AC SPARK PLUG DIVISION		EXPERIMENTAL DESIGN EX	HIBIT XDE 34-9	-15		REV			
Gene	ral Motors Corporation	BY	DATE)	TOTAL PAGES	PAGE			
MI	Iwaukee, Wisconsin	R. Picard	May 28, 1	965	34	1			
PREI	JMINARY BLOCK II AN SCOPE	D LEM PERFORMANCE SPECIF.	ICATIONS - APOLI	o sta	BILIZATION I	OOPS			
1.1	This specificat: and LEM APOLLO (ion establishes the perfo duidance and Navigation S	rmance required tabilization Lo	for t	he Block II				
2.	APPLICABLE DOCUM	ENTS							
2,1	The following do extent specified	cuments shall form a par l herein.	t of this speci:	ficati	lon to the				
	NASA PROCUREMENT	SPECIFICATIONS							
	PS 1000031- PS 2018623 PS 2018629	l (Resolver) (IG & MG TORQUE MOT (OG TORQUE MOTOR)	ORS)						
	NASA APOLLO GUIDANCE AND NAVIGATION SPECIFICATIONS								
	ND 1002037 ATP 2015497 ATP 6015497	(ENVIRONMENTAL QUAL (BLOCK II INERTIAL (LEM INERTIAL SUB-S	IFICATION SPECIE SUB-SYSTEM APOLI (STEM APOLLO TES	TES T PRO	ON) T PROCEDURE) CEDURE)				
	INTERFACE CONTRO	L DOCUMENTS							
	MH 01-01327 MH 01-01349	-216 (G&N ELECTRICAL INPO -416 (G&N THERMAL REQUIR	JT POWER) Ements)						
	XDE's								
	XDE 34-8-12	(ISS POWER SUPPLIES							
	DRAWINGS								
	2015564 2010040 2010004	(STABILIZATION LOOPS (IRIG PRE-AMPLIFIER) (GIMBAL SERVO AMPLIF) 'IER)						
	ENGINEERING SPEC	IFICATIONS							
	ES-7925 ES-8153	(IRIG I&A) (IRIG CALIBRATE & TH	STING)						
}.	REQUIREMENTS								
3.1	<u>General</u> - The put the orientation of to inertial space External disturba of the loops is a	arpose of the three stabi of the three 16-PIP accel within specified limits ances are discussed in se shown in Figure 1.	lization loops erometers fixed under external ction 3.2.1. A	is to with distu funct	maintain réspect urbances. ional diagra	em.			

1

11 11

AC SPARK PLUG DIVISION		EXPERIMENTA	L DESIGN EXHIB	T XDE 34-S	-15	REV
Genera Milw	l Motors Corporation aukee, Wisconsin	ву R. Picar	·d	DATE May 28, 1	1965 TOTAL	PAGES PAGE
	T					
3.2	Inputs					
3.2.1	Disturbance Inp performance und gimbals and gim cause disturban ND-1002037)	uts - The sta er external di bal bearing fr ces to the ori	bilization loc sturbances. 1 iction the fol entation of th	ps must main Due to mass u lowing input he stable mem	tain adequat nbalance of s to the sys ber. (Refe	e the tem will rence
	a) Accele b) Vibrat	ration 20 <u>+</u> ion Vibrati 4.9.2 o	lg maximum ons as stated f ND-1002037	in sections	4.9.1 and	
	c) Shock d) Rotati	Sawtooth wa on 720 degr 60 degre up to 10	veform of 6 mi ee/sec about t e/sec about ar of gimbal lo	llisecond du he outer gim y arbitrary ock.	ration, 15g j bal axis. axis in pass	peak. ing
3.2.2	Guidance and Na APOLLO Guidance stabilization lo in the power sup	vigation Input and Navigation pops must main oply listed in	Power - DC H n equipment fr tain adequate MH 01-01327-2	ower will be om the APOLL performance 16.	supplied to O spacecraft under the va	the . The riations
	a) Steady b) Transid	State Voltage ent Voltage Lin	Limits 25. nits 24 to steady second	8 to 30.8 vo 32 volts DC, state condi	lts DC. with recove: tion within 1	ry to 1.0
3.2.3	Inertial Subsyst adequate perform supplies which a	tem Generated) nance under va are contained :	Power - The st riations in th in the inertis	abilization e 3200 cps a l subsystem.	loops shall n nd -28VDC por (Reference	naintain wer XDE 34-S-11
3.2.4	Thermal Environ requirements spo MH 01-01349-416	ment - The stal ecified herein	under the the	p shall meet rmal environ	the perform ment specific	ance ed in
3.3	Loop Performance	2				
3.3.1	Steady State Err friction and man as specified in	cors - The gim as unbalance in Table 1.	oal angle stea n a gravitatio	dy state err nal field of	or due to sta 20 g's shall	atic L be
			TABLE 1			
		STEADY STATI	E GIMBAL ANGLE	ERROR	20.0	
		L	w Gain No	minal Gain	High Gain	
	Outer Gimbal Ang	sle 45	.40 sec 43	.71 Bec	41.62 sec	
	Middle Gimbal Ar	ngle 45	.35 sec 43	.09 sec	41.60 sec	
	Trees and Other 1. And	7. 1.1	00 5	10	100	

з,

4441	1010	DEV	245
IN I L	1010	KEV	203

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
	BY	DATE	TOTAL PAGES	PAGE
Milwaukee, Wisconsin	R. Picard	May 28, 1965	34	4

- 3.3.2 Dynamic Error The dynamic error (gimbal angle/torque disturbance) for the three stabilization loops shall have a nominal frequency response as shown in Figure "2".
- 3.3.3 <u>Transient and Frequency Response</u> The nominal transient and frequency responses of the torque developed by the torque motors for a torque disturbance input to the gimbals are shown in Figures 3 and 4 respectively.

3.4 Components and Component Performance

In order to meet the requirements specified in section 3.3, the following components shall be utilized in the Stabilization Loops:

- a) APOLLO 25 IRIG
- b) IRIG Pre-amplifier
- c) Resolver
- d) Demodulator
- e) Filter
- f) Stabilization Amplifier
- g) Torque Motor
- h) Gimbals

3.4.1 APOLLO 25 IRIG - The APOLLO 25 IRIG shall have the following characteristics:

- a) $H = 0.434 \times 10^6 \text{ GM-CM}^2/\text{ sec}$
- b) Nominal damping (C) 460,000 d-CM/rad/sec (4%/^OF change in C due to changes in temperature)
- c) $I = 346.2 \text{ GM-CM}^2$
- d) Float Stops 0.55° to 1.2° from null measured about input axis
- e) Gyro Null Voltage 6 mv maximum (at system level)
- f) The net gain of IRIG shall be adjusted to a value of $7.0 \pm 2.5\%$ volts (rms)/rad by addition of a resistor in series with the signal generator.

3.4.2 IRIG Pre-amplifier - The IRIG Pre-amplifier shall have the following characteristics:

- a) Gain 214 + 2 v/v
- b) Phase Shift 180 + 10 degrees with a stability of + 1
- c) Bandwidth The minimum bandwidth (i.e., 3db from gain at 3200 cps) centered at 3200 cps shall be 1800 cps
- d) Saturation Level 10v rms minimum

e) Residual Noise - Less than 70 mv rms (input shorted)

General M Milwaul	heters Corporation kee, Wisconsin <u>Resolver</u> - The r following charact a) Gain - b) Angular	BY R. Picard resolver used in the X and teristics: 1.0 <u>+</u> 3% Ferror - 10 arc minutes r	DATE May 28, 1965 d Z loops shall have	the	PAGE 8
Milwaul	Resolver - The r following charact a) Gain - b) Angular	R. Picard resolver used in the X and teristics: 1.0 <u>+</u> 3%	May 28, 1965 d Z loops shall have	34 the	8
3.4.3	<u>Resolver</u> - The r following charac a) Gain - b) Angular	esolver used in the X and teristics: 1.0 <u>+</u> 3%	d Z loops shall have	the	
	a) Gain - b) Angular	$1.0 \pm 3\%$			
	b) Angular	Error - 10 arc minutes			
			peak		
	c) Quadrat	ure - The quadrature volt resolver shall be :	tage introduced by th less than 50 mv.	1e	
	d) Pick Up	- The resolver when open pick up less than 5 mm	rating in the system v in phase.	shall	
3.4.4	Demodulator - Th have the followi	e demodulator shall be a ng characteristics:	full wave diode brid	ige and	
	a) Frequen	су - 3200 срв			
	b) Output	Saturation Level - 10 VDC	C minimum		
	c) Gain -	1.0 ^{vdc} /v (rms)			
	d) Quadrat	ure Rejection - 20:1			
3.4.5	Filter - The fil have the followi	ter shall be a tuned four ng transfer function:	rth order butterworth	and shall	
	<u>e out</u> = .59 (4	$\frac{s^2}{613)^2} + 1$			
	C in	$\left(\frac{s}{3378} + 1\right) \left[\frac{s^2}{(3604)^2} + \frac{2(.1)}{(3604)^2}\right]$	$\frac{1786}{604}$ s + 1 $\left[\frac{s^2}{(3787)^2} + \frac{1}{(3787)^2}\right]$	<u>2(.6192)</u> 3787	S + 1
.4.6	Stabilization Am demodulator, and gains for the th module connector characteristics:	plifier - The three modul stabilization amplifier, ree loops are accomplishe . The stabilization ampl	les, each of which co , are identical. The ed by connections thr lifiers shall have th	ntain a fil different ough the e following	ter,
	a) DC Gain	- Inner Gimbal Loop:	16.4 <u>+</u> 1.7 amps/volt		
		Middle Gimbal Loop:	32.8 + 3.3 amps/volt		
		Outer Gimbal Loop:	49.2 + 5.0 amps/volt		

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-S-15		REV
General Motors Corporation Milwaukee, Wisconsin	By R. Picard	DATE May 08 1065	TOTAL PAGES	PAGE
b) DC Off	set - With a 3200 cps 0-phase into the demodulator, th amplifier (using the inu 0.0 + 0.1 ydc with respo	signal of less the output of the ner loop connect: ect to ground.	than 20 mv stabilizati ion) shall b	.on e
c) Output	Saturation - + 25.8 vdc minin	num		
d) Trensfe	er Function - The stabilization the following li	on amplifier sha inear transfer fi	ll have unction:	
i.	$= K (S/W_2 + 1) (SW_3 + 1)$			
e_{in}	$(s_{W_1} + 1) (s_{W_4} + 1)$			
K is t	the DC gain as listed in a)			
W	$1 = .125 \pm .02 \text{ sec}^{-1}$			
W	$2 = 5 \pm .75 \text{ sec}^{-1}$			
W	$_3 = 155 \pm 25 \text{ sec}^{-1}$			
W	$= 2,000 + 350 \text{ sec}^{-1}$			
3.4.7 <u>Torque Motors</u> -	The torque motors shall have	the following ch	naracteristi	CS:
3.4.7.1 Inner & Middle I	Loop Torque Motors:			
a) Sensit	ivity - 1.12 ft-1bs + 10%			
b) DC Rest	Lstance (25°C) - 60 ohms max.			
c) Self Ir	uductance04 henry nom.			
d) Ripple	Torque - 10 oz-in p-p max.			
3.4.7.2 Outer Loop Torqu	le Motor:			
a) Sensiti	vity906 ft-1bs + 10%			
	qma			

c) Self Inductance - .028 henry nom.

d) Ripple Torque - 10 oz-in max p-p

AC SPARK PLUG DIVISION		SION	EXPERIME	ENTAL DESIGN EXH	IBIT	XDE 34.	S-15		
General	General Motors Corporation				DATE		TOTAL PAGES	PAGE	
Milwai	ukee, Wisconsi	n	R. Pi	lcard		May 28,	1965	34	1
3.4.8	Gimbals -	• The o:	rientation	of the three g	gimbal	s and th	e three	gyros is	shown
	in Figure	= 5.							
	a)	Static	Friction	- The maximum v in a l.0 g fi	values ield s	for sta re:	tic fri	ction	
				Inner Axis	17	.4 in-oz			
				Middle Axis	17	.4 in-oz			
				Outer Axis	18	3.2 in-oz			
	ъ)	Moment	of Inerti	a - The gimbals moments of	s shal inert	l have t ia:	he foll	owing	
				Inner Axis	J	≈ .017	slug-f	t ²	
				Middle Axis	J	≈ .033	slug-f	t ²	
				Outer Axis	J	≈.050	slug-f	t ²	
	c)	Mass Ui	nbalance -	The mass unbal less than 0.5	ance in-oz	of the g	imbals	shall be	
4.	QUALITY A	SSURANC	CE PROVISI	ONS					
4.1	General								
	In order Loops the	to assu follou	ure adequa ving tests	te performance shall be run.	of th	e Apollo	Stabil	ization	
4.1.1	Steady St	ate Eri	ror - With foll	the system in owing requireme	a ste nts s	ady stat hall be	e condi met:	tion the	
	a)	Output amplif: shall 1	of IRIG P lers shall be less th	reamplifiers - be less than l an	The o	utput of uadratur	the IR e and the	IG pre- he in phase	volta
				Inner Axi	.8	75 mv			
				Middle Ax Outer Axi	.8	00 mv 80 mv			
	- 1								
	b)	stabil: and mid 5.6 ar	Ization Am Idle loop Id minus 5	plifier Outputs stabilization a .6 volts with r	espec	e voltag iers sha t to gro	e outpur 11 be be und.	t of the in etween plus	ner
		The vol	Ltage outp be between	ut of the outer plus 4.1 and m	loop inus	stabili 4.1 volt	zation ; s with ;	amplifier respect to	

AC SPARK PLUG DIVISION General Motors Corporation Milwaukee, Wisconsin		EXPERIMENTAL DESIGN EXHIBIT	XDE 34-S-15						
		BY R. Picard	DATE May 28, 1965	total pages 34	PAGE 12				
	c) Torque and mi The to +120 m	Motor Current - The torque m ddle loops shall be between - rque motor current of the out a and -120 ma.	notor current of t + 95 ma and -95 ma ter loop shall be	he inner between					
+.1.2	<u>Step Response</u> -	With a d-c step input as per amplifier, the time for the overshoot peak shall not be amplifier output shall not h over a 5% tolerance band of	r table (2) into t output to reach i greater than 25 m have more than six the steady state	he stabiliz ts first s. The pre (6) peaks value.	ation				
+.1.3	Frequency Respo	nse - With a variable frequer applied to the stabiliz Preamplifier shall have 55 and 120 cps. The pr an Mp greater than 12 d	ncy signal as per zation amplifier, a 6db downpoint reamplifier output ib.	Table (2) the IRIG between shall not	have				
		TABLE 2							
		Stabilization Amplifier Test	Voltages						
	Sect	ion Gimbal Axis	Voltage						
	4.1. 4.1. 4.1. 4.1. 4.1. 4.1. 4.1.	2 Inner 3 Inner 2 Middle 3 Middle 2 Outer 3 Outer	10.0 ± 0.5 2.0 ± 0.1 5.0 ± 0.25 1.0 ± 0.25 1.0 ± 0.25 1.0 ± 0.05	vdc v p-p vdc v p-p vdc vp-p					
•	PREPARATION FOR	DELIVERY							
	Not applicable.								
0.	ANALYSIS								
.1	Introduction to Analysis								
	It is required respect to iner will measure the respect to iner in spite of dis- to inertial spa	that the stable member maintant tial space so that the three e proper components of the sp tial space. The stable member turbance torques and motions te.	in its orientation mutually perpendi- pacecraft accelerater must maintain to of the spacecraft	n with cular PIPA' tion with his orienta with respe	s tion ct				
	The stable memb	er is located within a gimbal	system which pro	videsthree					

The stable member is located within a gimbal system which provides three degrees of rotational freedom. Gyros are used to sense rotations of the stable member with respect to inertial space. Signals from these sensors are fed to a servo system which produces a corrective torque on the stable member.

AC	AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-S-15		REV	
	General motors Corporation	BY	DATE	TOTAL PAGES	PAGE	
	Milwaukee, Wisconsin	R. Picard	May 28, 1965	34	13	

The transfer functions for the individual components of the loop will be determined. These individual transfer functions will be combined to obtain the loop transfer functions. The performance of the system will then be determined from the loop transfer functions.

6.2 Loop Component Transfer Functions

The components of the three stabilization loops are identical with the exception of (1) the moments of inertia of the three gimbals, (2) the feedback connections used on the stabilization amplifiers, (3) the gyro output signals in the X and Z loops are passed through a resolver, and (4) the outer loop utilizes a different torque motor than the inner and middle loops.

6.2.1 IRIG - The performance equation of the gyro is

$$(Is^{-} + Cs) Ag = HW_{IA} + M_{CMD} - HA_{g} W_{SRA} + U - IW_{OA} s$$

where

I = effective output axis moment of inertia C = Damping constant about the output axis H = Angular momentum W_{IA} = Angular rate about the input axis W_{SRA} = Angular rate about the spin reference axis W_{OA} = Angular rate about the output axis M_{CMD} = Command torque about the output axis U = Uncertainty torque about the output axis s = Laplace operator Ag = Gyro output angle

The last three terms in the right member of Eq (1) are all undesirable inputs to the gyro. The cross-coupling of the spin reference axis component of angular velocity is minimized by keeping the gyro output angle very small. The uncertainty torque is kept small by careful manufacture. Since H is over 1000 times larger than I, the effect of angular acceleration about the output axis is small.

With no command torque being applied to the gyro, the transfer function of the gyro can be expressed as:

$$\frac{E_{o}}{W_{IA}} = \frac{H/C}{S} \frac{K}{(ST+1)}$$

where

$$\mathcal{T} = I/c$$

 $K = E_0$

This information is for product engineering use only; for use in production, the contents should be released on applicable drawings and/or specifications; for use by design subcontractors, contents should be released by XCR (MIL 1101).

(1)

(2)

MI	LI	01	8 R	EV	265
	_			_	

Δ.,

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
Milwarkee, Wissessie	BY	DATE	TOTAL PAGES	PAGE
MIIWOUKee, WISCONSIN	R. Picard	May 28, 1965	34	14

Inserting the values given in 3.4.1.

$$\frac{E_0}{W_{IA}} = \frac{7.0}{S\left(\frac{S}{1330} + 1\right)} \qquad \frac{\text{volts (rms)}}{\text{rad.}}$$
(3)

6.2.2 <u>Gyro Preamplifier</u> - The transfer function of the preamplifier is a pure gain over the frequency band of interest.

Gain = 214 V/v(4)

6.2.3 <u>Demodulator and Filter</u> - The demodulator is a full wave bridge type followed by a tuned fourth order butterworth filter as shown in Figure 6.

drawings and/or specifications; for use by design subcontractors, contents should be released by XCR (MIL 1101).

MIL	IUIS	REV	205

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
Milwaukee, Wisconsin	BY	DATE	TOTAL PAGES	PAGE
	R. Picard	May 28, 1965	34	15
The transfer adm	ittance is:			
$\frac{i_o}{e_a} = -$	$\frac{2\sqrt{2}}{\pi}$ (s ² L ₂ C ₃ +	1)		(
^{cin} s ⁵ (L ₁ L ₂ C ₁	$C_2 C_3 R_3 (R_s + R_{1/2} + R_2) + s^4$	$(L_1L_2) \left[C_2 C_3 R_3 + \right]$	$C_1 C_2 (R_S + 1)$	R _{1/2} + R
		+ ($C_1 C_3 (R_s + R_s)$	1/2 ^{+ R} 2
+ s ³ [L ₂ C ₃]	$R_{3}(R_{S}+R_{2}+R_{1/2}) (C_{1}+C_{2}) + L_{1}L_{2}$	$(c_2 + c_3) + L_1 c_1 c_2$	2 ^R 3 (R _S +R _{1/2}	(2^{+R_2})
+ $s^2 \left[L_2 c_3 \right]$	$R_3 + (R_3 + R_{1/2} + R_2) (L_2 C_1 + L_2 C_2 + R_3)$	$L_2C_3+L_1C_1) + (L_2C_3+L_1C_1)$	$[C_2R_3]$	
+ S $\begin{bmatrix} L_1 + L_2 \end{bmatrix}$	$(R_{S}+R_{1/2}+R_{2}) (C_{1}+C_{2}) +$	$R_5 + (R_5 + R_{1/2} + R_{2})$	<u>_</u>)]	
where: R_{S} (refle	ected source impedance) 🛩 10k	2		
$R_1 = 20$ $R_2 = R_3$	$L_1 = 25H, L_2 = 10H$			
$c_1 = .0$ $c_3 = .0$	0047 ufds, C ₂ = .01 ufds 0047 ufds, N = 1.5			
The transfer fund	ction becomes:			
io	$1.155 \times 10^{-5} \left[\frac{s^2}{(4613)^2} + 1 \right]$		_	(6

$$\frac{1}{100} = \frac{1}{100} \left[\frac{1}{100} + 1 \right] \left[\frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right]$$
where $i_0 = \frac{1}{R_3}$

$$\frac{e_{out}}{e_{in}} = \frac{1}{100} \left[\frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + \frac{1}{100} \right] \left[\frac{$$

AC SPARK PLUG DIVISION General Motors Corporation		EXPERIMENTAL DESIGN EXHIBIT	XDE 34-5-15		REV
		BY	DATE	TOTAL PAGES	PAGE
MITWOU	kee, wisconsin	R. Picard	May 28. 1965	34	1
.2.4	Stabilization A	mplifier - The stabilization	amplifier uses a	notch netwo	rk
6.2.4	Stabilization A	mplifier - The stabilization a path to produce the necessar	amplifier uses a y linear compens	a notch netwo sation. To	rk
6.2.4	Stabilization A in the feedback allow the loop	mplifier - The stabilization a path to produce the necessar, to settle from large angles,	amplifier uses a y linear compens non-linear compe	a notch netwo sation. To ensation is	rk

current sampling resistor, acts as a constant current source driving the torque motors. The amplifier gain for each loop is selected to give each loop approximately the same open loop gain. A simplified diagram of the amplifier is shown below.

FIGURE 7

a) The linear transfer function of the stabilization amplifier is shown below:

$$\frac{1_{o}}{e_{1}} = \frac{16.4 \text{K} \left[\text{S}^{2} + \text{S} \frac{\text{R}_{1}\text{C}_{1}(\text{R}_{2}+\text{R}_{4}) + \text{R}_{4}\text{C}_{3}(\text{R}_{1}+\text{R}_{2}) + \text{R}_{3}\text{C}_{3}(\text{R}_{1}+\text{R}_{2}+\text{R}_{4})}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}\text{R}_{3}+\text{R}_{3}\text{R}_{4}+\text{R}_{2}\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}\text{R}_{3}+\text{R}_{3}\text{R}_{4}+\text{R}_{2}\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{2}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}+\text{R}_{2}+\text{R}_{4})} + \frac{\text{R}_{1}+\text{R}_{2}+\text{R}_{4}}{\text{R}_{1}\text{C}_{1}\text{C}_{3}(\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{3}+\text{R}_{4}$$

for: $R_1 = 2 \text{ Meg}$ $R_3 = 1 \text{K}$ $R_7 = 71 \text{K}$ $C_1 = 4. \text{ ufds}$ $R_2 = 20 \text{K}$ $R_4 = 30 \text{K}$ $R_8 = 51 \text{K}$ $C_3 = .5 \text{ ufd}$

The transfer function becomes:

$$\frac{i_{o}}{e_{i}} \simeq \frac{16.4K}{[s/.125 + 1]} \frac{s/155 + 1}{[s/.125 + 1]}$$
(8)

MIL 1018 REV 265

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
General Motors Corporation	BY	DATE	TOTAL PAGES	PAGE
Milwaukee, Wisconsin	R. Picard	May 28, 1965	34	17
	R. Picard	May 28, 1965	34	<u> </u>

where K = 1 for I.G. K = 2 for M.G. K = 3 for O.G.

b) When the feedback diodes conduct, the transfer function becomes:

$$\frac{i_{0}}{e_{1}} = \frac{.41K}{(S R_{3}R_{2} + R_{3}R_{4} + R_{2}R_{4}) C_{3}} + 1)$$
(9)

inserting values:

$$\frac{i_0}{e_1} = \frac{.41K \left[\frac{S_{155} + 1}{15_{2,000} + 1} \right]}{\left[\frac{S_{2,000} + 1}{15_{2,000} + 1} \right]}$$
(10)

c) For large input signals, the forward diodes conduct and the transfer function becomes:

$$\frac{\frac{1}{e_{1}}}{e_{1}} \approx \left[\frac{R_{10}}{R_{7}+R_{8}+R_{10}} - \frac{R_{6}}{R_{5}+R_{6}+R_{7}} \right] \left[s \frac{R_{6}R_{10}(R_{5}+R_{7}) C_{6}}{(R_{5}+R_{6}+R_{7}) R_{10}-R_{6}(R_{7}+R_{8}+R_{10})} + 1 \right] \\ \left[s \frac{(R_{5}+R_{7})R_{6}C_{6}}{R_{5}+R_{6}+R_{7}} + 1 \right]$$
(11)

where:

$$R_5 = 75K$$
 $R_6 = 33K$
 $R_{10} = 33K$ $C_6 = .34$ ufds

$$\frac{i_{0}}{e_{1}} = \frac{.029 (S/14.7 + 1)}{(S/109 + 1)}$$
(12)

AC SPA	RK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-S-15		REV
Milwo	aukee, Wisconsin	BY R. Picard	DATE May 28, 1965	TOTAL PAGES	PAGE 18
.2.5	Torque Motor - ' The constant cu small resulting	The torque motor is driven by rrent source makes the motor t in the transfer functions in	the stabilizatio ime constant neg eq's (13 & 14).	n amplifier gligibly	7.
	$\frac{T}{I} = 1.12 \frac{F}{I}$.Lbs for Inner and Middle G	imbals		(13)
	$T/I = .906 \frac{F}{I}$	t.lbs for Outer Gimbal			(14)
.2.6	Gimbals - The mo	oments of inertia of the gimba	ls are:		
	Inner	Jæ.017 slug-ft ²			
	Middle	J≈.033 slug-ft ²			
	Outer	J8.05 slug-ft ²			
	The transfe	er function for the gimbal is	approximately gi	.ven by:	
	o T	$= \frac{60}{\text{KS}^2}$ Rad/ft-lb.			(15)

MIL 1018 REV 265

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
Milwaykaa Wiacaasia	BY	DATE	TOTAL PAGES	PAGE
Milwdukee, wisconsin	R. Picard	May 28, 1965	34	20

6.3 Stabilization Loop Analysis

Using the transfer functions developed in Section 6.2, the block diagram of the loop is shown in Figure 8. Assuming linear operation of the stabilization amplifier (S in position 1), and nominal values for the loop components, the component transfer functions are combined to give the following loop analysis.

6.3.1 <u>Gimbal Angle/Torque Disturbance</u> - The appropriate block diagram is shown in Figure 9.

where: $G = \frac{60}{\kappa s^2}$

$$H = \frac{24,600 \text{ K}_{\text{T.M.}} \text{ K} (\frac{\text{S}}{5} + 1) (\frac{\text{S}}{155} + 1) (\frac{\text{S}^2}{(4613)^2} + 1)}{\left[\frac{\text{S}}{125} + 1\right] \left[\frac{\text{S}}{1330} + 1\right] \left[\frac{\text{S}}{2000} + 1\right] \left[\frac{\text{S}}{3378} + 1\right] \left[\frac{\text{S}^2}{(3604)^2} + \frac{2(.1786)}{3604} \text{S} + 1\right]}{\left[\frac{\text{S}^2}{(3787)^2} + \frac{2(.6192)}{3787} \text{S} + 1\right]}$$

The open loop transfer function (GH) is given in eg. (16) and the open loop frequency plots are shown in figures (11 and 12).

$\begin{array}{c c} \hline \textbf{General Motors Corporation} & \hline \textbf{W} & A & \hline \textbf{DATE} & \hline \textbf{May 28, 1965} & \hline \textbf{TOTAL PAGES} \\ \hline \textbf{Milwoukee, Wisconsin} & \hline \textbf{W} & A & \hline \textbf{May 28, 1965} & \hline \textbf{TOTAL PAGES} \\ \hline \textbf{Milwoukee, Wisconsin} & \hline \textbf{W} & A & \hline \textbf{May 28, 1965} & \hline \textbf{TOTAL PAGES} \\ \hline \textbf{GH} & = \frac{1.476 \times 10^6 \text{ K_{IIM}} (8/5+1) (8/155+1) (\frac{g^2}{(4613)^2} + 1)}{g^2 \left[\frac{3}{2350} + 1\right] \left[\frac{3}{2500} + 1\right] \left[\frac{3}{2500} + 1\right] \left[\frac{g^2}{(3604)^2} + \frac{2}{(3604)^6} + 1\right] \left[\frac{g^2}{(3707)^2} + \frac{2}{(25707)^2} + \frac{2}{(2504)^2} + $	AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-5-15		REV
$\begin{aligned} GH &= \frac{1.476 \times 10^6 K_{\rm IIII} (8/5 + 1) (8/155 + 1) (\frac{8^2}{(4613)^2} + 1)}{8^2 \left[\frac{8}{125} + 1\right] \left[\frac{8}{1330^4} + 1\right] \left[\frac{8}{2000} + 1\right] \left[\frac{8}{3576} + 1\right] \left[\frac{8}{(3504)} + 2\frac{(.1766)}{(3504)} + 4\right] \left[\frac{8^2}{(3777)} + 2\frac{(.617)}{276} + \frac{2}{376} + 2$	General Motors Corporation Milwaukee, Wisconsin	By A R. Picard	DATE May 28, 1965	TOTAL PAGES 34	PAGE 21
$GH = \frac{1.476 \times 10^{6} K_{TM} (8/5 + 1) (8/155 + 1) (\frac{8^{2}}{(4613)^{2}} + 1)}{s^{2} \left[\frac{8}{125} + 1\right] \left[\frac{8}{1336} + 1\right] \left[\frac{8}{2000} + 1\right] \left[\frac{8}{3576} + 1\right] \left[\frac{8}{(5604)} + 2\frac{2(.1766)}{(5604)} + 1\right] \left[\frac{8^{2}}{(5767)} + \frac{2(.618)}{(5767)} + \frac{8}{(5767)} + \frac{2(.618)}{(5767)} + \frac{8}{(5767)} + \frac{2(.618)}{(5767)} + \frac{8}{(5767)} + \frac{2(.618)}{(5767)} + \frac{8}{(5767)} + \frac{8}{(5604)} + \frac{8}{(5767)} + \frac{8}{(5767$					
$\begin{aligned} \mathrm{GH} &= \frac{1}{\mathrm{g}^{2} \left[\frac{8}{125}+1\right] \left[\frac{8}{1350}+1\right] \left[\frac{8}{2000}+1\right] \left[\frac{8}{5376}+1\right] \left[\frac{8}{(3604)}2^{+}\frac{2(.1766)}{(3604)}2^{+}\frac{1}{(3604)}3^{+}\frac{1}{(3607)}2^{+}\frac{2(.617)}{376}\right]}{\left[\frac{8}{3767}\right]^{2}} \\ \text{The closed loop transfer function is given in eqs. (20 and 21) and the closed loop frequency response is shown in Fig. (2).} \\ &\qquad \qquad $	1.476 x 1	о ⁶ к _{тм} (s/5 + 1) (s/155 + 1)	$\left(\frac{s^2}{(4613)^2} + 1\right)$		(1
The closed loop transfer function is given in eqs. (20 and 21) and the closed loop frequency response is shown in Fig. (2). $ \frac{Q}{T. \text{ Dist}} = \frac{Q}{1 + HQ} (17) = \frac{1}{1/G + H} (18) $ $ \frac{Q}{T. \text{ Dist}} = \frac{1}{1/G + H} (18) $ $ \frac{Q}{T$	$GH = \frac{1}{s^2 \left[\frac{s}{125} + 1 \right]}$	$\left[\frac{s}{1330^{+1}}\right]\left[\frac{s}{2000^{+1}}\right]\left[\frac{s}{3378^{+1}}\right]\left[\frac{s^2}{(36)^{-1}}\right]$	2+ ^{2(.1786)} S+1 (3604)	$\left[\frac{s^2}{(3.787)^{2+2}}\right]$	(.6192) .3787
$\begin{aligned} \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{G}{1 + \text{HG}} \qquad (17) \\ &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (17) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (17) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + \text{H}} \qquad (18) \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac{1}{1/G + 1} \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} \\ \frac{{}^{0}_{G}}{T \cdot \text{Dist}} &= \frac$	The closed loo closed loop fr	p transfer function is given equency response is shown in	in eqs. (20 and) Fig. (2).	21) and the	
$= \frac{1}{1/G + H} $ (18) $= \frac{1}{1/G + H} $ (19) $= \frac{1}{1/G + H} $ (19) =	e _G T. Dist.	$= \frac{G}{1 + HG} $ (17)			
$\frac{-\frac{1}{1/G + H}}{\frac{9}{T \cdot \text{ Dist.}}} = \frac{1}{\frac{8}{100}} + \frac{2^{4},600\text{K}}{\frac{8}{100} + 1} \frac{8}{100} + 1 \frac{8}{10$	1. 2100	(18)			
$\frac{G}{T. \text{ Dist.}} = \frac{KS^2}{60} + \frac{24,600K}{10} \frac{K_{\text{IM}}}{(S/5 + 1)} \frac{(S/155 + 1)}{(S/155 + 1)} \frac{(S^2}{(4613)^2 + 1)}{(S^2} + \frac{1}{10} \frac{S^2}{(3604)^2 + \frac{2(.1786)}{3604}} + \frac{1}{10} \frac{S^2}{(3787)^2 + \frac{2(.1786)}{3604}} + \frac{1}{10} \frac{S^2}{(3787)^2 + \frac{2(.6192)}{3787}} + \frac{1}{10} \frac{S^2}{(5604)} + \frac{1}{10} \frac{S^2}{(5604)} + \frac{1}{10} \frac{S^2}{(5604)} + \frac{1}{10} \frac{S^2}{(5604)} + \frac{1}{10} \frac{S^2}{(3604)} + \frac{1}{10} \frac{S^2}{(3604)} + \frac{1}{10} \frac{S^2}{(3787)^2} + \frac{1}{10} $		$= \frac{1}{1/G + H} $ (10)			
$ \frac{\left[\frac{s}{125}+1\right]\left[\frac{s}{1330}+1\right]\left[\frac{s}{2000}+1\right]\left[\frac{s}{3378}+1\right]\left[\frac{s^{2}}{(3604)}2^{2}+\frac{2(.1766)}{3604}s^{+1}\right]}{\left[\frac{s^{2}}{(3787)}2^{2}+\frac{2(.6192)}{3787}s^{+1}\right]} \right] $ Using a conversion factor of 2.0626 x 10 ⁵ $\frac{sec}{rad}$ for S large: $\frac{9_{G}}{T. \text{ Dist.}} \approx \frac{60 \text{ rad}}{\text{KS}^{2} \text{ ft/1b}} \approx \frac{12.38 \times 10^{6}}{\text{KS}^{2}} \frac{sec}{\text{ft/1b}}$ for S small: $\frac{9_{G}}{G} \left(\frac{sec}{rt.1b.}\right) = \frac{8.4\left[\frac{s}{.125}+1\right]\left[\frac{s}{1330}+1\right]\left[\frac{s}{2000}+1\right]\left[\frac{s}{3378}+1\right]\left[\frac{s^{2}}{(3604)}2^{2}+\frac{2(.1786)}{(3604)}s^{+1}\right]}{\left[\frac{s^{2}}{(3787)}2^{2}+\frac{2(.6192)}{3787}s^{+1}\right]} \right]}$ K K _{TM} $\left[\frac{s}{5}+1\right]\left[\frac{s}{155}+1\right]\left[\frac{s^{2}}{(4613)}2^{2}+1\right]$	G T. Dist. KS ²	+ 24,600K K _{IM} (S/5 + 1) (S/1	55 + 1) (<u>s² (4613)</u> 2	+ 1)	()
$\begin{bmatrix} s^{2} \\ (3787)^{2} + \frac{2(.6192)}{3787} s + 1 \end{bmatrix}$ Using a conversion factor of 2.0626 x 10 ⁵ $\frac{\text{sec}}{\text{rad}}$ for S large: $\frac{9}{\text{G}} = \frac{60 \text{ rad}}{\text{KS}^{2} \text{ ft/1b}} \approx \frac{12.38 \times 10^{6}}{\text{KS}^{2} \text{ ft/1b}}$ for S small: $\frac{9}{\text{G}} = \frac{8.4 \left[\frac{8}{.125} + 1 \right] \left[\frac{8}{1330} + 1 \right] \left[\frac{8}{2000} + 1 \right] \left[\frac{8}{3378} + 1 \right] \left[\frac{s^{2}}{(3604)^{2}} + \frac{2(.1786)}{(3604)} s + 1 \right]}{\left[\frac{s^{2}}{(3787)^{2}} + \frac{2(.6192)}{(3604)} s + 1 \right]}}{\left[\frac{s^{2}}{(3787)^{2}} + \frac{2(.6192)}{3787} s + 1 \right]}}{\left[\frac{s^{2}}{(3787)^{2}} + \frac{2(.6192)}{3787} s + 1 \right]}$ K K _{TM} $\left[\frac{8}{5} + 1 \right] \left[\frac{8}{155} + 1 \right] \left[\frac{s^{2}}{(4613)^{2}} + 1 \right]$		$ \boxed{\frac{S}{.125}} + 1 \boxed{\frac{S}{1330}} + 1 \boxed{\frac{S}{2000}} + 1 \boxed{\frac{S}{330}} $	$\frac{s^2}{(3604)^{2+2}}$	(.1786) 3604 Stil	-
Using a conversion factor of 2.0626 x 10 ⁵ $\frac{\sec}{rad}$ for S large: $\frac{\Theta_{G}}{T. \text{ Dist.}} \approx \frac{60 \text{ rad}}{\text{KS}^2 \text{ ft/lb}} \approx \frac{12.38 \times 10^6}{\text{KS}^2} \frac{\sec}{\text{ft/lb}}$ for S small: $\frac{\Theta_{G}}{(\sec)} = 8.4 \left[\frac{S}{.125} + 1\right] \left[\frac{S}{1330} + 1\right] \left[\frac{S}{2000} + 1\right] \left[\frac{S}{3378} + 1\right] \left[\frac{S^2}{(3604)^2} + \frac{2(.1786)}{(3604)^2} + 1\right] \left[\frac{S^2}{(3604)^2} + \frac{2(.6192)}{(3787)^2} + 1\right]}{\left[\frac{S^2}{(3787)^2} + \frac{2(.6192)}{3787} + 1\right]}$ K K _{TM} $\left[\frac{S}{5} + 1\right] \left[\frac{S}{155} + 1\right] \left[\frac{S^2}{(4613)^2} + 1\right]$			$\left[\frac{s^2}{(3787)^2}+\frac{2}{2}\right]$	(.6192) _{S+1} 3787	
for S large: $\frac{\Theta_{G}}{T. \text{ Dist.}} \approx \frac{60 \text{ rad}}{\text{KS}^2 \text{ ft/1b}} \approx \frac{12.38 \times 10^6}{\text{KS}^2} \frac{\text{sec}}{\text{ft/1b}}$ for S small: $\frac{\Theta_{G}}{T. \text{Dist}} \left(\frac{\text{sec}}{\text{ft.1b.}}\right) = \frac{8.4 \left[\frac{S}{.125}+1\right] \left[\frac{S}{1330}+1\right] \left[\frac{S}{2000}+1\right] \left[\frac{S}{3378}+1\right] \left[\frac{S^2}{(3604)^2}+\frac{2(.1786)}{(3604)^3}+1\right]}{\left[\frac{S^2}{(3787)^2}+\frac{2(.6192)}{3787}S+1\right]}}{\left[\frac{S^2}{(3787)^2}+\frac{2(.6192)}{3787}S+1\right]}$ K K _{TM} $\left[\frac{S}{5}+1\right] \left[\frac{S}{155}+1\right] \left[\frac{S^2}{(4613)^2}+1\right]$	Using a conver	sion factor of 2.0626 x $10^5 \frac{s}{r}$	ec ad		
for S small: $\frac{\Theta_{G}}{T.Dist} \left(\frac{\sec}{ft.1b.} \right) = \frac{8.4 \left[\frac{S}{.125} + 1 \right] \left[\frac{S}{1330} + 1 \right] \left[\frac{S}{2000} + 1 \right] \left[\frac{S}{3378} + 1 \right] \left[\frac{S^{2}}{(3604)^{2}} + \frac{2(.1786)}{(3604)^{2}} + \frac{1}{(3604)} + 1 \right] }{\left[\frac{S^{2}}{(3787)^{2}} + \frac{2(.6192)}{3787} + 1 \right] } \\ K K_{TM} \left[\frac{S}{5} + 1 \right] \left[\frac{S}{155} + 1 \right] \left[\frac{S^{2}}{(4613)^{2}} + 1 \right] $	for S large:	$\frac{G_{G}}{\text{F. Dist.}} \approx \frac{60 \text{ rad}}{\text{KS}^2 \text{ ft/lb}} \approx \frac{2}{3}$	12.38x10 ⁶ sec KS ² ft/1b		(2
$\frac{\Theta_{G}}{\text{T.Dist}(\text{ft.lb.})} = \frac{8.4 \left[\frac{\text{s}}{.125} + 1\right] \left[\frac{\text{s}}{1330} + 1\right] \left[\frac{\text{s}}{2000} + 1\right] \left[\frac{\text{s}}{3378} + 1\right] \left[\frac{\text{s}^{2}}{(3604)^{2} + \frac{2(.1786)}{(3604)^{2} + \frac{2(.6192)}{(3604)^{2} + 1}}\right]}{\left[\frac{\text{s}^{2}}{(3787)^{2} + \frac{3787}{3787} + 1}\right]}$ $K K_{\text{TM}} \left[\frac{\text{s}}{5} + 1\right] \left[\frac{\text{s}}{155} + 1\right] \left[\frac{\text{s}^{2}}{(4613)^{2} + 1}\right]$	for S small:				
$K K_{TM} \left[\frac{S}{5} + 1\right] \left[\frac{S}{155} + 1\right] \left[\frac{S^2}{(4613)^2} + 1\right]$	G T.Dist	$= 8.4 \frac{s}{.125} + 1 \frac{s}{1330} + 1 \frac{s}{2000} + 1$	$\begin{bmatrix} s \\ 3378^{+1} \end{bmatrix} \begin{bmatrix} s^2 \\ (3604)^{2} \end{bmatrix}$	2(.1786) (3604) (2(.6192)	(2
		$K K_{IM} \left[\frac{S}{5} + 1 \right]$	$\left[\frac{s}{155} + 1\right] \left[\frac{s^2}{(465)}\right]$	$\frac{3787}{13}$ + 1	Ţ
			B.		

5.3.2 Torque Developed/Torqu by the torque motor fo $\frac{T_{Dev}}{T_{Dist}} = \frac{GH}{1 + GH}$ $\frac{T_{Dev}}{T_{Dist}} = \begin{bmatrix} S \\ 477.5 \end{bmatrix}$
$\frac{T \text{ Orgue Developed/Torgu}}{\text{by the torgue motor fo}}$ $\frac{T \text{ Dev}}{T \text{ Dist}} = \frac{\text{GH}}{1 + \text{GH}}$ $\frac{T \text{ Dev}}{T \text{ Dist}} = \left[\frac{\text{S}}{477.5}\right]$
The closed loop frequent torque motor output train Figure 3. •3.3 IRIG Test Point/Test In IRIG Preamplifier for a block diagram shown in Test Input

۹.

3.

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-5-15		REV	
	BY	DATE	TOTAL PAGES	PAGE	-
Milwaukee, Wisconsin	R. Picard	May 28, 1965	34	23	

where:

$$G = \frac{1.476 \times 10^{6} K_{IIM} (S/5 + 1) (S/155 + 1)}{s^{2} \left[\frac{S}{.125} + 1\right] \left[\frac{S}{1330} + 1\right] \left[\frac{S}{2000} + 1\right]}$$

$$H = \frac{\left[\frac{s^{2}}{(4613)} + 1\right]}{\left[\frac{s}{.3378} + 1\right] \left[\frac{s^{2}}{.3604} + \frac{2(.1786)}{.3604} + 1\right] \left[\frac{s^{2}}{.3787} + \frac{2(.6192)}{.3787} + 1\right]}$$

The open loop transfer function (GH) is given in eq. (24) and the open loop frequency plots are shown in figures (11 and 12).

$$GH = \frac{1.476 \times 10^{6} K_{TM} (s/5 + 1) (s/155 + 1) (\frac{s^{2}}{(4613)^{2}} + 1)}{s^{2} \left[\frac{s}{.125} + 1\right] \left[\frac{s}{1330} + 1\right] \left[\frac{s}{2000} + 1\right] \left[\frac{s}{3378} + 1\right] \left[\frac{s^{2}}{(3604)^{2}} + \frac{2(.1786)}{5604} + 1\right] \left[\frac{s^{2}}{(3787)^{2}} + \frac{2(.6192)}{3787} + 1\right]}$$
(24)

The closed loop transfer functions are given in eqs (26 and 27) and the closed loop frequency responses are shown in Figures (13 and 14).

$$\frac{\text{Test Point}}{\text{Test Input}} = \frac{G}{1 + GH}$$
(25)

$$\frac{\text{T.P.}}{\text{T.I.}} = \frac{\left[\frac{\text{s}}{3378} + 1\right] \left[\frac{\text{s}}{155} + 1\right]}{\left[\frac{\text{s}}{547.6} + 1\right] \left[\frac{\text{s}^2}{(246)^2} + \frac{2(.421)}{(246)} \text{s} + 1\right] \left[\frac{\text{s}^2}{(3120)^2} + \frac{2(.96)}{(3120)} \text{s} + 1\right]} \quad (26)$$

for the outer gimbal:

$$\frac{\text{T} \cdot \text{P} \cdot}{\text{T} \cdot \text{I} \cdot} = \frac{\left[\frac{\text{S}}{3378} + 1\right] \left[\frac{\text{S}}{155} + 1\right]}{\left[\frac{\text{S}}{409 \cdot 4} + 1\right] \left[\frac{\text{S}^2}{(311)^2} + \frac{2(.459)}{(311)}\text{S} + 1\right] \left[\frac{\text{S}^2}{(3090)^2} + \frac{2(.988)}{3090}\text{S} + 1\right]}$$
(27)

for the inner and middle gimbal:

AC SPA	RK PLUG DIVISION	EXPERIMENTAL DES	IGN EXHIBIT	XDE 34-S-15		
Genera	Motors Corporation	ВҮ	D	ATE	TOTAL PAGES	PAGE
Milw	aukee, Wisconsin	R. Picard	M	lay 28, 1965	34	24
	The transient r	remonse is shown in	Figure 15			
	THE GEORGECHO I	cphonoe to puosu tu	rigue I).			
5.4	Steady State Er	rors				
5.4.1	motor current, output are deri Steady State Gi gimbal error is to torque motor	stabilization ampli ved in Section 6.4. mbal Angle Errors i a function of 1) s gain, 2) the DC of	fier output a 2. n a 20g Field tatic torque fset of the s	nd IRIG pream - The steady disturbance an tabilization a	y state nd the IRIG amplifier an	đ
	a) IRIG t	e introduced by the o Torque Motor Gain	Iow Gain	Nominal Gain	High Gain	800
			<u> </u>			
	IRIG		6.8	7.0	7.2	
	IRIG P	reamp & Demod	212	214	216	
	Stabili	ization Amp.	14.8K	16.4K	18K	
	(IG and	1 MG) Torque Motor	1.01	1.12	1.23	
	(OG) IN	orque Motor	.010	.906	.996	
	Resolve	er	•91	1.00	1.03	
	IRIG to	o Torque Motor Gain				
			Low Gain	Nom. Gain	High Gain	
	Inner 1	Loop	21,600 ft-1b rad	27,300 ft-1b rad	34,400ft-	Lb 1
	Middle	Loop	42,000 ft-1b rad	55,000 ft-1b rad	71,000 ft-	Lb 1
	Outer 1	Loop	50,600 ft-1b rad	66,600 ft-lb rad	86,100 ft-1 rad	Lb 1
	Using a cor reciprocal:	version factor of] s of the IRIG to the	1074.296 ft-11 e torque gain	-sec/rad.in-o is shown in T	z, the able 3.	

•

AC SPARK PLUG DIVISION	EXPERIMENTAL DES	IGN EXHIBIT	XDE 34-5-1	.5		REV
General Motors Corporation Milwaukee, Wisconsin	BY R. Picard		DATE May 28, 19	965	готаl pages 34	PAGE 3
	TABLE	3				
RECIPRO	CAL OF IRIG TO TORQU	E MOTOR GA	IN IN SEC/IN	I.OZ		
	LOW GAIN	NOMINAL GA	AIN H	IIGH GA	IN	
Inner Axis	.050	.0394		.0312		
Middle Axis	.0256	.0196		.0152		
Outer Axis	.0213	.0161		.0125		
b) Static	c Torque Disturbance	e at 20g				
Inner	Axis:					
2]]]	Slip Rings (2 sets) Forque Motor Ball Bearing Mass Unbalance		3.4 in-0 8.0 12.0 10.0 33.4 in-0)Z)Z		
I	Effect of Stab. Amp.	DC offset	0.5 33.9 in-c)Z		
Middle	e Axis:					
נ נ ע	Slip Rings (2 sets) Forque M _O tor Ball Bearing Mass Unbalance		3.4 in-0 8.0 22.0 10.0 43.4 in-0	oz		
1	Effect of Stab. Amp.	DC Offset	0.5 43.9 in-c	DZ		

4.2 in-oz Slip Rings (2 sets) 8.0 Torque Motor Ball Bearing 32.0 10.0 Mass Unbalance 54.2 in-oz

Effect of Stab. Amp DC Offset

0.5 54.7 in-oz

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-S-15		REV	
Milwarkee Wie engin	BY	DATE	TOTAL PAGES	PAGE	
MIIWQUKEE, WISCONSIN	R. Picard	May 28, 1965	34	31	

c) Quadrature and Unwanted In-Phase Signal

Inner Axis: The IRIG and its wiring introduce 6 my of quadrature at the input of the IRIG preamplifier. This produces an unwanted signal at the output of the demodulator. The torque motors will drive the gimbal to an additional displacement to produce an additional in-phase IRIG output signal to cancel the effect of the quadrature signal. The additional gimbal displacement is listed below:

Low Gain	43.2 sec
Nominal Gain	41.8
High Gain	39.9

Middle and Outer Axis: The resolver introduces 50 mv of quadrature and 5 mv of in-phase signal at the input of demodulator. This produces at the demodulator output a 7.5 mv dc (unwanted) signal which is in addition to the unwanted signal caused by the IRIG and its wiring. The total gimbal angle errors introduced by quadrature and unwanted in-phase signals for the Middle and Outer Axis are listed below.

Low Gain	44.23 sec
Nominal Gain	42.83
High Gain	40.93

d) Gimbal Angle Error - Multiplying the reciprocals of the IRIG to torque motor gain by the static torque disturbance and adding in errors due to quadrature and unwanted in-phase signals, the maximum errors (listed below) result.

	Low Gain	Nom. Gain	High Gain
Outer Gimbal Middle Gimbal	45.40 sec 45.35	43.71 sec 43.69	41.62 sec 41.60
Inner Gimbal	44.90	43.13	40.96

Quality Assurance Provisions - The expected maximum values for torque motor current, stabilization amplifier output and IRIG preamplifier output, for steady state stabilization loop performance in a 1.0 g field. are calculated below.

> a) Torque Motor Current - Using the maximum value for static friction and mass unbalance and the minimum torque motor gain, the maximum expected values of torque motor current are given by:

I = 17.9 in-oz= 92.5 ma for the Inner and Middle Loops 193.5 in-oz amp

 $I = \frac{18.7}{1000} \frac{in-oz}{1000} = 119 \text{ ma for the Outer Loop}$ 156.6 in-oz amp

This information is for product engineering use only; for use in production, the contents should be released on applicable drawings and/or specifications; for use by design subcontractors, contents should be released by XCR (MIL 1101).

6.4.2

MIL	1018	REV	265	
and the second sec				

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV
Milwaukee Wisconsin	BY	DATE	TOTAL PAGES	PAGE
	R. Picard	May 28, 1965	34	32

- b) Stabilization Amplifier Output Using the maximum value of torque motor resistance, the maximum expected values of the stabilization amplifier outputs are given by:
 - $E = (.092 \text{ amp}) (61 \text{ ohms}) = 5.60^{\vee}$

for the Inner and Middle loops.

 $E = (.119 \text{ amp}) (34 \text{ ohms}) = 4.05^{V}$

for the outer loop.

c) The in-phase and quadrature preamplifier outputs were calculated from the equations shown below and are listed in section 4.1.1.

 $e_{1} = e_{q} + e_{s}$ $e_{q} = e_{g} X G X \sin 10^{\circ} + e_{n} X G X \cos 10^{\circ}$ $e_{1} = e_{g} X G X \cos 10^{\circ} - e_{n} X G X \sin 10^{\circ}$ where: $e_{1} = in-phase \text{ output voltage of IRIG preamplifier}$ $e_{q} = quadrature \text{ output voltage of IRIG preamplifier}$ $e_{s} = voltage required to overcome stiction$ $e_{s} \approx 5 \text{ mv inner gimbal}$

2.5mv middle gimbal 2.0mv outer gimbal

e_n = IRIG null voltage

G = IRIG preamplifier gain

the 10° phase shift is the maximum phase shift of the IRIG preamplifier

MIL 1018 REV 265

AC SPARK PLUG DIVISION	EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV	
		BY	DATE	TOTAL PAGES	PAGE
	Milwaukee, Wisconsin	R. Picard	May 28, 1965	34	33

6.5 Nonlinear and Parameter Variation Analysis

The frequency and step responses previously described assumed that all components have nominal values. However, this will not be the case in actual operation as components will vary from their nominal value within certain specified tolerances.

The two extreme conditions considered are:

- 1. maximum bandwidth condition
- 2. minimum bandwidth condition

These conditions are obtained by arranging the stabilization loop parameters in the form shown in Table 4.

TABLE 4

	· · · ·			Torque	Stab. Amp.	
	Irig Gain	Preamp Gain	Inertia	Mtr Gain	Breaks	
Maximum Bandwidth	high	high	low	high	high	
Minimum Bandwidth	low	low	high	low	low	

The step responses previously described assumed that the stabilization loop was linear. However, the following nonlinearities are present in the loop.

- 1. Preamp Saturation
- 2. Stabilization Amplifier Saturation
- 3. Stab. Amp. Nonlinear Compensation
- 4. Gimbal Friction
- 5. Demod Saturation

The objective of this study was to determine by an analog simulation how the performance of the stabilization loops could vary from the nominal linear case situation.

6.5.1 <u>Closed Loop Frequency Response</u> - The nominal closed loop frequency responses of the stabilization loop are shown in Figures 13 and 14. The two extreme responses which can be obtained if the parameters are arranged as shown in Table 4 are as follows:

- 1. With the parameters arranged to produce a minimum bandwidth:
 - a) The -6 db point will be at a frequency greater than 55 cps.
- 2. With the parameters arranged to produce a maximum bandwidth:
 - a) The -6 db point will be at a frequency less than 120 cps.

AC SPARK PLUG DIVISION General Motors Corporation Milwaukee, Wisconsin		EXPERIMENTAL DESIGN EXHIBIT	XDE 34-8-15		REV	
		BY R. Picard	DATE May 28, 1965	TOTAL PAGES	PAGE	
5.5.2	 b) The rel Rel Step Response - loop is shown in when the parameter bandwidth condit Using the test w a) The pear b) The over 	e resonant peak will not rise ative zero. ative Zero is the gain at .1 The nominal linear step respond Figure 13. The worst case a sers of Table 4 are arranged to tion, and the above nonlinearian roltages shown in Table 2, time for the output to reach k shall not be greater than 22 preamplifier output shall no r a 5% tolerance band of the	more than 12 db cps onse of the stab: step response will to produce a maximities are conside titles are conside titles first overs 5 ms. t have more than steady state val	above ilization ll occur imum ered. shoot a 6 peaks ue.		
Writte	n By: R. Picard Inertial Subsy Apollo Enginee	icand Approved By	y: <u>J. Sudman</u> C J. Sudman Inertial Subsy Apollo Enginee	مع stem Group ring	_	

E.

Approved By:

J/ Wachholz, Group Head Systems Instrumentation Group Apollo Engineering