

Reference:

"Dynamics of the 16 PIP Accelerometer", J. Goclowski August, 1962, XDE-34-A-501.

1. Basic Block Diagram

The amplitude modulated suppressed carrier output of the pickoff contains two bits of information.
a. The signal phase indicates which side of null the pendulum is on.
b. The signal amplitude indicates pendulum angle.

The pickoff output is amplified and fed to the interrogator (Fig. \#l). When the pendulum angle exceeds a prescribed minimum, an interrogate pulse from the computer samples the signal amplitude to see which side of null the pendulum is on, and along with a precision switch pulse instructs the current switch to supply current to the proper torquer coil. At a fixed time interval, dependent upon mode, the interrogator receives a reset and switch pulse thereby instructing the current switch to remove the applied current. The pendulum will have been torqued into the threshold and if an acceleration is still present the pendulum will again move out of the threshold and the above process will repeat.
2. Modes of Operation

- There are three modes of operation which change the range and sensitivity of the loop.
a. Sensitive Mode (Ternary)

Constant current pulses 100 ma . In amplitude and $78.125 \mu \mathrm{sec}$. in width are applied to the torquer network at a rate that is a function of the magnitude of the input acceleration. This mode has a velocity resolution that is in the order of twelve times better than that of emergency operation. Its maximum input acceleration capability is in the order of one twelfth of that in emergency mode.
b. Normal Mode (Ternary)

Pulse amplitude is the same as the sensitive mode; however. the pulse width has been increased to $312.2 \mu \mathrm{sec}$. This results in a velocity resolution that is twice as good as emergency mode and a maximum input acceleration capability of one half that of emergency.
\square

BASIC PIPA BLOFK DIAGRAM
FIG K

AC SPARK PLUG DIVISION General Motors Corporation Milwoukee, Wisconsin	XDE -34-A-513	
	ENGINEERING DESIGN INFORMATION EXHIBIT	
16 PIP ELECTRONICS	By C. R. Ross	$\begin{aligned} & \text { Dere . 14, } 1962 \\ & \text { Nov. 14, } \end{aligned}$

c. Eimergency (Binary)

In this mode the pendulum is kept continually in motion because current is fed alternately to each torquer. This mode has the poorest velocity resolution and the maximum input acceleration capability.
3. Interrogator \& Current Switch Operation

For ease of explanation assume nearly $+8 G$ input acceleration and normal mode operation.

The zero and π phase outputs of the A.C. differential amplifier are fed to Schmitt triggers (Fig. \#2). The bias level on these circuits determine the threshold (dead zone) of the loop. Once this bias is exceeded positive pulses appear on the output of Schmitt 74 (Fig. \#3) and are in phase with the interrogate pulses. These pulses enable G I to supply negative triggers to l-shot T4. The l-shot stretches the G I pulse out to $10 \mu \mathrm{sec}$. to insure coincidence with the switch pulses. With coincidence a negative pulse out of G3 sets F.F. T4 and also enables $G 6$ to supply a reset pulse to F. F. T(Fig. \#4). F.F. It turns on the 14 switch to supply current to the $T+$ torquer. The pendulum will be torqued into the threshold but before it can exceed the opposite threshold the torque is removed. This is accomplished by suppling a reset pulse in conjunction with a switch pulse to $G^{4} 312.5 \mu \mathrm{sec}$. after the interrogate pulse. The negative pulse out of $G 4$ resets F.F. T4 and F.F. T- via G6 and G7. If the input acceleration is removed the pendulum will remain in the dead zone and no more current will be supplied to the torquer. However, if acceleration is maintained. constant current pulses will be fed to the torquer at a rate that is a function of the acceleration magnitude.

Since current through the torquer is maintained at a constant level by comparing the voltage across the scale factor resistors to a precision voltage reference (Fig. \#l), current must be maintained in the scale factor resistors to prevent saturation of the D. C. differential amplifier. This is accomplished by feeding the reset sides of F. F. T4 and F.F. T- to an "and" gate. When there is no current in either torquer the F.F.'s will enable G8 (Fig. \#4) to supply base current to the dummy switch, thereby maintaining current in the scale factor resistors.

G9 and Gl0 are ΔV computer output gates. The back swing of an amplified, differentiated interrogate pulse is gated with the set side of the F.F.'s to give a pulse out each time the torquer receives a current pulse.
\square

H
感
+
+
\circ
0
0
INTERROGATOR
FIG. 2

Page 5 of 9

CURRENT SWITCN

$$
E / G_{0} \neq 4
$$

AC SPARK PLUG DIVISION
Generol Mofors Corporation
Milwouker, Wisconsin

16 PIP ELECTRONICS

