Digital Autopilot Docked Jet Selection

DKJSLECT

Set TIME5 to cause program interrupt #2 in 6 centi-seconds

If DAPZRUPT > O:

Proceed to "BAILOUT" (pattern 32000)

 $DAPARUPT = ARUPT_{dp}$

DAPBQRPT = (BRUPT, QRUPT)

BRUPT = Instruction stored at location SUPERJOB

 $DAPZRUPT_{dp} = ZRUPT_{dp}$

ZRUPT = Address of SUPERJOB + 1 (S register portion)

Resume (Causes the "SUPERJOB" "jask" to be entered promptly while allowing other interrupts, e.g. telemetry, to occur)

SUPERJOB

TS = channel 31

If bits 14-13 of C31FLWRD \neq 00₂:

TS = C31FLWRD

If bit 14(Free Mode complement) of TS = 0:

If INHIBIT > 0: (Tag here "YZFREE")

Proceed to "BURBLE"

If INHIBIT = +0:

TS₁ = - (channel 31) (gives "true" values of translation hand controller bits)
TS = (bits 10-9 of TS₁), shifted right 8 places (⁺ Y)
TAUY = K<sub>200mst6_{TS-1}
TS = (bits 12-11 of TS₁), shifted right 10 places (⁺ Z)
TAUZ = K_{200mst6_{TS-1}}</sub>

Proceed to "NOBYPASS"

If INHIBIT > O: (Tag here "INHIBCHK")

Proceed to "BURBLE"

Proceed to "NOBYPASS"

NOBYPASS

TRCOMPAC = 0 TRCOMPBD = 0 5PT = 0 5YWT = 0 61PT = 0 61YWT = 0 62PT = 0 62YWT = 0DELFLG = 0 Proceed to "P/YWCOMP"

P/YWCOMP

i = l (in SPNDX cell, means yaw; 0 for pitch)

If TAUL_i = 0: (rotation command zero)

If TAUZ_i = 0: (Tag here "YZCHECK")

Proceed to "SPNDXCK"

Proceed to "FORCE"

If bit K_{pck_i} of DAPDATR3 = l: (bit 4 for i = 0; bit l for i = 1)
Proceed to "FORCE"

Proceed to "COUPLE"

COUPLE

$$TS = 0$$
If TAUl_i $\checkmark 0$:
 $TS = 1$

$$TS = TS + 2i \qquad (odd for negative command)$$

$$TS_1 = K_{ppitchtc_{TS}} \qquad (jets to implement command)$$

$$5PW_i = TS_1 \qquad (for i = 1, load 5YWW)$$

If $TS_1 \wedge CH5FAIL = 0$: (i.e. selected jets not failed) Proceed to "GOODA" If bit K_{pck} of DAPDATR3 = 1: (bit 4 for i = 0; bit 1 for i = 1) Proceed to "P/YWALRM" Proceed to "FORCE" FORCE TS = 0If TAUZ; <0: TS = 1TS = TS + 2i $TS_1 = K_{pzforce_{TS}}$ (jets to implement command) $62PW_1 = TS_1$ If $TS_1 \wedge CH6FAIL = 0$: (i.e. selected jets not failed) Proceed to "GOODB" $TS_2 = TS_1 \Lambda$ (- CH6FAIL) If $TS_2 = 0$: (i.e. all jets bad) $62PT_{i} = 0$ (for i = 1, loads 62YWT) (Tag here "BADC") If bit K_{pck_i} of DAPDATR3 = 1: (bit 4 for i = 0; bit 1 for i = 1) Proceed to "COUPLE" Proceed to "P/YWALRM" $61PW_{i} = TS_{2}$ (for i = 1, loads 61YWW) (Tag here "GOODC") $TS_2 \bigwedge K_{prollbd_{2i}} = 0:$ If Proceed to "NEGRDIST" If TAUZ, > 0: (for i = 1, checks TAUY) DELFIG = DELFIG + bit (8 - i)(bit 8 set 1 for i = 0; bit 7 for i = 1)61PT, = TAUZ, (for i = 1, loads 61YWT) $TS = - |TAUZ_i|$ Proceed to "TRCOMP"

NEGRDIST

```
DELFIG = DELFIG + bit (6 - i)

If TAUZ<sub>i</sub> < 0:

DELFIG = DELFIG + bit (8 - i)

6lPT_i = |TAUZ_i|

TS = |TAUZ_i|

Proceed to "TRCOMP"
```

TRCOMP

$$TS_{2} = C_{alphap_{1}} TS$$
If bit (8 - i) of DELFLG = 0:

$$TRCOMPAC_{1} = TRCOMPAC_{1} + TS + TS_{2}$$
If bit (8 - i) of DELFLG = 1:

$$TRCOMPAC_{1} = TRCOMPAC_{1} + TS - TS_{2}$$
If TAUl₁ < 0:

$$DELFLG = DELFLG + bit (4 - i)$$

Proceed to "SPNDXCK"

GOODA

 $TS = \frac{1}{2} TAUl_{i} \qquad (\frac{1}{2} \text{ factor because of 2 jets})$ If TS < 0: DELFIG = DELFLG + bit (12 - i) $5PT_{i} = |TS| \qquad (\text{for } i = 1, \text{ loads 5YWT})$ Proceed to "SPNDXCK"

GOODB

```
62PT_{i} = |\frac{1}{2} TAUZ_{i}| \quad (for i = 1, loads 62YWT with TAUY information)
If TAUl_{i} < 0:

DELFIG = DELFIG + bit (12 - i) + bit (4 - i)
If TAUZ_{i} > 0:

DELFIG = DELFIG + bit (10 - i)
TRCOMPBD_{-i} = TRCOMPBD_{-i} + C_{alphap_{i}} TAUZ_{i} \quad (for i = 1, uses TRCOMPAC)
```

(for i = 1, uses TRCOMPBD)

Proceed to "SPNDXCK"

P/YWALRM Entered from "COUPLE" and "FORCE" If bit $12(500 \times FLG)$ of FLAGWRD3 = 0: (set 0 e.g. by "DONOUN89") Perform "ALARM" (pattern 0500_o) Set bit 12(500 FIG) of FLAGWRD3 = 1 Proceed to "SPNDXCK" SPNDXCK If i > 0: i = i - lProceed to second line of "P/YWCOMP" If TRCOMPAC >, O: (Tag here "ROLLCOMP") (Tag here "TCOMPAC+") If TRCOMPBD < 0: TS = TRCOMPBD + TRCOMPAC(opposite signs, set larger to the sum and other to 0) If TS **≤** 0: TRCOMPBD = TS(Tag here "RCl") TRCOMPAC = 0If TS > 0: TRCOMPAC = TS(Tag here "RC3") TRCOMPBD = 0If TRCOMPAC < 0: If TRCOMPBD > 0: (Tag here "TCOMPAC-") TS = TRCOMPBD + TRCOMPACIf TS ≤ 0 : TRCOMPAC = TSTRCOMPBD = 0If TS > 0: TRCOMPBD = TSTRCOMPAC = 0

4. 14 Ave. 1 Ave.

i = (bit 13 of DAPDATR3) (1 or 0) (Tag here "RPREFCK")

If TAU $\neq 0$: (roll desired)

Perform "ROLLMATH"

```
Perform "ROLLMATH" (2nd time)
                               (Tag here "COMBINE")
    Perform "MERGMATH"
    Perform "MERGMATH" (2nd time)
    TS = TAU + TRCOMPBD_{-1}
                              (for i = 1, gets TRCOMPAC)
    Perform "CPLMATH"
    T5TEMP2 = TS
    If TS = 0: (i.e. jets good)
         Proceed to "PASS2"
    62PT_i = 0 (for i = 1, loads 62YWT)
    T5TEMP2 = TAU
    If TRCOMPBD_i \neq 0: (for i = 1, checks TRCOMPAC)
         Perform "ROLLALRM"
    Proceed to "PASS2"
PASS2
    i = |i - 1| (if 0, set to 1; if 1, set to 0)
    T5TEMP2 = T5TEMP2 + TRCOMPBD_i (for i = 1, gets TRCOMPAC)
    TS = T5TEMP2
    Perform "CPLMATH"
    If TS \neq 0:
         62PT_i = 0 (for i = 1, loads 62YWT)
         Perform "ROLLAIRM"
    If any computed times (5PT, 5YWT, 61PT, 61YWT, 62PT, 62YWT) \neq 0:
         If that time is < K_{14ms}:
              Set that time to K
```

Proceed to "BURBLE"

ROLLMATH

$$i = /i - 1/$$
If TRCOMPAC_i = 0: (for i = 1, check TRCOMPED)
Return
If TRCOMPAC_i > 0: (Tag here "FIUSCOMP")
Return
TRCOMPAC_i = TRCOMPAC_i + TAU
If TRCOMPAC_i > 0:
TAU = 0
Return
TAU = TRCOMPAC_i > 0:
TAU = 0
Return
If TAU ≤ 0 : (TRCOMPAC_i < 0 if here) (Tag here "MNUSCOMP")
Return
If TAU ≤ 0 : (TRCOMPAC_i < 0 if here) (Tag here "MNUSCOMP")
Return
TRCOMPAC_i = 0
Return
TAU = TRCOMPAC_i ≤ 0 :
TAU = 0
Return
TAU = TRCOMPAC_i = 0:
Return
TAU = TRCOMPAC_i = 0
Return
TAU = TRCOMPAC_i = 0
Return
TAU = TRCOMPAC_i = 0
Return
TAU = TRCOMPAC_i = 0; (checks 62TWT for i = 1)
i = /i - 1/

Return

j = -i (in T5TEMP cell)

 $TS = TRCOMPBD_{-i}$ (TRCOMPAC for i = 1)

If TS = 0:

Proceed to "TESTTAU"

If TS > 0:

Proceed to "SIDE+"

Proceed to "SIDE-"

TESTTAU

TS = j $j = -4 \quad (TRCOMPBD_{-4} \text{ is TAU})$ If TS = j: (means have already been through once) i = (i - 1)

Return

TS = TAU

If TS > 0:

Proceed to "SIDE+"

If TS < 0:

Proceed to "SIDE-"

i = |i - 1|

Return

SIDE+

T5TEMP2 =
$$|TS|$$
 (TS = TRCOMPBD_i or TAU, for j = 0/-l or -4)
If TAUZ_i > 0: (for i = l, TAUY)
Set bit (8 - i) of DELFIG = l
 $61PW_i = K_{prollbd_{2i}} \bigwedge 62PW_i$ (combine roll with Y/Z translation)
(for i = l, 61YWW loaded using 62YWW)
TS = 2 (62PT_i) - T5TEMP2 (for i = l, 62YWT; factor of 2 for 2 jets)

If TS ≤ 0 : TRCOMPBD_j = - TS (tag "TAGD" - 1) (for j = -4, TAU; for j = -1, TRCOMPAC) $61PT_i = 2 (62PT_i) + 61PT_i$ (for i = 1, 61YWT and 62YWT) $62PT_i = 0$ i = |i - 1|Return $62PT_i = \frac{1}{2}$ TS (Tag here "TAGC") TRCOMPBD_j = 0 $61PT_i = 61PT_i + T5TEMP2$ Proceed to "TESTTAU"

SIDE-

T5TEMP2 = TSSet bit (6 - i) of DELFLG = 1 If $TAUZ_{i} < 0$: (for i = 1, TAUY) Set bit (8 - i) of DELFLG = 1 (i = 1, 61YWW loaded, using 62YWW data) $61PW_{i} = K_{mrollbd_{2i}} \Lambda 62PW_{i}$ $TS = 2 (62PT_{i}) - T5TEMP2$ (for i = 1, 62YWT) If TS **≤** 0: $61PT_i = 2 (62PT_i) + 61PT_i$ (for i = 1, 61YWT and 62YWT) $62PT_{i} = 0$ i = |i - 1| Return $62PT_{i} = \frac{1}{2}TS$ (Tag here "TAGC") $\text{TRCOMPBD}_{1} = 0$

 $61PT_{i} = 61PT_{i} + T5TEMP2$ Proceed to "TESTTAU" CPLMATH $TS = \frac{1}{2}TS$ If TS = 0: Return If TS > 0: $62PT_{i} = |TS|$ (i = 1, load 62YWT) (Tag here "CPL+") Set bit (10 - i) of DELFLG = 0 j = 2 i If TS < 0: $62PT_{i} = |TS|$ (Tag here "CPL-") Set bit (10 - i) of DELFLG = 1 j = 2i + 1DELFLG = DELFLG + bit (14 - i) (Tag here "TAGE") $62PW_{i} = K_{prollbd_{i}}$ (i = 1, load 62YWW)TS = 62PW, **1** CH6FAIL (non-zero for jet failures) Return

BURBLE

DFT = 0 (DFT same as DFT₀; DFTl₀ same as DFT₁; DFTl₁ same as DFT₂) TS = (bits 8-7 of - channel 31), shifted right 6 places ($^{+}$ X trans. "true" values) If TS = 0: 5AXW = 0 5EXW = 0 i = 1 Proceed to "GOCYCLE" ATTKALMN = -5

If bit 10 of DAPDATR3 = 0: 5AXW = 0If bit 10 of DAPDATR3 = 1: 5PT = 0 $5AXW = K_{pxac_{TS-1}} \cap (- CH5FAIL)$ If bit 7 of DAPDATR3 = 0: (Note that if bits 10 and 7 both 0, get <u>no</u> translation) 5BXW = 0If bit 7 of DAPDATR3 = 1: 5YWT = 0 $5BXW = K_{pxac_{TS+1}} \cap (- CH5FAIL)$ i = 1 Proceed to "GOCYCLE" GOCYCLE TLEFT = 0TT = K loomst6 $TS = TT - 61PT_{i}$ (for i = 1, uses 61YWT) If TS > 0: TLEFT = TS $TT = K_{loomst6} - TLEFT$ (i.e. 61PT_i) If TT = 0: Proceed to "NO61PT" T5TEMP = TT (Tag here "LONG61PT") TS = T5TEMPIf bit (8 - i) of DELFLG = 1:

TS = -TS

 $T5TEMP = T5TEMP + C_{alphap_{i}} TS$

TS = T5TEMP

····

```
If bit (6 - i) of DELFLG = 1:
          TS = - TS
     DFT = DFT + TS
     TS = TT
     If bit (4 - i) of DELFLG = 1:
         TS = -TS
     DFT1<sub>i</sub> = DFT1<sub>i</sub> + TS
     Proceed to "NO61PT"
NO61PT
     TT = TLEFT
     If TS > 0:
          TT = TLEFT - TS (i.e. 62PT;)
```

 $TS = TT - 62PT_i$ (for i = 1, 62YWT)

If TT = 0:

Proceed to "NO62PT"

```
T5TEMP = 2 TT (Tag here "LONG62PT")
If bit (14 - i) of DELFLG = 0:
     T5TEMP = C_{alphap_{i}} T5TEMP
     TS = 2 TT
     If bit (12 - i) of DELFLG = 1:
         TS = - TS
     DFT1_{i} = DFT1_{i} + TS
                              (Tag here "ROLLCPL")
TS = T5TEMP
If bit (10 - i) of DELFIG = 1:
     TS = - TS
DFT = DFT + TS
Proceed to "NO62PT"
```

•

 $TT = K_{lOOmst6}$ $TS = TT - 5PT_{i} (i = 1, 5YWT)$ If TS > 0: $TT = K_{lOOmst6} - TS (i.e. 5PT_{i})$ If TT = 0: Proceed to "NO5PT" $TS = \{C_{ecp_{i}} TT\} (Tag here "LONG5PT")$ If bit (2 - i) of DELFLG = 0: TS = 2 TSIf bit (12 - i) of DELFLG = 1: TS = - TSDFTl_{i} = DFTL_{i} + TS
Proceed to "NO5PT"

NO5PT

If i > 0:

i = i - l

Proceed to "GOCYCLE"

If INHIBIT > 0:

INHIBIT = INHIBIT - 1, limited $\ge +0$ (Tag here "JETSON")

If bit 14 of 5WORD = 1: (set in "DKT6")

Set bit 14 of 5WORD = 0

Perform "SETUPT6"

Proceed to "NOTIMING"

TS₁ = 61PT + 62PT (in L'register; Tag here "INHIBCMP") TS₂ = 61YWT + 62YWT

 $TS_3 = TS_2 - TS_1$ If $TS_3 \leq 0$: $TS = TS_1$ TS₃ > 0: If $TS = TS_3 + TS_1$ (i.e. TS_2) TS \neq 0: If (Tag here "ZONK") TS = (K_{ld160} TS) integral + 1 (units of 0.1 second passes now) part (zero value likely to be -0) INHIBIT = TSPerform "SETUPT6" Perform "TIMING" Proceed to "NOTIMING" NOTIMING T5PHASE = -0T5LOC = "RCSATT"Return to task status (via EDRUPT instruction at "MAKERUPT") $ARUPT_{dp} = DAPARUPT$ (Tag here "ENDJASK") (BRUPT, QRUPT) = DAPBQRPT(QRUPT not actually loaded, although effect equivalent) $ZRUPT_{dp} = DAPZRUPT_{dp}$ DAPZRUPT = -16383Resume TIMING Inhibit interrupts 5WORD = 06WORD = 0NEXT6INT = TIMEHOLDi = 1

Proceed to "T6LOOP"

T6LOOP

If $5PT_i = 0$: (for i = 1, checks 5YWT) 5WORD = 5WORD + 5AXW, (i = 1, 5BXW) (Tag here "NO5TIME") If 5PT; \neq 0: If (NEXT6INT - $5PT_{i}$) > 0: NEXT6INT = $5PT_{1}$ $5WORD = 5WORD + 5PW_{i}$ (for i = 1, 5YWW) If 61PT₁ = 0: (for i = 1, checks 61YWT) (Tag here "TEST61PT") If $62PT_{i} \neq 0$: (Tag here "NO61TIME") If (NEXT6INT - $62PT_{i}$) > 0: (i = 1, 62YWT) NEXTGINT = $62PT_{i}$ 6WORD = 6WORD + 62PW, (i = 1, 62YWW) If $61PT_i \neq 0$: If $(NEXT6INT - 61PT_{i}) > 0$: NEXT6INT = $61PT_{1}$ $6WORD = 6WORD + 61PW_{i}$ (i = 1, 61YWW) If i > 0: (Tag here "COUNTDWN") i = i - lProceed to "T6LOOP" Release interrupts Return SETUPT6 Inhibit interrupts $TIME6 = K_{14ms}$ Perform "Cl3STALL" Set bit 15(TIME6 Count Enable) of channel 13 = 1 TIMEHOLD = K 100mst6 Release interrupts Return

DPDS-15

(Entered from "T6START" if WHICHDAP = 1)

If DAPZRUPT > O:

Set bit 14 of 5WORD = 1

Resume

```
Channel 5 = 5WORD
```

```
Channel 6 = 6WORD
```

TIME6 = NEXT6INT

Perform "Cl3STALL"

Set bit 15(TIME6 Count Enable) of channel 13 = 1

Perform "TIMEUPDT"

Resume

TIMEUPDT

DKT6

i = 1 $TS = NEXT6INT - 5PT_{i} \quad (for i = 1, 5YWT)$ $If TS \leq 0:$ $5PT_{i} = -TS$ $TS = NEXT6INT - 61PT_{i} \quad (i = 1, 61YWT) \quad (Tag here "61PTCHK")$ $If TS \leq 0:$ $61PT_{i} = -TS$ Proceed to "GOROUND" $TS = NEXT6INT - 62PT_{i} \quad (i = 1, 62YWT)$ $If TS \leq 0:$ $62PT_{i} = -TS$ Proceed to "GOROUND"

GOROUND

If i > 0:

i = i - l

Proceed to second line of "TIMEUPDT"

TIMEHOLD = TIMEHOLD - NEXT6INT

If TIMEHOLD < 0:

TIMEHOLD = K 100mst6

Proceed to "TIMING"

ROLLALRM Entered from "SPNDXCK" and "PASS2"

If bit ll(501**FIG) of FLAGWRD3 = 0: (set 0 e.g. by "DONOUN89")
Perform "ALARM" (pattern 0501₈)
Set bit ll(501**FIG) of FLAGWRD3 = 1

Return

Quantities in Computations

See also list of major variables and list of routines

- 5AXW: Single precision X translation jet bits for channel 5 using the A/C system, loaded in "BURBLE" based on X-translation channel bits and assembled into 5WORD in "T6LOOP". 5AXW₁ is 5BXW, and information is in octal.
- 5BXW: Single precision X translation jet bits for channel 5 using the B/D system (see 5AXW).
- 5PT: Single precision time (remaining) for transmission of jet information in 5PW, scale factor BlO, units centi-seconds. It is decremented in "TIMEUPDT". 5PT, is 5YWT.
- 5PW: Single precision octal pitch-command jets for channel 5, transmitted under control of the time information in 5PT. 5PW, is 5YWW.
- 5WORD: Single precision cell assembled in "T6LOOP" giving the jet pattern to be loaded into channel 5 when "DKT6" is entered. Bit 14 of the word is set 1 in "DKT6" if the interrupt generated while the jetselection jask is going on, and is checked in "NO5PT".
- 5YWT: Single precision time (remaining) for transmission of jet information in 5YWW, scale factor BlO, units centi-seconds (see 5PT).
- 5YWW: Single precision octal yaw-command jets for channel 5, transmitted under control of the time information in 5YWT.
- 61PT: Single precision time (remaining) for transmission of one-jet "pitch"/ roll control information in 61PW, scale factor BlO, units centi-seconds. It may reflect a combined rotation and translation, and hence if it is non-zero it takes priority over time (and jet selection) information controlled by 62PT (see "T6LOOP" logic). 61PT, is 61YWT.
- 61PW: Single precision octal one-jet "pitch" command for channel 6, transmitted under control of the time information in 61PT. 61PW, is 61YWW.
- 61YWT: Single precision time (remaining) for transmission of jet information in 61YWW, scale factor BlO, units centi-seconds, used for "yaw"/roll control (see 61PT).
- 61YWW: Single precision octal one-jet "yaw" command for channel 6, transmitted under control of the time information in 61YWT.
- 62PT: Single precision time (remaining) for transmission of two-jet "pitch"/ roll control information in 62PW, scale factor BlO, units centi-seconds. 62PT₁ is 62YWT.
- 62PW: Single precision octal two-jet "pitch" command for channel 6, transmitted under control of the time information in 62PT. 62PW₁ is 62YWW.

62YWT: Single precision time (remaining) for transmission of two-jet "yaw"/ roll control information in 62YWW, scale factor BlO, units centi-seconds.

- 62YWW: Single precision octal two-jet "yaw" command for channel 6, transmitted under control of the time information in 62YWT.
- 6WORD: Single precision cell assembled in "T6LOOP" giving the jet pattern to be loaded into channel 6 when "DKT6" is entered.

ARUPT dp received. It is necessary to make special provisions to retain these

cells elsewhere because of the "jask" implementation in the coding (allowing the computations to be interrupted by other tasks, but taking immediate priority over the job that may have previously been running).

ATTKALMN: See Digital Autopilot RCS Routines.

BRUPT: Cell used to save hardware B register when interrupt received (see ARUPT).

- C : Single precision erasable memory constant, program notation alphapO "ALPHAP", scale factor BO, used to determine effect on TRCOMPBD due to channel 6 use for pitch control (see e.g. "GOODB").
- C : Single precision erasable memory constant, program notation alphap1 "ALPHAYW", scale factor BO, used to determine effect on TRCOMPAC due to channel 6 use for yaw control (see e.g. "GOODB").
- C : Single precision erasable memory constant, program notation "ECP", ecpO scale factor BO, used to convert the jet on-time computed by the DAP phase plane logic for pitch rotation into the equivalent amount of time required using channel 6 "translation" jet.

C : Single precision erasable memory constant, program notation "ECYW", ecpl scale factor BO. See C (except used for yaw, of course). ecp_0

C31FLWRD: See Digital Autopilot RCS Routines.

- CH5FAIL: Single precision octal cell, loaded by R2 of N87, whose individual bits are set to 1 to indicate that the corresponding RCS jet driven by that bit of channel 5 is disabled. A V59E sets the cell to zero.
- CH6FAIL: Single precision octal cell, loading by R3 of N87, serving for channel 6 an analogous function to CH5FAIL (V59E also sets zero).

DAPARUPT: Cells used to retain ARUPT_{dp} during the DAP jask (see ARUPT).

DAPBQRPT: Cells used to retain BRUPT and QRUPT during the DAP jask.

DAPDATR3: Single precision quantity whose individual octal digits are assigned control significance for the jet selection logic of the docked DAP. The cell may be loaded by Rl of N87. The individual bits of DAPDATR3 have the following meanings (digit #1 is also referred to as "A"; #2 as "B", etc.).

Octal <u>Digit</u>	Word Bit	Significance
l	15–14 13	Not used (no effect). If 1, A/C quad jets preferred for roll; if 0, B/D.
2	12–11 10	Not used (no effect). Allow use of quad A/C for X translation, if 1.
3	9–8 7	Not used (no effect). Allow use of quad B/D for X translation (if bits 10 and 7 both 0, <u>no</u> X translation takes place), if 1.
4	6–5 4	Not used (no effect). Pitch control by channel 6 translation jets (Z) is preferred if 1 (if 0, couple control preferred).
5	3-2 1	Not used (no effect). Yaw control by channel 6 translation jets (Y) is preferred if 1 (if 0, couple control preferred).

DAPZRUPT: Cells used to retain ZRUPT during the DAP jask (see ARUPT). Since ZRUPT is positive (bits^{dp}15-13 = 0), DAPZRUPT is set negative to indicate^{sthat} the DAP jask is not in progress (if found positive in "DKJSLECT", a software restart is caused).

DELFIG: Single precision octal flagword used to retain information on nature of the decisions made concerning jet selection (such as signs) in order to determine the proper "feedback" DFT material. The even-numbered bits are used for the "pitch" channel (B/D quad), and the next-lower odd-numbered bit for the "yaw" channel (A/C quad).

Bit	Use
15	Not assigned.
14/13	Set 1 to indicate that 62PT. controlling roll (couple, hence no cross-coupling to pitch/yaw channel needed).
12/11	Set 1 to indicate negative $5PT_i/62PT_i$ effect on DFT1.
10/9	Set 1 to indicate negative 62PT effect on DFT (roll).
8/7	Set 1 to indicate negative $61PT_i$ cross-coupling (via C_{alphap_i}) to roll.
6/5	Set 1 to indicate negative 61PT complete effect on roll.
4/3	Set 1 to indicate negative 61PT, effect on DFT1.
2/1	Set 1 to indicate 5PT. time is for 1 jet.

DFT: See Digital Autopilot RCS Routines.

DFT1: Same as DFT_1 (and $DFT1_1$ is same as DFT_2).

INHIBIT: Single precision counter, scale factor B14, of the number of passes that should be bypassed in "NO5PT" (also initialized there): a pass occurs each O.l second. Also used for control in "SUPERJOB".

K_{14ms}: See Digital Autopilot RCS Routines.

 $K_{100mst6}$: Single precision constant, program notation "100MST6", scale factor Blo_units centi-seconds. Value is 160 x 2⁻¹⁴, corresponding to 10 x 2⁻¹⁰, where first term is value in centi-seconds and second is scale factor.

K_200mst6_ (i = -1 to 2): Set of single precision constants, program i notation (i = 0) "200MST6", scale factor BlO, units centiseconds. Value for i = -1 and i = 2 is 0; for i = 0, value is 320 x 2⁻¹⁴ (i.e. 20 x 2⁻¹⁰, or 20 cs); for i = 1, value is -320 x 2⁻¹⁴.

Kldl60: Single precision constant, program notation "1/160", scale factor B4, units of DAP passes/centi-second. Value is 0.00625, corresponding to 0.1 x 2⁻⁴, where first term is number of passes (i.e. one pass every 0.1 second or 0.1 pass/centi-second) and second is scale factor.

K mrollbd_O: Single precision constant, octal value 00012, program notation "-ROLLBD", corresponding to channel 6 jets 10 and 12 (negative roll torque from B/D quad).

K : Single precision constant, octal value 00240, program notation 2 "-ROLLAC", corresponding to channel 6 jets 14 and 16 (negative roll torque from A/C quad).

K : Single precision constant, program notation "PCK", octal value 000108, ocrresponding to bit 4 (used to select bit of DAPDATR3).

K : Single precision constant, program notation "PCK +1", octal value pck 00001, corresponding to bit 1.

<u>i</u>	<u>Octal</u>	Jets	Result
0	000058	3,1	+ Pitch
1	000128	2,4	- Pitch
2	001208	7,5	+ Yaw
3	002408	6,8	- Yaw

Jets are in channel 5, for i = 0 program notation "+PITCHTC".

K (i = 0 - 3): Set of single precision constants giving roll jet prollbd i patterns for quads B/D (0,1) and A/C (2,3) for negative (1,3) and positive (0,2) polarities. Values are:

i	Octal	Jets	Result
0	00005 ₈	11,9	+ Roll (B/D)
1	000128	10,12	- Roll (B/D)
2	001208	15,13	+ Roll (A/C)
3	002408	14,16	- Roll (A/C)

Jets are in channel 6, for i = 0 program notation "+ROLLBD" (by assembler techniques, equated to same cells as $K_{ppitchtc_i}$).

K (i = 0 - 3): Set of single precision constants giving X-translation i jet patterns for quads A/C (0,1) and B/D (2,3) for negative (1,3) and positive (0,2) polarities. Values are:

<u>i</u>	Octal	Jets	Result
0	000118	2,1	+X (A/C)
1	00006	3,4	—X (A/C)
2	00220	6,5	+X (B/D)
3	001408	7,8	-X (B/D)

Jets are in channel 5, for i = 0 program notation "+XAC".

K (i = 0 - 3): Set of single precision constants giving Y/Z transpzforce i lation jet patterns (Y for 2,3; Z for 0,1) for negative (1,3) and positive (0,2) polarities. Values are:

i	Octal	<u>Jets</u>	Result
0	000118	10,9	+ Z
l	00006	11,12	- Z
2	002208	14,13	+ Y
3	001408	15,16	- Y

Jets are in channel 6, for i = 0 program notation "+ZFORCE" (by assembler techniques, equated to same cells as K_{pxac}).

- NEXT6INT: Single precision cell, scale factor BlO, units centi-seconds, giving the value to be loaded into TIME6 when "DKT6" is entered. Its setting is determined in "T6LOOP" (set to minimum amount of time left among the various jet timing words).
- QRUPT: Cell used to save hardware Q register when interrupt received (see ARUPT). Rather than restoring it, coding restores Q register and branches to a point in the "Resume" coding after QRUPT otherwise would have been loaded into Q, but for convenience this detail not shown.

T5LOC: See Digital Autopilot Interface Routines.

T5PHASE: See Digital Autopilot RCS Routines.

- T5TEMP: Temporary storage cell, when used for time information has units of centi-seconds, scale factor BlO.
- T5TEMP2: Temporary storage cell, when used for time information has units of centi-seconds, scale factor Bl0.

TAU: See Digital Autopilot RCS Routines. TAU same as TAU.

TAU1: Same as TAU_1 (and $TAU1_1$ same as TAU_2), see $TA\underline{U}_2$.

- TAUY: Single precision cell, scale factor BlO, units centi-seconds, used for Y translation/yaw time information. Loaded in "SUPERJOB" if in Free mode with Y translation; loaded in "JTIME" with yaw timing information. TAUY is TAUZ₁.
- TAUZ: Single precision cell, similar function to TAUY but for Z translation or pitch control. TAUZ, is TAUY.

TIME5, TIME6: See Digital Autopilot Interface Routines.

- TIMEHOLD: Single precision cell, scale factor BlO, units centi-seconds, used to initialize NEXT6INT in "TIMING" and decremented (with a zero/ negative value causing setting to 100 ms) in "GOROUND".
- TLEFT: Single precision cell, scale factor BlO, units centi-seconds, used to maintain a record of how much time is left (in O.l second interval) for doing commands specified by 62PT, (after 61PT, time employed).
- TRCOMPAC: Single precision cell, scale factor BlO, units centi-seconds, used to contain equivalent single-jet roll "disturbance" time for the A/C quad area. TRCOMPAC, is TRCOMPBD.
- TRCOMPBD: Single precision cell, scale factor BlO, units centi-seconds, used to contain equivalent single-jet roll "disturbance" time for the B/D quad area. TRCOMPBD_1 is TRCOMPAC; TRCOMPBD_4 is TAU.
- TT: Single precision cell, scale factor BlO, units centi-seconds, used for temporary time storage purposes (hence the notation) in computations starting at "GOCYCLE".
- ZRUPT: Cells used to contain program counter (Z register) and BBANK when program interrupt received. See ARUPT.


```
CM/DAPON
            Entered from "P62"
     Set bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 = 002
     T5LOC = "T5IDLOC"
     T6LOC = "T5IDLOC"
     Channel 6 = 0
     Channel 5 = 0
     Set bits 15-13 of DAPDATR1 = 0
     If bit ll(GAMDIFSW) of FLAGWRD6 = 0:
          Delay 0.5 second (by putting job to sleep via "DELAYJOB")
               and repeat check of bit 11
     RCSFLAGS = 77776_8 (sets bit 3 to 1)
     P63FLAG = -1
     JETAG = 0
     PAXERR1 = 0
     Inhibit interrupts
     ALFACOM = ALFAd180
                            ("least significant half" of ALFAi)
     BETACOM = BETAdl80
     ROLLHOLD = ROLLd180
    ROLLC_{SD} = ROLId180
                            (rescaled to BO revolutions)
     Set bit 12(CMDAPARM) of FLAGWRD6 = 1
     Set bit 1(NODOV37) of FLAGWRD2 = 1
     Release interrupts
     Proceed to "P62.1"
READGYMB
            Called initially by "P62"
     CMdGYMDT = CMdGYMDT + 10
     If bit 6(NOIMUDAP) of IMODES33 = 1:
                                             (IMU data not usable)
          Set bit l(GYMDIF) of FLAGWRD6 = 0
```

(If bit 6 of IMODES33 = 1):

Channel 6 = 0Channel 5 = 0JETAG = 0OLDELi = O (i = P,Q,R) GAMDOT = OCall "READGYMB" in O.l second End of task Set $AOG = CDU_x$ and TS = AOGmDELAOG = TS - AOG (ones complement difference formed) Set AIG = CDU_v and TS = AIG mDELAIG = TS - AIG (ones complement difference formed) Set AMG = CDU_z and TS = AMG mDELAMG = TS - AMG(ones complement difference formed) If bit 2(CMDSTBY) of FLAGWRD6 = 0: Channel 6 = 0Channel 5 = 0End of task If bit l(GYMDIF) of FLAGWRD6 = 0: Set bit l(GYMDIF) of FLAGWRD6 = 1 JETAG = OOLDELi = O (i = P,Q,R) GAMDOT = OCall "READGYMB" in O.l second End of task Call "READGYMB" in O.l second

Proceed to "BODYRATE"

BODYRATE

 $TS = - mDELAMG sin_{sp} AOG - mDELAIG cos_{sp} AOG cos_{sp} AMG$ $TS_1 = TS - OLDELQ$ OLDELQ = TS $QREL = TS + \frac{1}{2} TS_1$ $TS = mDELAIG sin_{sp} AOG cos_{sp} AMG - mDELAMG cos_{sp} AOG$ $TS_1 = TS - OLDELR$ OLDELR = TS $RREL = TS + \frac{1}{2} TS_1$ $TS = - mDELAOG - mDELAIG sin_{sp} AMG$ $TS_1 = TS - OLDELP$ OLDELP = TS $PREL = TS + \frac{1}{2} TS_1$ If GAMDOT \neq 0: PREL = PREL + K_{sintr} GAMDOT sin_{sp} (- ROLLd180) QREL = QREL - GAMDOT cos p ROLLd180 RREL = RREL - K_{costr} GAMDOT sin_{sp} (- ROLLd180) If bit 12(CMDAPARM) of FLAGWRD6 = 0, End of task Set TIME5 to cause program interrupt #2 in 10 milliseconds T5LOC = "ATTRATES"End of task

 $ALFAd180 = ALFAd180 + QREL, in range \pm 180^{\circ}$ $CALFA = \cos_{sp} ALFAd180$ $SALFA = sin_{sp} ALFAd180$ PHIDOT = PREL CALFA + RREL SALFA BETADOT = RREL CALFA - PREL SALFA BETAd180 = BETAd180 + BETADOTALFAd180 = ALFAd180 + PHIDOT sin_{sp} BETAd180, in range $\frac{+}{-}$ 180° $AK_1 = ALFACOM - ALFAd180$, in range $\pm 180^\circ$ $QAXERR = AK_1$ ROLLTM = ROLLd180 + PHIDOT, in range $\frac{+}{-}180^{\circ}$ ROLLd180 = ROLLTMRAXERR = BETACOM - BETAdl80If bit 3(05GSW) of FLAGWRD6 = 0, proceed to "EXDAP" CMDAPMOD = -1 $AK_1 = 77776_8$ (one bit negative) $AK_2 = 77776_8$ (one bit negative) $TS_1 = RREL - K_{sintr} PREL$ $TS = 1 sgn TS_1$ If $|TS_1| - K_{ydtim} < 0$: TS = 0(inside deadband) $TS_3 = K_{yjetcd_{TS}}$ TS = 1 sgn QRELIf |QREL| - Kydtim < 0: TS = 0(inside deadband for pitch rate damping) Proceed to "EXDAPIN"

EXDAPIN

Channel 5 = $TS_3 + K_{prjcd}_{TS}$

If JETAG < O:

If JETAG = 0:

PAXERR1 = PAXERR1 - CALFA PHIDOT

Proceed to "CM/FDAIR"

JNDX = -1

 $mVTd180 = -K_{2tdtcd}$ PREL (scaled B-2 revolutions/DAP cycle) TS = - ROLLd180, rescaled to scale factor B0 revolutions If bit 4(LATSW) of FLAGWRD6 = 1:

 $TS_{1} = \frac{1}{2} + \frac{1}{2} + ROLLC_{sp} \mod lo \ l \ (the \ l \ is \ 360^{\circ})$ $TS_{2} = TS - \frac{1}{2} - \frac{1}{2}$ $LCXd360 = TS_{1} + TS_{2} \mod lo \ l$ $TS = K_{180d8att} \ mVTd180 \ | \ mVTd180 | / \ CALFA + LCXd360 + \frac{1}{2} \ sgn \ LCXd360$ $(sgn \ sets \ term \ 0 \ if \ LCXd360 = 0)$

If $(TS) \ge 1$: (the l is 360°)

LCXd360 = LCXd360 - 1 sgn TS

If bit 4(LATSW) of FLAGWRD6 = 0:

Set bit 4(LATSW) of FLAGWRD6 = 1

 $LCXd360 = ROLLC_{sp} + TS modulo 1$

 $LCXd_{360} = LCXd_{360}$ CALFA

If CMDAPMOD = 1:

JETAG = O

Proceed to "CM/FDAIR"

If CMDAPMOD = -0:

LCXd360 = 0

 $ERROR_2 = LCXd360$ (for telemetry)

PAXERR1 = LCXd360

Rescale mVTd180 to scale factor B-1 revolutions/DAP cycle. mVTd180E = mVTd180 $VSQd4API = K_{180d8att} mVTd180^2$ $TS = LCXd_{360} + K_{xsd_{360}} - (K_{xsd_{360}} - VSQd_{4}API) sgn mVTd_{180}$ (if mVTd180 = 0, (point in left half plane) If TS < 0: sgn term set 0) mVTd180 = - mVTd180 $LCXd_{360} = - LCXd_{360}$ JNDX = - JNDXProceed to "DZ1" 2 $K_{\rm xsd360}$ - TS \blacktriangleleft 0, proceed to "DZ1" (point in right half If plane) If VSQd4API - $K_{vsqmn} \leq 0$: If bit 1 of CMDAPMOD = 1: (i.e. -0, since +1 already exit) ROLLHOLD = ROLLTMIf bit 1 of CMDAPMOD = 0: (i.e. +0 or -1) $ROLLHOLD = ROLLC_{sp}$, rescaled to B-1 revolutions in range ± 1800 Channel 6 = 0(point in velocity deadzone) VDTd180 = 0JETAG = OProceed to "CM/FDAIR" (point in buffer zone) JNDX1 = - JNDXVDTd180 = - mVTd180 $T_{onl} = 0$ Proceed to "GETON2" VSQd4API – $K_{vsamn} \leq 0$: If If LCXd360 + mVTd180 - $K_{xmind360} \leq 0$: If bit 1 of CMDAPMOD = 1: ROLLHOLD = ROLLTMIf bit 1 of CMDAPMOD = 0: $ROLLHOLD = ROLLC_{sp}$, rescaled to B-1 revolutions

DZ1

in range $\pm 180^{\circ}$

(If LCX360 + mVTd180 -
$$K_{xmind360} \leqslant 0$$
):
Channel 6 = 0
VDTd180 = 0
JETAG = 0
Froceed to "CM/FDAIR"
JNDX1 = - JNDX
XDd360 = $\frac{1}{2}$ VSQd4API + LCXd360 - K_{xsd360}
TS₂ = XDd360 + $K_{mvmd360k}$
If TS₂ < 0:
VDTd180 = K_{ktrcs} XDd360
QREG = ZREG (positive non-zero)
If TS₂ > 0:
QREG = +0
VDTd180 = - $K_{mvmd360k}$ (notation also "-VMT/180")
Tonl = $K_{180d8att}$ (VDTd180 + mVTd180)
If Tonl \leqslant 0:
If QREG > 0:
VDTd180 = - mVTd180
Tonl = 0
If QREG = 0:
JNDX = JNDX1
Tonl = - Tonl
Proceed to "GETON2"
GETON2
Ton2 = 2 K_{180d8att} VDTd180
If Ton2 \leqslant 0:

$$T_{on2} = - T_{on2}$$

JNDX1 = JNDX

If VDTd180 = 0:

ź

$$T_{off} = 2 K_{2jett}$$

If VDTd180 \neq 0: $TS = LCXd360 + \frac{1}{2} T_{onl} (mVTd180 - VDTd180) - \frac{1}{2} T_{on2} VDTd180$ If |TS| - 2 |VDTd180| ≥ 0: (implemented by division of TS shifted right 14 places by T_{off} = 2 K_{2jett} VDTd180 and check of A: the "2" comes about from TS scaling If |TS| - 2 |VDTd180| < 0: of BO and VDTd180 of B-1) T_{off} = K_{2,jett} TS / VDTd180 $T_{onl} = K_{4,jett} T_{onl}$ $T_{on2} = K_{4jett} T_{on2}$ JETAG = OSWdNDX = 1TUSED = TUSED + TIME1 + 8192 + 8192, modulo $2^{\perp 4}$ $TUSED = TUSED + K_{mtm3}$ If $T_{onl} - 2 \lt 0$: (The "2" in this and subsequent equations is in units of centi-seconds, as are the times). $T_{onl} = -1$ If T_{onl} - 2 > 0: TIBITS = K prjcd JNDX TUSED = TUSED + Tonl If TUSED > 0: $T_{onl} = 0$ $T_{off} = -1$ $T_{on2} = -1$ Proceed to "JETCALL1" If $T_{off} - 2 \lt 0$:

 $T_{off} = -1$

If $T_{off} - 2 \ge 0$: TUSED = TUSED + T_{off} If TUSED ≥ 0 : $T_{off} = 0$ $T_{on2} = -1$ Proceed to "JETCALL1" If $T_{on2} - 2 \le 0$:

 $T_{on2} = -1$

Proceed to "JETCALL1"

$$T2BITS = K_{prjcd} JNDX1$$
$$TUSED = TUSED + T_{on2}$$
If TUSED > 0:

 $T_{on2} = 0$

Proceed to "JETCALL1"

JETCALL1

OUTTAG = 0
NUJET = 0
TBITS = 0
Set
$$TS_1 = T_{onl}$$
 and $T_{onl} = 0$
 $TS_2 = TIBITS$ (TIBITS written over with meaningless data)
If $TS_1 > 0$, proceed to "JETCALL2"
If $TS_1 = 0$, proceed to "JETCALL3"
If $TS_1 < 0$, proceed to second line of "JETCALL3"

JETCALL3

NUJET = TS_2 Set $TS_1 = T_{off}$ and $T_{off} = -1$ $TS_2 = TBITS$ (TBITS written over with meaningless data) If $TS_1 > 0$, proceed to "JETCALL2" If $TS_1 = 0$: $NUJET = TS_2$ Set $TS_1 = T_{on2}$ and $T_{on2} = -1$ $TS_2 = T2BITS$ (T2BITS written over with meaningless data) If $TS_1 \ge 0$, proceed to "JETCALL2" If $TS_1 = 0$: $NUJET = TS_2$ Proceed to third line of "JETCALL2"

JETCALL2

NUJET = NUJET + TS₂ Call "JETCALL" in TS₁ centi-seconds Channel 6 = NUJET If OUTTAG > 0, End of task Proceed to "CM/FDAIR"

JETCALL

```
OUTTAG = 2
```

```
If bit 2(CMDSTBY) of FLAGWRD6 = 1:
```

```
TS_2 = 0
```

Proceed to "JETCALL3"

Channel 6 = 0

End of task

CM/FDAIR

```
AK_0 = \frac{1}{4} PAXERR1 (gives full scale of 67\frac{1}{2}^{\circ})
```

If SWdNDX <0:

```
SWdNDX = - SWdNDX
```

```
Perform "NEEDLER"
```

```
T5LOC = "T5IDLOC"
```

Resume

SWdNDX = 3 - SWdNDX

```
If SWdNDX > 0:
```

```
CMTMTIME = TIME1

SWdNDX = - 13

TS = SWdNDX - 1

ENDBU<u>F</u>TS = (PREL, QREL, RREL)

T5LOC = "T5IDLOC"

Resume

EXDAP

CMDAPMOD = +0

If (CALFA) - K_{c45im} \leq 0: (i.e. in range 45 to 135 degrees)
```

CMDAPMOD = +1JETAG = -1If P63FLAG = 1, set P63FLAG = 0 $TS_1 = -RAXERR sgn SALFA$ (0 for SALFA = 0) $PAXERRI = TS_1$, rescaled to scale factor BO, units revolutions $TS_2 = -BETADOT sgn SALFA$ (0 for SALFA = 0) Perform "BIASEDZ" Channel 6 = K_{prjcd}_{TS} RAXERR = (ROLLHOLD - ROLLd 180) sgn SALFA (0 for SALFA = 0)[CALFA] - K_{c45im} 20: If If CALFA > O: If P63FLAG = 0: P63FLAG = -1Call "WAKEP62" in K_{nsec} centi-seconds If JETAG < 0: JETAG = OChannel 6 = 0If CALFA < O: CMDAPMOD = -O

RAXERR = RAXERR sgn CALFA

- $AK_2 = RAXERR$
- $TS_1 = RAXERR$

 $TS_2 = RREL$

If CMDAPMOD = +0:

 $TS_2 = BETADOT$

Perform "BIASEDZ"

$$TS_3 = K_{yjetcd}TS$$

 $TS_1 = QAXERR$
 $TS_2 = QREL$

Perform "BIASEDZ"

Proceed to "EXDAPIN"

BIASEDZ

Entered with attitude information in TS_1 (L-register) and rate information in TS_2 (A-register).

$TS_1 = TS_1 - K_{cmdbs} sgn TS_2$
$TS = -1 sgn TS_1$
If TS ₁ - K _{yawim} < 0:
TS = 0
If $ TS_2 - K_{4dsim} \ge 0$:
TS = 0
$TS_4 = 1 sgn TS_2$
If $ TS_2 - K_{ydtim} < 0$:
$TS_{4} = 0$
$TS = TS + TS_4$, with magnitude lim

(gives biased error; sgn sets term zero if $TS_2 = 0$)

mited <1 (done in calling routine by an "or" function)

Return

Quantities in Computations

See also list of major variables and list of routines

AIG: Value of CDU sampled by "READGYMB", single precision twos complement, scale factor B-1, units revolutions ("inner gimbal angle").

AK, (i = 0-2): See Digital Autopilot Interface Routines.

ALFACOM: Single precision value of commanded "pitch" angle, scale factor B-1, units revolutions. Set to ALFAd180 in "CM/DAPON", and to C in "P62.1" (see Entry Preparation).

ALFAd180: See Entry Computations.

- AMG: Value of CDU_z sampled by "READGYMB", single precision twos complement, scale factor B-1, units revolutions ("middle gimbal angle").
- AOG: Value of CDU_x sampled by "READGYMB", single precision twos complement, scale factor B-1, units revolutions ("outer gimbal angle").
- BETACOM: Single precision value of commanded "yaw" angle, scale factor B-1, units revolutions. Set to BETAd180 in "CM/DAPON", and to zero in "P62.1".

BETAd180: See Entry Computations.

- BETADOT: Single precision value of rate of change of "yaw" angle, scale factor B-1, units revolutions/deci-second.
- CALFA: Single precision value of cos ALFAd180, scale factor BO, after ALFAd180 updated only by QREL (see "ATTRATES").
- CMDAPMOD: Single precision quantity used to control the performance of the entry DAP. Individual values have the following meanings:

Value	Significance
-1	Bit 3(05GSW) of FLAGWRD6 = 1 (value set in "ATTRATES").
-0	Bit 3(05GSW) of FLAGWRD6 == 0 and CALFA is at least
	K _{c45im} in magnitude with negative sign (causes damping
	only, with LCXd360 set to 0). Value set in "EXDAP".
+1	Bit $3(05$ GSW) of FLAGWRD6 = 0 and CALFA magnitude less
	than K _{c45im} . Value set in "EXDAP".
+0	Bit $3(05\widetilde{GSW})$ of FLAGWRD6 = 0 and CALFA at least K_{cL5im}
	in magnitude with positive sign. Value set in
	"EXDAP".

Scale factor is B14.

- CMdGYMDT: Single precision call time, scale factor BL4, units centiseconds, used to permit proper restart time to be set for performance of "READGYMB". Initialized to 5 in "READACCS" (when the base time used for the restart is also set), giving "READGYMB" performance 5 cs out of phase with "READACCS".
- CMTMTIME: Value of TIMEl loaded for telemetry purposes in "CM/FDAIR", scale factor BL4, units centi-seconds. Cell is the same as UPBUFF40 (see Uplink Processing).

DAPDATR1: See Digital Autopilot Interface Routines.

- ENDBUF: Set of cells used for telemetry of (PREL, QREL, RREL), loaded in "CM/FDAIR" on alternate entries to entry DAP (every 0.2 seconds the cell set is loaded). Cell set loaded is indexed by a negative quantity, with ENDBUF-14, ENDBUF-11, etc. used for successive PREL values. ENDBUF-14 is the same cell as UPBUFF+2 (see Uplink Processing).
- ERROR₂: See Digital Autopilot RCS Routines (loaded in "EXDAPIN" with the original value of LCXd360 (before sign reversal, if any), for telemetry).

GAMDOT: See Entry Computations.

IMODES33: See IMU Computations.

- JETAG: Single precision quantity, scale factor Bl4, used to control the performance of the entry DAP. The "normal" value is zero; a setting to +1 is made by "SETJTAG" (called every two seconds by "READACCS") to cause an update of roll output to be made; a setting to -1 is made in "EXDAP" if the magnitude of CALFA is less than $K_{c,l,5im}$.
- JNDX: Value of jet table index for time interval specified by T_{onl}, scale factor Bl4. Initialized to -l near start of "EXDAPIN", and complemented subsequently if necessary. A negative value causes positive jets to be selected by indexing K_{prjcd}. The quantity is single precision.
- JNDX1: Single precision quantity, scale factor B14, serving a similar function to JNDX, but for the jets controlled by the time interval specified by T_{on2}.
- K_{2jett} : Single precision constant, program notation "2JETT", scale factor B13, units centi-seconds/entry DAP cycle. Value is 400 x 2⁻¹⁴, corresponding to 200 x 2⁻¹³, i.e. a two-second entry DAP cycle (for performance of roll command updates).
- K_{2tdtcd}: Single precision constant, program notation "2T/TCDU", scale factor B13, units (entry DAP period)/(CDU sample period). Value is 40 x 2⁻¹⁴, corresponding to 20 x 2⁻¹³, i.e. a twosecond entry DAP cycle (to perform roll command updates) and a 0.1 second CDU sampling period (period of performance of "READGYMB"). Converts angular rates from units of revolutions/ deci-second to revolutions/DAP cycle.

- ^K_{4dsim}: Single precision constant, program notation "4D/SLIM", scale factor B-1, units revolutions/deci-second. Value is 16348 x 2^{-14} , but used in the program in such a way (a check for overflow, i.e. magnitude of 16384 or more, on an argument decremented by 1) that the effective value is (16384 - 16348 + 1), or 37 least increments, corresponding to 37 x 180° x 2^{-14} x 10 = 4.065°/sec. The argument is decremented by 1 for convenience in forming the absolute value.
- K_{4jett}: Single precision constant, program notation "4JETT", scale factor B12, units centi-seconds/entry DAP cycle. Value is 800 x 2⁻¹⁴, corresponding to 200 x 2⁻¹² (cf. K_{2jett}).

 $K_{180d8att}$: Single precision constant, program notation "180/8ATT", scale factor B4, units of (revolutions/DAP cycle²)⁻¹. Nominal value is 0.61813187, corresponding to the reciprocal of: (9.1 x (1/360) x $2^2 \times 2^4$), where first term is acceleration (degrees/second²), second converts to units of revolutions, third converts to units of DAP cycle² (2 seconds each), and fourth is scale factor. Actual stored value is about 0.61810. Alternatively, 9.1 = 2 x 4.55.

- K_{c45im}: Single precision constant, program notation "C45LIM", scale factor BO. Value is 11277₈ = 4799, but used in program in such a way (a check for overflow, i.e. a magnitude of 16384 or more, on an argument decremented by 1 for convenience in forming the absolute value) that effective value is (16384 - 4799 + 1) = 11586 x 2⁻¹⁴ = 0.707153, or about cos 45°.
- K_{cmdbs} : Single precision constant, program notation "CM/BIAS", scale factor B-1, units revolutions. Value is 55 x 2⁻¹⁴, corresponding to about 0.604°.

K costr Single precision constant, program notation "COSTRIM", scale factor B0, value 0.93969, corresponding to cos (-20°).

- Kktrcs: Single precision constant, program notation "KTRCS", scale factor BO, value 0.5. Value corresponds to 0.25 x 2, where first term is "K"("slope of line determining rate at which error reduced") and second is DAP roll cycle rate of 2 seconds.
- K_{mtm3}: Single precision constant, program notation "-T-3", scale factor B14, units centi-seconds. Value is -203 x 2⁻¹⁴, corresponding to -2.03 seconds. See TUSED.
- K_{mvmd360k}: Single precision constant, program notation "-VM/360K", scale factor BO. Nominal value is -0.22222222, corresponding to (-1) x 20 x (1/360) x (1/0.25), where first term is an equation factor, second is "maximum roll rate limit" (degrees/second), third converts to revolutions, and fourth is reciprocal of "K" (cf. K_{ktrcs}). Program notation also "-VMT/180", for which would have scale factor B-1, units revolutions/DAP cycle, where the "(1/0.25)" factor is 2 x 2¹ (the first factor is two-second cycle, the 2nd is scale).

Knsec: Single precision constant, program notation "NSEC", scale factor B14, units centi-seconds. Value is 2100 x 2⁻¹⁴, corresponding to 21 seconds. Program comments indicate it is an approximation to the time required to travel 65° at a rate of 3°/second. K_{prjcd}: Set of three single precision cells, program notation "P/RJCODE", selected by means of an index having values -1, 0, +1. Values are:

Index	Cell	Channel 6 Jets	Channel 5 Jets
-1	00005 000008	#11, #9 (+ R) none	#3, #1 (+ P) none
+1	000128	#10, #12(- R)	#2, #4 (- P)

- K sintr Single precision constant, program notation "SINTRIM", scale factor BO, value -0.34202, corresponding to sin (-20°) . Program comments indicate that this is trim angle for L/D = 0.3.
- K sight precision constant, program notation "VSQMIN", scale factor Bl, units revolutions. Nominal value is 0.61050061E-3, corresponding to (2/360)² x (9.1/360)⁻¹ x 2⁻² x 2² x 2⁻¹, where first term is value of the square of "VMIN" (expressed in units of revolutions), second is acceleration (in revolutions/ second²), third converts acceleration to DAP cycles (cf. K_{180d8att}), fourth converts VMIN to units of DAP cycles (from rev/sec), and fifth is scale factor. Actual value is about 0.61035E-3, i.e. 00012g.
- K_{xmind360}: Single precision constant, program notation "XMIN/360", scale factor BO, units revolutions. Value is 182 x 2⁻¹⁴, corresponding approximately to 4 x (1/360), where first term is value of "XMIN" (degrees), and second converts to revolutions.
- K_{xsd360}: Single precision constant, program notation "XS/360", scale factor BO, units revolutions. Value is 91 x 2⁻¹⁴, corresponding approximately to 2 x (1/360), where first term is value of "XS" (degrees), and second converts to revolutions. Tag also "BUFLIM".
- ^K single precision constant, program notation "YAWLIM", scale factor B-1, units revolutions. Value is 16055 x 2^{-14} , but used in the program in such a way (a check for overflow, i.e. a magnitude of 16384 or more, on an argument decremented by 1 for convenience in forming the absolute value) that effective value is (16384 -16055 + 1) = 330 least increments, corresponding to 330 x (360) x $2^{-15} = 3.625^{\circ}$.
- ^Kydtim: Single precision constant, program notation "YDOTLIM", scale factor B-1, units revolutions/deci-second. Value is 16366 x 2⁻¹⁴, but used in program in such a way (cf. K_{4dsim}) that effective value is 19 least increments, corresponding to about 2.087°/second.

Kyjetcd: Set of three single precision cells, program notation "YJETCODE", selected by means of an index having values -1, 0, +1. Values are:

Index	Cell	Channel 5 Jets
-1	001208	#7, #5 (+ Y)
+1	000008 002408	none #6, #8 (- Y)

DPEN-16

LCXd360: Single precision value of roll attitude error (shortest path if LATSW = 1 when enter computations, otherwise an enforced roll over the top) to be corrected, scale factor BO, units revolutions.

mDELAIG: Complement of change in AIG during previous 0.1 second, scale factor B-1, units revolutions/deci-second: is AIG_{n-1} - AIG_n.

mDELAMG: Complement of change in AMG during previous 0.1 second, scale factor B-1, units revolutions/deci-second. Notation "-DELAMG".

mDELAOG: Complement of change in AOG during previous 0.1 second, scale factor B-1, units revolutions/deci-second.

mVTd180: Complement of value of PREL, converted to units of revolutions/ DAP entry cycle (of 2 seconds). Initially computed with scale factor B-2, and subsequently rescaled to scale factor B-1. Program notation is "-VT/180". Complemented if point in left half plane.

mVTd180E: Value of mVTd180 for telemetry, scale factor B-1, original sign.

NUJET: Single precision cell used to contain the jet pattern to be loaded into channel 6 in "JETCALL2".

- OLDELi (i = P,Q,R): Previous values of "raw" PREL, QREL, and RREL, scale factor B-1, units revolutions/deci-second, used in "BODYRATE" to compensate for angular accelerations. The values used are the uncompensated PREL, QREL, and RREL (i.e. those derived based solely on CDU measurement data this cycle and the previous cycle).
- OUTTAG: Single precision quantity, scale factor BL4, set to 2 if "JETCALL" performed and to 0 if "JETCALL1" performed, indicating respectively that the exit from "JETCALL2" should be to End of task and to "CM/FDAIR".
- P63FLAG: Single precision cell, scale factor B14, used for control of entry DAP sequencing. It is set to -1 in "CM/DAPON" and in "EXDAP" after "WAKEP62" calling computations initiated. It is set to 1 in "P62.1" after a response to the VO6N61 display, and if 1 is set 0 in "EXDAP" if [CALFA] is less than K_{C45im} (a 0 value permits "WAKEP62" calling computations). Intended to prevent P63 from starting until response to VO6N61 display, and to avoid more than one "WAKEP62" call. It is set to -1 in "P63".

PAXERR1: Single precision quantity, scale factor BO, units revolutions, containing the information to be loaded into AK_0 : during atmospheric entry, it is set to LCXd360 each two seconds, and updated by (CALFA) x (- PHIDOT) each 0.1 second between two-second roll updates.

PHIDOT: Single precision value of rate of change of "roll" angle, scale factor B-1, units revolutions/deci-second. Cos Beta = 1.

PREL: Single precision value of "roll" body angular velocity, scale factor B-1, units revolutions/deci-second. It includes corrections for acceleration and GAMDOT, and is along the " \underline{X}_b body axis".

- QAXERR: Single precision value of pitch attitude error (saved for telemetry purposes), scale factor B-1, units revolutions. It is also used in "EXDAP", and is computed in "ATTRATES".
- QREG: Computer single precision Q register (address 0002_g), used to retain program control information in "DZ1" (zero or non-zero value). After a TC (transfer control) order, Q is loaded with the S-register contents corresponding to the address of the following step (see 3420.5-27).
- QREL: Single precision value of "pitch" body angular velocity, scale factor B-1, units revolutions/deci-second (including corrections for acceleration and GAMDOT), measured along the "Y_b body axis".
- RAXERR: Single precision value of yaw attitude error (saved for telemetry purposes), scale factor B-1, units revolutions. It is loaded in "EXDAP" and "ATTRATES".

RCSFLAGS: See Digital Autopilot Interface Routines.

ROLLC: See Entry Computations.

ROLLd180: See Entry Computations.

- ROLLHOLD: Single precision value of ROLLd180 sampled when the entry DAP is started (in "CM/DAPON"), scale factor B-1, units revolutions, and used to provide error signal information for RAXERR in "EXDAP". It is set to 0 in "KEP2", and to ROLLC or ROLLTM in "EXDAPIN"/"DZ1".
- ROLLTM: Value of ROLLd180 placed in a special cell for telemetry purposes, scale factor B-1, units revolutions, single precision.
- RREL: Single precision value of "yaw" body angular velocity, scale factor B-1, units revolutions/deci-second (including corrections for acceleration and GAMDOT), measured along the "<u>Z</u>b body axis".
- SALFA: Single precision value of sin ALFAd180, scale factor BO, after ALFAd180 updated only by QREL (see "ATTRATES").
- SWdNDX: Single precision cell, scale factor BL4, used for indexing the proper ENDBUF cells to be loaded and to cause alternation in "CM/FDAIR" between update of attitude error needles and loading of ENDBUF. It is set to 1 in "P62" and also in "GETON2", causing ENDBUF to be loaded (after initialization to -13). Negative values cause "NEEDLER" to be performed (by "CM/FDAIR"), and the cell is complemented each entrance to "CM/FDAIR". The cell is the same as UPBUFF+1 (see Uplink Processing).
- ^Toff: Single precision value of time, scale factor B14, units centiseconds, required for "drifting" (between firing times of jets specified by T_{on1} and T_{on2}). Corresponding "jet pattern" (zero) is in TBITS. Cell set 0 if no waitlist call is to be made (i.e. if T_{on1} is small but the T_{off} value is such that the time delay would expire after the next two-second computing interval); cell set -l if the time interval specified should be ignored (i.e. is too small or has already been used in "JETCALL3" or T_{on1} large).

- Tonl: Single precision value of time, computed initially with scale factor B2, units DAP roll cycles, and subsequently rescaled to scale factor B14, units centi-seconds (by using K₄ jett), giving the required "on time" for the jets in T1BITS. Cell set 0 if no waitlist call to be made (T_{onl} of such a size that jets should be left on for the full two-second DAP roll computing interval); cell set to -l if the time interval involved should be ignored (i.e. is too small).
- T_{on2}: Single precision value of time, same scaling as T_{on1}, giving the required "on time" for the jets in T2BITS. Cell set 0 if no waitlist call is to be made(because delay would expire after the next two-second computing interval); set to -l if the time involved should be ignored (i.e. is too small, if T_{on1} + T_{off} is too big, or after being used in "JETCALL3").
- TIBITS: Value of jet pattern to be sent for the time duration specified by T_{on1} (contents loaded into NUJET for transmission via channel 6). These jets are required to go from present phase-plane point to the desired (or maximum) rate, where a coast interval (T_{off}) takes place and then the T2BITS jets are fired for T_{on2} to drive to the origin.
- T2BITS: Single precision cell used to contain the value of the jet pattern to be sent for the time duration specified by T_{on2} : see discussion of T1BITS.
- T5LOC, T6LOC: See Digital Autopilot Interface Routines.
- TBITS: Value of the jet "pattern" to be sent for the time interval specified by T_{off}: it is set zero in "JETCALLL" (and used for symmetry in the program logic).

TIME5: See Digital Autopilot Interface Routines.

TUSED: Single precision cell, scale factor B14, units centi-seconds, used to keep track of the time elapsed by T nl, T off, and T n2, in order to ensure that waitlist calls will not be set to elapse after the start of the next computing cycle (2 seconds) of the roll entry DAP, and also to make sure that minimum-firing time constraints on the jets are not violated. Cell is set to - TIME1 in "SETJTAG" (about 5 cs, plus computing delays, before the two-second entry roll DAP cycle is performed), and then is set to TIME1 + TUSED (a nominal 5 cs) before the start of processing, with an additional 2(8192) added to compensate, if necessary, for TIMEl overflow. This 5 centi-seconds, plus the two-second cycle, is then subtracted (giving nominally - 200 cs), to which 2 cs is added to avoid problems with the quantization of one cs for the waitlist and the fact that TUSED must exceed O for branches in equation logic to be taken: the 5, 200, and 2 are combined into the one constant K_{mtm3} . Additions of T onl, T off, and T on2 to TUSED (which starts at a nominal -198 cs) are tested for a positive non-zero result indicating expiration of the two-second computing interval.

- VDTd180: Single precision cell, scale factor B-1, units revolutions/DAP cycle, giving the velocity argument for use in computing jet on and off times. Can be loaded with either drift velocity, maximum allowable velocity, or present velocity. If in deadzone, is loaded with 0 (for telemetry purposes).
- VSQd4API: Single precision cell, scale factor Bl, units revolutions, proportional to square of present "roll" body angular velocity divided by nominal acceleration (K_{180d8att} mVTdl80²).
- XDd360: Single precision value of predicted intercept of attitude error axis (rate = 0) by vehicle "trajectory", decremented by K_xsd360, scale factor B0, units revolutions.
- ZREG: Hardware Z register (program counter), which can be used as a convenient source of a positive non-zero number (magnitude not significant). See QREG.

<u>T6RUPT</u> Entered based on program interrupt #1, controlled by TIME6

Proceed to address specified by T6LOC

<u>T5RUPT</u> Entered based on program interrupt #2, controlled by TIME5

If TIME5 > 50 cs, Resume (means TIME5 reset after interrupt was generated)

Proceed to address specified by T5LOC

HANDRUPT Entered based on program interrupt #10, controlled by manual controller inputs

Resume

T5IDLOC

Resume (if entered from TIME5 interrupt, TIME5 will cause an interrupt again in 2¹¹⁴ centi-seconds)

SETJTAG Called by "READACCS" for entry DAP

TUSED = - TIME1

JETAG = 1

End of task

STABLISH Entered for a V46E

If bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 = 10₂: (TVC DAP)

If bit 14 of DAPDATR1 = 1: (IM-on)

Perform "SWICHOVR"

Proceed to "PINBRNCH"

Proceed to "ALM/END"

Set bit 9(S4B Takeover Enable) of channel 12 = 0

TS = (bits 14-13 of DAPDATR1, shifted right 12 places) (to bits 2-1) Inhibit interrupts

If $TS = OO_2$: (no DAP)

Perform "ZEROJET"

HOLDFLAG = 1

*NOTE: "LM" references are from Apollo 15 program, and have been retained for mnemonic usefulness.

DPIR-1

 $(If TS = 00_2):$

T5LOC = "T5IDLOC"

Set bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 = 0

Proceed to "PINBRNCH"

If $TS = 11_2$: (Saturn DAP)

Proceed to "SATSTKON"

```
Set bit 6(45/46FLG) of FLAGWRD3 = 0
```

```
Perform "RCSDAPON" (TS = Ol_2 \text{ or } lO_2, \text{ for RCS DAP})
```

Proceed to "PINBRNCH"

<u>DAPDISP</u> Entered for a V48E (this is Routine O3).

If bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 = 10₂: (TVC DAP)

Proceed to "ALM/END"

Perform "TESTXACT"

Establish "DONOUN46" (priority 10_{g})

End of job

DONOUN46

```
TS = 0446_{vn}
```

Proceed to "GOXDSPF": if terminate, proceed to "ENDEXT" if proceed, proceed otherwise, proceed to previous line

If bit 4 of DAPDATR1 = 1: (maximum deadband specified)

Set bit 12(MAXDBFLG) of FLAGWRD9 = 1

```
If bit 4 of DAPDATR1 = 0:
```

```
Set bit 12(MAXDBFLG) of FLAGWRD9 = 0 (bit used e.g.
in "INITSUBA")
If WHICHX2 = 0:
```

Perform "S41.2"

 $TS = 0647_{vn}$

Proceed to "GOXDSPF": if terminate, proceed to "ENDEXT" if proceed, proceed otherwise, proceed to previous line If bits 14-13 of DAPDATR1 \neq 00₂:

If bits 14-13 of DAPDATR1 \neq 11₂:

Inhibit interrupts (DAPDATR1 first digit = 1,2,5,6) Perform "MASSPROP" Release interrupts If WHICHX2 = 0:

Perform "S40.14"

 $TS = 0648_{vn}$

Proceed to "GOXDSPF": if terminate, proceed to "ENDEXT" if proceed, proceed otherwise, proceed to previous line

Proceed to "ENDEXT"

DKDAPON Entered for a V45E

If MODREG = 40:

Proceed to "ALM/END"

Set bit 9(S4B Takeover Enable) of channel 12 = 0

Inhibit interrupts

Set bit 6(45/46FLG) of FLAGWRD3 = 1

Perform "RCSDAPON"

Proceed to "PINBRNCH"

DKDISP Entered for a V44E (this is Routine 04).

Perform "TESTXACT"

Change priority of present job to 10_{α}

 $TS = 0587_{vn}$

Proceed to "GOXDSPF": if terminate, proceed to "ENDEXT" if proceed, proceed otherwise, proceed to previous line

Proceed to "DONOUN89"

DONOUN89

```
ADB = DKDB
```

Return

```
ADB = K<sub>maxdb</sub>
Set bit 4 of DAPDATR1 = 1
```

Return

SETMINDB

```
If WHICHDAP = 1:
```

```
ADB = DKDB
```

Return

```
THETADX = CDU
```

```
ADB = K_{mindb}
```

```
Set bit 4 of DAPDATR1 = 0
```

Return

```
STICKCHK Entered with TS set to control pattern
```

PMANNDX = bits 2-1 of TS

YMANNDX = (bits 4-3 of TS), shifted right 2 places (to bits 2-1)

RMANNDX = (bits 6-5 of TS), shifted right 4 places (to bits 2-1)

Return (Error if bits 15-7 of TS non-zero)

SPSOFF Entered from "AUTO37", "ENGINOFF", "V97E", and "V97T" Inhibit interrupts

 $T_{evt} = T_{now}$ Set bit 7(ENGONFLG) of FLAGWRD5 = 0 Set bit 13(SPS Engine On) of channel ll = 0 Set bit 14(S4B Cutoff) of channel l2 = 1 If TVCPHASE \neq -1: If bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 = 10₂: (TVC DAP) If |REPFRAC| \neq 0:

PACTOFF = DELPBAR

YACTOFF = DELYBAR

Return

TVCZAP

Set bits ll(Disengage Optics DAC), 8(TVC Enable), and 2(Enable Optics CDU Error Counters) of channel 12 = 0

OPTIND = -1 ("DAC" is digital-to-analog converter)

NVWORD1 = +0

Set bit ll(TIMRFLAG) of FLAGWRD7 = 0

Return

PRE40.6 Called by "V97E" or restart group 6.2

If bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 = 10₂: (TVC DAP)

End of task

MRKRTMP = -1

CNTR = +1 (serves as flag that entered "S40.6" from here)

Proceed to "S40.6"

S40.6 Called by "P4OSXTY"

OPTIND = -O

Set bit 2(Enable Optics CDU Error Counters) of channel 12 = 0Set bits 11 (Disengage Optics DAC) and 8(TVC Enable) of channel 12 = 1 Delay 0.06 seconds

Set bit 2(Enable Optics CDU Error Counters) of channel 12 = 1

Delay 0.02 seconds

If CNTR > 0: (i.e. from "PRE40.6")

TVCPITCH = PACTOFF - 0 (avoid loading with +0)

TVCYAW = YACTOFF - 0 (avoid loading with +0)

Set bits 12-11 (Gate output from TVCPITCH & TVCYAW) of channel 14 = 1

End of task

If MRKRTMP > O:

Perform the following for i = PITCH and then i = YAW, with j = 11, 12 respectively:

 $TVCi = K_{p2actdg}$

Set bit j (Gate output from TVCi) of channel 14 = 1

Delay 2 seconds

TVCi = K_{m4actdg}

Set bit j (Gate output from TVCi) of channel 14 = 1

Delay 2 seconds

 $TVCi = K_{p2actdg}$ Set bit j (Gate output from TVCi) of channel 14 = 1

Delay 2 seconds

Delay 4 seconds

TVCPITCH = PACTOFF - O

TVCYAW = YACTOFF - O

Set bits 12-11 (Gate outputs from TVCPITCH & TVCYAW) of channel 14 = 1

End of task

S40.14 Entered from "DONOUN46" and "REDAP"

 $JdM_0 = K_{cntone} IXX$ $JdM_1 = K_{cntone}$ IAVG $JdM_2 = JdM_1$ $\text{KMJ}_{O} = (\text{K}_{\text{cnttwo}}) / \text{IXX}$ $\text{KMJ}_{1} = (\text{K}_{\text{cnttwo}}) / \text{IAVG}$ $\text{KMJ}_2 = \text{KMJ}_1$ Return

Entered from "SWICHOVR", "TVCEXEC", and "TVCINIT1" S40.15 $ldCONACC = K_{2pidm}$ IXX VARK = KTLXdI IAVGdTLX Return

Entered from "DONOUN46" and "REDAP" S41.2

RATEINDX = 2 (bits 2-1 of DAPDATR1)

Inhibit interrupts

If bits 14-13 of DAPDATR1 \neq 10₂:

Set bit 2(LMATTCH) of FLAGWRD7 = 0

If bits 14-13 of DAPDATR1 = 10_2 :

Set bit 2(LMATTCH) of FLAGWRD7 = 1

Release interrupts

 $TS = K_{dc46}$ If bit 4 of DAPDATR1 = 1: (use wide deadband) TS = TS + K

ADB = TS

If bit 7 of DAPDATR1 = 1: (use B/D for X-translation) XTRANS = 1If bit 7 of DAPDATR1 = 0: XTRANS = 0If bit 10 of DAPDATR1 = 1: (use A/C for X-translation) XTRANS = XTRANS - 1If XTRANS = 0: Set bit 15(2JETSFLG) of FLAGWRD1 = 0 If XTRANS $\neq 0$: Set bit 15(2JETSFLG) of FLAGWRD1 = 1 If bit 13 of DAPDATR2 = 0: (use B/D for roll) ACORBD = 1If bit 13 of DAPDATR2 = 1: (use A/C for roll) ACORBD = - 4096 (i.e. negative non-zero) If bit 10 of DAPDATR2 = 1: (Quad A OK) RACFAIL = 0If bit 4 of DAPDATR2 = 0: (Quad C not OK) RACFAIL = -1If bit 10 of DAPDATR2 = 0: (Quad A not OK) RACFAIL = 1If bit 7 of DAPDATR2 = 1: (Quad B OK) RBDFAIL = 0If bit 1 of DAPDATR2 = 0: (Quad D not OK) RBDFAIL = -1If bit 7 of DAPDATR2 = 0: (Quad B not OK) RBDFAIL = 1

Return

NEEDLER

```
If bit 4 (Coarse Align) of channel 12 = 1:
```

Set bit 3 of RCSFLAGS = 1

Return

If bit 3 of RCSFLAGS = 1:

Set bit 6 (Enable CDU IMU Error Counters) of channel 12 = 0 Proceed to "NEEDLE11"

If bit 2 of RCSFLAGS = 1, proceed to "NEEDLER2"

If bit 6 (Enable CDU IMU Error Counters) of channel 12 = 0:

Set bit 3 of RCSFLAGS = 1

Return

Proceed to "NEEDLES"

NEEDLE11

 $A\underline{K} = -0$

EDRIVE = -O

CDUXCMD = -0

Set bits 3-2 of RCSFLAGS = Ol_2

Return

NEEDLER2

Set bit 6 (Enable CDU IMU Error Counters) of channel 12 = 1Set bits 3-2 of RCSFLAGS = 00_2 Return

NEEDLES

 $T\underline{S} = -K_{dacsc} \underline{AK}$, with magnitude of each component limited $\leq K_{dacmit}$ $CDUXCM\underline{D} = CDUXCM\underline{D} + (T\underline{S} - EDRIV\underline{E})$ $EDRIV\underline{E} = T\underline{S}$ Set bits 15-13 (Gate outputs from CDUXCM<u>D</u>) of channel 14 = 1 Return MASSPROP Entered from "AUTO37", "DONOUN46", "ENGINOFF", and "TVCINIT1"

If bit 13 of DAPDATR1 = 1: (means LM-off)

VARSTi = $K_{nolemval_i}$ (i = 0 - 9)

If bit 13 of DAPDATR1 = 0:

VARSTi = K_intvalue_i + K_slopeval_i LEMMASS (i = 0 - 9)
If bit 15 of DAPDATR1 = 1: (descent stage off)
VARST1 = VARST1 + VARST8 (VARST1 and VARST2 not
incremented if DAPDATR1
VARST2 = VARST2 + VARST9 is 777778, which it should not)
VARST7 = VARST7 + K_dxitfix (VARST8 and VARST9 destroyed if used)

Proceed to "FIXCW"

FIXCW Entered from "TVCEXEC" and at end of "MASSPROP"

DELCMWT = CSMMASS + K negbpw

If DELCMWT \leqslant O:

IAVGdTLX = VARST7 DELCMWT + VARST2

IAVG = VARST6 DELCMWT + VARST1

IXX = VARST5 DELCMWT + VARSTO

If DELCMWT > O:

IAVGdTLX = VARST3 DELCMWT + VARST2

IAVG = VARST4 DELCMWT + VARST1

IXX = VARST5 DELCMWT + VARSTO

TS = CSMMASS

If bit 14 of DAPDATR1 = 1: (means LM-on)

TS = TS + LEMMASS

MASS = TS

Return (to routine calling "MASSPROP" or "FIXCW")

NOTE: "RCS DAP" refers to undocked DAP only in this segment.

Quantities in Computations

See also list of major variables and list of routines

- ldCONACC: Single precision value of reciprocal of roll-axis acceleration
 used for TVC roll DAP, scale factor B9, units of (revolutions/
 second²)⁻¹. Computed in "S40.15", and is based on two-jet torque
 (see K______). Updated every 10 seconds during burn (by entrance
 to "S40.15").
- ACORBD: Single precision quantity, scale factor B14, specifying the quad pair to be used for roll attitude control in the RCS DAP. If positive (+1), quad B/D is to be used; if negative (-4096, for programming convenience), quad A/C is used. The TVC DAP alternates roll commands between quads. Cell is set in "S41.2" based upon bit 13 of DAPDATR2 (O for positive, 1 for negative).
- ADB: Single precision value of the attitude error deadband used in RCS/ docked DAP, scale factor B-1, units revolutions (one least increment is about 0.011°). For RCS DAP, set based on bit 4 of DAPDATR1, but can subsequently be changed by the program (with changes reflected in DAPDATR1 for transfers between "wide" and "narrow" deadbands). For docked DAP, set to DKDB. In P20, set based on R2 of N79 (with zero being 0.5°), each pass through "R61CSM" (R61CNTR = 0) or in "R67START". Deadband restored to R03 or DKDB value in "FIXDB" and "INITSUBA". When "DONOUN46" is performed, the R03 value is retained; a noun Ol procedure could also be used to load the cell, if desired. For RCS DAP, "wide" is 5° and "narrow" is 0.5°.
- AK (AK₀, AK₁, AK₂): Single precision values of attitude errors used as communication cells with "NEEDLER", scale factor B-1, units revolutions. Nominal scaling of display (see K_{dacsc}) is such that "full scale deflection" is 16.875^o of attitude error, with a positive AK input to "NEEDLER" giving a negative loading of CDUXCMD.

During Pll, entered from "NOPOLYM" with AK loaded so as to give full scale of 67.5° (other axes normal scaling), every half second (approximately). Can be used to steer Saturn if control of Saturn switch set. If Saturn DAP activated, entered from "SATSTICK" instead.

During RCS/docked DAP operation, "NEEDLER" is entered every 0.2 seconds from "KMATRIX" (on alternate 0.2 seconds, $A\underline{K}$ is loaded in that routine with appropriate error information).

During TVC DAP operation, "NEEDLER" is entered every 0.5 second from "TVCEXEC", with A<u>K</u> loaded by "TVCEXEC", "PCOPY", and "YCOPY" respectively.

During entry DAP operation, "NEEDLER" is entered from "CM/FDAIR" every 0.2 second, with AK_0 loaded so as to give full scale of 67.5° and others having normal scaling. AK_0 is set 0 every 2 seconds if CMDAPMOD = -0 (see Digital Autopilot Entry Routines), and AK_1 and AK_2 effectively set 0 if bit 3 (05GSW) of FLAGWRD6 = 1: they are otherwise computed in "ATTRATES" and "EXDAP" respectively.

The general polarity of loading $A\underline{K}$ is "commanded angle minus present angle". A DSKY one-shot drive of error needles can be done by V43E means. NO4 can be used to display - $A\underline{K}$.

- CDUXCMD: See IMU Computations. If coarse align bit is not set, the data goes to FDAI attitude error display (x, y, z associated with roll, pitch, and yaw respectively, with 384 pulses giving full scale deflection). If bit 9 of channel 12 = 1, the information in the cells is used for Saturn control.
- CNTR: Single precision cell used for switch-over control purposes in TVC DAP. Prior to entering TVC DAP, is used in "S40.6" as a flag to indicate whether that routine entered from "PRE40.6" (value 1, scale factor B14) or from "P4OSXTY" (value +0). If it was entered from "PRE40.6", then the four-second delay before driving the SPS gimbals to their trim position is bypassed.
- CSMMASS: Value of CSM mass, scale factor B16, units kilograms, computed double precision in "S40.8" but used single precision elsewhere (including DSKY loading). Since the least significant half is not otherwise employed, the displayed value can differ from the onboard estimate by 4 kg (about 8.8 pounds). It can be loaded manually in Rl of N47, and is updated in "S40.8". The updating consists of subtracting two seconds worth of mass flow rate (determined by a pad-load constant in units of kilograms/centi-second) if the sensed accelerometer output in the previous two-second interval exceeded the thrust-fail criterion (another pad-load constant). The updating occurs whenever "S40.8" is entered (and the accelerometer output is sufficient), and uses MASSTMP (see "S40.8") for restart protection purposes. "S40.8" is entered only for P40, starting when Average-G is turned on (due to AVEGEXIT setting in "P4OSXTY"), and ending when AVEGEXIT is loaded with some other quantity (e.g. "CALCN85" in "P4ORCS" for an ENTR to F V99 or PRO to F V16 N40 after the burn). Because of this logic, no other special provisions need be made to compensate for thrust fail conditions: it should be noted, however, that the gain updates in "TVCEXEC" are based on the current value of CSMMASS. Although the mass updating is done as part of the Average-G computation loop, the computations are entered only in P40. As a result, if an SPS burn were to be done using the SCS and P47, for example. CSMMASS would have to be updated manually.

- DAPDATR1: Single precision quantity whose individual octal digits are assigned control significance for the RCS and TVC DAPs, and which is displayed in Rl of N46. Digit #1 is used for the TVC DAP to determine vehicle configuration (IM-off, IM-on descent & ascent, or IM-on ascent only), while the remaining digits are used only by the RCS DAP (together with digit #1). Digits #2 - #5 are processed in "S41.2", which is entered when RO3 is performed (undocked) as well as when the RCS DAP is initialized (e.g. after a restart or when IMU data becomes usable after a period of not being usable). The individual bits of DAPDATR1 have the following meanings(digit #1 is also referred to as "A", #2 as "B", etc.):
 - OctalWordDigitBitSignificance

1

- 15-13 Specify vehicle configuration/desired DAP. Because of the use of various bits (e.g. 14 and 13) at different parts of the program to obtain vehicle information, caution should be used that the digits specified be those below, and other patterns should be avoided.
 - O is set by "CM/DAPON" for entry DAP, and terminates other DAP activity if "STABLISH" is entered
 - 1 indicates IM-off (causes RCS DAP to be started if "STABLISH" is entered)
 - 2 indicates LM-on ascent and descent, and causes RCS DAP to be started if "STABLISH" is entered
 - 3 indicates Saturn DAP, and causes Saturn DAP to be started if "STABLISH" is entered
 - 6 indicates LM-on ascent only, and causes RCS DAP to be started if "STABLISH" is entered (bit 15 is used in "MASSPROP" to select proper coefficient values)

deadband (5.0°) if 1: loading of ADB is done

Not used (no effect) 2 12-11 10 Allow use of quad A/C for X-translation if 1 3 9-8 Not used (no effect) Allow use of quad B/D for X-translation if 1 7 (if bits 10 and 7 both 0, program acts as if both bits were 1) 6-5 Not used (no effect) 4 Select narrow deadband (0.5°) if 0 and wide 4

Octal <u>Digit</u>	Word <u>Bit</u>	Significance
5	3 2-1	Not used (no effect) Specify maneuver rate for RHC or automatic maneuvers:
		00_{2} for $0.05^{\circ}/\text{sec}$

 01^{2}_{2} for $0.20^{\circ}/\text{sec}$ 10^{2}_{2} for $0.50^{\circ}/\text{sec}$ 11^{2}_{2} for $2.00^{\circ}/\text{sec}$

DAPDATR2: Single precision quantity whose individual octal digits are assigned control significance for the RCS DAP only, and which is displayed in R2 of N46. It is processed in "S41.2", with the individual bits having the meanings given below:

Octal <u>Digit</u>	Word <u>Bit</u>	Significance
l	15–14 13	Not used (no effect) Use quad A/C for roll if l (if O, use B/D)
2	12–11 10	Not used (no effect) Quad A may be used if l (not to be used if O)
3	9-8 7	Not used (no effect) Quad B may be used if l (not to be used if O)
4	6–5 4	Not used (no effect) Quad C may be used if 1 (if bit 10 is 1, quad C not to be used if bit 4 is 0)
5	3-2 1	Not used (no effect) Quad D may be used if l (if bit 7 is l, quad D not to be used if bit l is O)

DELCMWT: Value of (CSMMASS + K negbow) computed in "FIXCW", scale factor Bl5, units kilograms, single precision (the difference between present CSM mass and the "breakpoint" value for use in computing mass-property information). Program notation is "TEMP333".

DELPBAR, DELYBAR: See Digital Autopilot TVC Routines.

DKDB: See Digital Autopilot RCS Routines.

EDRIVE: Single precision values of previous scaled AK output information in "NEEDLES", scale factor BL4, units output drive pulses (there are 2¹³ pulses per revolution for standard scaling). EDRIVE is the internal computer image of the number contained in the appropriate error counter driven from CDUXCMD, and is required since interface is incremental pulses from a previous setting. HOLDFLAG: Single precision quantity, scale factor B14, used to control the nature of the attitude hold performed by the RCS/docked DAP. A positive non-zero value means that at the next opportunity ("AHFNOROT" entered not in Free Mode and with rate filter initialized), the present CDU angles should be loaded into THETADX for use as the new attitude reference. A +O value means that the DAP is in attitude hold about the angles in THETADX. A negative non-zero value means that automatic maneuvers are being performed (and that WBODY, CDUXD, BIAS, and DELCDU all have an effect, see Digital Autopilot RCS Routines).

A positive non-zero value is loaded if the DAP's control of the vehicle is removed (e.g. bit 15 of channel 31 = 1); when the DAP is initialized; if the IMU data is not usable (i.e. not fine align); if the Free Mode is entered; if RHC commands are provided; or if no DAP is desired (by "STABLISH"). If HOLDFLAG is negative nonzero and a switch to Hold Mode is made, attitude hold is also performed (same effect as having HOLDFLAG positive non-zero, although the setting is not made).

A positive zero setting is made in "AHFNOROT" after loading THETADX provided that bits 13-11 of RCSFLAGS = 0 (i.e. damping done); in "STOPRATE" (if previous value, negative, was -1, is set +0); and in "T5PHASE2" if presently negative and the magnitude of the middle gimbal angle exceeds 75° .

A negative non-zero value is set in R61 and also when attitude maneuver computations (e.g. R60 or R67) have loaded the DAP interface cells. Programs checking HOLDFLAG can conclude, if it is not negative non-zero, that an interruption of the automatic maneuver has occurred.

- IAVG: Single precision value of the "average" of moments of inertia about the y and z axes, scale factor B2O, units kilogram-meters². It is computed as a function of CSMMASS (and LEMMASS if DAPDATR1 so indicates) in "FIXCW" and is used in "S4O.14" to compute quantities for the RCS DAP (the separate quantity IAVGdTIX is used for the TVC DAP). Storage address corresponds to "IXX" +1.
- IAVGdTLX: Single precision value of the "average" of moments of inertia about the y and z axes divided by the "thrust moment" (product of engine thrust and the "moment arm from hinge-point to c.g."), scale factor B2, units seconds², used in "S40.15" to multiply KTLXdI to obtain VARK. Program notation is "IAVG/TLX", and storage address corresponds to "IXX" +2. Computed in "FIXCW".
- IXX: Single precision value of moment of inertia about the x axis
 (roll), scale factor B20, units kilogram-meters², computed in
 "FIXCW". It is used in "S40.14" and "S40.15" to compute quantities
 for the RCS and TVC DAPs respectively.
- JdM (JdM₀, JdM₁, JdM₂): Single precision value of 80% (RCS DAP) of the reciprocal of one-jet acceleration about roll, pitch, and yaw axes respectively, scale factor B23 (RCS DAP) or B27 (docked DAP), units of (revolutions/(deci-second centi-second))⁻¹, so that multiplication of a rate in revolutions/deci-second by JdM yields a time in centi-seconds. The 80% RCS DAP factor is in K cntone, to account for "tolerances in the torque produced by the jets and uncertainties in the vehicle moment of inertia". RCS DAP quantities computed in "S40.14"; docked DAP ones are erasable memory constants loaded into JdM in "REDAP".

JETAG: See Digital Autopilot Entry Routines.

- K_{2pidm} : Single precision constant, program notation "2PI/M", scale factor B-8. Nominal value is 0.00331017 x 2⁸, corresponding to the reciprocal of: (700 x 2 x 1.355817948 x (1/2 π) x 2⁻⁸), where first term is nominal torque due to a single jet (in footpounds), second accounts for two jets, third converts to units of newton-meters, fourth converts to units of revolutions, and fifth is scale factor.
- ^K single precision constant, program notation "CONTONE", scale factor B3, value 0.662034. Value corresponds to the reciprocal of: (700 x 1.355817948 x ($1/2\pi$) x (1/0.8) x 10^{-2} x 10^{-1} x 2^3), where first term is nominal torque due to single jet (in footpounds), second converts to units of newton-meters, third converts to units of revolutions, fourth is the 80% factor discussed for JdM, fifth converts to units of centi-seconds for result, sixth converts rotation rate to units of deci-seconds (see JdM for the time units), and seventh is the scale factor.
- K : Constant, program notation "CONTTWO", scale factor B7, value 0.00118 (double precision). Value corresponds to 700 x $1.355817948 \ge (1/2\pi) \ge 10^{-1} \ge 10^{-2} \ge 2^{-7}$, where first term is nominal torque due to single jet (in foot-pounds), second converts to units of newton-meters, third converts to units of revolutions, fourth converts to deci-seconds (for rotation rate), fifth converts to centi-seconds (see KMJ for time units), and sixth is scale factor.
- K dacmit Single precision constant, program notation "DACLIMIT +1", scale factor BL4, units of output drive pulses. Value is 384 x 2⁻¹⁴, corresponding to 384 pulses (the saturated error counter). Actual program implementation involves 3 constants: -384, 16000, and +384, with the 16000 used as a magnitude check. If, when 16000 is added to magnitude of argument, the answer overflows (exceeds 16383), then limiting is required. The 384 corresponds to 600g.
- K_{dacsc} : Single precision constant, program notation "QUARTER", scale factor B15, value $\frac{1}{4}$, corresponding to a true value of 2¹³. It converts A<u>K</u> from units of revolutions to units of output drive pulses, with 2¹³ pulses corresponding to the nominal scaling for a revolution. Hence 384 pulses, the error counter saturation level, correspond to 16 7/8 degrees, as discussed for A<u>K</u>.

- Kdc46 factor B-1, units revolutions. Value is 46 x 2⁻¹⁴, the same as Kmindb
- K_{dc409} : Single precision constant, program notation "DEC409", scale factor B-1, units revolutions. Value is 409 x 2⁻¹⁴, which when added to K_{dc46} gives 455 x 2⁻¹⁴, the same as K_{maxdb} .

Kdxitfix: Single precision constant, program notation "DXITFIX", scale factor B-12, units seconds²/kilogram, used to increment VARST7 if LM-on APS-only configuration is specified. Nominal value is -1.88275E-5 x 2¹², corresponding to -0.854E-5 x (1/0.45359237) x 2¹², where first term is value in sec²/pound, second converts to kilograms, and third is scale factor. Octal value is 75420_g, corresponding to about -0.85367E-5 sec²/pound.

K : Single precision constant, program notation "INTVALUE", intvalue₀ scale factor B20, units kilogram-meters², used as the constant value to initialize VARSTO for IM-on. Nominal value is 26850 x 2⁻²⁰, corresponding to about 19803.5 x 1.355817948 x 2⁻²⁰, where first term is value in slug-ft², second converts to kilogram-meters², and third is scale factor. Octal value is 006448, corresponding to 26880 kilogram-meters² or about 19826⁶ slug-ft².

K : Single precision constant, program notation "INTVALUE +1", intvalue] scale factor B2O, units kilogram-meters², used as the constant value to initialize VARST1 for LM-on (if descent stage off, subsequently incremented by VARST8). Nominal value is 127518 x 2⁻²⁰, corresponding to about 94052.5 x 1.355817948 x 2⁻²⁰, where first term is value in slug-ft². Octal value is 3710₈, corresponding to 127488 kilogram-meters² or about 94030 slug-ft².

C

K : Single precision constant, program notation "INTVALUE +2", intvalue₂ scale factor B2, used to initialize VARST2 for LM-on (if descent stage off, subsequently incremented by VARST8) by providing the constant value. Nominal value is 0.54059 x 2⁻², corresponding to 0.54059 seconds² (since units of constant are seconds²). Octal value is 4246_a, corresponding to about 0.540527 seconds².

K : Single precision constant, program notation "INTVALUE +3", intvalue 3 scale factor B-12, used to initialize VARST3 for LM-on, by providing the constant value. Nominal value is 0.153964E-4 x 2¹², with units seconds²/kilogram. Nominal value corresponds to about 0.698369E-5 x (1/0.45359237) x 2¹², where first term is value in seconds²/pound, second converts to kilograms, and third is scale factor. Octal value is 2011₈, corresponding to about 0.698210E-5 seconds²/pound.

- K : Single precision constant, program notation "INTVALUE +4", intvalue 4 scale factor B6, used to initialize VARST4 for LM-on, by providing the constant value, units (kilogram-meters²)/kilogram. Nominal value is -0.742923 x 2⁻⁶, corresponding to about -0.2485468 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 77501₈, corresponding to about -0.24830 slug-ft²/pound.
- K : Single precision constant, program notation "INTVALUE +5", scale factor B6, used to initialize VARST5 for LM-on, by providing the constant value, units (kilogram-meters²)/kilogram. Nominal value is 1.5398 x 2⁻⁶, corresponding to about 0.51514 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, Octal value is 612₈, corresponding to about 0.5149 slug-ft²/pound. Octal value same as K nolemval₅.
- K : Single precision constant, program notation "INTVALUE +6", scale factor B6, used to initialize VARST6 for LM-on, by providing the constant value, units (kilogram-meters²)/kilogram. Nominal value is 9.68 x 2⁻⁶, corresponding to about 3.2385 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound. Octal value is 4656₈, corresponding to about 3.2384 slug-ft²/pound.
- K : Single precision constant, program notation "INTVALUE +7", scale factor B-12, used to initialize VARST7 for LM-on, by providing the constant value, units seconds²/kilogram. Nominal value is 0.647625E-4 x 2¹², corresponding to about 0.293758E-4 x (1/0.45359237) x 2¹², where first term is value in sec²/pound, second converts to kilograms, and third is scale factor. Octal value is 10372_o, corresponding to about 0.293748E-4 sec²/pound.
- K : Single precision constant, program notation "INTVALUE +8", intvalue 8 scale factor B20, used to initialize VARST8 for IM-on, by providing the constant value, units kilogram-meters². Nominal value is -27228 x 2⁻²⁰, corresponding to about - 20082 x 1.355817948 x 2⁻²⁰, where first term is value in slug-ft², second converts to kilogram-meters², and third is scale factor. Octal value is 77126, corresponding to -27200 kilogram-meters² or about -20062 slug-ft².
- K : Single precision constant, program notation "INTVALUE +9", 9 scale factor B2, used to initialize VARST9 for LM-on, by providing the constant value, units seconds². Nominal value is -0.206476 x 2⁻², corresponding to -0.206476 seconds². Octal value of constant is 76261_c, corresponding to about -0.206543 seconds².

- K m4actdg: Single precision constant, program notation "-4ACTDEG", scale factor B14, units CDU actuator output pulses (one pulse is 85.41 seconds; there are about 42.14963 pulses/degree). Value is -168 x 2⁻¹⁴, or twice the value of K p2actdg (with opposite sign), corresponding to about -4 degrees.
- K maxdb: Single precision constant, program notation "MAXDB", scale factor B-1, units revolutions. Value is 455 x 2⁻¹⁴, corresponding to about 4.9988 degrees.
- K mindb: Single precision constant, program notation "MINDB", scale factor B-1, units revolutions. Value is 46 x 2⁻¹⁴, corresponding to about 0.5054 degrees.
- K : Single precision constant, program notation "NEGBPW", scale negbpw factor Bl6, units kilograms, giving the complement of the CSM "breakpoint" weight for computation of mass properties. Nominal value is -15402.17 x 2⁻¹⁶, corresponding to -15402.17 kilograms or about 33955.97 pounds (program comments indicate that "dry weight" is 23956 pounds, giving effect for constant of 10,000 pounds of propellant). Octal value is 703648, corresponding to -15404 kilograms (-33960.0 pounds).
- K : Single precision constant, program notation "NOLEMVAL", O scale factor B20, units kilogram-meters², giving setting for VARSTO for LM-off. Nominal value is 25445 x 2⁻²⁰, corresponding to about 18767 x 1.355817948 x 2⁻²⁰, where first term is value in slug-ft², second converts to kilogram-meters², and third is scale factor. Octal value is 616_a, corresponding to about 18787 slug-ft².
- K : Single precision constant, program notation "NOLEMVAL +1", nolemval | scale factor B20, units kilogram-meters², used to give setting for VARST1 for IM-off. Nominal value is 87450 x 2⁻²⁰, corresponding to about 64500 x 1.355817948 x 2⁻²⁰, where first term is value in slug-ft². Octal value is 2526₈, corresponding to about 64481 slug-ft².
- K solemval 2 scale factor B2, used to give setting for VARST2 for IMoff, units seconds². Nominal value is 0.30715 x 2⁻², corresponding to 0.30715 seconds². Octal value is 23528, corresponding to about 0.30713 seconds².

DPIR-19

- K : Single precision constant, program notation "NOLEMVAL +3", 3 scale factor B-12, units seconds²/kilogram, used to initialize VARST3 for IM-off. Nominal value is 1.22877E-5 x 2¹², corresponding to 0.55736E-5 x (1/0.45359237) x 2¹², where first term is value in seconds²/pound, second converts to kilograms, and third is scale factor. Octal value is 1471₈, corresponding to about 0.55762E-5 seconds²/pound.
- K nolemval: Single precision constant, program notation "NOLEMVAL +4", a scale factor B6, used to initialize VARST4 for IM-off, units kilogram-meters² per kilogram. Nominal value is 1.6096 x 2⁻⁶, corresponding to about 0.5385 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 634g, corresponding to about 0.53842 slug-ft²/pound.
- Knolemval: Single precision constant, program notation "NOLEMVAL +5", scale factor B6, used to initialize VARST5 for LM-off, units kilogram-meters² per kilogram. Nominal value is 1.54 x 2⁻⁶, corresponding to about 0.5152 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 612, corresponding to about 0.5149 slug-ft²/pound. Octal value same as K intvalue5⁺
- K nolemval: Single precision constant, program notation "NOLEMVAL +6", scale factor B6, used to initialize VARST6 for LM-off, units kilogram-meters² per kilogram. Nominal value is 7.77177 x 2⁻⁶, corresponding to about 2.600 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/ pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 3706₈, corresponding to about 2.6006 slug-ft²/pound.
- K nolemval; Single precision constant, program notation "NOLEMVAL +7", nolemval; scale factor B-12, used to initialize VARST7 for IM-off, units seconds²/kilogram. Nominal value is 3.46458E-5 x 2¹², corresponding to about 1.5715E-5 x (1/0.45359237) x 2¹², where first term is value in sec²/pound, second converts to kilograms, and third is scale factor. Octal value is 4425, corresponding to about 1.57148E-5 sec²/pound.
- K : Single precision constant loaded into VARST8 for LM-off, 8 but should not be used. Cell corresponds to K intvalue ' intvalue'
- K solemval: Single precision constant loaded into VARST9 for LM-off, but should not be used. Cell corresponds to K but with octal number considered scaled B2 instead of B20. Value would be about 0.48633 seconds².

- $K_{p2actdg}$: Single precision constant, program notation "+2ACTDEG", scale factor B14, units CDU actuator pulses (see K_m4actdg). Value is 84 x 2⁻¹⁴, corresponding to about +2 degrees.
- K slopeval : Single precision constant, program notation "SLOPEVAL", 0 scale factor B6, units kilogram-meters² per kilogram, used as the slope value to initialize VARSTO for IM-on. Nominal value is 1.96307 x 2⁻⁶, corresponding to about 0.65675 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 767₈, corresponding to about 0.65734 slug-ft²/pound.
- K slopeval: Single precision constant, program notation "SLOPEVAL +1", l scale factor B6, units kilogram-meters²/kilogram, used as the slope value to initialize VARST1 for IM-on. Nominal value is 27.5774 x 2⁻⁶, corresponding to about 9.2261 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound. Octal value is 15624g, corresponding to about 9.2263 slug-ft²/pound.
- K slopeval 2 scale factor B-12, units seconds²/kilogram, used as the slope value to initialize VARST2 for LM-on. Nominal value is 2.3548E-5 x 2¹², corresponding to about 1.06812E-5 x (1/0.45359237) x 2¹², where first term is value in seconds²/pound, second converts to kilograms, and third is scale factor. Octal value is 3054_o, corresponding to about 1.06793E-5 seconds²/pound.
- K slopeval : Single precision constant, program notation "SLOPEVAL +3", 3 scale factor B-26, units seconds²/kilogram per kilogram, used as the slope value to initialize VARST3 for LM-on. Nominal value is 2.1777E-9 x 2²⁶, corresponding to about 0.44805E-9 x (1/0.45359237)² x 2²⁶, where first term is value in seconds²/pound per pound. Octal value is 4532₈, corresponding to about 0.44798E-9 seconds²/pound per pound.
- K slopeval Single precision constant, program notation "SLOPEVAL +4", slopeval scale factor B-8, units kilogram-meters per kilogram per kilogram, used as the slope value to initialize VARST4 for LM-on. Nominal value is 1.044E-3 x 2⁸, corresponding to about 0.1584E-3 x 1.355817948 x (1/0.45359237)² x 2⁸, where first term is value in slug-ft²/pound per pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 10433₈, corresponding to about 0.158433E-3 slug-ft²/pound per pound.
- K slopeval: Single precision constant, program notation "SLOPEVAL +5", 5 scale factor B-8, units kilogram-meters² per kilogram per kilogram, used as the slope value to initialize VARST5 for LM-on. Value is zero, meaning that VARST5 is not affected by LEMMASS.

- K slopeval Single precision constant, program notation "SLOPEVAL +6", slopeval scale factor B-8, units kilogram-meters² per kilogram per kilogram, used as the slope value to initialize VARST6 for LM-on. Nominal value is 2.21068E-3 x 2⁸, corresponding to about 0.335472E-3 x 1.355817948 x (1/0.45359237)² x 2⁸, where first term is value in slug-ft²/pound per pound. Octal value is 22070, corresponding to about 0.33546E-3 slug-ft²/pound per pound.
- K slopeval; Single precision constant, program notation "SLOPEVAL +7", scale factor B-26, units seconds²/kilogram per kilogram, used as the slope value to initialize VARST7 for LM-on. Nominal value is 1.5166E-9 x 2²⁶, corresponding to about 0.31203E-9 x (1/0.45359237)² x 2²⁶, where first term is value in seconds²/pound per pound, second converts to kilograms, and third is scale factor. Octal value is 32048, corresponding to about 0.31212E-9 seconds²/ pound per pound.
- K slopeval Single precision constant, program notation "SLOPEVAL +8", slopeval S scale factor B6, units kilogram-meters² per kilogram, used as the slope value to initialize VARST8 for LM-on. Nominal value is -1.284 x 2⁻⁶, corresponding to about-0.4296 x 1.355817948 x (1/0.45359237) x 2⁻⁶, where first term is value in slug-ft²/pound, second converts to kilogram-meters², third converts to kilograms, and fourth is scale factor. Octal value is 77266₈, corresponding to about -0.4300 slug-ft²/pound.
- K slopeval : Single precision constant, program notation "SLOPEVAL +9", slopeval 9 scale factor B-12, units seconds²/kilogram, used as the slope value to initialize VARST9 for LM-on. Nominal value is 2.00E-5 x 2¹², corresponding to about 0.9072E-5 x (1/0.45359237) x 2¹², where first term is value in seconds²/pound, second converts to kilograms, and third is scale factor. Octal value is 2476_g, corresponding to about 0.90706E-5 seconds²/pound.
- KMJ (KMJ_O, KMJ₁, KMJ₂): Single precision value of the one-jet acceleration about roll, pitch, and yaw axes respectively, scale factor B-13, units of revolutions/(deci-second centi-second), so that multiplication of a time in centi-seconds by KMJ yields a rotation rate in revolutions/deci-second. RCS DAP quantities computed in "S4O.14"; docked DAP ones are erasable memory constants loaded into KMJ in "REDAP".

KTLXdI: See Digital Autopilot TVC Routines.

LEMMASS: Single precision value of LM mass loaded by R2 of N47, and used in "MASSPROP" if bit 13 of DAPDATR1 = 0 to compute LMattached mass properties constants. If bit 14 of DAPDATR1 = 1, is used in "FIXCW" to compute MASS (if DAPDATR1 set to indicate that LM not attached, cell contents ignored). Scale factor B16, units kilograms, but value should not exceed 2¹⁵ (or be equal to it) kilograms because of left shift in "MASSPROP": this is about 72000 pounds. For valid MASS computation, sum of CSMMASS and LEMMASS must be less than 2¹⁶ kilograms. MASS: Single precision value of vehicle mass, program notation "WEIGHT/G", scale factor B16, units kilograms, loaded in "FIXCW" as the sum of CSMMASS and (if specified by DAPDATR1) LEMMASS. Note that the value in this cell is <u>not</u> updated by RO3 ("DONOUN46") unless digit #1 of DAPDATR1 is 1, 2, 5, or 6. The cell is used as if it were double precision in "S40.1", "S40.1B", and "S40.13": in these cases, the least significant half is AK₀.

MRKRTMP: See Burn Control.

NVWORD1: See Burn Control.

OPTIND: See Optics Computations.

PACTOFF: See Digital Autopilot TVC Routines.

- PMANNDX: Single precision cell, scale factor BL4, loaded in "STICKCHK" with bits 2-1 of TS (set before entering routine). These bits correspond to the "pitch" input, with OO_2 meaning no maneuver, Ol_2 meaning a positive maneuver, IO_2 meaning a negative maneuver, and Il_2 treated the same as OO_2 except for rate-command use of the RHC (see "T5PHASE2"). TS is set to the "true" values of the input information (which for the controllers have an inversion from the binary values, so that a binary 0 channel input represents a logical 1).
- RACFAIL: Single precision cell, scale factor Bl4, set in "S41.2" based on Quad failure information in DAPDATR2. It is set to 0 if Quads A and C are both indicated as functioning; it is set to +1 if Quad A is indicated as having failed; and it is set to -1 if Quad A is indicated as functioning and Quad C as not functioning. See information below.
- RATEINDX: Single precision cell, scale factor Bl4, set in "S41.2" to bits 2-1 of DAPDATR1 (shifted left one place for convenience in indexing double precision constants). Value is 0 for a specified maneuver rate of 0.05°/second; value is 2 for a specified maneuver rate of 0.2°/second; value is 4 for a specified maneuver rate of 0.5°/second; and value is 6 for a specified maneuver rate of 2.0°/second.
- RBDFAIL: Single precision cell, scale factor B14, set in "S41.2" based on Quad failure information in DAPDATR2. It is set to 0 if Quads B and D are both indicated as functioning; it is set to +1 if Quad B is indicated as having failed; and it is set to -1 if Quad B is indicated as functioning and Quad D as not functioning. See information below.

RCSFLAGS: Single precision flag word used for control of RCS/docked DAP functions. The individual bits have the following meanings:

Bit

8-7

6-5

4

3

2

1

Meaning

- 15 Set in "NEWANGL" on initial pass (also in R67) if RATEINDX = 6 (meaning large-rate R60 maneuver), and used in "T5PHASE2" to control setting of ATTKALMN (to -1 if bit is 1, and otherwise to 0) correspondingly. It avoids having attitude maneuver routine change ATTKALMN if the DAP filter is being started up. Reset e.g. in "STOPRATE".
- 14 Bit set in the DAP if rate filter must be initialized before computations are performed. It is set if e.g. bit 15 of channel 31 is 1(no G&N control), or if bit 6 of IMODES33 = 1, indicating IMU data not usable; it is reset e.g. in "REDAP".
- 13 Bit set 1 in "T5PHASE2" for a change in RHC inputs, to signify that roll damping must be completed before attitude"hold"resumed, and reset zero in "J23" if no roll firing required by phase-plane.
- 12 Bit set 1 in "T5PHASE2" for a change in RHC inputs, to signify that pitch damping must be completed before attitude"hold"resumed, and reset zero in "J23" if no pitch firing required by phase-plane.
- 11 Bit set 1 in "T5PHASE2" for a change in RHC inputs, to signify that yaw damping must be completed before attitude"hold"resumed, and reset zero in "J23" if no yaw firing required by phase-plane.
- 10-9 Bits set 0 in "T5PHASE2" and then set, for a change in RHC inputs, to the changed bits for roll(if any), to force a firing in "J23" (if not otherwise required by phase-plane) for that cycle, provided EDOT for that axis not too close to 0. Bit 1 if input 1->0 or 0->1.
 - Bits set 0 in "T5PHASE2" and then set, for a"change" in RHC inputs, to the changed bits for yaw (if any): see bits 10-9. "Change" for 10-5 could be docked DAP.
 - Bits set 0 in "T5PHASE2" and then set, for a"change" in RHC inputs, to the changed bits for pitch (if any): see bits 10-9. "Change" also forced firings (see 8-7).
 - Bit used in "KMATRIX" to cause "NEEDLER" to be performed on one pass (if presently O) and a new AK value to be loaded on the next pass (a pass takes place once every O.l second).
 - Bit set to 1 to cause "NEEDLER" routine to perform the initialization functions for the FDAI display (reset error counter to 0 etc.). Reset by "NEEDLELL".
 - Bit set to l in "NEEDLE11" to signify that first pass of initialization function has been completed (causes, with bit 3 = 0, "NEEDLER2" to be entered at the next transfer to "NEEDLER"). Reset by "NEEDLER2".
 - Bit set O at end of "T6SETUP" and in "ZEROJET" to indicate to "T6START" that the next TIME6 interrupt that is valid should cause RWORD1, PWORD1, and YWORD1 to be loaded. The "T6START" routine then resets the bit to 1.

REPFRAC: See Digital Autopilot TVC Routines.

RMANNDX: Single precision cell, scale factor B14, loaded in "STICKCHK" with bits 6-5 of TS (set before entering routine), shifted right

4 places. These bits correspond to the "roll" input (see PMANNDX).

T5LOC: Address controlling where computations begin when program interrupt #2 (controlled by TIME5) is received. It is set to "T5IDLOC" to cause these program interrupts to be ignored: this setting is done as part of a "fresh start" and also in "STABLISH" if bits 14-13 of DAPDATR1 are OO_2 . If a restart is encountered, the loading of T5LOC is controlled by bits 15-14 of FLAGWRD6, and T5LOC is set to "T5IDLOC", "REDORCS", "REDOTVC", and "REDOSAT" for bits 15-14 = OO_2 , Ol_2 , lo_2 , and ll_2 respectively.

For the Saturn DAP, T5LOC = "SATSTICK" as set by "REDOSAT" and "SATSTICK". "REDOSAT" is entered due to T5LOC setting to that address for a restart or by "SATSTKON" (entered from "STABLISH"). TIME5 setting is such as to cause "SATSTICK" to be entered every 0.1 second.

For the RCS DAP, startup is accomplished (from "STABLISH" or from "ENGINOFF", "V97E", or "V97T") by entering "RCSDAPON", which sets TIME5 to cause transfer to "RCSATT" (T5LOC setting) in 0.6 seconds. The delay if from "AUTO37" is 3.1 seconds. Two interrupts 20 ms apart cause entrance to "RCSATT", with subsequent branching controlled by T5PHASE (see Digital Autopilot RCS Routines). After the second "RCSATT" entrance, if filter not being initialized T5LOC is set to "JETSLECT" with another 20 ms delay; that routine in turn resets T5LOC to "RCSATT" with a 60 ms delay (for the 100 ms RCS DAP cycle rate).

For the TVC DAP, T5LOC is set to "T5IDLOC" in "IGNITION" shortly after engine-on, to disable RCS DAP entrances. About 0.4 seconds later, T5LOC is set to "TVCDAPON" (with delay of about 10 ms). "TVCDAPON" sets T5LOC to "TVCINIT1" (delay about 10 ms) which in turn, after entering "TVCINIT4", sets T5LOC to "DAPINIT" with delay from T5TVCDT (20 ms for LM-off). "DAPINIT" in turn sets T5LOC to "PITCHDAP" with delay of one complete TVC DAP cycle (40 ms for LM-off), causing entrance to "PITCHDAP" for LM-off about 0.48 seconds after engine-on. "PITCHDAP" sets T5LOC to "YAWDAP", which resets it to "PITCHDAP", each with delay from T5TVCDT, i.e. loop cycle rate of 40 ms for LM-off. The TVC DAP also uses waitlist task means to perform "TVCEXEC" every 0.5 second (starting .50 seconds after "TVCINIT4"), which in turn calls the roll DAP task, "ROLLDAP", 0.03 seconds after being entered. If a restart, "REDOTVC" sets T5LOC to "ENABL2", which in turn sets to "CMDSOUT", which in turn sets to either "TVCINIT1" or "DAPINIT" depending on timing of restart.

For the entry DAP, "CM/DAPON" sets T5LOC to "T5IDLOC", and the waitlist task "READGYMB", after entering "BODYRATE", sets it to "ATTRATES" (with 0.01 second delay). After executing the computations, T5LOC again set to "T5IDLOC" (at end of "CM/FDAIR"). The entry DAP cycle rate is defined by the 0.1-second waitlist calls of "READGYMB".

For the docked DAP, startup accomplished by entering "RCSDAPON", and is similar to RCS DAP. Instead of "JETSLECT", however, T5LOC is set to "DKJSLECT". T6LOC: Address controlling where computations begin when program interrupt #1 (controlled by TIME6) is received. The interrupt is not generated unless TIME6 is counting down; contrary to TIME5, the countdown of TIME6 must be enabled by a channel bit (bit 15 of channel 13). It is set to "T5IDLOC" in "CM/DAPON" (since the Entry DAP does not make use of program interrupt #1).

In the RCS DAP, T6LOC is set to "T6START" in "ZEROJET" (which is also entered if no DAP or if Saturn DAP specified, to zero output channels). During normal RCS DAP operation, TIME6 is set to 14 ms in "JETSLECT", so that jets scheduled to be fired from about 86 ms to 100 ms will all be fired for the full 100 ms. Otherwise, TIME6 is set in "T6START" to the appropriate delay. Docked DAP similar (in "SETUPT6" and "DKT6").

In the TVC DAP, T6LOC is used for timing of the roll RCS jets, and is set to "NOROLL1" in "JETROLL".

THETADX: See Digital Autopilot RCS Routines.

- TIME5: Computer hardware clock register (cell 0030g), incremented by 1 each 10 ms under hardware control. Its overflow (reaching a value of $2^{14} = 16384$) causes program interrupt #2 ("T5RUPT"), which is coded to start performing the computations whose starting address is in T5LOC. Setting TIME5 "to cause program interrupt #2 in 20 ms", for example, is accomplished by setting TIME5 = 37776g.
- TIME6: Computer hardware clock register (cell 0031₈), decremented by 1 each 0.625 ms (i.e. at a 1600 pps rate) under hardware control if bit 15 of channel 13 = 1. Because of decrement rate, can be considered to contain time-interval information with scale factor B10 in units of centi-seconds. Its reduction to zero causes program interrupt #1, which is coded to start performing the computations whose starting address is in T6LOC (via "T6RUPT").

TUSED: See Digital Autopilot Entry Routines.

TVCPHASE: See Digital Autopilot TVC Routines.

TVCPITCH: Single precision value of computer special erasable memory counter cell 0054_8 when used to provide pitch steering commands for the SPS engine gimbal (if bit 8 of channel 12 is 1). Pulses are provided from the cell to change the value of the associated error counter at a 3200 pps rate, until the cell contents reduced to zero, provided bit 11 of channel 14 is set. The computer's image of what is in the error counter is in PCMD (see Digital Autopilot TVC Routines), i.e. the "integral" of TVCPITCH output since error counter reset, by zeroing of bit 2 of channel 12, e.g. in "S40.6". One pulse gives 85.41 arc seconds of output, thus leading to the expression of scaling information as "B14 in units of CDU actuator output pulses" or BO in units of ASCREV (actuator revolutions, namely 214 pulses or about 1.07975111 revolution). There are about 42.14963 pulses per degree. The same cell is used for CDUSCMD (see Optics Computations), and hence optics use must be disabled when the cell is used for TVC purposes.

DPIR-26

TVCYAW: Single precision value of computer special erasable memory counter cell 0053, when used to provide yaw steering commands for the SPS engine gimbal (if bit 8 of channel 12 is 1). Pulses are provided from the cell to change the value of the associated error counter at a 3200 pps rate, until the cell contents reduced to zero, provided bit 12 of channel 14 is set. The computer's image of what is in the error counter is in YCMD (see Digital Autopilot TVC Routines). Scaling same as TVCPITCH, and the same cell is also used for CDUTCMD (see Optics Computations).

VARK: See Digital Autopilot TVC Routines.

- VARSTO: Single precision quantity computed in "MASSPROP" for use in "FIXCW" (cell not time-shared in TVC DAP), scale factor B2O, units kilogram-meters², giving the value of IXX at "breakpoint" (when DELCMWT = 0).
- VARST1: Single precision quantity computed in "MASSPROP", scale factor B2O, used as the value of IAVG at "breakpoint", units kilogrammeters².
- VARST2: Single precision quantity computed in "MASSPROP", scale factor B2, units seconds², used as the "breakpoint" value of IAVGdTLX.
- VARST3: Single precision quantity computed in "MASSPROP", scale factor B-12, units seconds²/kilogram, giving the slope of IAVGdTLX with CSMMASS for values above "breakpoint" (DELCMWT greater than 0).
- VARST4: Single precision quantity computed in "MASSPROP", scale factor B6, units kilogram-meters² per kilogram, giving the slope of IAVG with CSMMASS for values above "breakpoint" (DELCMWT greater than 0).
- VARST5: Single precision quantity computed in "MASSPROP", scale factor B6, units kilogram-meters² per kilogram, giving the slope of IXX with CSMMASS (both above and below "breakpoint"). Octal value is same for IM-off and IM-on (regardless of LEMMASS), including APS only.
- VARST6: Single precision quantity computed in "MASSPROP", scale factor B6, units kilogram-meters² per kilogram, giving the slope of IAVG with CSMMASS for values not above "breakpoint" (DELCMWT not greater than 0).
- VARST7: Single precision quantity computed in "MASSPROP", scale factor B-12, units seconds²/kilogram, giving the slope of IAVGdTLX with CSMMASS for values not above "breakpoint" (DELCMWT not greater than 0).
- VARST8: Single precision quantity computed in "MASSPROP", scale factor B2O, units kilogram-meters², meaningful only for LM-on, and used to increment VARST1 if descent stage off: it is added to VARST1, but is computed for LM-on from two constants both of which are negative, hence a reduction in VARST1 results from the addition.

VARST9: Single precision quantity computed in "MASSPROP", scale factor B2, units seconds², meaningful only for LM-on, and used to increment VARST2 if descent stage off.

WHICHDAP, WHICHX2: See Digital Autopilot RCS Routines.

XTRANS: Single precision cell, scale factor B14, set 0 if bits 10 and 7 of DAPDATR1 are the same value (allows four-jet X-translation); set to +1 if bit 7 is 1 (allows use only of quad B/D for X-translation); and set to -1 if bit 10 is 1 (allows use only of quad A/C for X-translation). Setting performed in "S41.2". See information below.

YACTOFF: See Digital Autopilot TVC Routines.

YMANNDX: Single precision cell, scale factor B14, loaded in "STICKCHK" with bits 4-3 of TS (set before entering routine), shifted right 2 places. These bits correspond to the "yaw" input (see PMANNDX).

Summary of RCS DAP Performance for Jet Failures

The only knowledge that the computer program has of RCS failures is by means of the information in DAPDATR2: there is no attempt made to deduce failures from observed spacecraft responses. The Entry DAP has no input provided to specify failed CM RCS jets, and the TVC roll DAP alternately uses (for rolls in a given direction) the A/C and B/D Quads, without regard to the RCS jet status information provided in DAPDATR2. Consequently, it is only the RCS DAP which makes use of jet status information furnished in DAPDATR2.

Routine "S41.2" serves as the interface between the information in DAPDATR2 and the RCS DAP jet selection logic (which is normally entered every 0.1 seconds while the RCS DAP is capable of providing output commands, and which starts at "JETSLECT"). Certain features of "S41.2" simplify the subsequent coding, but also have an influence upon the performance of the program that is not necessarily evidenced in the displays provided to the crew. These features include:

a) If Quad A is reported failed, the program assumes (without checking and with no special indication to the crew) that Quad C is functional.

b) If Quad B is reported failed, the program assumes (without checking and with no special indication to the crew) that Quad D is functional.

c) If neither Quad A/C or Quad B/D is specified for X-translation, the program assumes that both are to be used.

d) If only Quad A/C is specified for X-translation, no attempt is made to use Quad B/D for this purpose (even if Quad A or Quad C has a reported failure). Similarly for roll Quad selection.
e) If only Quad B/D is specified for X-translation, no attempt is made to use Quad A/C for this purpose (even if Quad B or Quad D has a reported failure). Similarly for roll Quad selection.

In addition to the features of "S41.2" that affect program performance, the jet selection logic itself has certain characteristics which strongly influence program performance in the presence of reported RCS failures. These include the following:

If only Quad A/C is specified for X-translation, and Quad A or Quad C has a reported failure, no X-translation is performed except that which may incidentally arise from the single-jet firings to perform pitch control (or yaw control in the event that Quad B or Quad D also has a reported failure).
 Similar to #1, except with Quad B/D instead of Quad A/C.
 If both Quad A/C and Quad B/D are specified for X-translation, proper translation from the unfailed Quad (plus that which may incidentally arise from single-jet firings) will be performed.
 The routine used to estimate burn time ("S40.13"), however, will perform its computations based on four-jet ullage. If Quads A/C and B/D both have reported failures, the situation of #1 applies.

4) If Quad A/C is specified for roll, and Quad A or Quad C has a reported failure, then no Y-translation is performed except that which may incidentally arise from the single-jet firings to perform roll control, "in which case the astronaut should switch to B/D roll."

5) If Quad B/D is specified for roll, and Quad B or Quad D has a reported failure, then no Z-translation is performed except that which may incidentally arise from the single-jet firings to perform roll control, "in which case the astronaut should switch to A/C roll."

6) If Quad A/C is specified for roll, and Quad B or Quad D has a reported failure, then single-jet Z-translation will be performed for that portion of the O.1-second DAP cycle <u>not</u> required for roll attitude control (even though a roll torque is produced).

7) If Quad B/D is specified for roll, and Quad A or Quad C has a reported failure, then single-jet Y-translation will be performed for that portion of the O.1-second DAP cycle <u>not</u> required for roll attitude control (even though a roll torque is produced).

8) If Quad A/C is specified for roll, and Quad B or Quad D has a reported failure, then the jet used in #6 will also be fired during the portion of the 0.1-second DAP cycle that is used for roll attitude control if and only if the roll torque on the vehicle is not reduced to 0 during this interval. It would be fired if no Quad A/C failures were reported (since two-jet torque is used) and no Y-translation is simultaneously specified; other cases can best be analyzed by review of the jet table information itself (see Digital Autopilot RCS Routines). 9) If Quad B/D is specified for roll, and Quad A or Quad C has a reported failure, then the jet used in #7 will also be fired during the portion of the O.1-second DAP cycle that is used for roll attitude control if and only if the roll torque on the vehicle is not reduced to 0 during this interval. It would be fired if no Quad B/D failures were reported and no Z-translation is simultaneously specified; see jet table information for other conditions.

10) As suggested by #1 - #3 above, the philosophy of #6 - #9 above for Y-translation and Z-translation is <u>not</u> employed for X-translation.

RCSDAPON

Set TIME5 to cause program interrupt #2 in 0.6 seconds T5PHASE = 16324 (i.e. positive non-zero) Set bit 3 of RCSFLAGS = 1 (cause FDAI error display initialization) T5LOC = "RCSATT" Set bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 = 01₂ Return

REDORCS

If T5PHASE \leq 0:

T5PHASE = -1

T5LOC = "RCSATT"

Proceed to "RCSATT"

RCSATT

TS = channel 31

If bits 14-13 of C31FLWRD \neq 00₂:

TS = C31FLWRD

If bit 15 (G&N Autopilot Control complement) of TS = 1:

Set bit 14 of RCSFLAGS = 1

HOLDFLAG = +MAX

ERROR = +0

If bit 14(Free Mode complement) of TS = 1: (TS re-computed)

T5PHASE = 8192 (i.e. positive non-zero)

Set TIME5 to cause program interrupt #2 in 0.1 second

Perform "ZEROJET"

Proceed to "KMATRIX"

If T5PHASE > 0: (Tag here "SETT5")

HOLDFLAG = 1

Proceed to "REDAP"

*NOTE: "LM" references are from Apollo 15 program, retained for mnemonic usefulness.

If T5PHASE = +0, proceed to "T5PHASE2" If T5PHASE < 0, proceed to "REDAP" T5PHASE = +0(was -0, indicating phase 1) T5TIME = TIME5Set TIME5 to cause program interrupt #2 in 0.02 seconds If bit 6(NOIMUDAP) of IMODES33 = 1: (IMU data not usable) Set bit 14 of RCSFLAGS = 1HOLDFLAG = 8192TS = channel 31If bits 14-13 of C31FLWRD \neq OO₂: TS = C31FLWRDIf bit 14(Free Mode complement) of TS = 0, Resume Set TIME5 to cause program interrupt #2 in 0.2 seconds T5PHASE = 16364 (i.e. positive non-zero) Resume If bit 14 of RCSFLAGS = 1, proceed to "KMATRIX" (Tag here "RATEFILT") $DRHO = DRHO - K_{gnl}ATTKALMN$ DRHO - ADOT Set $RHO_{O} = CDU_{x}$ and $TS = RHO_{O}$ $TS_1 = - (TS - RHO_0)$ (ones complement difference formed) Set $RHO_1 = CDU_v$ and $TS = RHO_1$ $TS_2 = -(TS - RHO_1)$ (ones complement difference formed) $DELTEMP_{x} = TS_{1} + AMGB1 TS_{2}$ Set $RHO_2 = CDU_z$ and $TS = RHO_2$ $TS_3 = - (TS - RHO_2)$ (ones complement difference formed) $DELTEMP_{y} = AMGB4 TS_2 + AMGB5 TS_3$

 $\underline{MERROR} = \underline{MERROR} + \underline{DELTEMP}$

DRHO = DRHO + DELTEMP

DELTEMP = AMGB7 TS₂ + AMGB8 TS₃

 $ADOT = ADOT + K_{gn2} DRHO_{sp} + KMJ DFT$

(last term involves e.g. KMJ₁ DFT₁ for ADOT₁)

Proceed to "KMATRIX"

KMATRIX

TS = bits 4-1 of ATTSEC

If TS = 0:

Establish "AMEGUPDT" (priority 348)

ATTSEC = 9

If TS \neq 0:

ATTSEC = TS - 1

If HOLDFLAG < O:

CDUXD = CDUXD + DELCDU, in range $\pm 180^{\circ}$

THETAD<u>X</u> = $CDUXD_{SD}$

If bit 4 of RCSFLAGS = 0:

Set bit 4 of RCSFLAGS = 1

Perform "NEEDLER"

Resume

Set bit 4 of RCSFLAGS = 0 If bit 9(NEEDLFLG) of FLAGWRDO = 0:

(means do not display total attitude error; V62 and V63 set 1; V61 sets 0)

AK = - ERROR

Resume

If bit 6(N22ERNDS) of FLAGWRD9 = 1: (set 1 by V62, 0 by V63) ANGREF = THETAD (THETAD is N22)

If bit 6(N22ERNDS) of FLAGWRD9 = 0:

ANGREF = CPHIX (CPHIX is N17)

$$T\underline{S} = CD\underline{U}$$

$$AK_{O} = (ANGREF_{x} - TS_{x}) + AMGB1 (ANGREF_{y} - TS_{y})$$

$$AK_{1} = AMGB4 (ANGREF_{y} - TS_{y}) + AMGB5 (ANGREF_{z} - TS_{z})$$

$$AK_{2} = AMGB7 (ANGREF_{y} - TS_{y}) + AMGB8 (ANGREF_{z} - TS_{z})$$
Resume

<u>AMBGUPDT</u> (Established once a second by "KMATRIX", and also by "REDAP"). If bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 \neq Ol₂, End of job AMGB1 = sin_{sp} CDU_z AMGB8 = cos_{sp} (CDU_x - K_{quadan}) (ones complement difference formed when K_{quadan} used) AMGB4 = cos_{sp}(CDU_x - K_{quadan}) cos_{sp} CDU_z AMGB5 = sin_{sp} (CDU_x - K_{quadan}) AMGB7 = - sin_{sp}(CDU_x - K_{quadan}) cos_{sp} CDU_z End of job

REDAP

If bit 6(45/46FLG) of FLAGWRD3 = 0: (Set O e.g. in "STABLISH")
WHICHDAP = 0
WHICHX2 = 0
Perform "S41.2"
Perform "S40.14"
If bit 6(45/46FLG) of FLAGWRD3 = 1: (Set 1 e.g. in "DKDAPON")
WHICHDAP = 1 (Tag here "DKDLOAD")
WHICHX2 = 2
KMJ = (C_{kmjdckd}, C_{kmjldckd}, C_{kmj2dckd})
JdM = (C_{jdmdckd}, C_{jdmldckd}, C_{jdm2dckd})
ADB = DKDB
DAPZRUPT = -16383
TIMEHOLD = K_{oct240}

(Tag here "ZEROT5") ERROR = 0BIAS = 0TRCOMPBD = 0TRCOMPAC = 0TAU = 0ATTSEC = ODRHO = O $DF\underline{T} = O$ MERROR = 0ADOT = O $WBOD\underline{Y} = O$ Perform "ZEROJET" CHANTEMP = $77777_{\&}$ $CH31TEMP = 77777_8$ $SLOPE = K_{p24}$ which dap T5TIME = 4ATTKALMN = 11 RHO = CDUT5PHASE = +0If bit 6(NOIMUDAP) of IMODES33 = 1: (IMU data not usable) ATTKALMN = O $RCSFLAGS = 20004_{g}$ (bits 14 and 3 = 1) If bit 6(NOIMUDAP) of IMODES33 = 0: Establish "AMBGUPDT" (priority 34g) $RCSFLAGS = 00004_8$ (bit 3 = 1) Set TIME5 to cause program interrupt #2 in 0.06 seconds

Resume

If WHICHDAP = O:	(dummy check for documentation convenience)
BLASTi+1 = 0	(i = 0, 1, 2)
BLASTi+O = O	(i = 0, 1, 2)
iWORD2 = 0	(i = R, P, Y)
iWORD1 = 0	(i = R, P, Y)
If WHICHDAP = 1:	(dummy check for documentation convenience: cells are same addresses as for undocked
62YWW = 0	DAP indicated above (BLASTi+1 thru iWORD1))
62PW = 0	
61YWW = 0	
61PW = 0	
5YWW = 0	
5PW = 0	
62YWT = 0	
62PT = 0	
61YWT = 0	
61PT = 0	
5YWT = 0	
5PT = 0	
If WHICHDAP = 0:	
BLAST1+1 = 4	
BLAST2+1 = 11	
If WHICHDAP = 1:	
5WORD = 0	(Tag here "DKDZERO")
6WORD = 0	
5AXW = 0	
5BXW = 0	
INHIBIT $= 0$	
NEXT6INT = K_{bt9}	

DPRC-6

94 9 C 22 C C 20

A POST A REAL OF

Set bit 1 of RCSFLAGS = 0 (Tag here "ZOT") T6LOC = "T6START"Set TIME6 to 23 (cause program interrupt #1 in about 14 ms) Perform "Cl3STALL" Set bit 15(TIME6 Count Enable) of channel 13 = 1Return T5PHASE2 If ATTKALMN > O: ATTKALMN = ATTKALMN - 1(Tag here "KALUPDT") TS = 8 - T5TIMEIf TS ≤ 0 : TS = 2Set TIME5 to cause program interrupt #2 in TS centi-seconds T5PHASE = -0Resume Set TS = TIME5 and TIME5 to cause program interrupt #2 in 0.02 seconds T5TIME = T5TIME + TSIf $(CDU_z) + K_{m75degs} > 0$: Set bit 14(STIKFLAG) of FLAGWRD1 = 1 If HOLDFLAG \lt O: HOLDFLAG = +0WHICHDAP = 0: (Tag here "OKGIMB") If If bit 15 of RCSFLAGS = 1: ATTKALMN = -1If bit 15 of RCSFLAGS = 0: ATTKALMN = OIf WHICHDAP = 1:

ATTKALMN = -4

DPRC-7

```
Set bits 10-5 of RCSFLAGS = 0 (initialize forced firing bits)
TS = channel 31 (bits 6-1 are RHC command complements)
TS_1 = bits 6-1 of (CH31TEMP \land (-TS) + (-CH31TEMP) \land TS)
                 (gives ones in bits whose TS values \neq CH31TEMP)
If TS_1 \neq 0:
     CH31TEMP = TS
     RCSFLAGS = RCSFLAGS + 2^4 TS_1
                                     (puts TS<sub>1</sub> into bits 10-5)
     Set bits 13-11 of RCSFLAGS = 1
                                        (rate damping)
     If WHICHDAP = 1:
          INHIBIT = -0
TS = bits 6-1 of (- CH31TEMP)
                                   (Tag here "NOCHANGE"; get binary 1 for
                                   logic 1, i.e. binary 0, in input)
If TS = 0:
     Proceed to "AHFNOROT"
                                 (no RHC inputs)
HOLDFLAG = TS
Perform "STICKCHK"
Set bit 14(STIKFLAG) of FLAGWRD1 = 1
TS = channel 31
If bits 14-13 of C31FLWRD \neq OO<sub>2</sub>:
     TS = C31FLWRD
If bit 14(Free Mode complement) of TS = 0:
     Proceed to "FREEFUNC"
If bit 14 of RCSFLAGS = 1:
     Set TIME5 to cause program interrupt #2 in 0.2 second
     T5PHASE = 16364 (i.e. positive non-zero)
     Resume
                                (note that RATEINDX not meaningful
If RATEINDX -5 > 0:
                                 for docked DAP)
     ATTKALMN = -1
```

Perform the following for i = 2,1,0 (j = Y, P, R respectively): If jMANNDX = 0: $WBODY_{i} = 0$ If $jMANNDX \neq 0$: If WHICHDAP = 0: TS = jMANNDX + RATEINDX - 1WBODY = K mantab_{TS} If WHICHDAP = 1: If jMANNDX = Ol₂: (plus command) (Tag here "GETDKRAT") WBODY = DKRATE If $jMANNDX = 10_2$: (minus command) WBODY = - DKRATEIf bits 13-11 of RCSFLAGS = 0: (damping done) If WHICHDAP = O: MERROR_i = MERROR_i - K_{mantab_{TS}} If WHICHDAP = 1: If jMANNDX = Ol₂: $MERROR_{i} = MERROR_{i} - DKRATE$ If $jMANNDX = 10_2$: MERROR; = MERROR; + DKRATE If bits 13-11 of RCSFLAGS \neq 0: $MERROR_{i} = 0$ $ERROR_{i} = MERROR_{isp}$ Proceed to "JETS" FREEFUNC

 $TS_2 = (RCSFLAGS shifted right 4 places)$ (changed bits back to 6-1)

 $TS = TS_2 \cap (-CH31TEMP)$ If WHICHDAP = 0: Proceed to "RHCMINP" TS = (bits 6-1 of TS)Perform "STICKCHK" $TAU_{O} = K_{200mst6_{RMANNDX-1}}$ $TAU_{l} = K_{200mst6_{PMANNDX-l}}$ $TAUZ = TAU_1$ $TAU_2 = K_{200mst6_{YMANNDX-1}}$ $TAUY = - TAU_2$ ERROR = O

(Tag here "DKRHCIMP") If WHICHX2 = 0: (should not be)

T5LOC = "JETSLECT"

If WHICHX2 = 2:

T5LOC = "DKJSLECT"

Resume

AHFNOROT

TS = channel 31

```
If bits 14-13 of C31FLWRD \neq 00<sub>2</sub>:
```

TS = C31FLWRD

If bit 14(Free Mode complement) of TS = 0:

HOLDFLAG = 1 (Tag here "FREECONT")

 $TS_1 = channel 32$ (bits 6-1 are minimum impulse command complements) $TS = CHANTEMP (- TS_1)$ (bits are 1 for 1 > 0 transitions) $CHANTEMP = TS_{T}$

Proceed to "RHCMINP"

If bit 14 of RCSFLAGS = 1:

Set TIME5 to cause program interrupt #2 in 0.2 seconds T5PHASE = 16364 (i.e. positive non-zero) Resume TS = channel 31If bits 14-13 of C31FLWRD \neq OO₂: TS = C31FLWRDIf bit 13(Hold Mode complement) of TS = 0: If HOLDFLAG \neq +0: (Tag here "HOLDFUNC") WBODY = 0BIAS = 0If bits 13-11 of RCSFLAGS \neq 0: ERROR = 0Proceed to "JETS" HOLDFLAG = +0THETADX = CDUIf bit 13(Hold Mode complement) of TS = 1: (since bit 14 = 1, this means Auto) If HOLDFLAG > O: WBODY = OBIAS = 0If bits 13-11 of RCSFLAGS \neq 0: ERROR = 0Proceed to "JETS" HOLDFLAG = +0THETADX = CDU $TS_1 = CDU_y - THETADY$ (ones comp. difference formed) (Tag here "ATTHOLD") $TS_2 = CDU_z - THETADZ$ (ones comp. difference formed) $ERROR_{O} = (CDU_{v} - THETADX) + AMGBL TS_{1}$ (ones comp. difference)

DPRC-11

 $ERROR_1 = AMGB4 TS_1 + AMGB5 TS_2$ $ERROR_2 = AMGB7 TS_1 + AMGB8 TS_2$ If HOLDFLAG <0:

ERROR = ERROR + BIAS

Proceed to "JETS"

RHCMINP

TS = (bits 6-1 of TS)

If WHICHDAP = 0:

Perform "STICKCHK"

TAUO = KmintauRMANNDX

 $TAU_1 = K_{mintau_{PMANNDX}}$

 $TAU_2 = K_{mintau_{YMANNDX}}$

If WHICHDAP = 1:

If TS \neq 0:

(Tag here "DKMICIMP")

Perform "STICKCHK"

INHIBIT = -0

$$TAU_{O} = K_{50mst6_{RMANNDX-1}}$$
$$TAU_{1} = K_{50mst6_{PMANNDX-1}}$$

 $TAUZ = TAU_{1}$

$$TAU_2 = K_{50mst6_{YMANNDX-1}}$$

$$TAUY = -TAU_2$$

ERROR = 0

If WHICHX2 = 0:

T5LOC = "JETSLECT"

If WHICHX2 = 2:

T5LOC = "DKJSLECT"

Resume

 $TS_1 = ADB + K_{flat_{WHICHDAP}}$ i = 2Proceed to "JLOOP" JLOOP $EDOT = ADOT_{i}$ If HOLDFLAG \neq 0: $EDOT = EDOT - WBODY_{1}$ AERR = ERROR. $ADBVEL = TS_1 sgn EDOT$ (-0 is negative) AERRVEL = AERR sgn EDOT (-O is negative) If (AERRVEL - ADB + C_{wlhdslop_{WHICHDAP}) ≤ 0: (Tag here "J6.")} If (|EDOT| - K_{wlhwHICHX2}) > 0: (Tag here "J8") TS = K Wlwhichx2 sgn EDOT – EDOT (Tag here "J22") Proceed to "JTIME"

If $(|EDOT| / SLOPE + TS_1 + AERRVEL) > 0$: (Tag here "NJ22") Proceed to "J23"

- If (|EDOT| K_{wlmh}) > 0: Proceed to "J23"
- If (AERRVEL + TS₁ + C_{wlmhdslpWHICHDAP}) ≤ 0: (Tag here "NJ23")
 TS = K_{wlWHICHX2} sgn EDOT EDOT (Tag here "J22")

Proceed to "JTIME"

TS = - EDOT - C_{slope2} (AERR + ADBVEL) (Tag here "J24") Proceed to "JTIME"

JETS

If (AERRVEL - TS_1) \leq 0:

If $(ADB - AERRVEL - |EDOT| / SLOPE) \leq 0$: TS = - EDOT (Tag here "J18")

Proceed to "JTIME"

If WHICHDAP = 0:

Proceed to "J23"

If $(|EDOT| / SLOPE + AERRVEL + TS_1) \lt 0$: (Tag here "NEWCHECK") TS = - EDOT - C. (AERR + ADBVEL) (Tag here "J24")

Proceed to "JTIME"

Proceed to "J23"

If $(AERRVEL - TS_1 - C_{wlmhdslp_{WHICHDAP}}) \leq 0$: (Tag here "J7")

TS = C (ADBVEL - AERR) - EDOT (Tag here "J20")

Proceed to "JTIME"

TS = - K sgn EDOT - EDOT (Tag here "J21") WHICHX2 Proceed to "JTIME"

```
<u>J23</u> (Entered if conclude in deadzone)
```

j = 13 - i

Set bit j of RCSFLAGS = 0 (reset rate damping bit)

If i = 2:

 $TS = 00300_{\alpha}$ (bits 8-7, yaw command)

If i = l:

 $TS = 00060_{\alpha}$ (bits 6-5, pitch command)

If i = 0:

 $TS = 01400_{\alpha}$ (bits 10-9, roll command)

If RCSFLAGS \bigwedge TS \neq 0: (i.e. forced firing from RHC)

TS = - EDOT

Proceed to "JTIME"

If WHICHDAP = 1:

(Tag here "CHECKDAP")

 $TS_2 = 0$ $TAU_i = 0$

Proceed to 5th line of "JTIME"

JTIME

 $TS_2 = JdM_1 TS$ (B24 docked, B20 docked) If WHICHDAP = 0:

Shift TS_2 right 4 places (gives scaling of B24 cs) TAU_i = TS₂, with magnitude limited $< 2^{10}$ centi-seconds If i> 0:

If WHICHDAP = 1: TS = i - 1 $TAUZ_{TS} = C_{ecp} TS_2$, with magnitude limited $< 2^{10}$ cs (for TS = 1, load TAUY) i = i - 1

Proceed to "JLOOP"

If WHICHX2 = 0:

T5LOC = "JETSLECT"

If WHICHX2 = 2:

T5LOC = "DKJSLECT"

Resume

JETSLECT Entered for undocked (to OWS) DAP

TS = 6 - T5TIME

If TS ≤ 0 :

TS = 2

Set TIME5 to cause program interrupt #2 in TS centi-seconds

TIME6 = K_{l4ms} (hence jets desired for ~86-100 ms on for 100 ms) Perform "Cl3STALL"

Set bit 15(TIME6 Count Enable) of channel 13 = 1

DPRC-15

TS = bits 12-7 of - (channel 31) (gives "true" translation bits)

If TS = 0:

- XNDXl = OXNDX2 = 0YNDX = 0
- ZNDX = O
- TS \neq 0: If

XNDX1 = bits 8-7 of TS, shifted right 6 places (to bits 2-1) XNDX2 = XNDX1

YNDX = bits 10-9 of TS, shifted right 8 places (to bits 2-1)

ZNDX = bits 12-11 of TS, shifted right 10 places (to bits 2-1)

If bit 14 of DAPDATR1 = 0: (means LM-off)

ATTKALMN = -2

If bit 14 of DAPDATR1 = 1: (means LM-on)

ATTKALMN = -3

If XTRANS = 1:

XNDX1 = 0

If XTRANS = -1:

XNDX2 = 0

 $TAU_1 = 0$: If

PINDEX = O

- TAU₁ > O: If PINDEX = 1
- If TAU₁ < 0:

PINDEX = 2

RACFAIL = 0:If

 $TS = K_{xtndx_{XNDX1}}$

If RACFAIL > 0:

TS = 9

If RACFAIL < 0:

TS = 12

TS = TS + PINDEX

 $PWORD1 = bits 10, 9, and 4-1 of K_{pytab_{TS}}$

NPJETS = bits 10-9 of PWORD1, shifted right 8 places (to bits 2-1)

If $TAU_2 = 0$:

YINDEX = 0

If $TAU_2 > 0$:

YINDEX = 1

If $TAU_2 < 0$:

YINDEX = 2

If RBDFAIL = 0:

 $TS = K_{xtndx_{XNDX2}}$

If RBDFAIL > O:

TS = 9

If RBDFAIL < 0:

TS = 12

TS = TS + YINDEX

YWORD1 = bits 12, 11, and 8-5 of $K_{pytab_{TS}}$

NYJETS = bits 12-11 of YWORD1, shifted right 10 places (to bits 2-1)

If $TAU_0 = 0$:

RINDEX = O

If TAU_O > O:

RINDEX = 1

If TAU_O < 0:

RINDEX = 2

If ACORBD 🌛 +0, proceed to "BDROLL"

If RACFAIL = 0:

 $TS = K_{xtndx_{YNDX}}$

If RACFAIL > O:

TS = 9

If RACFAIL < O:

TS = 12

- TS = TS + RINDEX
- RWORD1 = bits 11-5 of K_{rtab}_{TS}

If ZNDX \triangleleft O:

NRJETS = (bits 11-9 of RWORD1, shifted right 8 places) - 2

Proceed to "ROLLTIME"

```
If RBDFAIL = 0:
```

TS = 0

If RBDFAIL > 0:

TS = 3

If RBDFAIL < 0:

TS = 6

 $TS = TS + K_{xnlndx_{ZNDX}}$ $TS_{l} = RWORDl + (bits ll-9, 4-l of K_{yztab_{TS}})$ $NRJETS = (bits ll-9 of TS_{l}, shifted right 8 places) - 4$ $If NRJETS \neq 0: (have a net roll torque)$ $RWORDl = TS_{l}$ Proceed to "ROLLTIME"

If $TAU_0 = 0$: (i.e. no roll requested) RWORD1 = TS₁

Proceed to "ROLLTIME"

NRJETS = (bits 11-9 of RWORD1, shifted right 8 places) - 2

Proceed to "ROLLTIME" (Z-translation ignored in favor of roll) BDROLL

If RBDFAIL = O:

 $TS = K_{xtndx_{ZNDX}}$

If RBDFAIL > 0:

TS = 9

If RBDFAIL < 0:

TS = 12

TS = TS + RINDEX

RWORD1 = bits 14-12 and 4-1 of K_{rtab}_{TS}

If YNDX = 0:

NRJETS = (bits 14-12 of RWORD1, shifted right 11 places) - 2 Proceed to "ROLLTIME"

If RACFAIL = 0:

TS = 0

If RACFAIL > 0:

TS = 3

If RACFAIL < 0:

TS = 6

TS = TS + K_{xnlndx_{YNDX} TS_l = RWORD1 + (bits 14-12, 8-5 of K_{yztab_{TS}})} NRJETS = (bits 14-12 of TS₁, shifted right ll places) - 4

If NRJETS $\neq 0$: (have a net roll torque)

 $RWORDl = TS_l$

Proceed to "ROLLTIME"

If
$$TAU_0 = 0$$
: (no roll requested)

 $RWORDl = TS_1$

Proceed to "ROLLTIME"

NRJETS = (bits 14-12 of RWORD1, shifted right 11 places) - 2

Proceed to "ROLLTIME" (Y-translation ignored in favor of roll)

ROLLTIME

If $TAU_0 = 0$: $DFT_{O} = K_{dftm_{NRJETS}}$ RWORD2 = RWORD1BLASTO+O = OProceed to "PITCHTIM" BLASTO+O = K_{njt}_{NRJETS} TAUO TS = BLASTO+0 + K mptlsc If TS > 0: $DFT_{O} = K_{dftm_{NRJETS}}$ $TAU_O = TAU_O - DFT_O$ BLASTO+0 = K_{ptlsc} If TS **<** 0: Limit BLASTO+O > K $DFT_{O} = NRJETS BLASTO+O$ $TAU_0 = 0$

If YNDX = 0:

RWORD2 = 0

If ZNDX = 0, proceed to "PITCHTIM"

Proceed to "ACBD2Z"

If ACORBD < -0:

If |RACFAIL > 0:

RWORD2 = 0

If ZNDX = 0, proceed to "PITCHTIM"

Proceed to "ACBD2Z"

TS = K_{xtndxyNDX} RWORD2 = bits 11-5 of K_{rtab_{TS}} If ZNDX = 0, proceed to "PITCHTIM"

Proceed to "ACBD2Z"

```
If RACFAIL = 0:
```

TS = 0

If RACFAIL > 0:

TS = 3

If RACFAIL < 0:

TS = 6

TS = TS + K<sub>xnlndx_{YNDX}
RWORD2 = bits 14-12, 8-5 of K_{yztab_{TS}}
NRJETS = (bits 14-12 of RWORD2, shifted right ll places) - 2
DFT₀ = DFT₀ + NRJETS (K_{ptlsc} - BLASTO+0)
If ZNDX = 0, proceed to "PITCHTIM"
Proceed to "ACBD2Z"</sub>

ACBD2Z

If ACORBD > +0: If [RBDFAIL] > 0, proceed to "PITCHTIM" $TS = K_{xtndx_{ZNDX}}$ $RWORD2 = RWORD2 + (bits 14-12, 4-1 of K_{rtab})$ Proceed to "PITCHTIM" If RBDFAIL = 0:TS = 0If RBDFAIL > O: TS = 3If RBDFAIL < O: TS = 6TS = TS + K_{xnlndx_{ZNDX}} RWORD2 = RWORD2 + (bits 11-9, 4-1 of K_{yztab_{TS}}) NRJETS = (bits 14-9 of RWORD2, shifted right 8 places) - 2 $DFT_{O} = DFT_{O} + NRJETS (K_{ptlsc} - BLASTO+O)$ Proceed to "PITCHTIM"

PITCHTIM

If
$$TAU_1 = 0$$
:
 $DFT_1 = 0$
 $PWORD2 = PWORD1$
 $BLAST1+0 = 0$
 $Proceed to "YAWTIME"$
If TAU ≤ 0

NPJETS =
$$-$$
 NPJETS

BLAST1+0 = K_{njt}_{NPJETS} TAUl TS = BLAST1+0 + K_{mptlsc} TS 🔰 0: If $DFT_1 = K_{dftm_{NPJETS}}$ $TAU_1 = TAU_1 - DFT_1$ BLAST1+0 = K ptlsc TS < 0: If Limit BLAST1+0 > K_{14ms} $DFT_1 = NPJETS BLAST1+O$ $TAU_7 = 0$ TS = 0If RACFAIL = 0: TS = K XNDX1 PWORD2 = bits 10, 9, and 4-1 of $K_{pytab_{TS}}$ (is 0 for TS = 0) Proceed to "YAWTIME"

YAWTIME

If $TAU_2 = 0$: $DFT_2 = 0$ YWORD2 = YWORD1 BLAST2+0 = 0 Proceed to "T6SETUP"If $TAU_2 \lt 0$: NYJETS = - NYJETS $BLAST2+0 = K_{njt_{NYJETS}}$ TAU_2 $TS = BLAST2+0 + K_{mptlsc}$

```
If TS > 0:
```

 $DFT_{2} = K_{dftm}_{NYJETS}$ $TAU_{2} = TAU_{2} - DFT_{2}$ $BLAST2+0 = K_{ptlsc}$

If TS **≼** 0:

Limit BLAST2+0 > K_{1/4}ms DFT₂ = NYJETS BLAST2+0 TAU₂ = 0

TS = 0

If RBDFAIL = 0:

 $TS = K_{xtndx_{XNDX2}}$

YWORD2 = bits 12, 11, and 8-5 of $K_{pytab_{TS}}$

Proceed to "T6SETUP"

```
(is 0 for TS = 0)
```

T6SETUP

BLASTO+1 = 0

BLAST1+1 = 4

BLAST2+1 = 11

If BLAST1+0 - BLAST0+0 ≤ 0 :

Set BLASTO = BLAST1 and BLAST1 = BLASTO

If BLAST2+0 - BLAST1+0 **<** 0:

Set BLAST1 = BLAST2 and BLAST2 = BLAST1

If BLAST1+0 - BLASTO+0 < 0:

Set BLASTO = BLAST1 and BLAST1 = BLASTO

(now ordered BLASTO+O < BLAST1+O 🗲

 $BLAST2+0 = BLAST2+0 - BLAST1+0 \qquad BLAST2+0)$

BLAST1+0 = BLAST1+0 - BLAST0+0

```
T5LOC = "RCSATT"
```

Set bit 1 of RCSFLAGS = 0

T5PHASE = -0

Resume

T6START

- If |TIME6/) O, Resume
- If WHICHDAP = 1:

Proceed to "DKT6"

If bit 1 of RCSFLAGS = 0:

Set bit 1 of RCSFLAGS = 1

Channel 6 = bits 8-1 of RWORD1

Channel 5 = bits 8-1 of (PWORD1 + YWORD1)

If BLASTO+0 > 0:

TIME6 = BLASTO+0

BLASTO+0 = 0

Perform "Cl3STALL"

Set bit 15(TIME6 count enable) of channel 13 = 1

Resume

If BLASTO+0 = 0:

TS = BLASTO+1

Perform "REPLACE"

BLASTO+0 = - 1/16

If BLAST1+0 > 0:

TIME6 = BLAST1+0

BLAST1+0 = 0

Perform "Cl3STALL"

Set bit 15(TIME6 count enable) of channel 13 = 1

Resume

If BLASTI+0 = 0:

TS = BLAST1+1

Perform "REPLACE"

BLAST1+0 = -1/16

If BLAST2+0 > 0:

TIME6 = BLAST2+0

BLAST2+0 = 0

Perform "Cl3STALL"

Set bit 15 (TIME6 count enable) of channel 13 = 1

Resume

If
$$BLAST2+0 = 0$$
:

TS = BLAST2+1

Perform "REPLACE"

BLAST2+0 = -1/16

Resume

REPLACE

- If TS = 0: (roll information) Channel 6 = bits 8-1 of RWORD2 Return
- If TS = 4: (pitch information) $TS_1 = bits 8-5$ of channel 5 Channel 5 = bits 8-1 of $(TS_1 + PWORD2)$ Return

Quantities in Computations

See also list of major variables and list of routines

5AXW, 5EXW, 5PT, 5PW, 5WORD, 5YWT, 5YWW: See Digital Autopilot Docked Jet Selection.

61PT, 61PW, 61YWT, 61YWW, 62PT, 62PW, 62YWT, 62YWW, 6WORD: See Digital Autopilot Docked Jet Selection.

ACORBD: See Digital Autopilot Interface Routines.

ADB: See Digital Autopilot Interface Routines.

ADBVEL: Single precision value of (ADB + K) sgn EDOT used in "JLOOP", B-l revolutions.

ADOT (ADOT, ADOT, ADOT): Filtered value of roll, pitch, and yaw bodyangle rates (about "control axes"), scale factor B-3, units revolutions/deci-second (one deci-second is O.l seconds, the iteration rate of the DAP). The cells are OMEGAB in TVC DAP. Could also be considered scaled BO in "units" of 450°/second. Displayed by N56.

- AERR: Single precision value of ERROR. about appropriate axis used in "JLOOP", scale factor B-1, units revolutions.
- AERRVEL: Single precision value of AERR sgn EDOT used in "JLOOP", scale factor B-1, units revolutions.

 $A\underline{K}$ (AK_0 , AK_1 , AK_2): See Digital Autopilot Interface Routines.

AMGB1, AMGB4, AMGB5, AMGB7, AMGB8: Single precision matrix elements which are used by the DAP to transform information from gimbal to control axes, scale factor BO, computed once per second by "AMBGUPDT". The matrix from gimbal to control axes may be written as:

[1	AMGBL	0
0	AMGB4	AMGB5
0	AMGB7	AMGB8

In order to "account for the roll displacements of the reaction jets with respect to navigation base coordinates", the outer gimbal angle (CDU_x) used to compute the matrix elements is decremented by K_{quadan} , thus giving the "control axes" result.

ANGREF: Value of reference angle (THETAD or CPHIX) used in "KMATRIX" to compute display information of total attitude error (if required), scale factor B-l, units revolutions.

- ATTKALMN: Single precision quantity, scale factor Bl4, used to select appropriate gains in "RCSATT". To initialize the filter, the cell is set to ll (decremented to lO before used) in "REDAP", and decremented in "T5PHASE2" (with subsequent performance of further computations, including jet firings, bypassed until ATTKALMN = 0). A value of 0 is the normal undocked steady-state filter gain value; a setting of -1 is used for high-rate (RATEINDX = 6) automatic maneuvers (set in "T5PHASE2" if bit 15 of RCSFLAGS = 1 and undocked or if RHC with RATEINDX = 6); a setting of -2 is used (set in "JETSLECT") if IM-off translation hand controller inputs are provided; a setting of -3 is used if IM-on translation inputs are provided; a setting of -4 is used for normal docked (to OWS) steady-state filter gains; and a setting of -5 is set in "BURBLE" for X translation inputs in docked DAP.
- ATTSEC: Single precision quantity, scale factor B14, initialized to 0 in "REDAP" and used in "KMATRIX" to cause "AMBGUPDT" to be established once a second (every tenth entrance to "KMATRIX").
- BIAS (BIAS₀, BIAS₁, BIAS₂): Set of single precision angles, scale factor B-1, units revolutions, added to attitude errors to provide additional lead and prevent overshoot when starting/stopping automatic maneuvers. They are added to ERROR (used as the attitude error in "JLOOP") if HOLDFLAG is negative, and the values are computed in "LOCSKIRT" and "MANUSTOP" (where set 0). Except for R60 maneuvers, value normally 0.
- BLASTO, BLAST1, BLAST2: Set of 3 quantities handled double precision, used for RCS jet burn time control. Before "T6SETUP" is entered, BLASTO is associated with roll, BLAST1 with pitch, and BLAST2 with yaw. The most significant halves of each word have required firing time for RWORD1, PWORD1, and YWORD1 respectively, scale factor BlO, units centi-seconds. The least significant halves contain an index which identifies the axis in the most significant half (set at start of "T6SETUP" to 0, 4, and 11 respectively for convenience in the coding). Cells subsequently arranged in order of increasing time durations, then replaced with time intervals. In "T6START", most significant half set +0 if associated time in TIME6, and -1 (B14, i.e. -1/16 B10) after the expiration of that interval.

Cecp, Cecp1: See Digital Autopilot Docked Jet Selection.

^Cjdmdckd, ^Cjdmldckd, ^Cjdm2dckd: Single precision erasable memory constants, program notations "J/MDCKD", "J/MIDCKD", and "J/M2DCKD" respectively, used in "REDAP" to initialize JdM. Scale factor is B27, units of (revolutions/(deci-second centi-second))⁻¹ (see JdM). They are the reciprocal of average roll, pitch, and yaw acceleration of a jet couple respectively, and are employed only in docked (to OWS) DAP.

- Ckmjdckd, Ckmjldckd, Ckmjldckd: Single precision erasable memory constants, program notations "KMJDCKD", "KMJlDCKD", and "KMJ2DCKD" respectively, used in "REDAP" to initialize KMJ. Scale factor is B-13, units of (revolutions/(deci-second centi-second)) (see KMJ). They correspond to the one-jet average roll, pitch, and yaw acceleration respectively, and are employed only in docked (to OWS) DAP.
- ^Cslope2₀ : Single precision erasable memory constant, program notation "SLOPE2", scale factor B-2, units (revolutions/deci-second)/ revolution, used for undocked DAP phase plane computations.
- C : Single precision erasable memory constant, program notation slope21 "SLOPE2 +1", scale factor B-2, units (revolutions/deci-second)/ revolution, used for docked DAP phase plane computations.
- C : Single precision erasable memory constant, program notation wlhdslop_O "WLH/SLOP", scale factor B-l, units revolutions, used in undocked DAP phase plane computations (nominally is sum of rate limit and half-width, divided by SLOPE, hence the notation).
- C single precision erasable memory constant, program notation "WLH/SLOP +1", scale factor B-1, units revolutions, used in docked DAP phase plane computations.
- ^CwlmhdslpO "WL-H/SLP", scale factor B-1, units revolutions, used in undocked DAP phase plane computations (nominally is rate limit minus half-width, divided by SLOPE, hence the notation).
- Cwlmhdslp: Single precision erasable memory constant, program notation "WL-H/SLP +1", scale factor B-1, units revolutions, used in docked DAP phase plane computations.
- C31FLWRD: Single precision flagword used for backup of bits 15-13 of channel 31 (by bits 15-13, i.e. digit "A") and bits 5-4 of channel 33 (by bits 5-4, i.e. digit "D"). It can be loaded by NOI means (address 0373₈). For digit A, a value of 0 (or 4) means should use bits 15-13 of channel 31; values of 1-3 mean G&N Control (Free, Attitude Hold, and Auto respectively); values of 5-7 mean SCS Control. For digit D, a value of 0 means use bits 5-4 of channel 33; of 1-3 mean optics CMC, Zero, and Manual respectively (values of 4-7 mean the same as 0-3 respectively). Should be pad-loaded to zero; digits B, C, and E ("ABCDE") are ignored.
- CDUXD: See Attitude Maneuvers (used in "KMATRIX" to update THETADX if HOLDFLAG is negative).
- CH31TEMP: Single precision cell used in "T5PHASE2" to contain the previous value of channel 31 inputs (bits 6-1 are rotational hand controller inputs) if bits 6-1 change, in order to detect binary 1 → 0 transitions (logic 0 to 1) for RHC control purposes: binary 0 →1 are also detected, of course. It is initialized to 777778 by "REDAP". Can be set to cause "forced firings" for docked DAP (e.g. in "NEWANGL", "STOPRATE", and"CRS61.2A").

- CHANTEMP: Single precision octal cell used in Free Mode (at the start of "AHFNOROT") to retain previous value of channel 32 input (cf. CH31TEMP), for use in providing minimum impulse control. It is initialized to 77777₈ in "REDAP".
- CPHIX: Set of reference angles for attitude error (AK) display, scale factor B-1, units revolutions. They can be loaded by N17, or set to present CDU values by verb 60. Input of a verb 63 causes them to be used to compute AK. They are single precision.

DAPZRUPT: See Digital Autopilot Docked Jet Selection.

- DELCD<u>U</u>: See Attitude Maneuvers (used in "KMATRIX" to increment CDUX<u>D</u> values if HOLDFLAG negative).
- DELTEMP: Value (computed double precision) of CDU angle change, converted to body rates, computed in "RCSATT". Scale factor is B-1, units revolutions/deci-second.
- DFT_(DFT_0, DFT_1, DFT_2): Single precision equivalent times, scale factor Bl0, units centi-seconds, giving the equivalent single-jet burning time computed for roll, pitch, and yaw axes respectively, used in the "RCSATT" rate filter to update body-angle rates.
- DKDB: Single precision value of deadband to be used for docked DAP, scale factor B-1, units revolutions. It can be loaded via R2 of N89, and is also expected to form part of the prelaunch load.
- DKRATE: Single precision value of maneuver rate (for R6O and RHC purposes) for docked DAP, scale factor B-9, units revolutions/deci-second. It can be loaded via Rl of N89, and is also expected to form part of the prelaunch load.
- DRHO (DRHO_O, DRHO₁, DRHO₂): Value of body rate used as input to ADO<u>T</u> filter, scale factor B-1, units revolutions/deci-second, computed in "RCSATT" as the difference between measured (from CDU data) and ADO<u>T</u> body rates, plus a weighted estimate of previous DRHO.
- EDOT: Value of attitude rate error used in "JLOOP", scale factor B-3, units revolutions/deci-second (set to ADOT, decremented by WBODY, if HOLDFLAG $\neq 0$). Its absolute value is stored in EDOTVEL cell.
- ERROR (ERROR₀, ERROR₁, ERROR₂): Single precision value of attitude error for automatic maneuvers or attitude hold (computed in "AHFNOROT"), or RHC maneuvers (loaded with MERRO<u>R</u> in "T5PHASE2"), used to load AERR at the start of "JLOOP". Scale factor is B-1, units are revolutions. Set 0 if free mode inputs are made, and can be loaded into A<u>K</u> (- ERRO<u>R</u>) if bit 9(NEEDLFIG) of FLAGWRDO = 0 (e.g. V61).

HOLDFLAG: See Digital Autopilot Interface Routines.

IMODES33: See IMU Computations.

INHIBIT: See Digital Autopilot Docked Jet Selection.

 $Jd\underline{M}$ ($Jd\underline{M}_{0}$, $Jd\underline{M}_{1}$, $Jd\underline{M}_{2}$): See Digital Autopilot Interface Routines.

K Single precision constant, program notation "=14MS", scale factor BlO, units centi-seconds. Value is 23 x 2⁻¹⁴, corresponding to about 14.4 milliseconds.

K_{200mst6}: See Digital Autopilot Docked Jet Selection.

 K_{50mst6} (i = -1 to 2): Set of single precision constants, program i notation (i = 0) "50MST6", scale factor BlO, units centi-seconds. Values for i = -1 and i = 2 are zero. For i = 0, value is 80 x 2⁻¹⁴ (corresponding to 5 x 2⁴ x 2⁻¹⁴ = 5 x 2⁻¹⁰, where first term is value in centi-seconds and second is scale factor). For i = 1, value is -80 x 2⁻¹⁴ (corresponding to - 5 centi-seconds).

K_{bt9}: Single precision constant, program notation "BIT9", scale factor BlO, units centi-seconds. Value is 00400_g, corresponding to 16 centiseconds.

K : Set of single precision constants, program notation "DFTMAX", i scale factor BlO, units centi-seconds. Values are:

i	Value	True Value
-3 -2 -1 0 1 2 3	$\begin{array}{c} -480 \times 2^{-14} \\ -320 \times 2^{-14} \\ -160 \times 2^{-14} \\ 0 \\ 160 \times 2^{-14} \\ 320 \times 2^{-14} \\ 480 \times 2^{-14} \end{array}$	-0.3 seconds -0.2 seconds -0.1 seconds 0.0 seconds 0.1 seconds 0.2 seconds 0.3 seconds

K : Single precision constant, program notation "FLAT", scale factor 0 B-1, units revolutions, used to specify "flat region" in "JLOOP" (the offset of the dead-zone line when the rate error changes polarity). Value is 4 x 2⁻¹⁴, corresponding to about 0.044°.

 K_{flat} : Single precision constant, program notation "FLAT +1", scale factor 1 B-1, units revolutions (see K_{flat}). Value is 4 x 2⁻¹⁴, or about 0.044°.

K solution of single precision constants, program notation (i = 0) "GAIN1", gnl i scale factor BO, used in "RCSATT" to obtain a new value of DRHO (from samples taken 10 times/second). The value of the index is given by the contents of ATTKALMN. In the table below, the "True Value" obtained by converting the octal memory information to decimal.

i	Value	True Value
10 9876543210 -12345	0.9342 0.8151 0.6933 0.5970 0.5223 0.4634 0.4161 0.3774 0.3452 0.3180 0.0640 0.2112 0.8400 0.2112 0.0640 0.0640 0.0640	0.93420 0.81512 0.69330 0.59698 0.52228 0.46338 0.41608 0.37738 0.34521 0.31799 0.06403 0.21118 0.84003 0.21118 0.06403 0.06403

K gn2: Set of single precision constants, program notation (i = 0) "GAIN2", gn2: scale factor BO, used in "RCSATT" to obtain a new value of ADOT (from DRHO information acquired 10 times/second). The value of the index is given by the contents of ATTKALMN. In the table below, the "True Value" obtained by converting the octal memory information to decimal.

i	Value	True Value
10	0.8683	0.86829
9	0.4817	0.48169
8	0.2955	0.29547
7	0.1985	0.19849
7 6 5	0.1422	0.14221
5	0.1069	0.10687
4	0.0832	0.08319
432	0.0666	0.06659
2	0.0545	0.05450
l	0.0454	0.04541
0	0.0016	0.00159
-1	0.0174	0.01740
-2	0.3600	0.35999
-3	0.0174	0.01740
-4	0.0016	0.00159
-5	0.0016	0.00159

K_{m75degs}: Single precision constant, program notation "-75DEGS", scale factor B-1, units revolutions. Nominal value is -0.41666, corresponding to approximately -75°. Octal value is 62524g, which corresponds (after a one-bit correction reflecting formation of the absolute value, but ignoring twos complement) to - 15254g, or about -75.015°. K (i = 0-7): Set of single precision constants, program notation i (i = 0) "MANTABLE", scale factor B-9, units revolutions/decisecond. The single precision constants are shifted right (double precision) by 6 places for loading into WBODY and by 8 places for decrementing MERROR in "T5PHASE2". The nominal value times 3600/512 gives the value in degrees/second in the table below.

<u>i</u>	Value	Corresponds to
01234567	0.0071111 -0.0071111 0.028444 -0.028444 0.071111 -0.071111 0.284444 -0.284444	0.05 [°] /sec -0.05 [°] /sec 0.20 [°] /sec -0.20 [°] /sec -0.50 [°] /sec 2.00 [°] /sec -2.00 [°] /sec

K : Set of single precision constants, program notation (i = 0) i "MINTAU", scale factor BlO, units centi-seconds. Values for i = 0 and i = 3 are zero; for i = 1, value is 23 x 2⁻¹⁴ (about 14.4 milliseconds), and for i = 2, value is -23 x 2⁻¹⁴ (about -14.4 ms).

K mptlsc: Single precision constant, program notation "=-.1SEC", scale
factor BlO, units centi-seconds. Value is -160 x 2⁻¹⁴,
corresponding to -0.1 second.

K is set of single precision constants, program notation (i = 0) "NJET", njt i scale factor BO, used to correct jet burn times (which are derived based on one-jet operation) for the number of jets actually to be used, and also to compensate for polarity of TAU (negative for negative jets). Values are:

<u>i</u> <u>Value</u>

-3 -0.333333

-2 -0.5-1 -0.9999

- -1 -0.9999999 0 0.0
- 1 0.999999
- 2 0.5
- 3 0.333333
- K oct240: Single precision constant, program notation "OCT240", scale factor Bl0, units centi-seconds. Value is 002408, corresponding to ten centi-seconds.

^K : Single precision constant, program notation "=.24", scale factor B-2, value 0.24. Used in "REDAP" as initial condition for SLOPE for undocked DAP. Value corresponds to (-1) x -0.6 x 0.1 x 2², where first term is an equation factor, second is slope of attitude rate error limit line vs. attitude error (in units of rev/sec per rev), third converts to deci-seconds, and fourth is scale factor.

- K : Single precision constant, program notation "=.24 +1", scale factor p241 B-2, value 0.12. Used in "REDAP" as initial condition for SLOPE for docked DAP. Value corresponds to (-1) x -0.3 x 0.1 x 2², where terms have same significance as for K p240.
- K single precision constant, program notation "=+.1SEC", scale
 factor BlO, units centi-seconds. Value is 160 x 2⁻¹⁴, corresponding to 0.1 second.
- K : Single precision set of octal constants, program notation "PYTABLE", i giving information on pitch and yaw jets selected, together with the number of jets used for the function. See information below.
- K_{quadan} : Single precision constant, program notation "QUADANGL", scale factor B-1, units revolutions, used to account for the roll displacements of the reaction jets with respect to navigation base coordinates. Value is 660 x 2⁻¹⁴, corresponding to about 7.251°.
- K : Single precision set of octal constants, program notation (i = 0)
 i "RTABLE", giving information on roll jets selected (for AC or BD
 quads), together with number of roll jets (with polarity). See
 information below.
- K : Constant, program notation "WL", scale factor B-3, units revolutions/ 0 deci-second, used for undocked DAP. Value is 0.0008888888, corresponding to about 0.4⁰/second (nominal rate limit).
- K : Constant, program notation "WL +2", scale factor B-3, units revolutions/ wl2 deci-second, used for docked DAP. Value is 0.0002222222, corresponding to about 0.1^o/second (nominal rate limit).
- K : Constant, program notation "WLH", scale factor B-3, units revolutions/ wlh 0 deci-second, used for undocked DAP. Value is 0.001111111, corresponding to about 0.5^o/second (nominal rate limit plus half-width of 0.1^o/second).
- K : Constant, program notation "WLH +2", scale factor B-3, units wlh₂ revolutions/deci-second, used for docked DAP. Value is 0.0003333333, corresponding to about 0.15^o/second (nominal rate limit plus half-width of 0.05^o/second).
- K : Constant, program notation "WLMH", scale factor B-3, units WlmhO revolutions/deci-second, used for undocked DAP. Value is 0.00066666666, corresponding to about 0.3^o/second (nominal rate limit minus half-width of 0.1^o/second).
- K : Constant, program notation "WLMH +2", scale factor B-3, units wlmh² revolutions/deci-second, used for docked DAP. Value is 0.000111111, corresponding to about 0.05[°]/second (nominal rate limit minus half-width of 0.05[°]/second).

- K_{xtndxi}: Set of single precision constants, program notation "XLNNDX", i scale factor Bl4, used to provide index information for combining translation and rotation commands. Value is equal to (3 i) for i = 0, 1, and 2, and is equal to zero for i = 3.
- Kyztabi giving information permitting the combination of Y or Z translations with roll, as well as number of jets giving a "net roll torque". See information below.

KMJ (KMJO, KMJ, KMJO): See Digital Autopilot Interface Routines.

MERROR: Value of integrated rate error used with RHC ("manual") control, scale factor B-1, units revolutions, computed in double precision (a single precision version is loaded into ERROR in "T5PHASE2" if manual RHC inputs are provided). The cells are initialized to O in "REDAP" and are also set O in "T5PHASE2" if bits 13-11 of RCSFLAGS are not all O (i.e. damping not done); they are updated in "RCSATT" by the measured (from CDU first differences) attitude rate, from which is subtracted desired rate (if damping done) in "T5PHASE2".

NEXT6INT: See Digital Autopilot Docked Jet Selection.

- NPJETS: Single precision value of number of pitch jets to be fired, scale factor Bl4. Sign of TAU, added in "PITCHTIM".
- NRJETS: Single precision value of number of roll jets to be fired (with sign indicating polarity), scale factor B14.
- NYJETS: Single precision value of number of yaw jets to be fired, scale factor B14. Sign of TAU₂ added in "YAWTIME".
- PINDEX: Single precision index parameter, scale factor BL4, indicating the polarity of the pitch command desired: 0 if none, 1 if plus pitch, and 2 if minus pitch.

PMANNDX: See Digital Autopilot Interface Routines.

PWORD1, PWORD2: Single precision cells containing in bits 8-1 the pitch-command bits to be loaded in channel 5 when "T6START" is entered and after the pitch time duration has expired, respectively. The pitch time duration originally is in BLAST1+0.

RACFAIL: See Digital Autopilot Interface Routines.

RATEINDX: See Digital Autopilot Interface Routines.

RBDFAIL: See Digital Autopilot Interface Routines.

RCSFLAGS: See Digital Autopilot Interface Routines.

DPRC-35

- RHO (RHO, RHO, RHO₂): Value of previous CDU information (initialized in "REDAP") used to compute input to attitude rate filter in "RCSATT", scale factor B-1, units revolutions in twos complement.
- RINDEX: Single precision index parameter, scale factor BL4, indicating the polarity of the roll command desired: 0 if none, 1 if plus roll, and 2 if minus roll.

RMANNDX: See Digital Autopilot Interface Routines.

- RWORD1, RWORD2: Single precision cells containing in bits 8-1 the roll-command bits (perhaps combined with Y and/or Z axis translation) to be loaded into channel 6 when "T6START" is entered and after the roll time duration has expired, respectively. The roll time duration originally is in BLASTO+0.
- SLOPE: Single precision cell, scale factor B-2, units (revolutions/ deci-second)/revolution, set to K_{p24i} in "REDAP" and not subsequently changed. It is a "variable" (i.e. in erasable memory) because the computer hardware divide order is designed to accept operands only from erasable memory.
- T5LOC: See Digital Autopilot Interface Routines.
- T5PHASE: Single precision cell, scale factor B14, used to control the program branching that takes place when program interrupt #2 transfers to "RCSATT". A positive non-zero value (of any magnitude) causes the DAP to be initialized; a +0 value causes "T5PHASE2" to be entered; a negative non-zero value (of any magnitude) causes a DAP "restart" (some of the initialization, i.e. HOLDFLAG, is bypassed), as set in "REDORCS"; and a -0 value causes the computations in "RCSATT" to be continued (to perform the rate filtering functions if appropriate). The continuation of "RCSATT" is also known as "phase 1" of the DAP, since the normal sequencing of the RCS (undocked) DAP is:

For docked DAP, "DKJSLECT" replaces "JETSLECT".

T5TIME: Single precision time, scale factor Bl4, units centi-seconds, used to compensate for delays in action on program interrupt #2, so as to increase the likelihood that the CDU angles for determining attitude rates will be sampled at uniform O.1-second intervals. It is initialized in "REDAP" to 4, thus causing "RCSATT" (phase 1) to be entered (8 - 4 = 4 cs) after "T5PHASE2" is entered the first time, i.e. 10 cs after RHO initialized. The nominal contents at other times should be zero (it is reset to TIME5 after "RCSATT" phase 1 is entered).

T6LOC: See Digital Autopilot Interface Routines.

TAU (TAU₀, TAU₁, TAU₂): Single precision values of desired one-jet burn times to accomplish required rotations in roll, pitch, and yaw respectively, scale factor Bl0, units centi-seconds.

TAUY, TAUZ: See Digital Autopilot Docked Jet Selection.

THETADX (THETADX, THETADY, THETADZ): Single precision values, scale factor B-1, twos complement, units revolutions, of desired CDU angles in DAP, used to form attitude errors for "JLOOP". These cells should not be confused with THETAD (components THETAD, etc.) of e.g. N22.

TIME5, TIME6: See Digital Autopilot Interface Routines.

TIMEHOLD: See Digital Autopilot Docked Jet Selection.

TRCOMPAC, TRCOMPBD: See Digital Autopilot Docked Jet Selection.

WBODY (WBODY, WBODY, WBODY): Values of desired angular rates, scale

factor B-3, units revolutions/deci-second, used to modify the rate error information in "JLOOP" if HOLDFLAG \neq 0. Cells are set in "NEWANGL" and "MANUSTOP" (to 0) to desired rates, and in "T5PHASE2" for RHC inputs. Also set in R61. Same cells used for OMEGA<u>C</u> in TVC DAP.

- WHICHDAP: Single precision cell, scale factor B14, set in "REDAP" to O for undocked DAP and to 1 for docked DAP.
- WHICHX2: Single precision cell, scale factor B14, set in "REDAP" to O for undocked DAP and to 2 for docked DAP. It is the least significant half of WHICHDAP.
- XNDX1, XNDX2: Single precision index cells, scale factor Bl4, set at the start of "JETSLECT" to the complement of bits 8-7 (shifted right 6 places) of channel 31, i.e. the X-axis translation hand controller input. XNDX1 is the "AC Quad" translation index (reset 0 if XTRANS = 1, and used in conjunction with "pitch" information), and XNDX2 is the "BD Quad" translation index (reset 0 if XTRANS = -1, and used in conjunction with "yaw" information).

XTRANS: See Digital Autopilot Interface Routines.

YINDEX: Single precision index parameter, scale factor Bl4, indicating the polarity of the yaw command desired: O if none, l if plus yaw, and 2 if minus yaw.

YMANNDX: See Digital Autopilot Interface Routines.

- YNDX: Single precision index cell, scale factor B14, set at the start of "JETSLECT" to the complement of bits 10-9 (shifted right 8 places) of channel 31, the Y-axis translation hand controller input.
- YWORD1, YWORD2: Single precision cells containing in bits 8-1 the yawcommand bits to be loaded in channel 5 when "T6START" is entered and after the yaw time duration has expired, respectively. The yaw time duration originally is in BLAST2+0.
- ZNDX: Single precision index cell, scale factor B14, set at the start of "JETSLECT" to the complement of bits 12-11 (shifted right 10 places) of channel 31, the Z-axis translation hand controller input.

Value of Jet Table Data for Undocked DAP

Information on pitch and yaw jets is stored in K_{pytabi} , where i is in the range 0 - 14. Bits 12-11 give the number of yaw jets used to perform the rotation, and bits 10-9 give the number of pitch jets used. Bits 8-5 give the yaw output bits (to be loaded in the corresponding bit positions of channel 5), while bits 4-1 give the pitch output bits (to be loaded into the corresponding bits of channel 5). The value of i depends on the failure information (or, if no failures, the X-translation requested) as well as the rotation desired.

i=3a+b

V

- a = 0 for no X-translation
 - = 1 for no failures, +X translation
 - = 2 for no failures, -X translation
 - = 3 for A (pitch) or B (yaw) failures
 - = 4 for C (pitch) or D (yaw) failures

b =	0	for	no desired rotation	(for PWORD2 and YWORD2,
==	1	for	+ desired rotation	b = 0; a = 0 if any
==	2	for	- desired rotation	failures)

<u>i</u>	^K pytab	_#	of Yaw	Yaw	Jet <u>#</u>	<u>#_</u> 0	f Pit	ch	Pitch	Jet <u>#</u>
0 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 12 12 14	$\begin{array}{c} 0000_8\\5125_8\\5252_8\\0231_8\\2421_8\\2610_8\\0146_8\\2504_8\\2442_8\\0000_8\\2421_8\\2442_8\\0000_8\\2421_8\\2442_8\\0000_8\\2504_8\\2504_8\\2610_8\end{array}$		0 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1	7, 6, 567, 78 58 76	8		0 2 0 1 1 0 1 1 0 1 1 0 1 1		3,1 2,4 2,1 1 2 3,4 3 4 1 4 3 2	
	Jet	#	Bit	Quad	Rotatic	on	Tra	nslat	lon	
	1 2 3 4 5 6 7 8		1 4 3 2 5 8 7 6	C A C D B B D	+ Pite - Pite + Pite - Pite + Yaw - Yaw + Yaw - Yaw	eh eh		+X +X -X -X +X +X -X -X		

Information on roll jets (for rotation combined with translation) is stored in K_{rtab} , where i is in the range 0 - 14. Bits 14-12 give the number of roll jets for using Quads B/D, while bits 11-9 give the number for using Quads A/C (the number in both cases is given by the value of the bits - 2, thus providing sign information). Bits 8-5 give the Quad A/C output (to be loaded into the corresponding bit positions of channel 6), while bits 4-1 give the Quad B/D output (likewise to be loaded into the corresponding bit positions of channel 6). The value of i is defined as for K_{pytab} , except that Y translation is associated with Quad A/C and the Z translation with Quad B/D.

i	K _{rtab}	<u># of A/C</u>	<u>A/C Jet #</u>	<u># of B/D</u>	<u>B/D Jet #</u>
0	110008	0		0	
l	221250	2	15,13	2	11,9
2	002520	-2	14,16	-2	10,12
3	112310	0	14,13	0	10,9
4	15421_{0}	1	13	1	9
5	046100	-1	14	-1	10
6	111460	0	15,16	0	11,12
7	15504g	l	15	l	11
8	044428 110008	-1	16	-1	12
9	11000g	0	ativas gauna ativas	0	
10	155040	1	15	1	11
11	046100	-1	14	-1	10
12	11000_{g}	0	Manta Appan Austa	0	Quality status
13	15421a	l	13	l	9
14	044428	-1	16	-1	12

τz

The information in K_{yztab} is in the same format as K_{rtab} , except that i = 3 c + d, where c = 0 for no failures; c = 1 for A or B failures; and c = 2 for C or D failures. The quantity d = 0 for no translation; d = 1 for + translation; and d = 2 for - translation.

i	Kyztab j	<u># of A/C</u>	<u>A/C Jet #</u>	<u># of B/D</u>	<u>B/D Jet #</u>
0	11000 ₈	0	Among anyone and a	0	Emple store Anna
1	112318	0	14,13	Õ	10,9
2	111460	0	15,16	0	11,12
3	110000	0	sports during times	0	Annual Alline Annual
4	04610_{ϕ}	-1	14	-1	10
5	15504g	l	15	1	11
6	110008	• O	Territor process manage	0	weigen Manage Salary
7	154218	l	13	l	9
8	044428	-1	16	-1	12

The "# of A/C" and "# of B/D" information is used to check that the resulting roll torque on the vehicle is not forced to be zero when the desired roll rotation is non-zero. The K_{yztab} information permits the Quad not used for roll rotation to be used to satisfy translation commands.

Jet #	Bit	Quad	Rotation	Translation
9	l	В	+ Roll	+Z
10	4	D	- Roll	+Z
11	3	D	+ Roll	-Z
12	2	В	- Roll	-Z
13	5	A	+ Roll	+Υ
14	8	С	- Roll	+Υ
15	7	С	+ Roll	-Y
16	6	A	- Roll	-Y

The following roll-jet assignments are made (channel 6):

TVCDAPON	Entered restart	about 0.41 (from "CMDS	seconds af OUT" for T	ter "IGN VCPHASE	ITION" = -1)	or if
TTMPl = 0	0					
YDELOFF =	= O					
PDELOFF =	= O					
DELYBAR =	= O					
DELPBAR =	= O					
YERRB = 0)					
PERRB = 0)					
TVCDUMMY	= 0	(not used)				
TEMREG =	0					
ROLLWORD	= 0					
ROLLFIRE	= 0					
YTMPi = () (i =	= 6 - 1)				
PTMPi = () (i =	= 6 – 1)				
OMEGAB =	0					· · ·
$OMEGAC_z =$	= 0					
OMEGAC =	= O					
T5LOC = '	'TVCINITL'	t				
Set TIME5	to cause	e program in	cerrupt #2	in 0.01	second	
Resume						
TVCINIT1	Entered	about 0.42 s	seconds fr	om start	of "IGN	VITION''
Perform '	'MASSPROP''					

j = (bit 14 of DAPDATR1) (1 for LM on, O for LM off)

*NOTE: "LM" references are from Apollo 15 program, and have been retained for mnemonic usefulness.

If j = 1: (LM on) $NlO_{i} = C_{hbnlO_{i}} \qquad (i = 0 - 14)$ If j = 0: $NlO_{i} = K_{csmnlO_{i}}$ (i = 0 - 14) KTLXdI = Cektlxdi Perform "S40.15" If j = 1: $TS_1 = K_{8csd2}$ If j = 0: $TS_1 = K_{4csd2}$ $T5TVCDT = 16384 - TS_{1}$ Set bit 15(SWTOVER) of FLAGWRD9 = 0 KPRIMEDT = 2 C_{ekprime} TS₁ (the 2 is due to scaling) REPFRAC = C erepfrac CNTR = K VCNTR = 19PDELOFF_{sp} = PACTOFF PCMD = PACTOFF $DELPBAR_{sp} = PACTOFF$ YDELOFF = YACTOFF YCMD = YACTOFF $DELYBAR_{sp} = YACTOFF$ If bit 13 of DAPDATR1 = 1: (LM off) ERRBTMP+i) $\geqslant 2^{-14}$: (i = 0, 1: loaded with - (ERROR, ERROR₂) in "IGNITION") Kldattlim If $ERRBTMP+i = K_{attlim} sgn ERRBTMP+i$

DPTV-2

(If bit 13 of DAPDATR1 = 1):

PERRB_{sp} = ERRBTMP+O YERRB_{sp} = ERRBTMP+1 Set bit 3 of RCSFLAGS = 1 Perform "NEEDLER" Proceed to "TVCINIT4"

TVCINIT4 Can be entered from "CMDSOUT" if restart

TVCPHASE = +0

 $OGANOW = CDU_x$

Call "TVCEXEC" in 0.50 seconds

T5LOC = "DAPINIT"

TIME5 = T5TVCDT

Resume

DAPINITEntered about $(0.42 + \frac{1}{2} DAP cycle)$ sec after start of "IGNITION"TIME5 = T5TVCDT + (T5TVCDT - 16384) (gives interrupt in one DAP cycle)T5LOC = "PITCHDAP"(entered about (0.42 + 1.5 DAP cycle) sec after
start of "IGNITION": for IM-off, 0.48 second)PCDUYPST = CDU
yYCDUYPST = PCDUYPSTPCDUZPST = CDU
zNote that on first pass yaw rates 50% too big)YCDUZPST = PCDUZPSTResume

SWICHOVR Entered from "STABLISH" or "CMDSOUT"

Inhibit interrupts (released when return to caller)

PHASETMP = TVCPHASE

TVCPHASE = -2

YTMPi = 0 (i = 6 - 1) PTMPi = 0 (i = 6 - 1) Set bit 15(SWTOVER) of FLAGWRD9 = 1 KTLXdI = Cektlxdi₂ Perform "S40.15" (starting at second line) KPRIMEDT = K fkprimdt REPFRAC = K frepfrac PDELOFF = DELPBARYDELOFF = DELYBAR(i = 0 - 14) $NlO_i = K_{lbnlO_i}$ TVCPHASE = PHASETMPReturn Entered first about 0.92 second after "IGNITION" (see "TVCINIT4") TVCEXEC If bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 \neq 10₂: TVCEXPHS = 0

End of task

Call "TVCEXEC" in 0.5 seconds

OGAPAST = OGANOW

OGANOW = CDU

 $AK_{O} = OGAD - OGANOW$ (ones complement difference formed)

 $OGA = -AK_{O}$, rescaled to scale factor BO revolutions

Call "ROLLDAP" in 0.03 seconds

Perform "NEEDLER"

```
If VCNTR > O:
```

VCNTR = VCNTR - 1, limited > +0 (Note lack of restart

(Note lack of restart protection)

Proceed to "1SHOTCHK"

Perform "FIXCW" (VCNTR was +0)

Perform "S40.15"

VCNTR = 19

Proceed to "1SHOTCHK"

1SHOTCHK

If CNTR > O:

 $TS_1 = CNTR - 1$

TVCEXPHS = 4

Proceed to "CNTRCOPY"

If CNTR < O: (Tag here "REPCHEK")

If REPFRAC ≤ 0: (Set -0 in "S40.8" if low thrust) TVCEXPHS = 0

End of task

 $TS_2 = REPFRAC$

TVCEXPHS = 2

Proceed to third line of "TEMPSET"

If bit 7(ENGONFLG) of FLAGWRD5 = 0: (CNTR = 0; Tag "LSHOTOK") TVCEXPHS = 0

End of task

TVCEXPHS = TVCEXPHS + 1

(sets to 1)

Proceed to "TEMPSET"

TEMPSET

 $TS_2 = K_{fcorfrac}$ TVCEXPHS = TVCEXPHS + 1(sets to 2) If bit 13 of DAPDATR1 = 1: (means LM-off) $TS_2 = 2 TS_2$ $TS_1 = -1$ $TS_3 = PDELOFF + TS_2 (DELPBAR - PDELOFF)_{SD}$ TS₁ = YDELOFF + TS₂ (DELYBAR - YDELOFF)_{SP} TVCEXPHS = TVCEXPHS + 1(sets to 3) PDELOFF = TS_3 PACTOFF = TS_{sp} $YDELOFF = TS_{L}$ $YACTOFF = TS_{4sp}$ TVCEXPHS = TVCEXPHS + 1(sets to 4) Proceed to "CNTRCOPY" CNTRCOPY

 $CNTR = TS_1$ TVCEXPHS = 0

End of task

PITCHDAP Entered initially due to logic in "DAPINIT"; then from "YAWDAP" logic.

T5LOC = "YAWDAP"

TIME5 = T5TVCDT

Set $PCDUYPST = CDU_y$ and TS = PCDUYPSTMCDUYDOT = TS - PCDUYPST (ones complement difference formed)

 $|K_{ldrtim} MCDUYDOT| \ge 2^{-14}$: If MCDUYDOT = OSet $PCDUZPST = CDU_z$ and TS = PCDUZPSTMCDUZDOT = TS - PCDUZPST(ones complement difference formed) |K_{ldrtim} MCDUZDOT > 2⁻¹⁴: If MCDUZDOT = O $ERRBTMP = PERRB + OMEGAC_{v}$ OMEGAB = - MCDUYDOT COSCDUZ COSCDUX - MCDUZDOT SINCDUXERRBTMP = ERRBTMP - OMEGABIf $|K_{lderrim} \text{ ERRBTMP}| \gg 2^{-14}$: $ERRBTMP_{sp} = K_{errim} sgn ERRBTMP$ TMP1 = PTMP1 TMP3 = PTMP3TMP5 = PTMP5Perform "FWDFLTR" CMDTMP = PDELOFF + CMDTMPRound CMDTMP to single precision If $|K_{ldactsat}$ CMDTMP $\geq 2^{-14}$: $CMDTMP = K_{actsat} sgn CMDTMP$ TVCPITCH = TVCPITCH + CMDTMP - PCMD Set bit 11 (Gate output from TVCPITCH) of channel 14 = 1 TMP2 = PTMP2TMP4 = PTMP4TMP6 = PTMP6Perform "PRECOMP" DELBRTMP = K_{emat} DELPBAR + K_{onemeat} CMDTMP Perform "PCOPY" Resume

PCOPY

```
TVCPHASE = TVCPHASE + 1
                                               (sets to 1)
                             (i = 1 - 6)
      PTMPi = TMPi
      PERRB = ERRBTMP
      AK_1 = ERRBTMP_{sp}
      PCMD = CMDTMP
      DELPBAR = DELBRTMP
                                      (sets to 2)
      TVCPHASE = TVCPHASE + 1
      Return
YAWDAP
               Entered due to "PITCHDAP" logic.
      T5LOC = "PITCHDAP"
      TIME5 = T5TVCDT
      Perform the following for i = Y(or y) and then i = Z (or z):
            Set YCDUiPST = CDU_i and TS = YCDUiPST
             MCDUiDOT = TS - YCDUiPST (ones complement difference formed)
            If |K<sub>ldrtim</sub> MCDUiDOT| > 2-14:
                   MCDUiDOT = O
      \text{ERRBTMP} = \text{YERRB} + \text{OMEGAC}_{z}
      \mathsf{OMEGAB}_{\mathbf{Z}} = \mathsf{MCDUYDOT} \ \mathsf{COSCDUZ} \ \mathsf{SINCDUX} \ - \ \mathsf{MCDUZDOT} \ \mathsf{COSCDUX}
      \text{ERRBTMP} = \text{ERRBTMP} - \text{OMEGAB}_{\mathbf{Z}}
      If (K<sub>lderrim</sub> ERRBTMP)≥2<sup>-14</sup>:
            \text{ERRBTMP}_{\text{sp}} = \text{K}_{\text{errim}} \text{ sgn ERRBTMP}
     TMP1 = YTMP1
     TMP3 = YTMP3
     TMP5 = YTMP5
     Perform "FWDFLTR"
     CMDTMP = YDELOFF + CMDTMP
```

Round CMDTMP to single precision

If \K_ldactsat CMDTMP | ≥ 2⁻¹⁴: CMDTMP = K_{actsat} sgn CMDTMP TVCYAW = TVCYAW + CMDTMP - YCMD Set bit l2(Gate output from TVCYAW) of channel l4 = 1 TMP2 = YTMP2 TMP4 = YTMP4 TMP6 = YTMP6 Perform "PRECOMP" DELERTMP = K_{emat} DELYBAR + K_{onemeat} CMDTMP Perform "YCOPY" Resume

YCOPY

TVCPHASE = TVCPHASE + 1 (sets to 3) YTMPi = TMPi (i = 1 - 6) YERRB = ERRBTMP $AK_2 = ERRBTMP_{sp}$ YCMD = CMDTMPDELYBAR = DELBRTMPTVCPHASE = 0Return FWDFLTR (NlO_O is "NlO") $DAPl = NlO_{O} ERRBTMP + TMPl$ $DAP2 = Nlo_5 DAP1 + TMP3$ (N10₅ is "N20") If bit 14 of DAPDATR1 = 1: (IM attached) (NlO₁₀ is "N30") $DAP3 = NlO_{10} DAP2 + TMP5$ If bit 14 of DAPDATR1 = O: (LM off)

DAP3 = DAP2 (rescaled to scale factor B-3 revolutions) CMDTMP = - VARK DAP3

Return

DPTV-9

PRECOMP

 $TMP1 = NlO_{1} ERRBTMP - NlO_{3} DAP1 + TMP2$ (NlO_{1} is "Nll" and NlO_{3}^{1} is "Dll") $TMP2 = NlO_{2} ERRBTMP - NlO_{4} DAP1$ (NlO_{2} is "Nl2" and NlO_{4}^{2} is "Dl2") $TMP3 = NlO_{6} DAP1 - NlO_{8} DAP2 + TMP4$ $TMP4 = NlO_{7} DAP1 - NlO_{9} DAP2$ If bit 13 of DAPDATR1 = O: (LM on) $TMP5 = NlO_{11} DAP2 - NlO_{13} DAP3 + TMP6$ $TMP6 = NlO_{12} DAP2 - NlO_{14} DAP3$

Return

REDOTVC

If TVCEXPHS > O:

Call "EXRSTRT" in 0.09 seconds

If TVCPHASE < O:

If bit 2 of TVCPHASE = 1: (i.e. -1, not -2)

PCMD = PACTOFF

YCMD = YACTOFF

```
If TVCPHASE = 1:
```

Perform "PCOPY" (starting at second line)

If TVCPHASE = 3:

Perform "YCOPY" (starting at second line)

Set bits ll(Disengage Optics DAC) and 8(TVC Enable) of channel 12 = 1T5LOC = "ENABL2"

Set TIME5 to cause program interrupt #2 in 0.06 seconds

Resume

ENABL2

Set bit 2(Enable Optics CDU Error Counters) of channel 12 = 1 T5LOC = "CMDSOUT"

Set TIME5 to cause program interrupt #2 in 0.02 seconds

Resume

DPTV-10

CMDSOUT

TVCPITCH = PCMD - 0 (avoids loading with +0)

TVCYAW = YCMD - 0 (avoids loading with +0)

Set bits 12-11 (Gate outputs from TVCPITCH & TVCYAW) of channel 14 = 1

If TVCPHASE < 0:

If |TVCPHASE| - 1 = 0:

Proceed to "TVCDAPON"

Perform "SWICHOVR" (starting at 4th line)

Proceed to "TVCINIT4"

EXRSTRT

Proceed to appropriate point in "TVCEXEC" routine (just after the point where TVCEXPHS was incremented to its present value)

<u>ROLLDAP</u> Called by "TVCEXEC" every 0.5 second (0.03 second after start of "TVCEXEC")

OGARATE = K_{rrt} (OGANOW - OGAPAST) (ones complement difference) If [ROLLFIRE] = 0:

If TEMREG $\neq 0$:

TEMREG = O

End of task

 $TS = K_{db} - \frac{1}{2} ldCONACC OGARATE^2$

SGNRT = 1 sgn OGARATE (O considered negative)

DELOGA = OGA - TS SGNRT

SGNDOG = 1 sgn DELOGA (O considered negative)

If SGNRT sgn SGNDOG 20:

DELOGA = DELOGA + K_{db} sgn SGNDOG DELOGART = - K_{mcrat} sgn SGNDOG Proceed to "ONROLL"

If OGARATE sgn SGNDOG + K_{maxim} ≪ O: RATDES = - K_{maxim} sgn SGNDOG

Proceed to "ROLLSET"

TS = (K OGARATE) sgn SGNDOG - K intercp

If TS < 0, proceed to "NOROLL"

If OGARATE sgn SGNDOG + $K_{minim} \leq 0$, proceed to "NOROLL"

If OGA sgn SGNDOG - K_{db} < 0, proceed to "NOROLL"

DELOGA = OGA

DELOGART = OGARATE

Proceed to "ONROLL"

ONROLL

 $TS_{1} = K_{msope} \text{ ldCONACC DELOGART - 1 sgn SGNDOG (scaled B4)}$ $TS_{2} = K_{msope} \text{ ldCONACC DELOGART}^{2} + K_{msope} (DELOGA sgn SGNDOG - K_{db})$ $+ K_{mcrat} (scaled B0)$ If $|TS_{2}| - 2^{-4}|TS_{1}| < 0$: (implemented by division of TS₂ shifted right 14 places by TS₁ RATDES = TS₂ / TS₁ and check of A: the 2⁻⁴ comes about from scale factors) If $|TS_{2}| - 2^{-4}|TS_{1}| \ge 0$: RATDES = +MAX sgn (TS_{2} / TS_{1}) (magnitude $\cong 22\frac{10}{2}/\text{sec}$) Proceed to "ROLLSET" :

TEMREG = RATDES (same cell) TS = RATDES - OGARATEIf $|TS| > 2^{-4}$ rev/sec: $TS = (2^{-4} - 2^{-18}) sgn TS rev/sec$ $TS = \frac{1}{2} K_{t6sc}$ ldCONACC TS, modulo 2^{ll} centi-seconds TEMREG = 2 TSIf $|\text{TEMREG}| > 2^{10}$ centi-seconds: TEMREG = $(2^{10} - 2^{-4})$ sgn TEMREG centi-seconds If TEMREG = 0: Proceed to "NOROLL" $TS_1 = TEMREG ROLLFIRE$ If $TS_1 \leq 0$, proceed to "NOROLL" If $|TS_1| = 0$: If $|\text{TEMREG}| - K_{\text{tminfr}} \leq 0$: Proceed to "NOROLL" If $TS_1 > 0$: SGNDOG = 0 (used as flag in "JETROLL") If $|K_{ldtmxfir}| \xrightarrow{TEMREG} > 2^{-14}$: TEMREG = K_{tmxfir} sgn TEMREG ROLLFIRE = +MAX sgn TEMREG TEMREG = TEMREG If SGNDOG \neq 0, proceed to "JETROLL" If (TIME6 - TEMREG) \leq 0, End of task (don't extend burn duration) Proceed to "JETROLL"

NOROLL

```
ROLLFIRE = -0
```

```
TEMREG = -O
```

Proceed to "JETROLL"

JETROLL

```
T6LOC = "NOROLL1"
```

```
TIME6 = TEMREG
```

```
If SGNDOG = 0: (set in "ROLLSET" to continue present jets)
End of task
```

```
If ROLLFIRE = 0:
```

Set bit 15(TIME6 Count Enable) of channel 13 = 1

End of task

```
If ROLLFIRE > 0:
```

```
If bit 1 of ROLLWORD = 1:

Set bit 1 of ROLLWORD = 0

Channel 6 = K_{pro2}

Set bit 15(TIME6 Count Enable) of channel 13 = 1

End of task

Set bit 1 of ROLLWORD = 1

Channel 6 = K_{pro1}

Set bit 15(TIME6 Count Enable) of channel 13 = 1

End of task

If bit 2 of ROLLWORD = 1: (ROLLFIRE < 0)

Set bit 2 of ROLLWORD = 0

Channel 6 = K_{mro2}

Set bit 15(TIME6 Count Enable) of channel 13 = 1

End of task
```

Set bit 2 of ROLLWORD = 1 Channel 6 = K_{mrol} Set bit 15(TIME6 Count Enable) of channel 13 = 1 End of task

NOROLL1

ROLLFIRE = +0

Channel 6 = 0

Resume

Quantities in Computations

See also list of major variables and list of routines

ldCONACC: See Digital Autopilot Interface Routines.

AK₀, AK₁, AK₂: See Digital Autopilot Interface Routines.

- ^C : Single precision erasable memory constant, program notation ekprime_O "EKPRIME", scale factor B-5, units (revolutions/centi-second)/ radian, giving the "steer law gain" for LM-off (used in "TVCINITL" to initialize KPRIMEDT for "S40.8"). The maximum value that can be stored in the cell is (loo x 2π x 2^{-5}) = (loo π /l6) radians/sec per radian, where "maximum value" actually is one least increment more than 37777_8 .
- $C_{ektlxdi_{O}}$: Single precision erasable memory constant, program notation O "EKTLX/I", used in "TVCINITI" to initialize KTLXdI for "S40.15", for the LM-off configuration. Scale factor is B4, units ASCREV/sec², where one ASCREV = 1.07975111 revolutions (see K). To convert to memory information, value in units of (1/sec²) should be divided by (1.07975111 x 2⁴), giving a fraction which in turn is placed in the cell. Alternatively, cell could be considered scaled B18 in units of CDU actuator pulses per revolution times (newton-meters/kg-meters²), where second term compensates for the multiplication by IAVG/TLX (and reduces to 1/sec², of course). There are 2¹⁴ actuator pulses in 1.07975111 revolutions.
- ^Cektlxdi₁ : Single precision erasable memory constant, program notation "EKTLX/I +1", used in "TVCINIT1" to initialize KTLXdI for "S40.15" for LM on (see also C ASCREV/sec² (see C ektlxdi₂). Scale factor is B2, units ASCREV/sec² (see C ektlxdi₂).

C : Single precision erasable memory constant, program notation
2 "EKTLX/I +2", used in "SWICHOVR" to initialize KTLXdI for
"S40.15" for "low bandwidth" LM on. Scale factor is B2, units
ASCREV/sec² (see C ektlxdi²).

^Cerepfrac_O : Single precision erasable memory constant, program notation O "EREPFRAC", scale factor B2, used as IM-off initialization for REPFRAC in "TVCINIT1" and "S40.8" (note that TS₂, i.e. REPFRAC, is doubled in "TEMPSET" if IM-off, hence effective "system" scale factor is B3).

Cerepfrac: Single precision erasable memory constant, program notation "EREPFRAC +1", scale factor B2, used as LM-on initialization for REPFRAC in "TVCINIT1" and "S40.8". See also K frepfrac.

C_{hbnlO} (i = 0 - 14): Set of single precision erasable memory constants i used in "TVCINITI" to initialize N10. for LM-on (if "SWICHOVR" entered, N10. loaded with K_{lbnlO}, instead).

0 "HBN10" B0 1 "HBN11/2" B1 2 "HBN12" B0 3 "HBD11/2" B1 4 "HBD12" B0 5 "HBN20" B0 6 "HBN21/2" B1 7 "HBN22" B0 8 "HBD21/2" B1 9 "HBD22" B0 10 "HBN30" B0 11 "HBN31/2" B1 12 "HBN32" B0 13 "HBD31/2" B1	<u>i</u>	Notation	Scale Factor
9 "HBD22" BO 10 "HBN30" BO 11 "HBN31/2" B1 12 "HBN32" BO	1	"HBN11/2" "HBN12" "HBD11/2"	Bl BO Bl
11 "HBN31/2" B1 12 "HBN32" BO		"HBN21/2" "HBN22" "HBD21/2"	Bl BO Bl
14 "HBD32" BO	11 12 13	"HBN31/2" "HBN32" "HBD31/2"	Bl BO Bl

CMDTMP: Value of required output information computed initially in "FWDFLTR" double precision, and subsequently rounded to single precision in "PITCHDAP" or "YAWDAP", scale factor BO, units ASCREV (or B14 in units of actuator pulses): VARK converts from units of revolutions in "FWDFLTR".

CNTR: Single precision counter, scale factor Bl4, units counts (of $\frac{1}{2}$ second each), preset in "TVCINIT1" and decremented in "LSHOTCHK". When reduced to 0, the next entrance to "TVCEXEC" causes a "one-shot" correction to PACTOFF and YACTOFF (as well as PDELOFF and YDELOFF), using K corfrace. CNTR is set to +MAX in "S40.81"when the cutoff decision is made, to inhibit further trim updates after that time (a value of -l is set in "TEMPSET"/"CNTRCOPY" to signify that the one-shot correction has been made). Since K (initial condition for LM-on of CNTR) is zero, no decrementing of correction configuration.

COSCDUX, COSCDUZ: See Coordinate Transformations. Updated once a second while "CLOCKJOB" is entered, which includes period of time when TVC DAP is on. DAP1, DAP2, DAP3: Filter quantities computed in "FWDFLTR", scale factor B-1, units revolutions. If LM off, then DAP3 is set equal to DAP2 (otherwise, it is derived), scaled B-3.

DAPDATR1: See Digital Autopilot Interface Routines.

- DELBRTMP: Double precision erasable memory cell used to contained the updated value for DELPBAR or DELYBAR (for restart protection purposes), scale factor B14, units CDU actuator output pulses (or scale factor BO in ASCREV units).
- DELOGA: Single precision value of roll attitude error used in "ONROLL", scale factor BO, units revolutions (computed initially in "ROLLDAP" as "distance from switch parabola").
- DELOGART: Single precision value of roll attitude rate error used in "ONROLL", scale factor B-4, units revolutions/second.
- DELPBAR: Double precision value of estimated "c.g. offset relative to electrical null" in pitch, scale factor Bl4 in units of CDU actuator pulses (or scale factor BO in ASCREV units). Initialized to PACTOFF in "TVCINIT1" and updated in "PCOPY" with DELBRTMP (for restart protection purposes). After CNTR reduced to zero, used in "TEMPSET" to updated PDELOFF and PACTOFF (using K weighting). Used in "SPSOFF" to load fcorfrac PACTOFF if suitable initialization completed (i.e. "TVCINIT1" completed, initializing DELPBAR), and no thrust failure.
- DELYBAR: Double precision value of estimated "c.g. offset relative to electrical null" in yaw, scale factor B14, units CDU actuator output pulses (or scale factor B0 in ASCREV units). See DELPBAR (substitute yaw axis for pitch axis).
- ERRBTMP: Value of pitch or yaw error in body coordinates, scale factor B-l, units revolutions, limited to K ... Could also be considered to be the "integral of body-axis rate error". Value is displayed on FDAI error needles (due to loading of AK or AK by appropriate copy routine). Loaded in "IGNITION" with RCS DAP pitch and yaw negative (single precision) error information for use in "TVCINIT1", after limiting, to initialize PERRB and YERRB for LM-off.
- Kldactsat: Single precision constant, program notation "1/ACTSAT", scale factor BO, octal value OOlOl₈, corresponding to 0.003967285. Effect in equations such as to cause an answer of one least increment (2⁻¹⁴ in programmed equations) for an argument of 253 least increments or more (see K_{actsat}).
- K ldattlim: Single precision constant, program notation "l/ATTLIM", scale factor BO, octal value OO170g. Effect in equations such as to cause an answer of one least increment (2-14 in programmed equations) for an argument of 137 least increments (at B-l rev., about 1.505°): see K attlim.
- $K_{lderrim}$: Single precision constant, program notation "l/ERRLIM", scale factor BO, octal value 00004_8 . Effect in equations such as to cause an answer of one least increment (2^{-14} in programmed equations) for an argument of 2^{-2} or more (see K_{errim}): the 2^{-2} would correspond to 2^{-3} revolutions.

DPTV-18

- Kldrtim: Single precision constant, program notation "1/RTLIM", scale factor BO, octal value 001158. Effect in equations such as to cause an answer of one least increment (2-14 in programmed equations) for an argument of 213 least increments (at B-1 rev., about 2.34°).
- $K_{ldtmxfir}$: Single precision constant, program notation "l/TMXFIR", scale factor BO, octal value 00004g. Effect in equations such as to cause an answer of one least increment (2⁻¹⁴ in programmed equations) for an argument of 2⁻² or more (see K_{tmxfir}): the 2⁻² would correspond to 2.56 seconds.

the second s

- K_{4csd2} : Single precision constant, program notation "BIT2", scale factor B14, units centi-seconds, giving the required time interval between DAP computations for different axes for IM-off. Value is $2 \ge 2^{-14}$, corresponding to 2 centi-seconds: this gives a time interval of 4 centi-seconds from one pitch axis solution to the next.
- ^K8csd2²: Single precision constant, program notation "BIT3", scale factor Bl4, units centi-seconds, giving the required time interval between DAP computations for different axes for LM-on. Value is 4 x 2⁻¹⁴, corresponding to 4 centi-seconds: this gives a time interval of 8 centi-seconds from one pitch axis solution to the next.
- Kactsat: Single precision constant, program notation "ACTSAT", scale factor BL4, units CDU actuator output pulses (one pulse is 85.41 seconds). Value is 253 x 2⁻¹⁴, corresponding to about 6.0024°. Note that 2¹⁴ CDU actuator output pulses correspond to about 1.07975111 revolutions; there are about 42.14963 pulses/degree.
- Kattlim: Single precision constant, program notation "ATTLIM", scale factor B-1, units revolutions. Value is 136 least increments (see Klattlim), or octal 002108, corresponding to about 1.494°.

K (i = 0 - 14): Set of single precision constants used in "TVCINITI" i to initialize N10. for LM-off, program notation (i = 0) "CSMN10". Only values for i = 0¹ - 9 are significant (since N10₁₀ to N10₁₄ are employed only for LM-on); values for i = 10 - 14 are the same cells as K_{lbnl00} to K_{lbnl0}.

i	Nominal Value	4	Scale Factor	Nominal	True Value	Stored
0 1 2 3 4	0.99999 -0.2549 0.0588 -0.7620 0.7450		BO Bl BO Bl BO	0.99999 -0.5098 0.0588 -1.524 0.7450	(N10) (N11) (N12) (D11) (D12)	0.99994 -0.50977 0.05878 -1.52405 0.74500
567 89	0.99999 -0.4852 0.0 -0.2692 0.0		BO Bl BO Bl BO	0.99999 -0.9704 0.0 -0.5384 0.0	(N2O) (N21) (N22) (D21) (D22)	0.99994 -0.97046 0.0 -0.53845 0.0

The "nominal value" is the scaled decimal input to the assembly program; the "stored" value was obtained by converting the octal memory information to decimal and applying the proper scale factor.

- K_{db}: Single precision constant, program notation "DB", scale factor BO, units revolutions, giving roll deadband for TVC DAP. Octal value is 00344₈, corresponding to about 5.0098^o.
- K_{emat} : Single precision constant, program notation "E(-AT)", scale factor BO, value 37535_g, corresponding to $(1 K_{onemeat})$.
- K errim factor B-l, units revolutions. Value is 100008, corresponding to 2⁻³ revolutions or 45°.
- K fcorfrac: Single precision constant, program notation "FCORFRAC", scale
 factor B2. Used in "TEMPSET" as the LM-on c.g. one-shot
 correction gain (see CNTR above). A value of 2 K is used for
 LM-off (hence scale factor could be considered B3 for the LM-off
 application). Value is octal 10000, corresponding to 1.0 x 2⁻²,
 where first term is equation value and second is scale factor.
- K fkprimdt: Single precision constant, program notation "FKPRIMDT", scale factor B-4, units (revolutions/DAP cycle) per radian. Used in "SWICHOVR" to load KPRIMEDT. Value is 0.0102, corresponding approximately to 0.05 x 0.08 x (1/217) x 2⁴, where first term is value of gain in (radians/sec)/radian, second is DAP cycle rate in seconds, third is conversion to revolutions, and 4th is scale factor: see KPRIMEDT.
- K frepfrac: Single precision constant, program notation "FREPFRAC", scale factor B2, used in "SWICHOVR" and "S40.8" to load REPFRAC for "low-bandwidth" mode of TVC DAP. Nominal value is 0.0375 x 2⁻², where first term is equation value and second is scale factor. The actual stored value corresponds to about 0.0376.
- ^K intercp: Single precision constant, program notation "INTERCEP", scale factor B-3, units revolutions. Octal value is 00510_8 , corresponding to about 0.2002 x $45 = 0.9009^\circ$.
- K (i = 0 14): Set of single precision constants used in "SWICHOVR" i to initialize NIO. for "low bandwidth" LM-on, program notation (i = 0) "LBNIO".

0 0.99999 BO 0.99999 (N10) 0.999	red
1 -0.3285 B1 -0.6570 (N11) -0.656 2 -0.3301 B0 -0.3301 (N12) -0.330 3 -0.9101 B1 -1.8202 (D11) -1.820 4 0.8460 B0 0.8460 (D12) 0.846	3008 2019

i	Nominal Value	Scale Factor	Nominal True Value	Stored
56 78 9	0.03125 0.0 0.0 -0.9101 0.8460	BO Bl BO Bl BO	0.03125 (N20) 0.0 (N21) 0.0 (N22) -1.8202 (D21) 0.8460 (D22)	0.03125 0.0 0.0 -1.82019 0.84601
10 11 12 13 14	0.5000 -0.47115 0.4749 -0.9558 0.9372	BO Bl BO Bl BO	0.5000 (N30) -0.9423 (N31) 0.4749 (N32) -1.9116 (D31) 0.9372 (D32)	0.50000 -0.94226 0.47491 -1.91162 0.93719

See note with K_{csmnlO_i} .

.

C

K Single precision constant, program notation "MAXLIM", scale factor B-4, units revolutions/second. Value is 0.01388889 x 2⁴, corresponding to about 5 degrees/second.

- K : Single precision constant, program notation "LMCRATE", scale factor B-4, units revolutions/second (gives limit cycle roll rate for TVC roll DAP). Value is 001118, corresponding to about 0.10025 degree/second.
- K Single precision constant, program notation "MINLIM", scale factor B-4, units revolutions/second. Value is 0.00277778 x 2⁴, corresponding to about 1 degree/second.
- K mrol: Single precision constant, program notation "-ROLLL", octal value 00012, corresponding to channel 6 roll jets #10 and #12, giving a SM negative roll using quad B/D.

K single precision constant, program notation "-ROLL2", octal value 00240, corresponding to channel 6 roll jets #14 and #16, giving a SM negative roll using quad A/C.

K_{msope}: Single precision constant, program notation "-SLOPE", scale factor BO, units (revolutions/second)/revolution. Value is 0.2. Notation arises from fact that "true" slope is negative (an increasing attitude error results in a decreasing attitude rate).

 $K_{onemeat}$: Single precision constant, program notation "l-E(-AT)", scale factor BO, octal value 00243 $_8$. Value corresponds to 163/16384, or approximately 0.01, equivalent to the first term in the series expansion of (l - e^{-at}) for at = 0.01.

- K_{prol}: Single precision constant, program notation "+ROLLL", octal value 00005g, corresponding to channel 6 roll jets #11 and #9, giving a + Roll (for SM). Uses Quad B/D.
- K_{pro2}: Single precision constant, program notation "+ROLL2", octal value 00120₈, corresponding to channel 6 roll jets #15 and #13, giving a + Roll (for SM). Uses Quad A/C.
- K_{rrt} : Single precision constant, program notation "BIT5", scale factor Bll, value 2⁻¹⁰, corresponding to 2 x 2⁻¹¹, where first term is conversion of rate to units of revolutions/second, and second is scale factor.
- K_{t6sc} : Single precision constant, program notation "T6SCALE", scale factor B7, value 31000₈. Value corresponds to 100 x 2⁻⁷, where first term converts from seconds to centi-seconds and second is scale factor.
- K : Single precision constant, program notation "TCORR", scale factor O Bl4, units counts (used as a preset for CNTR in "TVCINITL" for LM-off). Value is 5 x 2⁻¹⁴, meaning that the "single-shot" correction will take place the 6th time that "TVCEXEC" is entered, or about 3.42 seconds after "IGNITION" is done.
- K : Single precision constant, program notation "TCORR +1", scale tcorrlfactor Bl4, units counts (used as a preset for CNTR in "TVCINITI" for IM-on). Value is 0, meaning that the "single-shot" correction will take place the first time that "TVCEXEC" is entered, or about 0.92 seconds after "IGNITION" is done.
- K_{tminfr}: Single precision constant, program notation "TMINFIRE", scale factor BlO, units centi-seconds. Value is 00030_g, corresponding to 1.5 centi-seconds (i.e. 15 milliseconds).
- K : Single precision constant, program notation "TMAXFIRE", scale factor BlO, units centi-seconds. Value is 250 x 2⁻¹⁰, corresponding to 250 centi-seconds (i.e. 2.5 seconds). See K ldtmxfir^{*}
- KPRIMEDT: Quantity used in "S40.8" to convert guidance attitude error information into OMEGAC. Scale factor is B-4, units (revolutions/ DAP cycle) per radian. Loaded in "TVCINITL" and "SWICHOVR". Least significant half expected to be 0 (from "TVCINITL" loading method).
- KTLXdI: Single precision value of appropriate C "TVCINIT1" or "SWICHOVR" and used in "S40.15". Scale factor is B4 (IM off) or B2 (IM on), program notation "KTLX/I".

- MCDUYDOT, MCDUZDOT: Complement of change in CDU, and CDU, respectively since previous sample, scale factor B-1, units revolutions/DAP cycle (in general). Computed in "PITCHDAP" and "YAWDAP" based on separate CDU angle samples, and used to compute appropriate component of OMEGAB. If the magnitude exceeds about 2.33°, it is set 0 (see K_{ldrtim}). The DAP cycle is 40 ms for LM-off and 80 ms for LM-on. Due to initialization in "DAPINIT", the rate derived the first pass through "YAWDAP" will be 50% too big.
- NlO_ (i = 0 14): Set of filter constants loaded in "TVCINITI" with
 K (IM-off) or C (IM-on), or in "SWICHOVR" with K lbnlO.
 For IM=off, parameters for i = 10 14 are not used. Scale factors
 for i = 1, 3; 6, 8; and 11, 13 are Bl, with remainder of constants
 (all single precision) having scale factor BO.
- OGA: Single precision value of roll error (OGANOW OGAD), scale factor BO, units revolutions, computed in "TVCEXEC". Program notation where computed is "OGAERR".
- OGAD: Single precision value of desired outer gimbal angle (i.e. CDU), scale factor B-1, units revolutions, set to CDU, in "IGNITION" x (when SPS engine is turned on). Used to cause the roll TVC DAP to maintain "roll attitude hold".
- OGANOW: Single precision value of CDU, scale factor B-1, units revolutions, sampled in "TVCINITA" and "TVCEXEC".
- OGAPAST: Previous value of OGANOW, scale factor B-1, units revolutions, loaded with previous value of OGANOW in "TVCEXEC".
- OGARATE: Single precision value of rate of change of OGANOW computed at the start of "ROLLDAP", scale factor B-4, units revolutions/second.
- OMEGA<u>B</u>: Value of body rate determined from first difference of CDU, and CDU information, scale factor B-1, units revolutions/DAP cycle (computed double precision). The y component is loaded in "PITCHDAP" and the z component in "YAWDAP", program notations "OMEGAYB" and "OMEGAZB" respectively. The "x" component is used for the storage of OGARATE (single precision), and is assigned that tag. The cells used for OMEGA<u>B</u> are used in the RCS DAP for ADO<u>T</u> (a common cell assignment is made for telemetry considerations). Note that "x" component is B-4 rev/second, not B-1 rev/DAP cycle, and single precision.
- OMEGAC: Value of guidance steering output computed in "S40.8", scale factor B-1, units revolutions/DAP cycle (see KPRIMEDT). The x component is not used; the y component is used in "PITCHDAP"; and the z component is used in "YAWDAP".

- PACTOFF: Single precision value of pitch c.g. offset, scale factor Bl4, units CDU actuator pulses (one pulse is 85.41 seconds). Could also be considered scaled BO in units of ASCREV (see C). Can be loaded by Rl of N48 (e.g. in RO3). It is measured "relative to electrical null" specified by K (see Steering Computations). Quantity also called "total pitch trim angle." It is used in "TVCINITI" to initialize filter quantities in TVC DAP, and is updated in "TEMPSET" after the one-shot has taken place (CNTR reduced to O). Can also be updated in "SPSOFF" (see DELPBAR).
- PCDUYPST, PCDUZPST: Previous values of CDU and CDU for use in deriving MCDUYDOT and MCDUZDOT for pitch DAP, Single precision with scale factor B-1, units revolutions, in twos complement. Separate cells are used for yaw DAP (see YCDUYPST). PCDUiPST cells are initialized in "DAPINIT", with "PITCHDAP" entered at a time corresponding to one complete DAP cycle (pitch and yaw) later, giving proper firstdifference computation.
- PCMD: Single precision value of previous pitch output command information, scale factor Bl4, units CDU actuator pulses (or BO in units of ASCREV). It is intended to maintain an image of the information in the optics error counter driven from TVCPITCH output. It is set to PACTOFF in "TVCINIT1" ("S40.6" left engine bell at that position), and updated in "PCOPY" with CMDTMP.
- PDELOFF: Value of pitch c.g. offset, scale factor Bl4, units CDU actuator pulses (or BO in units of ASCREV). The quantity is a double precision version of PACTOFF (updated in "TEMPSET" and initialized to PACTOFF in "TVCINITL") used to minimize the effect of computer word length.
- PERRB: Value of pitch error in body coordinates, loaded in "PCOPY" with ERRBTMP (which in turn is sum of previous PERRB and (OMEGAC -OMEGAB,)), scale factor B-1, units revolutions. Could also^ybe considered to be the "integral of body-axis pitch-rate error", since the OMEGAi_v terms are in units of revolutions/DAP cycle.
- PHASETMP: Single precision cell used in "SWICHOVR" to retain the value of TVCPHASE until the computation is complete, to permit setting of TVCPHASE = -2 as an indication to restart logic ("REDOTVC" and "CMDSOUT") that "SWICHOVR" was being performed.
- RATDES: Single precision value of desired roll rate used in "ROLLSET", scale factor B-4, units revolutions/second. Program uses TEMREG cell.

RCSFLAGS: See Digital Autopilot Interface Routines.

- REPFRAC: Single precision value of "repetitive c.g. correction fraction", scale factor B2, used in "ISHOTCHK" to control update of the c.g. tracker (if REPFRAC 0 or negative, no update is done) after CNTR becomes 0. It is initialized in "TVCINIT1" to appropriate C and (for "long" burns) is loaded in "S40.8" with the same information. If "SWICHOVR" entered, loaded with K frepfrac. In "S40.8", is set to -0 if thrust below minimum value, to inhibit updates.
- ROLLFIRE: Single precision cell, scale factor BO, set to +MAX for positive roll torque and -MAX for negative roll torque in roll TVC DAP. It is initialized to 0 in "TVCDAPON" and when roll jets are turned off in "NOROLL" or "NOROLLI", and used as a control cell to indicate that roll jet firings have been specified (used at start of "ROLLDAP", with TEMREG, to force at least $\frac{1}{2}$ second of no firing between successive firings).
- ROLLWORD: Single precision cell initialized to 0 in "TVCDAPON" and used to permit alternation of the pairs of jets (i.e. quads) used for torque in the TVC roll DAP. Bit 1 is used for positive roll commands and bit 2 for negative roll commands: quad B/D is used if the bit is now 0 and quad A/C if bit is now 1. The bit used for selection is complemented after being used.
- SGNDOG: Cell giving sign information for DELOGA (implemented in program by loading a "clear add" order for positive and a "clear subtract" order for negative), program notation "I". It is set 0 in "ROLLSET" if the polarity of the present jet firing is the same as that of desired firing during this evaluation, in order to flag the fact that present jets should be continued (subsequent evaluations can reduce the required roll firing time, but not increase it, due to logic at end of "ROLLSET").
- SGNRT: Single precision cell, scale factor Bl4, giving information on the polarity of OGARATE.

SINCDUX: See Coordinate Transformations (and COSCDUX).

T5LOC: See Digital Autopilot Interface Routines.

T5TVCDT: Single precision value of required setting for TIME5, scale factor B14, units centi-seconds. TIME5 is incremented by hardware means once each centi-second, and when it reaches 16384 (2¹⁴), program interrupt #2 is generated. Consequently, to cause program interrupt #2 in 2 centi-seconds from "now", TIME5 is set to 16384 -2 = 16382; in 4 centi-seconds requires 16380; etc.

T6LOC: See Digital Autopilot Interface Routines.

TEMREG: Single precision cell used for several functions within TVC roll DAP, but left at end with value of time loaded into TIME6, scale factor BlO, units centi-seconds. It is preset to 0 in "TVCDAPON", and used with ROLLFIRE at the start of "ROLLDAP" to force at least $\frac{1}{2}$ second of no firing between successive firings. TIME5: See Digital Autopilot Interface Routines.

TIME6: See Digital Autopilot Interface Routines.

- TMPi (i = 1 6): Set of cells used to retain PTMPi or YTMPi information, scale factor B-1, units revolutions, in order to achieve restart protection and allow use of the common subroutines "FWDFLTR" and "PRECOMP". All cells double precision.
- TTMP1: Double precision cell used for intermediate storage of quantities in TVC DAP (not shown in programmed equations), set 0 in "TVCDAPON" (no functional purpose served by the zeroing).
- TVCDUMMY: Single precision cell set 0 in "TVCDAPON", but not otherwise referenced by TVC DAP (cell formerly assigned to a stroking-test variable, and employed for erasable memory layout considerations).
- TVCEXPHS: Single precision cell, scale factor BL4, used to control the restart logic associated with the TVC DAP for the waitlist task started every half second at "TVCEXEC". It is initialized to O in "IGNITION" and at the end of each performance of the "TVCEXEC" task. If it is non-zero when "REDOTVC" is entered, it is used as an indexing parameter to select the appropriate address within the "TVCEXEC" package in "EXRSTRT". For clarity, these addresses are not shown in the programmed equations, but correspond to the line following the one which incremented TVCEXPHS to its present value.
- TVCPHASE: Single precision cell, scale factor BL4, used to control the restart logic associated with the TVC DAP for the initialization, switchover to low bandwidth (LM-on), pitch copy cycle, and yaw copy cycle (values -1, -2, +1, and +3 respectively). Set to -1 in "IGNITION" and to 0 at the start of "TVCINIT4", to control branching in "REDOTVC". If "SWICHOVR" entered, set to -2, after the present value saved in PHASETMP. The appropriate "PCOPY"/"YCOPY" routine sets to control the pitch/yaw copy cycle restart logic.

TVCPITCH, TVCYAW: See Digital Autopilot Interface Routines.

- VARK: Single precision variable gain for TVC pitch and yaw channels, scale factor B4 (LM off) or B2 (LM on), units ASCREV/revolution (or B18/B16 in units of CDU actuator pulses/revolution). It is computed in "S40.15" and used in "FWDFLTR".
- VCNTR: Single precision cell, scale factor B14, used for control of the "TVCEXEC" computations. It is normally employed to cause an update of DAP parameters (due to mass change computed every 2 seconds in "S40.8") every 20 entrances to "TVCEXEC" (i.e. every 10 seconds). Since the modifications to the counter are not restart protected, however, a restart in a small interval could cause another modification to the counter (modifying the period, although this should not be a problem). The cell is preset to 19 in "TVCINIT1" and in "TVCEXEC" after updating parameters (when cell reaches +0).

- YACTOFF: Single precision value of yaw c.g. offset, scale factor B14, units CDU actuator pulses (or scale BO in ASCREV). It is measured "relative to electrical null" specified by K (see Steering Computations). See PACTOFF above (updated at analogous times to those for PACTOFF, but of course with yaw parameters).
- YCDUYPST, YCDUZPST: Previous values of CDU and CDU for use in deriving MCDUYDOT and MCDUZDOT for yaw DAP, single precision with scale factor B-1, units revolutions, in twos complement. Separate cells are used for pitch DAP (see PCDUYPST). YCDUiPST cells are initialized in "DAPINIT", but "YAWDAP" is entered for the first time at a time corresponding to 1.5 complete DAP cycles (i.e. pitch and yaw, plus pitch), giving a derived rate for this first pass (at DAP turn-on or after a restart) that is 50% too big.
- YCMD: Single precision value of previous yaw output command information, scale factor Bl4, units CDU actuator pulses (or BO in units of ASCREV). See PCMD.
- YDELOFF: Value of yaw c.g. offset, scale factor Bl4, units CDU actuator pulses (or BO in units of ASCREV). Quantity is a double precision version of YACTOFF (cf. PDELOFF).
- YERRB: Value of yaw error in body coordinates, loaded in "Y COPY" with ERRBTMP (which in turn is sum of previous YERRB and (OMEGAC -OMEGAB_z)), scale factor B-l, units revolutions (cf. PERRB).^Z

<u>CM/POSE</u> (Entered by setting AVEGEXIT = "CM/POSE" in "P62") $mVREL = K_{mkvsc} \underline{V} + K_{kwe} (\underline{C}_{unitw} * UNIT\underline{R})$ UXA = unit(mVREL) $T\underline{S} = - unit(UX\underline{A} * UNIT\underline{R})$ mVREL sp - K_{spvq} < 0: If $T\underline{S} = OLDUY\underline{A}$ UYA = TSOLDUYA = UYAUZA = - UYA * UXATS = (AOGdPIP, AIGdPIP, AMGdPIP), converted to ones complement double precision $UB\underline{Y} = (-\cos TS_x \cos TS_y \sin TS_z + \sin TS_x \sin TS_y)$ $\cos TS_x \cos TS_z$, $\cos TS_x \sin TS_y \sin TS_z + \sin TS_x \cos TS_y$) [REFSMMAT] $UBX = (\cos TS_y \cos TS_z, \sin TS_z, - \sin TS_y \cos TS_z)$ [REFSMMAT] UBZ = UBX * UBY $T\underline{S}_{1} = unit(UX\underline{A} * U\underline{BY})$ $COSTH = TS_1 \cdot UZA$ $SINTH = TS_1 \cdot UYA$ Perform "ARCTRIG" $TS_x = THETA_{sp}$ (- roll angle) $TS_{y} = (sin^{-1} (UBY \cdot UXA))_{sp} \quad (- beta angle)$ SINTH = UBX \cdot TS₁ $COSTH = TS_1 \cdot UBZ$ Perform "ARCTRIG" $TS_z = THETA_{sp}$ (- alfa angle)

 $TS_2 = GAMA$ $GAMA = -(\cos^{-1}(UNIT\underline{R} \cdot UZ\underline{A}))_{SD}$ Inhibit interrupts If bit ll(GAMDIFSW) of FLAGWRD6 = 1: $GAMDOT = K_{tcdu} (GAMA - TS_2)$ If GAMDOT - K_{gmmn} < 0: GAMDOT = OIf bit ll(GAMDIFSW) of FLAGWRD6 = 0: Set bit ll(GAMDIFSW) of FLAGWRD6 = 1 GAMDOT = O $TS_3 = -TS_x$, in range $\pm 180^\circ$ $ROLId_{180} = TS_3 - ROLId_{PIP} + ROLId_{180}$, in range $\pm 180^\circ$ $TS_{4} = -TS_{z}$, in range $\frac{+}{-}$ 180° $ALFAd180 = TS_{1} - ALFAdPIP + ALFAd180$, in range $\pm 180^{\circ}$ $BETAd180 = -TS_v - BETAdPIP + BETAd180$ (no overflow checks) Release interrupts VMAGI = VProceed to address specified by POSEXIT STARTENT (Entered by setting POSEXIT = "STARTENT" in "P63") Set bits 9(RELVELSW), 8(EGSW), 7(NOSWITCH), 6(HIND), 5(INRLSW), and 3(05GSW) of FLAGWRD6 = 0 Set bits 13(ENTRYDSP), 10(GONEPAST), and 4(LATSW) of FLAGWRD6 = 1 $LOD = C_{odpad}$ $LAD = C_{adpad}$ LdDCMINR = K csl5p2 LAD $KLAT = K_{atspe}$ LAD $Q7 = K_{q7f}$ FACTOR = $(1 - 2^{-28})$ LdD = - LAD sgn HEADSUP

Perform "STARTEN1"
LATANG =
$$\left(\text{unit}(\underline{V} * \text{UNIT}\underline{R}) \right) \cdot \underline{R}_{t}$$

K2ROLL = - 1 sgn LATANG_{sp} (+0 is +, -0 is -)
Q2 = K_{q21} LAD + K_{q22}
GOTOADDR = "INITROLL"
POSEXIT = "SCALEPOP"

Proceed to "SERVEXIT"

STARTEN1 Entered from "STARTENT" and "NEWRNVN"

GOTOADDR = Return address

Set bit 13(ERADCOMP) of FLAGWRD1 = 0

LAT = LATSPL

LONG = LNGSPL

 $ALT = DELVLVC_{x}$

ALT = 0

TIMEdRTO = T_{pptm}

TS = TIMEdRTO

Perform "LALOTORV"

 $\underline{\mathbf{R}}_{ti} = \text{unitALPHAV}$

 $DTEAROT = K_{500sec}$

Perform "EARROT1"

THETAH = \cos^{-1} (<u>R</u>t · UNIT<u>R</u>)

Proceed to address specified by GOTOADDR

SCALEPOP Entered due to setting of POSEXIT in "STARTENT"

Perform "TARGETNG"

Proceed to address specified by GOTOADDR

TARGETNG

If bit 9(RELVELSW) of FLAGWRD6 = 0:

$$VEL = K_{kvsc} \underline{V}$$

If bit 9(RELVELSW) of FLAGWRD6 = 1:

$$\begin{split} & \text{VEL} = -\text{mVRE} \underline{I} \\ & \text{UNITY} = \text{unitVE} \underline{I} \\ & \text{VSQUARE} = \left| \text{VEL} \right|^2 \\ & \text{LEQ} = \text{VSQUARE} - 1 \\ & \text{NV} = \left| \text{VEL} \right| \\ & \text{RDOT} = \text{VEL} \cdot \text{UNITE} \\ & \text{D} = \text{K}_{\text{kasc}} \left| \text{DELY} \right| \quad , \text{ limited} \geqslant \text{K}_{\text{mnd}} \quad (\text{limit effective only if} \\ & \text{D}_{\text{tp}} = 0). \\ & \text{If bit 9}(\text{RELVELSW}) \text{ of FLAGWED6} = 1: \\ & \text{TS} = 0 \\ & \text{If bit 9}(\text{RELVELSW}) \text{ of FLAGWED6} = 0: \\ & \text{D} = \text{D} + \text{D}(\text{ RDOT } / \text{K}_{\text{mhsca}} + \text{K}_{\text{mkcc}} \text{D} / \text{NV}) \\ & \text{If bit 8}(\text{EGSW}) \text{ of FLAGWED6} = 0: \\ & \text{TS} = \text{K}_{\text{kteta}} \text{ THETAH} \\ & \text{If bit 8}(\text{EGSW}) \text{ of FLAGWED6} = 1: \\ & \text{If NV} - \text{K}_{\text{vmin}} \blacktriangleleft 0: \\ & \text{ Set bit 9}(\text{RELVELSW}) \text{ of FLAGWED6} = 1 \\ & \text{TS} = \text{K}_{\text{ktl}} \text{ THETAH} / \text{NV} \\ & \text{DTEAROT} = \text{TS} + \text{T}_{\text{pptm}} - \text{TIMEARTO} \\ & \text{Perform "EARROT2"} \\ & \text{LATANG} = \underline{\text{B}}_{\text{t}} \cdot \text{UNII} \\ & \text{Set bit 8}(\text{GOMEBYTG}) \text{ of FLAGWED7} = 0 \\ & \text{If } (\text{E}_{\text{t}} * \text{UNITE}) \cdot \text{UNI} \blacktriangleleft (\text{O}, \text{ set bit 8}(\text{GOMEBYTG}) \text{ of FLAGWED7} = 1 \\ & \text{TS} = \frac{\text{R}}_{\text{t}} \cdot \text{UNITE} \\ & \text{If TS} - \text{K}_{\text{RQ}} \bigstar 0: \\ & \text{THETAH} = \cos^{-1} \text{TS} \\ & \end{array}$$

If TS - $K_{nq} \ge 0$: THETAH = $K_{kacs} \sqrt{|2 (TS - 1)|}$ TS = THETAH If bit 8 (GONEBYTG) of FLAGWRD7 = 0: TS = - TS RTGON67 = TS If D - $K_{pt05g} < 0$: Set bit 3(05GSW) of FLAGWRD6 = 0 Return Set bit 3(05GSW) of FLAGWRD6 = 1 TS = $\frac{|DELVREF|^2 - (DELVREF \cdot UXA)^2}{(DELVREF \cdot UXA)^2}$ If no overflow has taken place (e.g. $|TS| \le 1$): IdDCALC = \sqrt{TS}

Return

INITROLL

If bit 5(INRLSW) of FLAGWRD6 = 1: If RDOT + $K_{vrcont} \ge 0$: DIFFOLD = 0 DLEWD = K_{dlewd0} LEWD = K_{ewd1} GOTOADDR = "HUNTEST" Proceed to "HUNTEST" If (KAT - D) < 0, proceed to "CONSTD" Proceed to "LIMITL/D" If bit 3(05GSW) of FLAGWRD6 = 0, proceed to "LIMITL/D" TS = 64 and perform "NEWMODEX" ENTRYVN = 0674_{vn} KAT = K_{ka2} + LEQ³/ K_{ldkal} , limited $\le K_{kalim}$

Set bit 10(GONEPAST) of FLAGWRD6 = 0 ("STARTENT" initialized this bit to 1) If NV - K_{vfnl} <0: GOTOADDR = "KEP2"Set bit 5(INRLSW) of FLAGWRD6 = 1 (must be 0 to get here) Proceed to "LIMITL/D" $DO = K_{ka3} LEQ + K_{ka4}$ (NV at least 27,000 fps to get here) $CdDO = K_{cone} / DO$ Reset overflow indicator LdD = LADTS = $(RDOT / NV)^3 / K_{ldk44} - K_{vfin}$ + NV If no overflow has taken place since indicator reset: If TS >, 0: LdD = - LADSet bit 5(INRLSW) of FLAGWRD6 = 1 (must be 0 to get here) Proceed to "LIMITL/D" HUNTEST Al = DTS = LADIf RDOT > 0: TS = LEWDVl = NV + RDOT / TSAO = $(Vl^2 / VSQUARE) (D + RDOT^2 / (K_{2chs} TS))$ If RDOT < O: Al = AOIf IdD < 0: Vl = Vl - K_{vquit} Proceed to "HUNTEST1"

HUNTEST1

 $ALP = K_{2chs} AO / (LEWD Vl²)$ FACTI = VI / (I - ALP)FACT2 = ALP (ALP - 1) / AOVL = FACT1 (1 - $\sqrt{FACT2 Q7 + ALP}$) GAMMAL1 = LEWD (V1 - VL) / VL If VL $-K_{vmn} < 0$: Proceed to "PREFINAL" $VBARS = VL^2$ $TS = K_{hav} - VL$ If TS < 0: GOTOADDR = "HUNTEST"Proceed to "CONSTD" DVL = TS $VS1 = K_{hav}$ TS = VS1 - V1If TS > 0: DVL = DVL - TS (i.e. Vl - VL) VSl = Vl $\frac{(1 - VS1 / FACT1)^2 - ALP}{FACT2}$ DHOOK =AHOOKDV = $\frac{1}{4}$ (DHOOK / Q7) - K_{chk} TS = GAMMAL1 - (AHOOKDV + 1) K_{chone} DVL² / (DHOOK VBARS) If TS 🌛 0: GAMMAL = TS

$$VL = VL + \frac{(1/3) VL TS}{(1/3) LEWD - (AHOOKDV + 2/3)(K_{chone} DVL)/(DHOOK VL)}$$

$$Q7 = \frac{(1 - VL / FACT1)^2 - ALP}{FACT2}$$

$$VBARS = VL^2$$

$$GAMMAL = 0$$

$$GAMMALI = GAMMAL1 + K_{q19} (GAMMAL - GAMMAL1)$$

$$Proceed to "RANGER"$$

$$Proceed to "RANGER"$$

$$Proceed to "RANGER"$$

$$COSG = 1 - \frac{1}{2} GAMMAL^2$$

$$CFE = \sqrt{1 + (VBARS - 2) COSG^2 VEARS}$$

$$ASKEP = 2 \sin^{-1} (VBARS COSG GAMMAL / CFE)$$

$$ASP1 = Q2 + K_{q3} VL$$

$$ASFUP = (K_{c12} / GAMMAL1) (- \log_{e}((V1^2 Q7)/(AO VBARS)))$$

$$ASFDWN = K_{Kc3} EDOT NV /(AO LAD)$$

$$ASP3 = K_{q5} (K_{q6} - GAMMAL)$$

$$ASPSpTMp = ((ASKEP_{sp}, ASP1_{sp}) , (ASPUP_{sp}, ASPDWN_{sp}), ASP3)$$

$$DIFF = ASP3 + ASPDWN + ASPUP + ASP1 + ASKEP - THETAH$$

$$If [DIFF] - K_{25nm} < 0:$$

$$TS = 65 and perform "NEWMODEX"$$

$$Establish "P65.1" (priority 13_8)$$

$$GOTOADDR = "UPCONTRL"$$

$$Proceed to address specified by GOTOADDR$$

$$If bit 6(HIND) of FLAGWRD6 = 0:$$

$$If DIFF > 0: (note that polarity of DIFF the opposite of that in official equation documentation)$$

DIFFOLD = DIFF $Q7 = K_{q7f}$ GOTOADDR = "HUNTEST" Proceed to "CONSTD" DLEWD = (DLEWD DIFF) / (DIFFOLD - DIFF)

If DLEWD + LEWD < 0:

DLEWD = - 불 LEWD

Proceed to second previous line (recheck of sum with LEWD) If overflow has taken place since calculation of DIFF:

 $LEWD = (1 - 2^{-28})$

DIFFOLD = DIFF

 $Q7 = K_{q7f}$ GOTOADDR = "HUNTEST"

Proceed to "CONSTD"

LEWD = DLEWD + LEWD

Change priority of present job to 16₈ (lower than "SERVICER") GOTOADDR = "ENDEXIT"

DIFFOLD = DIFF

Set bit 6(HIND) of FLAGWRD6 = 1

 $Q7 = K_{q7f}$ Proceed to "HUNTEST"

P65.1 Established when P65 entered from "RANGER"

Set bit 13(ENTRYDSP) of FLAGWRD6 = 0

 $TS = 1669_{vn}$

Perform "GOFLASHR": if terminate, proceed to previous line if proceed, skip next line otherwise, proceed to previous line

End of job

Set bit 13(ENTRYDSP) of FLAGWRD6 = 1

End of job

UPCONTRL

If D - $K_{c21} \ge 0$: Set bit 7(NOSWITCH) of FLAGWRD6 = 1 (reset in "L355") If NV - Vl > 0: Reset overflow indicator $TS = LAD + K_{k2d} (RDOT + LAD (NV - VL))$ (scaled B8) $TS_1 = AO VSQUARE / Vl^2 - (Vl - NV)^2 LAD / K_{2chs}$ (scale BO) $TS_2 = K_{kld} (D - TS_1) + TS$ (scaled B8) Rescale TS_2 to scale factor BO If overflow has taken place since indicator reset: $IdD = LAD sgn TS_2$ Proceed to "GLIMITER" $LdD = TS_2$ Proceed to "NEGTESTS" If D - Q7 < 0: TS = 66 and perform "NEWMODEX" $ENTRYVN = 0622_{vn}$ Set bit 13(ENTRYDSP) of FLAGWRD6 = 1 GOTOADDR = "KEP2"Proceed to "KEP2" If RDOT < 0: If NV - VL - $K_{cl8} < 0$: Proceed to "PREFINAL" If D - A0 ≥ 0: LdD = LAD

Proceed to "LIMITL/D"

$$\begin{split} & \text{VREF} = \text{FACT1} \left(1 - \sqrt{\text{D} \text{ FACT2} + \text{ALP}'}\right) \\ & \text{RDOTREF} = \text{LEWD} \left(\text{V1} - \text{VREF}\right) \\ & \text{TS} = \text{VS1} - \text{VREF} \\ & \text{If TS } \text{O}: \\ & \text{RDOTREF} = \text{RDOTREF} - \frac{\text{K}_{\text{chone}} \text{ TS}^2 \left(1 + \text{TS AHOOKDV / DVL}\right)}{\text{DHOOK VREF}} \\ & \text{TS} = \text{D} - \text{K}_{q/\text{min}} \qquad (\text{Tag here "CONTINU2"}) \\ & \text{Reset overflow indicator} \\ & \text{If TS } \text{O}: \qquad (\text{should not be, since } \text{K}_{q/\text{min}} = +\text{MAX}) \\ & \text{FACTOR} = (\text{D} - \text{Q7}) / (\text{Al} - \text{Q7}) \\ & \text{TS} = \text{FACTOR} \left(\text{NV} - \text{VREF} + \text{FACTOR (RDOT - RDOTREF})/\text{K}_{\text{ldkb}}\right) / \text{K}_{\text{mldkb2}} \\ & (\text{scale B4}) \\ & \text{If overflow has taken place since indicator reset:} \\ & \text{LdD} = \text{LAD sgn TS} \\ & \text{Proceed to "GLIMITER"} \\ & \text{If } \left(\text{TS}\right) - \text{K}_{\text{ptb4}} \geqslant \text{O}: \\ & \text{TS} = \left(\text{K}_{\text{ptb4}} + \text{K}_{\text{ptone}} \left(\left|\text{TS}\right| - \text{K}_{\text{ptb4}}\right)\right) \quad \text{sgn TS} \\ & \text{Rescale TS to scale factor BO} \\ & \text{TS} = \text{TS} + \text{LEWD} \\ & \text{If overflow has taken place since indicator reset:} \\ & \text{LdD} = \text{LAD sgn TS} \\ & \text{Proceed to "GLIMITER"} \\ & \text{If overflow has taken place since indicator reset:} \\ & \text{LdD} = \text{LAD sgn TS} \\ & \text{Proceed to "GLIMITER"} \\ & \text{If overflow has taken place since indicator reset:} \\ & \text{LdD} = \text{TS} \\ & \text{Proceed to "GLIMITER"} \\ & \text{LdD} = \text{TS} \\ \end{array}$$

Proceed to "NEGTESTS"

NEGTESTS

If D -
$$K_{c20} < 0$$
:

Proceed to "LIMITL/D"

```
Set bit 4(LATSW) of FLAGWRD6 = 0
```

If IdD < 0:

LdD = 0

Proceed to "LIMITL/D"

CONSTD

Reset overflow indicator

 $TS = CdDO LEQ + K_{k2d} (RDOT + K_{2hs} DO / NV)$ (scale B8) $TS_2 = K_{kld} (D - DO) + TS$ (scaled B8) Rescale TS₂ to scale factor BO

If overflow has taken place since indicator reset:

 $LdD = LAD sgn TS_2$

Proceed to "GLIMITER"

 $LdD = TS_2$

Proceed to "NEGTESTS"

KEP2

If $K_{q7fkdm} - D < 0$: Proceed to "PREFINAL" $TS_{tp} = (ROLLC_{dp}, ROLLHOLD)$ If bit 3(05GSW) of FLAGWRD6 = 0: $TS_{tp} = 0$ (ROLLC_{dp}, ROLLHOLD) = TS_{tp} Proceed to "P62.3"

(ENTRYVN set to 0622 by "UPCONTRL" before "KEP2" entered, <u>if</u> vnin P66)

PREFINAL

GOTOADDR = "PREFINAL"(for restart considerations) TS = 67 and perform "NEWMODEX"

ENTRYVN = 0666 vn Set bit 13(ENTRYDSP) of FLAGWRD6 = 1 Set bit 8(EGSW) of FLAGWRD6 = 1 GOTOADDR = "PREDICT3" Proceed to "PREDICT3"

PREDICT3

If NV - K_{vquit} < 0: Establish "P67.1" (priority 16₈) GOTOADDR = "P67.2"

Proceed to "P67.2"

JJ = 12

If $K_{vrfr_{JJ}} - NV_{sp} > 0$: JJ = JJ - 1 and repeat check

$$GRAD = \frac{K_{vrfr_{JJ}} - NV_{sp}}{K_{vrfr_{JJ+1}} - K_{vrfr_{JJ}}}$$

$$i = JJ$$

JJ = JJ + 13

$$FlV = K_{drda_{i}} + GRAD (K_{drda_{i+1}} - K_{drda_{i}})$$

$$JJ = JJ + 13$$

$$F2V = K_{drdd_{i}} + GRAD (K_{drdd_{i+1}} - K_{drdd_{i}})$$

$$JJ = JJ + 13$$

$$RDRFV = K_{rdtr_{i}} + GRAD (K_{rdtr_{i+1}} - K_{rdtr_{i}})$$

$$JJ = JJ + 13$$

$$RTOGOV = K_{rtgo_{i}} + GRAD (K_{rtgo_{i+1}} - K_{rtgo_{i}})$$

$$JJ = JJ + 13$$

DREFRV = $K_{aref_{i}}$ + GRAD ($K_{aref_{i+1}}$ - $K_{aref_{i}}$) JJ = JJ + 13 $F3V = K_{drd_{i}} + GRAD (K_{drd_{i+1}} - K_{drd_{i}})$ Set TS = DREFRV and DREFRV = 0 PREDANG = RTOGOV + F2V (RDRFV - RDOT) + F1V (D_{sp} + TS) TS = PREDANC_{dp} - THETAH If bit 10(GONEPAST) of FLAGWRD6 = 1:

LdD = - LAD

Proceed to "GLIMITER"

If bit 8(GONEBYTG) of FLAGWRD7 = 1:

Set bit 10(GONEPAST) of FLAGWRD6 = 1

DNRNGERR = K maxrng

LdD = - LAD

Proceed to "GLIMITER"

DNRNGERR = TS

Reset overflow indicator

TS = -4 DNRNGERR / F3V

If overflow has taken place since indicator reset ($|TS| \ge 1$):

LdD = LAD sgn TS

Proceed to "GLIMITER"

TS = TS + LOD

If TS 1:

LdD = LAD sgn TS

Proceed to "GLIMITER"

LdD = TS

Proceed to "GLIMITER"

GLIMITER

 $TS = K_{gmxd2}$ - D If $TS \ge 0$: Proceed to "LIMITL/D" $TS = TS + K_{gmxd2}$ If TS < 0: LdD = LADProceed to "LIMITL/D" $CPX = \sqrt{K_{2hs} TS (K_{ldgmx} LEQ + LAD) + K_{2hsgmxq} / VSQUARE}$ If CPX + RDOT > O: Proceed to "LIMITL/D" LdD = LADProceed to "LIMITL/D" LIMITL/D LdDl = LdDIf bit 10(GONEPAST) of FLAGWRD6 = 1: (also set in "STARTENT" and reset in "INITROLL" after Proceed to "L355" 0.05G sensed) CPY = KLAT VSQUARE + K atbias If |IdD| - IdDCMINR > 0: If LATANG sgn K2ROLL < 0: LdDl = LdDCMINR sgn LdDProceed to "L355" CPY = 불 CPY If LATANG sgn K2ROLL - CPY < O:

Proceed to "L355"

If bit 7(NOSWITCH) of FLAGWRD6 = 1: (set by "UPCONTRL")

Set bit 7(NOSWITCH) of FLAGWRD6 = 0

Proceed to "L355"

K2ROLL = - K2ROLL

Proceed to "L355"

L355

TS = LdDl / LAD, with magnitude limited < 1 (due to interpreter divide order) Set bit 7(NOSWITCH) of FLAGWRD6 = 0 $ROLLC = (\cos^{-1} TS) sgn K2ROLL$

Proceed to "ENDEXIT"

ENDEXIT

```
If bit 13(ENTRYDSP) of FLAGWRD6 = 1:
```

TS = ENTRYVN

Perform "REGODSPR"

Proceed to "SERVEXIT" (after special check for new job)

Established by "PREDICT3" P67.1

 $TS = 1667_{vn}$

Proceed to "GOFLASH": if terminate, proceed if proceed, proceed otherwise, proceed to previous line

Set bits 2(CMDSTBY) and 1(GYMDIF) of FLAGWRD6 = 0

AVEGEXIT = "SERVEXIT"

Proceed to "GOTOPOOH"

P67.2

Set bit 13(ERADCOMP) of FLAGWRDL = 0

ALPHAV = R

 $TS = T_{pptm}$

Perform "LAT-LONG"

Proceed to "SERVEXIT"

Quantities in Computations

See also list of major variables and list of routines

- Al: Value of drag (set to D or AO in "HUNTEST") used to compute FACTOR, scale factor BO, G-units (25 g's).
- AHOOKDV: Term in GAMMAL calculation (equal to AHOOK DVL), scale factor B4.
- AIGdPIP: See General Program Control.
- ALFAd180: Single precision angle, program notation "ALFA/180", giving the third Euler angle of the CM attitude (about UBY in "pitch"), scale factor B-1, units revolutions.

ALFAdPIP: See General Program Control.

ALP: Quantity used to compute VREF in "UPCONTRL" (and computed itself in "HUNTESTI", where it is also used), scale factor BO.

ALPHAV: See Coordinate Transformations.

ALT: See Display Computations: discussion concerning loading with DELVLVC, also applicable to "STARTEN1".

AMGdPIP: See General Program Control.

AO: Initial drag for "UPCONTRL", scale factor BO, G-units (25 g's).

AOGdPIP: See General Program Control.

- ASKEP: Value of "Kepler range", scale factor BO, units revolutions, stored in push-down list location OD. A single precision value is available in the ASKEP cell itself for generating telemetry data.
- ASP1: Value of "final phase" range, scale factor BO, units revolutions, stored in push-down list location 2D. A single precision value is available in the ASP1 cell itself for generating telemetry data.
- ASP3: Value of "gamma correction", scale factor BO, units revolutions.
- ASPDWN: Value of "range down to pull-up", scale factor BO, units revolutions, stored in push-down list location 6D. A single precision value is available in the ASPDWN cell itself for generating telemetry data.
- ASPSpTMp: "Vector" information loaded for telemetry purposes (see "RANGER" for format). Cells loaded are the same as those used for WBODY (RCS DAP) and OMEGAC (TVC DAP); program notation "ASPS(TM)".

ASPUP: Value of "up-range", scale factor BO, units revolutions, stored in push-down list location 4D. A single precision value is available in the ASPUP cell itself for generating telemetry data.

AVEGEXIT: See General Program Control.

BETAd180: Single precision angle, program notation "BETA/180", giving the second Euler angle of the CM attitude (about UXA * UBY in "yaw"), scale factor B-1, units revolutions.

BETAdPIP: See General Program Control.

C_{adpad}: Single precision erasable memory constant, program notation "LADPAD", scale factor BO, used to initialize LAD in "STARTENT".

Codpad: Single precision erasable memory constant, program notation "LODPAD", scale factor BO, used to initialize LOD in "STARTENT".

Cunitw: See General Program Control.

CdDO: Value of K_{cone}/ DO, computed in "INITROLL" and used in "CONSTD", scale factor B6.

COSG: Approximation to value of cos GAMMAL, scale factor Bl.

COSTH: See Coordinate Transformations.

CPE: Value of eccentricity, scale factor B2 (stored in push-down list).

CPX: Value of intermediate quantity used in "GLIMITER", scale factor Bl, V-units (see NV).

CPY: Value of lateral miss limit, scale factor B2, units of radians.

D: Value of total acceleration, scale factor BO, G-units (25 g's).

DELVLVC: See Burn Control (and ALT).

DELVREF: See General Program Control.

DHOOK: Quantity used in computation of GAMMAL, scale factor BO.

DIFF: Difference between predicted and actual expected range, scale factor BO, units revolutions. Note that polarity of program definition is the reverse of that in official equation documentation.

DIFFOLD: Previous value of DIFF, scale factor BO, units revolutions.

DLEWD: Computed desired change in LEWD, scale factor BO.

- DNRNGERR: Difference between predicted angle of travel and actual angle to target (i.e. PREDANG - THETAH) computed in "PREDICT3", scale factor BO, units revolutions, provided that bit 10(GONEPAST) of FLAGWRD6 = 0. If bit is set 1, DNRNGERR is set to K (and not subsequently loaded) in P67.
- DO: Value of "controlled constant D", scale factor BO, G-units (25 g's).

DREFRV: Value of K_{aref} table for present NV, same scaling as K_{aref} .

DTEAROT: See Coordinate Transformations.

DVL: Value of (VS1 - VL), scale factor Bl, V-units (see NV).

- ENTRYVN: Single precision cell loaded with verb-noun pattern (in proper format) for use in "ENDEXIT" for entry display.
- FlV: Value of K_{drda} table for present NV, same scaling as K_{drda}.
- F2V: Value of K_{drdd} table for present NV, same scaling as K_{drdd}.

F3V: Value of K_{drd} table for present NV, same scaling as K_{drd}.

FACT1: Value of quantity computed in "HUNTEST1", scale factor B1, V-units (see NV).

FACT2: Value of quantity computed in "HUNTEST1", scale factor BO.

- FACTOR: Quantity used in "UPCONTRL" (initialized to 1 in "STARTENT"), scale factor BO.
- GAMA: Single precision angle computed in "CM/POSE", scale factor BO, units revolutions, used to compute (by forming first difference with previous value) GAMDOT.
- GAMDOT: Rate of change of GAMA per 0.1 second, scale factor B-1, units revolutions. Set to zero if magnitude is less than K_{gmmn}.
- GAMMAL: Value of "flight path angle at VL", scale factor BO, units radians.
- GAMMAL1: Value of "simple form of GAMMAL", scale factor BO, units radians. Stored in push-down list location 22D.
- GOTOADDR: Single precision cell used to contain the starting address of the computations performed after "SCALEPOP" is performed, and used to control the phases of the entry computations. Prior to start of entry computations, used as storage for return address information.
- GRAD: Single precision "gradient" of present velocity with respect to a table value, scale factor BO, used to permit linear interpolation in "PREDICT3".

HEADSUP: See Entry Preparation.

- JJ: Single precision indexing parameter used in "PREDICT3", scale factor Bl4. It is incremented by 13 to select the next set of tabular information within an index loop (the incrementing is shown because the quantity is on the downlink).
- K_{ldgmx}: Constant, program notation "l/GMAX", scale factor B-2, units of g⁻¹. Value is 0.5, corresponding to (l/8) x 2², where first term is reciprocal of "GMAX" and second is scale factor.
- K_{ldk44}: Constant, program notation "1/K44", scale factor B-1, units of (1/V-units). Stored value is 0.00260929464, corresponding to (1/19749550) x 25766.1973 x 2¹, where first term is reciprocal of "K44" (in units of fps), second is V-unit conversion, and third is scale factor.
- K_{ldkal}: Constant, program notation "l/KAl", scale factor B6, units of G-units (25 g's) reciprocal. Value is 0.30048077, corresponding to (l/l.3) x 25 x 2⁻⁶, where first term is reciprocal of "KAl" (in units of g's), second is G-unit conversion, and third is the scale factor.
- K ldkb: Constant, program notation "l/KBL", scale factor BO, value 0.400. Value corresponds to (l/2.5), or the reciprocal of the value of "KBL".
- K_{2chs}: Constant, program notation "2ClHS", scale factor B2, value 0.0215983264. Value corresponds to 2 x (1.25) x 28500 x 805 x (25766.1973)⁻² x 2⁻², where first term is equation factor of 2, second is value of Cl, third is value of HS, fourth converts answer from fps² to G-units (of 25 g's @ 32.2 fps² = 805 fps²), fifth converts velocity to fps from V-units, and sixth is scale factor.
- K_{2hs} : Constant, program notation "2HS", scale factor B2, value 0.0172786611. Value corresponds to 2 x 28500 x 805 x (25766.1973)⁻² x 2⁻², where terms (except for the omission of the 1.25 factor for Cl) have analogous significance to those for K_{2chs} .
- K_{2hsgmxq}: Constant, program notation "2HSGMXSQ", scale factor B4, value 3.05717E-5. Value corresponds to the square of: (2 x 28500 x 8 x 32.2 x (25766.1973)⁻² x 2⁻²), where first term is equation factor of 2, second is value of HS, third is value of GMAX (in g's), fourth converts GMAX to fps², fifth converts V-units to fps, and sixth is square root of scale factor.
- K_{25nm}: Constant, program notation "25NM", scale factor BO, units revolutions. Value is 0.0011574074, corresponding to 25 x (1/21600), where first term is "basic" value and second converts from nmi to revolutions (it is the reciprocal of 3437.7468 x 277, or 60 x 360 for 60 nmi/degree).
- K_{500sec}: Constant, program notation "500SEC", scale factor B28, units centi-seconds. Value is 50000 x 2⁻²⁸, corresponding to 500 seconds.

K_{aref}: Single precision set of constants, scale factor BO, G-units (of 25 g's). To convert to fps², multiply table entries by 32.2 x 25 = 805. Table starts at "VREFER +65". See below.

- K : Constant, program notation "LATBIAS", scale factor B2, value 0.00003, units radians. Corresponds to 0.00012 radians, or (multiplying by 3437.7468) 0.412529616 nmi.
- ^Katspe: Constant, program notation "LATSLOPE", scale factor B-1, value 0.083333. Value corresponds to $(1/12) \ge 2^{-1}$, or (1/24).
- K_{cl2}: Constant, program notation "Cl2", scale factor B-5, value 0.00684572901. Value corresponds to 28500 x (1/21 202 900) x (1/2 TT) x 2⁵, where first term is HS, second is reciprocal of RE in feet (standard "entry radius"), third converts from radians to revolutions, and fourth is scale factor.
- K_{cl8}: Constant, program notation "Cl8", scale factor Bl, V-units (see NV). Value is 0.0097026346, corresponding to 500 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.
- K c20: Constant, program notation "C20", scale factor BO, G-units (of 25 g's). Value is 0.26086957, corresponding to 210 x (1/805), where first term is "basic" value (in fps²), and second is conversion to G-units.
- K c21: Constant, program notation "C21", scale factor BO, G-units (of 25 g's). Value is 0.17391304, corresponding to 140 x (1/805), where first term is "basic" value (in fps²), and second is conversion to G-units.
- K_{chk} : Constant, program notation "CHOOK", scale factor B4, value 2^{-6} , corresponding to 0.25 x 2^{-4} , where first term is "basic" value and second is scale factor.
- K chone : Constant, program notation "CH1", scale factor B-4, value 0.32 x 2¹. Value corresponds to 1.0 x (1/25) x 2⁴, where first term is the "basic" value, second converts to G-units, and third is scale factor.
- K_{cone}: Constant, program notation "COOl", scale factor B6, value -0.000625. Value corresponds to (-1) x (1/25) x 2⁻⁶, where first term is "basic" value, second converts to G-units, and third is scale factor.
- K csl5p2: Constant, program notation "COS15", scale factor BO, value 0.965. Value corresponds to cosine 15.2 degrees.

K dlewd0: Constant, program notation "DLEWDO", scale factor BO, value -0.05.

- K_{drd} : Single precision set of constants, scale factor B-3, units revolutions. Multiply table entries by 21600 x $2^{-3} = 2700$ to convert to nmi. Table starts at "VREFER +78". See below.
- K drda: Single precision set of constants, scale factor B-3, units drda revolutions/G-unit. Multiply table entries by 2700/805 to convert to units of nmi/fps². Table starts at "VREFER +13". See below.
- K_{drdd} : Single precision set of constants, scale factor B-1, units revolutions/V-unit. Multiply table entries by 10800/25766.1973 to convert to units of nmi/fps (10800 = $\frac{1}{2}$ 21600). Table starts at "VREFER +26". See below.
- Kewdl: Constant, program notation "LEWDL", scale factor BO, value 0.15.
- K : Single precision constant, program notation "FIVE", scale factor B-1, units revolutions per 0.1 second. Value is 5 x 2⁻¹⁴, corresponding to a rate of about 0.5493 degrees/second.
- K gmxd2: Constant, program notation "GMAX/2", scale factor BO, G-units. Value is 0.16, corresponding to $\frac{1}{2} \times 8 \times (1/25)$, where first term gives equation factor of $\frac{1}{2}$, second is GMAX (in g's), and third converts to G-units (of 25 g's).
- K_{hav}: Constant, program notation "HALVE", scale factor Bl, units V-units. Value is 0.5, corresponding to 25766.1973 fps (one V-unit), i.e. "VSAT".
- K_{kld}: Constant, program notation "KlD", scale factor B8, value 0.0314453125. Value corresponds to 0.01 x 805 x 2⁻⁸, where first term is "basic" value (corresponding to "Cl6"), second converts to fps², and third is scale factor.
- Kk2d: Constant, program notation "K2D", scale factor B7, value -0.402596836. Value corresponds to (-1) x 0.002 x 25766.1973 x 2⁻⁷, where first term is equation factor, second is "basic" value ("C17"), third converts from V-units to fps, and fourth is scale factor.
- K_{ka2}: Constant, program notation "KA2", scale factor BO, G-units. Value is 0.008, corresponding to 0.2 x (1/25), where the first term is "basic" value (in g's) and second converts to G-units of 25 g's.
- K_{ka3}: Constant, program notation "KA3", scale factor B-2, G-units. Value is 0.44720497, corresponding to 90 x (1/805) x 2², where first term is "basic" value (in fps²), second converts to G-units, and third is scale factor.
- K_{ka4}: Constant, program notation "KA4", scale factor BO, G-units. Value is 0.049689441, corresponding to 40 x (1/805), where first term is "basic" value (in fps²), and second converts to G-units.

K : Constant, program notation "KACOS", scale factor B5, value 0.004973592, corresponding to $(1/2\pi) \ge 2^{-5}$.

- K_{kalim}: Constant, program notation "KALIM", scale factor BO, G-units. Value is 0.06, corresponding to 1.5 x (1/25), where the first term is "basic" value (in g's) and second converts to G-units of 25 g's.
- K_{kasc}: Constant, program notation "KASCALE", scale factor B-13, value 0.97657358. Value corresponds to 0.0585 x (1/0.3048) x (1/805) x $\frac{1}{2}$ x 2¹³, where first term is accelerometer scale factor (meters/ second per count), second converts to feet, third converts to G-units, fourth compensates for the two-second accelerometer sampling cycle, and fifth is scale factor.
- K_{kc3} : Constant, program notation "KC3", scale factor B-2, value -0.0247622232. Value corresponds to (-1) x (1/21 202 900) x (1/2 π) x (25766.1973)² x (1/805) x 2², where first term is "equation" value, second is reciprocal of RE in feet ("entry radius"), third converts to revolutions, fourth converts V-units to fps, fifth converts to G-units, and sixth is scale factor.
- Kktl: Constant, program notation "KTl", scale factor B29, value 15.7788327 x 2⁻¹⁴. Value corresponds to (21 202 900) x (1/25766.1973) x 100 x 21 x 2⁻²⁹, where first term is RE ("entry radius"), second converts V-units, third converts to centi-seconds, fourth converts THETAH to radians, and fifth is scale factor.
- K_{kteta}: Constant, program notation "KTETA", scale factor B28, value 38.3495203 x 2⁻¹⁴. Value corresponds to 10³ x 100 x 211 x 2⁻²⁸, where first term is "basic" value, second converts to centi-seconds, third converts THETAH to radians, and fourth is scale factor.
- K_{kvsc}: Constant, program notation "KVSCALE", scale factor B-6, value 0.81491944. Value corresponds to (1/25766.1973) x 100 x (1/0.3048) x 2⁶, where first term is one V-unit (in fps) conversion, second converts from centi-seconds to seconds, third converts from meters to feet, and fourth is scale factor.
- K_{kwe}: Constant, program notation "KWE", scale factor BO, value 0.120056652 x 2⁻¹. Value corresponds to 1546.70168 x (1/25766.1973), where first term is value in fps (corresponds to radius of 21 210 605 feet for a period of 86164.10 seconds) and second converts to V-units.
- K : Constant, program notation "MAXRNG", scale factor BO, units maxrng revolutions. Octal value is 16631, 06755, corresponding to about 0.46247666 revolutions. Value selected so that noun display of DNRNGERR for this information will be +9999.9 nmi (DSKY noun conversion factor is $2\pi \times 6,373,338$ meters = 21622.4965 nmi/rev).

K Constant, program notation "-1/KB2", scale factor B-3, value -0.0077621078 x 2⁴. Value corresponds to (-1) x (1/0.0025) x (1/25766.1973) x 2³, where first term is equation factor, second is reciprocal of basic constant ("KB2"), third converts V-units, and fourth is scale factor.

- K mhsca: Constant, program notation "-HSCALED", scale factor Bl, value -0.55305018. Value corresponds to (-1) x 28500 x (1/25766.1973) x 2⁻¹, where first term is equation factor, second is value of HS, third converts V-units, and fourth is scale factor.
- K mksc: Constant, program notation "-KSCALE", scale factor Bl, value -0.0312424837. Value corresponds to (-2) x 805 x (1/25766.1973) x 2⁻¹, where first term is "equation" value, second converts Gunits to fps², third converts V-units to fps, and fourth is scale factor.
- K_{mkvsc}: Constant, program notation "-KVSCALE", scale factor B-6, value -0.81491944, or - K_{kvsc}.
- K_{mnd}: Constant, program notation "IBITDP", scale factor BO, G-units. Value is 2⁻²⁸, corresponding to about 10⁻⁷ g.
- K_{nq} : Constant, program notation "NEAR1/4", scale factor B2, value $(\frac{1}{4} 2^{-14})$. Value corresponds to $(1 2^{-12})$, or about 0.99976, i.e. $\cos 1\frac{1}{4}^{\circ}$.
- K_{pt05g}: Constant, program notation ".05G", scale factor BO, G-units. Value is 0.002, corresponding to 0.05 x (1/25), where first term is "basic" value (in g's), and second converts to G-units (of 25 g's).
- K_{ptb4} : Constant, program notation "PT1/16", scale factor B4, value 0.1 x 2⁻⁴, corresponding to a "basic" value of 0.1.

K_{ptone}: Constant, program notation "POINTI", scale factor BO, value 0.1.

- Kq3: Constant, program notation "Q3", scale factor B-1, value 0.167003132. Value corresponds to 0.07 x 25766.1973 x (1/21600) x 2¹, where first term is "basic" value (in units of nmi/fps), second converts V-units, third converts to revolutions, and fourth is scale factor.
- Kq5: Constant, program notation "Q5", scale factor BO, value 0.326388889. Value corresponds to 7050 x (1/21600), where first term is "basic" value (in units of nmi/rad, corresponding to 0.3 x 23500) and second converts from nmi to revolutions.
- K_{q6}: Constant, program notation "Q6", scale factor BO, units radians. Value is 0.0349, or about 2°.
- Kq7f: Constant, program notation "Q7F", scale factor BO, G-units. Value is 0.0074534161, corresponding to 6 x (1/805), where first term is "basic" value (in fps²), and second converts to G-units.
- K Constant, program notation "Q7FKDMIN", scale factor B0, Gunits. Value is 0.0080745342, corresponding to 6.5 x (1/805), where first term is "basic" value (in fps²), and second converts to G-units.

- K_{q7min}: Constant, program notation "Q7MIN", scale factor BO, G-units. Constant is (1 - 2⁻²⁸), corresponding to about 25 g's (to disable the check in "UPCONTRL" to recompute FACTOR), or 805 fps².
- K_{al9}: Constant, program notation "Q19", scale factor BO, value 0.5.
- K q21: Constant, program notation "Q21", scale factor BO, units revolutions. Value is 0.162037037, corresponding to 3500 x (1/21600), where first term is "basic" value (nmi), and second converts to revolutions.
- K q22: Constant, program notation "Q22", scale factor BO, units revolutions. Value is -0.092222222, corresponding to -1992 x (1/21600), where first term is "basic" value (nmi), and second converts to revolutions.
- Krdtr: Single precision set of constants, scale factor B-2, V-units. Multiply table entries by (¹/₄ x 25766.1973) to convert to fps. Table starts at "VREFER +39". See below.
- K_{rtgo}: Single precision set of constants, scale factor B-3, units of revolutions. Multiply table entries by 2700 (i.e. 2-3 x 21600) to convert to nmi. Table starts at "VREFER +52". See below.
- K_{spvq}: Single precision constant, program notation "SPVQUIT", scale factor Bl, V-units. Octal value is 004768, corresponding to about 1000.2 fps.
- K_{tcdu}: Single precision constant, program notation "TCDU", scale factor B-1, value 0.1. Value corresponds to ½ x 0.1 x 2¹, where first term reduces angle rate from units of computing cycles (2 seconds) to seconds, second is "basic" value (to determine angle increment per 0.1 second), and third is scale factor.
- K_{vfin}: Constant, program notation "VFINAL", scale factor Bl, V-units. Value is 0.51618016, corresponding to 26600 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.
- Kvfnl: Constant, program notation "VFINALL", scale factor Bl, V-units. Value is 0.523942273, corresponding to 27000 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.
- K : Constant, program notation "VMIN", scale factor Bl, V-units. VminValue is 0.25, corresponding to a velocity of ½ (25766.1973) fps, or about 12883.1 fps.
- K : Constant, program notation "VLMIN", scale factor Bl, V-units. Value is 0.34929485, corresponding to 18000 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.

- Kvquit: Constant, program notation "VQUIT", scale factor Bl, V-units. Value is 0.019405269, corresponding to 1000 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.
- Kvrcont: Constant, program notation "VRCONT", scale factor Bl, V-units. Value is 0.0135836886, corresponding to 700 x (1/25766.1973) x 2⁻¹, where first term is "basic" value (in fps), second converts to V-units, and third is scale factor.
- K_{vrfr}: Single precision set of constants, scale factor Bl, V-units. Multiply table entries by (2 x 25766.1973) to convert to fps. Table starts at "VREFER". See below.
- K2ROLL: Quantity, scale factor BO (only the sign is used, with quantity initialized to a non-zero magnitude in "STARTENT"), used to determine sign of ROLLC (used for lateral control).
- KAT: Quantity, scale factor BO, G-units, computed in "INITROLL" the first cycle that D is not less than K_{pt05g}, and used as the "drag to lift up if down".
- KLAT: Value of lateral switch gain computed in "STARTENT", scale factor BO.
- LAD: Value of "maximum L/D (minimum actual vehicle L/D)" initialized in "STARTENT" from C_{adpad}, scale factor BO.
- LAT: See Coordinate Transformations.
- LATANG: Value of "lateral range", scale factor B2, units radians. Program notation also "XRNGERR".
- LATSPL: See Display Computations.
- IdD: Value of "desired lift-to-drag ratio (vertical plane)", scale factor BO. Program notation "L/D".
- IdDl: Value of IdD used to compute ROLLC (set to IdD at start of "LIMITL/D", and perhaps subsequently changed), scale factor BO.
- IdDCALC: Value of L/D computed in "TARGETNG" (for telemetry purposes only), scale factor BO. Uses same cell as TTE (see Display Computations). Program notation "L/DCALC".
- IdDCMINR: Value of LAD cos 15.2° computed in "STARTENT", scale factor BO. Program notation "L/DCMINR".
- LEQ: Value of (VSQUARE 1), scale factor B2, units of gravity (divide by 25 to convert to G-units).
- LEWD: Value of "UPCONTRL" reference L/D, scale factor BO. Updated in "RANGER" and initialized in "INITROLL".

LNGSPL: See Display Computations.

LOD: Value of "Final Phase L/D" loaded in "STARTENT", scale factor BO, from C odpad.

LONG: See Coordinate Transformations.

- mVREL: Complement of relative velocity, program notation "-VREL", scale factor Bl, V-units. Computed in "CM/POSE".
- NV: Magnitude of VEL (velocity normalized by satellite velocity of 25766.1973 fps), scale factor Bl, V-units. Program notation "V". One V-unit, i.e. 25766.1973 fps, corresponds to VP/RE, where RE = 21 202 900 (300 000' above 2.09029E7 feet).
- OLDUYA: Previous value of UYA saved in "CM/POSE", scale factor Bl.
- POSEXIT: Single precision exit address from "CM/POSE". Set to "P62.3" at start of "P62"; set to "STARTENT" in "P63"; and set to "SCALEPOP" (the normal beginning of the entry computations) in "STARTENT".
- PREDANG: Single precision value of "predicted range" computed in "PREDICT3", scale factor B-3, units revolutions (one revolution is 21600 nmi). Terms are double precision if possible.
- Q2: Value of final-phase ranging information used in "RANGER" to compute ASP1, scale factor BO, units revolutions. It is initialized in "STARTENT" based on the specified value for LAD.
- Q7: Value of minimum drag for "UPCONTRL", scale factor BO, G-units. Initialized in "STARTENT".

Rt, Rt:: See Coordinate Transformations.

RDOT: Value of altitude rate, scale factor Bl, V-units.

RDOTREF: Value of reference RDOT computed in "UPCONTRL", scale factor Bl, V-units.

RDRFV: Value of K_{rdtr} table for present NV, same scaling as K_{rdtr}.

- ROLLC: Value of roll command output of equations, scale factor BO, units revolutions.
- ROLId180: Single precision angle, program notation "ROLL/180", giving the first Euler angle of the CM attitude (about UBX in "roll"), scale factor B-1, units revolutions.

ROLLdPIP: See General Program Control.

ROLLHOLD: See Digital Autopilot Entry Routines.

RTGON67: Value of THETAH (with negative sign if not yet past target) loaded in "TARGETNG" for use with nouns 64 and 67, scale factor BO, units revolutions. Program notation also "RTGON64". RTOGOV: Value of K_{rtgo} table for present NV, same scaling as K_{rtgo}.

SINTH: See Coordinate Transformations.

THETA: See Coordinate Transformations.

- THETAH: Value of "desired range" (angle between present position vector and appropriately rotated target vector), scale factor BO, units revolutions.
- TIMEdRTO: Value of computer time for which \underline{R}_{ti} is valid, scale factor B28, units centi-seconds. Loaded in "STARTEN1", with program notation "TIME/RTO".
- UBX, UBY, UBZ: Unit vectors, scale factor Bl, computed in "CM/POSE". They define the "body axis triad" in reference coordinates: if all three gimbal angles are zero, UBX = unitX [REFSMMAT] etc; otherwise, the sequence is about y,z,x axes (inner, middle, and outer respectively) to go from platform to body axes.
- UNI: Unit vector, scale factor Bl, giving the "normal to the trajectory plane".
- UNITY: Unit VEL vector, scale factor Bl.
- UXA, UYA, UZA: Unit vectors, scale factor Bl, computed in "CM/POSE". They define the "trajectory triad" in reference coordinates. UXA is in the direction of mVREL; UYA is in the direction of $\underline{v} * \underline{r}$ (left constant if magnitude of mVREL is less than $K_{\rm SpVq}$), and UZA completes the right-handed coordinate system (in direction of UYA * \underline{v}). Note that UXA corresponds to "- UVA" and UZA corresponds to "UNA".
- Vl: Value of initial velocity for "UPCONTRL", scale factor Bl, V-units.
- VBARS: Value of VL², scale factor B2 (since VL in units of VSAT, no explicit division by VSAT is necessary to obtain VBARS).
- VEL: Value of velocity used in entry computations (inertial or relative), scale factor Bl, V-units.
- VL: Value of exit velocity for "UPCONTRL", scale factor Bl, V-units.
- VMAGI: Magnitude of <u>V</u> computed at the end of "CM/POSE", scale factor B7, units meters/centi-second, computed for display purposes.
- VREF: Value of reference velocity for "UPCONTRL", scale factor Bl, V-units.
- VS1: Value of the lesser of V1 or K_{hav} (V-unit factor), scale factor B1, V-units.

VSQUARE: Square of NV, scale factor B2(cf. discussion on VBARS).

Constants used in "PREDICT3" Reference Table

i	K _{vrfr}	K _{drda}	Kdrdd	Krdtr	Krtgo	Karef	Kdrd
	Stored Values						
0 1 2 3 4 5 6 7 8 9 10 11 2	.019288 .040809 .076107 .122156 .165546 .196012 .271945 .309533 .356222 .404192 .448067 .456023 .67918	010337 016550 026935 042039 058974 070721 098538 107482 147762 193289 602557 99999 99999	Multiply by 2 ⁻³ 0478599 0683663 1343468 2759846 4731437 6472087 -1.171693 -1.466382 -1.905171 -2.547990 -4.151220 -5.813617 -5.813617	Multiply by 2 ⁺³ 0134001 013947 013462 011813 0095631 00806946 006828 00806946 0109791 0151496 0179817 0159061 0159061	.0038518	37051099 35- .074534 74- .101242 116646 122360 127081 147453 155528 149565 118509 034907 007950 007950 res)	.008081 2.016030 5.035815 0.069422 1.104519 3.122 3.172407 5.252852 0.363148 5.512963 0.558519
Basic Values							
0 1 2 3 4 5 6 7 8 9 10 11 22	993.9 2104.2 3922.1 6293.7 8530.0 10099.5 14015.4 15949.8 18355.9 20828.1 23089.6 23498.4 35000.8	03460 05548 09028 14105 19775 23726 33041 36050 49561 64833 -2.0209 -3.3538 -3.3538	002507 003582 007035 014454 024790 033898 061399 076826 099825 13349 21752 30459 30459	-690.4 -718.7 -693.5 -608.6 -492.6 -416.0 -351.9 -416.0 -565.8 -780.8 -926.7 -819.7 -819.7	3.63 10.38 23.57 46.31 75.48 99.87 170.89 210.28 266.80 344.26 504.77 643.03 794.31	-41.12 -59.99 -81.51 -93.89 -98.56 -102.30 -118.71 -125.19 -120.38 -95.42 -28.10 -6.39 -6.39	12.19 21.75 43.34 96.73 187.37 282.13 329.43 465.55 682.75 980.53 1384.94 1508.04 1508.04
	"VREF" fps	"DR/DA" nmi/fps ²	"DR/DRDOT" nmi/fps	"RDOTREF" fps	"RTOGO" nmi	"DREFR" fps ²	"DR/DL/D" nmi

The "Basic Values" were obtained by converting the octal memory information into the corresponding decimal values (using the appropriate scaling information), and therefore differ slightly from the results that would be obtained by multiplying the (nominal) "Stored Values" by the same scaling information. <u>P61</u>

 $EXTVBACT = 20000_{g}$ (lock out other extended verbs) HEADSUP = -1Perform "S61.1" $TS = 0661_{vm}$ Perform "WNFLASHR": (if terminate, proceed to "GOTOPOOH") if proceed, skip next line otherwise, proceed to previous line End of job If HEADSUP > O: ROLLC = K_{btl4} If HEADSUP = +0 or if HEADSUP < 0: (ROLLC not loaded for -0 HEADSUP) ROLLC = K_{rvsc} (|HEADSUP| -1), limited $\ge +0$ (i.e. 0 if HEADSUP = -1) $EXTVBACT = 20000_{e}$ Proceed to "NEWRNVN" NEWRNVN $MM = T_{pptm}$ Perform "STARTEN1" Set bit 3(05GSW) of FLAGWRD6 = 0 $\underline{\underline{R}}_{one} = \underline{\underline{R}}$ $URONE = unitR_{one}$ $\underline{v}_{one} = \underline{v}$ $UNI = unit (\underline{V}_{one} * URONE)$

If $(MM - T_{pptm}) \leq 0$:

Proceed to "NEWRN VN" (an Average-G update has occurred)

Perform "S61.2"

```
Perform "CLEARMRK" (resets EXTVBACT to 0)
 TS = 0660_{vn}
 Proceed to "VNFLASH": (if terminate, proceed to "GOTOPOOH")
                        if proceed, proceed
                        otherwise, proceed to previous line
 TS = 1663_{vn}
 Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH"
                        if proceed, skip next 2 lines
                        otherwise, proceed
 EXTVBACT = 20000_{g}
 Proceed to "NEWRNVN"
 TS = 62 and perform "NEWMODEX"
 DNLSTCOD = 1
Proceed to "P62"
Perform "S61.1"
POSEXIT = "P62.3"
Inhibit interrupts (until released, routine is "CM/DAPIC")
TS = 8192 + 8192 + TIMEL - (least significant half of T_{pptm}),
                                             modulo 16384
                   (equivalent to T - T pptm)
If (TS - 5) > 0:
     TS = TS - 10 and repeat check(proceed to previous line)
TS = |TS - 5|, limited > 1 centi-second
CMdGYMDT = TS
Call "READGYMB" in TS centi-seconds (5 cs out of phase with
                                      "READACCS")
Set bits 13(ENTRYDSP), 12(CMDAPARM), 11(GAMDIFSW), 3(05GSW), and
     l(GYMDIF) of FLAGWRD6 = 0
```

P62

Set bits 4(LATSW) and 2(CMDSTBY) of FLAGWRD6 = 1

BETAd180 = 0

SWdNDX = 1

Release interrupts

AVEGEXIT = "CM/POSE"

(Tag here "P62.2")

 $TS = 00041_{c}$

Perform "GOPERFIR": if terminate, proceed to "GOTOPOOH" if proceed, skip next line otherwise, proceed to previous line

End of job

Proceed to "CM/DAPON" (returns to "P62.1")

P62.1

•

TS = 0661
vn
Proceed to "GOFLASH": if terminate, proceed to previous line
if proceed, proceed
otherwise, proceed to previous line

If HEADSUP > 0:

ALFACOM = Calfapad BETACOM = 0 P63FLAG = 1 ENTRYVN = 0622_{vn} Set bit 13(ENTRYDSP) of FLAGWRD6 = 1 If bit 1 of CMDAPMOD = 1, End of job (CMDAPMOD = -0 or +1) Proceed to "P63" (CMDAPMOD = +0; the -1 value should not exist at this point)

P62.3 (address set in "P62" into POSEXIT; entered from "KEP2")

$$\underline{Y}_{dc} = UY\underline{A} \cos ROLLC + UZ\underline{A} \sin ROLLC$$

 $\underline{X}_{dc} = (\underline{Y}_{dc} * UX\underline{A}) \sin C_{alfapad} + UX\underline{A} \cos C_{alfapad}$
 $\underline{Z}_{dc} = \underline{X}_{dc} * \underline{Y}_{dc}$
 $[\underline{X}_{sm}] = [REFSMMAT]$
Perform "CALCGA"

Proceed to "ENDEXIT"

```
WAKEP62 Called by "EXDAP"
```

Establish "P63" (priority 13g)

End of task

```
P63 Established by "WAKEP62" or entered from "P62.1"
```

TS = 63 and perform "NEWMODEX"

POSEXIT = "STARTENT"

```
ENTRYVN = 0664_{vn}
```

P63FLAG = -1

Perform "CLEANDSP"

End of job

<u>561.1</u>

60GENRET = Return address

Perform "RO2BOTH"

If bit l(AVEGFLAG) of FLAGWRD1 = 1:

Proceed to "S61.1A"

(true for entrance from "P62" if V37 not used to start P62)

Perform "MIDTOAV2"

Call "S61.1C" in TS+1 centi-seconds (TS set when exit from "MIDTOAV2")

End of job

S61.1C

```
Establish "S61.1A" (priority 138)
```

AVEGEXIT = "SERVEXIT"

Proceed to "PREREAD"

S61.1A

$$\begin{split} \underline{TS} &= \text{unit} \left(\begin{array}{c} \left[\mathbb{R} \mathbb{E} \mathbb{F} S \mathbb{M} \mathbb{M} \mathbb{A} \overline{T} \right] \left(\underline{\mathbb{V}} * \underline{\mathbb{R}} \right) \right) \\ & \text{If } TS_y \geqslant 0: \\ & \text{If } TS_y - \mathbb{K}_{cs30\text{im}} \geqslant 0, \text{ or if unit vector overflowed:} \\ & \text{Proceed to address specified by 60GENRET} \\ & \text{If } TS_y < 0: \\ & \text{If } - TS_y - \mathbb{K}_{cs30\text{im}} \geqslant 0, \text{ or if unit vector overflowed:} \\ & \text{Perform "ALARM" (pattern 1427_8)} \quad (\text{IMU "reversed")} \\ & \text{Skip next line} \end{split}$$

Perform "ALARM" (pattern 1426₈)

 $TS = 0509_{vn}$

Perform "GODSPR"

Delay 10 seconds (by putting job to sleep via "DELAYJOB") Proceed to address specified by 60GENRET Quantities in Computations

See also list of major variables and list of routines

60GENRET: Single precision cell used to retain return address information from "S61.1".

ALFACOM: See Digital Autopilot Entry Routines.

AVEGEXIT: See General Program Control.

BETACOM: See Digital Autopilot Entry Routines.

BETAd180: See Entry Computations.

^Calfapad: Single precision erasable memory constant, program notation "ALFAPAD", scale factor B-1, units revolutions, giving the nominal trim angle (expected to be a negative number).

CMDAPMOD: See Digital Autopilot Entry Routines.

CMdGYMDT: See Digital Autopilot Entry Routines.

DNLSTCOD: See Telemetry.

ENTRYVN: See Entry Computations.

EXTVBACT: See Verb Definitions.

- HEADSUP: Single precision quantity used to indicate desired initial attitude of vehicle: it is positive non-zero if a ROLLC of 180 degrees (lift down) is desired, which is a "heads up" attitude. Should be set to -1 (or 0) if a ROLLC of 0 degrees (heads down/ lift up) is desired. Scale factor is BL4, and it is initialized at start of "P61" to -1 (before the N61 display which can be used to change it there).
- K_{btl4}: Single precision constant, program notation "BITl4", scale factor BO, units revolutions. Value is 0.5, corresponding to 180 degrees. Used in "P61" as double precision information, with least significant half zero, for initializing ROLLC; in "P62.1", however, is single precision, with least significant half of ROLLC left alone.
- ^Kcs30im[:] Constant, program notation "C(30)LIM", scale factor Bl, value 0.566985. Used in program in such a way (a check on performing overflow) that effective value is 0.86603, or cosine 30 degrees: the value in memory is $1.0 \frac{1}{2} \cos 30^{\circ}$.

ENTP-6

- K_{rvsc}: Dummy constant used to indicate rescaling of HEADSUP information from a scale factor of B14 to a scale factor of B0 revolutions, "value" 2⁻¹⁴ (see HEADSUP). If HEADSUP were loaded in N61 with a value of -04097, for example, then ROLLC would be set to +90°.
- MM: Storage for state vector time in "NEWRNVN", to ensure a consistent state vector for "S61.2", scale factor B28, units centi-seconds. It is the time tag for \underline{R}_{one} and \underline{V}_{one} , and hence is used in "S61.2" to compute TTE2 (see Display Computations).

P63FLAG: See Digital Autopilot Entry Routines.

POSEXIT: See Entry Computations.

••••

 $\underline{\mathbf{R}}_{one}$: See Display Computations.

ROLLC: See Entry Computations.

SWdNDX: See Digital Autopilot Entry Routines.

UNI: See Entry Computations (computed in "NEWRNVN" for "S61.2").

URONE: See Display Computations.

UXA, UYA, UZA: See Entry Computations.

Vone: See Display Computations.

and the second state of the se

n kan ing sentah si seri si seri si si seri si si seri si si seri s

Entered from "TIGAVEG", "TIGON", and "S61.1C" PREREAD Establish "LASTBIAS" (priority 21_g) Perform "PREREAD1" Establish "NORMLIZE" (priority 328) Call "READACCS" in 2 seconds End of task PREREAD1 Entered from "PREREAD" and "Pll" Perform "PIPASR" Set bit 1(AVEGFLAG) of FLAGWRD1 = 1 (means Average-G not to be stopped) Set bit 15(DRIFTFIG) of FLAGWRD2 = 0 Set bit 6(V37FLAG) of FLAGWRD7 = 1 (means Average-G running) DVTOTAL = 0Return NORMLIZE Established by "PREREAD" and entered from "Pll"

 $\underline{\mathbf{R}} = \underline{\mathbf{R}}_{nl}$ $\underline{\mathbf{V}} = \underline{\mathbf{V}}_{nl}$ $\mathbf{T}_{pptm} = \mathbf{T}_{pptml}$ Release interrupts $\mathbf{T}\underline{\mathbf{S}} = \underline{\mathbf{R}}$ Perform "CALCGRAV" $GD\underline{\mathbf{T}} = GDT\underline{\mathbf{1}}$ $GOB\underline{\mathbf{L}} = GOBL\underline{\mathbf{1}}$

End of job

Inhibit interrupts

READACCS

Perform "PIPASR"	· · · · · · · · · · · · · · · · · · ·	
If bit 3(SBFLAG) of FLAGWR	D2 = 1:	
PIPAPI = PIPAPI + DEL		
PIPCTR = 2		
If bit $2(CMDSTBY)$ of FLAGWRD6 = 1:		
AOGdPIP = AOG	and the second	
and	east significant halves" of AOGdPIP d AOG respectively, since a double ecision order is used)	
AMGdPIP = AMG		
ROLLAPIP = ROLLA180	2 4 5 4 5 5 6 5 6 2 4 7	
ALFAdPIP = ALFAd180	("least significant halves" of ROLL information)	
BETAdPIP = BETAd180		
If bit 12(CMDAPARM) o	f FLAGWRD6 = 1:	
Call "QUIKREAD"		
XOLDBUF = XPIPBU	<u>F</u>	
$XPIPBUF = DELV_{sp}$	(loads uncompensated PIPA data as read)	
CMdGYMDT = 5		
Call "SETJTAG" in 1.2	seconds	
If bit l(AVEGFLAG) of FLAG		
AVEGEXIT = "AVGEND"	(set 0 by "ISITPOO")	
If bit 1(AVEGFLAG) of FLAG	NRDl = l:	
Call "READACCS" in 2 ;	seconds	
Establish "SERVICER" (priority 208)		
Set bit 9(Test connector Outbit) of channel $ll = l$		
End of task		

QUIKREAD (Called by "READACCS" if entry DAP is on)

XOLDBUF = XPIPBUF

XPIPBUF = PIPA

If PIPCTR > 0:

PIPCTR = PIPCTR - 1

Delay 0.5 seconds

Proceed to "QUIKREAD"

End of task

AVGEND

ldPIPADT = (least significant half of T_{pptm})

Set bit 15(DRIFTFIG) of FLAGWRD2 = 1

Perform "AVETOMID"

Perform "PIPFREE"

MRKBUF1 = -256 (i.e. negative non-zero, keeping "REND1" from using)

Set bit 9(Test connector Outbit) of channel 11 = 0

Set bit 2(CMDSTBY) of FLAGWRD6 = 0

Set bit $6(V_37FLAG)$ of FLAGWRD7 = 0 (Average-G not running)

If bit 9(UTFLAG) of FLAGWRD8 = 1:

Set restart group 1 to phase 11 (i.e. 1.11, causing "PIKUP20" to be established with priority 10_g via restart logic)

Set restart group 2 to phase 0 (i.e. no effect, since inactive)

If bit 7(RNDVZFLG) of FLAGWRDO = 1: (and UTFLAG = 0)

Set restart group 1 to phase 11 (i.e. 1.11, see above)

Set restart group 2 to phase 13 (i.e. 2.13, causing "REDOR22" to be established with priority 10g via restart logic)

Proceed to "CANV37"

SERVEXIT

End of job (after resetting restart group 5 for accelerometer reading)

SERVICER

If one or more components of DELV_sp has magnitude above K_mxdlv:

Perform "ALARM" (pattern 02058)

Proceed to "AVERAGEG"

Perform "1/PIPA"

If bit 3(05GSW) of FLAGWRD6 = 0:

 $TTE = TTE2 + T_{pptml}$

DVTOTAL = DVTOTAL + K_{ppl} DELV

Proceed to "AVERAGEG"

(could be incremented twice if get a restart)

AVERAGEG

Perform "CALCRVG"

Inhibit interrupts

$$\underline{\mathbf{R}} = \underline{\mathbf{R}}_{n1}$$

 $\underline{v} = \underline{v}_{nl}$

 $T_{pptm} = T_{pptml}$

 $GD\underline{T} = GDT\underline{1}$ $GOB\underline{L} = GOBL\underline{1}$

Release interrupts

Proceed to address specified by AVEGEXIT

CALCRVG

 $\begin{array}{l} \text{DELVRE}\underline{F} = K_{\text{ppl}} \quad \text{DEL}\underline{V} \quad \left[\text{REFSMMAT} \right] \\ \underline{R}_{\text{nl}} = \underline{R} + K_{2s22} \quad \left(\underline{V} + \frac{1}{2} \quad \text{DELVRE}\underline{F} + \frac{1}{2} \quad \text{GD}\underline{T} \right) \\ \underline{TS} = \underline{R}_{\text{nl}} \\ \text{Perform "CALCGRAV"} \\ \underline{V}_{\text{nl}} = \underline{V} + \quad \text{DELVRE}\underline{F} + \frac{1}{2} \quad \text{GD}\underline{T} + \frac{1}{2} \quad \text{GD}\underline{T}\underline{1} \end{array}$

Return

CALCGRAV

Ċ

multiplication by the vector quantities).

<u>T4RUPT</u> Entered based upon program interrupt #4, controlled by TIME4 If DSRUPTSW < 0:

If bit 14 of DSRUPTSW = 1:

If NOUT = 0, proceed to "NODSPY"

Perform "DSPOUTSB": if return to calling address +1, proceed to "NODSPY" otherwise, proceed

Set bit 14 of DSRUPTSW = 0

Set TIME4 to cause program interrupt #4 in 20 ms

 $DSRUPTSW = DSRUPTSW + K_{lb6}$

Resume

OUTO = OTUO

Set bit 14 of DSRUPTSW = 1

(If DSRUPTSW < 0):

Set TIME4 to cause program interrupt #4 in 20 ms

```
DSRUPTSW = DSRUPTSW + K_{1b6}
```

Resume

```
TS = DSRUPTSW
```

If TS > 0:

DSRUPTSW = DSRUPTSW - 1, limited $\rightarrow +0$

If TS = 0:

DSRUPTSW = 3

 $TS_1 = DSRUPTSW$ (program tag for TS_1 is RUPTREG1)

If DSPTAB+11 is flagged for output (i.e. is negative): (Tag "CDRVE")

Set TS = DSPTAB+11 and DSPTAB+11 = DSPTAB+11 - 1

TS = (bits ll-l of TS)(note if get a restart before DSPTAB+11
reloaded, "GOPROG" could put IMU into
coarse align)

OUTO = TS + K_{rtull}

Proceed to "HANG20"

If bit 15(DSKYFLAG) of FLAGWRD5 = 0: (Tag here "DSPOUT")

Proceed to "NODSPOUT"

If NOUT = 0:

Proceed to "NODSPOUT"

Perform "DSPOUTSB": if return to calling address +1, proceed to "NODSPOUT" otherwise, proceed

Proceed to "HANG2O"

NODSPY

OUTO = O

i = 0

i = i + l

 $DSRUPTSW = DSRUPTSW + K_{lb6}$

GENP-6

If DSRUPTSW < O:

Proceed to 3rd line of "NODSPY"

Set TIME4 to cause program interrupt #4 in (20 i) ms

Resume

DSPOUTSB

NOUT = NOUT -1

 $TS_2 = -0$ (program tag for TS_2 is DSRUPTEM)

If DSPTAB_{DSPCNT} flagged for output (is negative):

Remove output flag from DSPTAB_{DSPCNT} (form absolute value) OUTO = (bits 15-ll of K_{rtu_{DSPCNT}) + (bits ll-l of DSPTAB_{DSPCNT})}

Return to calling address +2 (DSKY display sent) If DSPCNT > 0:

DSPCNT = DSPCNT - 1

Proceed to third line of "DSPOUTSB"

```
If TS_2 = -0:

TS_2 = +0

DSPCNT = 10
```

Proceed to third line of "DSPOUTSB"

NOUT = O

Return to calling address +1 (No DSKY display sent)

HANG20

DSRUPTSW = DSRUPTSW - 22400₈ (subtracts 5 scaled B6, and also forces bit 14 to be 0)

Set TIME4 to cause program interrupt #4 in 20 ms

Proceed to "PROCEEDE"

NODSPOUT

OUTO = O

Set TIME4 to cause program interrupt #4 in 120 ms

Proceed to "PROCEEDE"

PROCEEDE

TS = channel 32 (bit 14 is PRO key complement) If bit 14 of TS \neq bit 14(PROCDBIT) of IMODES33: Set bit 14(PROCDBIT) of IMODES33 = bit 14 of TS If bit 14(PROCDBIT) of IMODES33 = 0: (i.e. 1 to 0 binary transition) Establish "PROCKEY" (priority 308) If $TS_{\gamma} = 0$, proceed to "OPTTEST" $(TS_1, program notation RUPTREG1,$ If $TS_1 = 1$, proceed to "OPTMON" has DSRUPTSW from "T4RUPT" If $TS_{7} = 2$, proceed to "OPTTEST" before any modification by If $TS_1 = 3$, proceed to "IMUMON" "HANG20") SLAP1 (Entered via V36E) Inhibit interrupts Perform "STARTSUB" DSPTAB+11 = bits 6(Gimbal lock) and 4(No Attitude) of DSPTAB+11, and flag for output at next opportunity ERCOUNT = 0 $FAILREG+i = 0 \qquad (i = 0 - 2)$ REDOCTR = OChannel 77 = 0(i.e. reset restart monitor flip-flops) $DSRUPTSW = - K_{10b5}$ Proceed to "DOFSTART" DOFSTART ERESTORE = 0SMODE = 0UPSVFLAG = 0Channel 5 = 0

Channel 6 = 0

Channel 11 = 0Channel 12 = 0Channel 13 = 0Channel 14 = 0WTOPTION = 0DNLSTCOD = ONVWORD+2 = 0 DSPFLG+2 = 0TRKMKCNT = 0VHFCNT = OEXTVBACT = 0If bits 6 and 4 of DSPTAB+11 = 11_2 : (coarse align w/gimbal lock) Set bits 6(Enable IMU CDU Error Counters) and 4(Coarse Align) of channel 12 = 1Make all restart groups inactive (by setting PHASEi = +0 and -PHASEi = -0 for i = 1 - 6) MODREG = -0(see "DSPMMJB") $RESTREG = 30000_{e}$ (i.e. priority 30g) (bits 14, 13, 12, 11, 10, 9, 4, and 1 set 1) $IMODES30 = 37411_{e}$ OPTIND = -1(bits 7, 5, and 4 to 1) $OPTMODES = OO130_{g}$ $IMODES33 = 16000_{g}$ (bits 13, 12, and 11 to 1) T5LOC = "T5IDLOC"FLAGWRDO = O

FLAGWRD1 = bit 12(NODOPO1) of FLAGWRD1(other bits set 0) FLAGWRD2 = 0FLAGWRD3 = bit 13(REFSMFLG) of FLAGWRD3(other bits set 0) FLAGWRD4 = 0FLAGWRD5 = 0 $FLAGWRD6 = 00004_{Q}$ (bit 3(05GSW) is set 1) FLAGWRD7 = 0FLAGWRD8 = 0FLAGWRD9 = 0FIGWRD10 = bit 11(HDSUPFIG) of FIGWRD10 (other bits set 0) FLGWRD11 = 0Proceed to second line of "DUMMYJOB" (Entered based on program interrupt #11, for a hardware GOPROG restart (interrupts inhibited before entrance)) REDOCTR = REDOCTR + 1TS = BBANK + SUPERBNK (or 'ed into bits 7-5) (BBANK is that when restart generated) RSBBQ = (TS, QREG)Perform "VAC5STOR" TS = Channel 33Reset flip-flop bits of channel 33 (bits 15-11, done by write-type order) If bit 15(Oscillator stop complement) of TS = 1: If bit 14 (Computer warning complement) of channel 33 = 0: Perform "STARTSUB"

> Proceed to "DOFSTART" (conclude in restart loop due e.g. to memory parity failure)

Perform "LIGHTSET" (which

(which may exit to "DOFSTART")

If bits 15-11 of ERESTORE \neq 0:

Perform "STARTSUB"

Proceed to "DOFSTART"

If ERESTORE \neq 0:

If ERESTORE \neq SKEEP7:

Perform "STARTSUB"

Proceed to "DOFSTART"

EBANK = (bits 11-9 of SKEEP4)

 $E_{SKEEP7} = SKEEP5_{dp}$

ERESTORE = 0

Perform "STARTSUB"

TS = bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6

(Tag here "ELRSKIP")

Set T5LOC according to the following table:

<u>TS</u>	T5LOC
$00 \\ 012 \\ 102 \\ 102 \\ 112 \\ 212 \\ 200 \\ 000 \\$	"T5IDLOC" "REDORCS" "REDOTVC" "REDOSAT"

Set bit 14(INTINUSE) of FIGWRD10 = 0

TS = (bits 5-4 of OPTMODES)

OPTMODES = $TS + OOlOO_{g}$ (bit 7, OCDUFBIT, set 1)

TS = bit 6(NOIMUDAP) of IMODES33

 $IMODES33 = TS + 16000_{g}$ (bits 13-11 to 1)

DSPTAB+11 = bits 9(Program alarm), 6(Gimbal lock), and 4(No Attitude) of DSPTAB+11, and flag for output at next opportunity

If bit 4(No Attitude) of DSPTAB+11 = 1:

Perform "SETCOARS"

Call "CA+ECE" in 0.06 seconds

(Note ERESTORE cell is <u>not</u> excluded from normal memory test sequence in "ERASLOOP") TS = (bits 9, 5, 4, 3, and 1 of IMODES30) (Tag here "NOCOARSE") IMODES30 = TS + 37000₈ (sets bits 14-10 to 1) If bit 7(ENGONFLG) of FLAGWRD5 = 1:

Set bit 13(SPS Engine On) of channel 11 = 1

Proceed to "GOPROG3"

ENEMA (Entered from "BAILOUT", "POODOO", and "TRACKTRM")

Inhibit interrupts

Perform "LIGHTSET" (which may exit to "DOFSTART")

Perform "STARTSB2"

Set bit 14(INTINUSE) of FLGWRD10 = 0

If bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 = 10₂: (TVC DAP)

Call "TVCEXEC" in 0.5 seconds

Proceed to "GOPROG3"

GOPROG2 (Entered from "REV37" and "ROO")

Inhibit interrupts

Perform "STARTSB2"

Set bit 14(INTINUSE) of FIGWRD10 = 0

Proceed to "GOPROG4"

GOPROG3

If bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 = Ol₂: (RCS DAP)

If bit 5(TRACKFLG) of FLAGWRD1 = 0:

Perform "STOPRATE"

Proceed to "GOPROG4"

GOPROG4

If $PHASEi \neq (-1)$ (-PHASEi): (i = 1 - 6)

Perform "ALARM" (pattern 11078)

Proceed to "DOFSTART"

Establish "DSPMMJB" (priority 308)

Establish appropriate jobs and call appropriate tasks based on information in the active restart groups

If all PHASEi = 0: (i = 1 - 6, no active restart groups) If bit 15 of MODREG = 0: (i.e. cell not -0)

> Proceed to "GOTOPOOH" (Note "VNFLASH" will put the job in core set 0, i.e. "DSPMMJB", to sleep, leaving program number display blank)

Proceed to second line of "DUMMYJOB"

LIGHTSET (Entered from "GOPROG" and "ENEMA")

If bit 7(Mark reject) of channel 16 = 1:

If bits 5-1 of channel $16 = 22_{o}$: (Error reset)

Perform "STARTSUB"

Proceed to "DOFSTART"

If channel 15 = 228: (Error reset from main panel DSKY) Perform "STARTSUB"

Proceed to "DOFSTART"

Return

STARTSUB

DNTMGOTO = "DNPHASE1"

Set TIME5 to cause program interrupt #2 in 40 ms

Set TIME4 to cause program interrupt #4 in 30 ms

Proceed to "STARTSB2"

STARTSB2

- Set bits 7-3 (Operator Error, Flash, Key Release, Temperature Caution, and Uplink Activity) of channel ll = 0 (other bits left alone)
- Set TIME3 to cause program interrupt #3 in 10 ms

Set bits 11-10 (Enable Standby, Test DSKY lights) of channel 13 = 0 (other bits left alone) Set bits 14(R21MARK), 12(P21FLAG), and 5(REVFLAG) of FLAGWRD2 = 0 Set bit 10(SKIPVHF) of FLAGWRD2 = 1 (flag to "VHFREAD" that got restart) Set bit 4(MARKFLG) of FLAGWRD1 = 0 Set bit 4(CYC61FLG) of FLAGWRDO = 0 Set waitlist times to 81.93 seconds Set waitlist task starting addresses to "SVCT3" $PRIORITY_{i} = -0$ (i = 0 - 6) DSRUPTSW = -0NEWJOB = -0Make all VAC areas available (by setting VACIUSE = "VACIUSE" for $\underline{I} = 1 - 5$) DSPTAB+i = 2^{11} and flag for output at next opportunity (i = 0 - 10) (blanks DSKY displays) DELAYLOC+i = 0 (i = 0 - 3) INLINK = 0DSPCNT = 0CADRSTOR = OREQRET = 0CLPASS = 0DSPLOCK = 0MONSAVE = 0MONSAVE1 = 0VERBREG = ONOUNREG = 0DSPLIST = 0

IMUCADR = 0 IGYRO = 0 FLAGWRD4 = 0 MARKINDX = 0 EXTVBACT = 0 NOUT = 11 SELFRET = "SELFCHK" DSPCOUNT = -19

Return

GOTOPOOH

Set bit 7(AUTOSEQ) of FLGWRD10 = 0

Set restart group 4 to cause a start at next line (tag here "MNKGOPOO") Perform "INITSUB"

Set bit 1(XDSPFLAG) of FLAGWRD4 = 0

Perform "AUTOCHK"

TS = 3799_{vn} (noun not permanently displayed, but must be non-zero) Proceed to "VNFLASH": (if terminate, proceed to "GOTDPOOH") if proceed, proceed to previous line otherwise, proceed to previous line

(An input of XXE will cause "V37" entrance from "MMCHANG")

V37

(Entered from "MMCHANG" or "VERB96" with TS = new program number) MMNUMBER = TS

Set bit 7(AUTOSEQ) of FLGWRD10 = 0

Set bit 3(TPIMNFIG) of FLGWRD10 = 0

Set bit 15(PCMANFLG) of FLGWRD10 = 0

Set bit 9(VHFRFLAG) of FLAGWRD9 = 0

MRKBUF1 = -1

If $(80 - MMNUMBER) \leq 0$:

Set bit 7(Operator error) of channel ll = 1

Perform "RELDSP"

Proceed to "PINBRNCH"

If bit 13(REFSMFIG) of FLAGWRD3 = 0:

Proceed to "AUTO37"

If (MMNUMBER -30) ≤ 0 :

Proceed to "AUT037"

If (MMNUMBER - 38) ≤ 0 :

Proceed to "REND3OS"

Proceed to "AUT037"

(Note that should not do this with Average-G running and RNDVZFLG = 0, since do P2O startup)

AUTO37 (Entered from "AUTOSET", "REND30S", and "V37")

RESTREG = 30000_{g} (i.e. priority 30_{g})

If bit 6(IMUNITBT) of IMODES30 = 1:

Perform "ALARM" (pattern 15208)

Perform "RELDSP"

Proceed to "PINBRNCH"

If bit 7(ENGONFLG) of FLAGWRD5 = 0:

If bits 15-14(DAPBIT1, DAPBIT2) of FLAGWRD6 \neq 10.

Proceed to "ISITPOO" (not TVC DAP)

Perform "SPSOFF" (exits with interrupts inhibited) Perform "MASSPROP"

Set TIME5 to cause program interrupt #2 in 3.1 seconds

T5PHASE = 16074 (i.e. positive non-zero)

Set bit 3 of RCSFLAGS = 1

T5LOC = "RCSATT"

Set bits 15-14 (DAPBIT1, DAPBIT2) of FLAGWRD6 = 01,

Perform "TVCZAP"

MMNUMBER = 0

Release interrupts

Delay 0.05 seconds (by putting job to sleep via "DELAYJOB")

Channel 5 = 0

Channel 6 = 0

Proceed to "ISITPOO"

INITSUB (Entered from "GOTOPOOH" and "ROO")

Inhibit interrupts

Set bits 13(P55.1FLG), 12(P50.1FLG), 11(ATMFLAG), 10(P50FLAG), and 1(P29FLAG) of FLAGWRDO = 0

Set bit 6(IDLEFAIL) of FLAGWRD1 = 0

Set bits 12(P21FLAG), 11(STEERSW), 9(IMPULSW), and 3(SBFLAG) of FLAGWRD2 = 0

Set bits 14(GLOKFAIL) and 9(POOFLAG) of FLAGWRD3 = 0

Set bits 10(NEWTFLAG) and 7(ENGONFLG) of FLAGWRD5 = 0

Set bit 13(STRULLSW) of FLAGWRD6 = 0

Set bits 13(IGNFLAG), 12(ASTNFLAG), and 11(TIMRFLAG) of FLAGWRD7 = 0

Set bit 15(SWTOVER) of FLAGWRD9 = 0

Proceed to "INITSUBA"

INITSUBA (Entered from "INITSUB", "ROO", and "TRACKTRM")

Inhibit interrupts

If bit 5(TRACKFIG) of FLAGWRD1 = 0:

Perform "STOPRATE"

(If bit 5(TRACKFLG) of FLAGWRDL = 0):

If bit 12(MAXDBFLG) of FLAGWRD9 = 1:

Perform "SETMAXDB"

If bit 12(MAXDBFLG) of FLAGWRD9 = 0:

Perform "SETMINDB"

Release interrupts

OPTIND = -1

Return (to caller of "INITSUB" or "INITSUBA")

ISITPOO

If MMNUMBER $\neq 0$:

If bit 1(NODOV37) of FLAGWRD2 = 1:

Perform "ALARM" (pattern 1520₈)

Perform "RELDSP"

Proceed to "PINBRNCH"

 $TS_1 = K_{nov37m}$ (Tag here "CHECKTAB")

If (bits 7-1 of $K_{\text{prml}_{TS_1}}$) \neq MMNUMBER:

If (bits 7-1 of K prml_{TS,}) > MMNUMBER:

Set bit 7(Operator error) of channel ll = 1

Perform "RELDSP"

Proceed to "PINBRNCH"

If
$$TS_1 = 0$$
:

Set bit 7(Operator error) of channel ll = 1 Perform "RELDSP"

Proceed to "PINBRNCH"

 $TS_1 = TS_1 - 1$

Proceed to 7th line of "ISITPOO" (check next table entry) MINDEX = TS_1

Set bit 15(V5ON18FL) of FLAGWRD3 = 1

If bit 6(V37FLAG) of FLAGWRD7 = 1: (Average-G running)

Set bit l(AVEGFLAG) of FLAGWRDl = 0

End of job (goes to "CANV37" from "AVGEND")

Proceed to "CANV37"

CANV37

CADRFLSH+2 = "ROO" + 3

Set restart group 4 to phase 1 (4.1, causing "INITDSP" to enter "ROO" if a restart)

Proceed to "ROO"

ROO

Perform "INTSTALL"

- Set bits 10 (Caution Reset) and 9(Test connector Outbit) of channel 11 = 0
- Set bits 14(S4B Cutoff), 13(S4B Injection Sequence start), ll(Disengage optics DAC), 10(Zero optics), 8(TVC enable), 3(Enable star tracker, not used), and 2(Enable Optics CDU Error Counters) of channel 12 = 0

Set bits 9(not assigned) and 8(not assigned) of channel 13 = 0

Perform "INITSUB"

Perform "CLEARMRK"

STARIND = O

Set bit 14(STIKFLAG) of FLAGWRD1 = 0 (V50N18FL = 1 from "ISITPOO" unless POO selected)

Set bit 3(Uplink Activity) of channel ll = 0

Set bit 14(R21MARK) of FLAGWRD2 = 0

Set bit 9(EXTRANGE) of FLGWRDLO = 0

If MMNUMBER = 0:

Perform "RELDSP" (tag here "POOH")

 $PHSPRDT2 = 05000_{g} \quad (i.e. priority 05_{g})$

Set bit 1(NODOV37) of FLAGWRD2 = 0

Set restart group 2 to phase 5 (i.e. 2.5, causing "STATINT1" to be established with priority 05₈ by restart logic) (If MMNUMBER = 0):

Set bits 8(IMUSE) and 7(RNDVZFLG) of FLAGWRDO = 0

Set bit 9(UTFLAG) of FLAGWRD8 = 0

DNLSTCOD = 0

If MMNUMBER > O:

If bit 7(RNDVZFLG) of FLAGWRDO = 0: (Tag here "NOUVEAU") If bit 9(UTFLAG) of FLAGWRD8 = 0:

Set bit 8(IMUSE) of FLAGWRDO = 0

DNLSTCOD = (bits 15-13 of K), cycled left 3 places MINDEX (i.e. to bits 3-1)

DSPFLG+2 = 766578 (includes setting bit 4 and 6, either one of which causes "NORMRET" to bypass establishing "PLAYJUML")

Set bits 10(IMTRG), 7(UPDATFLG), and 5(TRACKFLG) of FLAGWRD1 = 0

Set bit 2(R67FLAG) of FLAGWRD8 = 0

Set bits ll(CYCLFLAG), 6(SNAPFLAG), 5(P48FLAG), 4(P25FLAG), 3(TDFLAG), 2(R27UP2), and 1(R27UP1) of FLGWRD11 = 0

Make restart groups 3, 5, and 6 inactive

If MMNUMBER = 0:

Make restart groups 1,3,4,5, and 6 inactive (leaving only group 2 set, to 2.5, for "STATINT1")

Perform "INITSUBA" (TRACKFIG now zero, so "STOPRATE" etc.)

MODREG = MMNUMBER

Proceed to "GOPROG2" (restart group 2 will cause "STATINT1" to be established)

If MMNUMBER = 20: (Tag here "RENDVOO")

If MODREG = 20:

Make restart group 1 inactive (Tag here "KILL20")

Perform "INITSUBA"

Make restart group 2 inactive

Proceed to "REV37"

(If MMNUMBER = 20):

If bit 9(UTFLAG) of FLAGWRD8 = 0:

If bit 7(RNDVZFLG) of FLAGWRDO = 1:

Set bits 7(UPDATFIG) and 5(TRACKFIG) of FLAGWRD1 = 1 (Tag here "STATQUO")

Make restart group 4 inactive (leaves 1 and 2 set by e.g. "AVGEND")

MODREG = MMNUMBER

Proceed to "GOPROG2" ("RELDSP" effect done in "STARTSB2" cell resets)

If bit 9(UTFLAG) of FLAGWRD8 = 1:

Set restart group 2 to phase 5 (i.e. 2.5, to cause "STATINT1" to be established with priority 05, by restart logic) (Tag here "STATQUO1")

Set bit 5(TRACKFLG) of FLAGWRD1 = 1

Make restart group 4 inactive

MODREG = MMNUMBER

Proceed to "GOPROG2"

If bit 9(UTFLAG) of FLAGWRD8 = 1: (Tag

(Tag here "POOFIZZ")

Make restart group 2 inactive

Proceed to "REV37"

If bit 7(RNDVZFLG) of FLAGWRDO = 1:

Proceed to "REV37"

Make restart group 1 inactive

Perform "INITSUBA"

Make restart group 2 inactive

Proceed to "REV37"

REV37

CADRFLSH+2 = "V37XEQ" + 3 (Group 4.1 set from "CANV37") Proceed to "GOPROG2" (restart logic will cause "V37XEQ" to be entered via "INITDSP")

V37XEQ

Inhibit interrupts

PHSPRDT4 = 13000_{g} (i.e. priority 13_{g})

MMTEMP = K prml_MINDEX

BASETEMP = K fcadm MINDEX

TS₂ = (bits 15-11 of BASETEMP) + (bits 10-8 of MMTEMP, shifted right 7 places)

 $TS_3 = (bits 10-1 of BASETEMP) + 2000_8$

Establish a VAC area job, with starting address given in 2CADR format by (TS_3, TS_2) , and with priority of 13_8

TS = (bits 7-1 of MMTEMP) and perform "NEWMODEX"

Perform "RELDSP"

End of job

P06

Set bit 1(NODOV37) of FLAGWRD2 = 1

Inhibit interrupts

TIME2SAV = T

Perform "SCALPREP": if return to calling address +1, proceed to second line of "PO6" otherwise, proceed

SCALSAVE = TS

Set bits 5(TRACKFLG) of FLAGWRD1, 15(DRIFTFLG) of FLAGWRD2, and 13(REFSMFLG) of FLAGWRD3 = 0

Set bit \$(IMUSE) of FLAGWRDO = 0

Set bit 7(RNDVZFLG) of FLAGWRDO = 0

Set bit 9(UTFLAG) of FLAGWRD8 = 0

Set bit ll(Enable Standby) of channel 13 = 1

Set restart group 4 to cause it to establish "POSTAND" with priority 20g after a restart (erasable memory restart)

 $TS = 00062_{o}$

Proceed to "GOPERF1" if terminate, proceed to previous line if proceed, proceed to previous line otherwise, proceed to previous line

<u>POSTAND</u> Entered after a restart (e.g. power-up) due to "PO6" settings for restart group 4

Set bit ll(Enable Standby) of channel $l_3 = 0$

Inhibit interrupts

 $T_{now} = 0$

Perform "SCALPREP": if return to calling address +1, proceed to second line of "POSTAND" otherwise, proceed

TS = TS - SCALSAVE, rescaled to B28 centi-seconds, with sign agreement forced

If $TS \leq -0$:

 $TS = TS + 2^{23}$ centi-seconds (correct for channel 3 overflow)

TS = TS + TIME2SAV, with sign agreement forced

 $T_{now} = T_{now} + TS$ Set bit 1(NODOV37) of FLAGWRD2 = 0

Proceed to "GOTOPOOH" (where restart group 4 is set)

SCALPREP

 $TS_{dp} = (Channel 3, Channel 4)$ Channel 4 read twice, then a 3rd time if 2 readings disagree. The channel 3 reading not done until channel 4 \neq +MAX.

Release interrupts

TS_{dp} = TS_{dp} + K_{rndbt} If bits 5-l of TS+l = 0, return to calling address +l (Channel 4 was read in first interval after T_{now} was incremented)

Set bits 5-1 of TS+1 = 0

Return to calling address +2

DELAYJOB

i = 3

If DELAYLOC+i \neq 0:

If i = 0:

Proceed to "BAILOUT" (pattern 31104,)

i = i - l

Proceed to second line of "DELAYJOB"

Call "WAKER" in (delay time) centi-seconds, with EBANK = i

DELAYLOC+i = Return address (to routine calling "DELAYJOB")

Put present job to sleep (starting address id = DELAYLOC+i)

WAKER

i = EBANK (mechanized by using BBANK with FBANK of "WAKER" = 00) Set DELAYLOC+i = 0 and TS = DELAYLOC+i

Awaken job with starting address id = TS

End of task

ALARM

Inhibit interrupts

ALMCADR = "Calling address + 1" (S-register portion)

Proceed to "ALARM2"

ALARM2

LREG = Alarm pattern (quantity in calling address +1)

ALMCADR+1 = BBANK + SUPERBNK (or'ed into bits 7-5)

If FAILREG+O = O:

FAILREG+O = LREG

Skip next 2 lines

If FAILREG+1 = 0:

FAILREG+1 = LREG

FAILREG+2 = LREG

Set bit 9(Program alarm) of DSPTAB+11 = 1, and flag for output at next opportunity Release interrupts

Return (to routine calling "ALARM" or "ALARM2")

PRIOLARM (Entered from "COM52" for alarm 0404_o)

Inhibit interrupts

LREG = TS (alarm pattern)

ALMCADR = "Calling address +1" (S-register portion)

AIMCADR+1 = BBANK of caller + SUPERBNK (or'ed into bits 7-5)

Perform "ALARM2" (starting at 3rd line)

 $TS = 0509_{\rm vn}$

Proceed to "PRIODSPR" (will return to routine calling "PRIOLARM")

VARALARM

Inhibit interrupts

LREG = TS

ALMCADR = "Calling address +1" (S-register portion)

Perform "ALARM2" (starting at 2nd line)

Return (address in ALMCADR)

BAILOUT

Inhibit interrupts

ALMCADR = "Calling address +1" (S-register portion)

Perform "VAC5STOR"

LREG = Alarm pattern (quantity in calling address +1)

Perform "ALARM2" (starting at second line)

Inhibit interrupts

If in interrupt mode, return to job status (set appropriate address into cell 0017_8 and then do a Resume)

Proceed to "ENEMA"

POODOO

Inhibit interrupts

ALMCADR = "Calling address +1" (S-register portion)

Perform "VAC5STOR"

LREG = Alarm pattern (quantity in calling address +1)

Perform "ALARM2" (starting at second line)

If bit 6(V37FLAG) of FLAGWRD7 = 0: (i.e. Average-G not running)

If (bits 13-1 of EXTVBACT) = 0: (error if bit 15 = 1)

Set bit 5(STATEFLG) of FLAGWRD3 = 0

Set bit 7(AUTOSEQ) of FLGWRD10 = 0

Set bit 13(INTGRAB) of FIGWRD10 = 0

Set bit 9(UTFLAG) of FLAGWRD8 = 0

Set bit 7(RNDVZFLG) of FLAGWRDO = 0

Set bit 5(TRACKFLG) of FLAGWRD1 = 0

Set bit 1(NODOV37) of FLAGWRD2 = 0

Make all restart groups inactive (by setting PHASEi = +0and -PHASEi = -0 for i = 1-6)

Inhibit interrupts

If in interrupt mode, return to job status (set appropriate address into cell 0017_g and then do a Resume)

Proceed to "ENEMA"

<u>SVCT3</u> (This task is used as part of the waitlist control, and is entered every 81.93 seconds for that purpose)

If bit 15(DRIFTFIG) of FLAGWRD2 = 0:

End of task

If IMUCADR = +0:

Establish "NBDONLY" (priority 35g)

End of task

Delay 5 seconds

Proceed to "SVCT3"

<u>DUMMYJOB</u> This routine is entered from the executive system if no active jobs are found.

NEWJOB = -O

Release interrupts

Set bit 2(Computer Activity) of channel ll = 0

Proceed to second line of "CHECKNJ"

CHECKNJ

SELFRET = Return address

If NEWJOB = -0:

Return (to address specified by SELFRET, BBCON of "SELFCHK") Set bit 2(Computer Activity) of channel ll = 1

Perform functions necessary to start new job's computations

See also list of major variables and list of routines

ldPIPADT: See IMU Computations.

AIG: See Digital Autopilot Entry Routines.

AIGdPIP: Value of AIG sampled in "READACCS", i.e. the value of CDU sampled about 0.05 seconds before accelerometers read, scale ^y factor B-1, units revolutions, single precision. Program notation is "AIG/PIP".

ALFAd180: See Entry Computations (quantity is updated in "ATTRATES").

- ALFAdPIP: Value of ALFAd180 sampled in "READACCS", scale factor B-1, units revolutions, single precision. It is computed based upon the same angle sample as for AIGdPIP. Program notation "ALFA/PIP".
- ALMCADR, ALMCADR+1: Pair of erasable memory cells used to store the information on the calling address to the "ALARM" type routines (including "BAILOUT" and "POODOO"). Information is in 2CADR format (see 3420.5-27), with ALMCADR giving S-register information and ALMCADR+1 giving BBCON (i.e. BBANK and SUPERBNK) information. Cells can be displayed by NO8 to permit identification of the specific area of the program responsible for the generation of the fault condition.
- AMG: See Digital Autopilot Entry Routines.
- AMGdPIP: Value of AMG sampled in "READACCS", i.e. the value of CDU_Z sampled about 0.05 seconds before accelerometers read, scale factor B-1, units revolutions, single precision.

AOG: See Digital Autopilot Entry Routines.

- AOGdPIP: Value of AOG sampled in "READACCS", i.e. the value of CDU_x sampled about 0.05 seconds before accelerometers read, scale factor B-1, units revolutions, single precision.
- AVEGEXIT: Cell containing in 2CADR format the starting address of the computations to be performed after "AVERAGEG" is done (program notation also AVGEXIT). It is set to "AVGEND" by "READACCS"; to "CALCN83" by "TIGON"; to "CALCN85" by "P4ORCS" and "P4OSXTY"; to "CM/POSE" by "P62"; to "SERVEXIT" by "P67.1", "POST41", "S61.1C", and "TIGNOW"; to "S40.8" by "P4OSXTY"; and to "VHHDOT" by "P11".
- BASETEMP: Cell used in "V37XEQ" to store temporarily the appropriate value of K for use in generating starting address information for the job to be initiated by V37 processing.

BBANK: A computer hardware cell (address 0006₈) containing in bits 15-ll the fixed memory bank (FBANK) currently being used and in bits 3-l the erasable memory bank number. Bits 7-5 of the constants in the proper format for BBANK loading can contain SUPERBNK information, and constants in this format are referred to as "BBCON" format (see 3420.5-27). The fact that the program retains BBANK information is used in "DELAYJOB" to retain the indexing data for the DELAYLOC cell employed (since in that routine the erasable memory bank is not significant and the fixed memory bank number is 00).

BETAd180: See Entry Computations (quantity is updated in "ATTRATES").

- BETAdPIP: Value of BETAd180 sampled in "READACCS", scale factor B-1, units revolutions, single precision. Cf. ALFAdPIP.
- Cunitw: Erasable memory vector constant, scale factor BO, program notation "UNITW". It gives the polar axis in the reference coordinate system. The x component (also called "-AYO" in old program) gives the "true to mean pole rotation about the -Y axis;" the y component (also called "AXO" in old program) gives the "true to mean pole rotation about the +X axis." Also "LMATRIX +12".

CADRFLSH+2: See Display Interface Routines.

CADRSTOR: See Data Input/Output.

CLPASS: See Data Input/Output.

CMdGYMDT: See Digital Autopilot Entry Routines.

- DELAYLOC+i (i = 0 3): Set of four single precision cells used to contain the starting address identifications for jobs put to sleep using "DELAYJOB", in FCADR format. If an attempt is made to put more than 4 jobs to sleep using the routine, a software restart (pattern 31104_8) is produced.
- DELVREF: Value of accelerometer output (scaled and compensated) converted to reference coordinates, scale factor B7, units meters/centi-second.

DNLSTCOD: See Telemetry.

DNTMGOTO: See Telemetry.

DSPCNT: Single precision counter used to cycle through the DSPTAB_i (i = 10-0) to be changed in "DSPOUTSB", scale factor BL4. The DSPTAB_i word loaded at one entrance to "DSPOUTSB" is the first one checked at the next entrance, but that word will not be checked again until all the other words have been examined and, if necessary, loaded into OUTO.

DSPCOUNT: See Data Input/Output.

DSPFIG+2: See Display Interface Routines.

DSPLIST, DSPLOCK: See Data Input/Output.

- DSRUPTSW: Single precision cell that is used for control of the computations that are performed when "T4RUPT" is entered. If it is not negative non-zero when "T4RUPT" is entered, it contains a number between 3 and O, scale factor B14, used to control the branching at the end of "PROCEEDE" so as to complete a cycle (3 through 0 and back to 3 again) in 0.48 seconds. If the cell is negative non-zero, bits 2-1 contain the same "T4RUPT" branching control ("PROCEEDE" is entered and these bits employed every 0.12 seconds), while bits 12-9 contain, scale factor B6, the complement of the number of 20-millisecond intervals still be to loaded into TIME4 to achieve synchronism with the basic T4RUPT period of 0.12 seconds. Bit 14 is used to achieve an alternate selection of clearing OUTO or loading new information into OUTO. If OUTO was loaded with a non-zero value when the basic 0.12-second T4RUPT cycle was performed, then DSRUPTSW is set (in "HANG2O") to DSRUPTSW - 22400, where the first "2" causes bit 14 to be set O (note that computation same as adding 553778), and the "24" is 5 with scale factor B6, signifying that five more 20-ms loadings of TIME4, plus the current one, are needed to satisfy the 0.12 second synchronism. If "HANG20" is entered, TIME4 is set to generate another interrupt in 0.02 second. When it is received, bit 14 of DSRUPTSW will be O, so OUTO will be cleared, bit 14 set to 1, and TIME4 reset to 20 ms. In addition, DSRUPTSW is incremented by K_{1b6} (making the upper bits equivalent to -4B6, since bit 14 = 1, for a negative DSRUPTSW, represents a magnitude of 0). The next time the interrupt is generated, bit 14 will be one in "TARUPT", so a new OUTO can be generated if required (if not, the number of remaining 20-ms intervals is determined and TIME4 and DSRUPTSW loaded immediately). In order to load all ll (DSPTAB+0 -DSPTAB+10) DSKY display registers, a total time of $ll \ge 0.04 =$ 0.44 seconds is required (measured from the first loading of the first register to the end of the 20 ms wait after reset of OUTO for the last register). As part of a verb 36 fresh start, $DSRUPTSW = -K_{10b5}$, to force clearing of DSPTAB-driven relays (bit 14 = 1 due to this setting, of course) before starting the normal T4RUPT 0.12-second cycle.
- DVTOTAL: Sum of magnitudes of scaled and compensated DELV each twosecond entrance to "SERVICER", scale factor B7, units meters/ centi-second. Quantity is initialized to 0 in "PREREADL", and can be displayed in R3 of N40 (XXXX.X fps) or N80 (XXXXX. fps). It is the "line integral" of accumulated velocity, <u>not</u> the magnitude of the velocity vector increment: the magnitude is taken each two-second Average-G cycle of DELV and this scalar is added to DVTOTAL.

EBANK: See Data Input/Output.

ERCOUNT: See Testing Routines.

ERESTORE: See Testing Routines.

EXTVBACT: See Verb Definitions.

- FAILREG+i (i = 0 2): Set of three single precision cells used to retain alarm pattern code information. They are all reset to zero by a verb 36 fresh start (or V25N9E E E E), and they can be displayed by the use of noun 09. Use of the error reset DSKY key causes FAILREG+0 and FAILREG+1 to be reset zero (FAILREG+2 is left alone). FAILREG+0 contains the first alarm pattern received after the reset; FAILREG+1 contains the second; and FAILREG+2 always has the most recent (and hence would be the same as FAILREG+0 if one alarm has occurred, or FAILREG+1 if only two alarms have occurred). If FAILREG+0 = 0, then no alarms have occurred since the last error reset, and the alarm to occur most recently is in FAILREG+2.
- GD<u>T</u>: Value of gravity times computing interval, scale factor B8, units meters/centi-second. Program notation is "GDT/2", in recognition of the fact that it is " $\frac{1}{2}$ GD<u>T</u>" for a standard velocity scaling of B7 meters/centi-second. When "CALCRVG" is first entered, the quantity in GD<u>T</u> is the value computed the previous computation cycle.
- GDT1: Value of gravity times computing interval computed in "CALCGRAV", same scaling and units as GDT (program notation "GDT1/2").
- GOBL: Value of "normalized" oblateness component of gravity, scale factor Bl, dimensionless (program notation "GOBL/2"). It must be multiplied by $-\frac{\mu}{r^2}$ to convert to units of acceleration. The quantity is used in "S40.9" to correct the output of the Lambert routine.
- GOBL1: Value of GOBL computed in "CALCGRAV", same scaling as GOBL (program notation "GOBL1/2").

IMODES30, IMODES33: See IMU Computations.

IMUCADR: See IMU Computations.

INLINK: See Data Input/Output.

- K_{1b6}: Single precision constant, program notation "BIT9", scale factor B6, value 00400g, corresponding to 1 x 2⁻⁶, used to increment DSRUPTSW for 20-ms OUTO update rate (cf. DSRUPTSW).
- K_{2j} : Constant, program notation "2J", scale factor B-1, value 3.2469201E-3 x 2¹. Value corresponds to 2 x 1.62346005E-3 x 2¹, where first term is an equation factor of 2, second is the nominal value of the computer-employed first gravitational harmonic coefficient (note that the "standard" value, such as that employed in K_{j2} of Orbital Integration, is 1.62345E-3), and third is scale factor. Octal value corresponds to a harmonic coefficient value of about 1.6234554E-3.

- K_{2s22} : Constant, program notation "2SEC(22)", scale factor B22, units centi-seconds. Value is 200 x 2⁻²², corresponding to a value of 2 seconds.
- K_{10b5}: Single precision constant, program notation "PRIO12", scale factor B6, value 12000_g, corresponding to 20 x 2⁻⁶. It is used to initialize DSRUPTSW to ensure clearing of all DSPTAB registers for a V36 fresh start (see DSRUPTSW): it forces 10 sets of OUTO settings (DSPTAB+0 and then remaining DSPTAB's) and subsequent OUTO = 0 settings before starting the normal T4RUPT 0.12-second cycle, hence the notation.
- K_{20j} : Constant, program notation "20J", scale factor B-1, value 3.2469201E-2 x 2¹. Value corresponds to 20 x 1.62346005E-3 x 2¹, where first term is an equation factor of 20 (to give a net effect of "1 - 5 SINØ²" for the factor it multiplies), second is the nominal value of the computer-employed first gravitational harmonic coefficient (cf. K_{2j}), and third is scale factor. Octal value corresponds to a harmonic coefficient value of about 1.62346009E-3.
- K : Table of fixed-memory starting addresses used in "V37XEQ" to fcadm i set BASETEMP, arranged in FCADR format (bits 15-11 give the fixed-memory bank and bits 10-1, when added to 2000g, give S-register contents). Program notation for first cell in table (i = 0) is "FCADRMM1".
- K mmudt: Constant, program notation "-MUDT(E)", scale factor B44, units meters³/centi-second. Value is -7.9720645El2 x 2⁻⁴⁴, corresponding to -l x 3.98603225El0 x 200 x 2⁻⁴⁴, where first term is an equation factor to give proper sign of result, second is value of p. (for time in centi-seconds) for the earth, third is computing interval of two seconds expressed in centi-seconds, and fourth is scale factor.
- K single precision constant, program notation "-MAXDELV", scale factor Bl4, units accelerometer counts. Stored value is -6398 x 214; used in program in such a way that an effective value of 6399 is employed, giving an alarm (at the start of "SERVICER") if an accelerometer output of 6400 pulses for 2 seconds (i.e. 3200 pps) is received.

- K Single precision constant, program notation "NOV37MM", scale factor Bl4, giving the number of table entries minus 1 in K (and associated V37 tables) for new programs that can be started by the V37 logic (including the minimum key rendezvous driver programs, but excluding POO). Value is OOO43 g, corresponding to decimal 35 (meaning 36 programs).
- K_{ppl}: Constant, program notation "KPIP1", scale factor B-7, units meters/centi-second per accelerometer count. Value is 0.07488, corresponding to 5.85 x 10⁻² x 10⁻² x 2', where first term is nominal accelerometer scale factor in units of centimeters/second per count, second converts to meters, third converts to centiseconds, and fourth is scale factor.
- K prml: Table of program information used in association with V37 program i changes. Table is arranged in order of decreasing program numbers (a higher i is a lower number), with first cell having program notation "PREMM1". Bits 7-1 of the cell give the program number (since program numbers are in decimal, seven bits are necessary to represent numbers above 63); bits 10-8 are the erasable memory bank number (required when the job is established); and bits 15-13 are the job's required DNLSTCOD setting for telemetry. See information below.
- K_{resq}: Constant, program notation "RESQ", scale factor B59, units meters². Nominal value is 40.6809913E12 x 2⁻⁵⁹, where the decimal portion corresponds to the square of 6 378 165.2 meters. Octal value is 00001₈ 05000₈, however, which corresponds to the square of about 6 378 238.8 meters.
- Krndbt: Single precision constant, program notation "BIT5", scale factor (as used) B23, units centi-seconds. Value is 00020g, corresponding to (as used, i.e. added to the least significant half of channel 4 time information) 0.5 centiseconds. Used to account for the fact that channel 4 bits 5-1 "read 20g for the first interval after a TIME1 increment", thus causing bit 6 of channel 4 to be incremented 5 ms out of phase with TIME1 increments.
- K (i = 0 11): Table of single precision constants, program notation rtu 'RELTAB", containing in bits 15-12 the required values to be loaded into bits 15-12 of OUTO for DSPTAB. Value in these bits is (i + 1). Bit 11 is zero. The least significant 5 bits of these same constants are used for K_{rtb_T} (see Data Input/Output).

LGYRO: See IMU Computations.

IREG: Computer "L" register (address 00018), used to retain alarm pattern information in alarm-generation package.

MARKINDX: See Optics Computations.

- MINDEX: Single precision cell, scale factor Bl4, used to select the appropriate table entries for a V37-selected program change (loaded based on equality of MMNUMBER and bits 7-l of K with the value of i).
- MMNUMBER: Single precision cell, scale factor B14, used to retain the desired new program number for a V37 program change (it is the number entered in "MMCHANG" or is 0 if "V37" entered from "VERB96"). If the TVC DAP or SPS engine-on are indicated, it is set 0.
- MMTEMP: Single precision cell loaded in "V37XEQ" with the value of the appropriate K for use in generating appropriate information in connection with the job to be established by V37 processing.

MONSAVE, MONSAVE1: See Data Input/Output.

MRKBUF1: See Optics Computations.

NEWJOB: Cell set positive non-zero to indicate that a job of higher priority than the one presently being performed (the "DUMMYJOB" loop has minimum priority) has been established and is awaiting execution. Cell 00678 is used for the word, and must be addressed periodically in order to avoid generating a hardware restart (see hardware documentation for details).

NOUNREG: See Data Input/Output.

NOUT: Single precision cell, scale factor B14, used to provide a count of the number of DSPTAB display outputs (DSPTAB+0 - DSPTAB+10) that are remaining to be changed: if it is non-zero but none are to be changed, it is set 0.

NVWORD+2: See Display Interface Routines.

OPTIND: See Optics Computations.

OPTMODES: See Optics Computations.

- OUTO: Computer output channel 10, used to transmit relay driving information to the display system. Bits 15-12 specify the group of relays to be driven, while bits 11-1 specify their new state.
- PHASEi, -PHASEi (i = 1 6): Set of cells used to contain program octal "phase" information, used to control program restarts (each "i" is called a "group"). To check the validity of erasable memory information (and the phase information itself), a check is made that the information in PHASEi, when complemented, is the same as the information in -PHASEi (for all i). A setting of +0 for PHASEi means that the group restart controlled by that cell is "inactive" (see Section VIIC of 3420.5-27 for details of restart logic computations not covered in this writeup). In the interests of avoiding excessive detail (since the "normal" mode of operation of the computer system does not require restarts), most of the settings for restart groups are not shown in the writeups, although settings in some cases form an integral part of the program control logic, and hence are shown in such cases.

As a general guide to allocation of restart groups, the following areas where each group is used are supplied as a partial list:

- #1: P20 (setting to 1.11 causes "PIKUP20" to be entered). A setting to 1.7 is done in "CHKLINUS" for R61-specified R60 maneuver. A setting to 1.5 is used to protect "S40.9" (set by "SETUP.9"), which of course only occurs with Average-G on, when P20 doesn't run. If "R00" concludes that P20 should not run, it resets group 1 to inactive, thus over-riding the "AVGEND" setting.
- #2: Orbital integration (including the periodic state vector update started by "STATINT1" for a 2.5 setting). A setting of 2.7 causes "R22" to be established, and 2.13 causes "REDOR22" to be established (the latter setting is done by "AVGEND", and written over by "ROO" if necessary). Group 2 is also used for protection within the R22 computations, which are done at sufficiently high priority that they would not be expected to be interrupted by mission programs except while R22 is performing "WAITONE". A restart priority lower than that at which job runs is assigned to permit the mission programs to set e.g. TRACKFIG. Restart group 2 also used to protect the R27 computations.
- #3: "S40.13"; "P11"; "ENGINOFF".
- #4: All V37-selectable programs except POO (and also other mission program sequences running outside of Average-G cycle, such as "P65.1"); "GCOMPVER"; "AZMTHCG1". Also V37 processing itself.
- #5: "READACCS" (and subsequent "SERVICER" computations); Prelaunch alignment.
- #6: "CLOKTASK"; Entry autopilot; P27; "S40.6" (via "PRE40.6").
- PHSPRDT2: Single precision erasable memory cell used to contain priority or time information for erasable memory restarts using group 2 (see Section VIIC of 3420.5-27). It is set to indicate priority 05₈ for POO selection in "ROO" in order to achieve proper priority information for group 2 use in the periodic POO orbital integration.
- PHSPRDT4: Single precision erasable memory cell used to contain priority or time information for erasable memory restarts using group 4 (see Section VIIC of 3420.5-27). It is set to the priority of the mission program that is established by "V37XEQ", for subsequent use by erasable memory restarts.

PIPA: See IMU Computations.

PIPAPI: See Steering Computations.

PIPCTR: Single precision cell, scale factor Bl4, used to control the performance of "QUIKREAD". It is set to 2 in "READACCS" to allow "QUIKREAD" to be performed 1.0 and 1.5 seconds after "READACCS" ("READACCS" itself causes "QUIKREAD" to be done 0.5 seconds after "READACCS").

- PRIORITY. (i = 0 6): Set of cells containing in bits 14-10 the priority information on computer jobs associated with the job register set (see Section VIIB of 3420.5-27). If the cell contains -0, this indicates that the corresponding job register set is available.
- QREG: Computer hardware address 0002, loaded with return address information after a "TC" machine language transfer instruction. See 3420.5-27 for details (program notation "Q"): the S-register portion is loaded into QREG.
- <u>R</u>_{nl}: Temporary storage for updated value of <u>R</u> in "CALCRVG", used for restart protection purposes and to ensure a homogeneous state vector on the downlink (same units and scaling as <u>R</u>). It is used in "NORMLIZE" to initialize <u>R</u> for Average-G: in such cases, <u>R</u>_{nl} loaded either by "Pll" or "MIDTOAV2".

RCSFLAGS: See Digital Autopilot Interface Routines.

REDOCTR: Single precision cell, scale factor BL4, used to count the number of hardware restarts (entrances to "GOPROG") that have been performed. It is initialized to 0 as part of a verb 36 fresh start.

REQRET: See Data Input/Output.

RESTREG: See Display Interface Routines.

- ROLLd180: See Entry Computations: quantity updated in "ATTRATES".
- ROLLdPIP: Value of ROLLd180 sampled in "READACCS", scale factor B-1, units revolutions, single precision. See ALFAdPIP.
- RSBBQ: Value of address where hardware restart (causing **en**trance to "GOPROG") was generated. Most significant half contains BBCON (see BBANK above) information and least significant half has Q-register information.
- SCALSAVE: Value of (Channel 3, Channel 4) saved in "PO6", scale factor B23, units centi-seconds. Used to restore the proper value of the computer clock (modulo 2²³ centi-seconds or about 23.3 hours) after a period of low-power operation.
- SELFRET: Cell containing return address information to routine calling "CHECKNJ" (a location in the computer self-check memory bank, hence the name). Must be preset as part of the initial conditions routine so that the "DUMMYJOB" routine will function properly.

SINØ: Value of sine of latitude computed in "CALCGRAV", scale factor Bl.

SKEEPi: See Testing Routines.

SMODE: See Testing Routines.

STARIND: See Inflight Alignment.

SUPERBNK: Value of computer channel 07, containing in bits 7-5 the specification of the "super bank" setting: value of 0-3 causes FBANK settings of 30₈-37₈ to read out correspondingly numbered fixed memory banks; a setting of 4 causes FBANK settings of 30₈-33₈ to read out fixed memory banks 40-43 (used e.g. for most DSKY processing). Also referred to as FEXT.

T_{pptml}: See IMU Computations.

T5LOC: See Digital Autopilot Interface Routines.

T5PHASE: See Digital Autopilot RCS Routines.

- TIME2SAV: Value of T_{now} retained in "PO6", scale factor B28, units centi-seconds (the corresponding value of channels 3 and 4 is in SCALSAVE), used to permit restoration of the proper value of the computer clock (T_{now}) after a period of low-power operation.
- TIME3, TIME4, TIME5: Computer hardware erasable memory counter clock cells, whose overflow cause program interrupts #3, #4, and #2 respectively (all are scale factor B14 in units of centi-seconds, and are set to (16384 - t), with t in centi-seconds, to cause overflow in "t" centi-seconds). See 3420.5-27.

TRKMKCNT: See Measurement Incorporation.

TTE. TTE2: See Display Computations.

UPSVFLAG: See Uplink Processing.

- $\underbrace{\underline{V}}_{n1}: \mbox{Temporary storage for updated value of }\underline{\underline{V}} \mbox{ in "CALCRVG", used for restart protection purposes and to ensure a homogeneous state vector on the downlink (same units and scaling as <math>\underline{\underline{V}}$). It is used in "NORMLIZE" to initialize $\underline{\underline{V}}$ for Average-G: in such cases, $\underline{\underline{V}}_{n1}$ is loaded either by "Pll" or "MIDTOAV2".
- VACIUSE ($\underline{I} = 1-5$): Control cell indicating, if zero, that the associated VAC area is assigned; otherwise, it contains its own address (hence VAC3USE +1 would be the address of the first available cell in the 43-cell VAC area). Quantities indicated as in "push-down list", or by their "relative address" identification, are stored in a VAC area. See 3420.5-27 for more details.

VERBREG: See Data Input/Output.

VHFCNT: See Measurement Incorporation.

WTOPTION: See Optics Computations.

- XOLDBUF: Value of previous XPIPBUF, containing accelerometer samples with scale factor B14, units pulses. Cells are all single precision, with program notations XOLDBUF, YOLDBUF, and ZOLDBUF respectively. Use same cells as ADOT_+1, ADOT_, and ADOT_+1 (for telemetry purposes): see Digital Autopilot^{sp} RCS Routines.
- XPIPBU<u>F</u>: Set of three consecutive erasable memory cells, scale factor Bl4, units pulses (accelerometer counts, uncompensated). Cells are all single precision, with program notations XPIPBUF, YPIPBUF, and ZPIPBUF respectively. Use same cells as $ADOT_{O_S}$, $ADOT_{+1}$, and $ADOT_{l_{SP}}$ (for telemetry purposes): see Digital Autopflot RCS Routines. If Entry DAP is running(bit 12 of FLAGWRD6 = 1), loaded in "READACCS" with raw accelerometer sample, and updated 0.5, 1.0, and 1.5 seconds later with present accelerometer count (in "QUIKREAD"), with previous value of XPIPBU<u>F</u> being stored in XOLDBU<u>F</u>.

Verb 37 Major Mode Tables

			DNLSTCOD	Mode	Address	EBANK	DNLSTCOD
00		-	0	48	"P48CSM"	6	3
Ol	"GTSCPSS"	5	0	50	''P50''	7	0
06	"P06"	4	0	51	"P51"	5	Ο
20	"PROG20"	6	2	52	"PROG52"	5	Ο
21	"PROG21"	4	2	53	"P51"*	5	0
25	"P25CSM"	6	2	54	"PROG52" [*]	5	0
29	"P29"	7	2	55	"P55"	7	0
30	"P30"	7	2	61	"P61"	6	3
31	"P31"	4	2	62	"P62"	6	l
32	"P32"	4	2	77	"P77"	7	2
33	"P33"	4	2	81	"P81"	6	2
34	"P34"	4	2	82	"P82"	6	2
35	"P35"	4	2	83	"P83"	6	2
36	"P36"	4	2	84	"P84"	6	2
37	"P37"	7	2	85	"P85"	6	2
38	"P38"	4	2	86	"P86"	6	2
40	"P4OCSM"	6	3	87	"P87"	6	2
41	"P41CSM"	6	3	88	"P88"	6	2
47	"P47CSM" -	6	3				

* Table entries for P53 and P54 indicate starting address of "P53" and "P54" respectively, but these tags are defined to be equal to "P51" and "PROG52", as shown.

P81-P88 are control drivers for minimum key rendezvous cycling: they are not intended for manual selection.

.

and a second second

<u>RO2BOTH</u> Entered from "P4OS/F" (P4O/P41), "P47CSM" (P47/P48), "P50", "P55", "PROG2O", "PROG52" (P52/P54), "S61.1" (P61/P62), and "V89CALL" If bit 13(REFSMFLG) of FLAGWRD3 = 0:

If bit 9(IMUOPBIT) of IMODES30 = 0: (IMU turned on)

 $TS = 0220_{o}$

If bit 9(IMUOPBIT) of IMODES30 = 1:

 $TS = 0210_{o}$

Perform "VARALARM"

Proceed to "GOTOPOOH"

Set bit 8(IMUSE) of FLAGWRDO = 1

Return

PIPASR

 $T_{pptml} = T_{now}$ Set least significant halves of $DEL\underline{V} = 0$ (flag for telemetry that $DEL\underline{V}$ not compensated) Set $DEL\underline{V} = PIP\underline{A}$ and $PIP\underline{A} = -0$ $PIP\underline{A}$ reset so that no counts are lost. Only most significant halves of $DEL\underline{V}$ loaded. Special precautions taken to make routine restartable: if get a restart, ldPIPADT set to K₂secp.

Return

1/PIPA

If GCOMPSW < 0, Return

Inhibit interrupts

Perform the following for i = z, y, x:

DELV = DELV + C pipascf DELV - C pipabias idPIPADT

Release interrupts

 $\begin{aligned} & \text{GCOMP}_{\mathbf{x}} = \text{GCOMP}_{\mathbf{x}} - \text{C}_{\text{ad},\mathbf{x}} \text{ } \text{DELV}_{\mathbf{x}} + \text{C}_{\text{sr},\mathbf{x}} \text{ } \text{DELV}_{\mathbf{y}} - \text{C}_{\text{nbd},\mathbf{x}} \text{ } \text{ldPIPADT} \\ & \text{GCOMP}_{\mathbf{y}} = \text{GCOMP}_{\mathbf{y}} - \text{C}_{\text{ad},\mathbf{y}} \text{ } \text{DELV}_{\mathbf{y}} + \text{C}_{\text{sr},\mathbf{y}} \text{ } \text{DELV}_{\mathbf{z}} - \text{C}_{\text{nbd},\mathbf{y}} \text{ } \text{ldPIPADT} \\ & \text{GCOMP}_{\mathbf{z}} = \text{GCOMP}_{\mathbf{z}} - \text{C}_{\text{ad},\mathbf{z}} \text{ } \text{DELV}_{\mathbf{z}} - \text{C}_{\text{sr},\mathbf{z}} \text{ } \text{DELV}_{\mathbf{y}} + \text{C}_{\text{nbd},\mathbf{z}} \text{ } \text{ldPIPADT} \end{aligned}$

IMUC-1

If magnitude of any GCOMP, $(i = x,y,z) \ge K_{cpck}$:

Establish "1/CHECK" (priority 218)

Return

NBDONLY Established by "SVCT3"

If GCOMPSW < 0, End of job

Inhibit interrupts

If bit 15(DRIFTFIG) of FLAGWRD2 = 0, End of job

Set TS = 1dPIPADT and 1dPIPADT = TIME1

Release interrupts

TS = ldPIPADT - TS (i.e. new value minus old value)

Proceed to "NBD2"

LASTBIAS Established by "PREREAD"

Perform "PIPUSE"

If GCOMPSW < 0, End of job

TS = (least significant half of T_{pptml}) - ldPIPADT

ldPIPADT = K_{2secp}

Proceed to "NBD2"

NBD2

If TS = 0, End of job

If TS < 0:

 $TS = TS + 16384 \text{ centi-seconds} \quad (\text{correct for TIMEl overflow})$ $GCOMP_{x} = GCOMP_{x} - C_{nbd,x} \quad TS \qquad (TS \text{ scaling here Bl9})$ $GCOMP_{y} = GCOMP_{y} - C_{nbd,y} \quad TS$ $GCOMP_{z} = GCOMP_{z} + C_{nbd,z} \quad TS$ $If \text{ magnitude of any GCOMP}_{i} \quad (i = x, y, z) \geqslant K_{cpck};$ Proceed to "l/GYRO"

End of job

1/CHECK

If IMUCADR \neq 0:

End of job

Proceed to "1/GYRO"

1/GYRO

Shift GCOMP right 7 places (bits corresponding to 2^{-8} pulses and below are lost), making scaling B21 pulses

TS = "GCOMP"

Perform "IMUPULSE"

Perform "IMUSTALL": if error return, proceed otherwise, proceed

Shift least significant half of GCOMP left 7 places, making scaling of double precision number (for most significant halves 0) B14 pulses. Bits 14-8 of least significant half lost (expected to be 0 for normal operation)

End of job

IMUMON

Entered from "PROCEEDE" every 0.48 seconds

 $TS_{7} = (bits 15-ll and 9 of channel 30)$

If $TS_1 = (bits 15-11 and 9 of IMODES30)$:

Proceed to "TNONTEST"

(in RUPTREG2 cell) TS = 0

Set those bits of TS = 1 that are different in IMODES30 and TS_1 (in the range of bits 15-11 and 9)

Set (bits 15-11 and 9 of IMODES30) = TS_1

If bit 15 of TS = 1: (IMU temperature)

> (Tag here "TLIM") TS = bits 14-1 of TS

If bit 15(TLIMBIT) of IMODES30 = 1:

Set bit 4(Temperature Caution) of channel 11 = 1

If bit 15(TLIMBIT) of IMODES30 = 0:

If bit 1(LMPTSTBT) of IMODES33 = 0:

Set bit 4(Temperature Caution) of channel 11 = 0

If bit 14 of TS = 1: (IMU turn-on request)

If bit 2(DLAYFAIL) of IMODES30 = 0: (Tag here "ITURNON")

If bit 14(TONISSBT) of IMODES30 = 0:

```
Set bit 7(ITNON1BT) of IMODES30 = 1
```

If bit 14(TONISSBT) of IMODES30 = 1:

If bit 15(ISS Turn-on Delay Complete) of channel 12 = 0:

Set bit 2(DLAYFAIL) of IMODES30 = 1

Perform "ALARM" (pattern 0207)

If bit 13 of TS = 1: (IMU fail)

Perform "SETISSW"

If bit 12 of TS = 1: (IMU CDU fail)

Perform "SETISSW"

If bit ll of TS = 1: (IMU cage command)

If bit ll(CAGEBIT) of IMODES30 = 1: (Tag here "IMUCAGE")

Set bit 4 (No Attitude) of DSPTAB+11 = 0, and flag for output at next opportunity

Set bit 5(Zero IMU CDU) of channel 12 = 1

CDU = O

Call "UNZ2" in 0.32 seconds

Proceed to "C33TEST"

- Set bits 15-10 (IMU and CDU drive enable and gyro drive enable) of channel 14 = 0
- Set bits 8(TVC Enable), 6-4 (Enable IMU CDU Error Counters, Zero IMU CDU, and Coarse Align IMU), and 2(Enable Optics Error Counters) of channel 12 = 0

Set bit 7(ENGONFLG) of FLAGWRD5 = 0

Set bit 13(SPS Engine On) of channel 11 = 0

Perform "CAGESUB" (starting at 3rd line)

(If bit ll of TS = 1):

Set bits 5(TRACKFIG) of FLAGWRD1, 15(DRIFTFIG) of FLAGWRD2, and 13(REFSMFIG) of FLAGWRD3 = 0

CDUXCMD = -0

GYROCMD = -0

Set bits 9-6 (Gyro drive selection) of channel 14 = 0

If bit 9 of TS = 1: (IMU operate)

If bit 9(IMUOPBIT) of IMODES30 = 1: (Tag here "IMUOP")

Set bit 6(NOIMUDAP) of IMODES33 = 1

Set bits 5(TRACKFLG) of FLAGWRD1, 15(DRIFTFLG) of FLAGWRD2, and 13(REFSMFLG) of FLAGWRD3 = 0

Set bit 9(UTFLAG) of FLAGWRD8 = 0

If bit 8(IMUSE) of FLAGWRDO = 1:

Perform "ALARM" (pattern 0214_o)

Set bits \$(IMUSE) and 7(RNDVZFIG) of FLAGWRDO = 0

If bit 9(IMUOPBIT) of IMODES30 = 0:

If bit 2(DLAYFAIL) of IMODES30 = 0:

Set bit 7(ITNON1BT) of IMODES30 = 1

Proceed to "TNONTEST"

TNONTEST

;

If bit 7(ITNON1BT) of IMODES30 = 0:

Proceed to "C33TEST"

If bit 8(ITNON2BT) of IMODES30 = 0:

Set bit 8(ITNON2BT) of IMODES30 = 1

Proceed to "C33TEST"

Set bits 8-7(ITNON2BT, ITNON1BT) of IMODES30 = 0 (Tag here "PROCTNON")

If bit 14(TONISSBT) of IMODES30 = 1:

If bit 4(Coarse Align) of channel 12 = 1: (Tag here "OPONLY")

Proceed to "C33TEST"

If bit 8(IMUSE) of FLAGWRDO = 1:

Proceed to "C33TEST"

Set bits 6-3 (IMUNITET, NOACCALM, IMUFINHT, ICDUINHT) and bit 1(ACCFINHT) of IMODES30 = 1

Set bit 6(NOIMUDAP) of IMODES33 = 1

Set bit 4(No Attitude) of DSPTAB+11 = 0, and flag for output at next opportunity

Set bit 5(Zero IMU CDU) of channel 12 = 1

 $CD\underline{U} = O$

Call "UNZ2" in 0.32 seconds

Proceed to "C33TEST"

If bit 9(IMUOPBIT) of IMODES30 = 1:

Perform "ALARM" (pattern 0213g)

Perform "CAGESUB"

Call "ENDTNON" in 90 seconds

Proceed to "C33TEST"

C33TEST

 $TS_1 = (bits 13-11 of channel 33)$

Reset channel 33 flip-flops (bits 15-11, done by a Write-type order)

If $TS_1 = (bits 13-11 \text{ of IMODES33})$:

Proceed to "GLOCKMON"

TS = 0

Set those bits of TS = 1 that are different in IMODES33 and TS (in the range of bits 13-11)

Set (bits 13-11 of IMODES33) = TS_1

If bit 13 of TS = 1: (Accelerometer fail)

Set bit 10(PIPAFLET) of IMODES30 = bit 13(PIP2FLET) of IMODES33 (Tag here "PIPFAIL") Perform "SETISSW"

If bit l(ACCFINHT) of IMODES30 = 1:

If bits 10-7 (PIPAFLET, IMUOPBIT, ITNON2ET, ITNON1ET) and bit 5(NOACCALM) of IMODES30 all = 0:

Perform "ALARM" (pattern 0212g)

If bit 12 of TS = 1: (Downlink too fast)

If bit 12(DNLKFAIL) of IMODES33 = 0: (Tag here "DNTMFAST")

Perform "ALARM" (pattern 1105g)

If bit ll of TS = 1: (Uplink too fast)

If bit ll(UPLKFAIL) of IMODES33 = 0: (Tag here "UPTMFAST")

Perform "ALARM" (pattern 1106g)

Proceed to "GLOCKMON"

GLOCKMON Entered every 0.48 second after computations of "IMUMON"

 $TS = |CDU_z| + K_{m70degs}$

If $TS \leq 0$:

;

a service and the second second

If bit 6(Gimbal Lock) of DSPTAB+11 = 0, Resume

If bit l(LMPTSTBT) of IMODES33 = 0:

Set bit 6(Gimbal Lock) of DSPTAB+11 = 0, and flag for output at next opportunity

Resume

If $(TS + K_{ml5degs}) > 0$:

If bit 4(Coarse Align) of channel 12 = 0:

If bits 14-13 of DAPDATR1 = 11_2 : (Saturn DAP)

If bit l(AVEGFLAG) of FLAGWRD1 = 1:

Skip next 2 lines

Perform "SETCOARS"

Call "CA+ECE" in 0.06 seconds

If bit 6(Gimbal Lock) of DSPTAB+11 = 1, Resume

If bit 6(IMUNITBT) of IMODES30 = 1, Resume

Set bit 6(Gimbal Lock) of DSPTAB+11 = 1, and flag for output at next opportunity

Resume

SETISSW

 $TS_3 = (bits 4(IMUFINHT), 3(ICDUINHT) and 1(ACCFINHT) of IMODES30)$ Shift TS_3 left 9 places (loading bits 13, 12, and 10) $TS_4 = TS_3$ or IMODES30 (bits 13, 12, and 10 of IMODES30 are IMUFLBIT, ICDUFLET, and PIPAFLET)

 $TS_5 = bits 13$, 12, and 10 of $(-TS_L)$

If $TS_5 \neq 0$: (means that 13/4, 12/3, and 10/1 bit pairs not have at least one of the two bits of the pair a binary 1)

TS = TS₅ - 1 (communication cell with "VARALARM", not affecting the TS of e.g. "IMUMON")

```
Perform "VARALARM"
```

Set bit l(ISS Warning) of channel ll = l

Return

```
If bit 1(LMPTSTBT) of IMODES33 = 0:
```

Set bit l(ISS Warning) of channel ll = 0

Return

CAGESUB

Set bit 15(ISS Turn-on Delay Complete) and bit 6(Enable IMU CDU Error Counters) of channel 12 = 0

Set bit 5(Zero IMU CDU) and bit 4(Coarse Align) of channel 12 = 1

- Set bit 4(No Attitude) of DSPTAB+11 = 1, and flag for output at next opportunity (Tag here "CAGESUB1")
- Set bits 6-3 (IMUNITET, NOACCAIM, IMUFINHT, ICDUINHT) and bit 1(ACCFINHT) of IMODES30 = 1

Set bit 6(NOIMUDAP) of IMODES33 = 1

Return

ENDTNON

;

If bit 2(DLAYFAIL) of IMODES30 = 1:

Set bit 2(DLAYFAIL) of IMODES30 = 0

If bit 14(TONISSBT) of IMODES30 = 0:

Delay 90 seconds

Proceed to "ENDTNON"

```
If bit 8(IMUSE) of FLAGWRDO = 1:
```

Proceed to "IMUBAD"

End of task

Set bit 15(ISS Turn-on Delay Complete) of channel 12 = 1

Set bit 4(No Attitude) of DSPTAB+11 = 0, and flag for output at next opportunity

Proceed to "UNZ2"

UNZ2

CDU = O

Set bit 5(Zero IMU CDU) and bit 4(Coarse Align) of channel 12 = 0Delay 7.9 seconds

Set bits 6(IMUNITBT), 4(IMUFINHT), and 3(ICDUINHT) of IMODES30 = 0

Set bit 6(NOIMUDAP) of IMODES33 = 0

Perform "SETISSW"

Set bit 15(ISS Turn-on Delay Complete) of channel 12 = 0

Call "PFAILOK" in 4 seconds

End of task

PFAILOK Called by "UNZ2"

If bit 6(IMUNITET) of IMODES30 = 1, End of task

Set bit 10(PIPAFLBT) of IMODES30 = 1

Set bit 13(PIP2FLBT) of IMODES33 = 1

Set bit 5(NOACCALM) of IMODES30 = 0

Perform "SETISSW"

End of task

```
IFAILOK Called by "IMUFINE"
```

If bit 6(IMUNITET) of IMODES30 = 1, End of task

If bit 4(Coarse Align) of channel 12 = 1, End of task

Set bit 13(IMUFLBIT) of IMODES30 = 1

```
Set bit 4(\text{IMUFINHT}) of IMODES30 = 0
```

Perform "SETISSW"

End of task

```
IMUZERO Entered from "GEOIMUTT", "GTSCPSS", and "VBZERO"
```

Inhibit interrupts

If bit 6(Gimbal Lock) and bit 4(No Attitude) of DSPTAB+11 = 11_2 :

Perform "ALARM" (pattern 0206g)

IMUCADR = -0

Release interrupts

Return

If bit 6(IMUNITET) of IMODES30 = 1:

IMUCADR = -0

Release interrupt s

Return

Set bits 6-5 (NOIMUDAP, IMUZROBT) of IMODES33 = 1

Set bits 4-3 (IMUFINHT, ICDUINHT) of IMODES30 = 1

- Set bit 6(Enable IMU CDU Error Counters) and bit 4(Coarse Align) of channel 12 = 0
- Set bit 4(No Attitude) of DSPTAB+11 = 0, and flag for output at next opportunity

Set bit 5(Zero IMU CDU) of channel 12 = 1

 $CD\underline{U} = O$

Call "IMUZERO2" in 0.32 seconds

If bit 9(IMUOPBIT) of IMODES30 = 1:

Perform "ALARM" (pattern 0210g)

Release interrupts

Return

IMUZERO2

....

If bit 6(IMUNITBT) of IMODES30 = 1:

Proceed to "IMUBAD"

CDU = 0

Set bit 5(Zero IMU CDU) of channel 12 = 0

Delay 7.9 seconds

If bit 6(IMUNITET) of IMODES30 = 1:

Proceed to "IMUBAD"

Set bits 4-3 (IMUFINHT, ICDUINHT) of IMODES30 = 0 Set bits 6-5 (NOIMUDAP, IMUZROBT) of IMODES33 = 0 Perform "SETISSW"

Proceed to "ENDIMU"

IMUCOARS

Inhibit interrupts

If bit 6(IMUNITET) of IMODES30 = 1:

IMUCADR = -0

Release interrupts

Return

Perform "SETCOARS"

Call "COARS" in 0.06 seconds

Release interrupts

Return

COARS

```
If bit 6(IMUNITBT) of IMODES30 = 1:
```

Proceed to "IMUBAD"

```
Set bit 6(Enable IMU CDU Error Counters) of channel 12 = 1
```

COMMAND = THETAD - CDU ones complement difference formed, and rounded shift used to rescale to Bl rev.

Delay 0.02 seconds

Proceed to "COARS2"

COARS2

```
If bit 6(IMUNITBT) of IMODES30 = 1:
```

Proceed to "IMUBAD"

 $TS_1 = 0$ (in ITEMP1 cell)

Perform the following for i = Z, Y, X:

If COMMANDI = 0:

CDUiCMD = -O

- If $|COMMANDi| \neq 0$:
 - $TS_{l} = TS_{l} + l$ $TS = |COMMANDi| + K_{mcommax}$

If TS> 0:

COMMANDi = TS sgn COMMANDi

 $CDUiCMD = - K_{mcmxm} sgn COMMANDi$

If TS ≤ 0 :

CDUiCMD = COMMANDi

COMMANDi = O

If $TS_1 > 0$: (i.e. non-zero commands to be sent)

Set bits 15-13(Gate outputs from CDUXCMD) of channel 14 = 1

Delay 0.6 seconds

Proceed to "COARS2"

Delay 1.5 seconds

If any(
$$|CDU_i - THETAD_i| + K_{corst}$$
) > 0: (i = x,y,z)
Perform "ALARM" (pattern 0211₈)

Proceed to "IMUBAD"

Proceed to "ENDIMU"

CA+ECE

Set bit 6(Enable IMU CDU Error Counters) of channel 12 = 1

End of task

SETCOARS

If bit 4(Coarse Align) of channel 12 = 1, Return

Set bit 6(Enable IMU CDU Error Counters) of channel 12 = 0

Set bit 10(Gyro Output Drive) of channel 14 = 0

GYROCMD = -0

Set bit 4(Coarse Align) of channel 12 = 1

Set bit 4(No Attitude) of DSPTAB+11 = 1, and flag for output at next opportunity

Set bit 6(NOIMUDAP) of IMODES33 = 1

Set bit 4(IMUFINHT) of IMODES30 = 1

Set bits 5(TRACKFIG) of FLAGWRD1, 15(DRIFTFLG) of FLAGWRD2, and 13(REFSMFLG) of FLAGWRD3 = 0

Return

IMUFINE Tag also "IMUFIN2O"

Inhibit interrupts

If bit 6(IMUNITBT) of IMODES30 = 1:

IMUCADR = -0

Release interrupts

Return

Set bits 5(Zero IMU CDU) and 4(Coarse Align) of channel 12 = 0

Set bit 6(NOIMUDAP) of IMODES33 = 0

Set bit 4(No Attitude) of DSPTAB+11 = 0, and flag for output at next opportunity

Call "IFAILOK" in 5.12 seconds

Call "IMUFINED" in 2 seconds

Release interrupts

Return

IMUFINED

```
If bit 6(IMUNITET) of IMODES30 = 1:
```

Proceed to "IMUBAD"

Proceed to "ENDIMU"

PIPUSE Entered from "ESTIMS" and "LASTBIAS"

PIPA = -0

If bit 6(IMUNITET) of IMODES30 = 1, Return

Inhibit interrupts

Set bit 1(ACCFINHT) of IMODES30 = 0

Perform "SETISSW"

Release interrupts

Return

```
<u>PIPFREE</u> Entered from "AVGEND"
```

Inhibit interrupts

Set bit 1(ACCFINHT) of IMODES30 = 1

If bit 10(PIPAFLBT) of IMODES30 = 1:

Release interrupts

Return

```
Perform "ALARM" (pattern 0212g)
```

Inhibit interrupts

Perform "SETISSW"

Release interrupts

Return

IMUPULSE

If bit 6(IMUNITBT) of IMODES30 = 1:

IMUCADR = -0

Return

If LGYRO = 0:

Set bit 6(Enable Gyro Power Supply) of channel 14 = 1

Call "STRTGYRO" in 0.04 seconds

If LGYRO > 0:

Put present job to sleep (starting address id = "GWAKE")

When awakened, put to sleep again if LGYRO > 0

Call "STRTGYRO" in 0.01 seconds

LGYRO = TS (TS set on entrance to "IMUPULSE" with address of first gyro command)

Force sign agreement of $\underline{E}_{IGYRO}_{dp}$ (i.e. each double precision axis) Return

STRTGYRO

Set bits 10-7 (Gyro select bits) of channel 14 = 0

If bit 6(IMUNITBT) of IMODES30 = 1:

Proceed to "DONTPULS"

Proceed to "STRTGYR2"

STRTGYR2

If bits 14-13 of LGYRO = OO_2 : (initial condition value)

$$TS_2 = 2$$

 $TS_{L} = Bit 8$ (Gyro Y-axis selection)

Proceed to "GSELECT"

IMUC-15

If bits 14-13 of LGYRO = Ol_2 :

 $TS_3 = 2$ $TS_4 = Bits 8-7$ (Gyro Z-axis selection) Proceed to "GSELECT"

If bits 14-13 of LGYRO = 10_2 :

 $TS_3 = 0$ $TS_4 = Bit 7$ (Gyro X-axis selection) IGYRO = IGYRO - 4 (sets for address of X component) Proceed to "GSELECT"

LGYRO = 0 (bits 14-13 of $LGYRO = 11_2$)

Awaken job (if any) put to sleep with starting address id = "GWAKE"

Proceed to "IMUFINED"

GSELECT

 $LGYRO = LGYRO + TS_3 + 10000_8$ (octal number is bit 13, to cause y,z,x output sequence) ADRLGYR = (bits 11-1 of LGYRO) TS = E_{ADRLGYR}dp If $(|TS| + K_{mgyrmn}) \leq 0$: Proceed to "STRTGYR2" (modulo 1 revolution or 2²¹ pulses) $TS = TS + K_{gyrfrc} sgn TS$ If TS < 0: $TS_{L} = TS_{L} + Bit 9$ (Negative gyro torquing) Set those bits of channel 14 = 1 that are 1 in TS, (selects proper axis and sign) E_{ADRIGYR+1} = (bits 7-1 of |E_{ADRIGYR+1}) sgn E_{ADRIGYR}dp (save fractional part) TS = K TS $TS_1 = integral part of (TS/8192)$

 $TS_2 = TS - 8192 TS_1$ (in range 0 - 8191) If TS, > 1: $E_{ADRLGYR+O} = TS_1 - 2$ (Tag here "LONGGYRO") $GYROCMD = 8192 + TS_2$ Call "8192AUG" in (K_{btl0} GYROCMD - 3) centi-seconds Set bit 10(Gyro Output Drive) of channel 14 = 1 End of task If $TS_1 = 1$: $TS_2 = TS_2 + 8192$ $E_{ADRLGYR+O} = O$ $GYROCMD = TS_2$ If bit 4(IMU Coarse Align) of channel 12 = 0: If bit 6(IMUNITBT) of IMODES30 = 0: Call "TWOPULSE" in (K_{btl0} GYROCMD + 3) centi-seconds Set bit 10(Gyro Output Drive) of channel 14 = 1End of task Proceed to "DONTPULS"

8192AUG

If bit 4(IMU Coarse Align) of channel 12 = 1:

Proceed to "DONTPULS"

If bit 6(IMUNITET) of IMODES30 = 1:

Proceed to "DONTPULS"

If $E_{ADRLGYR+O} > 0$:

 $E_{ADRLGYR+O} = E_{ADRLGYR+O} - 1$

GYROCMD = GYROCMD + 8192

Call "8192AUG" in (K_{btlO} GYROCMD - 3) centi-seconds Set bit 10(Gyro Output Drive) of channel 14 = 1 End of task GYROCMD = GYROCMD + 8192

If bit 4(IMU Coarse Align) of channel 12 = 0: (redundant with check already done) If bit 6(IMUNITET) of IMODES30 = 0:

> Call "TWOPULSE" in (K_{btl0} GYROCMD + 3) centi-seconds Set bit 10(Gyro Output Drive) of channel 14 = 1 End of task

Proceed to "DONTPULS"

<u>TWOPULSE</u> (Purpose is to have "last" torquing always negative)

Set bit 9(Negative Gyro Torquing) of channel 14 = 0

GYROCMD = 2 (sent in less than 1 ms)

Set bit 10(Gyro Output Drive) of channel 14 = 1

Call "STRTGYRO" in O.Ol second (logic for this requires over 1 ms)

Set bit 9(Negative Gyro Torquing) of channel 14 = 1

GYROCMD = 2

Set bit 10(Gyro Output Drive) of channel 14 = 1

End of task

DONTPULS

IGYRO = O

Awaken job (if any) put to sleep with starting address id = "GWAKE"

Proceed to "IMUBAD"

ENDIMU

If bit 1(ISS Warning) of channel 11 = 1:

Proceed to "IMUBAD"

If IMUCADR = +0:

IMUCADR = -1

End of task

Awaken job put to sleep in "IMUSTALL" and cause it to start at (IMUCADR +1), indicating a success

IMUCADR = +0

End of task

IMUBAD

If IMUCADR = +0:

IMUCADR = -0

End of task

Awaken job put to sleep in "IMUSTALL" and cause it to start at (IMUCADR), indicating an error

IMUCADR = +0

End of task

IMUSTALL

- If IMUCADR > 0, proceed to "POODOO" (pattern 21210g)
- If IMUCADR = +0, set IMUCADR = (Calling address +1, in FCADR format), and put present job to sleep
- If IMUCADR = -0:

IMUCADR = +0

Return (to calling address +1, indicating an error)

If IMUCADR = -1:

IMUCADR = +0

Return (to calling address +2, indicating a success)

If IMUCADR < -1, proceed to "POODOO" (pattern 21210g)

Quantities in Computations

See also list of major variables and list of routines

- ldPIPADT: Cell containing time information used with IMU compensation routines. During free-flight portions, contains value of TIME1 when previous gyro drift compensation was made, scale factor B14, units centi-seconds (with optional tag "OLDBT1"). During those portions of flight when "l/PIPA" is entered, contains value of computing interval, scale factor B8, units centi-seconds. Both quantities are single precision. Cell is set to 2 seconds in "Pl1" and in "LASTBIAS", and to ¹/₂ second in "GTSCPSS".
- ADRIGYR: Dummy quantity used to indicate that gyro compensation information taken from least significant 11 bits of IGYRO. Bits 11-9 are loaded into EBANK (see Data Input/Output) and bits 8-1 are added to 1400g to give address within the erasable memory bank.
- \underline{C}_{ad} : Set of three single precision erasable memory constants, program notation "ADIAX", "ADIAY", and "ADIAZ", to correct for "IRIG acceleration sensitive drift along the input axis", scale factor B-3, units gyro pulses/accelerometer count. One gyro pulse is 2^{-21} revolution and one accelerometer count is a velocity increment of 5.85 centimeters/second. The units of the constant can also be expressed as "meru/g", where one meru is 10^{-3} x earth rate. In these units, the scaling of the constant is about 19.0304345 least increments per (meru/g): this figure is 2^{17} x 0.024339048 x (5.85 x 10^{-2})/9.80665, where first term is the reciprocal of the least increment for units of gyro pulses/accelerometer count; the second term is the number of gyro pulses/meru (0.1 K Prelaunch Alignment); the third is the accelerometer scale factor in units of meters/second; and the fourth is gravity (meters/sec²). If earth rate is simplified to 15 degrees/hour, the number of least increments per (meru/g) is reduced to about 18.9785.
- \underline{C}_{nbd} : Set of three single precision erasable memory constants, program notation "NBDX", "NBDY", and "NBDZ", to correct for "IRIG bias drift", scale factor B-5, units gyro pulses/centi-second. The units of the constant can also be expressed as "meru", in which case the scaling is about 127.606708 least increments per meru: this figure is $2^{19} \times 0.01 \times 0.024339048$ (see \underline{C}_{ad} : the 0.01 factor is for centi-seconds). For earth rate simplified to 15 degrees/hour, the number of least increments per meru is reduced to about 127.2583.
- C pipabias: Set of three single precision erasable memory constants, program notation for first "PIPABIAS" (or "PBIASX", "PBIASY", and "PBIASZ"), to correct for "accelerometer bias", scale factor B-6, units accelerometer counts/centi-second. The units of the constant can also be expressed as "cm/sec²", in which case the scaling is about 1792.4376 least increments per cm/sec²: this figure is 2²⁰ x 0.01 x (1/5.85), where first term is reciprocal of normal least increment, second compensates for centi-seconds.

and third is reciprocal of accelerometer scale factor. In-flight evaluation could be performed by determining the number of accelerometer counts accumulated in a period of 320 seconds, multiplying by two to give counts in $(2^{\circ} \times 10)$ seconds, and then dividing by 1000 to give scaled counts/centi-second. N21 can be used to read PIPA cells and N01 with decimal input can be used to load the appropriate cells (1452, 1454, and 1456 in ECADR form for x, y, z respectively).

- C pipasof Set of three single precision erasable memory constants, program notation "PIPASOFX", "PIPASOFY", and "PIPASOFZ", scale factor B-9, units accelerometer counts/accelerometer count, used to correct for "accelerometer scale factor error." The units of the constant can also be expressed as "parts per million (PPM)", in which case the scaling is 8.388608 least increments per PPM: this figure is 2²³ x 10⁻⁶, where first term is reciprocal of normal least increment and second is PPM conversion.
- <u>C</u>_{sr}: Set of three single precision erasable memory constants, program notation "ADSRAX", "ADSRAY", and "ADSRAZ", to correct for "IRIG acceleration sensitive drift along the spin reference axis", scale factor B-3, units gyro pulses/accelerometer count. See discussion with <u>C</u>_{ad} (which has same scaling).
- CDUXCMD (CDUXCMD, CDUYCMD, CDUZCMD): Single precision value of computer special erasable memory cells 0050₈ - 0052₈. Output pulses are generated based on the contents of these cells if bits 15-13 of channel 14 (respectively) are set 1, and the respective IMU CDU error counter is loaded from the pulse train information if bit 6 of channel 12 is 1. Pulses may be used to coarse align the IMU if bit 4 of channel 12 is set (in this case, IMU stable member movement causes the error counter information to be decremented), with 2¹³ pulses giving one revolution. Pulses are generated at a rate of 3200 pps. See also Digital Autopilot Interface Routines.
- COMMAND: Single precision value of required coarse-align command, scale factor Bl, units revolutions. Could also be considered (see above discussion of CDUiCMD) to have a scale factor Bl4, units coarsealign pulses.

DAPDATR1: See Digital Autopilot Interface Routines.

- GCOMP: Value of required gyro compensation command, computed with a scale factor B14 but used in "IMUPULSE" with a scale factor B21 (or, alternatively, with a scale factor B0 revolutions rather than B21 gyro pulses, since there are 2²¹ gyro pulses/revolution).
- GCOMPSW: Single precision control cell used to bypass the performance of "l/PIPA" and "NBDONLY" if is negative. Set 0 in "GTSCPSS".
- GYROCMD: Single precision value of computer special erasable memory cell 0047, used to control generation of gyro torquing pulses at a 3200 pps rate if bit 10 of channel 14 = 1. Gyro power supply for the pulses is enabled by bit 6 of channel 14, bits 8-7 indicate the axis, and bit 9 is 1 if a negative command is to be produced. One pulse is 2^{-21} revolution.

IMODES30: Single precision flag word used for control of "T4RUPT" routines associated with channel 30 inputs. Individual bits have the meanings given below. A restart ("GOPROG")sets bits 14-10 to 1 and sets bits 15, 8-6, and 2 to 0.

Bit	Symbol	Meaning
15	TLIMBIT	Last sampled value of channel 30 bit 15 (O if stable member within designed temperature limits).
14	TONISSBT	Last sampled value of channel 30 bit 14 (0 if ISS has been turned on or commanded to be turned on).
13	IMUFLBIT	Last sampled value of channel 30 bit 13 (O if an IMU fail indication has been produced by the IMU hardware).
12	ICDUFLBT	Last sampled value of channel 30 bit 12 (O if an IMU CDU fail indication has been generated by the IMU CDU hardware).
11	CAGEBIT	Last sampled value of channel 30 bit 11 (O if an IMU cage command generated by the crew).
10	PIPAFLBT	Same as bit 13 of IMODES33 (O if an accelerometer fail indication produced by the hardware, channel 33 bit 13).
9	IMUOPBIT	Last sampled value of channel 30 bit 9 (0 if IMU turned on and operating with no malfunctions).
8	ITNON2BT	Bit 7 of IMODES30 sensed as 1 (i.e. turn-on request received). Used to achieve a wait of 0.48 seconds (during which bit is 1) before acting on turn-on information.
7	ITNONLBT	IMU turn-on request received (a change in value to a logic 1, i.e. binary 0, of bit 14 or bit 9 of IMODES30).
6	IMUNITBT	Bit set 1 to indicate that IMU use should not be attempted: set 1 during the turn-on sequence, if bit 11 of IMODES30 indicates a cage command, or ISS zeroing in "T4RUPT" loop.
5	NOACCALM	Bit set 1 to inhibit generation of program alarm 212 ₈ in "C33TEST" (for accelerometer fail signal).
4	IMUFINHT	Bit set 1 to inhibit generation of ISS Warning signal based on IMU fail signal (bit 13 of IMODES30).

<u>Bit</u>	Symbol	Meaning
3	ICDUINHT	Bit set 1 to inhibit generation of ISS Warning signal based on receipt of IMU CDU fail signal (bit 12 of IMODES30).
2	DLAYFAIL	Bit set 1 to indicate failure of the turn-on delay sequence (IMU turn-on signals not present for the required time interval).
l	ACCFINHT	Bit set 1 to inhibit generation of ISS Warning signal based on receipt of accelerometer fail signal (bit 10 of IMODES30).

IMODES33: Single precision flag word used for control of "T4RUPT" routines associated with channel 33 inputs (and other functions). Individual bits have the following meanings.

;

Bit	Symbol	Meaning
14	PROCDBIT	Last sampled value of channel 32 bit 14 (O if a Proceed pushbutton command given). This bit is used in "PROCEEDE".
13	PIP2FLBT	Last sampled value of channel 33 bit 13 (O if an accelerometer fail indication has been produced by the hardware).
12	DNLKFAIL	Last sampled value of channel 33 bit 12 (O if telemetry end pulse rejected, downlink too fast).
11	UPLKFAIL	Last sampled value of channel 33 bit 11 (O if uplink pulse rejected, uplink too fast).
6	NOIMUDAP	Bit set 1 to indicate that IMU use for vehicle attitude information should not be attempted (sensed by RCS/docked DAP and Entry DAP).
5	IMUZROBT	Bit set 1 in "IMUZERO" and reset O about 8.22 seconds later in "IMUZERO2". Indicates that IMU zeroing outside of T4RUPT package is taking place.
l	LMPTSTBT	Bit set l if a lamp test (verb 35) is in progress, to inhibit turn-off of appropriate indicators.

IMUCADR: Cell containing control information used in association with "IMUSTALL": it contains return address information from the routine or information on the success (if = -1) or failure (if = -0) of an IMU function.

- K_{2secp}: Single precision constant, program notation "PRIO31", octal value 31000_g, scale factor B8, units centi-seconds. Value corresponds to 2 seconds.
- K_{bt10}: Single precision constant, program notation "BIT10", scale factor BO, units centi-seconds/gyro torquing pulse. Value is 2⁻⁵(i.e. 1/32), since output pulse rate is 3200 pps, or 32 pulses/centi-second.
- K_{corst}: Single precision constant, program notation "COARSTOL", scale factor B-1, units revolutions. Octal value is 77511₈, which corresponds (after a one-bit modification used in the program for convenience in forming the absolute value) to about -2.0105°.
- K : Single precision constant, program notation "NEGONE", scale factor BL4, units gyro pulses, used to check if compensation of gyros is required. Octal value is 77776, but used in the program in such a way (a mask on decremented |GCOMP_i/) that effective value corresponds to 3 pulses: the most significant half of GCOMP_i must be 3 or more pulses for the "1/GYRO" computations to be initiated, although lack of sign agreement could make the actual value only slightly more than 2 pulses.
- Kgyrfrc: Constant, program notation "GYROFRAC", scale factor B21, units gyro pulses. Stored value is 28 x 2⁻²⁸, corresponding to about 0.219 pulses (nominal value 0.215).
- Kgyrsc: Dummy constant indicating a rescaling of original contents of EADRLGYR from B21 to B28 pulses. "Value" is 1.0, scale factor B7.
- K_{ml5degs}: Single precision constant, program notation "-15DEGS", scale factor B-1, units revolutions. Octal value is 75252₈, corresponding to about -14.996°.
- K_{m70degs}: Single precision constant, program notation "-70DEGS", scale factor B-1, units revolutions. Octal value is 63434₈, corresponding to about -70.005° (after a one-bit modification used in the program for convenience in forming the absolute value).
- K_{mcmxm}: Single precision constant, program notation "-COMMAX-", scale factor B14, units CDU output pulses. Value is -192 x 2-14.
- K mcommax: Single precision constant, program notation "-COMMAX", scale factor B14, units CDU output pulses. Value is -191 x 2^{-14} , but used in program (for convenience in forming the absolute value) in such a way that effective value is -192. Limits change in CDU angle to 192 least increments per axis (or 8.4375°) each 0.6 seconds. The maximum pulses required (to go 180 degrees) would be 4096, which would require "21.3333", i.e. 22 intervals of 0.6 seconds each. With the additional 1.5 seconds for the K corst check, time required for coarse align would be less than about 0.06 + 0.02 + 22 (0.6) + 1.5, or 14.78 seconds.

- K : Single precision constant, program notation "-GYROMIN", scale mgyrmn factor B7, units gyro pulses. Octal value is 77601g, which corresponds (after a one-bit adjustment used in program for convenience in forming the absolute value) to (-127/128), i.e. one least increment less than 1.00 gyro pulse.
- LGYRO: Cell containing (if non-zero) address information for gyro torquing commands. If cell is zero, gyros are "available" (i.e. not being driven).
- PIPA: Value of special erasable memory cells (00378 00418) containing accumulated output counts from the accelerometers, scale factor B14, units counts. One count is 5.85 centimeters/second.
- $\begin{array}{l} {}^{T}_{pptml}: \mbox{Value of computer clock when accelerometers sampled, program notation "PIPTIME1", scale factor B28, units centi-seconds. Subsequently loaded into T_{pptm}, hence can also be used as storage for the time tag associated with <math>\underline{R}_{nl}$ and \underline{V}_{nl} (see General Program Control) for use by "PREREAD". \end{array}

IMUC-25

 \bigcirc

× 1.1

Inflight Alignment

<u>P51</u> (Tag also "P53")

If bit 9(IMUOPBIT) of IMODES30 = 1: (IMU not on)

Perform "ALARM" (pattern 0210g)

Proceed to "GOTOPOOH"

Proceed to "P51A"

P51A

Set bit 8(IMUSE) of FLAGWRDO = 1

 $TS = 00015_{g}$

Proceed to "GOPERF1": if terminate, proceed to "GOTOPOOH" if proceed, proceed to "P51B" otherwise, proceed

THETAD = O

 $TS = 0622_{vn}$

Perform "GODSPRET"

 $TS = 4100_{vn}$

Perform "GODSPRET"

If IMUCADR \neq 0:

Delay 1 second (by putting job to sleep via "DELAYJOB")

Proceed to second previous line (recheck IMUCADR)

Perform "IMUCOARS"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

Perform "IMUFINE"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

Proceed to second line of "P51A"

<u>P51B</u>

```
STARIND = O
```

```
ldPIPADT = TIME1
```

GCOMP = 0

```
Set bit 15(DRIFTFLG) of FLAGWRD2 = 1
```

If MODREG = 53: (Tag here "P51C", from below)

Perform "R56"

If MODREG \neq 53:

Perform "R53"

Perform "SXTSM"

```
If STARIND = 0:
```

STARSAV1 = TS

 $TS = T_{sight}$

Perform "PLANET"

PLANVEC = TS

STARIND = 1

Proceed to 5th line of "P51B"

STARSAV2 = TS

(Tag here "P51F")

Perform "PLANET"

STARBC = TS

TS = T sight

STARAC = PLANVEC

STARAD = STARSAV1

STARBD = STARSAV2

Perform "R54"

If bit 3(FREEFLAG) of FLAGWRDO = 0: (e.g. a V32E response in "R54")

Proceed to second line of "P51A"

Perform "AXISGEN"

Set bit 13(REFSMFLG) of FLAGWRD3 = 0

 $[\text{REFSMMAT}] = [X_{dc}]$

Set bit 13(REFSMFLG) of FLAGWRD3 = 1

Proceed to "GOTOPOOH"

PROG52 (Tag also "P54")

Set bits 7(UPDATFLG) and 5(TRACKFLG) of FLAGWRD1 = 0

Perform "RO2BOTH"

If bit 7(AUTOSEQ) of FLGWRD10 = 1:

Proceed to "P52AUTO" (page MINK-7)

If bit 9(UTFLAG) of FLAGWRD8 = 1:

If OPTNTYPE $\neq 0$: (means "option 2 of P20", i.e. R67 rotation)

Set bit 5(TRACKFIG) of FLAGWRD1 = 1 (should <u>not</u> have R67 active in P54 because of delay it can introduce in "R56")

If bit 4(PFRATFLG) of FLAGWRD2 = 0:

OPTION2 = 3

If bit 4(PFRATFLG) of FLAGWRD2 = 1:

OPTION2 = 1

Proceed to "P52B"

P52B

TS = 1

Proceed to "GOPERF4": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to previous line

TS = (bits 2-1 of OPTION2)

If TS = 3: ([REFSMMAT] orientation)

Proceed to "P52C"

If TS = 1: ("preferred" orientation)

Proceed to "P52D"

If TS = 0 or 2, proceed ("nominal" orientation)

 $DSPTEML_{dp} = (-0, 0)$

 $TS = 0634_{vn}$

Proceed to "VNFLASH": (if terminate, proceed to "GOTOPOOH") if proceed, proceed otherwise, proceed to previous line

If DSPTEML_{sp} = 0: DSPTEML_{dp} = T_{now} T_{decl} = DSPTEML_{dp} Perform "CSMPREC"

(Tag here "S52.3")

 $\underline{\underline{Z}}_{smd} = - \text{unit}\underline{\underline{R}}_{att}$ $\underline{\underline{Y}}_{smd} = \text{unit}(\underline{\underline{V}}_{att} * \underline{\underline{R}}_{att})$ $\underline{\underline{X}}_{smd} = \text{unit}(\underline{\underline{Y}}_{smd} * \underline{\underline{Z}}_{smd})$

Proceed to "P52D"

P52D

Perform "S52.2"

 $TS = 0622_{vn}$

Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "P52D"

If bit 7(AUTOSEQ) of FLGWRD10 = 1:

Proceed to "PERF20" (page MINK-7)

 $TS = 00013_{8}$

Proceed to "GOPERF1": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "GYCRS"

Proceed to "CAL53A"

(exits to "P52C")

P52C

$$TS = 00015_{8}$$
Proceed to "GOPERF1": if terminate, proceed to "GOTOPOOH"
if proceed, proceed
otherwise, proceed to "R51"
$$T_{sight} = T_{now} + K_{tsgt1}$$
Perform "S50"
Perform "CDUTRIG" (This is start of the former "PICAPAR"
routine: the tag has been deleted)
Perform "CALCSMSC"
Set bit 10(VFLAG) of FLAGWRD3 = 1 (means no star found)
BESTI = 0
BESTJ = 0
SAX = unit ((K_{sin33} X_{dc} + K_{cos33} Z_{dc}) [REFSMMAT])
X1 = 228
Proceed to "PIC1"

PICL

If X1 \leq 6, proceed to "PICEND" X1 = X1 - 6 TS = \underline{K}_{cat}_{X1} Perform "OCCULT" If bit 7(CULTFLAG) of FLAGWRD3 = 1, proceed to "PIC1" X2 = X1 Proceed to "PIC3"

PIC3

If X2 \leq 6, proceed to "PIC1" X2 = X2 - 6 TS = $\underline{K}_{cat_{X2}}$

Perform "OCCULT"

If bit 7(CULTFLAG) of FLAGWRD3 = 1, proceed to "PIC3" $TS = \underline{K}_{cat_{\chi_1}} \cdot \underline{K}_{cat_{\chi_2}} - K_{css66}$ If TS < 0, proceed to "PIC3" (separation more than 76°) TS + $K_{css6640} \ge 0$, proceed to "PIC3" (separation 30^o or less) If $\frac{K_{cat_{X1}}}{K_{cat_{X1}}}$ · SAX - K_{css33} < 0, proceed to "PIC1" If $\underline{K}_{cat_{\chi_2}}$ · SAX - K_{css33} < 0, proceed to "PIC3" If If bit 10(VFLAG) of FLAGWRD3 = 1: (means no star yet found) Set bit 10(VFLAG) of FLAGWRD3 = 0 BESTI = X1BESTJ = X2Proceed to "PIC3" $TS_1 = \underline{K}_{cat_{BESTI}} \cdot \underline{K}_{cat_{BESTJ}}$ Set bit 10(VFLAG) of FLAGWRD3 = 1 $TS_2 = \underline{K}_{cat_{x_1}} \cdot \underline{K}_{cat_{x_2}}$ Set bit 10(VFLAG) of FLAGWRD3 = 0 If $TS_2 - TS_1 \ge 0$, proceed to "PIC3" (new pair closer than old pair) BESTI = X1 BESTJ = X2Proceed to "PIC3" OCCULT If $CSUN - (TS \cdot VSUN) < 0$: Set bit 7(CULTFLAG) of FLAGWRD3 = 1 Return If CEARTH - $(TS \cdot VEARTH) < O$: Set bit 7(CULTFLAG) of FLAGWRD3 = 1

Return

```
Set bit 7(CULTFLAG) of FLAGWRD3 = 0
```

Return

PICEN	ID Entered from "PIC1" at the end of the star	table scan
	If bit 10(VFLAG) of FLAGWRD3 = 1: (means no st	ars found)
	Perform "ALARM" (pattern 04058)	
	$TS = 0509_{vn}$	
	Proceed to "GOFLASH": if terminate, proceed to if proceed, proceed otherwise, proceed to "P5	
	Proceed to "R51"	
<u>S50</u>	(Tag also "LOCSAM")	
	$TS = T_{sight}$	
	Perform "LSPOS"	
	$VSUN = TS_1$ (unit sun position, B1)	
	T _{decl} = T _{sight} Perform "CSMCONIC"	
	$VEARTH = -unitR_{att}$	
	CEARTH = cos $\left(\sin^{-1} \left(K_{\text{rsube}} / \frac{R}{\text{att}} \right) + K_{5\text{degs}}\right)$	
	$VELd\underline{C} = K_{ldc} \underline{V}_{att} + VSU\underline{N} * \underline{K}_{eclipol}$	
	$CSUN = K_{cssun}$	
1	Return	
<u>552.2</u>		
. 1	Perform "CDUTRIG"	

Perform "CALCSMSC"

and the second second

$$\underline{\underline{X}}_{dc} = unit(\underline{\underline{X}}_{dc} [REFSMMAT])$$

$$\underline{\underline{Y}}_{dc} = unit(\underline{\underline{Y}}_{dc} [REFSMMAT])$$

$$\underline{\underline{Z}}_{dc} = unit(\underline{\underline{Z}}_{dc} [REFSMMAT])$$

$$[\underline{\underline{X}}_{sm}] = [\underline{\underline{X}}_{smd}]$$

Perform "CALCGA"

Return

PLANET

```
Tsight
        = TS
Perform "S50"
TS = 6 (bits 6-1 of STARCODE)
If STARIND = 0:
      BESTI = TS
If STARIND = 1:
      BESTJ = TS
If TS = 0:
                      (means planet)
      TS = 0688_{vn}
      Proceed to "VNFLASH": (if terminate, proceed to "GOTOPOOH")
                                 if proceed, proceed
                                 otherwise, proceed to previous line
      T\underline{S} = unit \left( unit(K_{ldsqrt3} STARSAV_3) + VELd\underline{C} \right)
      Return
     (TS - 228) < 0: (original code in range Ol-458, meaning
If
                                 a star in star table)
      T\underline{S} = unit(\underline{K}_{cat}_{TS})
                            + VELdC)
      Return
If TS = 228:
                      (original code 46g, meaning sun)
      T\underline{S} = unit(VSU\underline{N} + VELd\underline{C})
      Return
If TS = 234:
                       (original code 478, meaning earth)
      T\underline{S} = unit(VEART\underline{H} + VELd\underline{C})
     Return
(If TS>234, improper results)
```

Set bit ll(ATMFLAG) of FLAGWRDO = 1 T sight = MRKBUF1 do Xl = - "MRKBUFl"If STARIND = 0: (Tag here "SXTSML", entered from "GETUM") $MARKDOWN+i = E_{i-Xl} \qquad (i = 0 - 6)$ If STARIND = 1: $MARK2DWN+i = E_{i-Xl} \qquad (i = 0 - 6)$ $CDUSPOT = E_{2-X1}$ If bit ll(ATMFLAG) of FLAGWRDO = 0: (e.g. "GETUM" entrance) Perform "SXTNB" Perform "TRG*NBSM" (leaves line-of-sight in TS) Return Set bit ll(ATMFLAG) of FLAGWRDO = 0 If bits 14-7 of STARCODE = 0: $(e.g. OOOxx_{\alpha})$ Perform "SXTNB" Perform "TRG*NBSM" Return If bits 14-8 of STARCODE = 0: (e.g. $OOlxx_8$) $T\underline{S} = NBO\underline{A}_{6}$ (Tag here "ATMSS") Perform "TRG*NBSM" Return $NBOA_{0} = unit(NBOA_{3} * NBOA_{6})$ (STARCODE equal to e.g. $OO2xx_{g}$) Perform "OASTAR" $T\underline{S} = unit (T\underline{S} | NBOA)$ Perform "TRG*NBSM" Return

CAL53A (This is routine R50, entered from "P52D")

```
Perform "S52.2"
```

TS = CDU

If any $(|TS_i - THETAD_i|) \gtrsim K_{degl}$ and $\langle K_{deg359}$: (i = x,y,z; check actually done using double precision)

Delay 1 second (by putting job to sleep via "DELAYJOB")

Proceed to second previous line (recheck IMUCADR)

Perform "IMUCOARS"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

Perform "IMUFINE"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

 $CDUSPOT = (THETAD_v, THETAD_z, THETAD_x)$

(Tag here "FINEONLY")

TS = unitX

Perform "TRG*NBSM"

STARAD = TS

TS = unitY

Perform "TRG*NBSM" starting at second line

STARBD = TS

Perform "CDUTRIG"

Perform "CALCSMSC"

 $STARAC = \underline{X}_{dc}$

 $\text{STARB}\underline{C} = \underline{\underline{Y}}_{dc}$

Perform "AXISGEN"

Perform "CALCGTA"

Set bit 13(REFSMFLG) of FLAGWRD3 = 0

Set bit 15(DRIFTFLG) of FLAGWRD2 = 0

TS = "OGC"

Perform "IMUPULSE"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

ldPIPADT = TIMEl

GCOMP = 0

Set bit 15(DRIFTFLG) of FLAGWRD2 = 1

 $\left[\text{REFSMMAT} \right] = \left[X_{\text{smd}} \right]$

Set bit 13(REFSMFLG) of FLAGWRD3 = 1

Proceed to "P52C"

Entered from "PICEND" and "P52C"

STARIND = 1

If STARIND = 0:

STARCODE = BESTI / 6

If STARIND = 1:

STARCODE = BESTJ / 6

Proceed to "R51DSP"

R51DSP

R51

 $TS = 0170_{VN}$ Perform "VNFLASHR": (if terminate, proceed to "GOTOPOOH") if proceed, skip next 2 lines otherwise, proceed to previous line $TS = 110_2 \text{ and perform "BLANKET"} (R3BLNK, R2BLNK)$ End of job
If STARCODE ≤ -0 or if (bits 6-1 of STARCODE) > 47_8: Set bit 7(Operator Error) of channel ll = 1 Proceed to "R51DSP" If bit 7 of STARCODE = 1: If STARCODE $\neq 00146_8$: (i.e. sun not specified) Set bit 7(Operator Error) of channel ll = 1

Proceed to "R51DSP"

 $TS = T_{now}$ Perform "PLANET" If STARIND > 0: STARSAV1 = TSIf STARIND = 0:STARSAV2 = TSIf (MODREG modulo 4) \neq 0: (i.e. P54 rather than P52) (processing of mark ENTR could be delayed if Perform "R56" R67 is active) If (MODREG modulo 4) = 0: If bits 14-7 of STARCODE = 0: (Tag here "R51A1"; value e.g. 000xx_g) Perform "R52" If bits 14-7 of STARCODE \neq 0: Perform "R53" Perform "SXTSM" (Tag here "R51B") STARSAV2 = TSTS = T sight Perform "PLANET" If STARIND > 0: PLANVEC = unit(REFSMMAT)TS)

STARSAV<u>1</u> = STARSAV<u>2</u>

STARIND = O

Proceed to 2nd line of "R51"

```
STARAD = unit( REFSMMAT TS)
```

STARAC = STARSAV2

STARBC = STARSAV1

STARBD = PLANVEC

Perform "R54"

If bit 3(FREEFLAG) of FLAGWRDO = 0:

Proceed to "R51K"

Perform "AXISGEN"

Proceed to "R55" (exits to "R51K")

<u>R51K</u>

 $TS = 00014_{o}$ (Tag here also "R51KA")

Proceed to "GOPERF1": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "GOTOPOOH"

Proceed to "P52C"

<u>R54</u>

(Tag also "CHKSDATA"; entered from "P51B" and "R51DSP") Set bit 3(FREEFLAG) of FLAGWRDO = 1 $TS_1 = \cos^{-1} (STARAD \cdot STARBD)$

Set bit 3(FREEFLAG) of FLAGWRDO = 0

 $TS_2 = \cos^{-1} (STARAC \cdot STARBC)$

DSPTEM1 = $|TS_2 - TS_1|$, with sign agreement forced, scaled B-l rev. DSPTEM1+1 = TS_1 (single precision, B-l rev.) Set bit 3(FREEFLAG) of FLAGWRDO = 1

TS = 0

Perform "CLEANDSP"

 $TS = 0605_{vn}$

Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, skip next line otherwise, proceed

Set bit 3(FREEFLAG) of FLAGWRDO = 0 (e.g. a V32E response) Return Perform "CALCGTA"

 $TS = 0693_{vn}$

Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "R55RET"

TS = "OGC"

Perform "IMUPULSE"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

Proceed to "R55RET"

R55RET

R55

```
Set bit 4(PFRATFLG) of FLAGWRD2 = 0
```

Proceed to "R51K"

GYCRS Entered from "PERF20" and "P52D"

$$\underline{X}_{dc} = unit([REFSMMAT] \underline{X}_{smd})$$

$$\underline{Y}_{dc} = unit([REFSMMAT] \underline{Y}_{smd})$$

$$\underline{Z}_{dc} = unit([REFSMMAT] \underline{Z}_{smd})$$
Perform "CALCGTA"

Set bit 15(DRIFTFLG) of FLAGWRD2 = 0

Set bit 13(REFSMFLG) of FLAGWRD3 = 0

 $TS = 1620_{vn}$

Perform "GODSPR"

TS = "OGC"

Perform "IMUPULSE"

Perform "IMUSTALL": if error return, perform "217ALARM"; proceed otherwise, proceed

 $\begin{bmatrix} \text{REFSMMAT} \end{bmatrix} = \begin{bmatrix} X_{\text{smd}} \end{bmatrix}$ Set bit 4(PFRATFLG) of FLAGWRD2 = 0

```
Set bit 13(REFSMFLG) of FLAGWRD3 = 1
```

ldPIPADT = TIME1

GCOMP = 0

Set bit 15(DRIFTFLG) of FLAGWRD2 = 1

If bit 7(AUTOSEQ) of FLGWRD10 = 1:

```
Set bit 1(PCFLAG) of FLGWRD10 = 0 (means did pulse torquing)
Proceed to second line of "GOTOPOOH"
```

Proceed to "R51K"

217ALARM

Inhibit interrupts

ALMCADR = "Calling address +1" (S-register portion)

Perform "ALARM2" (pattern 0217g)

Return (address in ALMCADR)

P50

OPTION2 = 1

 $TS = 00012_{g}$

Proceed to "GOPERF4": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to 2nd line of "P50"

TS = (bits 2-1 of OPTION2)

If TS = 0:

Set bit 7(Operator error) of channel 11 = 1

Proceed to 2nd line of "P50"

If TS = 1:

Set bit 12(P50.1FLG) of FLAGWRDO = 1 (Tag here "P50.1") (bit set 0 in "INITSUB") If TS = 3:

 $NBOA_{O} = unit(NBOA_{3} * NBOA_{6})$ (Tag here "P50.3") $[X_{sm}] = [NBOA]$ Proceed to "OAVECS"

```
Perform "RO2BOTH"
                          (Tag here "P50.2", for options 1 and 2)
STARIND = O
STARCODE = 46_{o}
                     (sun)
Perform "R53"
CDUSPOT = MRKBUF1+2
T sight = MRKBUF1 dp
TS = T
sight
Perform "PLANET"
T\underline{S} = unit([REFSMMAT] T\underline{S})
Perform "CDUTRIG" starting at 2nd line
Perform "*SMNB*"
STARBC = TS
TS = unit(REFSMMAT)VSUN)
Perform "*SMNB*"
STARAC = TS
If bit 12(P50.1FIG) of FLAGWRDO = 1:
                        (Tag here "P50.1A")
     STARBD = unitY
     STARBC = NBOA_3
If bit 12(P50.1FLG) of FLAGWRDO = 0:
     Perform "OASTAR"
     STARBD = TS
STARAD = unitZ
                      (Tag here "P50GEN")
Perform "AXISGEN"
\left[ X_{sm} \right] = \left[ X_{dc} \right]
Proceed to "OAVECS"
```

OAVECS

Set bit 10(P50FLAG) of FLAGWRDO = 1

 $\underline{X}_{dc} = unit\underline{X}$

 $\underline{\underline{Y}}_{dc} = unit\underline{\underline{Y}}$ $\underline{Z}_{dc} = unit\underline{Z}$ Perform "CALCGA" N23TEMP = THETAD(40000, is 180⁰, ones complement difference formed) $\text{THETAD}_{\mathbf{x}} = 40000_8 - \text{THETAD}_{\mathbf{x}}$ $TS = 0623_{\rm vn}$ Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to previous line $\text{THETAD}_{\mathbf{x}} = 40000_{\mathbf{g}} - \text{THETAD}_{\mathbf{x}}$ (Tag here "DOVECS") (THETAD - N23TEMP) has at least one component non-zero: If $CDUSPOT = (THETAD_v, THETAD_z, THETAD_x)$ Perform "CDUTRIG" starting at 2nd line Perform "CALCSMSC" $\underline{\underline{Y}}_{sm} = unit([\underline{X}_{dc}] unit \underline{\underline{Y}})$ $\underline{Z}_{sm} = unit([X_{dc}] unit\underline{Z})$ $\begin{bmatrix} NBOA \end{bmatrix} = \begin{bmatrix} X_{sm} \end{bmatrix}$ (Tag here "P500UT") Proceed to "GOTOPOOH" (MRKBUF1+3 and MRKBUF1+5 both B-1 rev when enter) OASTAR $TS_1 = MRKBUF1+5$, converted to ones complement double precision(elev.) $TS_2 = MRKBUF1+3$, converted to ones complement double precision(az.) $TS = unit(\cos TS_1 \sin TS_2, -\cos TS_1 \cos TS_2, -\sin TS_1)$

Return

P55

OPTION2 = 1

 $TS = 00013_{g}$

Proceed to "GOPERF4": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to 2nd line of "P55" TS = (bits 2-1 of OPTION2)

If TS = 0 or 3:

Set bit 7(Operator error) of channel ll = l

Proceed to 2nd line of "P55"

If TS = 1:

Perform "RO2BOTH" (Tag here "P55.1")

Set bit 13(P55.1FLG) of FLAGWRDO = 1 (bit set 0 in "INITSUB")

Proceed to "TRKSTAR"

STARIND = 0 (option 2, tag "P55.2")

 $\text{STARCODE} = 46_{\alpha}$ (sun)

Perform "R53"

TS = MRKBUFldp

Perform "PLANET"

STARBC = TS

STARAC = VSUN

 $NBO\underline{A}_{O} = unit(NBO\underline{A}_{3} * NBO\underline{A}_{6})$

X1 = - "MRKBUF1"

Perform "SXTNB"

STARBD = unit(NBOA) TS)

STARAD = unitZ

Perform "AXISGEN"

Proceed to "TRKSTAR"

TRKSTAR

 $TS = 0170_{vn}$

Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to previous line If STARCODE ≤ -0 or if STARCODE > 47₈:

Set bit 7(Operator error) of channel ll = 1 Proceed to "TRKSTAR"

TS = T_{now} Perform "PLANET"

If bit 13(P55.1FIG) of FLAGWRDO = 0: STARSAV<u>1</u> = unit($[X_{dc}]$ T<u>S</u>)

If bit 13(P55.1FLG) of FLAGWRDO = 1:

 $STARSAV_{1} = unit([REFSMMAT] TS)$

 $NBOA_{O} = unit(NBOA_{3} * NBOA_{6})$

 $T\underline{S} = STARSAV1$

Perform "CDUTRIG"

Perform "*SMNB*"

 $STARSAV_{1} = unit([NBOA] T_{S})$

 $STARSAV2 = unit(STARSAV1_x, STARSAV1_v, 0)$

 $COSTH = - unit \underline{Y} \cdot STARSAV2$

 $SINTH = STARSAV2 \cdot unitX$

Perform "ARCTRIG"

TRKAZ = THETA

 $COSTH = STARSAV2 \cdot STARSAV1$

 $SINTH = - unit Z \cdot STARSAV1$

Perform "ARCTRIG"

TRKEL = THETA

If |TRKAZ_{sp}| + K_{m87deg} ≤ 0: If |TRKEL_{sp}| + K_{m40deg} ≤ 0: Skip next line

Perform "ALARM" (pattern 01078)

(Tag here "P55GIMS")

(Tag here "P55.1A")

 $TS = 0614_{vn}$ (Tag here "N14DISP") Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "TRKSTAR" $TS = K_{d21600} \left| TRKAZ_{sp} \right|$ (truncated integer minutes, form ABCDE₈) TRKAZOCT = 00ABC₈ (N19 cells also used for intermediate computation results before display) TRKAZOCT+1 = 00DEO₈ If TRKAZ_{sp} < 0: TRKAZOCT = TRKAZOCT + 01000₈ $TS = 0419_{vn}$ Proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH"

if proceed to "GOFLASH": if terminate, proceed to "GOTOPOOH" if proceed, proceed otherwise, proceed to "TRKSTAR"

Proceed to "GOTOPOOH"

Quantities in Computations

See also list of major variables and list of routines

ldPIPADT: See IMU Computations.

ALMCADR: See General Program Control.

- BESTI: Single precision value of index parameter for star #1 of the "best" star pair (as determined by "P52C" computations), scale factor BL4. It will be zero if no star pairs found that are satisfactory, and otherwise will be equal to six times the "star number" (see \underline{K}_{cat}) when loaded in "P52C" computations. See BESTJ. For option 2 of P50, is loaded in "R53C" after N71 response (since STARIND = 0); options 1 and 2 also load it in "PLANET". For option 2 of P55, loading parallels that done for P50; both options also load it (via "PLANET") after response to the N70 display of "TRKSTAR".
- BESTJ: Single precision value of index parameter for star #2 of the "best" star pair (as determined by "P52C" computations), scale factor Bl4. It will be zero if no star pairs found that are satisfactory, and otherwise will be equal to six times the "star number" (see K at) when loaded in "P52C" computations. Unless it is zero, it will be less than BESTI as loaded in "P52C" computations. In P52/P54, it is loaded with (STARCODE x 6), see "PLANET", for the first body that is used, while BESTI has the second; in P51/P53, however, it contains (STARCODE x 6) for the second body, while BESTI has the first. In both cases, however, BESTJ will contain the body code associated with the sighting data for which the address selected in "SXTSM" is MARK2DWN. The address of BESTJ is one greater than the address of BESTI.

CDUSPOT: See Coordinate Transformations.

CEARTH: Value of the cosine of the minimum angle between the star and VEARTH allowed in "P52C" logic (i.e. in "OCCULT"), scale factor B2, computed in "S50". It is stored in push-down list location 16D.

COSTH: See Coordinate Transformations.

CSUN: Value of the cosine of the minimum angle between the star and VSUN allowed in "OCCULT", scale factor B2, set to K in "S50". It is a "variable" for indexing convenience in "OCCULT", and is stored in push-down list location 14D.

GCOMP: See IMU Computations.

IMODES30, IMUCADR: See IMU Computations.

K_{ldc}: Constant, program notation "l/C", scale, factor B-6, value 4.2696E-5 x 2⁻¹. Value corresponds to 2'/(9.835712E8 x 10⁻² x 0.3048), where first term (numerator) combines the B-6 scale factor and the 2⁻¹ for constant, second is velocity of light (fps), third converts to centi-seconds, and 4th converts to meters, giving the 4.2696E-5.

- ^Kldsqrt3: Constant, program notation "l/SQR3", scale factor BO, value 0.57735021. Value corresponds approximately to (l/l.732051), or the reciprocal of $\sqrt{3}$. Used in "PLANET" to ensure that the formation of the unit vector does not overflow.
- K 50 Constant, program notation "5DEGREES", scale factor BO, units revolutions. Value is 0.0138888889, corresponding to 5 degrees.
- <u>K</u> cat: Table of positions of 37 stars, program notation "CATLOG", stored as the X, Y, and Z components of a unit vector, scale factor BL. The index for the table equals six times the star serial number (since each component is double precision, six cells per star are used). See table below. Because of the nature of the interpretive index order (subtractive), the tag "CATLOG" actually is one cell after the least significant half of the z component of star #1, and #1 is the star with highest memory address.
- K cos33: Constant, program notation "COS33", scale factor BO, value 0.8431756920. Value corresponds to cosine of 32° 31' 23.19", the same angle as that used with [NBLNB2] (see Coordinate Transformations).
- K css330.197002688. True value is 0.788010752, corresponding to cosine 38° (one half the angle reflected in K css66, hence the notation).
- K css66: Constant, program notation "CSS66", scale factor B2, value 0.060480472. True value is 0.241921888, corresponding to cos 76° (angle gate was formerly 66°, hence the notation).
- K css6640: Constant, program notation "CSS6640", scale factor B2, value -0.15602587. True value is -0.62410348, corresponding to 0.241921888 0.866025368, or (cosine 76° cosine 30°). Angle gates were formerly 66° and 40°, hence the notation.
- K Constant, program notation "CSSUN", scale factor B2, value 0.24148. True value is 0.96592, corresponding to cosine 15°.
- K d21600: Single precision constant, program notation "D21600", scale factor B17, units of arc minutes per revolution. Value is 21600 x 2⁻¹⁷, corresponding to 360 x 60 x 2⁻¹⁷, where first term is number of degrees in a revolution and second is number of minutes in a degree, while third is scale factor.
- K degl: Constant, program notation "DEGREE1", scale factor BO, units revolutions. Octal value is 00056, 37722, corresponding to about 1.033°.
- ^Kdeg359: Constant, program notation "DEG359", scale factor BO, units revolutions. Octal value is 37722₈ 00004₈, corresponding to about 358.9893^o. The single precision versions of this constant and K_{degl} sum to one revolution.

- Keclipol: Vector constant, program notation "ECLIPOL", scale factor BO, value (0, -0.395319722E-4, 0.911652662E-4). Values correspond approximately to 0.993674E-4 (0, -0.3978364, 0.9174564). The first term is the radian equivalent of about 20.496 arc seconds (the constant of aberration), while the terms in parentheses are sin and cos of the obliquity.
- K single precision constant, program notation "-40DEG", scale factor BO, units revolutions. Nominal decimal value is -0.111111, corresponding to -40/360, or - 40°. Octal value is 743438, corresponding (after a one-bit change for absolute value convenience) to about -40.012°.
- K single precision constant, program notation "-87DEG", scale factor BO, units revolutions. Nominal decimal value is -0.241666, corresponding to -87/360, or - 87°. Octal value is 70210g, corresponding (after a one-bit change for absolute value convenience) to about -87.012°.
- K : Constant, program notation "RSUBE", scale factor B29, units rsube meters. Value is $6378166 \ge 2^{-29}$, the Fischer equatorial radius.
- K sin330.5376381241. Value is the sine of the angle discussed for K cos33.
- K constant, program notation "TSIGHT1", scale factor B28, units centi-seconds. Value is 24000 x 2⁻²⁸, corresponding to 240 seconds.
- MARK2DWN+i (i = 0-6): Set of optics mark information (double precision time, CDU, optics shaft, CDU, optics trunnion, and CDU, respectively) loaded in "SXTSM" for downlink purposes from alignment mark (P51-P54) identified by BESTJ. Shaft and trunnion have N14 information if used.
- MARKDOWN+i (i = 0-6): See Measurement Incorporation. Note that loading is done from MRKBUF1 set of cells (see Optics Computations for special "trunnion" scaling after N14 display).

MRKBUF1: See Optics Computations.

- N23TEMP: Single precision vector storage for THETAD in "OAVECS", same scaling, used to determine if a manual change was made at the N23 display.
- NBOA : First row of [NBOA] matrix, scale factor Bl, derived as cross-product of second and third rows (which are not time shared) of the matrix.
- NBOA3: Second row of [NBOA] matrix, program notation "NBOA +6", scale factor Bl, initialized as part of padload and subsequently updated if necessary. It gives the +Y-axis direction of the ATM Sensor Coordinate System in navigation-base coordinates.
- NBOA: Third row of [NBOA] matrix, program notation "NBOA +12", scale factor Bl, initialized as part of padload and subsequently updated if necessary. It gives the +Z-axis direction of the ATM Sensor Coordinate System in navigation-base coordinates.

OGC: See Coordinate Transformations.

OPTION2: See Display Interface Routines.

OPTNTYPE: See Orbital and Rendezvous Navigation.

- PLANVEC: Temporary storage for the output of the "PLANET" routine for the first body that is marked, scale factor Bl. In P51/P53 it is in reference coordinates, while in P52/P54 it is converted to IMU coordinates before being stored.
- SAX: Unit vector, scale factor Bl, giving the direction of the optics shaft axis: stars are considered visible (for selection purposes) if they lie within 38° of this axis. The quantity is expressed in the reference coordinate system.

SINTH: See Coordinate Transformations.

STARAC, STARAD, STARBC, STARBD: See Coordinate Transformations.

- STARCODE: Single precision cell, scale factor B14 (but considered to be
 octal), displayed in Rl of N70 and N71 and used to contain the serial
 number of the celestial body being sighted (bits 6-1): 00 for "planet";
 Ol-45, for star in K_cat; 46, for sun; and 47, for earth. BESTI and
 BESTJ have six times this number (for double precision vector indexing
 reasons). Bits 9-7 are 0 for CSM optics, 1 for ATM sun sensor, and
 2 for ATM star tracker (i.e. digit C in the ABCDE format).
- STARIND: Single precision cell, scale factor B14, used in P51-P54 to cause two celestial bodies to be processed. If it is 1, BESTJ is used; if it is zero, BESTI is used. Initialized to 0 in "ROO", "P51B" (for P51/P53), "P50", and "P55" (and incremented to 1 for second body in P51/P53). Initialized to 1 in "R51" (P52/P54) for first body and decremented to 0 for second body.
- STARSAV<u>1</u>: Temporary storage for sighting information (unit vector in IMU coordinates), scale factor Bl. Loaded in "P51B" (P51/P53) with sighting vector to first body; in "R51DSP", loaded briefly with reference-coordinate information (from "PLANET") for first body, and then loaded with sighting vector to first body. The reference-coordinate information is used in R52 for optics pointing purposes. Also loaded in "TRKSTAR" (P55) with unit LOS vector of body in ATM sensor coordinates.
- STARSAV2: Temporary storage for sighting information (unit vector in IMU coordinates), scale factor Bl. See STARSAV1 for P51-P54 uses (the vector STARSAV2 is for the second body rather than the first, of course). Also loaded in "TRKSTAR" (P55) with unit vector formed by zeroing z component of STARSAV1 (and forming unit vector of result).

STARSAV3: Cells used by N88 for retention of "planet" information. N88
treats decimal input as double precision fraction, and since a unit
vector is formed before quantity used (with components previously
multiplied by K_{ldsgrt3}), the DSKY input can be with arbitrary (but
consistent) scaling.

T_{sight}: Value of sighting time, scale factor B28, units centi-seconds. THETA: See Coordinate Transformations.

- TRKAZ: Quantity computed double precision, but used single precision (no rounding), scale factor BO, units revolutions, displayed in Rl of Nl4. It gives the star tracker "azimuth" angle (outer gimbal angle or psi₃).
- TRKAZOCT: Single precision cell loaded in "TRKSTAR" (part of P55) with OSABC information, where S is sign of TRKAZ (O if positive, 1 if negative), and ABC is the first three octal digits of TRKAZ in units of arc minutes. It is displayed in Rl of N19.
- TRKAZOCT+1: Single precision cell loaded in "TRKSTAR" with OODEO information, where DE is the last 2 octal digits of TRKAZ in units of arc minutes. It is displayed in R2 of N19.
- TRKEL: Quantity computed double precision, but used single precision (no rounding), scale factor BO, units revolutions, displayed in R2 of N14. It gives the star tracker "elevation" angle (inner gimbal angle or psi₁).
- VEART<u>H</u>: Quantity computed in "S50" as the earth position (scale factor Bl, a unit vector, when exit from routine) at time T_{sight}.
- VELd<u>C</u>: Vector, scale factor Bl, giving "aberration correction vector" (see $\underline{K}_{eclipol}$). It is computed in "S50" and used in "PLANET"; it is also computed and used in "UTAREAL".
- VSUN: Quantity computed in "S50" as the sun position (scale factor Bl, a unit vector, when exit from routine) at time T_{sight}.
- \underline{X}_{smd} , \underline{Y}_{smd} , \underline{Z}_{smd} : Unit vectors, scale factor Bl, giving desired stable member orientation. Loaded by "P52B" or "S40.2,3(B)", or can be loaded by P27 (\underline{X}_{smd} address is 0306₈, the same as "UPBUFF" +2).

Values of \underline{K}_{cat} (Star Table)

Display	Index	X Component	Y Component	Z Component	Identification
01	6	0.8759127335	0.0221767921	0.4819596176	& Andromedae
02	12	0.9344221007		-0.3133384932	🖗 Ceti
03	18	0.4792524242	0.1143361938	0.8701978789	7 Cassiopeiae
04	24	0.4911095585	0.2182968779		🍕 Eridani
05	30	0.0150728422	0.0077535749	0.9998563354	
06	36	0.5461199432	0.5290559424		
07	42	0.7065135180	0.7044331667	0.0679158478	≪ Ceti
10	48	0.4142717678	0.4969671969	0.7624975459	X Persei
11	54	0.3552697275	0.8910553149	0.2824957457	🛪 Tauri
12	60	0.2051938364	0.9681249050	-0.1436302809	β Orionis
13	66	0.1416151994	0.6807526554	0.7186939246	X Aurigae
14	72	-0.0603437771	0.6034300291	-0.7951294413	X Carinae
15	78	-0.1784151505		-0.2865905892	🗸 Canis Majoris
1.6	84	-0.4076119204	0.9083859733	0.0932064683	🛚 Canis Minoris
17	90	-0.3601048130		-0.7335922251	𝗡 Velorum
20	96	-0.4622023601	0.4795583503	0.7459173994	• Ursae Majoris
21	102	-0.7717862824		-0.1467872297	🛚 Hydrae
22	108	-0.8583271674	0.4674686420	0.2115361489	X Leonis
23	114	-0.9649190792	0.0569171730	0.2563037376	^β Leonis
24	120		-0.0550800729	-0.2967797042	Y Corvi
25	126		-0.0473466895	-0.8895931763	«'Crucis
26	132		-0.3461098015	-0.1891150984	X Virginis
27	138		-0.2883158706	0.7611101885	1 Ursae Majoris
30	144		-0.4151341670	-0.5895946046	
31	150		-0.5182718149	0.3326410200	🛪 Bootis
32	156		-0.7136778495	0.4521435028	🛚 Coronae Borealis
33	162		-0.8224933890	-0.4434296246	🛪 Scorpii
34	168		-0.3394503938	-0.9331988117	🛪 Trianguli Australis
35	174		-0.9689823983	0.2180329804	[•] Ophiuchi
36	180		-0.7708087413	0.6257579872	% Lyrae
37	186		-0.8729034786	-0.4440250795	o Sagittarii
40	192		-0.8799661957	0.1519059600	🗙 Aquilae
41	198		-0.7957767725	-0.2578191213	& Capricorni
42	204		-0.4450237255	-0.8376974691	
43	210		-0.5412631657	0.7083509163	🛚 Cygni
44	216		-0.5593567634	0.1675421212	
45	222	0.8322543673	-0.2429657768	-0.4983174684	🛚 Piscis Austrini

The "Display" column gives the star number that is displayed by the program (as an octal quantity). The "Index" column gives the value of BESTI (or BESTJ) for the corresponding star, and is equal to six times the star serial number (i.e. six times the decimal equivalent of the first column).

A display of 00 indicates an N88 input; displays of 46 and 47 are for sun and earth respectively.

Sine

Routine entered with argument in $MPAC_{dp}$, scale factor BO, units revolutions. Leaves $MPAC_{dp}$ with sine of argument, scale factor Bl.

 $X = MPAC_{dp}$

Perform "SICOM"

$$MPAC_{dp} = TS$$

Return

SICOM

If $|X| \ge \frac{1}{2}$, $X = \frac{1}{2}$ sgn X - X

If $|X| \ge \frac{1}{4}$, $X = \frac{1}{2}$ sgn X - X

x = X, rescaled to scale factor B-l revolutions, i.e. Bl in($\pi/2$)units. TS = K_{snl} x + K_{sn3} x³ + K_{sn5} x⁵ + K_{sn7} x⁷ + K_{sn9} x⁹

Return

ILE UUI II	$\pi/2$ unit	a	
<u>Constant</u>	Scaling	Stored Value	True Value x (2/17) ⁱ
K _{snl}	B2	0.39269 90796	0.99999 9995
K _{sn3}	BO	-0.64596 37111	-0.16666 6567
K _{sn5}	B-2	0.31875 8717	0.00833 3025
K _{sn7}	B - 4	-0.07478 0249	-0.00019 8074
K _{sn9}	в-6	0.00969 4988	0.00000 2603

According to the program comments, the constants are derived from a Hastings series.

Cosine

Routine entered with argument in $MPAC_{dp}$, scale factor BO, units revolutions. Leaves $MPAC_{dp}$ with cosine of argument, scale factor Bl.

 $X = \frac{1}{4} - MPAC_{dp}$

Perform "SICOM"

 $MPAC_{dp} = TS$

Return

Single Precision Sine (sin_{sn})

Routine entered with argument in computer hardware accumulator, ACC, single precision, scale factor B-1, units revolutions. Leaves sine in hardware accumulator, scale factor BO.

X = ACC

Perform "SPSICOM"

ACC = TS

Return

SPSICOM

If $|X| \ge \frac{1}{4}$, $X = \frac{1}{2} \operatorname{sgn} X - X$

If X > :

TS = MAX sgn X

Return

x = X, rescaled to scale factor B-2 revolutions, i.e. BO in $(\pi/2)$ units. TS = K_{clsp} x + K_{c3sp} x³ + K_{c5sp} x⁵, limited in magnitude <1 Return

Constant	Nominal Value	Stored Value	True Value x (2/	(Π) ¹
Kclsp	0.7853134	0.78533935	0.999925	
K _{c3sp}	-0.3216147	-0.32159423	-0.165951	
K _{c5sp}	0.0363551	0.03637695	0.007608	
All constants have scale factor Bl, for $\pi/2$ units.				
Single Precision Cosine (cos _{sp})				

Routine entered with argument in computer hardware accumulator, ACC, single precision, scale factor B-1, units revolutions. Leaves cosine in hardware accumulator, scale factor BO.

 $X = ACC + \frac{1}{4}$

If |X|≥ ½:

 $X = -(X - \frac{1}{2} \operatorname{sgn} X)$

Perform "SPSICOM"

ACC = TS

Return

Arc Sine

Routine entered with argument in $MPAC_{tp}$, scale factor Bl. Leaves $MPAC_{dp}$ with arc sine of argument, scale factor BO, units revolutions, in range $\pm \frac{1}{4}$ (i.e. $\pm 90^{\circ}$).

 $X = MPAC_{tp}$

Perform "ARCCOM"

$$MPAC_{dp} = \frac{1}{4} - TS$$

Return

ARCCOM

If |X| = 0, TS = $\frac{1}{4}$; Return

$$TS_1 = X$$

X = |X|

If $X \gg (1 + 2^{-12})$, or 1.000244, or if least significant half of X is negative and $X \gg (1 + 2^{-13})$, or 1.000122:

Perform "ALARM" (pattern 1301_g)

If $X \ge 1$, set TS = 0 (for TS_1 positive) or $TS = \frac{1}{2}$ (for TS_1 negative); Return

 $TS = (1 - X)^{\frac{1}{2}} \quad (scale factor Bl when enter square root routine)$ $TS = TS(K_{-2} + K_{-2} X + K_{-2} X^{2} + K_{-2} X^{3} + K_{-4} X^{4} + K_{-4} X^{5} + K_{-4} X^{4} + K_{-4} X^{5} + K_{-4} X^{4} + K_{-4} X^{4} + K_{-4} X^{5} + K_{-4} X^{4} + K_{-4}$

$$S = 15(k_{as0} + k_{as1} \times + k_{as2} \times + k_{as3} \times + k_{as4} \times + k_{as5} \times + K_{as6} \times K_{as6} \times K_{as7} \times K^7)$$

If TS_1 negative, $TS = \frac{1}{2} - TS$ Return

Constant	True Value	√2 T x True Value
K _{asO}	0.35355 3385	1.57079 6302
K _{asl}	-0.04830 17006	-0.21459 8801
K _{as2}	0.02002 73085	0.08897 8987
K _{as3}	-0.01129 31863	-0.05017 4305
K _{as4}	0.00695 311612	0.03089 1881
K _{as5}	-0.00384 617957	-0.01708 8126
K _{as6}	0.00150 1297736	0.00667 0090
K _{as7}	-0.00028 4160334	-0.00126 2491

All constants are stored with scale factor B-I in program (e.g. K_{as5} has scale factor B-5); the $\sqrt{2}$ factor is required because (1 - X) is scaled at Bl when take its square root. The numbers in the last column agree closely with published Hastings series values.

Arc Cosine

Routine entered with argument in MPAC_{tp}, scale factor Bl. Leaves MPAC_{dp} with arc cosine of argument, scale factor BO, units revolutions, in range $0 - \frac{1}{2}$ (i.e. $0^{\circ} - 180^{\circ}$).

 $X = MPAC_{tp}$

Perform "ARCCOM"

 $MPAC_{dp} = TS$

Return

Square Root

Routine entered with argument in $MPAC_{tp}$, and with scale factor (in general) an even number. Leaves $MPAC_{tp}$ with square root of argument, having scale factor one-half the scale factor of argument (a $\sqrt{2}$ factor must be accounted for elsewhere if the scale factor was odd when enter the routine).

 $X = MPAC_{to}$, considered to have scale factor BO

If X = 0, MPAC_{tp} = 0; Return

If
$$X < -2^{-14}$$
, proceed to "POODOO" (pattern 21302_g)

If X < 0, MPAC_{dp} = 0; Return

- TS = X, normalized to lie between $\frac{1}{4}$ and < 1. This is accomplished by shifting X left in increments of 2 shifts, and storing the required number of shifts in TS₁ (an even number > 0)
- If TS $\frac{1}{2}$, TS₂ = 0.5884 TS_{sp} + 0.4192
- If TS $< \frac{1}{2}$, TS₂ = 0.8324 TS_{sp} + 0.2974

 $TS_{2} = (\frac{1}{2} TS_{p}) / TS_{2} + \frac{1}{2} TS_{2}$ (TS₂ single precision) $TS = \frac{1}{2} TS_{2} + \frac{1}{2} TS / TS_{2}$ If $TS \ge 1$, $TS = (1 - 2^{-28})$ $MPAC_{tp} = TS$, shifted right by $(\frac{1}{2} TS_{1})$ places

Return

This routine is entered from "RANGER", with the argument in MPAC dp' scale factor BO. It leaves the natural logarithm of the reciprocal of the argument (or the complement of the logarithm of the argument) in MPAC dp, scale factor B5.

LOG

 $TS = MPAC_{dp}$, normalized to lie between $\frac{1}{2}$ and <1. This is accomplished by shifting $MPAC_{dp}$ left and storing the required number of shifts in TS_1 (a number > 0).

$$X = 1 - TS$$
 (The "1" actually is $1 - 2^{-28}$)

 $MPAC_{dp} = K_{cogl} TS_{l} + K_{ogl} X + K_{og2} X^{2} + K_{og3} X^{3}$ Return (with value of - log_e of original MPAC_{dp})

All constants are stored with scale factor B5. The value of $\rm K_{cogl}$ corresponds to $\rm log_{e}$ 2.

<u>Constant</u>	Stored Value	True Value
Kcogl	0.0216608494	0.69314718056
K _{ogl}	0.031335467	1.00273494
K _{og2}	0.0130145859	0.4164667488
K _{og3}	0.0215738898	0.6903644736

-

$$\frac{\text{INCORP1}}{2_{0}} = [W_{0}] \text{ BVECTOR}_{0} + [W_{3}] \text{ BVECTOR}_{1}$$

$$\frac{z_{1}}{z_{1}} = [W_{1}] \text{ BVECTOR}_{0} + [W_{4}] \text{ BVECTOR}_{1}$$

$$\text{TRIPA} = |z_{0}|^{2} + |z_{1}|^{2} + \text{VARIANCE}$$

$$\text{TS} = \sqrt{\text{TRIPA VARIANCE}}$$

$$\text{computed quasi-floating point}$$

$$\text{GAMMA} = 1/(\text{TS} + \text{TRIPA}) \quad \text{computed quasi-floating point}$$

$$\text{DELQDA} = \text{DELTAQ} / \text{TRIPA} \quad \text{computed quasi-floating point}$$

$$\text{Set TS}_{1} \text{ to the largest } |z_{1}| \quad (i = 0, 1) \quad (\text{tag here "NEWZCOMP"})$$

$$\text{TS}_{2} = (\text{number of leading zeros in TS}_{1}) - 2 \quad (\text{value used for subsequent scaling})$$

$$\text{Shift each } z_{1} \text{ left by TS}_{2} \text{ places} \quad (i = 0, 1)$$

$$\text{OMEGA}_{0} = z_{0} \quad [W_{0}] + z_{1} \quad [W_{1}]$$

$$\text{OMEGA}_{1} = z_{0} \quad [W_{3}] + z_{1} \quad [W_{4}]$$

$$\text{DELTAX}_{0} = \text{DELQDA} \quad \text{OMEGA}_{1} \quad \text{computed quasi-floating point}$$

$$\text{Return}$$

$$\frac{\text{INCORP2}}{\text{EGRESS} = \text{Return address}$$

$$\text{Perform "INTSTALL"}$$

$$\text{OMEGAM_{0}} = \text{GAMMA OMEGM_{0}}$$

$$\text{OMEGM_{1}} = \text{GAMMA OMEGM_{1}}$$

Set bit 13(INTGRAB) of FLGWRD10 = 1 (means restart phase change)

 $\begin{bmatrix} W_0 \end{bmatrix} = \begin{bmatrix} W_0 \end{bmatrix} - (\underline{Z}_0) \text{ OMEGAM}_0$ $\begin{bmatrix} W_1 \end{bmatrix} = \begin{bmatrix} W_1 \end{bmatrix} - (\underline{Z}_1) \text{ OMEGAM}_0$ $\begin{bmatrix} W_3 \end{bmatrix} = \begin{bmatrix} W_3 \end{bmatrix} - (\underline{Z}_0) \text{ OMEGAM}_1$ $\begin{bmatrix} W_4 \end{bmatrix} = \begin{bmatrix} W_4 \end{bmatrix} - (\underline{Z}_1) \text{ OMEGAM}_1$

NOTE: Notation means computation carried out as:

$$[W_0] = [W_0] - \begin{bmatrix} Z_0, x \\ Z_0, y \\ Z_0, y \end{bmatrix} \text{ OMEGAM}_0$$

If bit 8(CSMUPDAT) of FLAGWRD1 = 1: (Tag here "FAZC")

Perform "MOVEPCSM"

If bit 8(CSMUPDAT) of FLAGWRD1 = 0:

Perform "MOVEPLEM"

Reset overflow indicator

If overflow has taken place since indicator reset:

 $\frac{\text{RCV}}{\text{VCV}} = \frac{\text{RCV}}{\text{VCV}} + \frac{\text{DELTAX}_{0}}{\text{DELTAX}_{1}}$

Perform "RECTIFY"

Proceed to "FAZAB3"

TDELTAV = TS

 $TS = TNUV + (DELTAX_1 shifted left 4 places)$

If overflow has taken place:

 $VCV = VCV + DELTAX_1$

Perform "RECTIFY"

Proceed to "FAZAB3"

TNUV = TS

Proceed to "FAZAB3"

FAZAB3

```
If bit 8(CSMUPDAT) of FLAGWRD1 = 1:
```

Perform "MOVEACSM"

(If bit 8(CSMUPDAT) of FLAGWRD1 = 1):

If bit 1(AVEMIDSW) of FLAGWRD9 = 0:

 $\underline{\mathbf{R}} = \mathbf{R}\mathbf{C}\mathbf{V} + \mathbf{T}\mathbf{D}\mathbf{E}\mathbf{L}\mathbf{T}\mathbf{A}\mathbf{V}$

 $\underline{V} = VC\underline{V} + TNU\underline{V}$

T_{pptm} = T_{et}

If bit 8(CSMUPDAT) of FLAGWRD1 = 0:

Perform "MOVEALEM"

 $\underline{\mathbf{R}}_{\text{other}} = \mathbf{R}\underline{\mathbf{C}}\underline{\mathbf{V}} + \mathbf{T}\underline{\mathbf{D}}\underline{\mathbf{E}}\underline{\mathbf{T}}\underline{\mathbf{A}}\underline{\mathbf{V}}$

 $\underline{V}_{other} = \underline{VCV} + \underline{TNUV}$

QPRET = EGRESS

Proceed to "INTWAKE" (returns to address in QPRET) V67CALL Established by "V67" for a verb 67.

Reset overflow indicator

Perform "INTSTALL"

WWOPT = 0

 $WWPOS = \sqrt{|\underline{W}_{0}|^{2} + |\underline{W}_{3}|^{2} + |\underline{W}_{6}|^{2} + |\underline{W}_{9}|^{2} + |\underline{W}_{12}|^{2} + |\underline{W}_{15}|^{2}}$ $WWVEL = \sqrt{|\underline{W}_{27}|^{2} + |\underline{W}_{30}|^{2} + |\underline{W}_{33}|^{2} + |\underline{W}_{36}|^{2} + |\underline{W}_{39}|^{2} + |\underline{W}_{42}|^{2}}$ $(i.e., \underline{W}_{3i}, i = 9-14)$

If overflow has taken place since indicator reset:

WWPOS = +MAX $(2^{19} - 2^{-9} \text{ meters})$ WWVEL = +MAX (N99 R2 display 328.1 fps)

If WWPOS - $K_{ft999} \ge 0$:

WWPOS = K_{ft999}

Perform "INTWAKE"

 $TS = 0699_{vn}$

(constant gives display of 99997 feet)
(returns to next line)

GETUM

Entered from "REND7"

Perform "SXTSM" starting at fourth line (STARIND = 0 from "ROO")

TS = TS [REFSMMAT]

Return

BVECTORS Entered from "REND7"

 $BVECTO\underline{R}_{0} = unit(USTA\underline{R} * unitRCL\underline{P})$ $USTA\underline{R} = BVECTO\underline{R}_{0}$ $DELTAQ = K_{2pi} |RCL\underline{P}| (cos^{-1} (BVECTO\underline{R}_{0} \cdot U\underline{M}) - 1/4) (1/4 = 90^{\circ})$ $BVECTO\underline{R}_{1} = 0$

Return

R22 (Established by "NDUTINPT" for P20 option 0/4, and entered due to restart group 2.7)

Change priority of present job to 26₈ (restart group 2.7 has 10₈ for establishing "R22")

MRKBUF1 = -3

 $VHFTIME = T_{now}$

Proceed to "REND1"

REND1

Change restart group 2 to cause a start at next line (subsequent restart logic not shown unless significant for normal logic)

Perform "WAITONE"

If MRKBUF1 ∠ 0: (Tag here "REND1A")
Proceed to "REND3"
Inhibit interrupts
MARKTIME+i = MRKBUF1+i (i = 0 - 6)
MRKBUF1 = -3
Set bit 7(R22CAFLG) of FLAGWRD9 = 1 (for "MKREJECT" use)
Release interrupts
Set bit 8(VHFSOURC) of FLAGWRD9 = 0
Proceed to "REND4"

REND3

Change restart group 2 to cause a start at next line

Perform "WAITONE"

If bit 9(VHFRFLAG) of FLAGWRD9 = 0:

Proceed to 3rd line of "REND1"

If (T_{now} - K_{60secdp} - VHFTIME) < 0: Proceed to 3rd line of "REND1"

Perform "RANGERD": if return to calling address +1, proceed to "R22BAD" if return to calling address +2, proceed to "R22GOOD"

RANGERD This is RO8, entered from "REND3", "R27GO", and "CYCVHF". RREADRET = return address (calling address +1)

Inhibit interrupts

Set bits 4-1 (Radar selection) of channel 13 = 0

Proceed to "RADSTART"

RADSTART

TS = channel 4 $TS_1 = (bits 5-1 of TS)$

RADDEL = bits $5-1 \text{ of } (00040_8 - TS_1)$ If RADDEL $\leq 00002_8$: (bit 6 of channel 4, in phase with 100 pps signal used for radar control, Proceed to "RADSTART" about to be incremented) Set bits 1 and 4 (VHF select and Radar initiate) of channel 13 = 1 RADTIME = -TSRelease interrupts MARKTIME = T_{now} Set bit 10(SKIPVHF) of FLAGWRD2 = 0 (set 1 in "STARTSB2") Put present job to sleep (starting address id = RREADRET) (Entered based on program interrupt #9, Radar Rupt) VHFREAD If bit 10(SKIPVHF) of FLAGWRD2 = 1: (set in "STARTSB2") Resume RM = RNRADIf bit 2(VHF Data Good complement) of channel 33 = 0: TS = "RANGERD1"If bit 2(VHF Data Good complement) of channel 33 = 1: $VHFRANGE_{SD} = 2$ TS = "LIGHTON"Awaken job with starting address id = RREADRET (put to sleep in "RADSTART") Set starting address of awakened job = TS Resume (Entered via "VHFREAD" logic for unsuccessful radar read) LIGHTON If VHFRANGE $\neq 0$: Set bit 8(Tracker) of DSPTAB+11 = 1, and flag for output at next opportunity

Proceed to address specified by RREADRET (error return)

MEAS-6

RANGERD1 (Entered via "VHFREAD" logic for successful radar read) Inhibit interrupts

Set bit 8(Tracker) of DSPTAB+11 = 0, and flag for output at next opportunity

Set bit 7(OCDUFBIT) of OPTMODES = 1

Release interrupts

If RM = +0:

Proceed to address specified by RREADRET (error return)

If bit 15 of RM = 0:

 $TS = K_{convrnge}$ (RM, 0)

If bit 15 of RM = 1: (including case of 77777_{g})

TS = (bits 14-1 of RM)

TS =
$$K_{convrnge}$$
 (TS, 0) + $2^{14} K_{convrnge}$

Proceed to "RANGERD7"

RANGERD7

VHFRANGE = TS
If bit 9(EXTRANGE) of FLGWRDLO = 1: (set in "CRS61.1"; reset in "ROO")
If (R63RANGE - TS -
$$K_{vhfmodlo}$$
) \geq 0:
TS = VHFRANGE + K_{328nm} (constant is 327.68 nmi)
Proceed to "RANGERD7"

Proceed to address specified by (RREADRET +1) (good return)

<u>R22BAD</u> (Entered from "REND3" for error return, and from "R22GOOD") VHFTIME = MARKTIME

Proceed to "REND1"

R22GOOD (Entered from "REND3" for good return)

If bit 7(UPDATFLG) of FLAGWRDL = 0:

Proceed to "R22BAD"

If bit 12(PDSPFLAG) of FLAGWRD4 = 1: (R61 doing R60)

Proceed to "R22BAD"

Set bit 8(VHFSOURC) of FLAGWRD9 = 1

VHFTIME = MARKTIME

Proceed to "REND4"

(Entered from "R22GOOD" for VHF measurement, and from "REND1" REND4 for an optics measurement)

Perform "SETINTG"

If bit 8(CSMUPDAT) of FLAGWRD1 = 1:

Set bit 3(CSMINTSW) of FLAGWRD3 = 0

Perform "INTEGRV"

Perform "SETINTG"

If bit 1(RENDWFLG) of FLAGWRD5 = 1:

Set bit 1(WMATINT) of FLAGWRD3 = 1

If bit 8(CSMUPDAT) of FLAGWRD1 = 0:

Set bit 3(CSMINTSW) of FLAGWRD3 = 0

Perform "INTEGRV" (when exit, OWS and CSM vectors both integrated "permanently" to MARKTIME)

 $CSMPOS = RCV_{cm} + (DELTAV_{cm} shifted right 7 places)$

Set bit ll(FSTINCRP) of FLAGWRD5 = 1

 $LEMPOS = RCV_{1m} + (DELTAV_{1m} shifted right 7 places)$

If bit 7(AUTOSEQ) of FIGWRD10 = 1:

Proceed to "AUTOW" (exits to "REND5C" if initialize, or "REND7" if don't) If bit l(RENDWFIG) of FLAGWRD5 = 1:

Set bit 1(RENDWFLG) of FLAGWRD5 = 1 (redundant, Tag "REND6")

Proceed to "REND7"

Proceed to "REND5C"

REND5C

VHFCNT = 0 TRKMKCNT = 0 (as "least significant half" of VHFCNT) $W_i = 0$ (i = 0 - 17) (i.e. $[W_0]$ and $[W_1]$) $W_i = 0$ (i = 27 - 44) (i.e. $[W_3]$ and $[W_4]$) $W_i = WRENDPOS$ (i = 0, 4, 8, diagonal elements of $[W_0]$) $W_i = WRENDVEL$ (i = 36, 40, 44, diagonal elements of $[W_4]$) Set bit 8(P35FLAG) of FLGWRD10 = 0 AGEOFW = MARKTIME Set bit 4(PTV93FLG) of FLGWRD10 = 0 COUNT3MK = 1 Set bit 1(RENDWFLG) of FLAGWRD5 = 1 Proceed to "REND7"

REND7

$$\begin{split} \text{RCL}\underline{P} &= \text{LEMPOS} - \text{CSMPOS} \\ \text{If bit } &\&(\text{VHFSOURC}) \text{ of } \text{FLAGWRD9} = 0: \quad (i.e. \text{ have optics data}) \\ && \text{UCL} = \text{unitRCLP} \\ && \text{If bit } 11(\text{FSTINCRP}) \text{ of } \text{FLAGWRD5} = 1: \\ && \text{Xl} = - \text{''MARKTIME''} \\ && \text{Perform ''GETUM''} \\ && \text{UM} = \text{TS} \\ && \text{TS} = \text{UCL} * \text{UM} \\ && \text{If all components of } \text{TS} < 2^{-19} \text{ rad: (so unit vector overflow)} \\ && \text{Proceed to ''RENDISP3''} \\ && \text{USTAR} = \text{unitTS} \\ && \text{Perform ''BVECTORS''} && (\text{Tag here ''REND9''}) \end{split}$$

(If bit 8(VHFSOURC) of FLAGWRD9 = 0): If bit 8(CSMUPDAT) of FLAGWRD1 = 0: $BVECTOR_{O} = - BVECTOR_{O}$ If bit 14(R21MARK) of FLAGWRD2 = 1: (i.e. prime optics) $TS_1 = K_{sxtvar} + K_{imuvar}$ If bit 14(R21MARK) of FLAGWRD2 = 0: (i.e. R23 optics) $TS_1 = C_{altvar} + K_{imuvar}$ (Tag here "REND15") If bit 8(VHFSOURC) of FLAGWRD9 = 1: (i.e., have VHF ranging data) BVECTOR = unitRCLP (Tag here "REND14") $BVECTOR_1 = 0$ TS = VHFRANGE, rescaled to B29 Set bit 11(FSTINCRP) of FLAGWRD5 = 1 DELTAQ = TS - |RCLP|If bit 8(CSMUPDAT) of FLAGWRD1 = 1: $BVECTOR_{O} = - BVECTOR_{O}$ $TS_1 = C_{rvar}$ $TS = |RCLP|^2 TS_1$ Computed quasi-floating point (Tag here "REND10") VARIANCE = $TS_{tp} + C_{intvar}$ (B40) If bit 8(VHFSOURC) of FLAGWRD9 = 1: If (VARIANCE + C_{rvarmin}) < 0: (C_{rvarmin} negative) VARIANCE = |C_{rvarmin}| Perform "INCORP1" If bit 11(FSTINCRP) of FLAGWRD5 = 1: $N49DISP+2 = |DELTAX_1|$ $N49DISP = |DELTAX_0|$ N49DISP+4 = 2

(If bit 11(FSTINCRP) of FLAGWRD5 = 1):

If bit 8(VHFSOURC) of FLAGWRD9 = 0: (processing optics)
If bit 12(REJCTFLG) of FLGWRD10 = 1: (set in "MKREJECT")
Proceed to "RENDISP3"

N49DISP+4 = 1

If (C_{rmax} - N49DISP) < 0: ("N49DISP" same as "BVECTOR_O") Proceed to "RENDISP"

If (C_{vmax} - N49DISP+2) <0: Proceed to "RENDISP"

Proceed to "REND12"

REND12

Perform "INCORP2" (incorporates update, same time tag as from "REND4" integration) If bit ll(FSTINCRP) of FLAGWRD5 = 1:

OLDMKTME = MARKTIME

Set bit 5(MANEUFIG) of FLGWRD10 = 0

TS = COUNT3MK

If TS $\neq 0$:

If (TS - 3) > 0:

COUNT3MK = 0

If $(TS - 3) \leq 0$:

COUNT3MK = COUNT3MK + 1

If bit 8(VHFSOURC) of FLAGWRD9 = 1:

VHFCNT = VHFCNT + 1

Proceed to "RENDISP3"

If bit ll(FSTINCRP) of FLAGWRD5 = 0:

TRKMKCNT = TRKMKCNT + 1

Proceed to "RENDISP3"

(Tag here "REND12A")

(i.e. 2nd optics incorporation has been completed) If bit 8(CSMUPDAT) of FLAGWRD1 = 1:

 $CSMPOS = RCV_{cm} + (DELTAV_{cm} \text{ shifted right 7 places})$ If bit 8(CSMUPDAT) of FLAGWRD1 = 0:

 $LEMPOS = RC \underline{V}_{lm} + (DELTA \underline{V}_{lm} \text{ shifted right 7 places})$ Set bit ll(FSTINCRP) of FLAGWRD5 = 0

Proceed to "REND7"

RENDISP

```
TEMPORl = +0
```

```
Establish "RENDISP2" (priority 27_{g})
```

Allow performance of higher priority jobs (e.g. "RENDISP2")

If TEMPOR1 = 0: (i.e. display not answered yet)

Proceed to second previous line

(note this loop locks out lower priority jobs, including R52)

If TEMPOR1 < 0: (i.e. a PRO display response)

Proceed to "REND12"

```
Proceed to "RENDISP3"
```

RENDISP2 (Established by "RENDISP")

 $TS = 0649_{vn}$

Proceed to "PRIODSP": if terminate, proceed to "TRACKTRM" if proceed, TS = -1 and proceed otherwise, TS = QREG and proceed

TEMPOR1 = TS

End of job

<u>RENDISP3</u> (Entered at end of each mark-processing pass)

Set bit 7(R22CAFLG) of FLAGWRD9 = 0

Set bit 12(REJCTFLG) of FLGWRD10 = 0

If bit 8(VHFSOURC) of FLAGWRD9 = 1:

Proceed to "REND1"

Proceed to "REND3"

WAITONE

POINTEX = Return address

Delay 4 seconds (by putting job to sleep via "DELAYJOB") If bit 7(RNDVZFLG) of FLAGWRDO = 0, End of job If bit 13(REFSMFLG) of FLAGWRD3 = 0, End of job

If bit 5(TRACKFLG) of FLAGWRD1 = 0, End of job

If R61CNTR < O: (R61 maneuver in process)

Proceed to second line of "WAITONE"

If bit 12(R27FLAG) of FIGWRD11 = 1:

Perform "R27GO"

If bit 6(SNAPFLAG) of FLGWRD11 = 1:

Proceed to second line of "WAITONE"

If bit 7(UPDATFLG) of FLAGWRD1 = 1:

Proceed to address specified by POINTEX

Proceed to "REDOR22"

REDOR22 (Entered from "WAITONE" and due to restart group 2.13)

Set restart group 2 to phase 13 (2.13, causing "REDOR22" to be established with priority 10_8 if a restart)

Change priority of present job to 26_{0}

Proceed to second line of "WAITONE"

SETINTG

Perform "INTSTALL"

Set bit 5(STATEFLG) of FLAGWRD3 = 1

 $T_{dec1} = MARKTIME$

Set bits 4(CONICINT) and 1(WMATINT) of FLAGWRD3 = 0

Set bit 3(CSMINTSW) of FLAGWRD3 = 1

Return

<u>R27G0</u> Entered from "R27JOB" (P25), "R27JOBA" (P48), and "WAITONE" (R22)

R27END = Return address

Perform "RANGERD": if return to calling address +1, proceed to address specified by R27END if return to calling address +2, proceed

TIMl = MARKTIME (PD OD)

RANGl = VHFRANGE (PD 2D)

NPASS = -4

If bit l(R27UP1) of FLGWRD11 = 1:

If bit 4(P25FLAG) of FLGWRD11 = 1:

Perform "VHFMOD"

If bit l(R27UP1) of FLGWRD11 = 0:

RBUF = VHFRANGE

Proceed to "CYCVHF"

CYCVHF

NPASS = NPASS + 1

Perform "RANGERD": if return to calling address +1, proceed to address specified by R27END if return to calling address +2, proceed

TIM2 = MARKTIME (PD 4D)

RANG2 = VHFRANGE (PD 6D)

If (RANG2 - RANG1) \neq 0:

If bit 4(P25FLAG) of FLGWRD11 = 1:

Perform "VHFMOD"

TS = RANG2 - RANG1

Proceed to "TAKE2"

TIM1 = TIM2

TS = NPASS

If TS \neq 0:

Proceed to "CYCVHF"

Proceed to "TAKE2"

TAKE2

If TS 🌛 O:

RANG1 = RANG2

$$\begin{split} \text{TIML} &= \frac{1}{2} \left(\text{TIM2} + \text{TIM1} \right) & (\text{overflow if exceed } 2^{27} \text{ cs}) & (\text{now } \text{T}_{\text{m}}) \\ \text{RANGl} &= \text{RANGl, shifted left 7 places (B20 meters)} & (\text{now } \text{R}_{\text{m}}) \\ \text{If bit } 2(\text{R27UP2}) \text{ of FLGWRDll} = 1: & (\text{Tag here "SAMPLE"}) \\ & \text{Proceed to "WUNZMOR"} \\ \text{If bit } 1(\text{R27UP1}) \text{ of FLGWRDll} = 0: \end{split}$$

OPVEC = RANGl

OPVEC+2 = TIM1

Set bit 1(R27UP1) of FIGWRD11 = 1

Proceed to address specified by R27END

SVTEM = $\frac{1}{2}$ RANG1 + $\frac{1}{2}$ OPVEC (Tag here "HOWMUCHR")

 $\text{TEMTYM} = \frac{1}{2} (\text{TIM1} + \text{OPVEC+2})$

TS = (TIM1 - OPVEC+2), shifted left 14 places (time difference) SVTEM+2 = (RANG1 - OPVEC)/TS (B6 m/cs)

SVTEM+4 = 0

 $WMAT_{i} = 0$ (i = 1, 2, 3, 5, 6, 7)

 $WMAT_{O} = K_{upperlef}$

 $WMAT_4 = (K_{middle}) / TS$ (TS has time difference)

WMAT₈ = K_{bottomri} VSAVTEM = DELVIMU_x Set bit 7(FIXFLAG) of FLGWRD11 = 0 Set bit 2(R27UP2) of FLGWRD11 = 1 Proceed to "STOR77"

VHFMOD

TS = RBUF - VHFRANGE(in 10D) If ($|TS| - \frac{1}{4} K_{vhfmodlo}$) \checkmark O: ($\frac{1}{4}$ due to fact that TS is B27, but constant is B29) RBUF = VHFRANGE Return RBUF = K_{328nm} sgn TS (constant is 327.68 nmi) If NPASS $\neq -4$: (i.e. not from "R27GO")

RANGl = RANGl - RBUF

If bit 2(R27UP2) of FLGWRD11 = 0:

OPVEC = OPVEC - RBUF

If bit 2(R27UP2) of FLGWRD11 = 1:

SVEC = SVEC - RBUF

RBUF = VHFRANGE

Return

WUNZMOR

Inhibit interrupts

WMAT_i = VHF.W_i (i = 0 - 6) Release interrupts (allow e.g. telemetry) Inhibit interrupts WMAT_i = VHF.W_i (i = 7 - 8) SVTEM = SVEC SVTEM+2 = SVEC+2 SVTEM+4 = SVEC+4 TEMTYM = TYMR VSAVTEM = VSAV

Release interrupts

If bit 5(P48FLAG) of FLGWRDll = 1:

SVTEM+2 = SVTEM+2 - (DELVIMU - VSAVTEM)

VSAVTEM = DELVIMU (Note value could be different from above) VHF.OMEG = RANG1(measured value, B20 meters) (Tag "TMCORP") VHF.B+2 = (TIML - TEMTYM), shifted left 13 places (B15 cs) $VHF.B+4 = \frac{1}{2} (VHF.B+2)^2$ $(B30 cs^2)$ (save in 2D) PD2DTM = TEMTYM(B1) VHF.B+0 = 1PD4DLQ = VHF.OMEG - (VHF.B+O, VHF.B+2, VHF.B+4) · (SVTEM, SVTEM+2, SVTEM+4) VHF. \underline{Z} = (VHF.B+O, VHF.B+2, VHF.B+4) WMAT $TS_2 = K_{vargap} + |VHF.\underline{Z}|^2$ (B22, in 6D) $TS_3 = 1 / TS_2$ (computed quasi-floating point) VHF.OME<u>G</u> = WMAT VHF.<u>Z</u> VHF.OMEG = TS₃ VHF.OMEG (components VHF.OMEG+0, +2, +4) (SVTEM, SVTEM+2, SVTEM+4) = (SVTEM, SVTEM+2, SVTEM+4) + PD4DLQ VHF.OMEG $TS = 1/(\sqrt{K_{vargap} / TS_2} + 1)$ (in TEMTYM cell, Bl) $WMAT_{\underline{L}} = WMAT_{\underline{L}} - VHF.\underline{Z}$ (VHF.OMEG+4 TS) $WMA\underline{T}_3 = WMA\underline{T}_3 - VHF.\underline{Z}$ (VHF.OMEG+2 TS) $WMA\underline{T}_{O} = WMA\underline{T}_{O} - VHF.\underline{Z}$ (VHF.OMEG+O TS) If bit 7(FIXFLAG) of FLGWRD11 = 0: (Tag here "SWITCHGO") Proceed to "WOTNOW" (not optimizing) TEMTYM = FIXTIME

TS = TIM1 - FIXTIME

If TS $\lt 0$:

Proceed to "SNAPPY" (FIXTIME in future)

If $(TS - K_{95secs}) < 0$:

If bit 5(P48FLAG) of FLGWRD11 = 0:

Set bit 3(TDFLAG) of FLGWRD11 = 1

Set bit 6(SNAPFLAG) of FLGWRD11 = 0 (Tag here "P480PDUN")

Set bit 9(N77FLAG) of FIGWRD11 = 0

Proceed to "THISJAZZ"

OPVEC = SVTEM (Tag here "OPDONE"; load Rl and R2 of N77)

OPVEC+2 = SVTEM+2

TEMTYM = TIM1

VHF.B+2 = (TIM1 - FIXTIME), shifted left 13 places (B15 cs)

 $VHF.B+4 = \frac{1}{2} (VHF.B+2)^2$ (B30 cs²)

FIXTEMP = FIXTIME + K 4mins

Set restart group 2 to phase 17 (2.17, causing "ENDFIX" to be established with priority 268 if a restart)

FIXTIME = FIXTEMP

Set bit 9(N77FLAG) of FLGWRD11 = 1

Set bit 7(FIXFLAG) of FIGWRDll = 0

Proceed to "XTRAP"

SNAPPY

(i.e. within 20 seconds before FIXTIME)

Proceed to "THISJAZZ"

WOTNOW

```
TS = TIM1 - FIXTIME
```

If TS > 0:

TEMTYM = TIM1

Proceed to "XTRAP"

If $(TS + K_{95secs}) < 0$:

TEMTYM = TIMI

Proceed to "XTRAP"

TEMTYM = FIXTIME(time to start new optimization)

VHF.B+2 = (FIXTIME - PD2DTM), shifted left 13 places (B15 cs)

 $VHF.B+4 = \frac{1}{2} (VHF.B+2)^2$ $(B30 cs^2)$

Set restart group 2 to phase 11 (2.11, causing "STARTFIX" to be established with priority 26_8 if a restart)

Set bit 9(N77FLAG) of FLGWRD11 = 1

Set bit 7(FIXFLAG) of FLGWRD11 = 1

Proceed to "XTRAP"

XTRAP

 $PMATRIX_{O} = VHF \cdot \underline{B}$ (same cells; shown for documentation convenience) $PMATRIX_3 = 0$ $PMATRIX_{1} = 1$ $PMATRIX_5 = VHF.B+2$ (B16 cs) $PMATRIX_6 = unitZ$ (i.e. 0,0,1) (SVTEM, SVTEM+2, SVTEM+4) = [PMATRIX] (SVTEM, SVTEM+2, SVTEM+4) $WMAT_O = PMATRIX_O$ [WMAT] WMAT $WMA\underline{T}_3 = PMATRJ\underline{X}_3$ $T\underline{S} = - (WMA\underline{T}_3 * WMA\underline{T}_0)$ If all components of TS $< 2^{-11} \text{ m}^2/\text{cs}$: (so interpreter vector magnitude operation gives 0) $TS = 2^{14} TS$ Proceed to second previous line (stay in loop if all TS components 0) (in OD) PDCVC = TS $PDDVL = PDCVC \cdot WMAT_{<}$ (in 6D) $PDSVL = |PDCVC|^2$ (in 8D) $PDFVL = (C_{rtridot}, VHF.B+2)^2$

(in 10D)

TS = (PDFVL/PDDVL²) PDSVL (note scaling of PDCV<u>C</u> cancels) If overflow has taken place (e.g. $|TS|/2^{18}$):

$$TS_1 = +MAX$$
 (2⁹ - 2⁻¹⁹)

If overflow has not taken place:

$$TS_{l} = \sqrt{TS + l} - l \quad (B9)$$

$$WMA\underline{T}_{6} = WMA\underline{T}_{6} + (PDDVL TS_{l})/PDSVL) PDCV\underline{C}$$
Proceed to "THISJAZZ"

(addition of l <u>not</u> protected from overflow) (PDCV<u>C</u> scaling again cancels)

THISJAZZ

If bit 4(P25FLAG) of FLGWRD11 = 1:

Proceed to "STOR77"

If bit 3(TDFLAG) of FLGWRD11 = 1:

Proceed to "STOR77"

Proceed to "STOR77"

If bit
$$5(P48FLAG)$$
 of FIGWRD11 = 0:

If bit 14(INTINUSE) of FLGWRD10 = 0:

CDUSNAP = CDU

CDUSNAPT = CDUT

CDUSNAPS = CDUS

Perform "PHICOMP"

Proceed to "STOR77"

 $TS_{1} = R$ (Tag here "STHETA")

 $T\underline{S}_{2} = \underline{V}$ (TS₁ in 18D; TS₂ in 24D; unitT<u>S₁</u> in OD) TS = unitX

Perform "ANGLER"

If bit 7(FIXFLAG) of FLGWRD11 = 1:

If $(T_{now} - FIXTIME) > 0$:

Set bit 3(TDFLAG) of FLGWRD11 = 1

Proceed to "STOR77"

STOR77

If bit 9(N77FLAG) of FLGWRD11 = 0:

OPVEC = SVTEM (load Rl and R2 of N77)

OPVEC+2 = SVTEM+2

Inhibit interrupts (Tag here "GARDOPT") (Restart group 2 set to cause start at next line: other VHF.W, = WMAT, (i = 0 - 6) settings <u>not</u> shown)

Release interrupts (allow e.g. telemetry)

Inhibit interrupts

$$VHF.W_{i} = WMAT_{i}$$
 (i = 7 - 8)

SVEC = SVTEM

SVEC+2 = SVTEM+2

SVEC+4 = SVTEM+4

TYMR = TEMTYM

VSAV = VSAVTEM

Release interrupts

Proceed to address specified by R27END

<u>STARTFIX</u> Entered due to restart group 2.11 (set in "WOTNOW") Set bit 7(FIXFLAG) of FIGWRD11 = 0

Proceed to address specified by R27END

ENDFIX Entered due to restart group 2.17 (set in "WUNZMOR") Set bit 7(FIXFLAG) of FIGWRD11 = 1

If (FIXTIME - FIXTEMP) = 0:

FIXTIME = FIXTEMP - K

Proceed to address specified by R27END

C13STALL

If bit 4(Radar initiate) of channel 13 = 0:

Return (no VHF read in progress)

 $TS_3 = channel 4$

 $TS_3 = TS_3 + RADTIME + 2^{14}$, modulo 2¹⁴

(corrects for possible channel 4 overflow since RADTIME loaded, and gives "true" time difference)

$$TS_4 = K_{90mscalr} + RADDEL - TS_3$$

If $TS_4 \le 0$:

Return

```
If TS_4 + K_{mdtscalr} > 0:
```

Return

Proceed to third line of "C13STALL"

(a NOOP order used to avoid TC Trap)

Quantities in Computations

See also list of major variables and list of routines

AGEOFW: Time of last W-matrix initialization for rendezvous measurement incorporation, scale factor B28, units centi-seconds. Set equal to MARKTIME in "REND5C", and can be displayed by N31. It is used in "AUTOW" logic.

•

- BVECTOR, BVECTOR: Vectors used as communication cells with "INCORP1" to provide geometry information associated with DELTAQ, i.e. relating the deviation in the measurement (a scalar) to the vector deviation in the state vector. The vectors normally are associated with position and velocity respectively, but for R22 BVECTOR: is always set 0. The scale factor of $BVECTOR_{O}$ is Bl.
- Caltvar "ALTVAR", scale factor B-16, units rad⁶, used in "REND7" (part of R22) if optics backup (R23) data is used, to specify information on the a priori accuracy of the backup optics data.
- Cintvar: Single precision erasable memory constant, program notation "INTVAR", scale factor B15, units meters, added to the variance computed in "REND7" (part of R22) for "integration variance", i.e. "square of expected integration position extrapolation error".
- ^Crmax: Single precision erasable memory constant, program notation "RMAX", scale factor Bl9, units meters, giving the maximum value of position state vector change (as expressed in N49DISP) that is incorporated automatically by R22. Values larger than this constant cause a display for crew approval. If it is desired to generate a display for all measurement information, this can be accomplished by setting the constant to 77776_g (one bit negative).
- Crtridot: Erasable memory (double precision) constant, program notation
 "RTRIDOT", scale factor B-31, units meters/centi-second³, giving
 an a priori value of rate of change of acceleration used to degrade
 the W-matrix employed in R27. It is employed in "XTRAP" to compute
 PDFVL.
- Crvar "RVAR", scale factor B-16, giving the "percentage error" (squared) in the VHF ranging measurement: for VHF marks, (|RCLP|~ C + C.) is the value of VARIANCE (subject to C rvarmin Actually would involve "percent"/100, of course.
- Crvarmin: Triple precision erasable memory constant, program notation "RVARMIN", scale factor B4O, units meters², giving the <u>negative</u> of the minimum value of VARIANCE for the VHF range measurements in R22 (negative is for coding convenience). If the most significant one-third if the constant is zero, then least significant two-thirds can be considered as a double precision number, scale factor B26.

C : Single precision erasable memory constant, program notation "VMAX", scale factor B7, units meters/centi-second, giving the maximum value of velocity state vector change (as expressed in N49DISP+2) that is incorporated automatically by R22. Values larger than this constant cause a display for crew approval.

CDUS: See Optics Computations.

CDUSNAP: See Orbital and Rendezvous Navigation.

CDUSNAPS, CDUSNAPT: See Orbital and Rendezvous Navigation.

CDUT: See Optics Computations.

COUNT3MK: See Minimum Key Rendezvous.

CSMPOS: Value of CSM position vector, scale factor B29, units meters.

- DELQDA: Value of DELTAQ/TRIPA, variable scale factor, stored in pushdown list location OD. If numerator and denominator are already normalized, scale factor is B-10.
- DELTAQ: Value of deviation in measurement quantity, scale factor B29, units meters.
- DELTAV_{cm}, DELTAV_{lm}: See Orbital Integration. Component overflows if exceeds 2^{22} meters.
- DELTAX_O, DELTAX₁: State vector deviation estimates, scale factor (DELTAX₀) B29 in units of meters; for DELTAX₁, scale factor B7 in units of meters/centi-second. They are updates to position and velocity estimates of vehicle respectively.

DELVIMU: See Display Computations.

- EGRESS: Single precision cell used for storage of return address information from "INCORP2" routine.
- FIXTEMP: Temporary storage cell for FIXTIME, used for restart protection purposes.

FIXTIME: See Orbital and Rendezvous Navigation.

- GAMMA: Quantity computed in "INCORPI", variable scale factor (scale factor information partially contained in cell NORMGAM). If NORMGAM = 0, scale factor of GAMMA equivalent to B-40. NORMGAM subsequently modified to reflect rescaling of \underline{Z}_i (for use in "INCORP2").
- K_{2pi} : Constant, program notation "PI/4.0", scale factor B3, value 0.785398164. Value corresponds to 2 x 3.141592656 x 2⁻³, or approximately $2\pi \times 2^{-3}$, where first term converts between angle measurements in units of revolutions and radians and second term is scale factor.

- K_{20sex}: Constant, program notation "20SEX", scale factor B28, units centi-seconds. Value is 2000 x 2⁻²⁸, corresponding to 20 seconds.
- K_{328nm}: Constant, program notation "328NM", scale factor B27, units meters. Value is 606863.36 x 2⁻²⁷ (nominal), corresponding to 327.68 x 1852 x 2⁻²⁷, where first term is value in nautical miles, second converts to meters, and third is scale factor. The nautical mile value is 2¹⁵ K (since the 15-bit interface with radar provides data modulo that value).
- K_{4mins} : Constant, program notation "4MINS", scale factor B28, units centiseconds. Value is 24000 x 2⁻²⁸, corresponding to 4 minutes.
- K Constant, program notation "60SECDP", scale factor B28, units centi-seconds. Value is 6000 x 2⁻²⁸, corresponding to 60 seconds: if T - VHFTIME is at least this amount, then an attempt can be made to obtain a new VHF mark in "REND3".
- K 90mscalr: Single precision constant, program notation "90MSCALR", scale factor B9, units centi-seconds. Value is 440, or 9 x 2⁻⁹, corresponding to 9 centi-seconds (time delay, when added to RADDEL, between initiation of radar read and completion of the shift pulses).
- K_{95secs}: Constant, program notation "95SECS", scale factor B28, units centi-seconds. Value is 9500 x 2⁻²⁸, corresponding to 95 seconds.
- K bottomri: Constant, program notation "BOTTOMRI", scale factor B-17, units meters/centi-second², used in "TAKE2" to initialize WMAT₈. Value is 0.102E-5 x 2¹⁷, corresponding to 0.102E-1 x 10⁻⁴ x 2¹⁷, where first term is value in meters/second² (about 1/30 fps²), second converts from seconds to centi-seconds, and third is scale factor.
- K convrnge : Constant, program notation "CONVRNGE", scale factor Bl3, units of (meters/bit). Value is 18.52 x 2⁻¹³, corresponding to a VHF ranging system bit weight of 18.52 meters (or 0.0100 nmi). A value of (2¹⁴ K) corresponds to the weight of bit 15, normally the "sign", of RM.

K_{dpmOl}: See Burn Control.

K ft999: Constant, program notation "FT999999", scale factor B19, units meters. Value is 30479 x 2⁻¹⁹, corresponding to 99996.72 x 0.3048 x 2⁻¹⁹, where first term is value in feet (display would be expected to show 99997 feet), second converts to meters, and third is scale factor.

K. : Constant, program notation "IMUYAR", scale factor B-16, units radians². Value is 0.04E-6 x 2¹⁶, corresponding to 0.04 mr².

- K mdtscalr: Single precision constant, program notation "-DTSCALR", scale factor B9, units centi-seconds. Value is 777548, corresponding to -238, or -0.59375 centi-seconds (a measure of when the shift pulses are sent to the radar).
- K middle: Constant, program notation "MIDDLE", scale factor Bl2, units meters, used in "TAKE2" in the initialization of WMAT. Value is 12.93 x 2⁻¹², corresponding approximately to √2 x 30 x 0.3048 x 2⁻¹², where first term is an equation factor, second is VHF ranger variance (in feet), third converts to meters, and fourth is scale factor.

K sxtvar: Constant, program notation "SXTVAR", scale factor B-16, units radians². Value is 0.04E-6 x 2¹⁶, corresponding to 0.04 mr².

- $K_{upperlef}$: Constant, program notation "UPPERLEF", scale factor Bl2, units meters, used in "TAKE2" to initialize WMAT₀. Value is 6.47 x 2⁻¹², corresponding approximately to $(1/\sqrt{2}) \times 30 \times 0.3048$ x 2⁻¹², where first term is an equation factor, second is VHF ranger variance (in feet), third converts to meters, and fourth is scale factor.
- K vargap inters². Value is 83.6127 x 2⁻²², corresponding approximately to (30 x 0.3048)² x 2⁻²², where first term is VHF ranger variance converted to meters (i.e. 30') and second is scale factor.
- ^Kvhfmodlo: Constant, program notation "VHFMODLO", scale factor B29, units meters. Value is 555600 x 2^{-29} , corresponding to 300 x 1852 x 2^{-29} , where first term is value in nautical miles, second converts to meters, and third is scale factor.

LEMPOS: Value of OWS position vector, scale factor B29, units meters.

- MARKDOWN+i (i = 0-6): Set of optics mark information (double precision time, CDU, optics shaft, CDU, optics trunnion, and CDU respectively) intended for downlink transmission in programs making use of optics data. Address is selected in "SXTSM" if STARIND = 0. For P51 - P54, this means the BESTI body being marked; in R22, since STARIND = 0 in "R00", these cells are also loaded (due to performance of part of "SXTSM" via "GETUM"). MARKDOWN+7 is the same cell as RM.
- MARKTIME: Cells used to contain time of mark information for R22, and as a communication cell with "SETINTG" (for which only the first 2 cells are employed, scale factor B28, units centi-seconds). Used in R22 as the first 2 cells of a 7-cell buffer to contain optics mark data being processed, as loaded from MRKBUF1 cells in "REND1".

MRKBUF1: See Optics Computations.

- N49DISP: Magnitude of position state vector change for display in Rl of N49, scale factor B29, units meters. The magnitude is calculated as the square root of the sum of the squares of individual components of DELTAX₀, where the squares are carried triple precision. Hence if a given component is of insufficient magnitude to be retained triple precision when squared, that component will contribute 0 to the sum: since for triple precision scaled B0 the least increment is 2^{-42} , this means that for a component to have an input it must be at least 2^{-21} , i.e. a value of 2° (256) meters since scaling B29. Hence if all three components of DELTAX₀ are less than 256 meters (0.14 nmi), N49DISP will display zero (despite the fact that least increment of Rl of N49 is 0.01 nmi).
- N49DISP+2: Magnitude of velocity state vector change for display in R2 of N49, scale factor B7, units meters/centi-second. Magnitude is calculated in a manner analogous to N49DISP, using DELTAX instead of DELTAX. The least increment effect, however, is considerably less, amounting to only about 0.02 fps (display least increment is 0.1 fps).
- N49DISP+4: Single precision cell, scale factor Bl4, used to display in R3 of N49 information on the source of the update generating the display. It is set to 1 in "REND7" for optics data and 2 for VHF ranging data.
- NPASS: Single precision cell, scale factor Bl4, used to limit to 4 the number of tries in "CYCVHF" to obtain a change in the input range from that read in "R27GO".
- OLDMKTME: Time of previous mark, scale factor B28, units centi-seconds, loaded in "REND12" and used in "AUTOW" logic.
- OMEGAO, OMEGA: Weighting vectors for measurement incorporation of the DELTAQ measurement (to give a "statistically optimum linear estimate of the deviation from the estimated state vector"). For no Z. rescaling, scale factors are B39 and B20 respectively.
- OMEGAM, OMEGAM: Values of OMEGA, multiplied by GAMMA, used in "INCORP2" for updating W matrix information. Scale factor depends on scaling of GAMMA: if NORMGAM = 0 (see GAMMA), then scaling is B-1 and B-20 respectively. Program notations "OMEGAM1" and "OMEGAM2" respectively.

OPTMODES: See Optics Computations.

OPVEC: Value of range information displayed in Rl of N77, scale factor B20, units meters. It is used in "TAKE2" to retain the first range point when R27 is initialized, for subsequent initialization purposes. It is loaded in "WUNZMOR" with SVTEM after completion of the optimization interval (when bit 9, N77FLAG, of FLGWRD11 is also set 1), and it is also loaded in "STOR77" with SVTEM if N77FLAG = 0. It should be noted that the N77FLAG lockout on loading at end is not effective since "WUNZMOR" also increments FIXTIME, causing "TIMETASK" (entered each second) to detect a change and enter "N72STUFF", where bit reset 0 (barring special timing circumstances).

- OPVEC+2: Value of range rate information displayed in R2 of N77, scale factor B6, units meters/centi-second. Loading history parallels that of OPVEC, except that initially used in "TAKE2" to store computer clock for first sample (B28 centi-seconds), yielding of course a nonmeaningful "range rate" display.
- PD2DTM: Value of TEMTYM sampled in "WUNZMOR", scale factor B28, units centi-seconds, used in "WOTNOW" to compute VHF.B+2 when start new optimization interval. It is stored in push-down list location 2D.
- PD4DLQ: Value of measurement deviation (analogous to DELTAQ for R22) computed in "WUNZMOR", scale factor Bl2, units meters, stored in push-down list location 4D.
- PDCV<u>C</u>: Value of "C vector" computed in "XTRAP", scaling (unless rescaled) Bll: computations are such that the scaling of the quantity cancels as far as the final results are concerned. It is stored in push-down list location OD.
- PDDVL: Value of "D" computed in "XTRAP", scaling dependent on PDCV<u>C</u>, stored in push-down list location 6D. For no rescaling, would be scaled B-6.
- PDFVL: Value of "F" computed in "XTRAP", scale factor B-32, stored in push-down list location 10D.
- PDSVL: Value of "S" (square of magnitude of PDCV<u>C</u>) computed in "XTRAP", scaling B22 (unless rescaled), stored in push-down list location 8D.

PHETA: See Orbital and Rendezvous Navigation.

- [PMATRIX]: Matrix computed in "XTRAP", program notation "P-MATRIX". First row is assigned same cells as VHF.B (loading of them shown in "XTRAP" for documentation convenience), scaling Bl, Bl5, and B30 respectively. First element of 2nd row is zero, second is scaled Bl, and third scaled Bl6. In third row, first 2 elements are zero, and third is scaled Bl.
- POINTEX: Single precision cell used to retain return address information from "WAITONE".

QPRET: See Orbital Integration.

QREG: Computer Q register (cell 0002₀), loaded with S-register information for computer TC orders, and also used in some cases for temporary storage of other information. As used in "RENDISP2", apparently expected to contain a positive non-zero number (as would be true for a TC order use). The actual sampling of QREG takes place in the program service routine "BANKJUMP", which is entered at the end of "ENDRET2" to return to the "PRIODSP" caller.

 $\underline{\underline{R}}_{other}$: See Orbital Integration.

R27END: Single precision cell used to retain return address information from "R27GO".

R61CNTR: See Orbital and Rendezvous Navigation.

- R63RANGE: Value of range estimate computed from vehicle state vectors loaded in "CRS61.1", scale factor B29, units meters. After loading, bit 9(EXTRANGE) of FLGWRD10 is set 1 to indicate that cell has valid data. It is used in "RANGERD7" to correct incoming range point to reflect interface-cell overflow (see K_{328nm}) if incoming and R63RANGE value differ by K_{vhfmod10} or more.
- RADDEL: Single precision time until the 100 pps pulse initiating radar read sequence (loaded in "RADSTART"), scale factor B9, units of centi-seconds.
- RADTIME: Single precision storage for the complement of the contents of channel 4, scale factor B9, units centi-seconds, as sampled when bit 4 of channel 13 was set to initiate radar reading.
- RANG1: Value of VHFRANGE sampled in "R27GO", scale factor B27, units meters. Subsequently replaced in "TAKE2" with the larger of the two range samples, and then rescaled to B20 meters for use subsequently. It is stored in push-down list location 2D.
- RANG2: Value of VHFRANGE sampled in "CYCVHF", scale factor B27, units meters. It is stored in push-down list location 6D.
- RBUF: Value of previous range sample saved in "VHFMOD", scale factor B27, units meters (loaded in "R27GO" for first pass). Also used for temporary storage purposes in "VHFMOD".
- RCLP: Value of (LEMPOS CSMPOS) for R22, scale factor B29, units meters.
- $RC\underline{V}$, $RC\underline{V}_{cm}$, $RC\underline{V}_{lm}$: See Orbital Integration.
- RM: Single precision value of measured range sampled from RNRAD cell, scale factor Bl4, units counts (one VHF count is 0.01 nmi). The cell is the same as MARKDOWN+7 (for telemetry purposes).
- RNRAD: Single precision special erasable memory cell 0046, into which VHF range data is shifted under hardware control if bits 4-1 of channel 13 are set to 1001. When shifting is complete, program interrupt #9 is generated, causing entrance to "VHFREAD".
- RREADRET: Single precision cell used to retain return address information from "RANGERD". An "error" return transfers to the address in the cell, while a successful return transfers to calling address +2 (i.e. RREADRET contents incremented by 1).

- SVEC: Value of "permanent" R27 filter range output, scale factor B20, units meters. It is loaded into SVTEM in "WUNZMOR", and loaded from SVTEM in "STOR77". It is displayed by R1 of N76.
- SVEC+2: Value of "permanent" R27 filter range rate output, scale factor B6, units meters/centi-second. It is loaded into SVTEM+2 in "WUNZMOR", and loaded from SVTEM+2 in "STOR77". It is displayed by R2 of N76.
- SVEC+4: Value of "permanent" R27 filter range acceleration output, scale factor B-9, units meters/centi-second². It is loaded into SVTEM+4 in "WUNZMOR", and loaded from SVTEM+4 in "STOR77".
- SVTEM: Value of R27 working storage for filter range output, scale factor B20, units meters. See SVEC.
- SVTEM+2: Value of R27 working storage for filter range rate output, scale factor B6, units meters/centi-second. See SVEC+2.
- SVTEM+4: Value of R27 working storage for filter range acceleration output, scale factor B-9, units meters/centi-second². See SVEC+4.
- T_{et} , TDELTAV: See Orbital Integration.
- TEMPOR1: Single precision cell, scale factor B14, used in the "RENDISP"/ "RENDISP2" interface to determine when an answer to the O649 vn display is received (when value becomes non-zero) and to conclude that this answer was PRO if the cell negative and that it was a recycle if the cell is positive (see QREG). This method is employed to avoid display conflicts (with e.g. R60 P20 display), and will cause the computer activity light to remain on until the display is answered.
- TEMTYM: Value of R27 working storage for time of optimization (loaded with TYMR in "WUNZMOR" and into TYMR in "STOR77"), scale factor B28, units centi-seconds. Loaded with TIM1 in "WOTNOW" or "WUNZMOR" if optimization to FIXTIME not being done; otherwise loaded with FIXTIME. After being saved in PD2DTM, used in "WUNZMOR" for temporary storage purposes also.
- TIM1: Time tag for RANG1, loaded initially in "R27GO" and subsequently written over with TIM2 for no range change in "CYCVHF". In "TAKE2" is set to the time tag used subsequently for the measurement. Scale factor is B28, units centi-seconds, and quantity stored in pushdown list location OD.
- TIM2: Time tag for RANG2, loaded in "CYCVHF", scale factor B28, units centi-seconds. It is stored in push-down list location 4D.

TNUV: See Orbital Integration.

- TRIPA: Triple precision value of sum of VARIANCE and $|\underline{Z}_{i}|^{2}$ computed in "INCORPL", scale factor B40. It is used as the denominator value for computing the necessary weighting functions (a rounded version is used to multiply VARIANCE).
- TRKMKCNT: Single precision cell, scale factor Bl4, giving a count of the number of optics marks (either primary optics or via R23) that have been completely incorporated into the state vector in R22 (it is incremented in "REND12"). It is set 0 in "DOFSTART" and "REND5C" (when initialize W matrix for R22 use). Cell is the "least significant half" of VHFCNT, and can be displayed as the 2 least significant digits in R3 of N45.
- TYMR: Value of "permanent" R27 value of TEMTYM, scale factor B28, units centi-seconds. See TEMTYM.
- UCL: Value of unitRCLP computed in "REND7", scale factor Bl (a unit vector, of course).
- UM: Value of unit measurement vector derived in "GETUM", scale factor B1: it gives the direction of the optics-measured information in reference coordinates.
- USTAR: Unit "fictitious star direction", scale factor Bl, updated in "BVECTORS" (initialized in "REND7"). Two such quantities are used, "chosen to be perpendicular to each other and to the current estimated line-of-sight vector."

 \underline{V}_{other} : See Orbital Integration.

- VARIANCE: Triple precision variance associated with the navigation measurement reflected in DELTAQ, scale factor B4O, units of meters. The value for use in "INCORPI" is computed by the calling program based on a priori measurement errors.
- $VC\underline{V}$, $VC\underline{V}_{cm}$: See Orbital Integration.
- VHF.OMEG: Weighting vector used in R27 computations ("WUNZMOR"). VHF.OMEG (first component) initially used for retention of raw measurement, B20 meters. When initially computed from [WMAT], components B23, B9, B-6 respectively. When used to update SVTEM, components scaled B3, B-11, B-26 respectively, as they are when updating [WMAT], for no rescaling.
- [VHF.W]: Value of "permanent" R27 weighting matrix, loaded into [WMAT] in "WUNZMOR" and from [WMAT] in "STOR77". See [WMAT].

VHF.Z: R27 measurement incorporation vector, scale factor Bll, meters.

- VHFCNT: Single precision cell, scale factor B14, giving a count of the number of VHF range marks that have been incorporated into the state vector in R22 (it is incremented in "REND12"). It is reset to 0 at the points listed for TRKMKCNT (which is the "least significant half" of VHFCNT), and it can be displayed as the 2 most significant digits in R3 of N45.
- VHFRANGE: Value of incoming VHF range measurement (a scaled version of the 15-bit integer in RM), scale factor B27, computed in "RANGERD1" and corrected for overflow of the data interface (see K 328nm) in "RANGERD7".
- VHFTIME: Value of computer clock when last VHF range sample for R22 made, scale factor B28, units centi-seconds. It is initialized to present computer clock in "R22", and if at least K obsection have elapsed since it was last loaded (see "REND3" logic), then another sample attempt for R22 is initiated. It is set to MARKTIME in "R22BAD" (sample not successful) or "R22GOOD" (sample successful): MARKTIME is set to T in "RADSTART" (just after setting channel 13 bits to initiate sample, but <u>after</u> releasing interrupts that were inhibited during channel 13 setting).
- VSAV: Value of "permanent" R27 value of VSAVTEM, scale factor B7, units meters/centi-second, loaded into VSAVTEM in "WUNZMOR" and from VSAVTEM in "STOR77".
- VSAVTEM: Value of DELVIMU sampled in "TAKE2" or "WUNZMOR", used to update SVTEM+2 during R27 performance with P48, scaled B7 meters/centi-second.
- $\begin{bmatrix} W_{1} \end{bmatrix}$, W_{1} , W_{1} : Notations used to describe portions of the "W" (error transition) matrix used in R22 and stored in the computer memory. The matrix as defined for R22 is made up of four separate 3x3 (each double precision) matrices, a total of 36 elements. In former programs, the matrix was 9x9: to minimize the impact of changes, the last three rows and last 3 columns have been deleted, but the memory cell assignments have not otherwise been modified. This means that the first two matrix portions ($\begin{bmatrix} W_{0} \end{bmatrix}$ and $\begin{bmatrix} W_{1} \end{bmatrix}$) occupy cells W through W_{17} (indices are B13), and the remaining two matrix portions ($\begin{bmatrix} W_{0} \end{bmatrix}$ and $\begin{bmatrix} W_{1} \end{bmatrix}$) occupy cells W through W_{17} (indices are B13), and the remaining two matrix portions carried out by vector operations on 3 elements at a time are designated by the usual vector notation with the subscript being that of the first element involved: \underline{W}_{3} , for example, is the "vector" made up of (W_{3} , W_{4} , W_{5}).

Initialization of the W matrix involves initializing the diagonal elements of $[W_0]$ with the appropriate position uncertainty information and the diagonal elements of $[W_1]$ with the appropriate velocity uncertainty information. The scale factor of $[W_0]$ and $[W_1]$ elements are all B19 in units of meters; for $[W_3]$ and $[W_4]$, the scaling is B0 in units of meters/centi-second.

- [WMAT]: Weighting matrix used in R27 computations. Elements of first(WMAT₀₋₂) row are scaled Bl2; of second row are scaled B-2; and of third row are scaled B-17 (units meters, meters/centi-second, and meters/ centi-second² respectively). Matrix initialized in "TAKE2". See [VHF.W].
- WRENDPOS: Single precision value of W-matrix initialization for R22 position computations, scale factor B19, units meters. Can be updated by "V67CALL", and would be expected to form part of the prelaunch load. It is also loaded (if final pass and in minimum key rendezvous mode) in "VN1645" with K [see Burn Computations), and is used in "REND5C".
- WRENDVEL: Single precision value of W-matrix initialization for R22 velocity computations, scale factor BO, units meters/centi-second. Can be updated by "V67CALL", and would be expected to form part of the prelaunch load. It is also loaded (if final pass and in minimum key rendezvous mode) in "VN1645" with K posvel3 (see Burn Computations), and is used in "REND5C".
- WWOPT: Single precision cell, scale factor Bl4, used in "V67CALL" to specify whether W-matrix initialization elements are to be changed. The value when displayed initially in R3 of N99 is O: a non-zero value after PRO to 0699 causes WRENDPOS and WRENDVEL to be changed.
- WWPOS: Quantity displayed in Rl of N99, scale factor Bl9, units meters. It provides the present W-matrix RSS position error. If the loading option is selected, is used as source for WRENDPOS information.
- WWVEL: Quantity displayed in R2 of N99, scale factor BO, units meters/ centi-second. It provides the present W-matrix RSS velocity error. If the loading option is selected, is used as source for WRENDVEL information.
- \underline{Z}_{O} , \underline{Z}_{l} : Measurement vector information, scale factor B2O, units meters, computed at the start of "INCORPI". Subsequently rescaled.