdc	21-14032G23
C33	CAPACITOR: fixed mica $470 \mathrm{pf} \pm 2 \%$ 300 vdc	21-14032A39
C34	CAPACITOR: fixed ceramic 1200 pf AMV350	21-14071A14
C35	Same as C34	
C36	CAPACITOR: fixed mylar $5.0 \mathrm{mf} \pm 10 \%$ 100 vdc (Electron Products 2DGl-505E)	08-
C37	CAPACITOR: fixed elec $47 \mathrm{mf} \pm 20 \%$ 20 vdc	23-14152D67
C38	Same as C37	
C39	CAPACITOR: fixed elec $10 \mathrm{mf} \pm 20 \%$ 20 vdc	23-14152D42
CR 1	DIODE: sil lN916	1N916
CR2	Same as CRl	
CR 3	DIODE: sil lN914	48-14309All
CR4	Same as CR3	
thru		
CR6		
J 1	CONNECTOR: recp elec 15-pin (DEM15P C-33)	28-14046A02
J2	CONNECTOR: recp elec (Selectro 51-027-3196)	28-29965E21
J3	CONNECTOR: recp elec (Selectro 5l- 043-4300)	28-29965E23
J 4	Same as J2	
thru		
J6		
K1	RELAY: (HI-G, Inc. $2 \mathrm{~K}-1 \mathrm{~B}-112$)	80-
K2	Same as Kl	
L1	COIL: rf fixed 47 uh	24-14198A31
L2	COIL: rf fixed 100 uh	24-14198A39
L3	Same as L2	
L4	Same as Ll	
thru L6		

ITEM	DESCRIPTION	PART NUMBER
CAD (Cont)		
L7	Deleted	
Q1	TRANSISTOR: NPN sil	48-14319A01
Q2	TRANSISTOR: NPN sil	48-14120Al1
Q3	TRANSISTOR: NPN sil	48-14194A02
Q4, Q5	Same as Q3	
R1	RESISTOR: fixed comp 120 ohms $\pm 5 \%$ l/4w (selected in test, nominal value only)	06-15021A
R2	RESISTOR: fixed comp 18 ohms $\pm 5 \%$ 1/4w	06-15021C18
R3	RESISTOR: fixed comp 47 ohms $\pm 5 \%$ 1/4w	06-15021A01
R4	RESISTOR: fixed comp 1500 ohms $\pm 5 \%$ 1/4w	06-15021A55
R 5	Same as R3	
R6	RESISTOR: fixed comp 180 ohms $\pm 5 \%$ l/4w (selected in test, nominal value only)	06-15021A
R7	RESISTOR: fixed comp 18 ohms $\pm 5 \%$ l/4w (selected in test, nominal value only)	06-15021C
R8	RESISTOR: fixed comp 1.0 meg ohm $\pm 5 \%$ $1 / 4 \mathrm{w}$	06-15021B58
R9	RESISTOR: fixed comp 330 ohms $\pm 5 \%$ 1/4w	06-15021A31
R10	RESISTOR: fixed comp 22 ohms $\pm 5 \%$ l/4w (selected in test, nominal value only)	06-15021C
R11	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$ 1/4w	06-15021A67
R 12		
R13	```RESISTOR: fixed film 31.6 k ohms }\pm1 l/4w```	06-14098D39
R 14	Same as R13	
R 15	Same as R3	
R16	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$ 1/4w	06-15021A85
R17, R18	Same as R16	
R19	Deleted	
R20	Deleted	
R21	Deleted	

ITEM	DESCRIPTION	PART NUMBER
CAD (Cont)		
R22	$\begin{aligned} & \text { RESISTOR: fixed comp } 82 \mathrm{k} \text { ohms } \pm 5 \% \\ & \mathrm{l} / 4 \mathrm{w} \end{aligned}$	06-15021B19
R23	Deleted	
R24	RESISTOR: fixed comp 6.8 meg ohms $\pm 5 \%$ lw	06-15023B
R25	RESISTOR: variable comp 50 k ohms $\pm 10 \% 1 / 2 \mathrm{w}$	18-15089A25
R26	RESISTOR: fixed comp 5600 ohms $\pm 5 \%$ 1/4w	06-15021A76
R27	RESISTOR: fixed comp 6800 ohms $\pm 5 \%$ 1/4w	06-15021A79
R28	Same as R4	
R29	RESISTOR: fixed comp 39 ohms $\pm 5 \%$ 1/2w	06-15022A22
R 30	$\begin{aligned} & \text { RESISTOR: fixed comp } 100 \text { ohms } \pm 5 \% \\ & 1 / 2 \mathrm{w} \end{aligned}$	06-15022A37
R 31	Same as R 30	
T1	TRANSFORMER: 34:5 turns ratio	24-22896H01
T2	TRANSFORMER: 5:20, 20 turns ratio	24-22897H01
T3	TRANSFORMER: 10, 25:6 turns ratio	24-22898H01
T4	TRANSFORMER: 6:30 turns ratio	24-22899H01
VR1	DIODE: zener $400 \mathrm{mw}, 1 \mathrm{l} 746 \mathrm{~A}$	48-14131A37
VR2	DIODE: zener 1N2976R	48-14146A56

NOTES:

1. Partial reference designations ARE SHOWN. FOR COMP
NATIONS PREFIX WITH
2. For reference drawings refer to $\begin{array}{ll}\text { O1-22831G } \\ 69-26654 G & \text { ASSEMBLY } \\ \text { INTERCONECTING }\end{array}$ 69-26677G $\begin{aligned} & \text { DIAGRAM } \\ & \text { BLOCK DIAGRAM }\end{aligned}$
3. UNLESS OTHERWISE SPECIFIED, ALL RESISTORS ARE IN OHMS,
$+5 \mathrm{PCT}, 1 / 4 \mathrm{WATT}$. LL CAPACITORS ARE IN UUF, ALL INDUCTORS ARE IN
ALL VOLTAGES ARE DC.
4.

values to be selected in test REFERENCE APproximate ESIGNATIONS
R1
R6
R7
R1
R6
R7
R10
C2
C5
C13
C19
C2 $\underset{\substack{\text { APPROXIMATE } \\ \text { VALUE }}}{\text { and }}$ Value
120

10
5. CR1 and CR2 are a matched pair
6. C18 MAY BE CONNECTED TO ANODE OF
CR1 OR CR2 AS REQUIRED IN TEST.

10. Dc voltage ane mancrep vingr
 CONNECTED.

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR		
C 1	CAPACITOR: fixed ceramic $0.01 \mathrm{mf} \pm 20 \%$, 200 vdc	21-15144A29
C2	Same as Cl	
C3	CAPACITOR: fixed mica $100 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G23
$\mathrm{C} 4$	Same as Cl	
C7		
C8	CAPACITOR: variable air $0.8-10 \mathrm{pf}$, (JMC 2954)	19-20469D22
C9	CAPACITOR: fixed mica $15 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G04
C 10	CAPACITOR: fixed mica $22 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G07
C11	Same as C8	
C12	Same as Cl	
thru		
C 14		
C15	CAPACITOR: fixed elec $22 \mathrm{mf} \pm 20 \%$, 15 vdc	23-14152D54
C16	Same as Cl5	
C 17	CAPACITOR: fixed ceramic $0.1 \mathrm{mf} \pm 20 \%$, 50 vdc (Sprague 5C50)	21-29907C93
C 18	Same as Cl5	
C19	Same as Cl	
C20	Same as C17	
C21	Same as C 15	
C 22	CAPACITOR: fixed elec $68 \mathrm{mf} \pm 20 \%$, 15 vdc	23-14152D72
C23	Same as C22	
C24	CAPACITOR: fixed elec $330 \mathrm{mf} \pm 20 \%$, 6 vdc	23-14152D86
C25, C26	Same as C 15	
C27	Same as C22	
$\mathrm{C} 28$	Same as Cl	
thru		
C33		

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
C34	CAPACITOR: fixed mica $270 \mathrm{pf} \pm 2 \%$, 300 vdc	21-14032G33
C35	Same as Cl7	
C36	CAPACITOR: fixed mica $1000 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032B47
C37	Same as C3	
C38	CAPACITOR: fixed mica $22 \pm 0.5 \mathrm{pf}$, 500 vdc	21-14032G
C39	Same as C17	
C40	Same as C22	
C41	CAPACITOR: fixed elec $1 \mathrm{mf} \pm 20 \%$, 35 vdc	23-14152D07
C42	Same as C4l	
C43	CAPACITOR: fixed elec $100 \mathrm{mf} \pm 20 \%$, 10 vdc	23-14152D76
C44	Same as C4l	
C45	Same as Cl	
C46	CAPACITOR: fixed elec $22 \mathrm{mf} \pm 20 \%$, 15 vdc	23-14152D54
C47	Same as C46	
C48	CAPACITOR: fixed ceramic 1200 AMV350	21-14071A14
C49	Same as C48	
C50	Same as Cl	
C5l	Same as C46	
C 52	CAPACITOR: fixed mica $180 \mathrm{pf} \pm 2 \%$, 500 vdc	21-14032G29
C 53	CAPACITOR: fixed Gl 0.8-18 pf (JFD VC23GY)	20-14020A04
C54, C55	Same as Cl7	
C56	CAPACITOR: fixed elec $10 \mathrm{mf} \pm 20 \%$, 20 vdc	23-14152D42
C57	Same as C15	
C58	Same as Cl	
C59	Same as C22	
C60	Same as Cl	

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
CR1	DIODE: 1N914	48-14309A11
CR2	Same as CRl	
CR 3	DIODE: FD700	48-29900D91
CR4	DIODE: FD700	48-29900D91
CR5	DIODE: FD700	48-29900D91
CR6	Same as CR5	
CR7, CR8	Same as CRI	
CR9	DIODE: 1N831	48-14132A01
CR10	Same as CR9	
thru		
CR 12		
CR13	DIODE: sil lN777	48-29900C65
CR14	Same as CR13	
J 1	CONNECTOR: recp elec 9-pin (DEM-9P C-33)	28-14046A01
J2	CONNECTOR: recp elec (Selectro 51-043-4300)	28-29965E23
J3	CONNECTOR: recp elec (Selectro 5l-027-3196)	28-29965E21.
J4	Same as J2	
J5, J6	Same as J3	
J7	Same as J2	
L1	COIL: rf fixed 33 uh	24-14198A27
L2	Same as Ll	
L3	Deleted	
L4	Deleted	
L5	COIL: rf fixed 10 uh	24-14198A19
L6	COIL: rf fixed 2.2 uh	24-14198Al1
L7	COIL: rf fixed 22 uh	24-14198A23
L8	Same as L7	
L9	COIL: rf fixed 10 mh	24-14198A87
L10	Same as L9	
L11	COIL: rf variable set to 10.85 uh	24-25240H01
L12	Same as Lll	
L13, L14	Same as L9	
Q1	TRANSISTOR: NPN sil 2N708	48-14319A01

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
Q2	Same as Ql	
Q3	TRANSISTOR: NPN sil 2N2484 (Keystone Carbon Co.)	2N2484
Q4	Same as Ql	
Q5	TRANSISTOR: NPN sil 2N2218	2N2218
Q6	TRANSISTOR: PNPsil 2N2905	2N2905
Q7	TRANSISTOR: NPN sil 2N918	2N918
Q8, Q9	Same as Ql	
Q10	TRANSISTOR: NPN sil 2 N 2222	48-14267A13
Q11	TRANSISTOR: PNP sil 2N3307	48-29900E68
Q12	Same as Ql0	
Q13	Same as Qll	
Q14	Same as Q10	
Q15	Same as Qll	
R1	RESISTOR: fixed comp 3300 ohms $\pm 5 \%$, 1/4w	06-15021A67
R2	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$,	06-15021A61
	1/4w	06-15021A61
R 3	RESISTOR: fixed comp 470 ohms $\pm 5 \%$, 1/4w	06-15021A37
R 4	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4w	06-15021A49
R 5	RESISTOR: fixed comp 2700 ohms $\pm 5 \%$, 1/4w	06-15021A64
R6	RESISTOR: fixed comp 8200 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (selected in test, nominal value only)	06-15021A82
R 7	RESISTOR: fixed comp 10 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021C
R 8	RESISTOR: fixed comp 1500 ohms $\pm 5 \%$, 1/4w	06-15021A55
R9	RESISTOR: fixed comp 120 ohms $\pm 5 \%$, 1/4w	06-15021A16
R10	RESISTOR: fixed comp 820 ohms $\pm 5 \%$, 1/4w	06-15021A46
R11	Same as R4	

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
R 12	$\begin{aligned} & \text { RESISTOR: fixed comp } 68 \mathrm{k} \text { ohms } \pm 5 \% \text {, } \\ & 1 / 4 \mathrm{w} \end{aligned}$	06-15021B16
R13	Same as R12	
R14	RESISTOR: fixed comp 3900 ohms $\pm 5 \%$, 1/4w	06-15021A70
R15	RESISTOR: fixed comp 150 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021A
R16	RESISTOR: fixed comp 6800 ohms $\pm 5 \%$, 1/4w (selected in test, nominal value only)	06-15021A
R17	Same as R1 .	
$\begin{aligned} & \text { R } 18 \\ & \text { thru } \end{aligned}$	Same as R2	
R20		
R21	RESISTOR: fixed comp 47 ohms $\pm 5 \%$, 1/4w	06-15021A01
R22	Same as R21	
R23, R24	Same as R5	
R25	Same as R2l	
R26	RESISTOR: fixed comp 22 ohms $\pm 5 \%$, 1/4w	06-15021C21
R27	Same as R26	
R28	Same as R21	
R29	RESISTOR: fixed comp 56 ohms $\pm 5 \%$, 1/4w	06-15021A04
R 30	Same as R1	
R31	Same as R2	
R32	RESISTOR: fixed comp 330 ohms $\pm 5 \%$, 1/4w	06-15021A31
R33	RESISTOR: fixed comp 47 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021
R 34	Same as R10	
R35	Same as R21	
R36	Same as R4	
R 37	Same as R10	
R38	RESISTOR: fixed comp 100 ohms $\pm 5 \%$, 1/4w	06-15021A13

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
R 39, R40	Same as R2I	
R41	Same as R10	
R42	Same as R2l	
R43	$\begin{aligned} & \text { RESISTOR: fixed comp } 82 \text { ohms } \pm 5 \% \text {, } \\ & 1 / 4 \mathrm{w} \end{aligned}$	06-15021A10
R 44	Same as R3	
R45	RESISTOR: fixed comp 1800 ohms $\pm 5 \%$, 1/4w	06-15021A58
R46	RESISTOR: fixed comp 680 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A43
R47	RESISTOR: fixed comp 330 ohms $\pm 5 \%$, 1/2w	06-15022A55
R 48	RESISTOR: fixed comp 390 ohms $\pm 5 \%$, 1/4w	06-15021A34
R 49	RESISTOR: fixed comp 56 k ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021B
R 50	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021A
$\text { R } 51$	Same as R24	
$\text { R } 52$	RESISTOR: fixed comp 390 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021A
R 53	RESISTOR: fixed comp 68 ohms $\pm 5 \%$, 1/4w	06-15021A07
R 54	RESISTOR: fixed comp 270 ohms $\pm 5 \%$, 1/2 w	06-15022A52
R 55	Same as R 48	
R 56	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021A
R57, R 58	Same as R21	
R59	RESISTOR: fixed comp 220 ohms $\pm 5 \%$, lw	06-15023A70
R60	Same as R4	
R61	Same as R 32	
R62	RESISTOR: fixed comp 39 ohms $\pm 5 \%$, 1/4w	06-15021C30

ITEM	DESCRIPTION	PART NUMBER
NB DETECTOR WB DISCRIMINATOR (Cont)		
R63	RESISTOR: fixed comp 180 ohms $\pm 5 \%$, 1/4w	06-15021A22
R64	Same as R63	
R65	RESISTOR: fixed comp 33 ohms $\pm 5 \%$, l/4w (selected in test, nominal value only)	06-15021C
R66	RESISTOR: fixed comp 8200 ohms $\pm 5 \%$, 1/4w	06-15021A82
R67	RESISTOR: fixed comp 5600 ohms $\pm 5 \%$, 1/4w	06-15021A76
R68	Same as R1	
R69	Same as R2	
R 70	Same as R29	
R71	RESISTOR: fixed film 46.4 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$	06-14098A07
R 72	Same as R71	
R73	Same as R 32	
R74, R 75	Same as R4	
Tl	TRANSFORMER: 10:5 turns ratio	24-22702 HOL
T2	TRANSFORMER: 18:4 turns ratio	24-22701H01
T3	Deleted	
T4	TRANSFORMER: 5:14:14 turns ratio	24-22703H01
T5	Same as T4	
T6	TRANSFORMER: 30 turns C.T.	24-22799H01
VR1	DIODE: zener lN936B	48-14131A07
VR2	DIODE: zener USN 1N749A	48-14131A40
VR3	DIODE: zener USN 1N751A	48-14131A42
VR4	Same as VRl	

ITEM	DESCRIPTION	PART NUMBER
VIDEO DISTRIBUTION AMPLIFIER All		
C 1	CAPACITOR: fixed elec $4.7 \mathrm{mf} \pm 20 \%, 35$ vdc	23-14152D31
C2	CAPACITOR: fixed cer $0.1 \mathrm{mf} \pm 20 \%$, 50 vdc	21-29907C93
C3	CAPACITOR: fixed mica $1500 \mathrm{pf} \pm 2 \%, 500$ vdc	21-14032B51
C4	CAPACITOR: fixed mica $56 \mathrm{pf} \pm 2 \%, 500$ vdc	21-14032G17
C5	Same as C3	
C6	Same as C2	
C7	Same as C2	
C8	Same as C2	
C9	Same as Cl	
C10	Same as C2	
C11	CAPACITOR: fixed mica $4300 \mathrm{pf} \pm 2 \%, 500$ vdc	21-14032B62
C 12	CAPACITOR: fixed mica $330 \mathrm{pf} \pm 2 \%, 500$ vdc	21-14032A35
C13	Same as Cll .	
C 14	Same as C2	
C 15	Same as C2	
C16	Same as C2	
C17	Same as Cl	
C18	CAPACITOR: fixed cer $0.01 \mathrm{mf} \pm 20 \%, 200$ vdc	21-15144A29
C19	CAPACITOR: fixed mica $1000 \mathrm{pf} \pm 2 \%, 500$ vdc	21-14032B47
C20	CAPACITOR: fixed mica $12 \pm 0.5 \mathrm{pf}, 500$ vdc	21-14032G03
C21	Same as Cl9	
$\mathrm{C} 22$	Same as C18	
C23	Same as C18	
C24	Same as Cl8	
C25	Same as Cl	
C26	Same as Cl8	
C 27	Same as C3	

ITEM	DESCRIPTION	PART NUMBER
VIDEO DISTRIBUTION AMPLIFIER All (Cont)		
C28	CAPACITOR: fixed mica $22 \pm 0.5 \mathrm{pf}, 500$ vdc	21-14032G07
C29	Same as C3	
C 30	Same as Cl8	
C 31	Same as Cl8	
C 32	Same as Cl8	
C 33	Same as Cl	
C34	CAPACITOR: fixed elec $1.0 \mathrm{mf} \pm 20 \%, 35$ vdc	23-14152D07
C 35	CAPACITOR: fixed paper. $022 \mathrm{mf} \pm 10 \%$, $500 \mathrm{vdc} \quad$ (Kemet KR022-ML35J)	08.
C 36	Same as Cll	
C 37	Same as C 35	
C 38	Same as C34	
C 39	Same as C34	
C40	Same as C34	
C41	CAPACITOR: fixed cer AMV-350	21-14071A14
C42	Same as C41	
J 1	CONNECTOR: recp elec 9-pin (DEM-9P C-33)	28-14046A01
J 2	CONNECTOR: recp elec (Selectro 51-0273196)	28-29965E21
$\begin{aligned} & \text { J3 } \\ & \text { thru } \end{aligned}$	Same as J2	
J 7		
J 8	CONNECTOR: recp elec (Selectro 51-0434300)	28-29965E23
L1	COIL: rf var shld 66-160 uh (Cambridge Thermionic Corp. No. 1505-8)	24-14204A08
L2	Same as Ll	
L3	COIL: rf var shld 400-1000 uh (Cambridge Thermionic Corp. No. 1505-10)	24-14204A10
L4	Same as L3	
L5 thru	COIL: rf var shld 14.5-33 uh (Cambridge Thermionic Corp. No. 1505-6)	24-14204A06
L8		
L9	Coil: rf var 12 mh (WEE VEE-L Nytronics)	$24-$

ITEM	DESCRIPTION	PART NUMBER
VIDEO DISTRIBUTION AMPLIFIER All (Cont)		
L10	Same as L9	
Q1	TRANSISTOR: NPN sil 2N708	48-14319A01
Q2	Same as Ql	
Q3	TRANSISTOR: NPN sil 2 N2222	48-14267A13
Q4, Q5	Same as Ql	
Q6	Same as Q3	
Q7, Q8	Same as Q1	
Q9	Same as Q3	
Q10, Q11	Same as Q1	
Q12	Same as Q3	
Q13, Q14	Same as Q1	
Q15	Same as Q3	
R1	RESISTOR: fixed comp 6800 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$	06-15021A79
R2	Same as Rl	
R 3	RESISTOR: var ww 2000 ohms $\pm 5 \%$, l w	18-14142A15
R4	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4 w	06-15021A49
R 5	RESISTOR: fixed comp 10 k ohms $\pm 5 \%$, 1/4 w	06-15021A85
R6	Same as R 5	
R 7	RESISTOR: fixed comp 2200 ohms $\pm 5 \%$, 1/4 w	06-15021A.61
R 8	RESISTOR: fixed comp 120 ohms $\pm 5 \%$, 1/2 w	06-15022A40
R 9	RESISTOR: fixed comp 56 ohms $\pm 5 \%, 1 / 2 \mathrm{w}$	06-15022A28
$\text { R } 10$	RESISTOR: fixed comp $39 \mathrm{ohms} \pm 5 \%, 1 / 4 \mathrm{w}$	06-15021C30
R11	Same as R1	
R12	Same as Rl	
R13	RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, 1/4 w (Selected in test, nominal value only.)	06-15021A
R14	Same as R4	
R15, R16	Same as R 5	
R17	Same as R7	
R18	Same as R8	
R19	Same as R9	

ITEM	DESCRIPTION	PART NUMBER
VIDEO DISTRIBUTION AMPLIFIER All (Cont)		
R20 R21, R22 R23 R24 R25, R26 R27 R28 R29 R 30 R31, R32 R33 R 34 R 35 , R 36 R 37 R 38 R 39 R 40 R41, R42 R43 R 44 R45, R46 R47 R 48 R49 R 50	Same as R10 Same as R1 RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (Selected in test, nominal value only.) Same as R4 Same as R5 Same as R7 Same as R8 Same as R9 Same as R10 Same as Rl RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (Selected in test, nominal value only.) Same as R4 Same as R5 Same as R7 Same as R8 Same as R9 Same as R10 Same as Rl RESISTOR: fixed comp 1000 ohms $\pm 5 \%$, $1 / 4 \mathrm{w}$ (Selected in test, nominal value only.) Same R4 Same as R5 Same as R7 Same as R8 Same as R9 Same as R10	06-15021A 06-151021A 06-15021A

NOTES:
PARTIAL REFERENCE DESIGNATIONS

2. for reference drawings refer to
3. UNLESS OTHERWISE SPECIFIED ALL RESISTORS ARE SPECIFIED ± 5 PCT, $1 / 4$ WATT ALL INDUCTORS ARE IN
ALL VOLTAGES ARE DC.
4. DC VOLTAGES ARE MEASURED UNDER
5. VALUES TO BE SELECTED IN TEST VIO
FOR PROPER OUTPUT LEVEL. REFERENCE APPROXIMATE $R 13$
R13
R23
R33
R43
ROXIM
VALU
1 K
1 K
1 K
1 K

$$
\begin{aligned}
& \text { R.F. }=\ldots+31.25= \\
& E= \\
& I= \\
& P_{n / R}= \\
& I= \\
& P_{W R}= \\
& \text { MOD }
\end{aligned}
$$

$F_{\text {MOD }} \frac{V_{Y M S}-2}{\text { RADS }}$
50 ke. \qquad
OOK.C. \qquad
$768 \mathrm{~K} . \mathrm{C}$ \qquad
.024 M.C. \qquad
$.5 \cup$ M.C. \qquad
EECTRUM ± 25 m.e. \qquad
$\underline{L O}$

WEPT RESP. \qquad
\qquad

SWEPT RESP.

[^0]: '6-54

