MIT $/$ IL
Apollo Guidance and Navigation
System Test Group Memo No. 1016
To: Ain Lats
From: Warren Prince Jr.
Date: $\quad 18$ May 1967
Subject: Supplement to Gyro Drift Test
Reference: MIT/IL STG Memo No. 380, Revision B Black / apollo GeN system
This memo contains a description and operating procedure for measuring the ADOA terms in the Gyro Drift Test. This program is part of the IMU Performance Tests incorporated in the 501 Mission Program Assembly.

In addition to nine IRIG drift terms which are defined in System Test Group Memo No. 380, Revision B, there are three additional terms which should be considered:

ADA (X, Y, Z):

SRA
defined as acceleration sensitive drift due to a case acceleration of one g along the positive gyro OUTPUT axis. A positive ADOA, due to an acceleradion along the positive OUTPUT axis (or gravity acting along the minus OUTPUT axis) will cause a negative torque about the gyro OUTPUT axis

IA

The equations for positions $1,2,3$, which in the present test measure the NBD terms should be changed to include the ADOA terms:

POSITION 1

$$
\mathrm{D}_{\mathrm{H}_{1}}=\mathrm{W}_{\mathrm{H}}+\mathrm{NBDY}+\mathrm{ADOAY}
$$

POSITION 2

$$
\mathrm{D}_{\mathrm{H}_{2}}=-\mathrm{W}_{\mathrm{H}}+\mathrm{NBDZ}-\mathrm{ADOA} Z
$$

POSTION 3

$$
D_{H_{3}}=-W_{H}+N B D X+A D O A X
$$

Since each equation contains two unknowns it is necessary to define a new set of equations which will be designated $\mathrm{D}_{\mathrm{H}_{1}} \quad \mathrm{D}_{\mathrm{H}_{2} \text { a }} \quad \mathrm{D}_{\mathrm{H}_{3} \text { a }}$. Three cora, 2 a, 3 a.
responding positions $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}$ will be incorporated into the test to measure these terms, which will place the respective gyro output axis in opposite direcdion, with the input axis maintained in the same direction.

MIT/IL
STG Memo No. 1016
page 2
SM CONFIGURATION FOR POSITION 1 \& 1 a

POSITION 1 a

Equations for the three new positions are as follows:
POSITION 1

$$
\mathrm{D}_{\mathrm{H}_{1 \mathrm{a}}}=-\left(\mathrm{W}_{\mathrm{H}}+\mathrm{NBDY}-\mathrm{ADOAY}\right)
$$

POSITION 2 a

$$
D_{H_{2 a}}=-\left(-W_{H}+N B D Z+A D O A Z\right)
$$

POSITION 3 a

$$
\mathrm{D}_{\mathrm{H}_{3 \mathrm{a}}}=-\left(-\mathrm{W}_{\mathrm{H}}+\mathrm{NBDZ}-\mathrm{ADOAX}\right)
$$

Minus signs outside parentheses are present because of the out of phase orientation of the monitoring pisa.

The three ADOA and NBD terms can then be calculated as follows:

$$
\begin{aligned}
& \text { ADOAY }=\frac{{ }^{D_{H_{1}}}+{ }^{D_{H}}{ }_{1 \text { a }}}{2} \\
& \text { NBDY }=D_{H_{1}}-W_{H}-A D O A Y \\
& A \dot{D O A Z}=-\left(\mathrm{D}_{\mathrm{H}_{2}}+\mathrm{D}_{\mathrm{H}_{2 a \mathrm{a}}}\right) . \\
& 2 \\
& \text { NBDZ }=D_{H_{2}}+W_{H}+A D O A Z \\
& \text { ADdAX }=\frac{\mathrm{D}_{\mathrm{H}_{3}}+\mathrm{D}_{\mathrm{H}_{3 ~ a}}}{2} \\
& \text { NBDX }=D_{H_{3}}+W_{H}-A D O A X
\end{aligned}
$$

MIT/IL
STG Memo No. 1016
page 3

OPERATING PROCEDURE

1. Prior to initialization of test, operator should load the entire following erasable memory routine:

POSITION $1 \mathrm{a}, \mathrm{XDN}, \mathrm{Y}$ SOUTH, Z WEST		
1600	CAF HALF	34522
1	TS YSM +Z	51434
2	COM	40000
3	TS XSM	51424
4	TS ZSM + 4	51444
5	TC PROG	07546
POSITION 2 a, XUP, Y EAST, Z NORTH		
1606	CAF HALF	34522
7	TS XSM	51424
1610	TS YSM + 4	51436
1	COM	40000
2	TS ZSMTZ	51442
3	TC PROG	07566

POSITION 3 a X NORTH, Y EAST, Z DOWN

1614	CAF HALF	34522
5	TS YSM +4	51436
6	COM	40000
7	TS XSM + Z	51426
1620	TS ZSM	51440
1	TC PROG	07606

2. Having initialized and completed POSITION 1 of test, operator should observe VO6, N66 nashing and record contents of R1, R2, and R 3. This data should be recorded as $\mathrm{D}_{\mathrm{H}_{1}}$.

MIT/IL
STG Memo No. 1016
page 4
3. Depress V 33 E
4. Operator should observe V06 N66 flashing and verify:

R 1 Navigation base tilt angle in degrees (+ 00032)
R 2 Test index number (+ 00000)
R 3 Position number (+ 00002)
5. At this point, operator should depress

V 21 N 01 ENTER 1223 ENTER XXXXX ENTER
For position la load 72051
2 a load 72057
3 a load 72065
6. Operator should verify V 06 N 66 flashing

R1, R2 same as step 4
R 3 should contain the following:
-03030 corresponding to position 1 a
-03024 corresponding to position 2 a
-03018 corresponding to position 3 a
7. Depress V 33 E. Prior to the coarse align routine program will jump to an erasable routine to calculate SM orientation.
8. Approximately 18 minutes later, operator should observe $V 06 \mathrm{~N} 66$ flashing and record contents of $\mathrm{R} 1, \mathrm{R} 2$ and R 3 for position 1 a as $\mathrm{D}_{\mathrm{H}_{1}}$ a for position 2 a as $\mathrm{D}_{\mathrm{H}_{2}}$; for position 3 a as $\mathrm{D}_{\mathrm{H}_{3}}$ a
9. Depress V 33 E
10. Operator should run following sequence:

1. POSITION $1=D_{H_{1}}$
2. POSITION la $=D_{H_{1 ~ a ~}^{\prime}}$
3. POSITION $2=D_{H_{2}}$

MIT/IL
STG Memo No. 1016
page 5
4. POSITION 2 a $=$

$$
\mathrm{D}_{\mathrm{H}_{2}}
$$

5. POSITION 3

$$
=\quad \mathrm{D}_{\mathrm{H}_{3}}
$$

6. POSITION 3 a

$$
=\quad \mathrm{D}_{\mathrm{H}_{3}}
$$

The above operations were verified in the System Test Laboratory with
the Solrum 55 program.

WP:dfh
Distribution:
A. Laats
R. Lones
J. Miller
D. Sheridan
G. Silver
R. McKern
J. Beauregard

MIT/IL at KSC
MIT/IL at NAA
MIT/IL at GAEC
MIT/IL at MSC
J. Lawrence
W. Coleman

STG IL 7 File
STG IL 11 File
J. Feldman

